Vis enkel innførsel

dc.contributor.authorHilger, Paula
dc.contributor.authorHermanns, Reginald
dc.contributor.authorCzekirda, Justyna
dc.contributor.authorSæterdal, Kristin Myhra
dc.contributor.authorGosse, John C.
dc.contributor.authorEtzelmüller, Bernd
dc.coverage.spatialNorwayen_US
dc.date.accessioned2021-02-01T14:33:49Z
dc.date.available2021-02-01T14:33:49Z
dc.date.created2021-01-11T10:15:24Z
dc.date.issued2021
dc.identifier.citationHilger, P., Hermanns, R. L., Czekirda, J., Myhra, K. S., Gosse, J. C., & Etzelmüller, B. (2021). Permafrost as a first order control on long-term rock-slope deformation in (Sub-)Arctic Norway. Quaternary Science Reviews, 251en_US
dc.identifier.issn0277-3791
dc.identifier.urihttps://hdl.handle.net/11250/2725639
dc.description.abstractAssessing initiation of rock-slope deformation and paleo-slip rates of rockslides is important to understand the impact of climate variability - in particular permafrost changes - on rockslide activity. Norway, with 6–6.5% permafrost cover today, continues to experience spatial and temporal variations in permafrost. We assess the timing of deformation initiation and potential late Pleistocene and Holocene sliding rates for six active gradually deforming rockslides in Norway using terrestrial cosmogenic nuclide dating. We evaluate the timing and rates of deformation considering a possible climate control by modelling the permafrost evolution since deglaciation for three rockslide locations: Mannen, Revdalsfjellet and Gamanjunni 3. Deformation at these sites started during or at the end of the Holocene Thermal Maximum (HTM), between 8 and 4.5 ka when permafrost in those regions was mostly degraded. At two low elevation sites, Oppstadhornet and Skjeringahaugane in western Norway, where permafrost remained absent during the Holocene, deformation started shortly after deglaciation. The timings suggest that the presence of permafrost in Norwegian rock slopes had a stabilizing effect over several millennia after deglaciation. Vertical transects of exposure ages along outcropping sliding surfaces indicate that pre-historical sliding rates seem to have decreased throughout the Holocene at all analysed rock-slope instabilities. However, modern measured sliding rates at four sites indicate a moderate to strong acceleration, compared to previous deformation rates. Three of these sites are located above or at the lower limit of alpine permafrost, where recent permafrost degradation may enhance slope destabilisation. The implication is that slope failures may become more frequent during accelerated warming in the Arctic and Subarctic.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectrockslidesen_US
dc.subject10Be and 36Cl datingen_US
dc.subjectground temperaturesen_US
dc.subjectlong-term reconstructionsen_US
dc.subjectholoceneen_US
dc.titlePermafrost as a first order control on long-term rock-slope deformation in (Sub-)Arctic Norwayen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Author(s)en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US
dc.source.volume251en_US
dc.source.journalQuaternary Science Reviewsen_US
dc.identifier.doi10.1016/j.quascirev.2020.106718
dc.identifier.cristin1868641
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal