
Bachelor’s Thesis

BO24EB-09
Navigation of a Mobile Robot

Henrik Eikefet
Daniel Sortland

Bachelor’s Thesis in Electrical Engineering at
Department of Computer Science, Electrical Engineering, and

Mathematical Sciences
Western Norway University of Applied Sciences

May 20, 2024

Document Control

Report title: Navigation of Mobile Robot
Authors: Date/Version
Henrik Eikefet May 20, 2024/0.1
Daniel Sortland
Supervisor at HVL: Report number:
Geir Omar Berland B024EB-09
Comments: Course:
We allow publishing of the report Automation and Robotics
Security classification: Number of pages with appendixes:
Open 96

Contracting entity: Contracting entity’s reference:
Fagskolen Vestland
Contact at contracting entity, including contact information:
Guttorm Lyngær, Phone: 40611630, E-mail: Guttorm.Lyngver@vlfk.no

B024EB-09 Navigation of Mobile Robot

Preface

This report has been prepared as part of our bachelor’s thesis at Western Norway
University of Applied Sciences (HVL)), Bergen Campus, undertaken in the spring of
2024. Our project, led by Guttorm Lyngvær at Fagskolen Vestland, challenged us to
develop a set of laboratory exercises demonstrating the navigation capabilities of the
Festo Robotino 3 mobile robot.

We are thankful to Guttorm Lyngvær for providing and entrusting us with this exciting
task, as well as Geir Omar Berland who provided support and guidance throughout the
project.

Rev: 1.0 3 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Summary

In this bachelor’s thesis, we have developed a set of laboratory exercises that demonstrates
the navigation of a mobile robot, Robotino 3 from Festo. The lab exercises covers key
aspects of mobile robotics and blend theoretical concepts from Peter Corke’s "Robotics,
Vision, and Control" with practical demonstrations of robot navigation and interaction.
Additionally, we have created a kinematic model to simulate the robot’s movement using
its omnidrive system. This model is supported by software simulations to help with
understanding.

The assessment of the project’s results shows that we achieved most of our objectives.
Both the lab exercises and software simulations provide practical experience and theoretical
understanding, while tests on the Robotino give valuable insights into its sensor accuracy,
which could be useful for future projects.

Weaknesses in the system were identified during the project, but they do not critically
affect task execution. Areas for improvement have been identified as well, and are detailed
in Chapter 7.1.

Sammendrag

I denne bacheloroppgaven har vi utviklet et sett med laboratorieøvelser som demonstrerer
navigasjon av en mobilrobot, Robotino 3 fra Festo. Labøvelsene dekker viktige aspekter
ved mobil robotikk og blander teoretiske konsepter fra Peter Corkes "Robotics, Vision,
and Control" med praktiske demonstrasjoner av robotnavigasjon og interaksjon. Vi har
også opprettet en kinematisk modell for å simulere robotens bevegelse ved hjelp av dens
omnidrive-system, støttet av programvaresimuleringer for å hjelpe mer med forståelsen.

Prosjektets resultater tyder på at de fleste målene har blitt oppnådd. Labøvelsene og
programvaresimuleringene gir praktisk erfaring og teoretisk forståelse, mens tester utført
på Robotino gir verdifulle innsikter i sensorens nøyaktighet, noe som kan være nyttig for
fremtidige prosjekter.

Noen svakheter i systemet ble identifisert underveis i prosjektet, men de er ikke kritiske
for oppgaveutførelsen. Muligheter for forbedringer er detaljert i Kapittel 7.1.

Rev: 1.0 4 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Table of Contents

Preface . 3
Summary . 4
Sammendrag . 4

1 Introduction 11
1.1 Contracting Entity . 11
1.2 Problem Description . 11
1.3 Objectives . 12

2 Theory in Mobile Robotics 13
2.1 Peter Corke’s Robotics, Vision and Control 13

2.1.1 Chapter 4 - Mobile Robot Vehicles 13
2.1.2 Chapter 5 - Navigation . 15
2.1.3 Chapter 6 - Localization . 17

3 Technical Overview 19
3.1 Hardware . 20

3.1.1 Drive system . 21
3.1.2 Modules . 22
3.1.3 Sensors . 23
3.1.4 Interfaces . 25
3.1.5 Power Supply . 26

3.2 Software . 27
3.2.1 Web Interface . 27
3.2.2 Programming . 27
3.2.3 Simulations . 29

3.3 Control Systems and Strategies . 30
3.3.1 PID Controller . 30
3.3.2 Closed-Loop Controller . 31

3.4 TCP/IP . 32
3.5 3D-printing . 33

4 Design and Implementation 34
4.1 Kinematic Model . 34
4.2 Sensor Utilization . 36
4.3 Software Development . 43
4.4 Simulations . 45
4.5 3D Printing . 47

Rev: 1.0 5 May 20, 2024

B024EB-09 Navigation of Mobile Robot

5 Testing 48
5.1 Distance Sensor Accuracy Test . 48
5.2 Odometry Accuracy Test . 48
5.3 Omnidrive Function Block Test . 49
5.4 Camera Accuracy Test . 50
5.5 Robot Repeatability in Lab Exercise 4 . 51

6 Results 52
6.1 Lab Exercises . 52
6.2 Identified Issues . 54
6.3 Discussion . 55

7 Conclusion 56
7.1 Room for Improvements . 57

Bibliography 61

A Kinematics 62

B Lab Exercise 1 70

C Lab Exercise 2 73

D Lab Exercise 3 76

E Lab Exercise 4 80

F Template for Report 87

G Guide to Working With Robotino 3 88

H Videos Demonstrating Robotino Movement 94

I External Resources and Documentation 95

Rev: 1.0 6 May 20, 2024

B024EB-09 Navigation of Mobile Robot

List of Figures

1.1 Overview of the Robotino 3 Robotic Platform 11

3.1 Robotino shown with Tower, Segment Base, Gripper, and Signaling Lights 19
3.2 Specifications for Robotino’s Embedded PC 20
3.3 Illustrating Robotino’s Omnidirectional Wheels 21
3.4 Illustrating Omnidirectional Wheels Movement Capabilities 21
3.5 The Robotino’s Electric Gripper with Integrated Light Barrier 22
3.6 Robotino’s Infrared Sensor Array for Navigation and Obstacle Detection . 23
3.7 Graph Illustrating Sensor Output with Distance to Objects 23
3.8 The Robotino’s Safety Bumper . 24
3.9 The Onboard Camera Module for the Robotino 24
3.10 The I/O Interface of the Robotino Displaying the Connections 25
3.11 The Robotino View Software Interface . 27
3.12 Snapshot of the Robotino SIM Simulation Environment 29
3.13 Example of a Closed Loop Controller . 31
3.14 The Four Layers of TCP/IP . 32
3.15 Makerbot Replicator Z18 . 33
3.16 Example of a 3D-Printed Object That Could Be Utilized for Our Project. 33

4.1 The Kinematic Model of Robotino’s Drive System 35
4.2 Sensor Layout for Robot Obstacle Approach 36
4.3 Robotino 3 Distance Sensor Characteristic 37
4.4 Voltage Response of Sensor to Varying Distances from an Aluminum Tape 39
4.5 Optical Sensor Reaction to Robotino’s Position Relative to the Marked Line 40
4.6 Generate Markers . 41
4.7 Marker Detection Block . 41
4.8 Color Range Finder Function Block . 41
4.9 Visual Representation of the Kinematics 44
4.10 Visualization of Robotino in RViz . 45
4.11 Simulation of Robotino in a Virtual Environment Using Gazebo 45
4.12 Twist Controller for Robot Operation in Gazebo 46
4.13 A Simple Geometric Model of the Robot with Animated Movement from

Kinematics. Created in Python . 47

6.1 Overview of Robotino Front Panel with Connections 54

7.1 Example of Lidar We Could Use: Hokuyo URG-04LX-UG01 57
7.2 Showcasing Robotino with a Hokuyo Lidar Mounted 57
7.3 Festo Distribution/Belt Station . 58

Rev: 1.0 7 May 20, 2024

B024EB-09 Navigation of Mobile Robot

A.1 Illustrating the Coordinate Frames and Angular Relationships 62
A.2 Representation of Wheel Position and Orientation in the Robot Body Frame 63
A.3 Kinematics of a Robot with Mecanum Compared to Omni-Wheels 64
A.4 Transformation Steps and Equations for Robot Wheel Kinematics 65
A.5 Kinematics with Angle Calculations and Wheel Coordinates 66
A.6 Calculation of Kinematics for Wheel 1 . 67
A.7 Calculation of Kinematics for Wheel 2 . 67
A.8 Calculation of Kinematics for Wheel 3 . 68
A.9 Matrix Representation and Vector Transformation for Wheel Velocities . . 69

B.1 Move forwards for 6 seconds . 71
B.2 Move backwards for 6 seconds . 71
B.3 Omnidrive Function Block . 71
B.4 Drive System Function Block . 71
B.5 Drive System with Control Panel . 72
B.6 Bumper Function Block . 72

C.1 Approach a Wall Subprogram . 74
C.2 Move Along Wall Subprogram . 75
C.3 Move Around Corner Subprogram . 75

D.1 Teach Color Subprogram . 77
D.2 Search for the Object Subprogram . 78
D.3 Approach the Object Subprogram . 78
D.4 Search for the Marker Subprogram . 79
D.5 Approach the Marker Subprogram . 79

E.1 Find Marker Subprogram . 82
E.2 Mark Follow Subprogram . 82
E.3 Center Subprogram . 83
E.4 Pickup Subprogram . 84
E.5 Drive Back Subprogram . 85
E.6 Move Odometry Subprogram . 85
E.7 Release Gripper Subprogram . 86
E.8 Home Pose Subprogram . 86

G.1 Robotino shown with Tower, Segment Base, Gripper, and Signaling Lights 88
G.2 User interface of Robotino View, Highlighting the Main Program Structure 90
G.3 The programming Blocks Within Robotino View 90
G.4 Snapshot of the Robotino SIM Simulation Environment 91
G.5 Displaying the Control Function on Robotino Web Interface 92

Rev: 1.0 8 May 20, 2024

B024EB-09 Navigation of Mobile Robot

List of Tables

3.1 The I/O Table of the Robotino Displaying the Connections 25

4.1 Robotino 3 Distance Sensor Measured Values 37

5.1 Detection Results for Various Objects at Different Distances 48
5.2 Omnidrive Test of 1 Meter With a Speed of 100 mm/sec 49
5.3 Omnidrive Test of 1 Meter With a Speed of 400 mm/sec 49
5.4 Camera Accuracy Test with Various Objects and Distances 50
5.5 Performance Test With Line Detector and Uncalibrated Starting Position 51
5.6 Performance Test With AR-Marker and Calibrated Starting Position . . . 51

Rev: 1.0 9 May 20, 2024

B024EB-09 Navigation of Mobile Robot

List of Abbreviations

HVL Western Norway University of Applied Sciences

ROS Robot Operating System

GPS Global Position System

PRM Probabilistic Roadmaps

PCB Printed Circuit Board

PC Personal Computer

MPS Modular Production System

IR Infrared

WLAN Wireless Local Area Network

I/O Interface Input/Output Interface

USB Universial Serial Bus

PCI Peripheral Component Interconnect

VGA Video Graphics Array

DC Direct Current

SLAM Simultaneous Localization and Mapping

TCP/IP Transmission Control Protocol/Internet Protocol

RPM Revolutions Per Minute

Rev: 1.0 10 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Chapter 1

Introduction

1.1 Contracting Entity

Fagskolen Vestland is one of Norway’s largest public vocational schools, with over 1,900
students. The school offers a wide range of programs in areas like maritime, technical,
petroleum, environmental, and health sciences [4]. It has campuses in several locations
including Bergen, Førde, Stord, Ulvik, Måløy, Voss, and Austevoll. Our project is in
collaboration with Fagskolen in Bergen.

1.2 Problem Description

Develop laboratory exercises that demonstrate the navigation of a mobile robot platform.
The robot we will use is the Robotino 3 from Festo, which is an omnidrive robot, meaning
it can easily move in any direction and rotate on the spot [14]. The task provider wishes
that the exercises reflect the theory presented in chapters 4, 5, and 6 of Peter Corke’s
"Robotics, Vision and Control" [1]. It may also be relevant to use the robot as an
explanatory model for 2D rotation matrices. For the simulation of the robot, we will use
Python or Matlab, as this is requested by the task provider, with the option to utilize
Robot Operating System (ROS).

Figure 1.1: Overview of the Robotino 3 Robotic Platform

Rev: 1.0 11 May 20, 2024

B024EB-09 Navigation of Mobile Robot

1.3 Objectives

This project aims to develop lab exercises for the Robotino Mobile robot, focusing on
integrating new functionalities not yet mastered by the task provider. We will utilize
Peter Corke’s robotics methods through Python programming [1], as well as software like
Robotino View and Robotino SIM, developed by Festo [16]. These exercises will cover
both physical experiments and software simulations, demonstrating robot navigation,
object interaction, and theoretical concepts from Peter Corke’s "Robotics, Vision, and
Control".

The lab exercises, found in Appendix B to E, are designed to start with simple tasks
like basic motion control and sensor usage before gradually moving on to more complex
activities. Each exercise builds on the previous one, helping to better understand Robotino
3. We have also included a basic guide to working with Robotino 3, which you will
find in Appendix G. The guide details how the robot and its software should function,
helping students perform the lab exercises. Furthermore, proposed solutions and video
demonstrations for all exercises are provided, offering students a reference point to
compare and understand their results.

Upon completing the lab exercise, students are required to submit a report on their
experiment. This report should include a brief introduction to the exercise, the equipment
used, the steps followed to complete the exercise, and the results. A Template for this
report can be found in appendix F

In summary, this project aims to connect theory with practice in robotics, using the
Robotino mobile robot. By combining programming, simulations, and hands-on activities,
we are preparing students to better understand and navigate the field of robotics. The
provided guides, lab exercises, and solutions will are dseigned to give students the skills
and knowledge they need to tackle robotics challenges.

Rev: 1.0 12 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Chapter 2

Theory in Mobile Robotics

2.1 Peter Corke’s Robotics, Vision and Control

"Robotics, Vision, and Control: Fundamental Algorithms in Python" by Peter Corke
is a comprehensive textbook that focuses on the field of robotics and how it intersects
with vision and control systems. The book is well-regarded for its clarity in explaining
complex concepts in robotics, including kinematics, dynamics, control, and vision. Our
project includes chapter 4, 5, and 6.

2.1.1 Chapter 4 - Mobile Robot Vehicles

In this chapter, the focus is on mobile robots, which are robots capable of moving
around in their environment. It covers the principles of locomotion, the different types of
mobile robots (e.g., wheeled, legged, aerial, and aquatic robots), and the kinematics
associated with mobile robot movement. The chapter discusses how mobile robots
perceive their environment, interact with it, and the basics of how they are controlled.
This foundational knowledge is crucial for understanding more complex topics in mobile
robotics, including navigation and localization. Our focus for this chapter has been on
developing a kinematic model for the Robotino 3 robot and to gain a better understanding
of omnidirectional drive systems. This has deepened our understanding of the robot’s
operational mechanism.

Kinematic Model

A kinematic model describes the motion of a system without considering the forces
causing that motion. It focuses on the positions, velocities, and accelerations of the
system’s components, providing a mathematical representation of how they move relative
to each other. The kinematic model for this robot can be found in Appendix A.

Omnidirectional Drive and Holonomic Motion

A 3-wheeled omnidirectional drive system, often referred to as an omnidrive, allows
a robot to move in any direction without changing the orientation of the robot itself
[19]. This capability is called holonomic motion, and is achieved through the use of
special wheels, such as omni wheels or mecanum wheels, which can roll freely in multiple
directions. In a 3-wheeled omnidrive system, the wheels are typically arranged in a
triangular configuration, as shown in figure B.3. Omnidirectional drive systems offer
several advantages and disadvantages:

Rev: 1.0 13 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Advantages:

• Holonomic Motion: The ability to move in any direction without changing the
orientation of the robot makes it ideal for navigating tight spaces or complex
environments.

• Efficiency: Omnidirectional drive systems can achieve smooth and efficient motion
since they can move directly toward a target without the need for complex maneuvers
or turning.

• Versatility: These systems are versatile and can be used in various applications such
as robotics competitions, warehouse automation, and indoor navigation systems.

• Precision: With precise control over movement in all directions, omnidirectional
drive systems can perform intricate tasks with accuracy, such as precise positioning
or manipulation of objects.

• Redundancy: With three wheels, there is built-in redundancy, meaning that even
if one wheel fails or encounters an obstacle, the robot can still continue to move
and operate.

Disadvantages:

• Complexity: Implementing and controlling omnidirectional drive systems can be
more complex compared to traditional drive systems, requiring advanced control
algorithms and sensor integration.

• Cost: Omnidirectional drive systems, especially those using specialized wheels like
omni wheels or mecanum wheels, can be more expensive than conventional drive
systems, which may limit their adoption in cost-sensitive applications.

• Mechanical Design: The mechanical design of omnidirectional drive systems can be
more intricate, requiring careful consideration of wheel placement, alignment, and
stability to ensure optimal performance.

• Terrain Limitations: While omnidirectional drive systems excel in controlled environments,
they may face challenges on rough or uneven terrain, where traditional wheeled
systems with larger wheels or tracks may have better traction and stability.

• Maintenance: The increased complexity and number of moving parts in omnidirectional
drive systems can potentially lead to higher maintenance requirements compared to
simpler drive systems, requiring regular inspection and upkeep to ensure reliability
and longevity.

Rev: 1.0 14 May 20, 2024

B024EB-09 Navigation of Mobile Robot

2.1.2 Chapter 5 - Navigation

Robot navigation involves guiding a robot to reach a specific goal. This chapter explores
the algorithms and strategies used in robot navigation, such as path planning, map
representation, and the use of sensors for detecting obstacles. While humans typically
rely on maps and signs for navigation, it’s not always necessary for robots to do the
same. Reactive navigation offers an alternative approach, where robots respond directly
to their environment without a predefined map. For instance, they might follow a light,
track a line, navigate a maze by tracing a wall, or clean a room by moving randomly. In
these situations, the robot responds to signals such as changes in light levels or contact
with obstacles. More advanced robots often employ map-based navigation, also known
as motion planning.

Map-Based Planning

Map-based planning includes a range of algorithms designed to navigate robots using
pre-built maps of their environment. These algorithms utilize the map and knowledge
of the robot’s location to generate optimal or near-optimal paths towards a goal. Some
commonly used map-based planning algorithms include the Distance Transform, D*,
Probabilistic Roadmaps (PRM) and Lattice Planner. Distance Transform calculates safe
distances from obstacles for path planning. D* adjusts paths as the environment changes.
PRM randomly sample points to plan paths in complex but stable environments, and
Lattice Planner use set grids to guide vehicles according to their specific needs and
surroundings. Each algorithm helps robots navigate different types of environments.

Although these algorithms offer advanced navigation capabilities, they require extensive
computational resources and accurate environmental mapping, In other words, these
map-based approaches all require the availability of a map and accurate knowledge of
the robot’s location, which we will explore in chapter 2.1.3.

Reactive Navigation

Reactive navigation, also known as behavior-based navigation, is a navigation approach
where a robot responds directly to sensory input from its environment without relying
on a pre-built map. Instead of planning a route beforehand, the robot continuously
evaluates its surroundings and makes instantaneous decisions on how to move based on
the information it receives in real-time.

For the Robotino 3, which lacks map-based navigation capabilities but possesses sensors
like optical and inductive sensors, a Logitech C920 camera, infrared (IR) sensors for
distance, a gyroscope, and a bumper for collision detection, reactive navigation could
involve the following:

Rev: 1.0 15 May 20, 2024

B024EB-09 Navigation of Mobile Robot

1. Sensor Fusion: Robotino 3 can integrate data from its various sensors to perceive
its environment more accurately. For example, it could use its optical sensors to
detect lines on the ground, its IR sensors to measure distances to obstacles, and its
camera to recognize visual landmarks.

2. Obstacle Avoidance: The robot could employ reactive behaviors to avoid obstacles
in its path. When an obstacle is detected by its IR sensors or bumper, it could
immediately adjust its trajectory to navigate around it.

3. Line Following: Using its optical sensors, Robotino 3 could follow lines on the
ground, allowing it to navigate along predefined paths or tracks.

4. Light Seeking or Avoidance: By reacting to light intensity captured by its
camera or IR sensors, the robot could navigate towards or away from light sources,
depending on the desired behavior.

5. Reactive Path Planning: Rather than planning a route in advance, Robotino
3 could dynamically adjust its path based on changing environmental conditions.
For example, it could follow a wall using its IR sensors, adjusting its distance from
the wall as it navigates.

Given our robot’s limitations without map-based navigation capabilities, we would mostly
depend on reactive navigation methods. We have utilized Robotino’s existing sensors to
enable it to navigate through various environments. This enables the robot to navigate
independently without predetermined maps, making it well-suited in our case. For more
information on how we implemented these sensors for our robot, see chapter 4.2.

Rev: 1.0 16 May 20, 2024

B024EB-09 Navigation of Mobile Robot

2.1.3 Chapter 6 - Localization

Localization is the process of determining a robot’s position and orientation within its
environment. It involves estimating the robot’s location relative to a known reference
frame or map. Accurate localization is crucial for robots operating in dynamic or
unknown environments to navigate safely and effectively.

Dead Reckoning

Dead reckoning is a method used to estimate a robot’s current position based on its
previous positions and known movements. With Robotino 3, dead reckoning typically
relies on wheel encoders and a gyroscope. Here’s how it works:

• Wheel Encoders: These sensors measure the rotation of the wheels, allowing us
to track how far the robot has traveled. By integrating these measurements over
time, we can estimate the robot’s displacement.

• Gyroscope: A gyroscope measures the robot’s orientation changes. By integrating
these measurements over time, we can estimate the robot’s heading (orientation).

However, dead reckoning suffers from cumulative errors. Small errors in measuring
distance and orientation accumulate over time, leading to drift in the estimated position.
This drift can be corrected using additional localization techniques.

Landmark-Based Localization

Landmark-based localization is a technique used to estimate a robot’s position and
orientation by recognizing and triangulating specific features or landmarks in its environment.
These landmarks could be distinct visual features, such as corners of walls, unique objects,
or beacons with known positions. The robot’s sensors, such as cameras or range finders,
are used to detect and identify these landmarks. Once detected, the robot compares the
observed features with a map of the environment or a database of known landmarks
to estimate its position relative to them. Landmark-based localization is robust in
environments with distinguishable landmarks but may suffer from challenges such as
occlusions or changes in lighting conditions

Modeling Vehicle Kinematics

Modeling the robots’s movement is crucial for accurate localization. Vehicle kinematics
describes how the robot’s position and orientation change over time in response to control
inputs. This modeling allows us to predict how the robot will move based on its current
state and control commands.

For our robot, which features an omnidrive and holonomic drive system, we typically use
kinematic models tailored to its motion capabilities. These models consider factors such
as wheel speeds, wheel base, wheel configuration and placement to accurately predict the
robot’s motion.

Rev: 1.0 17 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Estimating Pose

Pose estimation refers to determining the robot’s position (x, y) and orientation (theta)
within its environment. Dead reckoning provides an initial estimate of the pose, based
on wheel encoder and gyroscope data. However, this estimate becomes less accurate
over time due to drift. We discuss these errors more in chapter 5.2. To improve pose
estimation accuracy, we can integrate other sensor data, such as visual odometry from
the camera or feature-based localization using IR sensors. These techniques help correct
errors in dead reckoning and provide a more accurate estimate of the robot’s pose.

Dead reckoning, vehicle modeling, and pose estimation are fundamental components of
localization for a robot. By combining these techniques with other sensor data and
probabilistic methods, we can achieve robust and accurate localization, enabling the
robot to navigate autonomously in various environments.

Limitations and Considerations

While many aspects of localization can be covered with Robotino 3’s sensors, some
advanced techniques may be out of reach without additional hardware. Factors such as
sensor accuracy, environmental conditions, and the complexity of the robot’s surroundings
can impact localization performance.

In summary, Localization is essential for enabling a robot to navigate autonomously
and effectively in various environments. Leveraging the robot’s sensors and applying
localization techniques enhances its navigation capabilities. For further details, refer to
chapter 4.2.

Rev: 1.0 18 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Chapter 3

Technical Overview
This chapter presents an overview of the essential hardware and software components
used with our Robotino project. We will examine each component’s significance and
role, giving a basic understanding before going into more detail in the following chapters.

Robotino

Robotino 3 is an advanced mobile robotics platform mainly used for educational and
research applications. Manufactured by Festo Didactic, it is recognized for its omnidirectional
drive system. Equipped with a range of sensors, Robotino 3 provides a comprehensive
set of tools for students and researchers to develop skills in areas such as navigation,
sensor integration, and robot control.

Figure 3.1: Robotino shown with Tower, Segment Base, Gripper, and Signaling Lights

Rev: 1.0 19 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.1 Hardware

The Robotino platform is designed to offer robust and flexible hardware capabilities,
enabling a wide range of applications in robotics. This chapter provides an overview of
the key hardware components, including the control unit, drive system, modules, sensors,
interfaces, and power supply. [15].

Control Unit
The control unit in the Robotino includes the Printed Circuit Board (PCB) controller
with an embedded PC and a Microcontroller, as well as all associated interfaces. The
embedded PC in the Robotino controls the mobile robot system and is mounted directly
on the main PCB in the control unit of the Robotino. It is connected to the control unit’s
interfaces and the microcontroller. The microcontroller monitors the supply voltage,
controls the motor, and manages the digital and analog inputs and outputs of the
Robotino. The microcontroller is also mounted directly on the main PCB in the control
unit of the Robotino.

Figure 3.2: Specifications for Robotino’s Embedded PC

Rev: 1.0 20 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.1.1 Drive system

Omnidrive
With its omnidrive system, Robotino can travel in all directions and rotate on the spot.
The three independent drive units consist of motors, an incremental encoder, gear unit
and wheels, and are integrated into the chassis of the Robotino.

Wheels
The wheels are designed with multiple rotating rollers along their circumference, allowing
the wheels to move in the x and y direction simultaneously, which enables holonomic
movement, as shown in Figure 3.4

Figure 3.3: Illustrating Robotino’s
Omnidirectional Wheels

Figure 3.4: Illustrating
Omnidirectional Wheels Movement
Capabilities

Motors
The Robotino is equipped with three motors which power each of the three omnidirectional
wheels independently of each other. An incremental encoder is mounted on each motor
and measures its angle of rotation.

Gear Units
Robotino has a 32:1 gear ratio between each motor and wheel, enabling the mobile system
to operate at low speeds and with high accuracy.

Incremental Encoder
Each of the motors in the Robotino has an incremental encoder. Based on the values
of the incremental encoder, the motor controller can adjust and regulate the real motor
speed at the desired speed. In addition, these values can also be used to determine the
position of the mobile system.

Rev: 1.0 21 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.1.2 Modules

Tower
Additional modules can be installed on the tower, allowing for interaction with Modular
Production System (MPS) stations, among other functions.

Segment
The segment offers flexible mounting options for sensors and modules on the Robotino
platform. This flexibility allows users to integrate additional functionalities such as the
gripper, enhancing the robot’s capabilities for various applications.

Gripper
The electric gripper integrated into the Robotino platform offers object handling. Utilizing
an integrated light barrier, it detects objects between its jaws for accurate gripping.
Supported by a slide mechanism, it efficiently picks up objects from surfaces, guided
by Robotino to the optimal position. Continuous monitoring of motor current ensures
secure gripping.

Figure 3.5: The Robotino’s Electric Gripper with Integrated Light Barrier

Rev: 1.0 22 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.1.3 Sensors

To navigate through an environment and avoid obstacles, Robotino is equipped with
different types of sensors

Distance Sensor
The IR distance sensors on Robotino make it possible to determine the distance to objects
around it. There are nine infrared sensors positioned around its base at 40° angles from
each other. Each sensor measures a voltage level that corresponds to the distance from
a reflective object.

Figure 3.6: Robotino’s Infrared Sensor
Array for Navigation and Obstacle
Detection

Figure 3.7: Graph Illustrating Sensor
Output with Distance to Objects

Inductive Sensor
The inductive sensor is capable of detecting metallic objects both beneath and on the
floor. It is utilized, for instance, in path control and precision positioning applications.

Optical Sensor
The two included optoelectronic sensors, also known as diffuse light sensors, can detect
various surfaces and colors based on their different reflectance properties. These sensors
enable the Robotino to follow a predefined path or to precisely stop at a specified position.

Rev: 1.0 23 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Gyroscope
Robotino is equipped with a gyroscope, which enhances positioning accuracy by detecting
changes in its orientation.

Bumper
The bumper on the Robotino ensures that program execution, as well as motion, is
stopped in the event of a collision.

Figure 3.8: The Robotino’s Safety Bumper

Camera
The camera on the Robotino produces a live image that can be analyzed for navigation
purposes, as well as for detecting obstacles and objects.

Figure 3.9: The Onboard Camera Module for the Robotino

Rev: 1.0 24 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.1.4 Interfaces

Communication between the subsystems for the exchange of information.

WLAN
Robotino can be connected to a smartphone or a PC, or can be integrated into an existing
network infrastructure via Wireless Local Area Network (WLAN). The Robotino can be
operated and controlled from an external device via the network connection.

I/O Interface
Extensions such as actuators and sensors can be connected via the Input/Output Interface
(I/O Interface) on the Robotino. The interface includes digital inputs and outputs, analog
inputs and relay outputs, as well as power supply connections.

Figure 3.10: The I/O Interface of the Robotino Displaying the Connections

Connection Input Output
Port 11 Gripper

D1 Acknowledgement pushbutton (NC) Green
D2 Yellow
D3 Diffuse light sensor right Red
D4 Diffuse light sensor right
D5 Diffuse light sensor left
D6 Diffuse light sensor left
D7 Optical sensor gripper
D8 Optical sensor gripper
A1 Inductive sensor base
A2
A3
A4
A5
A6
A7
A8

Table 3.1: The I/O Table of the Robotino Displaying the Connections

Rev: 1.0 25 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Motor/Encoder
Robotino is equipped with a fourth motor output and encoder input for connecting an
additional motor and encoder.

USB
The camera, the WLAN-USB adapter, and other components are connected to the control
unit on the Robotino via the 6 available USB ports. The USB ports comply with the
USB 2.0 specification.

PCI Express
The two PCI express slots on the Robotino make it possible to integrate expansion cards
for individual applications.

Ethernet
You can establish a direct connection from your PC to the control computer in the
Robotino via the Ethernet port to the embedded PC.

VGA
You can connect a monitor to the VGA output if you would like to be able to directly
access the operating system in the Robotino. A keyboard and a mouse can be connected
to the USB ports.

3.1.5 Power Supply

Information about power supply and accessories.

Batteries
Robotino is powered by two series-connected, rechargeable 12V batteries, supplying it
with 24V DC power.

Power Supply Unit
A power supply unit is used to charge the batteries in the Robotino.

Charging Electronics
Charging electronics are integrated into Robotino to ensure safe and efficient charging of
its batteries.

Rev: 1.0 26 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.2 Software

Robotino is programmable in several languages, including C, C++, Java, .NET, Matlab,
LabVIEW, and Microsoft Robotics Developer Studio. There is also support for SmartSoft
and ROS [16].

3.2.1 Web Interface

The web interface of the Robotino makes functions available for control, configuration,
and maintenance of the robot system. Through the web interface, we can control the
robot with our computer and phone, check battery status and change network settings.

3.2.2 Programming

Robotino View
Robotino View is the interactive graphical programming environment for Robotino,
enabling the creation and execution of control programs. It simplifies programming by
representing hardware components as function blocks. Function blocks are self-contained
modules that perform specific functions or tasks. They simplify complex processes by
allowing for modular, reusable, and maintainable code. Robotino View also provides
tools for image processing (Line Recognizer, Color Range Search, Marker Recognition)
and navigation (Position driver, Path driver, Obstacle avoidance). Users can easily
download and run programs on Robotino and even create their own function blocks
in C++. Figure 3.11 shows an example of a Robotino View program.

Figure 3.11: The Robotino View Software Interface

Rev: 1.0 27 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Python
Python is a versatile and widely used programming language known for its simplicity,
readability, and powerful features. It is essential in various academic and professional
areas, including robotics, data science, web development, and more [11]. In the context
of our bachelor, Python plays a crucial role, particularly in robotics applications like
Peter Corke’s toolbox and within the Robot Operating System (ROS).

One of Python’s key strengths is its ease of learning and readability, making it accessible
to beginners while remaining powerful enough for experienced developers. Its clean
syntax and straightforward structure allow for rapid development and prototyping, which
is invaluable in academic settings where quick iterations and experimentation are common.

Python’s wide range of libraries further enhances its utility. For robotics applications,
libraries like Peter Corke’s toolbox provide specialized tools for tasks such as robot
kinematics, dynamics, and control. Meanwhile, within ROS, Python serves as one of
the primary languages for building robot control systems, implementing algorithms, and
interfacing with sensors and actuators.

Overall, Python is very useful for our bachelor’s studies because of its simplicity, readability,
wide range of libraries, and popularity, especially in robotics applications like Peter
Corke’s toolbox and ROS . Its easy access and powerful features enable students to
understand complex concepts, create innovative solutions, and help advance robotics
and related fields.

Matlab/Simulink
Matlab/Simulink is also a versatile and widely utilized software platform known for
its comprehensive functionality and user-friendly interface. It serves as a foundation
in various academic and professional areas, including robotics, control systems, signal
processing, and more [13].

Similar to Python, Matlab/Simulink has a wide range of toolboxes and libraries that
enhance its utility. For robotics applications, toolboxes like Robotics System Toolbox
provide specialized functions for tasks such as robot kinematics, dynamics, and trajectory
planning. Additionally, Simulink serves as a powerful environment for modeling and
simulating complex dynamic systems, enabling students to develop and test control
algorithms efficiently.

Overall, Matlab/Simulink could be useful for our bachelor’s studies due to its user-friendly
interface, comprehensive features, and broad usage, for example in robotics. Its accessibility
and advanced tools enable students to delve into complex control systems and develop
creative solutions.

Rev: 1.0 28 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.2.3 Simulations

Robotino SIM
Robotino SIM is a simulation environment for experimenting with Robotino. As shown
in figure 3.12, Robotino SIM provides you with a virtual Robotino in an experimentation
environment. It allows you to control the Robotino with Robotino View. This allows us
to simulate our Robotino View code, validating and refining our program before deploying
it on the physical robot. This approach helps prevent potential damage to the robot and
simplifies the process of resetting and experimenting with new functions

Figure 3.12: Snapshot of the Robotino SIM Simulation Environment

Robot Operating System
ROS is an open-source framework for developing robotics software. It provides tools and
libraries to simplify the development of robust and flexible robotic applications. [12].
ROS handles communication between different software components of a robot, manages
hardware control, messaging between processes, and package management. It supports
various programming languages and is widely used in research, education, and industry
to speed up the development of autonomous and interactive robots.

Rev: 1.0 29 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.3 Control Systems and Strategies

3.3.1 PID Controller

A PID controller is a type of feedback control system used in engineering and automation
to regulate processes. PID stands for Proportional, Integral, and Derivative, which are
the three main components of the controller [34].

• Proportional (P): This component responds to the current error between the
desired setpoint and the actual value. It adjusts the control output in proportion
to this error.

• Integral (I): This component considers the accumulation of past errors over time.
It helps to eliminate any steady-state error by continuously adjusting the control
output based on the history of errors.

• Derivative (D): This component predicts the future behavior of the error based
on its rate of change. It helps to anticipate changes in the system and adjusts the
control output accordingly to prevent overshoot or oscillations.

By combining these three components, a PID controller can effectively regulate a system’s
behavior, maintaining it close to the desired setpoint while minimizing overshoot and
settling time. It’s widely used in various applications such as temperature control, speed
control, and robotics. For the Robotino, velocity control of each motor is performed by
a PID controller:

u(t) = Kp

(
e(t) +

1

TN

∫ t

0
e(t′) dt′

)
+Kdė(t)

The parameters are:

• Kp

• Ki =
1
Tn

• Kd

The controller parameters are calculated as:

Kp =
kp
2
, Ki =

ki
1024

, Kd =
kd
2

Default values are:
kp = 25, ki = 25, kd = 25

Rev: 1.0 30 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.3.2 Closed-Loop Controller

A closed-loop control system autonomously adjusts a system to sustain a desired state
or set point without human intervention. It operates through a feedback mechanism
or sensor to achieve this regulation. Imagine driving a car and trying to maintain a
steady speed. You check the speedometer often and make small adjustments to the
gas pedal to keep your speed close to the desired value. This ongoing monitoring and
adjustment process is what closed-loop control does. Basically, the system compares the
actual output to a desired set-point and makes corrections to minimize any differences.
For Robotino 3, closed-loop control means it can navigate, interact with its environment,
and perform tasks accurately by adjusting its actions based on feedback from sensors [33].

Figure 3.13: Example of a Closed Loop Controller

Advantages of Closed Loop Control Systems

• Ability to control for external factors.

• Provides a more reliable and stable output.

• Resilient to disturbances and changes.

• Utilizes resources more efficiently.

Disadvantages of Closed Loop Control Systems

• Increased complexity.

• Requires tuning or integration processes.

• Susceptible to oscillation or runaway conditions.

• Sensor failure can lead to unwanted system performance.

Rev: 1.0 31 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.4 TCP/IP

TCP/IP, or Transmission Control Protocol/Internet Protocol, is a data link protocol
used to let computers and other devices send and receive data over the internet. It
determines how computers transfers data from one device to another. [30].

Transmission Control Protocol (TCP): TCP is responsible for how data is sent and
received between devices. It divides data into smaller packets, gives each one a sequence
number for tracking purposes, makes sure they’re delivered in the right order, and asks
for packets to be resent if any are lost or damaged. Think of TCP as a dependable
delivery service that ensures your messages are delivered correctly.

Internet Protocol (IP): IP takes care of addressing and routing data packets through
various networks. Every device connected to the internet, whether it’s a computer or
a smartphone, gets a unique IP address. IP makes sure that the data packets find
their way from the sender to the correct recipient, navigating through multiple networks
if necessary. It functions much like a postal system, directing your data to the right place.

TCP/IP functionality is divided into four layers, each with its own set of protocols [31]:

1. Application Layer: Handles communication between applications like web browsers,
email clients, and file transfer programs. Protocols include HTTP, FTP, SMTP,
and DNS.

2. Transport Layer: Manages communication between devices. TCP ensures reliable
data delivery, while UDP is faster but less reliable.

3. Internet Layer: Routes data packets between different networks using IP. It’s
like the postal service for the internet.

4. Network Access Layer: Connects devices within the same network. Protocols
like Ethernet and ARP handle communication between nearby devices.

Figure 3.14: The Four Layers of TCP/IP

Rev: 1.0 32 May 20, 2024

B024EB-09 Navigation of Mobile Robot

3.5 3D-printing

3D printing, also known as additive manufacturing, is a process of creating three-dimensional
objects from a digital model. It works by laying down successive layers of material—such
as plastic, metal, or resin—until the object is fully formed. This method allows for
the production of complex shapes and geometries that may be difficult or impossible
to achieve with traditional manufacturing methods. It offers advantages such as rapid
turnaround times, reduced material waste, and the ability to create highly tailored designs
[25].

We have access to a 3D-rinter on campus, specifically the Makerbot Replicator Z18, as
shown in figure 3.15. The MakerBot Replicator Z18 is a professional-grade desktop
3D printer known for its large build volume of approximately 12 x 12 x 18 inches. It
features dual extruders for multi-material printing and supports various filament types.
With user-friendly software and robust construction, it’s suitable for rapid prototyping,
product development, and small-scale production projects [26].

Figure 3.15: Makerbot Replicator Z18

Figure 3.16: Example of a 3D-Printed
Object That Could Be Utilized for
Our Project.

Tinkercad is used to design precise 3D models. After designing our model in Tinkercad,
we can print these models using the 3D printer available on Campus. Tinkercad’s
easy-to-use interface helps us create accurate designs tailored to the gripper’s measurements.
This process allows us to efficiently produce custom parts, like the one shown in figure
3.16, that optimize the gripper’s performance within our robotic system.

Rev: 1.0 33 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Chapter 4

Design and Implementation

4.1 Kinematic Model

As previously mentioned, a kinematic model is a mathematical way of explaining how a
robot moves without worrying about forces. It focuses on the shapes and positions of the
robot’s parts and how they relate to each other. To develope this kinematic model, we
primarily relied on the concepts presented in the Engineering Educator Academy’s lecture
on the Kinematics of Mobile Robots with Omni Directional Wheels [18] and Chapter 4
in Peter Corke’s Robotics, Vision and Control .

Given the desired linear and angular velocities in Vb, the speed of each wheel represented
by the U matrix can be calculated through the H(0) matrix.

U = H(0) ·Vb

where

U =

u1u2
u3

represents the robot’s angular velocity on each wheel needed to achieve the desired motion
given by

Vb =

ωbz

vbx
vby

where ωbz represents the desired angular velocity or rotation of the robot, vbx and vby
represents the desired velocity in the x and y direction, respectively.

H(0) =
1

r

L −
√
3
2

1
2

L 0 −1

L
√
3
2

1
2

H(0) is the Jacobian matrix at the robot’s initial configuration, where r is the radius of
the wheels and L is the distance from the center of the robot to each wheel. This matrix
essentially translates the desired motion given by Vb to angular velocities (U) needed on
each wheel to realize that desired motion. For the full calculations and explanations, see
appendix A

Rev: 1.0 34 May 20, 2024

B024EB-09 Navigation of Mobile Robot

U =

u1u2
u3

 =
1

r

L −
√
3
2 L 1

2L
L 0 −L

L
√
3
2 L 1

2L

ωbz

vbx
vby

x
vx

y
vy

Wheel 2

Wheel 3

Wheel 1

ωz

120◦

L

θ

Figure 4.1: The Kinematic Model of Robotino’s Drive System

Rev: 1.0 35 May 20, 2024

B024EB-09 Navigation of Mobile Robot

4.2 Sensor Utilization

In this section, we’ll look at how Robotino’s sensors are used for navigation. Each sensor
has a specific role in detecting obstacles, maintaining distance, and ensuring precise
movement. By carefully placing these sensors, Robotino can navigate accurately and
efficiently. Let’s see how each sensor helps in different situations. We’ve also conducted
accuracy tests on the sensors, as detailed in chapter 5.

Distance Sensor
The distance sensors play a crucial role in ensuring Robotino’s safe navigation around
obstacles. For example, when Robotino needs to approach a wall while maintaining a
constant distance, we depend on sensor 1 positioned at 0 degrees. When navigating
corners or following walls, we utilize different combinations of sensors. For instance, to
execute a precise 90-degree turn along a wall, we employ sensors 2 and 9 positioned at 40
degrees and 320 degrees to ensure accurate maneuvering. Figure 4.2 illustrates sensor 1
positioned at 0 degrees, maintaining a distance of 60mm from an object directly ahead.

Figure 4.2: Sensor Layout for Robot Obstacle Approach

Rev: 1.0 36 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Distance Sensor Characteristic

Distance (cm) Voltage (V) Distance (cm) Voltage (V)
1 1.95 21 0.59
2 2.55 22 0.59
3 2.70 23 0.55
4 2.32 24 0.49
5 2.00 25 0.46
6 1.76 26 0.44
7 1.71 27 0.42
8 1.46 28 0.40
9 1.23 29 0.38
10 1.14 30 0.36
11 1.03 31 0.34
12 0.97 32 0.32
13 0.90 33 0.31
14 0.83 34 0.30
15 0.77 35 0.29
16 0.72 36 0.28
17 0.69 37 0.26
18 0.65 38 0.25
19 0.62 39 0.24
20 0.59 40 0.24

Table 4.1: Robotino 3 Distance Sensor Measured Values

Figure 4.3: Robotino 3 Distance Sensor Characteristic

Rev: 1.0 37 May 20, 2024

B024EB-09 Navigation of Mobile Robot

A useful method for dealing with characteristic curves is to simplify them by making
them linear within certain ranges. In our project, we’ve chosen to focus on the 5 to 10
cm range. This makes the curve easier to work with and understand.

1. General linear equation formula:

D = MX +B

2. Measured values for the start point and end point:

D1 = 5 X1 = 2.00 , D2 = 10 X2 = 1.14

3. Calculate the slope (M) of the linearization lines:

M =
(D2 −D1)

X2 −X1
=

(10− 5)

1.14− 2.00
= −5.81

4. Calculate the zero point offset B of the linearization lines:

5 = −5.81× 2.00 +B

5 = −11.62 +B

B = 16.62

5. Formula for calculating the distance X (in cm) from the voltage value D for the
range from 5 to 10 cm:

D = −5.81 ∗X + 16.62

Rev: 1.0 38 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Inductive Sensor
Inductive Sensors primarily detect metal objects through electromagnetic induction.
They are commonly used to detect metallic surfaces like aluminum strips, making them
suitable for navigation and object manipulation in environments where such surfaces are
present. For example, we could use this sensor to accurately follow paths marked with
aluminum tape.

The Inductive Sensor on our robot are analog, giving constant output signals that change
based on distance to metal objects. We use the output signals from the Inductive
Sensor along with analog input function blocks in Robotino View. These blocks help us
understand the continuous signals from the sensor and use them for precise navigation.
By integrating the sensor’s characteristic curve, which shows how it behaves when moving
over the tape, we can calibrate the robot’s movements effectively. This calibration ensures
that the robot follows paths marked with aluminum tape accurately, adjusting its path
based on real-time feedback from the sensor. This approach helps our robot navigate
with improved accuracy and reliability towards its goals.

Figure 4.4: Voltage Response of Sensor to Varying Distances from an Aluminum Tape

Rev: 1.0 39 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Optical Sensors
Optical Sensors utilize light to detect objects and surfaces. They can detect a wider range
of materials, including non-metallic surfaces and colored markers. They are employed in
scenarios where colored markers or non-metallic surfaces are used for guidance or object
detection. For example, they could be used to follow colored lines or markers on the
ground for navigation or alignment purposes.

The Optical Sensors are digital, meaning they give clear "on" or "off" signals instead
of continuous analog signals. Robotino View easily handles these signals with digital
input blocks, made for binary data. With straightforward signals, the robot’s control
system can promptly react to detected objects or surfaces, making navigation and object
detection tasks smooth and efficient.

Figure 4.5: Optical Sensor Reaction to Robotino’s Position Relative to the Marked Line

Bumper
The Robotino’s bumper is a crucial safety feature that detects obstacles in its path.
When it senses contact, it signals the control system to stop the robot’s movement
immediately. This quick response prevents accidents and allows for necessary adjustments
by the operator. Integrating the bumper into the robot’s programming allows for easy
implementation of collision avoidance strategies, making operations safer and more reliable.

Rev: 1.0 40 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Camera
The camera on Robotino 3 is a versatile tool. We mainly use it to find and identify
objects in the robot’s surroundings. It can detect objects by their color using features
like the color range finder, which we configure in Robotino View. After detecting an
object, the robot can track it using tools like the segment tracker block. In figure 4.8 we
show how the color range finder is used to define the color of a blue plastic box.

The camera on Robotino 3 doesn’t just rely on color to detect objects. It also uses
other methods like recognizing shapes, analyzing textures, and matching patterns. These
techniques help the robot identify objects regardless of their color and differentiate
between different surfaces or materials. We also use the camera for marker detection,
which can be generated in Robotino View (figure 4.6). We found this approach working
better for us, especially in Lab Exercise 4, outperforming color detection.

Figure 4.6: Generate Markers Figure 4.7: Marker Detection Block

Figure 4.8: Color Range Finder Function Block

Rev: 1.0 41 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Gyroscope
The gyroscope in Robotino 3 is crucial for maintaining balance and orientation during its
operations. By measuring rotation rates and providing feedback to the control system, it
helps adjust the robot’s movements as needed. Integrating gyroscope data into control
algorithms ensures precise navigation and stability, especially on uneven terrain or when
precise orientation is required.

Using Multiple Sensors for Accurate Task Execution
Combining different sensors is crucial for robots to do tasks accurately. In Lab Exercise
4, see appendix E, the Robotino utilizes its camera to pinpoint the module’s location
and then navigates towards it. Then, utilizing either an inductive or optical sensor, the
robot moves along a marked path on the ground to align perfectly with the module. A
distance sensor ensures Robotino 3 maintains the correct distance and alignment from
the module, allowing its gripper to grab it accurately. The robot will proceed slowly
towards the object until the acknowledge button is pressed, causing the robot to stop
moving and the gripper to secure the object. After grabbing the object, the robot will
move backwards away from the module. If by any chance the robot’s base unexpectedly
hits the module, the bumper ensures that the program is stopped to prevent damage
to the robot. This combination of sensors ensures Robotino’s accuracy and safety in
dynamic environments.

Rev: 1.0 42 May 20, 2024

B024EB-09 Navigation of Mobile Robot

4.3 Software Development

Robotino View

To develop the lab exercises, we primarily relied on Robotino View. While there are
various methods to control the robot, using this software proved to be the most efficient.
Throughout the project, we explored other methods to control the robot, including
TCP/IP and ROS, but opted against these due to lack of time and the specified requirements.
Function blocks makes it easier to create a program, due to . Additionally, by using
Robotino View, we were able to test our program in Robotino SIM to ensure the program
functioned as intended. This allowed us to simulate the robot’s movement and behavior
without risking damage to the robot’s hardware.

While we had some background in programming with function blocks, we still had to learn
how to use this software. We started by taking an e-learning course titled "Autonomous
Mobile Robotics with Robotino", provided by Festo. This course taught us about the
functions and features of the Robotino and how to use them. It was a great learning
experience that really deepened our understanding of the robot and its software.

All the programs that we have created for this projects can be found in Appendix B to
Appendix E. These appendices include the solution for each lab exercise, showing the
different function blocks used.

TCP/IP

As we already have established, Robotino uses a TCP/IP protocol as a way of communicating
between the robot itself and a computer. Knowing how to properly use this protocol can
allow for different ways to communicate with the robot outside of using the web interface
or the first party programming tool Robotino View.

We used a program called Wireshark to read the packages being sent between the robot
and our computer. These packages can be translated into usable code so that you can
write your own program, in for instance Python, to control the robot. Even though
this method would provide a new way of controlling the robot, we decided not to use it
because it exceeds our understanding of the protocol and the correct way to decrypt the
packages.

Rev: 1.0 43 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Visualizing Kinematic Model with Python

When developing the kinematic model for the robot, we aimed to visually represent how
the velocity vectors change based on the desired velocity inputs, computed through the
Jacobian matrix. As shown in Figure 4.9, the colored dots represent the wheels in relation
to the center of the robot body. The arrows extending from each wheel are scaled velocity
vectors assigned to each wheel. In this instance, all arrows point in the positive rolling
direction of their respective wheels with the same magnitude. This indicates that the
desired velocity is purely rotational. The wheel speeds as shown in the upper left corner
are converted to Revolutions Per Minute (RPM), and are applied to the motors before
the gearbox. The calculated RPM values can be directly utilized in Robotino View, and
would give an expected result to the movement of the robot. The full code can be found
on Github, appendix I.

Figure 4.9: Visual Representation of the Kinematics

Rev: 1.0 44 May 20, 2024

B024EB-09 Navigation of Mobile Robot

4.4 Simulations

Robot Operating System

We used a Python script available online to simulate the Robotino in ROS [20]. We
made slight modifications, such as removing the Kinect camera, which our robot does
not possess. Although the script was intended for a 3-wheeled mecanum robot, we utilized
this code even though our model features omniwheels. This was done to demonstrate the
movement of a holonomic robot within Gazebo. Since we had previously installed ROS
for robot simulations in ELE306 Robotics, we simply downloaded the required files and
transferred them to our Virtual Machine for code modification.

To launch Gazebo, spawn the robot, start the twist controller, and open RViz, run this
command in the terminal:

ros2 launch robotino_bringup robotino_bringup.launch.py

As shown in figure 4.10, we demonstrate the capabilities of RViz, the ROS Visualisation,
which offers a 3D visualization platform within the Robot Operating System. The image
displays a model of a Robotino, showing its design and functions. Additionally, figure 4.11
presents a simulation environment rendered in Gazebo, widely utilized in the field of
robotics. While our current robot model does not include Lidar, the Gazebo simulation
offers a conceptual visualization of how Lidar technology could be integrated and function
within an environmental setting.

Figure 4.10: Visualization of
Robotino in RViz

Figure 4.11: Simulation of Robotino in a Virtual
Environment Using Gazebo

Rev: 1.0 45 May 20, 2024

B024EB-09 Navigation of Mobile Robot

To control the robot in Gazebo, we utilize a twist controller in ROS. This allows us to
manually control the robot in both the conventional mode and holonomic mode, enabling
strafing movements. This setup enables us to observe the robot’s movement within its
environment. You can find a video showing the robot’s movements in appendix H.

Figure 4.12: Twist Controller for Robot Operation in Gazebo

We haven’t extensively utilized ROS beyond this point. Although there’s a method of
employing ROS packages to control the Robotino, it would require installing software
directly onto the Robotino, which the task provider opted against. As utilizing ROS was
not a requirement for our thesis, we haven’t explored it further.

Rev: 1.0 46 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Python Simulation of Robot Kinematics

As seen in Figure 4.13, the robot is visualized with simple geometric shapes. The blue
circles depicting the wheels of the robot and the grey circle representing the robot body.
The kinematics are applied to the robot and the corresponding movement is animated.
The full code can be found on Github, appendix I.

Figure 4.13: A Simple Geometric Model of the Robot with Animated Movement from
Kinematics. Created in Python

4.5 3D Printing

In our technical overview, we initially considered using 3D printing to create objects
for our tasks. This approach would have allowed us to customize objects to fit specific
requirements or to test different designs. However, we discovered that Festo provided
accurate objects that were fully compatible with our gripper, eliminating the immediate
need for 3D printing.

If we were to use a different type of gripper in the future, we might need to revisit 3D
printing to ensure compatibility. Additionally, we could conduct tests to compare the
accuracy and performance of Festo-provided objects with those we 3D print ourselves.
This comparison would help us determine the best approach for different tasks and
gripper configurations.

Rev: 1.0 47 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Chapter 5

Testing
We’ve conducted a series of tests using the sensors equipped on the Robotino 3 to assess
their accuracy and determine the most effective ways to utilize them in our scenarios.

5.1 Distance Sensor Accuracy Test

We wanted to check if the IR sensors could accurately detect different objects from
varying distances. We selected various objects that were easily available to us and got
these results:

Object Detection Result
5 cm 15 cm 25 cm 35 cm 45 cm 55 cm

Wooden Table Yes Yes Yes Yes Yes Yes
Metallic Surface Yes Yes Yes Yes Yes Yes
Moving Object Yes Yes Yes Yes Yes Yes
Transparent Bottle Yes Yes Yes Yes Yes Yes
Plastic Box Yes Yes Yes Yes Yes Yes

Table 5.1: Detection Results for Various Objects at Different Distances

5.2 Odometry Accuracy Test

We utilized a Robotino View program to compare the performance of odometry between
Robotino SIM and the physical robot. In the simulator, the robot navigated flawlessly,
consistently stopping at the intended positions as expected in a simulated environment.
However, on the actual robot, it encountered difficulties in maintaining its navigation
accuracy. The program frequently deviated from its intended path, causing the starting
position to shift with each iteration. This deviation worsened over time, making the
odometry increasingly unreliable for repeated loops. We later resolved these issues
by resetting the odometry at a calibrated position in the real world. This made the
deviations small enough to where we could still use the odometry with sufficient accuracy.

There are various reasons that odometry was off on the actual robot compared to
simulations. One reason is the difference in the real-world environment compared to
the simulated one. Factors such as surface friction, wheel slippage, uneven terrain, or
unexpected obstacles can affect the robot’s movement and consequently its odometry
readings. Additionally, variations in hardware performance or calibration differences
between the simulated and physical robot could also play a role.

Rev: 1.0 48 May 20, 2024

B024EB-09 Navigation of Mobile Robot

5.3 Omnidrive Function Block Test

We ran a test to assess the accuracy of the robot’s ability to travel a distance of 1 meter
using the omnidrive function block within Robotino View. The testing environment was
the classroom at Fagskolen, where the floor surface was linoleum. We conducted the test
at two different speeds, as shown in table 5.2 and table 5.3

The following applies to the calculation:

s = v · t
v = 100mm/s
s = 1000mm

Thus, the time t required is calculated as:

t =
s

v
=

1000

100
= 10 s

Distance: d = 1 m / velocity: v = 100 mm/sec. / time: t = 10 s = 10000 ms

Test Distance travelled Deviation from Target
1 0.98 -0.02
2 0.99 -0.01
3 0.99 -0.01
4 0.99 -0.01
5 0.98 -0.02

Mean value: 0.986 -0.014

Table 5.2: Omnidrive Test of 1 Meter With a Speed of 100 mm/sec

Distance: d = 1 m / velocity: v = 400 mm/sec. / time: t = 2,5 s = 2500 ms

Test Distance travelled Deviation from Target
1 0.95 -0.05
2 0.95 -0.05
3 0.96 -0.04
4 0.94 -0.06
5 0.95 -0.05

Mean value: 0.95 -0.05

Table 5.3: Omnidrive Test of 1 Meter With a Speed of 400 mm/sec

Rev: 1.0 49 May 20, 2024

B024EB-09 Navigation of Mobile Robot

5.4 Camera Accuracy Test

Several factors influence a camera’s ability to detect specific objects, including lighting
conditions, the objects’ characteristics, and the size of the markers used. In our tests, we
utilized AR markers sized at 7x7 cm and 16x16 cm. Additionally, we used a blue plastic
box as a colored object, which was placed under optimal lighting conditions. The goal
was to determine the most effective approach for navigation and to identify the optimal
size for the AR markers.

As shown in Table 5.4, the camera achieved the highest accuracy when detecting both
the AR marker sized at 7x7 cm and the colored objects within a range of 35 cm to 140
cm. With the AR marker sized at 16x16 cm, the highest accuracy was recorded between
190 cm and 270 cm. Therefore, depending on the distance at which you intend to use
the camera for object identification, you can use markers of various sizes.

Test Distance from Object Color Detection Marker 7x7 cm Marker 16x16 cm
1 35 cm Yes Yes No
2 70 cm Yes Yes No
3 105 cm Yes Yes No
4 140 cm Yes Yes No
5 175 cm No No Yes
6 210 cm No No Yes
7 245 cm No No Yes
8 280 cm No No Yes
9 315 cm No No No
10 350 cm No No No
11 385 cm No No No
12 420 cm No No No

Table 5.4: Camera Accuracy Test with Various Objects and Distances

Rev: 1.0 50 May 20, 2024

B024EB-09 Navigation of Mobile Robot

5.5 Robot Repeatability in Lab Exercise 4

We ran tests to assess the robot’s repeatability in this exercise. This involved navigating
to the module, centering itself, driving towards the object, picking it up, reversing,
moving towards another location, dropping off the object, and finally returning to the
starting point. These steps are also demonstrated in the videos for Lab Exercise 4,
available in Appendix H. Table 5.5 shows the results obtained using the camera line
detector and uncalibrated starting position, while Table 5.6 displays the outcomes with
marker detection and calibrated starting position. The marker detection method showed
much better results and repeatability.

Test Object Pickup Object Drop-off Drive to Start
1 Yes Yes Yes
2 Yes Yes Yes
3 Yes No No
4 No No No
5 No No No
6 No No No
7 No No No
8 No No No

Table 5.5: Performance Test With Line Detector and Uncalibrated Starting Position

Test Object Pickup Object Drop-off Drive to Start
1 Yes Yes Yes
2 Yes Yes Yes
3 Yes Yes Yes
4 Yes Yes Yes
5 Yes Yes Yes
6 Yes Yes Yes
7 Yes Yes Yes
8 Yes Yes Yes
9 Yes Yes Yes
10 Yes Yes Yes
11 Yes Yes Yes
12 Yes Yes Yes
13 Yes Yes Yes
14 Yes Yes Yes
15 Yes Yes Yes

Table 5.6: Performance Test With AR-Marker and Calibrated Starting Position

Rev: 1.0 51 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Chapter 6

Results

6.1 Lab Exercises

Exercise 1: Introduction to Robotino 3 and Basic Motion

This laboratory exercise aims to install the necessary software, familiarize students with
the hardware and software components of the Robotino, and practice basic motion control
of the robot. They will make the robot move forward for 6 seconds, then pause for 2
seconds before moving backward for 6 seconds. Next, they will make the robot move
linearly in any directions using omnidrive. Finally, they will create an abort function
with the bumper in case of a collision.

For detailed instructions and complete information on this exercise, including solutions,
please refer to appendix B.

Exercise 2: Distance Sensors and Odometry

This lab exercise is designed to familiarize students with Robotino’s distance sensors and
their application in navigation tasks. They will program the robot to approach a wall
and maintain a distance of 8 cm. Then, they will guide the robot to move alongside the
wall while maintaining this distance. Finally, they will navigate the robot along a wall
with a 90° corner, using odometry to make the turn.

For detailed instructions and complete information on this exercise, including solutions,
please refer to appendix C.

Exercise 3: Image Processing and Object Detection

This lab exercise is designed to familiarize students with image processing and AR-markers
using the camera. They will develop a program that instructs the robot to locate a
predetermined colored object, approach it, and maintain a distance of 8 cm from it.
They will then repeat the process, this time using AR markers instead of colored objects.

For detailed instructions and complete information on this exercise, including solutions,
please refer to appendix D.

Rev: 1.0 52 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Exercise 4: Multi-Sensor Navigation and Object Handling

This lab exercise involves guiding the robot towards a module using camera guidance,
tracing a line with the diffuse sensors, maintaining proper distance and alignment with
the module using distance sensors, and utilizing a gripper to lift an object from the
Belt/Distribution Module. After that, the robot will move away from the module, use
odometry to reach a specific location, and drop off the object.

For detailed instructions and complete information on this exercise, including solutions,
please refer to appendix E.

Rev: 1.0 53 May 20, 2024

B024EB-09 Navigation of Mobile Robot

6.2 Identified Issues

Throughout the project, we found several issues within the system, and we worked on
resolving some of them.

• Unlabeled and Incorrectly Spliced Wiring:

– Troubleshooting and maintenance were difficult due to unlabeled and incorrectly
spliced wires, causing delays in identifying and fixing issues.

• Sensor Connectivity Issues:

– Wrong wiring made certain sensors unusable at first, which led to the robot
not functioning as intended.

• Camera Mounting:

– The current camera mounting setup was less than ideal, potentially impacting
the quality of the footage. As a result, we elevated the camera slightly and
secured it more effectively.

• Defective batteries:

– Due to defective batteries, the system was constrained to remain plugged in,
limiting its mobility. Therefore, we replaced the faulty battery with new ones,
which improved the mobility of the robot.

• Defective gripper:

– We had to replace the faulty gripper with a new one and make sure it was
connected properly. Turns out, it was originally hooked up wrong, so we
corrected that by connecting it to port 11 on the front panel [23], as you can
see in figure 6.1

Figure 6.1: Overview of Robotino Front Panel with Connections

Rev: 1.0 54 May 20, 2024

B024EB-09 Navigation of Mobile Robot

6.3 Discussion

We started off the project in early January by putting together a plan based on estimated
tasks and their timeframes. This was created with a focus on the documentation requirements
and academic aspects specified in the assigned task. To our surprise, we pretty much
stuck to this plan as things progressed. The changes we made were minor, like toning
down our focus on simulation and robot control with ROS. Apart from that, we managed
to complete most of our tasks within their designated timeframes.

As outlined in Chapter 6.2, we encountered some issues that required our attention.
These types of challenges are typical in projects like this, so we were somewhat anticipating
them. Fortunately, we were prepared to tackle them head-on. We successfully addressed
the issues that were hindering our ability to conduct the exercises effectively, particularly
focusing on replacing the gripper, batteries, and fixing the camera mounting. These
adjustments were crucial for us to proceed with the task, and without them, we would
have faced some difficulties in completing our objectives.

Rev: 1.0 55 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Chapter 7

Conclusion
The results indicate that the majority of the objectives were achieved. We have developed
a series of laboratory exercises highlighting the navigation capabilities of the Robotino 3
mobile robot. These four lab exercises aim to educate students about Robotino and its
functionalities, as well as theoretical concepts from Peter Corke’s "Robotics, Vision, and
Control"

We have also developed a kinematic model that, along with software simulation, illustrates
how the robot moves with its omnidrive system. Additionally, we’ve conducted several
tests on the Robotino to evaluate the accuracy of its sensors, which could be beneficial
for future projects.

Throughout the project, we have identified certain weaknesses in the system. While these
weaknesses are not critical for task execution, they do suggest areas where improvements
could be beneficial, as detailed in Section 7.1.

Rev: 1.0 56 May 20, 2024

B024EB-09 Navigation of Mobile Robot

7.1 Room for Improvements

• Integrating a Lidar Sensor:

– Adding a Lidar sensor to the Robotino 3 would significantly enhance its
capabilities. With Lidar, the robot could accurately perceive its surroundings
in 3D, enabling it to create detailed maps and navigate precisely [22]. Lidar
would also support Simultaneous Localization and Mapping (SLAM) algorithms
[21], allowing the Robotino 3 to locate itself within the map it creates, even in
complex and changing environments. This would enable advanced applications
such as autonomous navigation, obstacle avoidance, and collaborative mapping
tasks, greatly expanding the range of tasks the Robotino 3 can perform effectively.

Figure 7.1: Example of Lidar We Could
Use: Hokuyo URG-04LX-UG01

Figure 7.2: Showcasing Robotino with a
Hokuyo Lidar Mounted

• Upgrading the Gripper:

– The current gripper on the Robotino 3 is functional, but upgrading to one
with a larger range of motion and vertical movement capability would offer
significant advantages. A wider range of motion would allow the robot to
handle various objects more effectively, regardless of their size or shape. Additionally,
enabling vertical movement of the gripper would eliminate the need for precise
object placement based on height, simplifying processes. These upgrades
would improve the robot’s efficiency in tasks such as object handling and
pick-and-place operations, expanding its range of potential applications.

Rev: 1.0 57 May 20, 2024

B024EB-09 Navigation of Mobile Robot

• Integrate a Robot Arm:

– Integrating a robot arm onto the Robotino 3 would significantly broaden
its functionality. With a robot arm, the Robotino 3 could perform various
manipulation tasks, such as object handling and assembly, expanding its
range of capabilities beyond navigation alone. This enhancement would offer
numerous opportunities for the Robotino 3 to tackle diverse real-world challenges
with increased versatility and efficiency.

• Integrating the Festo Distribution/Belt Station with the Robotino:

– Integrating the Festo distribution/belt station to work alongside the Robotino
could be a potential future project. Currently, we use this station solely
to adjust the height for object pickup with the gripper. However, there is
potential for expansion by integrating this station with the Robotino. This
integration could enhance the overall efficiency of the system, allowing for
smoother coordination between the Robotino and the distribution/belt station.
While this isn’t a current focus, it presents an opportunity for further optimization
and collaboration between the different components of the system.

Figure 7.3: Festo Distribution/Belt Station

Rev: 1.0 58 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Bibliography
[1] Corke, P. Robotics, Vision and Control: Fundamental Algorithms in Python (3rd

ed.). Springer, 2023

[2] Festo MyLearning. (n.d.). Autonomous Mobile Robotics with Robotino 4. [Online
course, restricted access]. Retrieved from [Festo MyLearning] [Accessed: 08.01.2024].

[3] TeamGantt. (n.d). TeamGantt: Project Management Software & Gantt Chart Tool.
[Internet]. URL: https://www.teamgantt.com [Accessed: 15.01.2024]

[4] Wikipedia. (2023). Fagskolen i Hordaland. [Internet]. URL: https://no.wikipedia.
org/wiki/Fagskolen_i_Hordaland [Accessed: 26.01.2024]

[5] Wikipedia. (2023). Bergen tekniske fagskole. [Internet]. URL: https://no.wikipedia.
org/wiki/Bergen_tekniske_fagskole [Accessed: 26.01.2024]

[6] Fagskulen. (n.d). Homepage. [Internet]. URL: https://www.fagskulen.no [Accessed:
26.01.2024]

[7] Overleaf. (n.d). Learn LaTeX in 30 minutes. [Internet]. URL: https://www.overleaf.
com/learn/latex/Learn_LaTeX_in_30_minutes [Accessed: 02.02.2024]

[8] Solberg, T. S., & Djønne, E. (2023). BO19E-51 FESTO LABORATORIEOPPGAVE
MED PLS (Bacheloroppgave, Høgskulen Vestland). URL: https://hvlopen.brage.
unit.no/hvlopen-xmlui/bitstream/handle/11250/2602086/Solberg_Djoenne.pdf?
sequence=1&isAllowed=y. [Accessed: 28.01.2024]

[9] Hájková, L. (2023). Task with Robotino 4.0 robot for demonstration
purposes (Bachelor of Engineering, Mechanical Engineering, LAB University of
Applied Sciences). URL: https://www.theseus.fi/bitstream/handle/10024/793547/
Hajkova_Lenka.pdf?sequence=2&isAllowed=y. [Accessed: 28.01.2024]

[10] Rasel, M. R. I. (2017). Obstacle Detection for Indoor Navigation of Mobile Robots
(Master Thesis, Dept. of Computer Science, Chair of Computer Engineering). URL:
https://core.ac.uk/download/153230184.pdf. [Accessed: 28.01.2024]

[11] Python Software Foundation. (n.d). Python Software Foundation. [Internet]. URL:
https://www.python.org/doc/essays/blurb/ [Accessed: 07.02.2024]

[12] ROS.org. (n.d). ROS.org. [Internet]. URL: https://www.ros.org/ [Accessed:
07.02.2024]

[13] MathWorks. (n.d). Simulink. [Internet]. URL: https://www.mathworks.com/
products/simulink.html [Accessed: 07.02.2024]

Rev: 1.0 59 May 20, 2024

https://www.teamgantt.com
https://no.wikipedia.org/wiki/Fagskolen_i_Hordaland
https://no.wikipedia.org/wiki/Fagskolen_i_Hordaland
https://no.wikipedia.org/wiki/Bergen_tekniske_fagskole
https://no.wikipedia.org/wiki/Bergen_tekniske_fagskole
https://www.fagskulen.no
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://hvlopen.brage.unit.no/hvlopen-xmlui/bitstream/handle/11250/2602086/Solberg_Djoenne.pdf?sequence=1&isAllowed=y
https://hvlopen.brage.unit.no/hvlopen-xmlui/bitstream/handle/11250/2602086/Solberg_Djoenne.pdf?sequence=1&isAllowed=y
https://hvlopen.brage.unit.no/hvlopen-xmlui/bitstream/handle/11250/2602086/Solberg_Djoenne.pdf?sequence=1&isAllowed=y
https://www.theseus.fi/bitstream/handle/10024/793547/Hajkova_Lenka.pdf?sequence=2&isAllowed=y
https://www.theseus.fi/bitstream/handle/10024/793547/Hajkova_Lenka.pdf?sequence=2&isAllowed=y
https://core.ac.uk/download/153230184.pdf
https://www.python.org/doc/essays/blurb/
https://www.ros.org/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

B024EB-09 Navigation of Mobile Robot

[14] Festo Didactic. (n.d). Robotino 3 Overview. [Internet]. URL: https:
//ip.festo-didactic.com/InfoPortal/Robotino3/Overview/EN/index.html [Accessed:
07.02.2024]

[15] Festo Didactic. (n.d). Robotino 3 Hardware. [Internet]. URL: https://ip.
festo-didactic.com/InfoPortal/Robotino3/Hardware/EN/index.html [Accessed:
07.02.2024]

[16] Festo Didactic. (n.d). Robotino 3 Software. [Internet]. URL: https:
//ip.festo-didactic.com/InfoPortal/Robotino3/Software/EN/index.html [Accessed:
07.02.2024]

[17] IndiaMART. (n.d.). Festo Mobile Robot. [Internet]. URL: https://m.indiamart.com/
proddetail/festo-mobile-robot-15504327830.html [Accessed: 07.02.2024]

[18] Engineering Educator Academy (2021). Kinematics of Mobile Robots with Omni
Directional Wheels [Video]. YouTube. URL: https://www.youtube.com/watch?v=
-wzl8XJopgg [Accessed: 07.02.2024]

[19] PAL Robotics. (n.d). Omnidirectional drive robots vs Differential
drive robots. [Internet]. URL: https://blog.pal-robotics.com/
omnidirectional-vs-differential-drive-robots/ [Accessed: 10.02.2024]

[20] NovoG93. (n.d.). robotino. [Internet]. GitHub repository. Available: https://github.
com/NovoG93/robotino [Accessed: 10.02.2024]

[21] Flyability. (n.d.). Simultaneous Localization and Mapping. [Internet]. URL: https://
www.flyability.com/simultaneous-localization-and-mapping [Accessed: 17.02.2024]

[22] Synopsys. (n.d.). What is LiDAR? [Internet]. URL: https://www.synopsys.com/
glossary/what-is-lidar.html [Accessed: 18.02.2024]

[23] Open Robotino Forum. (n.d.). The Robotino Gripper Motor Does Not Work.
[Internet]. URL: https://forum.openrobotino.org/forum/main-forum/hardware/
robotino3-aa/13102-the-robotino-gripper-motor-does-not-work [Accessed:
18.02.2024]

[24] 3D Printing. (n.d.). What is 3D Printing? [Internet]. URL: https://3dprinting.com/
what-is-3d-printing/ [Accessed: 18.03.2024]

[25] Investopedia. (29.11.2023). 3D Printing: What It Is, How It Works, Examples.
[Internet]. URL: https://www.investopedia.com/terms/1/3d-printing.asp [Accessed:
18.03.2024]

[26] Makerbot. (n.d). MakerBot Replicator Z18. [Internet]. URL: https://store.makerbot.
com/replicator-z18 [Accessed: 18.03.2024]

[27] Hokuyo. (n.d). Hokuyo URG Series. [Internet]. URL: https://www.hokuyo-aut.jp/
search/single.php?serial=166 [Accessed: 11.04.2024]

Rev: 1.0 60 May 20, 2024

https://ip.festo-didactic.com/InfoPortal/Robotino3/Overview/EN/index.html
https://ip.festo-didactic.com/InfoPortal/Robotino3/Overview/EN/index.html
https://ip.festo-didactic.com/InfoPortal/Robotino3/Hardware/EN/index.html
https://ip.festo-didactic.com/InfoPortal/Robotino3/Hardware/EN/index.html
https://ip.festo-didactic.com/InfoPortal/Robotino3/Software/EN/index.html
https://ip.festo-didactic.com/InfoPortal/Robotino3/Software/EN/index.html
https://m.indiamart.com/proddetail/festo-mobile-robot-15504327830.html
https://m.indiamart.com/proddetail/festo-mobile-robot-15504327830.html
https://www.youtube.com/watch?v=-wzl8XJopgg
https://www.youtube.com/watch?v=-wzl8XJopgg
https://blog.pal-robotics.com/omnidirectional-vs-differential-drive-robots/
https://blog.pal-robotics.com/omnidirectional-vs-differential-drive-robots/
https://github.com/NovoG93/robotino
https://github.com/NovoG93/robotino
https://www.flyability.com/simultaneous-localization-and-mapping
https://www.flyability.com/simultaneous-localization-and-mapping
https://www.synopsys.com/glossary/what-is-lidar.html
https://www.synopsys.com/glossary/what-is-lidar.html
https://forum.openrobotino.org/forum/main-forum/hardware/robotino3-aa/13102-the-robotino-gripper-motor-does-not-work
https://forum.openrobotino.org/forum/main-forum/hardware/robotino3-aa/13102-the-robotino-gripper-motor-does-not-work
https://3dprinting.com/what-is-3d-printing/
https://3dprinting.com/what-is-3d-printing/
https://www.investopedia.com/terms/1/3d-printing.asp
https://store.makerbot.com/replicator-z18
https://store.makerbot.com/replicator-z18
https://www.hokuyo-aut.jp/search/single.php?serial=166
https://www.hokuyo-aut.jp/search/single.php?serial=166

B024EB-09 Navigation of Mobile Robot

[28] Wikipedia. (n.d.). Robotino with Hokuyo URG-04LX-UG01. [Internet]. URL: https:
//en.m.wikipedia.org/wiki/File:Robotino_with_Hokuyo_URG-04LX-UG01.jpg
[Accessed: 11.04.2024]

[29] Servo Magazine. (n.d.). A Look at Holonomic Locomotion. [Internet]. URL: https:
//www.servomagazine.com/magazine/article/a-look-at-holonomic-locomotion
[Accessed: 11.04.2024]

[30] TechTarget. (n.d). TCP/IP (Transmission Control Protocol/Internet Protocol).
[Internet]. URL: https://www.techtarget.com/searchnetworking/definition/TCP-IP
[Accessed: 11.04.2024]

[31] AVG. (n.d.). What is TCP/IP? [Internet]. Available: https://www.avg.com/en/
signal/what-is-tcp-ip [Accessed: 11.04.2024]

[32] Kyle, L. (n.d.). Networking Theory: Understanding TCP/IP, the Backbone
of the Internet. [Internet]. Available: https://medium.com/@kylelzk/
networking-theory-understanding-tcp-ip-the-backbone-of-the-internet-c435f50d7a9a
[Accessed: 11.04.2024]

[33] TechTarget. (n.d.). Closed-loop control system. [Internet]. Available: https:
//www.techtarget.com/whatis/definition/closed-loop-control-system [Accessed:
16.04.2024]

[34] Omega Engineering. (n.d.). What is a PID Controllers. [Internet]. Available: https:
//www.omega.com/en-us/resources/pid-controllers [Accessed: 16.04.2024]

Rev: 1.0 61 May 20, 2024

https://en.m.wikipedia.org/wiki/File:Robotino_with_Hokuyo_URG-04LX-UG01.jpg
https://en.m.wikipedia.org/wiki/File:Robotino_with_Hokuyo_URG-04LX-UG01.jpg
https://www.servomagazine.com/magazine/article/a-look-at-holonomic-locomotion
https://www.servomagazine.com/magazine/article/a-look-at-holonomic-locomotion
https://www.techtarget.com/searchnetworking/definition/TCP-IP
https://www.avg.com/en/signal/what-is-tcp-ip
https://www.avg.com/en/signal/what-is-tcp-ip
https://medium.com/@kylelzk/networking-theory-understanding-tcp-ip-the-backbone-of-the-internet-c435f50d7a9a
https://medium.com/@kylelzk/networking-theory-understanding-tcp-ip-the-backbone-of-the-internet-c435f50d7a9a
https://www.techtarget.com/whatis/definition/closed-loop-control-system
https://www.techtarget.com/whatis/definition/closed-loop-control-system
https://www.omega.com/en-us/resources/pid-controllers
https://www.omega.com/en-us/resources/pid-controllers

B024EB-09 Navigation of Mobile Robot

Appendix A

Kinematics

{s} = world frame
{b} = robot body frame
{w} = robot wheel frame
(x, y) = robot body center coordinate in relation to the world frame
(xi, yi) = wheel center coordinate in relation to the robot body frame
θ = angle of robot body frame in relation to the world frame
γ = angle of free rolling wheel in relation to the wheel’s y component
βi = angle between the wheel’s x component (xw, rolling direction)

and the robot body x component (xb)
i = wheel number 1,2,3,...

Figure A.1: Illustrating the Coordinate Frames and Angular Relationships

Rev: 1.0 62 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Figure A.2: Representation of Wheel Position and Orientation in the Robot Body Frame

Rev: 1.0 63 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Mecanum wheel for reference to show that you need to consider the
gamma angle in some cases

We use omni-wheels where the free rolling wheel are directly on yw

Figure A.3: Kinematics of a Robot with Mecanum Compared to Omni-Wheels

Rev: 1.0 64 May 20, 2024

B024EB-09 Navigation of Mobile Robot

A: Rotation about the z-axis, going from frame {s} to frame {b}
B: Translation from frame {b} to frame {w}
C: Rotation about the z-axis, going from frame {b} to frame {w}
D: Converting to angular velocity with respect to the wheel radius ri
and changing the velocity direction with respect to gamma

Setting θ = 0 for the robot’s initial state and to make the
system independent from the {s} frame, essentially skipping
the first rotation matrix A in the hi(θ) equation.
This results in a constant matrix without a variable θ

Figure A.4: Transformation Steps and Equations for Robot Wheel Kinematics

Rev: 1.0 65 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Figure A.5: Kinematics with Angle Calculations and Wheel Coordinates

Rev: 1.0 66 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Figure A.6: Calculation of Kinematics for Wheel 1

Figure A.7: Calculation of Kinematics for Wheel 2

Rev: 1.0 67 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Figure A.8: Calculation of Kinematics for Wheel 3

Rev: 1.0 68 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Figure A.9: Matrix Representation and Vector Transformation for Wheel Velocities

Rev: 1.0 69 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Appendix B

Lab Exercise 1
Introduction to Robotino 3 and Basic Motion

Topic

• Introduce Students to Robotino 3

• Observe Robotino’s Movements

• Create Abort Function With Bumper

Equipment

• Robotino 3

• Robotino View

• Robotino SIM

Preparation

Install Robotino View and Robotino SIM.

Objective of the Exercise

This laboratory exercise aims to install the necessary software, familiarize oneself with the
hardware and software components of the Robotino, and practice basic motion control of
the robot. First, you will make the robot to move forward for 6 seconds. Then, have it
pause for 2 seconds before moving backward for 6 seconds. Next, you’ll make the robot
to move linearly in all directions using omnidrive. In the end, create abort function with
bumper in case of collision.

Groups

2-3 persons per group

Report

You can access the report template here: appendix F

Rev: 1.0 70 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Solutions
In the figures below you can find function blocks used to complete these exercises. The
actual Robotino View program can be found on GitHub, and the link for this is found
in appendix I. You can find video demonstration of the exercise in appendix H.

Move Forward and Backward

Figure B.1: Move forwards for 6 seconds Figure B.2: Move backwards for 6 seconds

Figure B.1 and B.2 Shows the function blocks used to move the robot forwards for 6
seconds, then backwards for 6 seconds.

Move Linearly in All Directions

Figure B.3: Omnidrive Function Block Figure B.4: Drive System Function Block

Figure B.3 and Figure B.4 shows two different ways to make the robot move in a straight
line at a 45° angle. You can use the Drive System function block to replace the omnidrive
block with connection to the motor blocks, which can make it easier.

Rev: 1.0 71 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Move with Control Panel

Figure B.5: Drive System with Control Panel

You can also attach a Control Panel to the Drive System, allowing you to manually
control the robot in every direction.

Bumper

Figure B.6: Bumper Function Block

Choose the Variable function from the Function block library, then right-click and select
"Add" using the mouse. Describe the variable as "timeout". Then modify the primary
program for the sequence controller to specify the abort conditions.

Rev: 1.0 72 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Appendix C

Lab Exercise 2
Distance Sensors and Odometry

Topic

• Familiarize with distance sensors and odometry

• Approaching a wall and maintain a
defined distance.

• Follow wall and rotate 90◦

Equipment

• Robotino 3

• Robotino View

• Two walls that make a 90◦corner.

Preparation

Complete Lab Exercise 1

Objective of the Exercise

This lab exercise is designed to familiarize you with Robotino’s distance sensors and
their application in navigation tasks. You will program the robot to approach a wall and
maintain a distance of 8 cm. Next, you will guide the robot to move alongside the wall
while maintaining this distance. Finally, you will navigate the robot along a wall with a
90° corner, using odometry to make the turn.

Groups

2-3 persons per group

Report

You can access the report template here: appendix F

Rev: 1.0 73 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Solutions
In the figures below you can find function blocks used to complete these exercises. The
actual Robotino View program can be found on GitHub, and the link for this is found
in appendix I. You can also find video demonstration of the exercise in appendix H

In the first subprogram, we use distance sensor 1 with a set point of 1.49V, based on
values from Table 4.1. This allows the robot to drive towards the wall and maintain a
distance of 8 cm. After that, the main program transitions to the next subprogram, where
we use a combination of distance sensor 1 and distance sensor 3 to maintain distance.
In this subprogram, the robot moves sideways until it maintains an 8 cm distance from
both sensors. When both sensors are within this range, the program advances to the
final subprogram, where the robot rotates 90° using odometry and the position driver
function block. The set point for this subprogram is 90, hence the 90° rotation.

Approach a Wall Subprogram

Figure C.1: Approach a Wall Subprogram

Rev: 1.0 74 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Move Along Wall Subprogram

Figure C.2: Move Along Wall Subprogram

Move Around Corner Subprogram

Figure C.3: Move Around Corner Subprogram

Rev: 1.0 75 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Appendix D

Lab Exercise 3
Image Processing and Object Detection

Topic

• Familiarize with Robotino’s Camera

• Search for and approach a colored object

• Search for and approach AR-marker

Equipment

• Robotino 3

• Robotino View

• Robotino SIM

Preparation

Complete Lab Exercise 2

Objective of the Exercise

This lab exercise is designed to familiarize you with image processing and AR markers
using the camera. You will develop a program that instructs the robot to locate a
predetermined colored object, approach it, and maintain a distance of 8 cm from it. You
will then repeat the process, this time using AR markers instead of colored objects.

Groups

2-3 persons per group

Report

You can access the report template here: appendix F

Rev: 1.0 76 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Solutions
In the figures below you can find function blocks used to complete these exercises. The
actual Robotino View program can be found on GitHub, and the link for this is found
in appendix I. You can find video demonstration of the exercise in appendix H.

In the first subprogram, we use the color range finder function block to teach the desired
colors. You select an area of the intended object and copy values directly from this
function block. These values are then placed in the main program under a variable
called "color." After this, the robot moves to the next subprogram, where it begins
searching for the object. It will rotate on the spot until it sees the object. Note that the
camera has the best accuracy within a range of no more than 140 cm. After the object
has been detected, the main program moves on to the last subprogram. Here, the robot
will move towards the object until it reaches a distance of 8 cm from it. At this point,
the program is finished, and the robot will stop.

The concept for using marker detection is very similar. Here, we use the marker detection
function block. You can choose your own marker from Robotino View using the marker
selection function block. When you start the program, the robot will rotate on the
spot until it sees the marker. After this, the main program will proceed to the next
subprogram, where the robot will drive towards the marker. As before, it will drive until
it reaches a distance of 8 cm before it stops.

Teach Color Subprogram

Figure D.1: Teach Color Subprogram

Rev: 1.0 77 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Search for the Object Subprogram

Figure D.2: Search for the Object Subprogram

Approach the Object Subprogram

Figure D.3: Approach the Object Subprogram

Rev: 1.0 78 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Search for the Marker Subprogram

Figure D.4: Search for the Marker Subprogram

Approach the Marker Subprogram

Figure D.5: Approach the Marker Subprogram

Rev: 1.0 79 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Appendix E

Lab Exercise 4
Multi-Sensor Navigation and Object Handling

Topic

• Execute a multi-sensor task

• Use gripper to pick up an object.

Equipment

• Robotino 3

• Robotino View

• Festo Belt/Distribution Module

• A piece of tape

Preparation

Complete Lab Exercise 3

Objective of the Exercise

This lab exercise involves guiding the robot towards a module using camera guidance,
tracing a line with the diffuse sensors, maintaining proper distance and alignment with
the module using distance sensors, and utilizing a gripper to lift an object from the
Belt/Distribution Module. After that, the robot moves away from the module, uses
odometry to reach a specific location, and drops off the object.

Groups

2-3 persons per group

Report

You can access the report template here: appendix F

Rev: 1.0 80 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Solutions
In the figures below you can find function blocks used to complete these exercises. The
actual Robotino View program can be found on GitHub, and the link for this is found
in appendix I. You can find video demonstration of the exercise in appendix H.

• Find Marker Subprogram: The robot spins around at a constant speed looking for
the desired marker using it’s imaging system.

• Mark Follow Subprogram: The robot moves forward towards the marker and
centers itself in relation to the marker. It stops at a desired length from the wall
using distance sensor 1.

• Center Subprogram: The robot centers itself in relation to a strip on the ground
using the diffuse sensors. At the same time it adjust the angle so it faces directly
towards the platform using distance sensors 2 and 9.

• Pickup Subprogram: The robot moves forward at a constant very low speed until
the pressure plate on the gripper is activated. The gripper then closes, picking up
the item.

• Drive Back Subprogram: The robot moves backwards at a constant very low speed.

• Move Odometry Subprogram: The odometry is reset and the robot moves holonomically
towards a different location given the desired coordinates.

• Release Gripper Subprogram: The gripper is opened and the item is released at
the desired location.

• Home Pose Subprogram: The robot moves back holonomically to the "Home Pose",
which is the last place the odometry was reset.

Rev: 1.0 81 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Find Marker Subprogram

Figure E.1: Find Marker Subprogram

Mark Follow Subprogram

Figure E.2: Mark Follow Subprogram

Rev: 1.0 82 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Center Subprogram

Figure E.3: Center Subprogram

Rev: 1.0 83 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Pickup Subprogram

Figure E.4: Pickup Subprogram

Rev: 1.0 84 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Drive Back Subprogram

Figure E.5: Drive Back Subprogram

Move Odometry Subprogram

Figure E.6: Move Odometry Subprogram

Rev: 1.0 85 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Release Gripper Subprogram

Figure E.7: Release Gripper Subprogram

Home Pose Subprogram

Figure E.8: Home Pose Subprogram

Video

You can find video demonstration of the exercise in appendix H

Rev: 1.0 86 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Appendix F

Template for Report

Student Information

Name:
Date:
Course:
Instructor:

Introduction

Provide a brief introduction to the lab exercise, including the objective and any relevant
theory.

Equipment Used

List all the equipment and software used to perform the lab exercise.

Procedure

Outline the steps you followed to complete the lab exercise.

Results

Present the results of your lab exercise. Include any figures, tables, or graphs if necessary.

Conclusion

Summarize the main points of the lab, the findings, and their implications.

Rev: 1.0 87 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Appendix G

Guide to Working With Robotino 3

Introduction

Welcome to the Guide to Working with Robotino 3. This guide aims to provide you
with a basic understanding of Robotino 3, along with its accompanying software tools,
Robotino View, and Robotino SIM. The purpose of this guide is to provide instructions
for beginners to effectively utilize Robotino 3 and its associated software.

Figure G.1: Robotino shown with Tower, Segment Base, Gripper, and Signaling Lights

Software Tools

Robotino View: This software provides a user-friendly interface for programming and
controlling Robotino 3. With its intuitive design, Robotino View allows users to interact
with Robotino 3 in real-time, making it ideal for rapid prototyping and experimentation.

Robotino SIM: Robotino SIM is a simulation environment that enables users to virtually
simulate Robotino 3 in various scenarios. By replicating real-world conditions, Robotino
SIM allows users to test and validate their algorithms without the need for physical
hardware, making it a valuable tool for both learning and development.

Rev: 1.0 88 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Understanding Robotino 3

The Robotino 3

The Robotino 3 is an advanced mobile robotics platform mainly used for educational
and research applications. Manufactured by Festo Didactic, it is recognized for its
omnidirectional drive system which allows for precise movements in all directions. Equipped
with a range of sensors, the Robotino 3 provides a comprehensive set of tools for students
and researchers to develop skills in areas such as navigation, sensor integration, and robot
control.

Setting up the Robotino 3

The robot has been unboxed and is ready for boot-up. Activate the robot by pressing
the button located on top of the Control Unit. If the robot fails to start up, it is likely
due to depleted batteries. Connect the power cable and attempt to start it again. To
power off the robot, press and hold the power button for approximately 3 seconds.

Getting started with Robotino View

Installing Robotino View

You can find link to install Robotino View in Appendix I, under Software Specifications.
Robotino View was primarily developed for Windows operating systems, therefore it is
recommended to use it on this platform.

Connecting to Network

To establish communication with the Robotino, the operating computer must be connected
to Robotino’s Wi-Fi network. Each Robotino comes with its dedicated Wi-Fi router.
For this specific Robotino, you’ll need to connect to the "robotino" Wi-Fi network. The
password for this network is also "robotino".

Connecting to Robotino

By default, the program is connected to the local IP address. To control the robot using
Robotino View, you need to connect to the IP address 172.26.1.1. If you wish to control
the robot in Robotino SIM, you must use the IP address 127.0.0.1.

Rev: 1.0 89 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Your First Project with Robotino View

Upon launching Robotino View, you will see the user interface, as shown in figure G.2.
This interface typically features a main program section and step section, providing a
structured layout for initiating program development or execution. The main program
consists of sequential steps that follow a set order. Each step defines specific functions
in the program, which are activated when certain conditions are fulfilled.

Programming in Robotino View involves using function blocks (as shown in figure G.3),
Lua scripts, or Python scripts. While simple programs can be effectively implemented
using function blocks, using scripts like Lua or Python can be recommended for improved
manageability and flexibility.

Figure G.2: User interface of Robotino View,
Highlighting the Main Program Structure

Figure G.3: The programming
Blocks Within Robotino View

Control the Program

To initiate the program, click the green play button located at the top next to the save
button, as illustrated in Figure G.2 To execute the current subprogram only, use the
second play button adjacent to the pause button. This feature allows for testing specific
parts of the program without executing the entire cycle. To stop the external control
program, press the stop button located on the same row as the play buttons shown. Note
that the stop button will appear inactive when not in use.

Rev: 1.0 90 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Getting started with Robotino SIM

Installing Robotino SIM Demo

You can find link to install Robotino SIM in Appendix I, under Software Specifications.

Simulating Your First Task

Upon launching Robotino SIM, you will see the user interface as shown in figure 3.12.
You will utilize the same program in Robotino View that you use for simulating the robot
in real life. The only difference is that you’ll simulate it virtually within a program. It’s
important to ensure that you change the IP address to 127.0.0.1 so that the Robotino
View programs recognize that they should communicate with Robotino SIM.

Robotino SIM includes example simulations such as Color driver, Follow Line (camera),
and Follow line (inductive sensor). These examples demonstrate how the robot moves
within the simulation environment. However, you have the option to use your own
program in Robotino View to simulate the robot in Robotino SIM.

Figure G.4: Snapshot of the Robotino SIM Simulation Environment

Rev: 1.0 91 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Exploring Robotino Web Interface

The web interface of the Robotino makes functions available for control, configuration
and maintenance of the robot system. Through web interface we can control the robot
with our computer and phone, check battery status, change network settings, and change
various parameters for controlling. To access the Robotino web interface, make sure you
are connected to the robots Wi-Fi and simply open a web browser and enter the IP
address: 172.26.1.1.

Figure G.5: Displaying the Control Function on Robotino Web Interface

Rev: 1.0 92 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Troubleshooting

Common Issues

• Connection Loss: The primary issue we encounter with the Robotino is occasional
loss of connection. We’re uncertain about the cause of this problem.

• Battery Capacity: We also have issues with battery capacity. Although we
replaced the batteries once, their capacity decreased again after a few months. We
cannot use the robot for long periods without needing a power cable.

Solutions

• Connection Error:

– Reset the Wi-Fi on your computer.

– If that doesn’t work, try restarting both the Robotino and your computer.

• Battery Capacity:

– Replace the batteries with new ones.

– Keep the robot connected to a power cable.

Further Resources

For more comprehensive details regarding the Robotino 3, Robotino View, Robotino
SIM, a step-by-step programming guide, as well as manuals and datasheets, please refer
to appendix I

Rev: 1.0 93 May 20, 2024

B024EB-09 Navigation of Mobile Robot

Appendix H

Videos Demonstrating Robotino Movement

Showcasing Manual Control of Robot Movement in ROS

https://youtu.be/PemLGTzzwVo

Lab Exercise 1_01

https://youtube.com/shorts/2z1TwCRW7J0

Lab Exercise 1_02

https://youtube.com/shorts/bHUIPFU7Pz4

Lab Exercise 2_01

https://youtube.com/shorts/HshCPW52b9U

Lab Exercise 3_01

https://youtube.com/shorts/X4NDdDr343I

Lab Exercise 3_02

https://youtube.com/shorts/P0PekCZvGq0

Lab Exercise 4_01

https://youtu.be/FbCHKwUlH5E

Lab Exercise 4_02

https://youtu.be/m1smGWOn7zw

Rev: 1.0 94 May 20, 2024

https://youtu.be/PemLGTzzwVo
https://youtube.com/shorts/2z1TwCRW7J0
https://youtube.com/shorts/bHUIPFU7Pz4
https://youtube.com/shorts/HshCPW52b9U
https://youtube.com/shorts/X4NDdDr343I
https://youtube.com/shorts/P0PekCZvGq0
https://youtu.be/FbCHKwUlH5E
https://youtu.be/m1smGWOn7zw

B024EB-09 Navigation of Mobile Robot

Appendix I

External Resources and Documentation

Link to Github

https://github.com/danielsortland/BO24EB-09

Robotino Manual

https://www.festo.com/net/en-ir_ir/SupportPortal/Files/767492/8029256_8029346_deen_
v10_LP8029476_Robotino_Manual.pdf

RobotinoWiki

https://wiki.openrobotino.org/index.php?title=Main_Page

Robotino View Manual

https://doc.openrobotino.org/download/RobotinoView/RobotinoView2_EN.pdf

Electric Gripper

https://www.festo.com/net/en-ir_ir/SupportPortal/Files/767493/8029451_deen_v2.0_
LP8030735_Robotino_Electric_gripper_Brief_description.pdf

Robotino Software Specifications

Robotino View

https://ip.festo-didactic.com/Infoportal/Robotino3/Software/Programming/EN/RobotinoView.
html

Robotino SIM

https://ip.festo-didactic.com/Infoportal/Robotino3/Software/Simulation/EN/index.html

Web Interface

https://ip.festo-didactic.com/Infoportal/Robotino3/Software/Webinterface/EN/index.html

Rev: 1.0 95 May 20, 2024

https://github.com/danielsortland/BO24EB-09
https://www.festo.com/net/en-ir_ir/SupportPortal/Files/767492/8029256_8029346_deen_v10_LP8029476_Robotino_Manual.pdf
https://www.festo.com/net/en-ir_ir/SupportPortal/Files/767492/8029256_8029346_deen_v10_LP8029476_Robotino_Manual.pdf
https://wiki.openrobotino.org/index.php?title=Main_Page
https://doc.openrobotino.org/download/RobotinoView/RobotinoView2_EN.pdf
https://www.festo.com/net/en-ir_ir/SupportPortal/Files/767493/8029451_deen_v2.0_LP8030735_Robotino_Electric_gripper_Brief_description.pdf
https://www.festo.com/net/en-ir_ir/SupportPortal/Files/767493/8029451_deen_v2.0_LP8030735_Robotino_Electric_gripper_Brief_description.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/Software/Programming/EN/RobotinoView.html
https://ip.festo-didactic.com/Infoportal/Robotino3/Software/Programming/EN/RobotinoView.html
https://ip.festo-didactic.com/Infoportal/Robotino3/Software/Simulation/EN/index.html
https://ip.festo-didactic.com/Infoportal/Robotino3/Software/Webinterface/EN/index.html

B024EB-09 Navigation of Mobile Robot

Robotino Hardware Specifications

Control

https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/Controller/EN/index.html

• Embedded PC Datasheet

• Microcontroller Specifications

Drive Systems

https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/DriveSystem/EN/index.html

• Motor Technical Description

• Incremental Encoder Technical Specs

• Planetary Gearbox Technical Description

• Wheels Product Specification

Sensors

https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/Sensors/EN/index.html

• Incremental Encoder Technical Specs

• Distance Sensors Specifications

• Gyroscope Product Specs

• Camera Product Information

• Opto-electronic Sensors Data Sheet

• Inductive Sensors Data Sheet

Interfaces

https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/Interfaces/EN/index.html

• WLAN Product Datasheet

Supply

https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/Supply/EN/index.html

• Battery Technical Description

• Power Supply Unit Specs

• Charger Specifications

Rev: 1.0 96 May 20, 2024

https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/Controller/EN/index.html
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinoembeddedpcbasicdatasheet.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinomicrocontrollerdatasheet.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/DriveSystem/EN/index.html
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinomotorstechnicaldescription_en_de.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinoencoderstechnicaldescription_en_de.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinoplanetarygearboxtechnicaldescription_en_de.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinowheelsproductspecification.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/Sensors/EN/index.html
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinoencoderstechnicaldescription_en_de.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinodistancesensorsspecification.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinogyroscopeproductspecification.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinocameraproductinfo.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinooptischersensordatenblatt.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinoinduktiversensordatenblatt.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/Interfaces/EN/index.html
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinowlanproductdatasheet.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/Hardware/Supply/EN/index.html
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinoakkustechnischebeschreibung.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinopowersupplyunit.pdf
https://ip.festo-didactic.com/Infoportal/Robotino3/document/robotinochargerspecification_2.pdf

	Preface
	Summary
	Sammendrag
	Introduction
	Contracting Entity
	Problem Description
	Objectives

	Theory in Mobile Robotics
	Peter Corke's Robotics, Vision and Control
	Chapter 4 - Mobile Robot Vehicles
	Chapter 5 - Navigation
	Chapter 6 - Localization

	Technical Overview
	Hardware
	Drive system
	Modules
	Sensors
	Interfaces
	Power Supply

	Software
	Web Interface
	Programming
	Simulations

	Control Systems and Strategies
	PID Controller
	Closed-Loop Controller

	TCP/IP
	3D-printing

	Design and Implementation
	Kinematic Model
	Sensor Utilization
	Software Development
	Simulations
	3D Printing

	Testing
	Distance Sensor Accuracy Test
	Odometry Accuracy Test
	Omnidrive Function Block Test
	Camera Accuracy Test
	Robot Repeatability in Lab Exercise 4

	Results
	Lab Exercises
	Identified Issues
	Discussion

	Conclusion
	Room for Improvements

	Bibliography
	Kinematics
	Lab Exercise 1
	Lab Exercise 2
	Lab Exercise 3
	Lab Exercise 4
	Template for Report
	Guide to Working With Robotino 3
	Videos Demonstrating Robotino Movement
	External Resources and Documentation

