Vis enkel innførsel

dc.contributor.authorSwathi, S
dc.contributor.authorYuvakkumar, R
dc.contributor.authorRavi, G
dc.contributor.authorAl-Sehemi, A
dc.contributor.authorVelauthapillai, Dhayalan
dc.date.accessioned2023-03-23T13:32:31Z
dc.date.available2023-03-23T13:32:31Z
dc.date.created2022-06-21T17:46:00Z
dc.date.issued2022
dc.identifier.citationNanoscale Advances. 2022, 4 (11), 2501-2508.en_US
dc.identifier.issn2516-0230
dc.identifier.urihttps://hdl.handle.net/11250/3060174
dc.description.abstractIn the present work, samarium-doped nickel manganese oxide was produced by employing a straightforward co-precipitation method. A peak with a 2θ of 36° corresponded to the (110) plane confirming the formation of the rhombohedral crystal structure of NiMnO3. The existence of Mn–O and Ni–O stretching vibration modes was confirmed by Raman spectroscopy. FTIR spectra confirmed the existence of the metal–oxygen bond of NiMnO3. The synthesized ternary Ni-based material was found to be spherical nanoparticles with an average diameter of 0.81 μm. The electrochemical oxygen evolution reaction (OER) performance was explored on 0.02 M samarium (Sm)-doped NiMnO3 demonstrating outstanding OER action with low 321 mV, a low Tafel slope value (109 mV dec−1), and low charge-transfer resistance (0.19 Ω). Moreover, the BET results suggest that the 0.02 M Sm-doped NiMnO3 exhibited elevated surface area (78.78 m2 g−1) with a mesoporous character. Therefore, NiMnO3 doped with high concentrations of a rare earth metal, Sm, is proposed as a suitable material for next-generation water splitting applications.en_US
dc.language.isoengen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleRare earth metal (Sm)-doped NiMnO<inf>3</inf> nanostructures for highly competent alkaline oxygen evolution reactionen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s)en_US
dc.source.pagenumber2501-2508en_US
dc.source.volume4en_US
dc.source.journalNanoscale Advancesen_US
dc.source.issue11en_US
dc.identifier.doi10.1039/d2na00022a
dc.identifier.cristin2034008
dc.relation.projectDirektoratet for internasjonalisering og kvalitetsutvikling i høgare utdanning: UTF-2020/10053en_US
dc.source.articlenumber2501en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal