Vis enkel innførsel

dc.contributor.authorNoupelah, Aurelien Junior
dc.contributor.authorMukam, Jean Daniel
dc.contributor.authorTambue, Antoine
dc.date.accessioned2024-10-08T06:52:10Z
dc.date.available2024-10-08T06:52:10Z
dc.date.created2024-09-26T23:06:10Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/11250/3156804
dc.description.abstractThe aim of this work is to provide the strong convergence results of numerical approximations of a general second order non-autonomous semilinear stochastic partial differential equation (SPDE) driven simultaneously by an additive fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1) and a Poisson random measure, more realistic in modelling real world phenomena. Approximations in space are performed by the standard finite element method and in time by the stochastic Magnus-type integrator or the linear semi-implicit Euler method. We investigate the mean-square errors estimates of our fully discrete schemes and the results show how the convergence orders depend on the regularity of the initial data and the driven processes. To the best of our knowledge, these two schemes are the first numerical methods to approximate the non-autonomous semilinear stochastic partial differential equation (SPDE) driven simultaneously by an additive fractional Brownian motion with Hurst parameter H and a Poisson random measure.en_US
dc.language.isoengen_US
dc.publisherarXiven_US
dc.titleStrong convergence of some Magnus-type schemes for the finite element discretization of non-autonomous parabolic SPDEs driven by additive fractional Brownian motion and Poisson random measureen_US
dc.typeResearch reporten_US
dc.description.versionsubmittedVersionen_US
dc.source.pagenumber56en_US
dc.identifier.cristin2304297
cristin.ispublishedtrue
cristin.fulltextpreprint


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel