Vis enkel innførsel

dc.contributor.authorKunčinas, A.
dc.contributor.authorØgreid, Odd Magne
dc.contributor.authorOsland, Per
dc.contributor.authorRebelo, M.N.
dc.date.accessioned2023-09-18T13:33:56Z
dc.date.available2023-09-18T13:33:56Z
dc.date.created2023-08-31T10:12:59Z
dc.date.issued2023
dc.identifier.citationJournal of High Energy Physics (JHEP). 2023, 2023 (7), .en_US
dc.identifier.issn1126-6708
dc.identifier.urihttps://hdl.handle.net/11250/3090158
dc.description.abstractCP violation plays a very important role in nature with implications both for Particle Physics and for Cosmology. Accounting for the observed matter-antimatter asymmetry of the Universe requires the existence of new sources of CP violation beyond the Standard Model. In models with an extended scalar sector CP violation can emerge either explicitly, i.e., at the Lagrangian level, or spontaneously. Spontaneous CP violation occurs in the framework of the electroweak symmetry breaking whenever the Lagrangian conserves CP and the vacuum breaks it. This requires that not all vacuum expectation values be real. In the context of multi-Higgs extensions of the Standard Model imposing the existence of a scalar basis where all couplings are real is a sufficient condition for CP to be explicitly conserved. We discuss a three-Higgs-doublet model with an underlying S3 symmetry, allowing in principle for complex couplings. In this framework it is possible to have either spontaneous or explicit CP violation in the scalar sector, depending on the regions of parameter space corresponding to the different possible vacua of the S3 symmetric potential. We list all possible vacuum structures allowing for CP violation in the scalar sector specifying whether it can be explicit or spontaneous. It is by now established that CP is violated in the flavour sector and that the Cabibbo-KobayashiMaskawa matrix is complex. In order to understand what are the possible sources of CP violation in the Yukawa sector we analyse the implications of the different available choices of representations for the quarks under the S3 group. This classification is based strictly on the exact S3-symmetric scalar potential with no soft symmetry breaking terms. The scalar sector of one such model was explored numerically. After applying the theoretical and the most important experimental constraints the available parameter space is shown to be able to give rise to light neutral scalars at the O(MeV) scale.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleComplex S <inf>3</inf>-symmetric 3HDMen_US
dc.title.alternativeComplex S <inf>3</inf>-symmetric 3HDMen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© The Authorsen_US
dc.source.pagenumber44en_US
dc.source.volume2023en_US
dc.source.journalJournal of High Energy Physics (JHEP)en_US
dc.source.issue7en_US
dc.identifier.doi10.1007/JHEP07(2023)013
dc.identifier.cristin2171273
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal