• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Høgskulen på Vestlandet
  • Import fra CRIStin
  • Vis innførsel
  •   Hjem
  • Høgskulen på Vestlandet
  • Import fra CRIStin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Secure Collaborative Augmented Reality Framework for Biomedical Informatics

Djenouri, Youcef; Belhadi, Asma; Srivastava, Gautam; Lin, Jerry Chun-Wei
Peer reviewed, Journal article
Accepted version
Åpne
Djenouri.pdf (Låst)
Permanent lenke
https://hdl.handle.net/11250/2994506
Utgivelsesdato
2021
Metadata
Vis full innførsel
Samlinger
  • Import fra CRIStin [2282]
  • Institutt for datateknologi, elektroteknologi og realfag [852]
Originalversjon
Djenouri, Y., Belhadi, A., Srivastava, G., & Lin, J. C.-W. (2021). Secure collaborative augmented reality framework for biomedical informatics. IEEE Journal of Biomedical and Health Informatics, 1-1.   10.1109/JBHI.2021.3139575
Sammendrag
Augmented reality is currently a great interest in biomedical health informatics. At the same time, several challenges have been appeared, in particular with the rapid progress of smart sensors technologies, and medical artificial intelligence. This yields the necessity of new needs in biomedical health informatics. Collaborative learning and privacy are some of the challenges of augmented reality technology in biomedical health informatics. This paper introduces a novel secure collaborative augmented reality framework for biomedical health informatics-based applications. Distributed deep learning is first performed across a multi-agent system platform. The privacy strategy is developed for ensuring better communications of the different intelligent agents in the system. In this research work, a system of multiple agents is created for the simulation of the collective behaviours of the smart components of biomedical health informatics. Augmented reality is also incorporated for better visualization of the resulted medical patterns. A novel privacy strategy based on blockchain is investigated for ensuring the confidentiality of the learning process. Experiments are conducted on the real use case of the biomedical segmentation process. Our strong experimental analysis reveals the strength of the proposed framework when directly compared to state-of-the-art biomedical health informatics solutions.
Beskrivelse
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Utgiver
IEEE
Tidsskrift
IEEE journal of biomedical and health informatics
Opphavsrett
© 2021 IEEE

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit