• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Høgskulen på Vestlandet
  • Import fra CRIStin
  • Vis innførsel
  •   Hjem
  • Høgskulen på Vestlandet
  • Import fra CRIStin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adapted k-Nearest Neighbors for Detecting Anomalies on Spatio-Temporal Traffic Flow

Djenouri, Youcef; Belhadi, Asma; Lin, Chun Wei; Djenouri, Djamel; Cano, Alberto
Journal article, Peer reviewed
Published version
Thumbnail
Åpne
Djenouri.pdf (9.139Mb)
Permanent lenke
http://hdl.handle.net/11250/2607547
Utgivelsesdato
2019
Metadata
Vis full innførsel
Samlinger
  • Import fra CRIStin [1407]
  • Institutt for datateknologi, elektroteknologi og realfag [576]
Originalversjon
Djenouri, Y., Belhadi, A., Lin, J. C.-W., & Cano, A. (2019). Adapted K-nearest neighbors for detecting anomalies on spatio–temporal traffic flow. IEEE Access, 7, 10015-10027.   10.1109/ACCESS.2019.2891933
Sammendrag
Outlier detection is an extensive research area, which has been intensively studied in several domains such as biological sciences, medical diagnosis, surveillance, and traffic anomaly detection. This paper explores advances in the outlier detection area by finding anomalies in spatio-temporal urban traffic flow. It proposes a new approach by considering the distribution of the flows in a given time interval. The flow distribution probability (FDP) databases are first constructed from the traffic flows by considering both spatial and temporal information. The outlier detection mechanism is then applied to the coming flow distribution probabilities, the inliers are stored to enrich the FDP databases, while the outliers are excluded from the FDP databases. Moreover, a k-nearest neighbor for distance-based outlier detection is investigated and adopted for FDP outlier detection. To validate the proposed framework, real data from Odense traffic flow case are evaluated at ten locations. The results reveal that the proposed framework is able to detect the real distribution of flow outliers. Another experiment has been carried out on Beijing data, the results show that our approach outperforms the baseline algorithms for high-urban traffic flow.
Tidsskrift
IEEE Access
Opphavsrett
© 2019 IEEE.

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit