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Abstract. This study aims to investigate the capability of U-Nets in
improving image reconstruction accuracy for proton range verification
within the framework of the NOVO (Next generation imaging for real-
time dose verification enabling adaptive proton therapy) project. NOVO
aims to enhance the accuracy of proton range verification by imaging
the distribution of prompt gamma-rays (PGs) and fast neutrons (FNs)
produced by nuclear interactions within tissue. In this work, focus lies on
FNs, leaving PGs as future work. A dataset consisting of Monte Carlo-
based simple back-projection and ground truth images of FN production
distributions in a homogeneous water phantom was utilized. Various U-
Net models were trained to predict FN distributions, and a set of range
landmark (RL) metrics were computed for evaluation. Linear regression
models were established to correlate shifts in mean RL with true range
shift magnitudes. Our findings demonstrate a strong linear correlation
between the shifts in mean RL in U-Net predictions and the true range
shift magnitudes. Multiple RL metrics, including weighted average, in-
flection point, edge, and peak, were explored. This study highlights the
potential utility of U-Nets in enhancing image reconstruction accuracy
for proton range verification. The observed correlations between RL shifts
and true range shifts provide evidence of the ability of U-Nets to accu-
rately predict images containing range information. Future research will
focus on generating more realistic training data incorporating more clin-
ically relevant phantoms, including tissue heterogeneities.
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1 Introduction

Proton therapy is a highly attractive radiotherapy treatment for cancer due to
the sharp dose gradients and greater healthy tissue sparing that it offers as com-
pared to conventional radiotherapy with photons [9]. However, its full potential
is limited by range uncertainties caused by anatomical motion and day-to-day
variations, tissue and tumor changes in response to treatment, patient setup or
positioning errors, and inevitable uncertainties in the conversion of Computed
Tomography (CT) Hounsfield units to relative proton stopping powers [5,13].
Consensus holds that range uncertainties, determined through a planning CT
scan, are commonly found in the range of ± 3% [10]. To harness the full poten-
tial benefits of proton therapy, it is essential to accurately predict the range of
proton beams during treatment planning and delivery. Inaccurate estimation of
safety margins can lead to more significant repercussions in proton therapy com-
pared to photon therapy. While underestimated margins in photon therapy may
result in tumor under-dosage, in proton therapy, such underestimation could
lead to portions of the tumor receiving no dose due to potential shifts in the
sharp distal dose fall-off.

Numerous non-invasive range verification systems have been proposed to mit-
igate range uncertainty in proton therapy. These systems hinge on imaging the
emission probability distribution of secondary particles resulting from proton
interactions with tissue, including prompt gamma-rays (PGs), positron emit-
ters, and fast neutrons (FNs), as these distributions exhibit strong correlation
with the beam range. The most common method involves the imaging of PGs,
with proposed systems such as prompt gamma-ray timing, prompt gamma-ray
spectroscopy, and Compton Cameras [21,4], and imaging of positron emitters,
where distributions thereof can be obtained by means like Positron Emission
Tomography (PET) [7,3].

Achieving millimeter-level precision presents a notable challenge due to lim-
ited statistics for each proton beam spot, constraints related to hardware and
readout electronics [2,15], and also inherent limitations within conventional im-
age reconstruction algorithms - including Simple back-projection (SBP), Max-
imum Likelihood Expectation Maximization (MLEM), and Origin Ensembles
(OE).

The iterative nature of MLEM and OE algorithms, although powerful, can
produce images with excessive noise (MLEM) or blurred details (OE) [6], and
SBP, while relatively simple and fast, may result in suboptimal image recon-
structions, not being able to adequately address the challenges of measurement
uncertainties, especially in scenarios with limited statistical data, which are com-
mon in proton therapy range verification.

U-Nets, a convolutional neural network architecture with a distinctive "U"
shape, are becoming increasingly popular in various medical imaging modali-
ties such as PET, Magnetic Resonance Imaging (MRI), and CT for enhancing
the image reconstruction process. The design of U-Nets consists of encoding
and decoding (down and up sampling/pooling) layers and skip connections be-
tween corresponding layers, facilitating the preservation of spatial information,
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making it particularly effective for tasks where retaining spatial information is
crucial, such as in medical imaging. Originally designed for MRI image segmen-
tation [20], U-Nets have demonstrated versatility beyond their initial purpose
and have found successful applications in tasks such as noise reduction and en-
hanced spatial resolution in PET [16] and prediction of dose distributions in
radio therapy [11].

In this work we explore the potential of U-Nets for proton range verification
in context of the NOVO (Next generation imaging for real-time dose verifi-
cation enabling adaptive proton therapy) project, which aims to improve the
accuracy of proton therapy range verification through imaging of the produc-
tion distributions of both PGs and FNs. A core component of NOVO is the
Compact Detector Array known as NOVCoDA [8], composed of optically seg-
mented, densely stacked organic scintillator bars with light read-out at both
ends. Imaging using the NOVCoDA relies on the assumption that the origin of
detected particles, FNs and PGs, lie on the surface of a so-called event cone.
Reconstructed event cones serve as input to the tomographic reconstruction of
the particle production distributions used for range verification.

We consider the limited case of range shifts and production of FNs in a water
phantom and train various U-Net models on Monte Carlo-generated SBP images
and their respective ground truth (GT) FN production distribution. Central to
our investigation is the assessment of whether the images predicted by U-Nets
contain accurate range information. To evaluate the performance of the trained
models, we compute a range landmark (RL) metric for the lateral profile (i.e.,
the profile parallel to the proton beam axis) of predicted images and establish a
linear regression model to correlate shifts in mean RL with true range shift mag-
nitudes. Performance of trained U-Nets are evaluated based on the coefficient of
determination and slope of linear regression models. We explore the performance
of eight different RL metrics computed from the lateral FN profiles, including
weighted average, inflection point, edge, peak, and the 50% and 80% points of
the edge and peak. Lastly, we discuss potential use cases for U-Nets within the
NOVO image reconstruction system and outline avenues for future research.

2 Methods

2.1 U-Net

A U-Net architecture, comprising of encoding and decoding layers (3 · 107 pa-
rameters), was implemented using the PyTorch library [14]. The encoder layers
are responsible for extracting features from the input image through a series of
convolutional and pooling operations. Each encoder layer captures increasingly
abstract representations of the input image, starting from low-level features and
progressively incorporating higher-level information. On the other hand, the de-
coder layers decode these abstract representations to reconstruct the output
image. Each decoder layer involves up-sampling and convolutional operations,
allowing the network to recover spatial details lost during encoding. In the for-
ward pass, the input image undergoes encoding and decoding stages within the
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U-Net architecture. Finally, the output image is normalized to ensure that pixel
values fall within the range of [0, 1], facilitating consistency and compatibility
with subsequent processing steps.

A collection of models underwent training through a grid search across var-
ious hyperparameters, encompassing two separate learning rate schedulers (Ex-
ponentialLR with γ = {0.7, 0.9} and StepLR with step size 5 and γ = 0.9),
two base learning rates (10−3 and 10−4), and three distinct loss functions: Mean
Square Error (MSE), L1, and Structural Similarity (SSIM) loss.

The MSE and L1 loss functions were directly obtained from the PyTorch
library, offering traditional measures for assessing the difference between pre-
dicted and GT images. Meanwhile, the SSIM loss function was formulated as
SSIMLoss = 1 − SSIM , where SSIM is calculated using the SSIM function
provided by the piqa library [17], with a window size of 5. Each loss function
offers distinct characteristics: MSE loss favors smoothness in the predicted im-
ages, while L1 loss tends to preserve sharpness in edges. On the other hand,
SSIMLoss is specifically designed to prioritize images with similar mean inten-
sity, contrast, and structural information within local regions of a specified size,
capturing important visual features, such as luminance, contrast, and structures
(such as local patterns, textures and edges) present in the GT images [22,12].

Models were trained on SBP images as input and GT images as target for 50
epochs with a batch size of 10 and the Adam optimizer on an NVIDIA Tesla P4.
The generation of SBP and GT images are explained in the subsequent section.

2.2 Image generation: Monte Carlo simulations, bootstrapping and
image pre-processing

Images for training the U-Net models were generated using Monte Carlo simula-
tions with the GATE software (v.9.0) [18]. Placed in vacuum, a 40×40×40 cm3

water phantom was irradiated with an 85 MeV (57.8 mm range in water [1])
pencil proton beam featuring a σx = σz = 2 mm Gaussian beam profile and an
intensity of 109 protons, equivalent to a high-intensity treatment beam spot.
Positioned with a 10 cm gap between the phantom and detector surface, a
20× 30× 20 cm3 detector volume composed of typical scintillator plastic (with
carbon-to-hydrogen atom ratio 10:11 and density 1.099 g/cm3) was utilized. A
set of 11 range shifts were introduced by incrementally adding or removing ma-
terial from the phantom along the beam direction in 1 mm steps, emulating
physiological changes like a patient gaining or losing weight in a region inter-
sected by the proton beam. The setup is visualized in Fig. 1.

The physics lists QGSP_BIC_EMY was selected to focus on the relevant
neutron energies, being the recommended physics list for proton therapy related
simulations [8]. For this study, we focused solely on FN production within the
water phantom. True FN production coordinates were used to generate GT im-
ages.

An artifact in the form of an unexpected peak in the FN production distri-
butions was observed at the interface between vacuum and water phantom. This
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Fig. 1. GATE simulation geometry (not to scale) of an 85-MeV pencil proton beam
aimed perpendicular to a 40 × 40 × 40 cm3 water phantom and a 20 × 30 × 20 cm3

plastic scintillator detector volume placed 10 cm from phantom surface.

artifact was excluded from the analysis to ensure accurate image reconstruction
and interpretation of the results.

FNs undergoing two elastic scatters on hydrogen atoms in the detector vol-
ume, with an energy deposition greater than 0 eV in each, were used for event-
cone reconstruction, using non-relativistic scatter kinematics to compute the half
opening angle, as in [8]. Detector resolution effects were not accounted for. Using
a similar approach as the marching algorithm [23], SBP images were constructed
by projecting event cones back onto an image plane positioned on and with a
surface normal perpendicular to the proton beam axis. Event cones pointing in
the opposite direction of the phantom were filtered out.

To augment the training data, 200 bootstrap operations were performed on
each range shift simulation, sampling n event cones and respective GT coordi-
nates of the observed FN double coincident scatter events, yielding a total of
2200 pairs of SBP-GT images. The number of bootstrap samples for a desired
beam intensity N was determined by

n = ηN, (1)

where the FN double scatter efficiency η is calculated as number of FN double
scatter per primary proton, η = (1.86± 0.11) · 10−4 FN double scattering events
per primary proton. To emulate a medium intensity proton beam spot, we set
N = 108, resulting in n = (1.86± 0.11) · 104 FN double scattering events.

The SBP and GT images were cropped to dimensions of 64× 64 pixels with
each pixel measuring 1 mm × 1 mm and normalized such that maximum intensity
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in a given image pixel equaled 1. SBP-GT image pairs were utilized for training,
validation, and testing, with SBP images serving as model inputs and GT images
as targets. The dataset was split into training, validation, and test subsets using
an approximate ratio of 60-20-20%, resulting in 1320, 429, and 451 image pairs
for each respective subset, leaving 40 image pairs of each range shift for the test
subset.

2.3 Range Landmark and Performance Metric

Central to our study is the ability of trained U-Nets to accurately predict images
that contain range information. This capability is assessed through the use of
a so-called range landmark (RL) to quantitatively measure shifts in the lateral
profile of reconstructed FN distributions.

In previous work [19], "area under the curve" (AUC) of 1D FN distribu-
tion profiles was deemed the most predicative feature, amongst 28 distribution
parameters, for range shift detection. This conclusion was, however, based on
simulations of FN production in a CT-based phantom where production profile
of FNs were observed to take different shapes depending on the magnitude of the
introduced range shift. Assuming that the observed change in FN distribution
shape was due to the heterogeneous nature of the phantom, drastic changes in
the shape and total number of produced FN are not expected in this work, where
range shift deviations were introduced to a homogeneous water phantom, thus
making AUC an inapt RL metric to determine range shifts.

Instead, we consider weighted average (as in [8]), inflection point, peak, edge,
and the 50% and 80% points of both peak and edge as RL metrics (illustrated
in Fig. 2), as these will be affected by shifts in FN distributions regardless of the
distribution shape.

Peak RL was defined as the location of the lateral profile maximum. An
algorithm was developed to find the edge of the lateral profile: The algorithm
iterates through the gradient values of a lateral profile within a sliding window
and computes the average gradient. The index of the starting bin of the cor-
responding window is returned as the edge value if the average gradient is the
smallest among the considered windows. The sliding window size was defined as
one-eights of the total number of bins in the lateral profile. Prior to computing
RL metrics, the images underwent a 2x up-sampling process to create a finer
binning (1 bin = 0.5 mm). The up-sampling process employed first-order spline
interpolation between pixels and was facilitated by the zoom function available
in the scipy.ndimage module.

To gauge performance, U-Net models were evaluated by fitting a linear re-
gression model to determine the correlation between shifts in mean RL (∆R̄L)
and true range shift magnitudes. R̄L was determined by averaging over a set of
40 RL for corresponding true range shift, where 40 is the number of bootstraps
per true range shift in the test subset as mentioned in Section 2.2. The shift in
average RL was found by taking the difference between a R̄L and the R̄L for
0 mm true range shift for the RL metric under consideration, and the corre-
sponding standard deviation was set as the standard deviation of the RL set in
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Fig. 2. Example of the lateral profile (black) and its first derivative (gradient) of a U-
Net predicted fast neutron distribution and corresponding range landmarks indicated
on the figure.

question

σ∆R̄L = σR̄L =

√√√√ 40∑
k

(RLk − R̄L)2

40
. (2)

When examining the parameters of the linear regression model, it is desirable
to have a coefficient of determination R2 and a slope a that are close to 1, both
features equally desirable. A coefficient of determination of R2 = 1 indicates a
perfect fit, while a slope of a = 1 implies that for every unit increase in the true
range shift, the ∆R̄L of U-Net predicted FN distribution increases by exactly 1
unit, indicating a strong linear correlation.

The presence of a high R2 does not guarantee an a close to 1, and vice versa.
Meaning, a possible outcome of the linear regression analysis, could for instance,
be a high R2 and slopes close to zero, which would mean a good linear fit but a
weak linear correlation. For this reason, models where a < 0.1 were removed from
further evaluation, regardless of the R2 value. No criteria for R2 were enforced.
Linear regression analysis was done for all combinations of trained U-Nets and
eight RL metrics. Linear regression results were then grouped into RL metrics
and was sorted according to descending R2 and a.

Furthermore, the mean and standard deviations of the linear regression re-
sults (R2 and a) were calculated for each RL metric to evaluate the impact of the
chosen RL metric on linear regression results. Also, RL metrics were compared
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by assessing the magnitude of the average RL standard deviation (σ̄∆R̄L) of each
metric, since it is crucial to have a metric that precisely identifies RL shifts.

3 Results and Discussion

Average and standard deviation of linear regression results (coefficient of deter-
mination R2 and slope a) and σ∆R̄L for each RL metric are reported in Table 1.
Among the considered RL metrics, weighted average resulted in the lowest av-
erage σ∆R̄L, with a value of 1.46± 0.51 mm, and linear regression models with
the highest average and lowest standard deviation of R2. The weighted average
method appears to outperform the other RL metrics in range estimation, likely
due to the peak and edge based RL metrics being more sensitive to statistical
fluctuations in the lateral profile. For instance, inadequate window size in the
edge RL detection algorithm may lead to identification of a local minima in-
stead of the edge of a profile. It should be highlighted that RLs were computed
based on images predicted by U-Net models and that the performance of the
RL weighted average approach cannot be extrapolated to FN distribution im-
ages reconstructed by other means. Moreover, it is important to clarify that this
study does not include an analysis to determine the range shift detection limits
of U-Nets, leaving this aspect for future investigation.

Table 1. Average and standard deviation of coefficient of determination R2 and slope
a of linear regression fit, and shifts in mean range landmark ∆R̄L for different range
landmark metrics.

Range landmark R̄2 σR2 ā σa σ̄∆R̄L [mm] σσ̄∆R̄L
[mm]

Weighted average 0.97 0.02 0.80 0.11 1.46 0.51
50% of peak 0.93 0.08 0.93 0.18 2.48 1.63
80% of peak 0.91 0.06 1.06 0.21 3.31 1.79
50% of edge 0.91 0.10 0.87 0.13 4.16 5.23
Edge 0.91 0.10 0.88 0.12 4.70 4.75
80% of edge 0.91 0.10 0.88 0.12 4.70 4.75
Inflection point 0.88 0.11 1.03 0.26 3.40 2.49
Peak 0.85 0.07 0.93 0.17 3.85 1.87

The top three U-Net models according to linear regression for RL computed
by weighted average are shown in Fig. 3, and corresponding linear regression
results in addition to average and standard deviation of σ∆R̄L are listed in Ta-
ble 2. The primary aim of this investigation is to evaluate the effectiveness of
U-Nets in predicting images containing range shift information, a task for which
their remarkable coefficient of determination and slope demonstrate their capa-
bility, all top three models displaying an R2 > 0.98 and a > 0.8 (see Table 2).
A large fraction of the models exhibited notable performance, regardless of the
combination of loss function, learning rate scheduler and parameter γ, and base
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learning rate employed. However, a trend emerges favoring a lower base learning
rate of 10−3 and an exponential learning rate schedule with γ = 0.9.

Table 2. Top three U-Net models according to linear regression picked for highest
coefficient of determination R2 and slope a for weighted average as range landmark
metric.

Model Loss Scheduler Base lr γ R2 a σa b σb σ̄∆R̄L σσ∆R̄L

ID function [mm] [mm] [mm] [mm]
0 L1 Exp. 10−3 0.9 0.991 0.868 0.089 -0.418 0.028 1.180 0.401
1 MSE Step 10−3 0.9 0.988 0.899 0.104 -0.625 0.033 1.110 0.343
2 SSIM Exp. 10−3 0.9 0.983 0.849 0.116 -0.274 0.037 1.150 0.361

Abbreviations: Exponential learning rate scheduler (Exp.), Step learn-
ing rate scheduler (Step), Base learning rate (Base lr)

We present in Fig. 4 the predicted FN distributions from the top three mod-
els, each of which were trained on a different loss function, along with their
respective input SBP and target GT images for 5 range shifts (-5, -3, 0, 3, and 5
mm). These exemplary images showcase the influence of the chosen loss function
on model prediction. Specifically, the model trained with an SSIM loss function
exhibits a preference towards preserving structure, mirroring patterns of the in-
put SBP. Conversely, models trained with L1 and MSE losses produce smoother
lateral profiles, exemplified in Fig. 5 which depicts the average lateral profiles
of 40 images predicted by the models for the specific case of a 5 mm true range
shift.

These analyses underscore the key role of the loss function in shaping the
predicted FN distribution, an aspect not readily apparent in the linear regres-
sion analyses. Hence, in future endeavors employing U-Nets for FN distribution
prediction in proton therapy, we recommend careful consideration of the loss
function and the intended application of the predicted image. For instance, the
structural fidelity of predicted distributions may be of immediate concern if the
whole image (and not just the lateral profile) is to be used to compute a RL
metric. Consequently, employing an SSIM loss function that prioritizes local
structures and contrast levels may be more advantageous in certain scenarios
compared to an L1 loss function that emphasizes sharp edges or an MSE loss
function that emphasizes smoother edges.

This work’s main priority has been to investigate the use of machine learning
to enhance image reconstruction in proton therapy range verification. While
a U-Net architecture was chosen for this purpose, other approaches, such as
Generative Adversarial Networks (GANs), may also be viable options for future
research.
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Fig. 3. Linear regressions of predicted image average range landmark (weighted aver-
age) shift and true range shift magnitude for the top three trained models with the
labels corresponding to the model IDs in Table 2.
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Fig. 4. Ground truth (GT), simple back-projections (SBP), and U-Nets (model 0, 1,
and 2, trained with L1, MSE, SSIM loss, respectively) predictions of fast neutron pro-
duction distribution and corresponding range landmark (weighted average) indicated
by a dotted vertical line. All images are normalized such that maximum intensity is
equal to 1.
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Fig. 5. The average lateral profiles of 40 images predicted by model 0, 1, and 2 (trained
on L1, MSE, and SSIM loss function, respectively) for the specific case of a 5 mm true
range shift.

4 Conclusion

In this study, we investigated the potential of U-Nets for proton therapy range
verification within the framework of the NOVO (Next generation imaging for
real-time dose verification enabling adaptive proton therapy) project by train-
ing models to predict fast neutron distributions based on simple back-projection
images. A strong linear correlation between the shift in mean range landmark
(RL) of U-Net predictions and the true range shift magnitude was observed,
suggesting that U-Net models have the capability to predict images containing
range information. A significant portion of trained models exhibited strong lin-
ear correlations. While these findings are promising and underscore the potential
utility of U-Nets in improving image reconstruction accuracy for proton range
verification, we emphasize the limitations of this study and the need for a more
diverse dataset to provide more conclusive evidence. In future work, we sug-
gest generating realistic training data, considering phantom heterogeneities and
various clinical proton beam energies, intensities, and directions. In conclusion,
while our study provides valuable insights into the potential of U-Nets in image
reconstruction for the NOVO project, there remains a need for ongoing research
and development to fully harness their capabilities.
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