
Generative Ensemble Learning for Mitigating
Adversarial Malware Detection in IoTs

Usman Ahmed1, Jerry Chun-Wei Lin1,∗, and Gautam Srivastava2
1Western Norway University of Applied Sciences, Bergen, Norway

2Brandon University, Brandon, Canada
Email: Usman.Ahmed@hvl.no, jerrylin@ieee.org, SRIVASTAVAG@brandonu.ca

Abstract—This paper proposes a framework that can be
employed to mitigate adversarial evasion attacks on Android
malware classifiers. It extracts multiple discriminating feature
subsets from a single Android app such that each subset
has the potential to classify a huge dataset of malicious and
benign Android apps independently. Moreover, it incorporates
an ensemble of ML classifiers where each classifier is trained on
different features subset. Finally, the ensemble model formulates
a collaborative classification decision that is resilient against
adversarial evasion attacks. Results showed that the designed
model achieves good performance compared to the existing
models.

Index Terms—adversarial evasion attacks, ML-based ensemble
analysis, ransomware detection.

I. INTRODUCTION

Nowadays, smartphones have become an integral part of our
lives as they are used in almost every domain (i.e., banking,
social networking, and shopping) and applied on Internet of
Things (IoT) environments to collect data for further analy-
sis. With the mainstream usage of the Android platform on
smartphones1, McAfee reported that there are more than 12
million Android malware samples2. To counter these malicious
activities, traditional approaches such as antivirus have been
used that highly rely on the repository of malicious application
signatures.

According to a previous study [20], Android malware is
swiftly advancing to evade signature-based approaches and
thus requires the development of more robust anti-malware so-
lutions for smartphones. In this perspective, machine learning
(ML)-based solutions are employed to characterize Android
malware. In the perspective of the advances in ML-based
approaches in the previous decade, the research community
has shown a dominant interest in applying these to the An-
droid malware detection [3], [18]. In most of the previous
approaches [11], [15], researchers have extracted multiple
features from Android apps using either static or dynamic
analysis. Multiple features like APIs, permissions, intents,
network addresses etc., can be extracted from an Android
APK file and embedded into a single feature vector space to
apply ML-based algorithms to classify malicious and benign
apps. However, surprisingly, these approaches can easily be

1https://www.idc.com/promo/smartphone-market-share/os
2https://www.mcafee.com/content/dam/consumer/en-us/docs/

2020-Mobile-Threat-Report.pdf

misled by using adversarial examples [2]. This introduces a
challenging issue as ML theory takes the premise that the
training dataset utilized in a learning phase stays illustrative
of the problem domain and expects that purposefully unsafe
modifications of the data do not occur [9].

In this work, our concern is to deal with adversarial evasion
attacks. We then propose a novel and salable countermeasure
for adversarial evasion attacks on ML-based Android mal-
ware classifiers. In addition, we identify and rank the most
discriminating feature subsets extracted from Android apps
for malware detection. The semantic subsets from the original
feature vector and rank them according to detection accuracy
are then defined. We also use the best possible ML-based
classifiers with optimal hyperparameter values. Finally, the
extracted discriminating feature subsets are used to train the
model. Results showed that the designed model can achieve
good performance than the existing approaches.

II. RELATED WORK

Min Zheng et al. [23] proposed a signature-based technique
called DroidAnalytics to classify malware. Similarly, Jehyun
Lee et al. [10] developed a signature-based technique used to
detect variants of known malware families. Peiravian et al. [17]
used permissions in combination with APIs-based features and
used machine learning (ML) to distinguish between malicious
and benign apps. In DroidAPIminer [1] frequency analysis
of API calls within benign and malware apps are made and
evaluated on different classifiers using the generated feature
set.

Ali Feizollah et al. [7] used Android intents as a feature to
analyze Android malware. Moreover, Sheen et al. [19] employ
a multi-featured collaborative decision fusion approach to
detect Android malware. As discussed earlier, ML techniques
are extensively applied in the classification of malware. Thus
their reliability is of crucial concern. Many techniques have
been adopted by the research community to mitigate adver-
sarial attacks not only restricted to computer vision but also
natural language processing and cybersecurity applications like
intrusion detection systems and malware detection [5], [12],
[21].

Given Android malware, ADAM [22] was the pioneer
to introduce malware evasion techniques. Emre and Sevil
[4] incorporated genetic programming to obfuscate Android



malware application. Guozhu et al. [13] employed a tech-
nique to generate malware with specific features automatically.
Alejandro et al. [6] proposed LagoDroid, a framework to
trick the RevealDroid [8] classifier into miss-classifying the
malware family. Moreover, the authors in [6] also proposed a
countermeasure for evasion attacks caused by LagoDroid.

III. DATASET AND FEATURE EXTRACTION

In this study, we use Drebin dataset3 as a benchmark. To
balance the benign and malicious data in the repository, we
randomly select 5,450 benign apps from a total of 213,453
benign apps in the data set. To extract static features from the
data set, we reverse engineer the samples in the repository.
Fig. 1 depicts the process to reverse engineer an Android app.
An overview of features extracted from the Drebin dataset is
listed in Table III.

TABLE I
OVERVIEW OF FEATURE SUBSETS

Feature sets

manifest file
Requested permissions
Hardware components
Filtered intents

source code API calls
Network addresses

For the features extraction from manifest file, Android
manifest.xml file contains the metadata that every Android app
needs at the installation time and further used while executing
the application. We used the Drebin dataset to extract the
following classes of features from the manifest file. Besides,
Android permission is a framework to protect user privacy.
Apps must request permission from the user before accessing
sensitive data such as sending SMS or accessing contacts. It
has been observed that the pattern of requested permissions
can help identify malware. Thus, permissions prove to be a
helpful feature for malware detection in Android apps.

For the filtered intents, the intent in Android is a mechanism
by which different App components communicate with each
other. Moreover, intents are used to transfer data from one
activity to another. Information about intents is listed in the
manifest file and could be used as a potential feature for
malware detection. Considering the hardware components, An-
droidManifest.xml also lists the hardware components which
the App wants to access, such as camera, GPS or touch screen.
Features based on hardware components can be helpful in the
detection of malware as it may need to access a specific pattern
of hardware components to perform malicious activity.

In addition, the disassembled code can be useful to extract
multiple static features from the App. We use the following
features from disassembled code for malware detection: (1)
API Calls: APIs are a set of rules or specifications that
an Android app needs to follow while communicating with
other App components, such as sending SMS or accessing
user location. Specific patterns of API calls extracted from an

3https://www.sec.cs.tu-bs.de/∼danarp/drebin/

android application can potentially lead to malware detection.
We use information about API calls in an application as
a feature class to detect malware; (2) Network Addresses:
malware often establishes connections to remote servers using
specific network addresses, i.e., IP address or a domain name.
Thus, we extract the network address from disassembled code
to construct a feature vector that can help identify malware.

IV. FEATURE SUBSETS SELECTION AND RANKING

Our target is to employ an ensemble of classifiers-based
models where each classifier in the model is trained on
different subsets of features. The first step of our methodology
is to investigate whether the extracted feature subsets can
classify a huge dataset as malicious or benign independently.
We employ a comprehensive static analysis of Android apps
to extract multiple types of static features. The extracted
features are further embedded in multiple feature vector spaces
according to the class of features, i.e., Permissions, APIs,
Intents, Hardware Components and Network addresses. After
extracting the features in multiple subsets, we apply ML-based
algorithms with optimal hyperparameter settings for each fea-
ture vector separately to extract the best classification results.
Moreover, we rank the feature subsets based on detection
accuracy. Finally, we use the selected feature subsets to design
an ensemble classification model to mitigate the effects of
adversarial evasion attacks.

A. Model selection

In this research, we use TPOT [14], an automated ML
(AutoML) tool which designs and optimizes the ML pipelines.
TPOT incorporates all the algorithms in SciKit-Learn [16]
package, which is an open-source ML library for Python
programmers. Therefore, each of the operators in the pipeline
of the TPOT library corresponds to the particular ML algo-
rithm for classification, algorithm for feature pre-processing
and algorithm for feature selection.

B. Model training and testing

After selecting the best classification model and optimal
hyperparameters, the next step involves training and testing
our model for each extracted feature subset repository. We
use a total of 11,010 Android apps (5, 560 malicious and
5, 450 benign) from the benchmark Drebin dataset for training
and testing by using TPOT. We distributed 70% (i.e., 7, 707)
for training and 30% (i.e., 3, 303) apps for testing purpose.
However, in the network address class, we could only find
3, 888 malicious samples out of , 5560, which had URL-based
features present in them. Therefore, we trained and tested our
model on 9, 338 samples (3, 888 malicious and 5, 450 benign)
for the network addresses class.

Fig. 2 presents the result of the tree-based pipeline (TPoT)
for permissions-based features class. Our classification results
show that, among all the static features in the Android App,
the API-based class has the most discriminating features for
malware detection. In comparison with permissions-based fea-
tures class, API-based features class has slightly less accuracy



Fig. 1. Proposed model training and feature extraction method.

Fig. 2. Performance of propose model using TPOT Generation 1.

than that of the permission results shown in Fig. 3. Moreover,
the average F-measure for hardware-based features class is
0.87 whereas, the average precision-recall is 0.87 as well.
Similarly, Figs. 2 and 3 also present the classification results
for intent-based features class. The average F-measure for
the intent-based features class is 0.85 whereas, the precision-
recall is 0.84 − 0.86. Finally, Figs. 2 and 3 present the
classification results for network addresses-based features. The
average F-measure is 0.935 and the average precision-recall is
0.92 − 0.92. We have used 3,888 malware samples out of
5, 560 total malware samples for classification in the network
addresses-based features class. We were not able to find any
network address in 1, 672 malicious samples from the Derbin
dataset. However, for 3, 888 malicious samples containing
network addresses, we achieve high accuracy and rank network
addresses-based feature class at position five because of feature
absence in 30.1% of malicious samples.

An overview of results for all the five subsets of features
(APIs, Intents, Hardware Components, Permissions and Net-
work Addresses) is presented in Table II. As shown in the table
II, classifiers trained on these feature sets individually have the
potential to classify malicious and benign apps individually.
Hence, we select the top 4 discriminating feature subsets to
train the proposed model. Although the fifth-ranked feature
subset, i.e., Network addresses, has a high detection accuracy.
We still do not select it to be a part of the proposed framework
because the Network-based features are missing in 30.1% of
malicious samples.

V. COUNTERMEASURE FOR ADVERSARIAL ATTACKS

In this section, we present a proposed framework to mit-
igate adversarial evasion attacks on ML-based classification
models and prove the effectiveness of the proposed model in
adversarial environments.



Fig. 3. Performance of propose model using TPOT Generation 10.

TABLE II
CLASSIFICATION RESULTS FOR FEATURE SUBSETS

Precision Recall F-measure
Permissions 0.940 0.939 0.939
API 0.852 0.928 0.888
Hardware 0.857 0.798 0.827
Intents 0.745 0.924 0.825
Network 0.854 0.954 0.901

In general, there are three potential solutions to mitigate
evasion attacks using ML: (1) training the target classifier with
adversarial examples called adversarial training; (2) classifier
ensembles; and (3) making target classifiers hard to attack.
In this paper, we focus on options 2 and 3 by employing
ensemble classifiers and making the target model hard to at-
tack. Consequently, our proposed salable classification model
can be employed to construct an adversarial evasion attacks
resilient framework. As shown in Fig. 4, the learning model
employs multiple classifiers where each classifier is trained
on different subsets of features independently to generate a
final output label. We use four top-ranked feature subsets
(permissions, APIs, intents and hardware components) to
design the proposed model. Each classifier in the pool is
trained on these subsets separately to generate a label. Finally,
the proposed model generates a conclusive label for a sample
under observation by performing OR operation on the results
from each classifier in the pool. Consequently, if an attacker
fabricates some part of the application, e.g. APIs, the classifier
trained on the APIs subset will fail. However, the proposed
model will still detect the malicious App using the results from
other classifiers in the pool trained on different subsets, e.g.,
permissions, intents or hardware-based features. Nonetheless,
the proposed would still be vulnerable to evasion attacks.
However, the process of evasion is made more complex for

an attacker by employing our technique. As compared to
traditional classifiers, e.g., Drebin [3], an attacker needs to
make more changes in the original malicious sample to evade
the proposed model. The model can be made even more
complex to evade by incorporating more classifiers in the
pool where each classifier is trained on different subsets of
discriminating features. In the next section, we explain the
effectiveness of the proposed model in adversarial settings by
conducting an empirical case study.

As a proof of concept, we evade one of the states of the
art classifiers in the domain of Android malware detection
called Drebin [3]. The dataset used by Drebin is composed
of 5, 560 malicious and 123, 453 benign apps. We have also
used the same data set to rank the static features of an Android
app to detect malware. Drebin extracts different features from
Android apps, including hardware components, requested per-
missions, application components, filtered intents, local API
calls, suspicious API calls, and used permissions and network
addresses. Moreover, all these extracted features are embedded
in a single multidimensional feature vector space. After the
feature extraction process, Drebin uses linear Support Vector
Machines (SVM). Drebin achieved a remarkable 94% recall
on malware class with only 1% of FPR. To perform this case
study, we replicated Drebin by providing the same data set. We
used linear SVM to classify malicious and benign apps. The
results of our experiments to replicate Drebin are presented
in Fig. 4 by using a ROC curve plot. As shown in Fig. 4, an
attacker can achieve 100% evasion of all the malicious samples
in Drebin dataset by just fabrication of 3 samples without
changing the semantics of the malicious entity. However, our
findings suggest that the process of evasion can be made com-
plex for the attacker using the proposed model. As explained
previously, we found five subsets of most discriminating and
meaningful features based on which we could classify most



Evasion Rate proposed

Evasion Rate Drebin

Fig. 4. Performance of proposed in adversarial environment.

malicious and benign samples separately. In this case study, we
modified Drebin. Rather than training SVM on single vectors
of combined features, we train it on four different feature
sets (permissions, APIs, intents and hardware components)
separately. Now, even though the attacker has access to the
data and target classifier to extract the top features, the attacker
will not evade the classifier easily. This is because the top
features belong to a specific class of a subset. Hence changing
one feature might affect the accuracy of one class (e.g..
Permissions). However, we still could detect the same malware
with the help of other classes of subsets (e.g., APIs, intents
and hardware components). As shown in Fig. 4, the same
evasion attack as Drebin is applied to the proposed model.
However, the proposed can correctly classify malware with
91% accuracy up to 14 changes in the original malicious
feature vector. On the other hand, Drebin was 100% evaded
with just three modifications in the malicious samples.

VI. CONCLUSION

In this study, we extract multiple subsets of discriminating
features from the Android App for malware detection. More-
over, we performed an empirical case study to evade Drebin, a
state-of-the-art Android malware classifier and propose a coun-
termeasure to mitigate such attacks. Finally, our experiments
show that Drebin can be 100% evaded by just fabricating three
features in feature vector space.

ACKNOWLEDGMENT

This project is partially supported by the Western University
of Applied Sciences, Bergen, Norway.

REFERENCES

[1] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in International conference on
security and privacy in communication systems. Springer, 2013, pp.
86–103.

[2] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in IEEE
Security and Privacy Workshops. IEEE, 2018, pp. 76–82.

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” pp. 23–26, 2014.

[4] E. Aydogan and S. Sen, “Automatic generation of mobile malwares using
genetic programming,” in European conference on the applications of
evolutionary computation. Springer, 2015, pp. 745–756.

[5] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognit., vol. 84, pp. 317–331,
2018.

[6] A. Calleja, A. Martı́n, H. D. Menéndez, J. Tapiador, and D. Clark,
“Picking on the family: Disrupting android malware triage by forcing
misclassification,” Expert Systems with Applications, vol. 95, pp. 113–
126, 2018.

[7] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell,
“Androdialysis: Analysis of android intent effectiveness in malware
detection,” computers & security, vol. 65, pp. 121–134, 2017.

[8] J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation-
resilient detection and family identification of android malware,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 26, no. 3, pp. 1–29, 2018.

[9] P. Laskov and R. Lippmann, “Machine learning in adversarial environ-
ments,” Mach. Learn., vol. 81, no. 2, pp. 115–119, 2010.

[10] J. Lee, S. Lee, and H. Lee, “Screening smartphone applications using
malware family signatures,” computers & security, vol. 52, pp. 234–249,
2015.

[11] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review
of android malware detection approaches based on machine learning,”
IEEE Access, vol. 8, pp. 124 579–124 607, 2020.

[12] N. Martins, J. M. Cruz, T. Cruz, and P. H. Abreu, “Adversarial machine
learning applied to intrusion and malware scenarios: a systematic
review,” IEEE Access, vol. 8, pp. 35 403–35 419, 2020.

[13] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang,
and T. Chen, “Mystique: Evolving android malware for auditing anti-
malware tools,” in Proceedings of the 11th ACM on Asia conference on
computer and communications security. ACM, 2016, pp. 365–376.

[14] R. S. Olson and J. H. Moore, “Tpot: A tree-based pipeline optimization
tool for automating machine learning,” in Workshop on automatic
machine learning. PMLR, 2016, pp. 66–74.

[15] Y. Pan, X. Ge, C. Fang, and Y. Fan, “A systematic literature review of
android malware detection using static analysis,” IEEE Access, vol. 8,
pp. 116 363–116 379, 2020.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[17] N. Peiravian and X. Zhu, “Machine learning for android malware detec-
tion using permission and api calls,” in 2013 IEEE 25th international
conference on tools with artificial intelligence. IEEE, 2013, pp. 300–
305.

[18] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and
G. Álvarez, “Puma: Permission usage to detect malware in android,” in
International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special
Sessions. Springer, 2013, pp. 289–298.

[19] S. Sheen, R. Anitha, and V. Natarajan, “Android based malware detection
using a multifeature collaborative decision fusion approach,” Neurocom-
puting, vol. 151, pp. 905–912, 2015.

[20] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of android malware and android analysis techniques,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, pp. 1–41, 2017.

[21] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li, “Adversarial attacks
on deep-learning models in natural language processing: A survey,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 11,
no. 3, pp. 1–41, 2020.

[22] M. Zheng, P. P. Lee, and J. C. Lui, “Adam: an automatic and extensible
platform to stress test android anti-virus systems,” in International
conference on detection of intrusions and malware, and vulnerability
assessment. Springer, 2012, pp. 82–101.

[23] M. Zheng, M. Sun, and J. C. Lui, “Droid analytics: a signature based
analytic system to collect, extract, analyze and associate android mal-
ware,” in 2013 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications. IEEE, 2013, pp. 163–
171.


