Vis enkel innførsel

dc.contributor.authorFatemeh, Gourji
dc.contributor.authorRajaramanan, Tharmakularasa
dc.contributor.authorKishore, Amruthaa
dc.contributor.authorHeggertveit, Marte
dc.contributor.authorVelauthapillai, Dhayalan
dc.date.accessioned2023-09-15T07:47:52Z
dc.date.available2023-09-15T07:47:52Z
dc.date.created2023-07-25T09:54:49Z
dc.date.issued2023
dc.identifier.citationACS Omega. 2023, 8 (26), 23446-23456.en_US
dc.identifier.issn2470-1343
dc.identifier.urihttps://hdl.handle.net/11250/3089631
dc.description.abstractThe design of hierarchical hollow nanostructures with complex shell architectures is an attractive and effective way to obtain a desirable electrode material for energy storage application. Herein, we report an effective metal–organic framework (MOF) template-engaged method to synthesize novel double-shelled hollow nanoboxes, in terms of chemical composition and structure complexity, for supercapacitor application. Starting from cobalt-based zeolitic imidazolate framework (ZIF-67(Co)) nanoboxes as the removal template, we developed a rational preparation approach to synthesize cobalt–molybdenum–phosphide (CoMoP) double-shelled hollow nanoboxes (donated as CoMoP-DSHNBs) through (i) ion-exchange reaction, (ii) template etching, and (iii) phosphorization treatment, respectively. Notably, despite the previously reported works, the phosphorization was simply done using the facile solvothermal method, without employing annealing and high-temperature conditions, which can be considered as one of the merits of the current work. CoMoP-DSHNBs showed excellent electrochemical properties owing to their unique morphology, high surface area, and optimal elemental composition. In a three-electrode system, the target material showed a superior specific capacity of 1204 F g–1 at 1 A g–1 with a remarkable cycle stability of 87% after 20000 cycles. The hybrid device formed of activated carbon (AC) as the negative electrode and CoMoP-DSHNBs as the positive electrode exhibited a high specific energy density of 49.99 W h kg–1 and a maximum power density of 7539.41 W kg–1 with a great cycling stability of 84.5% after 20,000 cycles.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleHierarchical Cube-in-Cube Cobalt-Molybdenum Phosphide Hollow Nanoboxes Derived from the MOF Template Strategy for High-Performance Supercapacitorsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authorsen_US
dc.source.pagenumber23446-23456en_US
dc.source.volume8en_US
dc.source.journalACS Omegaen_US
dc.source.issue26en_US
dc.identifier.doi10.1021/acsomega.3c00337
dc.identifier.cristin2163393
dc.relation.projectDirektoratet for internasjonalisering og kvalitetsutvikling i høgare utdanning: NORPART-2021/10095 - HRNCET 2.0en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal