Vis enkel innførsel

dc.contributor.authorAtil, Hasan B.
dc.contributor.authorLeonhardt, Matthias
dc.contributor.authorGrant, Richard John
dc.contributor.authorBarrans, Simon
dc.date.accessioned2023-03-10T11:32:15Z
dc.date.available2023-03-10T11:32:15Z
dc.date.created2022-11-09T11:33:53Z
dc.date.issued2022
dc.identifier.citationMetallurgical and Materials Transactions A. 2022, 54 121-140.en_US
dc.identifier.issn1073-5623
dc.identifier.urihttps://hdl.handle.net/11250/3057669
dc.description.abstractThe lack of suitable techniques for joining Si3N4 ceramics with metals has limited the usage of this otherwise outstanding material for composite applications. In this study, aluminum AlMgSi0.5 (EN AW-6060) was coated onto silicon nitride Si3N4 ceramic substrates using friction surfacing technology. Experimental work revealed that the harmful effects of thermal shock (e.g., substrate cracking, coating delamination) observed with other material combinations can be avoided by selecting materials with a low coefficient of thermal expansion, low Young’s modulus and high thermal conductivity. Design of experiments derived models for coating thickness and bonding strength fit the data well (i.e., the regression model accounts for most of the variation in the response variable). Whereas the coating thickness is predominately dependent on the rotational speed used, the bonding strength is also affected by the traverse speed. Coating thicknesses upto 2.03 mm and bonding strengths of 42.5 MPa were achieved. Deposition rates exceed those of physical vapor deposition by a magnitude of 91000 and bonding strength is on-par with thin-film metallization. Scanning transmission electron microscope analysis revealed formation of a glassy phase at the interface. Using energy-dispersive X-ray spectroscopy analysis high silicon and oxygen content with smaller percentages of aluminum and nitrogen were detected. High-resolution transmission electron microscope imaging revealed no distinct lattice structure leading to the assumption that the composition is predominantly amorphous and consists of SiAlON.en_US
dc.description.abstractMechanical and Microstructural Analysis of Friction Surfaced Aluminum Coatings on Silicon Nitride Ceramic Substratesen_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMechanical and Microstructural Analysis of Friction Surfaced Aluminum Coatings on Silicon Nitride Ceramic Substratesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© The Author(s) 2022en_US
dc.source.pagenumber121-140en_US
dc.source.volume54en_US
dc.source.journalMetallurgical and Materials Transactions Aen_US
dc.identifier.doi10.1007/s11661-022-06849-1
dc.identifier.cristin2071134
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal