Comparison of muscle activation and kinematics during free-weight back squats with different loads
Journal article, Peer reviewed
Published version
View/ Open
Date
2019Metadata
Show full item recordCollections
- Import fra CRIStin [3628]
- Institutt for idrett, kosthald og naturfag [1024]
Original version
van den Tillaar, R., Andersen, V., & Saeterbakken, A. H. (2019). Comparison of muscle activation and kinematics during free-weight back squats with different loads. Plos One, 14(5). 10.1371/journal.pone.0217044Abstract
Although several studies have examined the effects of performing resistance training with different percentages of one-repetition maximum (1-RM), little is known of the neuromuscular effects and kinematics of lifting low to heavy loads with maximal movement velocity. The aim of this study is to compare muscle activation and kinematics in free-weight back squats with different loads. Thirteen resistance-training males (aged 24.2 ± 2.0 years, body mass 81.5 ± 9.1 kg, height 1.78 ± 0.06 m) with 6 ± 3 years of resistance-training experience conducted squats with 30%–100% of 1-RM. Barbell kinematics and electromyographic (EMG) activity of the vastus lateralis, vastus medialis, rectus femoris, semitendinosus, biceps femoris, and gluteus maximus were measured in the upward phase of each load. With increasing loads, the barbell velocity decreased, the upward phase duration increased, and the peak velocity occurred later. The muscle activation in all muscles increased with increasing loads but was not linear. In general, similar muscle activation in the prime movers was observed for loads between 40% and 60% of 1-RM and between 70% and 90% of 1-RM, with 100% of 1-RM being superior to the other loads when the loads were lifted at maximal intended velocity. However, the timing of maximal muscle activations was not affected by the different loadings for the quadriceps, but the timing was sequential and independent of loading (rectus femoris before vastus medial before vastus lateral). Maximal activation in the gluteus and semitendinosus increased with increasing loads. This means that for muscle activation, maximal lifting velocity may compensate for increased loads, which may allow resistance-trained athletes and individuals in rehabilitation to avoid heavy loads but still get the same muscle activation.