Show simple item record

dc.contributor.authorTambue, Antoine
dc.contributor.authorMukam, Jean Daniel
dc.date.accessioned2023-04-18T11:46:10Z
dc.date.available2023-04-18T11:46:10Z
dc.date.created2022-12-19T23:11:52Z
dc.date.issued2023
dc.identifier.citationTambue, A., & Mukam, J. D. (2023). Weak convergence of the finite element method for semilinear parabolic SPDEs driven by additive noise. Results in Applied Mathematics, 17:100351.en_US
dc.identifier.issn2590-0382
dc.identifier.urihttps://hdl.handle.net/11250/3063566
dc.description.abstractThis paper aims to investigate the finite element weak convergence rate for semilinear parabolic stochastic partial differential equations(SPDEs) driven by additive noise. In contrast to many results in the current scientific literature, we investigate the more general case where the nonlinearity is allowed to be of Nemytskii-type and the linear operator is not necessarily self-adjoint, which is more challenging and models more realistic phenomena such as convection–reaction–diffusion processes. Using Malliavin calculus, Kolmogorov equations and by splitting the linear operator into a self-adjoint and non self-adjoint parts, we prove the convergence of the finite element approximation and obtain a weak convergence rate that is twice the strong convergence rate.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleWeak convergence of the finite element method for semilinear parabolic SPDEs driven by additive noiseen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s).en_US
dc.source.volume17en_US
dc.source.journalResults in Applied Mathematicsen_US
dc.identifier.doi10.1016/j.rinam.2022.100351
dc.identifier.cristin2095447
dc.source.articlenumber100351en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal