Vis enkel innførsel

dc.contributor.authorStruchalin, Pavel
dc.contributor.authorYunin, Vladimir
dc.contributor.authorKutsenko, Kirill V.
dc.contributor.authorNikolaev, Oleg
dc.contributor.authorVologzhannikova, Alisa
dc.contributor.authorShevelyova, Marina
dc.contributor.authorGorbacheva, Olga
dc.contributor.authorBalakin, Boris
dc.date.accessioned2021-11-22T11:40:29Z
dc.date.available2021-11-22T11:40:29Z
dc.date.created2021-08-03T09:41:04Z
dc.date.issued2021
dc.identifier.citationStruchalin, P. G., Yunin, V. S., Kutsenko, K. V., Nikolaev, O. V., Vologzhannikova, A. A., Shevelyova, M. P., Gorbacheva, O. S., & Balakin, B. V. (2021). Performance of a tubular direct absorption solar collector with a carbon-based nanofluid. International Journal of Heat and Mass Transfer, 179.en_US
dc.identifier.issn0017-9310
dc.identifier.urihttps://hdl.handle.net/11250/2830693
dc.descriptionThis is an author's accepted manuscript version of an article published by Elsevier in International Journal of Heat and Mass Transfer on 19 July 2021, available from https://doi.org/10.1016/j.ijheatmasstransfer.2021.121717en_US
dc.description.abstractDirect absorption solar collectors (DASC) with nanofluid represent a new direction in solar thermal technology that is simpler yet more efficient than conventional equipment. In this work, we report details of performance for a custom tubular DASC with a carbon-based nanofluid. The collector was tested experimentally following a standard procedure and using a multiphase CFD-model of the device. The experiments were carried out in a range of flow rates 2... 10 l/min, nanoparticle concentrations 0.0015... 0.082%wt., temperature differences (up to 29.3 degrees), and radiant heat fluxes. We found that, at a particle concentration of 0.01%, the collector demonstrated the average thermal efficiency of 80%. For the comparable temperature differences, the efficiency of DASC was 5.8... 37.9% higher than a collector with similar geometry but a surface absorption of light energy. The CFD-model, validated against our experiments, depicts flow patterns in the DASC focusing on nanoparticles’ deposition. Less than 5% of particles deposit under local flow restrictions at flows above 6 l/min. The deposition patterns from the CFD-model correlate to the experimental observations.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectdirect absorption solar collectoren_US
dc.subjectcarbon nanotubesen_US
dc.subjectnanofluiden_US
dc.subjectCFDen_US
dc.subjectsolar collectoren_US
dc.titlePerformance of a tubular direct absorption solar collector with a carbon-based nanofluiden_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.volume179en_US
dc.source.journalInternational Journal of Heat and Mass Transferen_US
dc.identifier.doi10.1016/j.ijheatmasstransfer.2021.121717
dc.identifier.cristin1923546
dc.relation.projectRussian Science Foundation: 19-79-10083en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal