Vis enkel innførsel

dc.contributor.authorKhattri, Sanjay Kumar
dc.contributor.authorLog, Torgrim
dc.contributor.authorKraaijeveld, Arjen
dc.date.accessioned2019-06-06T08:58:48Z
dc.date.available2019-06-06T08:58:48Z
dc.date.created2019-01-03T10:12:01Z
dc.date.issued2019
dc.identifier.citationKhattri, S. K., Log, T., & Kraaijeveld, A. (2019). Tunnel fire dynamics as a function of longitudinal ventilation air oxygen content. Sustainability, 11(1).nb_NO
dc.identifier.issn2071-1050
dc.identifier.urihttp://hdl.handle.net/11250/2600087
dc.description.abstractLongitudinal ambient air ventilation is the most common methodology for maintaining an amicable environment in tunnels during normal operations while providing an evacuation path during tunnel fire emergencies. The present work investigates the influence of forced ventilation air oxygen concentrations on tunnel fire dynamics. Mixing inert gasses such as nitrogen, argon, or carbon dioxide with ambient air changes the ventilation air oxygen concentration. In order to quantify the influence of the oxygen content on the critical tunnel safety parameters, multiple computational fluid dynamics (CFD) simulations were done on a reduced-size tunnel while preserving the system Froude number. Analytical expressions were developed to describe the importance of oxygen content on the tunnel fire dynamics. By employing Froude scaling, the resulting relations were extrapolated to real scale tunnels. For the ambient air ventilation, the extrapolated expressions displayed good agreement with experimental literature data. By adjusting the oxygen concentration, parameters such as maximum tunnel ceiling temperature, fire growth rate, maximum heat flux to the tunnel floor, maximum flux on the tunnel ceiling, and maximum heat release rate can be controlled. This is the case also for oxygen levels where people can survive. This may increase the possibility for evacuation and improve the conditions for firefighting, significantly improving tunnel fire safety.nb_NO
dc.language.isoengnb_NO
dc.publisherMDPInb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjecttunnelnb_NO
dc.subjectfirenb_NO
dc.subjectsensitivitynb_NO
dc.subjectoxygennb_NO
dc.subjectcombustionnb_NO
dc.subjectventilationnb_NO
dc.subjectsimulationnb_NO
dc.titleTunnel Fire Dynamics as a Function of Longitudinal Ventilation Air Oxygen Contentnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holder© 2019 by the authors.nb_NO
dc.source.pagenumber13nb_NO
dc.source.volume11nb_NO
dc.source.journalSustainabilitynb_NO
dc.source.issue1nb_NO
dc.identifier.doi10.3390/su11010203
dc.identifier.cristin1649237
cristin.unitcode203,12,2,0
cristin.unitnameInstitutt for brannsikkerheit og HMS
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal