• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Høgskulen på Vestlandet
  • Import fra CRIStin
  • Vis innførsel
  •   Hjem
  • Høgskulen på Vestlandet
  • Import fra CRIStin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generative Ensemble Learning for Mitigating Adversarial Malware Detection in IoT

Ahmed, Usman; Lin, Jerry Chun-Wei; Srivastava, Gautam
Peer reviewed, Journal article
Accepted version
Åpne
Ahmed.pdf (Låst)
Permanent lenke
https://hdl.handle.net/11250/2993107
Utgivelsesdato
2021
Metadata
Vis full innførsel
Samlinger
  • Import fra CRIStin [2331]
  • Institutt for datateknologi, elektroteknologi og realfag [853]
Originalversjon
Ahmed, U., Lin, J. C.-W., & Srivastava, G. (2021). Generative ensemble learning for mitigating adversarial malware detection in IOT. In 2021 IEEE 29th International Conference on Network Protocols (ICNP).   10.1109/ICNP52444.2021.9651917
Sammendrag
This paper proposes a framework that can be employed to mitigate adversarial evasion attacks on Android malware classifiers. It extracts multiple discriminating feature subsets from a single Android app such that each subset has the potential to classify a huge dataset of malicious and benign Android apps independently. Moreover, it incorporates an ensemble of ML classifiers where each classifier is trained on different features subset. Finally, the ensemble model formulates a collaborative classification decision that is resilient against adversarial evasion attacks. Results showed that the designed model achieves good performance compared to the existing models.
Beskrivelse
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Utgiver
IEEE
Tidsskrift
Proceedings - International Conference on Network Protocols (ICNP)
Opphavsrett
© 2021 IEEE

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit