Vis enkel innførsel

dc.contributor.authorRajapakse, Gamini
dc.contributor.authorWatkins, Davita
dc.contributor.authorRanathunge, Tharindu
dc.contributor.authorGunarathne, H M N P
dc.contributor.authorSandakelum, Lahiru
dc.contributor.authorMalikaramage, Asitha Udayanga
dc.contributor.authorWylie, Shane
dc.contributor.authorAbewardane, P G P R
dc.contributor.authorEgodawela, M. G. S. A. M. E. W. D. D. K
dc.contributor.authorHerath, W. H. M. R. N. K.
dc.contributor.authorBandara, Sanjaya
dc.contributor.authorStrongin, Daniel R
dc.contributor.authorAttanayake, Nuwan Harsha
dc.contributor.authorVelauthapillai, Dhayalan
dc.contributor.authorHorrocks, Benjamin R
dc.date.accessioned2023-03-23T13:26:21Z
dc.date.available2023-03-23T13:26:21Z
dc.date.created2022-07-26T00:20:00Z
dc.date.issued2022
dc.identifier.issn2046-2069
dc.identifier.urihttps://hdl.handle.net/11250/3060169
dc.description.abstractElectropolymerization has become a convenient method for synthesizing and characterizing complex organic copolymers having intrinsic electronic conductivity, including the donor (D)–acceptor (A) class of electronically conducting polymers (ECPs). This review begins with an introduction to the electrosynthesis of common second-generation ECPs. The information obtainable from electroanalytical studies, charge carriers such as polarons (positive and negative) and bipolarons (positive and negative) and doping will be discussed. The evolutionary chain of ECPs is then presented. ECPs comprising electron-rich D and electron-deficient A moieties have been shown to possess intrinsic electronic conductivity and unique optical and electronic properties. They are third generation ECPs and electropolymerization of mixtures of D and A leads to stoichiometrically controlled block copolymers. These D–A type ECPs are discussed on the basis of selected representative materials. Since the discovery of electropolymerization as a powerful tool to synthesize copolymers of conjugated monomers with a pre-determined ratio of D and A repeat units present in the polymer, the field of D–A type ECPs has grown considerably and the literature available since 2004 to 2021 is summarized and tabulated. Electronic and optical properties of the materials determined by computational chemistry are presented. The data obtained from electrochemical and optical methods are compared with those obtained from computational methods and reasons for discrepancies are given. The literature on the concept of electropolymerization extended to synthesizing triblock and many-block copolymers is reviewed. Finally, applications of D–A polymers in optoelectronic devices (organic solar cells and field-effect transistors) and in bio-imaging are explained quoting appropriate examples.en_US
dc.language.isoengen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleImplementing the donor–acceptor approach in electronically conducting copolymers via electropolymerizationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s)en_US
dc.source.journalRSC Advancesen_US
dc.identifier.doi10.1039/D2RA01176J
dc.identifier.cristin2039498
dc.relation.projectDirektoratet for internasjonalisering og kvalitetsutvikling i høgare utdanning: NORPART-2016/10237, LKA- 3182/LKA-16/0001en_US
dc.source.articlenumber12089en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal