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Abstract

Background: This research explores the application of machine learning to high-energy physics, focusing on the Z’
particle using data from the ATLAS detector at the LHC. The study addresses gaps in the StandardModel of particle
physics, particularly in understanding phenomena like dark matter and other elusive components of the universe.

Materials and Methods: Employing a structured, phased approach, the methodology integrates both conventional
machine learningmodels and sophisticated neural networks to address the challenges of high-energyparticle physics
data. In phase one, data exploration and feature selection are conducted using random forest classifiers to establish
a baseline for model performance and data characteristics. Phase two transitions to neural networks, which are de-
signed to capture more complex patterns within the data, enhancing the sensitivity and specificity of the models.
The final phase, phase three, analyzes classifier results across a spectrum of mass hypotheses scenarios and devel-
ops a regression model for mass estimation of the Z’ particle, aiming to leverage the predictive power of machine
learning to derive meaningful physical insights from the collision data.

Results: Initial results show that random forest classifiers achieved high accuracy (nearly 99.5%), thoughwith some
limitations in recall. Phase two’s shift to neural networks, aided by undersampling, significantly enhanced precision
and recall. In phase three, while the classifier highlighted potential signals with a peak significance of 1.7751σ at 500
GeV, it fell short of the 5σ discovery threshold. The regressionmodel estimated the Z’ particlemass effectivelywithin
controlled environments, showing low mean squared error and high R-squared values, but struggled with general-
izing to new datasets. Notably, the inclusion of invariant mass calculations improved feature impact. These results,
however, underscore the need for further refinement of the models to enhance their adaptability and reliability in
diverse experimental conditions.

Conclusion: The integration of machine learning into particle physics research, particularly through the ATLAS
experiment at the LHC, has significantly advanced the analytical capabilities available to physicists. The models
developed during this study hold the promise of deepening our understanding of the universe’s most fundamental
structures. Future work should focus on refining such models to improve their adaptability and accuracy, aiming to
deepen our understanding of fundamental particles and the universe’s structure.
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Glossary

Particle Physics

Bosons: Particles that follow Bose-Einstein statistics, including force carriers like photons and the Higgs boson,
enabling multiple bosons to occupy the same quantum state.

Fermions: Particles constituting matter, following Fermi-Dirac statistics, which prohibits them from sharing the
same quantum state, including quarks and leptons.

Higgs Boson: A fundamental particle responsible for imparting mass to other particles through the Higgs mecha-
nism, discovered at the LHC in 2012.

Quarks: Elementary particles, such as quarks, combine to formhadrons, which include protons and neutrons. These
particles interact strongly through the exchange of gluons.

Leptons: A class of elementary particles that do not undergo strong interactions, including electrons and neutrinos.

Dark Matter: A hypothetical form of matter that does not interact through the strong electromagnetic force. It is
inferred from its gravitational effects on visible matter and the structure of the universe.

StandardModel: The prevailing theory describing the fundamental particles and their interactions, excluding grav-
ity.

Z’ Particle: Ahypothetical massive boson predicted by extensions of the StandardModel, potentiallymediating new
fundamental forces.

Cross-Section: Ameasure of the probability that a particular interaction process will occur, often used in the context
of particle collisions.

Pseudorapidity (η): A coordinate describing angles relative to the beam axis in particle physics, important in de-
scribing the geometry of particle collisions.

GeV: Giga Electron Volt, a unit of energy in the field of high-energy physics, 1× 109 electron volts.

Azimuthal direction: The angular coordinate in the plane perpendicular to the beam axis, often used to describe
the direction of particle emissions in collider experiments.

Jet: A stream of particles produced in high-energy processes such as proton-proton collisions at the LHC.

Hadron: A composite particle made of quarks held together by the strong force, as in protons and neutrons.

Gluons: Elementary particles that act as the exchange particles for the strong force between quarks, analogous to
the photon’s role in electromagnetic interactions.

Transverse momentum: The component of momentum perpendicular to the direction of motion of an object.

Phi (ϕ): An angle measured in radians that represents the azimuthal direction around the beam axis in particle
physics. It is often used to describe the orientation of particles or the direction of theirmotion in collider experiments.

Sigma Levels (σ): A statistical measure used in particle physics to denote the confidence level of a result, commonly
used to assess the significance of an observed effect relative to the background.

Invariant Mass: A physical quantity in particle physics that describes the mass of the system of particles, important
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in identifying particle decays and interactions.

Decay Products: The particles resulting from the decay of another particle, crucial for detecting and studying parti-
cles that cannot be observed directly.

Machine Learning

Convolutional Neural Network (CNN) Architecture: A deep learning architecture optimized for processing struc-
tured arrays of data, such as images, by applying convolutional layers.

Gradient Descent: An optimization algorithm used to minimize the cost function in machine learning models by
iteratively moving towards the minimum value.

Gradient Boosting: Amachine learning technique used for regression and classification problems, which produces
a prediction model in the form of an ensemble of weak prediction models, typically decision trees.

Activation Function: Functions applied at each node in a neural network to determine the output, such as ReLU or
sigmoid, introducing non-linearity.

Epoch: A complete pass through the entire training dataset, used in the context of training an algorithm.

Overfitting: When a model learns the training data too well, including its noise and outliers, leading to poor perfor-
mance on new, unseen data.

Regularization: Techniques such as L1 and L2 regularization are employed to mitigate overfitting by introducing a
penalty term based on the magnitude of model parameters.

Learning Rate: A hyperparameter that controls howmuchwe are adjusting the weights of our network with respect
to the loss gradient.

Loss Function: A function that maps values of one or more variables onto a real number, representing some "cost"
associated with the event.

RandomSplitter: Amethod used in data splitting, particularly in machine learning, to randomly partition a dataset
into training and validation sets. This helps in assessing the generalization performance of a model.

Feature Engineering: The process of using domain knowledge to select, modify, or create new features from raw
data to increase the predictive power of machine learning algorithms.

Cross-Validation: A technique used to evaluate the generalizability of a model, involving multiple rounds of parti-
tioning the data into complementary subsets, performing training and validation analyses.

Transfer Learning: A research problem inmachine learning that focuses on storing knowledge gainedwhile solving
one problem and applying it to a different but related problem.

SMOTE (SyntheticMinorityOver-samplingTechnique): Astatistical technique for increasing the number of cases
in your dataset in a balanced way. SMOTE works by creating synthetic samples rather than by oversampling with
replacement. It is particularly useful in scenarios where the minority class in a dataset is underrepresented.
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Miscellaneous

LHC (Large Hadron Collider): The world’s largest and most powerful particle accelerator, located at CERN, used
to investigate fundamental particles by colliding them at high energy.

ATLAS (A Toroidal LHC ApparatuS): A key experiment at the LHC designed to observe phenomena that occur
when proton beams collide at high energy. It investigates a wide range of physics, from the search for the Higgs
boson to extra dimensions and particles that could make up dark matter.

Kaggle: An online community and platform for data scientists and machine learning practitioners. Kaggle allows
users to find and publish data sets, explore and build models in a web-based data-science environment, and work
with other data enthusiasts to solve data science challenges.

RAM (Random Access Memory): A form of computer data storage that stores data and machine code currently
being used. RAM allows data items to be read or written in almost the same amount of time irrespective of the
physical location of data inside the memory.

CERN (European Organization for Nuclear Research): The world’s largest particle physics laboratory, located in
Geneva, Switzerland. It is renowned for its research into the fundamental particles of the universe using the Large
Hadron Collider (LHC), the world’s largest and most powerful particle accelerator.

HVL (WesternNorwayUniversity of Applied Sciences): ANorwegian public university of applied sciences, estab-
lished in its current form in 2017 through themerger of several former independent colleges. HVL conducts research
and offers higher education in a wide range of disciplines, including engineering, health and social sciences, mar-
itime studies, and teacher education.
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1 Introduction

The chapter discusses high-energy physics, the importance of the LHC, and the hypothesised
Z’ particle, with an emphasis on teamwork and organisation. It then discusses theoretical foun-
dations and data analysis methodologies.

1.1 Context

Particle physics is a key part of modern science. It aims to understand the universe by studying
the underlying building blocks of matter and how they interact. The Large Hadron Collider
(LHC) at CERN is the world’s most powerful particle accelerator [1]. The ATLAS experiment
at the LHC seeks to investigate the most fundamental aspects of the universe by studying high-
energy collisions, including search for new particles such as the theoretical Z’ particle.

Figure 1.1.1: Workers at the tunnel during long shutdown [2]

The Z’ particle, also known as the Z prime boson, is a hypothetical extension of the Standard
Model [3], posited to mediate interactions beyond those known within the current framework,
hinting at new fundamental forces or components of matter. Its study, propelled by advanced
theoretical models and experimental searches at facilities like the LHC, stands at the forefront
of efforts to unravel mysteries surrounding dark matter, the matter-antimatter asymmetry, and
other phenomena not adequately explained by existing theories. The pursuit of the Z’ boson
encapsulates the dynamic interplay between theory and experiment in particle physics, aiming
to broaden the understanding of the universe’s fundamental structure [4].

Parallel to this, the use of Artificial Intelligence (AI), most notably machine learning (ML) in
particle physics, particularly through experiments like ATLAS at the Large Hadron Collider
(LHC), is revolutionizing the field [5]. These technologies are essential for analyzing the com-
plex data produced by high-energy collisions, aiding in the detection and analysis of phenom-
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ena beyond the Standard Model. By applying advanced ML techniques, such as deep neural
networks, researchers can sift through large datasets to identify rare particle interactions, sig-
nificantly impacting the approach to understanding particle physics.

1.2 Motivation

The exploration of new physics phenomena, such as the Z’ particle, marks a frontier in under-
standing the universe. This project is propelled by the ambition to utilize ML and DL method-
ologies to detect signals of the Z’ particle, potentially resolving some unanswered questions in
physics. These encompass the nature of dark matter and the reasons behind the imbalance be-
tween matter and antimatter. Discoveries in this area could significantly influence theoretical
frameworks and experimental techniques.

The research aims to showcase the efficiency of combining computational sciences and physics
to improve the identification and analysis of occurrences beyond the Standard Model. This
seeks to broaden the scope of particle physics research while emphasising the importance of
multidisciplinary approaches in scientific discovery.

1.3 Project owner

The ATLAS group at the Western Norway University of Applied Sciences (HVL) is at the fore-
front of research into dark matter, utilizing the Large Hadron Collider (LHC) at CERN to ex-
plore this unsolvedmystery of physics [6]. This dedicated team is composed of facultymembers
and researchers, each contributing unique expertise and insights to the collective endeavor.

Therese Berge Sjursen, an associate professor in physics at HVL, leads the project with a focus
on data analysis and the search for dark matter as part of the ATLAS experiment at CERN.
Trygve Buanes, another associate professor at HVL, contributes his extensive background in
physics, emphasizing the analysis of data from the ATLAS experiment. Steffen Mæland, also
an associate professor, applies his expertise in physics and computer science to the group’s
research, particularly in analyzing ATLAS data and exploring CP violation in the Higgs sector.

Igor Slazyk, currently a postdoctoral research fellow at HVL and stationed at CERN, specializes
in the implementation of machine learning algorithms for physics analyses within the ATLAS
experiment. Tarje Solberg Hillersøy, a PhD candidate, is also at CERN, working on applying su-
pervised and unsupervised machine learning techniques to aid physics analyses at the ATLAS
detector.

Aurora Grefsrud, another PhD candidate, focuses her research on employing computer vision
inspired by machine learning to analyze ATLAS detector data. Dag Toppe Larsen, an associate
professor, brings a cross-disciplinary approach to the team, with a keen interest in artificial
intelligence and its application in physics experiments, particularly ATLAS.
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The group maintains a rigorous schedule of weekly meetings to coordinate their research ac-
tivities, discuss findings, and plan future experiments. This routine ensures that all members,
including those currently based at CERN, are closely aligned with the group’s objectives and
progress.

Through their collaborative efforts, the ATLAS group at HVL aims to contribute significantly
to the global understanding of dark matter [6], combining advanced computational techniques
with experimental physics to uncover new insights into the fundamental structure of the uni-
verse.

1.4 Problem description and goals

The primary objective of this study is to employ sophisticated machine learning techniques to
develop classifiers that can accurately differentiate Z’ particle signals fromStandardModel (SM)
background processes using data from the ATLAS detector at the LHC. A secondary aim is to
estimate the Z’ particle’s mass from its decay products, enhancing our analytical capabilities in
particle physics and expanding our understanding of the universe’s fundamental structure.

The research will progress through systematically designed phases, each building on the data
and insights gained from the previous, to deepen the integration of particle physics andmachine
learning techniques.

1.4.1 Phase one - Classifier development with random forest

Thefirst phase involves extensive data exploration to identify patterns, distributions, and anoma-
lies within the datasets. This analysis involves both feature selection and the training of random
forest models, selected for their effectiveness with tabular data and their inherent resistance to
overfitting.

1.4.2 Phase two - Advancing with neural networks

This phase builds upon the insights gained from the random forest models by transitioning to
a neural network approach. Tabular neural networks with multiple layers will be employed
to detect more subtle patterns and enhance sensitivity to Z’ particle signals. Thorough data
preparation will be conducted to optimize the models’ performance in identifying these signals.

1.4.3 Phase three - Classifier evaluation and regression model development

In the final phase, the focus shifts from the development and optimization of classificationmod-
els to their application in performance evaluation across hypothesized mass points for the Z’
particle. This involves utilizing the most effective classifier to test datasets containing signal
events at mass values ranging from 500 to 2500 GeV. This step is designed to assess whether the
data at these specific mass points supports the hypothesis of the Z’ particle’s existence and to
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evaluate the classifier’s performance across a spectrum of mass scenarios.

Subsequently, a regressionmodel will be developed to estimate themass of the Z’ particle based
on its decay signatures. Leveraging detailed features such as energy, momentum, and angular
distributions from decay products, this model aims to refine mass estimation techniques to en-
sure the accurate and reliable identification of the Z’ particle’s mass, thereby enhancing the
understanding of its properties and the underlying physical processes.

Finally, to validate their robustness and predictability, both the classifier and regression model
will undergo further testing on new, unseen datasets. The objective of this process is to simulate
real-world conditions in order to gain a deeper understanding of their performance outside of
controlled experimental settings.

1.4.4 Scientific questions

Based on the previously discussed objectives, the problem descriptions can be defined as fol-
lows:

• "How can machine learning classifiers be developed and optimized to accurately classify Z’ particle
signals from StandardModel background processes using data from the ATLAS detector at the LHC,
and how does classifier performance evaluate across different mass hypotheses of the Z’ particle?"

• "What machine learning techniques can be applied to estimate the mass of the Z’ particle from its
decay products, and how does the accuracy of these estimations vary with the hypothetical mass
ranges of the Z’ particle?"

In summary, the project will utilize sophisticatedmachine learning techniques to tackle the chal-
lenge of identifying and analyzing the Z’ particle within particle physics. The method will ad-
vance systematically from data exploration and classifier development to parameter estimation,
aiming to merge theoretical physics with computational methods. This strategy is anticipated
to improve the search for the Z’ particle, particularly by accurately classifying signal files and
distinguishing them from background files, and estimating its mass based on the characteristics
of decay products from high-energy collisions. Additionally, it aims to highlight the importance
of machine learning in particle physics research, contributing to advancements in both fields.

1.5 Previous work

The project’s approach benefits from a series of interconnected studies combining machine
learning with high-energy particle physics, notably on classifying particle collision data from
the ATLAS experiment at the Large Hadron Collider.

The foundational understanding is significantly enhanced by previous bachelor theses from the
university, notably:
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• Civilgins, V. S., & Lothe, S. S. study on leveraging symmetry to augment training data for
classifying microscopic black holes and sphalerons using ATLAS simulated collision data
[7].

• Ganjei, S., & Gunleiksrud, D. K. investigation into binary classification of microscopic black
holes and sphalerons, optimized through custom loss functions [8].

These works provide critical insights into the application of machine learning techniques
within the particle physics domain and have helped shape the initial research direction
and methodology.

• Advancement through a collaborative paper titled "Machine Learning Classification of
Sphalerons and Black Holes at the LHC" by Grefsrud et al. [9], which delves into the
application of machine learning models like XGBoost and Residual Convolutional neural
networks for distinguishing between black hole and sphaleron events at the LHC. This
study, incorporating results from earlier bachelor projects, extends the understanding of
machine learning’s potential to identify complex particle interactions, guiding the explo-
ration of the Z’ particle detection.

Lastly, this project also builds upon cooperation with an individual project, "Search for new
physics at the LargeHadronCollider (LHC)," byLars ErikRisholmandMarius SellevoldHauger
[10].

1.6 Resources

The study uses a wide range of materials to support its research objectives and methodology.
These resources include:

• Simulated datasets
A comprehensive collection of simulated Monte Carlo (MC) datasets from CERN Open
Data [11] is utilized. These datasets encapsulate a wide spectrum of particle interactions
within the ATLAS detector at the Large Hadron Collider (LHC) [1], enabling effective
training and validation of machine learning models.

• Computational tools and frameworks
The analysis relies on various computational tools and frameworks, including Python li-
braries such as scikit-learn [12], pandas [13], FastAi [14], and matplotlib [15]. These
tools aid in data manipulation, model development, training, and evaluation, facilitating
efficient implementation and iteration of machine learning algorithms.

• Kaggle platform
The research is primarily conducted on the Kaggle platform [16], which provides robust
computational resources, a user-friendly environment, and data safety features. Kaggle

5



serves as an ideal environment for prototyping, testing, and refining machine learning
models within a collaborative and supportive community.

• Research collaboration
Collaboration with the ATLAS research group at the Western Norway University of Ap-
plied Sciences offers access to domain expertise and insights into ongoing research efforts
in particle physics and machine learning. This collaboration enriches the depth and rele-
vance of the study.

1.7 Literature

The research is grounded on a robust body of scholarly works, with a particular emphasis on
the intersection of particle physics and machine learning. Initial directions and methodological
choices were informed by bachelor theses that have also been discussed in Section 1.5, which
explore machine learning applications in the context of ATLAS collision data.

These theses have provided valuable introductions to the areas of particle physics and machine
learning, vital in advancing the study, offering inspiration and essential references that kick-
started understanding, allowing for effective definition of problem descriptions, goals, and de-
cisions on subsequent steps.

Furthermore, the theoretical framework and methodological approach of the project are signif-
icantly influenced by key texts in the fields of particle physics and machine learning:

• "Jet Physics at the LHC: The Strong Force beyond the TeV Scale" by Klaus Rabbertz [17], aids
in understanding jet physics and the strong force, which are fundamental to the research
focus.

• "Particle Physics: A Very Short Introduction" by Frank Close [18], provides a concise and
accessible overview of core principles and challenges in particle physics.

• "Modern Machine Learning and Particle Physics" by Schwartz M. [5], bridges the gap be-
tween computational techniques and practical applications in particle physics.

Additionally, resources from the CERNOpenData portal [11] and associated explanations have
been invaluable in understanding the data context and structure used in the study. This com-
bination of literature from computational and physical sciences supports an interdisciplinary
approach, aiming to enhance the synergy between machine learning and particle physics for
new frontiers such as the Z’ particle exploration.

By integrating insights from these foundational studies, the project contributes to the ongoing
exploration of particle physics through machine learning, advancing the understanding of phe-
nomena beyond the Standard Model.
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1.8 Limitations

Despite a comprehensive approach and the use of diverse resources, the project acknowledges
certain limitations and challenges.

• Limited knowledge in high-energy particle physics
Despite access to extensive literature and guidance from theATLASgroup, understanding
of high-energy particle physics continues to evolve. Intricacies of particle interactions and
theoretical frameworks present significant challenges, necessitating ongoing learning and
collaboration for effective comprehension and application.

• Algorithm selection bias
Selection ofmachine learning algorithms and techniques brings inherent biases that could
affect study outcomes. While widely used algorithms like random forest and neural net-
works are chosen, exploration of alternative approaches or ensemble methods might pro-
vide differing results and insights.

• Imbalanced datasets
Imbalanced nature of datasets, especially in terms of Z’ particle signals versus background
events, presents challenges for model training and evaluation. Despite the use of tech-
niques such as oversampling and undersampling, class imbalance remains an intricate
and persistent area of research.

• Computational limitations:
Large sizes of datasets present challenges in RAM utilization and training time. Data
subsets are used during training phases to mitigate these challenges, allowing for more
manageable processing and analysis.

• Theoretical assumptions
The study is based on theoretical assumptions and models that are used to interpret ex-
perimental results and validate machine learning predictions. Variations in theoretical
frameworks or uncertainties in predictions could add ambiguity or introduce limitations
to the analysis.

These limitations are acknowledged to clearly share the findings and support open discussion,
encouraging further research in particle physics and machine learning.

1.9 Particle physics

In order to comprehend the subsequent analyses utilizing machine learning techniques in this
thesis, it is important to first grasp the fundamentals within the context of particle physics.
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1.9.1 High-energy proton collisions

Proton-proton collisions at the LHC serve as a microscopic crucible for recreating the condi-
tions a mere moment after the Big Bang, allowing physicists to probe the fundamental forces
and particles of nature. In these high-energy collisions, protons are accelerated to velocities
near the speed of light and smashed together, yielding a shower of particles. This process, piv-
otal to experiments like ATLAS, enables the observation of rare phenomena and the potential
discovery of new particles, such as the elusive Higgs boson or theorized long-lived particles
(LLPs). The data harvested from these collisions are immense and complex, necessitating ad-
vanced machine learning techniques to sift through and identify signals of new physics amidst
the vast background noise [19].

Figure 1.9.2: Two protons about to collide [19].

1.9.2 The Standard Model

The Standard Model posits that matter is composed of fundamental particles called quarks and
leptons, which interact through exchange particles known as gauge bosons. There are six types
of quarks (up, down, charm, strange, top, and bottom), and six types of leptons (electron, muon,
tau, and their corresponding neutrinos), all of which are fermions. The gauge bosons, which
are bosons, include the photon, W and Z bosons, and the gluons. The Higgs boson, discovered
at CERN in 2012, is also a major component of the Standard Model as it is associated with the
Higgs field, which gives mass to other particles [3].
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Figure 1.9.3: The Standard Model of particle physics, showing the fermions (quarks and
leptons), gauge bosons (force carriers), and the Higgs boson [3].

1.9.3 Quarks and Leptons

Expanding on the Standard Model’s basic concepts, quarks and leptons have special character-
istics that are crucial for studying particle physics. Quarks are always found within hadrons
due to the ’color force’ and never exist alone; this fact causes jets to form during high-energy
collisions, which are vital for experimental analysis. Leptons, on the other hand, don’t interact
with the strong force, making them give clearer signals in detectors and helping to distinguish
between different interactions, particularly during high-energy collisions.

Additionally, understanding how quarks and leptons differ in mass and charge is key for ex-
ploring the universe’s symmetry principles and the unusual behaviors leading to theories about
things like the Z’ boson. Their roles in proton-proton collisions, which are modeled and stud-
ied, are vital for spotting signs of new physics beyond the Standard Model. This thesis uses
the distinct properties of these particles, combined with advanced machine learning methods,
to improve the detection of the hard-to-find Z’ boson, shedding light on its potential mass and
how it interacts. This thorough study highlights how quarks and leptons work together in the
ongoing effort to understand the universe’s structure [18].

1.9.4 Jets in particle physics

Jets are streams of particles produced in high-energy processes such as proton-proton collisions
at the LHC. They result from the hadronization of quarks and gluons ejected in these events,
providing direct insights into the strong force and quark-gluon dynamics as illustrated in 1.9.4.
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Figure 1.9.4: An illustration of a jet formed by the combination of partons, hadrons, or detector
signals [20].

1.9.5 The Z’ Boson: Beyond the Standard Model

The Z’ Boson emerges from theoretical extensions to the Standard Model, suggesting a realm
of particle physics filled with untapped interactions and particles. This conjectured entity di-
verges from the established Z boson by possessing a significantly greater mass and potentially
mediating unknown forces. The pursuit of the Z’ boson involves high-energy collision exper-
iments designed to detect its unique signatures, a task for which advanced machine learning
techniques are increasingly vital [21].
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Figure 1.9.5: Dominant production and decay pathways of the Z’ mediator in a simplified model,
illustrating s-channel vector or axial-vector interactions [22].

The Feynman diagrams in Figure 1.9.5 detail specific instances of Z’ boson interactions. They
depict the annihilation of a quark and an antiquark leading to the formation of a Z’ boson, a
key process that underscores the potential high-energy interactions capable of producing new
bosonic fields. Additionally, they differentiate between the decay of the Z’ into standard model
particles and its potential to interact with dark matter particles (χ), thus highlighting the Z’
boson’s significant role in expanding current understanding of particle interactions beyond the
existing models [23].

1.10 Machine learning in particle physics

This section covers the fundamental concepts of machine learning, an interdisciplinary topic
that combines computer science, statistics, and domain knowledge. Machine learning’s adapt-
ability and predictive capability make it essential for analyzing complex and large amounts of
data produced by experiments such as ATLAS at CERN. Furthermore, machine learning ap-
proaches are critical in developing classifiers capable of detecting new physics events, such as
the hypothetical Z’ particle, within these datasets.

1.10.1 Artificial Intelligence (AI)

Artificial Intelligence (AI) is the science and engineering of creating intelligent machines that
can simulate human thinking and decision-making processes. This includes capabilities such
as reasoning, learning, problem-solving, and understanding language [24]. A schematic model
is illustrated in figure 1.10.6.
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Figure 1.10.6: Workflow and Explainability Methods in AI Modeling. Illustration taken from [25].

Machine learning techniques
Machine learning represents a major subclass of artificial intelligence, characterized by its abil-
ity to enable systems to autonomously learn from data and identify patterns, with minimal
external input. Integrating disciplines like computer science, statistics, and domain-specific ex-
pertise, this field is instrumental in processing the extensive datasets encountered in scientific
investigations. As illustrated in Figure 1.10.7, machine learning can be divided into supervised
learning, involving methodologies such as Binary Classification and Regression, and unsuper-
vised learning, known for techniques like Clustering. Each plays a distinct role depending on
the data analysis objectives.

Figure 1.10.7: Overview of Supervised and Unsupervised Learning techniques in Machine
Learning. Image collected from [26].

1.10.2 Supervised learning

Supervised learning is a central methodology in machine learning, involving learning a map-
ping between a set of input variables (X) and an output variable (Y), typically used for classi-
fying data or predicting outcomes [27]. This method is particularly relevant to this study as it
involves inferring a function from labeled training data to predict discrete outcomes, such as

12



distinguishing between signal and background events in particle collision data.

1.10.3 Binary classification

Binary classification, a specific approach within supervised learning, is particularly relevant
to the project’s research as it involves categorizing outcomes into two distinct groups, such as
differentiating between signal and background events in particle collision data. In binary classi-
fication, outcomes are labeled as true (positive) or false (negative), which directly aligns with
the objective of distinguishing potential Z’ particle signals from standard model background
noise in the datasets. This method enables the machine learning models to make precise, bi-
nary decisions, enhancing the accuracy of particle identification and event classification within
the complex datasets generated by high-energy physics experiments [28].

1.10.4 Regression

Regression analysis is a fundamental statistical technique used in particle physics to model and
analyze the relationships between variables. Unlike classification, which divides data into dis-
crete labels, regression aims to predict a continuous quantity. This makes it an indispensable
tool for estimating key physical parameters from experimental data, such as the energies, mo-
menta, and, most importantly, the masses of particles such as the Z’ boson.

In the exploration of the subatomic world, accurately determining the mass of particles is vital
for verifying existing theories and discovering new physics. For instance, to estimate the mass
of hypothetical particles like the Z’ boson, regression models are employed to analyze the de-
cay products or jets emanating from particle collisions. These jets carry essential information
about the mass of the originating particle. By modeling the relationship between the observed
characteristics of jet decay -such as energy, momentum distribution, and decay angles -and the
mass, regression allows us to infer the mass of particles that cannot be directly observed.

1.10.5 Random forests

Random forests are an ensemble learning method that operates by constructing multiple deci-
sion trees during training [27]. Their robustness and ease of interpretation have made them a
popular choice for classification problems in high-energy physics, where they are used to iden-
tify patterns and classify events in complex datasets.

1.10.6 Neural networks

Neural networks, particularly deep learningmodels, are integral to processing the high-dimensional
and complex data in high-energy physics [29]. These models, inspired by the structure and
function of the human brain, are capable of learning intricate patterns from large datasets, mak-
ing them highly effective for identifying potential new particle events, such as those from the
hypothetical Z’ particle.
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1.10.7 Epochs

In the neural network training process, an epoch represents a complete pass through the entire
dataset [30]. Multiple epochs are used to ensure the model sufficiently learns from the data,
balancing the risk of underfitting against overfitting. The number of epochs is chosen based on
validation performance, ensuring the model generalizes well to unseen data while capturing
the underlying distributions of particle collision events.

1.10.8 Optimization of learning rate using FastAI’s lr_find

Optimizing the learning rate is necessary for efficient training of neural networks. The lr_find
tool fromFastAI offers a robustmethod for this purpose, utilizing a technique that progressively
tests a range of learning rates to observe corresponding changes in the loss [31]. As depicted in
Figure 1.10.8i, the first plot displays training and validation losses across epochs. The blue line
represents the training loss, which generally decreases over time as the model learns from the
training data. In contrast, the orange line represents the validation loss, which should ideally
decrease alongside the training loss but stabilize or slightly increase when the model begins to
overfit the training data. The second plot, Figure 1.10.8ii, maps the loss against learning rates
on a logarithmic scale. In this plot, the ’valley’ (orange dot) represents the point where the
loss is minimized, suggesting an optimal learning rate for stable training. The ’steepest’ decline
(green dot) indicates where the loss decreases most rapidly, which can be used to identify a
more aggressive learning rate that potentially accelerates convergence but may risk instability.

(i) Training and validation losses, with the train-
ing loss decreasing and validation loss plateau-
ing, indicating potential overfitting.

(ii) Loss vs. learning rate, showing optimal (val-
ley) and aggressive (steepest) learning rate.

Figure 1.10.8: Visualization of training dynamics and learning rate optimization using FastAI’s
Learning Rate Finder tool.

These visuals aid in selecting a learning rate that allows the model to learn efficiently without
diverging. However, they should be viewed as initial guides rather than definitive answers. The
results can vary and often require further empirical testing to confirm and refine the optimal
learning rate settings, ensuring the training process is truly optimized.
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1.10.9 Overfitting and underfitting

In the context of particle physics and the study on the Z’ particle, overfitting and underfitting
are important considerations. Overfitting occurs when the model, for example a deep neural
network, learns the training data too precisely, incorporating its noise and outliers. This can lead
to decreased effectiveness in generalizing from simulated datasets to real-world collider data,
potentially resulting in inaccurate detection of new physics events. Underfitting, conversely,
arises when the model is too simplistic and fails to capture the underlying data patterns, result-
ing in poor performance on both training and unseen data. Balancing between these extremes
is crucial, particularly given the imbalanced nature of the datasets, where Z’ particle signals
are scarce compared to background events. Proper feature selection and engineering, coupled
with techniques like cross-validation, can alleviate these issues, ensuring that machine learning
models are accurate and generalizable [32].

Figure 1.10.9: Example of overfitting in ma-
chine learning. This figure illustrates how the
model captures noise and outliers in the train-
ing data, leading to poor generalization [33].

Figure 1.10.10: Example of underfitting in ma-
chine learning. This figure shows a model that
is too simplistic to capture the complex patterns
in the data, resulting in poor predictive perfor-
mance [33].

1.10.10 Undersampling and oversampling

To combat data imbalance, undersampling and oversampling techniques can be employed. Un-
dersampling involves reducing the dominant class (background events) to match the minority
class (signal events), ensuring a balanced dataset for model training. Conversely, oversampling
increases the minority class by duplicating signal events to match the count of background
events. Both approaches aim to improve model training and generalization by addressing the
imbalance in datasets.

1.10.11 Feature and event selection in high energy physics

In high-energy physics, the selection of features and events plays a vital role in improvingmodel
performance and accuracy [34]. This process entails identifying the most pertinent detector
measurements and event attributes that significantly influence the detection of novel particles
like the Z’ boson. Efficient selection aids in diminishing noise, enhancingmodel interpretability,
and augmenting the likelihood of uncovering newphysical phenomena. Within this framework,
event selection assumes the guise of feature engineering, where both individual event charac-
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teristics and overarching data patterns are refined to better serve our research objectives, such
as discerning between signal and background events in collider data.

1.11 Testing and validation techniques

To ensure the reliability and accuracy of our machine learning models, a comprehensive evalu-
ation and testing strategy will be implemented. The cornerstone of our evaluation process will
involve the use of performance metrics such as accuracy, precision, recall, F1-Score, ROC Curve
and significance (σ). These metrics will provide a multifaceted view of model performance,
taking into account different aspects of classification quality and statistical significance.

1.11.1 Confusion matrix

The confusion matrix is a critical tool for evaluating the performance of binary classification
models. It provides a detailed breakdown of the model’s predictions, categorizing them into
four fundamental groups: true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), as depicted in figure 1.11.11.

Figure 1.11.11: Example of a confusion matrix created in python, using matplotlib and seaborn.

True Positives (TP): These are instances where the model correctly predicts the positive class,
meaning it correctly identifies the Z’ particle signals. True Negatives (TN): These are instances
where themodel correctly predicts the negative class, meaning it correctly identifies background
events as non-signals. False Positives (FP): These occur when the model incorrectly predicts
the positive class, meaning it incorrectly identifies background events as Z’ particle signals. This
is also known as a Type I error. False Negatives (FN): These occur when the model incorrectly
predicts the negative class, meaning it fails to identify actual Z’ particle signals. This is also
known as a Type II error.
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The confusion matrix allows researchers and analysts to visualize the model’s performance and
assess its predictive capabilities in distinguishing between the signal (Z’ particles) and the back-
ground noise (Standard Model processes). By examining the balance between TP, TN, FP, and
FN, one can derive insights into the model’s sensitivity (recall), specificity, and overall accuracy.
This matrix serves as the foundation for calculating other performance metrics such as preci-
sion, recall, and the F1 score, thereby providing a comprehensive understanding of the model’s
effectiveness in identifying Z’ particle events amidst complex background noise [35].

By utilizing the confusion matrix alongside other performance metrics, a robust evaluation
framework is ensured that emphasizes both the accuracy and reliability of themachine learning
models in the detection of Z’ particles.

1.11.2 Precision and recall

Precision measures the proportion of true positive results in all positive predictions made by
the model, reflecting its accuracy in identifying Z’ particle signals (Equation 2). Recall, or sen-
sitivity, assesses the model’s ability to detect all actual Z’ particle events within the dataset
(Equation 3). Balancing these metrics is integral for minimizing false positives and negatives,
ensuring that the model is both accurate and comprehensive in its classifications [36].

P =
Tp

Tp + Fp

Equation 1: Equation for precision.

R =
Tp

Tp + Fn

Equation 2: Equation for recall.

1.11.3 F1 score

The F1 score harmonizes the precision and recall metrics through their harmonicmean, offering
a singlemeasure to evaluate themodel’s accuracy. This is particularly useful when dealingwith
imbalanced datasets, where positive examples (Z’ particle signals) are rare compared to the
background noise [37].
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1.11.4 ROC Curve and AUC

The Receiver Operating Characteristic (ROC) curve, and the Area Under the Curve (AUC) pro-
vide insights into the model’s performance across various threshold settings. By plotting the
true positive rate against the false positive rate, the ROC curve illustrates the trade-offs between
sensitivity and specificity, as illustrated in 1.11.12. A model with an AUC close to 1 indicates
excellent discriminatory ability, whereas an AUC closer to 0.5 suggests no better than random
guessing [38].

Figure 1.11.12: Illustration of a ROC-AUC Classification Evaluation Metric [39].

1.11.5 Significance in particle physics

In particle physics, the concept of significance is crucial, particularly in the search for new par-
ticles such as the hypothetical Z’ boson. Significance is quantified in terms of the standard
deviation, σ, from the null hypothesis, which represents the background-only model. This sta-
tistical measure helps scientists determine whether an observed signal is a real effect or merely
a fluctuation of the background noise, as illustrated in Figures 1.11.13 and 1.11.14.
In particle physics, significance (σ), often denoted as ’Sigma,’ is an essential metric used to
evaluate the statistical significance of a signal compared to the background. A common initial
estimate for significance is calculated as the ratio of the signal (s) to the square root of the back-
ground (

√
b). However, this is a simplified approximation, and thorough statistical treatments

are required for precise calculations. Higher values of (σ) suggest stronger statistical evidence
for the presence of a true signal.

σ =
s√
b

Equation 3: Calculation of significance (σ) as the ratio of signal (s) to the square root of
background (

√
b), where s represents the signal and b represents the background.
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Figure 1.11.13: Null and alternative hypothesis distribution. Illustration taken from CERN [40].

Figure 1.11.14: Observed test statistics and their significance. Illustration taken from CERN
[40].

The significance levels are interpreted as follows:
• 1σ (One Sigma): Corresponds to a 68.27% confidence level. At this level, there’s about a
32% chance that the result is merely a statistical fluctuation. In particle physics, this is not
considered significant enough to denote a discovery.

• 2σ (Two Sigma): Represents a 95.45% confidence level. There is still around a 5% chance
(1 in 20) that the observed effect is due to random chance. This level is more compelling
but still not regarded as definitive evidence.

• 3σ (Three Sigma): Corresponds to a 99.73% confidence level. Results at this level are
often considered evidence of a new phenomenon but still fall short of conclusive proof.

• 4σ (Four Sigma): This level represents a 99.9937% confidence level, indicating an ex-
tremely low probability that the observed effect is due to background fluctuations alone.

• 5σ (Five Sigma): This is considered the gold standard in particle physics [41], corre-
sponding to a 99.99994% confidence level. At this level, the chance that the result is a
statistical fluke is about 1 in 3.5 million, providing compelling evidence of discovery.
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The sigma levels are calculated based on the standard deviation of the background distribution
and the observed excess of events. A 5σ significance is required to claim a discovery in particle
physics to ensure that the probability of a false positive is exceedingly low. This rigorous stan-
dard helps maintain the integrity of findings in the field, where the datasets are large, and the
stakes of false discoveries are high. The process of calculating significance involves comparing
the observed data against the expected background and determining how likely it is to observe
such data if there were no new particle. This involves statistical models and hypothesis test-
ing, often employing techniques like maximum likelihood estimation and p-value calculations.
The higher the significance, the less likely the result is due to chance, and the more confidence
scientists have in the presence of new phenomena.

1.11.6 Evaluation metrics for regression models

For regression models aimed at estimating an unknown particle’s mass, distinct performance
metrics are essential. These metrics, pivotal for verifying the accuracy and reliability of predic-
tions, include:

• Mean Squared Error (MSE): Calculates the average of the squares of the errors between
actual and predicted values, with lower values indicating better fit.

• Root Mean Squared Error (RMSE): The square root of MSE, providing error magnitude
in the same units as the predicted value.

• Mean Absolute Error (MAE): The average of the absolute differences between predicted
and actual values, offering a straightforward measure of prediction accuracy without pe-
nalizing large errors heavily.

• R-squared (R2): Reflects the proportion of the variance in the dependent variable that
is predictable from the independent variables, with values closer to 1 indicating a better
model fit.

1.12 Project plan

The project plan is illustrated as a Gantt chart, which outlines the project’s schedule and tasks.
The lengths of the bars represent the duration of each task, offering a clear visual on the
timeline and allowing for the monitoring of milestones and potential delays. This approach
ensures systematic progress tracking against predefined deadlines. See Appendix 7.A.1 for the
detailed Gantt chart.

Risk assessment
The risk assessment provides a systematic evaluation of potential risks, prioritizing them
based on the likelihood of occurrence and potential impact. Each identified risk is assigned a
score, reflecting its probability and potential consequences. This process aids in formulating
strategies for risk mitigation and management. The comprehensive risk assessment can be
found in Appendix 7.B.2.
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Evaluation Plan
The evaluation plan outlines a systematic approach for assessing the performance of machine
learning models, aimed at achieving the project goals highlighted in Section 1.4. Acknowl-
edging the challenges posed by the imbalanced dataset, characterized by a significantly
lower frequency of Z’ particle signals compared to background events, techniques such as
oversampling and undersampling will be utilized to balance the class distribution. This aims
to mitigate bias towards the majority class and enhance the models’ capability in detecting rare
Z’ particle signals.

For the evaluation of classifier models, metrics such as accuracy, precision, recall, and the F1
score are crucial to provide a comprehensive assessment of performance. Additionally, the
significance of findings, represented by sigma levels, will play an integral role in the evaluation
process, involving calculations of significance to gauge the statistical strength of the results
and assess the likelihood of discovering new physics phenomenawithin the simulated datasets.

Following the assessment of classifier model performance and significance, the focus will shift
to mass estimation using regression techniques. The effectiveness of the regression models
will be evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Er-
ror (RMSE), Mean Absolute Error (MAE), and R-squared. These metrics will help validate
the machine learning models’ effectiveness in real-world particle physics scenarios, taking into
account factors such as energy, momentum, and angles derived from detected particles.
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2 Material and methods

This chapter details a combined approach of particle physics and machine learning for analyz-
ing the Z’ particle, following objectives outlined in Section 1.4. It includes data exploration and
preparation, framework utilization, algorithm selection, and evaluationmetrics critical for accu-
rate model assessment in high-energy physics. The project structures into three interconnected
phases, designed to systematically enhance understanding and application of machine learning
in detecting and analyzing the Z’ particle.

2.1 Information and data

The study leverages a comprehensive collection of simulated Monte Carlo (MC) datasets,
meticulously prepared to represent a spectrum of particle interactions that could occur within
the ATLAS detector at the Large Hadron Collider (LHC). These datasets are pivotal for
analysis, enabling the training and validation of machine learning models to distinguish
between the Standard Model (SM) processes and hypothetical scenarios involving the Z’
particle. Importantly, the use of simulated data allows for the establishment of a "ground
truth," particularly critical for hypothesized particles like the Z’ particle, which has not yet been
empirically observed. This approach provides a clear basis for evaluating the performance of
our machine learning models against known outcomes. The Z’ particle datasets, tagged as
"signal," are contrasted against various "background" datasets, encompassing standard particle
interactions such as diboson productions and single top quark processes. This rich dataset
repository, originally in ROOT format and converted to HDF5 for use, is hosted on Kaggle [42],
ensuring accessible and reproducible analysis.

Dataset overview
These datasets fall into two main categories:

• "Standard Model" processes datasets (Background): These include simulations of
events such as diboson production (e.g., ZZ andWZbosons) and single top quark produc-
tion through different channels. Representing the "background" processes, these datasets
are crucial in training models to accurately identify non-signal events amidst the noise of
typical collider data.

• Z’ particle datasets (Signal): These datasets range from ZPrime500 to ZPrime2500,
simulating the production of the hypothetical Z’ boson with varying masses from 500
GeV/c2 to 2500 GeV/c2. Serving as the "signal" in analysis, these datasets enable the
training and testing of models’ ability to detect potential Z’ particle events against the
standard model background.

Data imbalance
The main datasets include 7 signal files having 163308 samples and 20 background files
containing 22442595 samples, at a ratio of 1:137.
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Unseen data
In the later stages of phase 3, the last two signal files with mass parameters (1250GeV/c2 and
2250GeV/c2) having 46157 samples will be added for testing on unseen data.

Source attribution
All datasets derive from the CERN Open Data Portal [11], ensuring the use of high-quality,
realistic simulation data for research.

This initial viewof the data, as depicted in Figure 2.1.1, underscores the complexity anddiversity
of the features processed by machine learning models to differentiate between types of particle
collision events.

Figure 2.1.1: Example of the first few rows from one of the particle physics datasets.

The dataset contains columns with 169 features, with objects ordered based on their transverse
momentum (‘pt‘) from high to low. Attributes such as energy, mass, and other related
metrics for a range of jets (‘jet_1‘ to ‘jet_9‘) and leptons (‘lep_1‘ to ‘lep_5‘) are crucial for the
identification and classification of events within collider data [43]. alljet_n refers to the total
number of jets detected in a single event. channelNumber is a unique identifier for the type of
simulated process. eventNumber provides a unique identifier for each eventwithin the dataset.

Attributes for each jet and lepton are detailed in tables 2.1.1 and 2.1.2

Feature Description

jet_1_E to jet_9_E Energy of jets 1 through 9
jet_1_MV1 to jet_9_MV1 Machine learning score MV1 for jets 1 through 9
jet_1_SV0 to jet_9_SV0 Machine learning score SV0 for jets 1 through 9
jet_1_eta to jet_9_eta Pseudorapidity of jets 1 through 9
jet_1_jvf to jet_9_jvf Jet vertex fraction for jets 1 through 9
jet_1_m to jet_9_m Mass of jets 1 through 9
jet_1_phi to jet_9_phi Azimuthal angle of jets 1 through 9
jet_1_pt to jet_9_pt Transverse momentum of jets 1 through 9
jet_1_trueflav to jet_9_trueflav Flavor of jets as determined by the simulation
jet_1_truthMatched to jet_9_truthMatched Indicator if jets are matched to truth-level particles

Table 2.1.1: Attributes of Jets in the Dataset
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Feature Description

lep_1_E to lep_5_E Energy of leptons 1 through 5
lep_1_charge to lep_5_charge Electric charge of leptons 1 through 5
lep_1_eta to lep_5_eta Pseudorapidity of leptons 1 through 5
lep_1_etcone20 to lep_5_etcone20 Isolation energy within a cone around the leptons
lep_1_flag to lep_5_flag Quality flag for the leptons
lep_1_phi to lep_5_phi Azimuthal angle of leptons 1 through 5
lep_1_pt to lep_5_pt Transverse momentum of leptons 1 through 5
lep_1_ptcone30 to lep_5_ptcone30 Sum of the pt of tracks within a cone around the leptons
lep_1_trackd0pvunbiased to lep_5_trackd0pvunbiased Transverse impact parameter relative to the primary vertex
lep_1_tracksigd0pvunbiased to lep_5_tracksigd0pvunbiased Significance of the transverse impact parameter
lep_1_type to lep_5_type Type identifier of leptons 1 through 5
lep_1_z0 to lep_5_z0 Distance from the primary vertex in the beam direction

Table 2.1.2: Attributes of Leptons in the Dataset

MCweight and scale factors in particle physics simulations:
In Monte Carlo (MC) simulations for particle physics, the application of MC weights
(McWeight) and scale factors accurately replicates experimental conditions. McWeight
adjusts the simulation’s normalization to match real-world data, accounting for theoretical
cross-sections, dataset luminosity, and observed data rates. Scale factors correct discrepancies
between simulated and real detector data, essential for accurate emulation of actual collider
experiments. They cover aspects such as trigger efficiency, lepton identification, b-tagging
efficiency, and pile-up interactions [44, 45].

The implementation of scale factors is detailed in Figure 2.1.2, depicting the adjustment process
for simulated datasets, ensuring thatMonte Carlo simulations provide a realistic representation
of experimental data.

Figure 2.1.2: Illustration highlighting Scale Factors adjustments.

2.2 Work environment

Following the project descriptions and goals outlined in Section 1.4, Kaggle was selected as the
central working environment for this project. Three Kaggle notebooks were created, one for
each phase. (Phase 1: [46], Phase 2: [47], Phase 3: [48]).

Libraries utilized:
Key python libraries such as scikit-learn, FastAi,matplotlib, and seaborn played an important
part in this project:
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• Python:
The primary programming language for data manipulation, model development, and
analysis.

• Scikit-learn:
Employed for implementingmachine learningmodels and conducting data preprocessing
tasks.

• Fastai:
Used for neural network development, particularly for classification and regression tasks.

• Matplotlib and Seaborn:
Utilized for data visualization, aiding in the interpretation and presentation of results.

These core libraries, along with other supporting tools, provided a robust and efficient envi-
ronment for conducting experiments, processing data, and analyzing results throughout the
project.

2.3 Phase one - Classifier development with random forest

The initial phase of the methodological approach concentrated on comprehending the dataset’s
structure, content, and underlying patterns. Furthermore, development and testing were car-
ried out on three random forest models: a baseline model, an oversampled model, and an un-
dersampledmodel. The random forest (Scikit-learn’s "RandomForestClassifier") approach was
first selected due to its effectiveness in handling tabular data. Performance metrics for all of
them were consistent, including precision, recall, F1-score and ROC-AUC.

Figure 2.3.3: Schematic of the stages for training the classifier.
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a) Data exploration
The initial analysis focused on understanding the dataset of simulatedMonte Carlo events,
examining physical properties from particle collisions. Using python’s pandas library,
descriptive statistics were computed to assess each feature’s distribution, median, mean,
and standard deviation. Histograms plotted via matplotlib using the code displayed in
figure 2.3.4. further revealed distributions, pinpointing skewed data, outliers, and less
variable features.

Figure 2.3.4: Code snippet used to plot histograms for each feature using matplotlib (plt).

Subsequently, heatmaps were employed to assess feature correlation. By generating corre-
lation matrices and visualizing them through seaborn heatmaps as shown in 2.3.5, highly
correlated features were identified, which helped in understanding the relationships be-
tween different variables. This step was crucial for feature selection, as redundant or
highly correlated features could lead to multicollinearity, adversely affecting the machine
learning model’s performance.

Figure 2.3.5: Code snippet used to plot a heatmap for the jet features using seaborn and
matplotlib.
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Following the examination of jet features, a similar analysis was conducted for leptonic
features to understand their interrelationships better. The process utilized for generating
the lepton feature heatmap is illustrated through the code snippet shown in Figure 2.3.6.
This code snippet underscores the approach taken to visualize the correlations among
leptonic variables, which aids in distinguishing relevant features for the models.

Figure 2.3.6: Code snippet used to plot a heatmap for the lepton features using seaborn and
matplotlib.

i) Detailed feature analysis:
During initial data exploration, attention was directed towards certain jet features
for detailed analysis due to their unique distributions. Figure 2.3.7 presents a code
snippet illustrating the methodological approach to evaluating the relationships
and characteristics of these specific features.

Figure 2.3.7: Analysis of specific jet features to assess their characteristics and interrelations.
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Another vital component of this phase was ensuring data quality. Inspection of the
dataset for missing values, data type inconsistencies, and anomalous entries was con-
ducted, as addressing these issues was essential for maintaining the integrity of the
analysis and ensuring that machine learning models would be trained on accurate
and complete data. The code snippet for printing all the rows, checking for missing
values is depicted in figure 2.3.8

Figure 2.3.8: Code snippet for checking missing values for all features.

Based on the insights gained from data exploration, the process proceeded with
feature selection and engineering. This involved selecting relevant features that
would likely contribute to distinguishing between signal and background events
and engineering new features that could enhance the machine learning model’s
predictive power. These features were chosen through collaborative analysis with
the ATLAS Research Group.

ii) Inspecting data imbalance:
Finally, before training the baseline model, it was necessary to evaluate the data im-
balance between the signal and background files, as this would be the baselinemodel
for comparison. This step served as the foundation for future research. The code
snipped depicted in figure 2.3.9

Figure 2.3.9: Python code that gets the length of the dataset without the need to load it into a
dataframe.
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b) Baseline model
A specific subset was chosen for initial analysis to efficiently manage the extensive volume
of data. The approach is described in the following steps, implemented using Python’s
pandas library, to ensure efficient and reproducible model development.
i) Data subset loading: A functionwas devised to load a 10% subset of the total dataset,

facilitating quicker initial model evaluations and adjustments. This subset approach
aids in reducing computational demands while retaining a representative sample of
the overall data.

ii) Data segmentation: The loaded data was segmented into two groups,
‘df_background‘ and ‘df_signal‘, based on their labels (’0’ for background and
’1’ for signal samples), enabling binary classification to distinguish between signal
and background files.

iii) Data shuffling: To ensure the model’s generalization capability, the data was shuf-
fled using a fixed seed (in this case, 42), guaranteeing that results are consistent and
reproducible across different runs and comparisons.

Figure 2.3.10: Procedure for loading and preparing data for the random forest baseline model.

Figure 2.3.10 highlights the steps taken to handle data preparation, ensuring the ro-
bustness of the modeling workflow. The process began with a the organization and
randomization of the dataset to prepare for the random forest model’s training and
testing. Features not relevant to the model were marked for removal and tracked in
a designated list to facilitate updates if more features became redundant. The dataset
was then partitioned into training and testing subsets, following a 60/40 split via the
train_test_split function from scikit-learn, to balance model training with validation on
new data. The scikit-learn toolkit provided the necessary functions for fitting the model,
conducting feature selection, and evaluating the model’s efficacy against the test set.

An analysis of feature importance was conducted post-training to discern the physical
parameters most critical for signal detection, informing further model optimization.
Scikit-learn was used to construct key measures, including precision, recall, and the
F1-score, for the initial assessment of the random forest models. These measures helped
to assess the model’s effectiveness in distinguishing between signal and background
events in the unbalanced dataset.

29



Finally, ROC curves were generated to visually represent the trade-offs between the
rates of true positives and false positives at different thresholds. The Area Under the
ROC Curve (AUC) was employed to measure the overall capacity of the model in
differentiating between signal and background events. A greater Area Under the Curve
(AUC) value indicates superior performance of the model.

c) Undersampled model
The undersampled model was created by utilizing background data from preliminary
analyses, with a focus on reducing the majority class in order to address the imbalance in
the dataset. In thismethodology, the signal-to-background ratio was precisely established
at a ratio of 1:10 (as described in Figure 2.3.11). Tomaintain this ratio, the right number of
background entrieswas chosen tomatch the signal data during the loading phase. This en-
sured a balanced distribution for training and improved themodel’s capacity to learn. The
ratio was chosen to achieve a practical balance: it maintains the advantages of undersam-
pling, such as enhanced model sensitivity and reduced training time, while presenting a
more tolerable level of imbalance compared to the high ratios observed in natural datasets.
This method seeks to increase the model’s exposure to background events, hence enhanc-
ing its performance on highly imbalanced data and lowering the likelihood of overfitting
to a training set that has been artificially balanced.

Figure 2.3.11: Process of loading signal data, determining necessary background entries, and
creating a balanced dataset for the undersampled model.
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To verify the balance between classes, implementation of a routine that counts and prints
the number of background and signal entries loaded into the dataframe was conducted.
This process is observable in the provided code snippets within Figure 2.3.12.

Figure 2.3.12: Code snippet used to verify the number of background entries vs. signal entries,
ensuring a balanced dataset for the undersampled model.

Upon completing the training, application of the established performance metrics –
precision, recall, and the F1-score, alongside the Receiver Operating Characteristic (ROC)
curve and Area Under the ROC Curve (AUC) – identical to those used in evaluating the
baseline model, was conducted.

d) Oversampled model
Oversampling is a technique that increases the number of instances in the minority class
in order to achieve a balance with themajority class, unlike undersamplingwhich reduces
themajority class. The objectivewas to improve themodel’s ability to distinguish between
signal and background events, while still preserving its sensitivity. A subset of data was
created to mirror the proportions of the baseline model, ensuring a consistent evaluation
across differentmodels. This procedure entailedmerging signal and backgrounddata into
a unified dataset and randomizing it to avoid any possible bias in training caused by the
sequence. The utils package in scikit-learn offers the resample function, which augments
the signal samples to match the number of background occurrences, effectively rebalanc-
ing the dataset for training purposes. The augmented signal data were combinedwith the
background data to create a new dataset that includes an equal number of samples from
each classes, as illustrated in figure 2.3.13.

Figure 2.3.13: Application of oversampling to balance the dataset using scikit-learn’s resample.
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Once the oversampled dataset was created, it was shuffled to ensure randomized distribu-
tion, crucial for unbiased model training and evaluation. The dataset was then divided,
using a 60-40 training-testing split, aligning with previous evaluation frameworks.

Training the oversampled model was conducted similarly to the baseline model us-
ing Scikit-learn’s "RandomForestClassifier", with the distinction of utilizing a balanced
dataset, anticipated to alter the model’s learning dynamics. Post-training, the model’s ef-
ficacy was assessed using precision, recall, F1-score, and ROC-AUC—identical metrics to
the baseline model—to provide an insight into its signal detection capabilities enhanced
by balanced data.

2.4 Phase two - Advancing with neural networks

Phase Two further developed machine learning techniques, specifically neural networks, to an-
alyze more intricate data patterns, building upon previous work. As illustrated in figure 2.4.14,
data preprocessing was performed using the FastAI library. This included the categorization of
categorical variables, imputation of missing values, and normalization of all features.

Figure 2.4.14: Data preparation code for neural network

a) Baseline model
As in phase one, the process began by developing a baseline classifier using the same
dataset, but nowwith neural networks instead of random forest models. Data preparation
consisted of selecting and retaining crucial attributes that were identified in phase one. A
10% subset of the data was used for the initial testing. Subsequently, the model setup
was refined using the FastAI library, which offers tools like lr_find() to refine learning
rates and batch sizes. The architecture of the model, with layers consisting of 200 and 100
nodes, was designed to enhance themodel’s ability to process and learn from the dataset’s
complexities effectively (Figure 2.4.15).
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Figure 2.4.15: Code snippet showcasing the neural network’s configuration and training pro-
cedure. The model uses established evaluation metrics like accuracy, precision, recall, and
F1-Score, adjusting epochs based on training and validation losses to mitigate overfitting.

b) Undersampled model
In this phase, the group further developed undersampling techniques with the goal of
achieving a more accurate signal-to-background ratio of 1:10, in order to enhance the ro-
bustness of the model (Figure 2.4.16). The training set was organized and monitored
following the same procedure previously described for phase one.

Figure 2.4.16: Code demonstrating the data preparation process for the undersampled neural
network model.
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c) Oversampled model
Finally, a last neural network model was created using oversampling (1:1 ration) to ad-
dress the imbalance in class distribution. A 10% subset of the data was utilized, following
the same technique as prior models, to ensure consistent and comparable results. The
subset was then merged into a single DataFrame and randomly rearranged to guarantee
reliable and repeatable training results.

2.5 Phase three - Classifier evaluation and regression model development

In the final stage, the focus shifted from optimizing classifiers to utilizing them for performance
evaluations across hypothesized mass points for the Z’ particle, and to building a regression
model for estimating the mass of the Z’ particle.

a) Classifying signal events for different Z’ mass hypotheses
The neural network - undersampled model, which had yielded the best results in the pre-
vious phase, was employed to evaluate each signal dataset with its specific mass hypoth-
esis, ranging from 500 to 2500 GeV, against a uniform background dataset. This evalua-
tion preserved the original data imbalance ratio of 1:137 (Figure 2.5.17). This approach
ensured that the classifier’s performance could be accurately assessed, even in the face of
significant data imbalance, while testing individual signal datasets against all background
datasets. The quantity of samples addedwas carefullymonitored tomaintain the integrity
of the new imbalance.

Figure 2.5.17: The Python function "prepare_data" loads and samples signal data for each
Z’ particle mass scenario, combining them with a proportionate subset of background data to
prepare for the classification task.
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After preparing the data, an additional performance metric, significance (σ), was intro-
duced for mass hypothesis evaluation. Significance was calculated by determining the
optimal cutoff for maximizing significance using event weights, as illustrated in Figure
2.5.18.

Figure 2.5.18: Illustration of determining the optimal cutoff for maximizing significance.

This function is calledwithin the "evaluate_model_significance" function, which evaluates
the model’s significance along with other metrics. The method for evaluating the model
significance is shown in Figure 2.5.19.

Figure 2.5.19: Code snippet for evaluating model significance.

All other performance metrics and graphs where then plotted using the same methods as
in the previous stages.
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b) Regression model development for mass estimation
The primary objective of this stage was to construct a regression model using the Fas-
tAI package to accurately infer the mass of the Z’ particle. This marked a transition in
approaches, from classifying categories to estimating continuous variables, integrating a
neural network specifically intended for regression tasks. In this phase, the dataset was
subdivided in 40/60 for training and validation sets. The learner was modified by adding
a final layer adjustment to calculate the anticipated mass and its performance was moni-
tored using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Median Ab-
solute Error (MAE) and R2-Score (Figures 2.5.20 and 2.5.21).

Figure 2.5.20: This python code prepares and trains the regression model

Figure 2.5.21: Code snippet for calculating and printing the performance metrics of the regres-
sion model.
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The histograms and scatter plots were generated using visualization tools such as mat-
plotlib and seaborn (Figure 2.5.22). These plots were utilized to compare the predicted
and real masses, detect any biases, and evaluate the precision of the model. The visualiza-
tions play a vital role in comprehending the model’s efficacy in estimating mass and will
be thoroughly examined in the results section.

Figure 2.5.22: Python code snippets used for generating histograms and scatter plots to
visualize the comparison between predicted and actual Z’ particle masses.

The training method included re-scaling and standardizing numerical characteristics,
along with parameter tuning, to enhance the predictive precision for Z’ particle masses
using collision event data. The "load_data_for_regression" function, as depicted in Figure
2.5.23, was developed to prepare data for a regressionmodel that predicts particle masses.
This function processes data from a specified file and path, incorporating particle mass
from the filename if the "include_mass" parameter is set to true. It calculates the momen-
tum components px, py, and pz for jets and leptons based on energy and pseudorapidity
values. Additionally, it computes three features derived from the energy and momentum,
crucial for the mass estimation of Z’ particles. The processed dataset is then returned,
ready for model training.
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Figure 2.5.23: Code snippet illustrating the methodology used to prepare data for the regression
model.
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The formulas set to calculate the features directly within the "load_data_for_regression"
function aimed to enhance the performance of the regression model on both training
and unseen data, facilitating a more accurate estimation of the Z’ particle’s mass. This
enhancement was achieved by calculating the invariant mass of the decay products and
utilizing the derived variables.

The specific formulas used in these calculations are as follows:
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(
6∑
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Ejeti

)2

−
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pxjeti

)2
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)2


Equation 4: Total squared energy minus the vector sum of squared momentum components for
six jets, capturing the invariant mass of the system.
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Equation 5: Summation of squared energies and vector components of momentum for four jets
plus one lepton, calculating the invariant mass to evaluate stability and interactions within the
system.
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−
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Equation 6: Energy and momentum squared differences for two jets and two leptons.

Xn cos(θ) = 2 ∗ arctan(e−Xn eta)

Equation 7: Relationship between the cosine of the emission angle and the pseudorapidity for
jets, which is crucial for correcting particle trajectory computations.

39



3 Results

This chapter showcases the results obtained fromdata exploration aswell as the implementation
of various machine learning models and techniques as outlined in Section 2.

3.1 Phase One - Classifier development with random forest

a) Data exploration
As outlined in Section 2, the research began with a full examination of the dataset, in-
cluding data inspection, feature histogram generation, and correlation heatmap analysis,
followed by the construction of three random forest classifiers. A total of 169 features,
notably from jets and leptons, were investigated with key features emphasized. Detailed
histograms of these features are included in the appendix 7.

Jets: The histograms in Figure 3.1.1 (i-iii) show the frequency distribution of selected jet
feature values in the dataset, with feature correlations detailed in Appendix 7. The x-axis
of these graphs is fully extended to encompass all data points, ensuring full data integrity
and analysis, even in less populated areas.

(i) Image (A) displays the "alljet_n" histogram, quantifying the jets per event, typically ranging from 0
to 3. Image (B) shows the energy (in gigaelectronvolt (GeV)) of the first jet, predominantly at the lower
end of the spectrum. Image (C) illustrates the "jet_1_MV1" histogram’s bimodal machine learning score
distribution.

(ii) Image (D) shows the "jet_1_SV0" histogram, indicating b-quark identification scores mostly near zero,
highlighting the efficacy of secondary vertices. Image (E) displays the "jet_1_eta" histogram, showing a
symmetric pseudorapidity distribution around zero, suggesting uniformity in jet production angles. η = 0
indicates directions orthogonal to the beam axis. Image (F) illustrates the "jet_1_jvf" histogram, with a
notable increase in frequency as the value approaches 1.0, suggesting many jets are closely associated
with the primary vertex, indicating a strong correlation with the primary interaction point.
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(iii) Image (G) presents the "jet_1_m" histogram, showing the first jet’s mass with a right-skewed
distribution, indicating predominantly lower masses. Image (H) displays the "jet_1_phi" histogram,
illustrating a uniform distribution of the azimuthal angle, showing no preferential direction for jet emissions.
Image (I) depicts the "jet_1_pt" histogram, highlighting a right-skewed transverse momentum distribution,
with most jets having lower momentum.

Figure 3.1.1: Histogram for jet features.

Leptons: Similarly, Figure 3.1.2 (i-iii) shows the frequency distribution of selected lepton
features. Correlations within these features can be seen in Appendix 7.

(i) Image (A) illustrates the "lep_1_E" histogram, depicting a right-skewed energy distribution that pre-
dominantly features lower energy values (GeV) for the first lepton. Image (B) displays the "lep_1_charge"
histogram, showing discrete bars that represent the distinct charge states of leptons. Image (C) shows
the "lep_1_eta" histogram, symmetric around η = 0 with a central peak, indicating a predominance of
events with small pseudorapidity. Notable dips near -1.5, 0, and 1.5 may reflect detector effects or specific
experimental conditions.

(ii) Image (D) shows the "lep_1_etcone20" histogram, highlighting a sharp peak near zero and a
concentration at the lower end, suggesting this measures the isolation energy (in GeV) around the lepton.
Image (E) displays the "lep_1_flag" histogram, indicating specific lepton states. Image (F) illustrates the
"lep_1_phi" histogram with a uniform distribution, implying that the detection of the first lepton’s azimuthal
direction is consistent across all angles.
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(iii) Image (G) presents the right-skewed "lep_1_pt" histogram, showing that the transverse momentum
of the first lepton is typically lower. Image (H) displays the "lep_1_ptcone30" histogram with a sharp peak
near zero, suggesting it measures isolation. Image (I) features the "lep_1_trackd0pvunbiased" histogram,
with a prominent peak at zero, indicating the lepton’s trajectory closely passes the primary vertex.

Figure 3.1.2: Histogram for lepton features.

Missing values
No missing values were found in any of the features. Table 3.1.1 presents the occurrence
of missing values in selected features within the dataset.

Feature Missing Values

jet_1_eta 0
jet_1_pt 0
jet_2_eta 0
jet_2_pt 0
lep_1_eta 0
... ...

Table 3.1.1: Features showing no missing values or datatype inconsistencies.

Inspecting data imbalance
The data imbalance between the signal and background datasets, detailed in Table 3.1.2,
significantly challengesmodel training. Such imbalance typically biases classifiers toward
the majority class, here the background, leading to high accuracy but poor signal detec-
tion. This skew undermines the model’s utility in identifying rare events crucial for exper-
iments like the ATLAS. Addressing this imbalance is essential for ensuring the model’s
effectiveness and generalization.

Data Type Total Length

Total Background Data Length 22442556
Total Signal Data Length 163308

——————
Ratio 1:137

Table 3.1.2: Summary of Data Imbalance
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Feature selection
During the initial phases of model preparation, feature importance was evaluated to iden-
tify the most significant variables for model training, with the top 55% of these variables
illustrated in Figure 3.1.3 and a complete list available on Kaggle phase one [46]. A total of
169 features were considered, out of which 104 were selected based on the guidance of the
ATLASResearchGroup. This group advised excluding all weight and scale factor features
like ’eventWeight’, ’mcWeight’, etc., to avoid inflating the model’s performance artificially.
Features such as ’channelNumber’ and additional jets and leptons (jet 3-9, lep 3-5, and
their variants) were also removed (table 3.1.3) due to their potential to introduce bias or
because they provided limited value, focusing the model training on essential physical
properties of the data.

Figure 3.1.3: Bar graph of the top 26 (approx. 55%) most important features for the creation of
the classifier model.

Excluded features list
Following iterative refinement during the initial phase, Table 3.1.3 displays the final list of
excluded features.
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Feature Name

eventWeight * mcWeight * channelNumber *
runNumber * data_type * label *
eventNumber * jet_6_SV0 jet_7_SV0
jet_8_SV0 jet_9_SV0 jet_8_trueflav *
jet_9_trueflav * lep_4_E lep_4_charge
lep_4_eta lep_4_etcone20 lep_4_flag
lep_4_phi lep_4_pt lep_4_ptcone30
lep_4_trackd0pvunbiased lep_4_tracksigd0pvunbiased lep_4_type
lep_4_z0 lep_5_E lep_5_charge
lep_5_eta lep_5_etcone20 lep_5_flag
lep_5_phi lep_5_pt lep_5_ptcone30
lep_5_trackd0pvunbiased lep_5_tracksigd0pvunbiased lep_5_type
lep_5_z0 lep_trigMatched * jet_1_trueflav *
jet_1_truthMatched * jet_2_trueflav * jet_2_truthMatched *
jet_3_trueflav * jet_3_truthMatched * jet_4_trueflav *
jet_4_truthMatched * jet_5_trueflav * jet_5_truthMatched *
jet_6_trueflav * jet_6_truthMatched * jet_7_trueflav *
jet_7_truthMatched * jet_8_trueflav * jet_8_truthMatched *
jet_9_trueflav * jet_9_truthMatched * scaleFactor_BTAG *
scaleFactor_ELE * scaleFactor_JVFSF * scaleFactor_MUON *
scaleFactor_PILEUP * scaleFactor_TRIGGER * scaleFactor_ZVERTEX *

Table 3.1.3: Excluded Features from the Analysis for Model Training. Features marked with an
‘*‘ are classified as metadata.

b) Classifier development with random forest
i) Baseline

Figure 3.1.4: Confusion matrix created for the
baseline random forest classifier showing num-
ber of: true positives (37.95%), false positives
(0.04%), false negatives (62.05%) and true neg-
atives (99.96%).

Performance metrics
Metrics Performance

Accuracy 0.995
Precision 0.881

Recall 0.380
F1-Score 0.531

ROC 0.99

Table 3.1.4: Performance metrics for a random
forest classifier trained with an imbalance of
1:137.
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ii) Undersampling

Figure 3.1.5: Confusion matrix created for the
undersampled random forest classifier showing
number of: true positives (74.71%), false pos-
itives (0.92%), false negatives (25.29%) and
true negatives (99.08%).

Performance metrics
Metrics Performance

Accuracy 0.966
Precision 0.902

Recall 0.747
F1-Score 0.817

ROC 0.99

Table 3.1.5: Performance metrics for a random
forest classifier trained with an imbalance of
1:10.

iii) Oversampling

Figure 3.1.6: Confusion matrix created for the
oversampled random forest classifier showing
number of: true positives (100.00%), false posi-
tives (0.13%), false negatives (0.00%) and true
negatives (99.87).

Performance metrics
Metrics Performance

Accuracy 0.999
Precision 0.999

Recall 1.000
F1-Score 0.999

ROC 1

Table 3.1.6: Performance metrics for a random
forest classifier trained with an imbalance of
137:137.
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c) Random forest models comparison
To facilitate the comparison of the previously presented results, the metric scores for each
model are collectively outlined in Table 3.1.7. The ROC curve images for all models can
be seen in Appendix 7, Figures 7.F.15i–7.F.15iii

Model Validation Accuracy Precision Recall F1-Score ROC AUC

Baseline 0.9952 0.8812 0.3795 0.5306 0.99
Undersampled 0.9662 0.9019 0.7471 0.8173 0.99
Oversampled 0.9994 0.9988 1.0000 0.9994 1

Table 3.1.7: Summary of performance metrics for random forest models

The artificially high accuracy and ROC AUC score observed in the Baseline model (1:137
signal to background ratio) is primarily due the significant data imbalances. The Baseline
model’s predominance of background events leads it to excel at predicting the majority
class but fail to effectively identify the minority class, i.e., the signal, as indicated by the
low recall value of 37.95%.

In contrast, the Oversampled model, with its balanced dataset (137:137 ratio), shows per-
fect recall but is indicative of overfitting—where the model learns to recognize repeated
instances of signals rather than generalizing from actual patterns. The Undersampled
model, with a 1:10 signal to background ratio, demonstrates a more balanced approach,
achieving lower overall accuracy but higher recall and F1-score, indicating a better capa-
bility to identify signals without sacrificing precision.
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3.2 Phase two - Advancing with neural networks

a) Neural network models development
i) Baseline

Epoch Train Loss Valid Loss Accuracy Precision Recall F1 Score Time

0 0.018714 0.016228 0.995278 0.758498 0.495112 0.599136 02:00
1 0.013242 0.016609 0.995110 0.902187 0.352056 0.506473 01:48
2 0.013141 0.015764 0.995534 0.859361 0.446548 0.587707 02:00
3 0.014343 0.014362 0.995622 0.847401 0.470442 0.605008 02:06
4 0.013194 0.014599 0.995583 0.834197 0.474631 0.605024 01:52
5 0.013337 0.014607 0.995607 0.825823 0.486268 0.612109 02:01

Table 3.2.8: Epoch training results for the neural network model

(i) Training and validation loss plot
for the baseline neural network. Both
losses decrease and stabilize.

(ii) The loss minimizes near a learn-
ing rate of 10−3, suggesting a start-
ing point for finding the optimal learn-
ing.

Figure 3.2.7: Neural network analysis plots.

Figure 3.2.8: Confusion matrix created for the
baseline neural network classifier showing num-
ber of: true positives (48.63%), false positives
(0.01%), false negatives (51.37%) and true neg-
atives (99.99%).

Performance metrics
Metrics Performance

Accuracy 0.996
Precision 0.826

Recall 0.486
F1-Score 0.612

ROC 0.99

Table 3.2.9: Performance metrics for a neural
network classifier trained with an imbalance of
1:137.
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ii) Undersampling
The undersampled neural network model training utilized balanced datasets, align-
ing with methods described in Figure 2.4.16 in Section 2. The dataset was com-
posed of approximately 10x as much background entries vs signal entries (163.308
vs 1.455.606).

Epoch Train Loss Valid Loss Accuracy Precision Recall F1 Score Time

0 0.084790 0.077733 0.968470 0.882071 0.792006 0.834616 01:20
1 0.053226 0.049308 0.981103 0.914512 0.895603 0.904959 01:31
2 0.038326 0.037293 0.986108 0.930073 0.931760 0.930916 01:35
3 0.026410 0.029325 0.989462 0.945017 0.950392 0.947697 01:18
4 0.020494 0.025159 0.991042 0.953730 0.957264 0.955494 01:23
5 0.017916 0.024423 0.991386 0.958917 0.955173 0.957041 01:32

Table 3.2.10: Epoch Training Results for the undersampled neural network model

(i) Training and validation loss plot
for the undersampled neural network.
Both losses decrease and stabilize.

(ii) The loss minimizes near a learn-
ing rate of 10−3, suggesting a start-
ing point for finding the optimal learn-
ing rate for the model

Figure 3.2.9: Undersampled neural network analysis plots.

Figure 3.2.10: Confusion matrix created for the
undersampled neural network classifier show-
ing number of: true positives (95.52%), false
positives (0.46%), false negatives (4.48%) and
true negatives (99.54%).

Performance metrics
Metrics Performance

Accuracy 0.991
Precision 0.959

Recall 0.955
F1-Score 0.957

ROC 1

Table 3.2.11: Performance metrics for a neural
network classifier trained with an imbalance of
1:10.
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iii) Oversampling
The oversampled neural network model training utilized balanced datasets, aligning
with methods described in Section 2.

Epoch Train Loss Valid Loss Accuracy Precision Recall F1 Score Time

0 0.084790 0.077733 0.968470 0.882071 0.792006 0.834616 01:20
1 0.053226 0.049308 0.981103 0.914512 0.895603 0.904959 01:31
2 0.038326 0.037293 0.986108 0.930073 0.931760 0.930916 01:35
3 0.026410 0.029325 0.989462 0.945017 0.950392 0.947697 01:18
4 0.020494 0.025159 0.991042 0.953730 0.957264 0.955494 01:23
5 0.017916 0.024423 0.991386 0.958917 0.955173 0.957041 01:32

Table 3.2.12: Epoch training results for the oversampled neural network model

(i) Training and validation loss plot
for the oversampled neural network.
Both losses decrease and stabilize.

(ii) The loss minimizes near a learn-
ing rate of 10−3, suggesting a start-
ing point for finding the optimal learn-
ing rate for the model.

Figure 3.2.11: Oversampled neural network analysis plots.

Figure 3.2.12: Confusion matrix created for the
oversampled neural network classifier showing
number of: true positives (100.00%), false posi-
tives (0.36%), false negatives (0.00%) and true
negatives (99.64%).

Performance metrics
Metrics Performance

Accuracy 0.998
Precision 0.996

Recall 1.000
F1-Score 0.998

ROC 1

Table 3.2.13: Performance metrics for a neural
network classifier trained with an imbalance of
137:137.
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b) Neural network models comparison
To facilitate the comparison of the previously presented results, they are collectively out-
lined in Table 3.2.14. The ROC curve images for all models can be seen in Appendix 7,
Figures 7.F.16i–7.F.16iii

Model Validation Accuracy Precision Recall F1-Score ROC AUC

Baseline 0.9956 0.8565 0.4661 0.6037 0.99
Undersampled 0.9922 0.9579 0.9648 0.9613 1
Oversampled 0.9982 0.9964 1.0000 0.9982 1

Table 3.2.14: Summary of performance metrics for neural network models

Similar to the random forest models, the artificially high accuracy observed in the neural
network models can be attributed to the imbalance between signal and background data.
This effect is less pronounced in the undersampled neural network, which, despite its
high accuracy, demonstrates a more balanced performance with superior recall and F1-
score. This model, with a signal to background ratio of 1:10, exhibits the best overall
performance metrics, reflecting its effectiveness in balancing precision and recall, thus
better generalizing across different data scenarios.

3.3 Phase three - Classifier evaluation and regression model development

As outlined in Section 2, the most effective neural network, which incorporated undersampling
techniques, was selected to classify signal events across various Z’ mass hypotheses. Subse-
quently, a regression model was developed to estimate the mass of the Z’ particles.

a) Classifying signal events for different Z’ mass hypotheses
The classifier’s performance was assessed using an initial dataset imbalance ratio of 1:137,
as described in Section 2.1. The quantities of the dataset utilized for this method are listed
in Table 3.3.15. The total number of signal samples reported, 163308, is the combined
count from all seven signal files. Each of these files, including around 23330 samples, was
assessed against the complete background dataset, comprising 3206085 samples, in order
to maintain the original imbalance ratio of the data.

Data Type Quantity

Total Signal Files 7
Total Background Files 20
Total Signal Samples 163308
Total Background Samples 3206085

Table 3.3.15: Dataset quantities for classifier evaluation across mass ranges

Confusion matrices and performance metrics
Figures 3.3.13 to 3.3.19 show the confusion matrices across the mass range, and Figures
3.3.16 to 3.3.22 show the performance metrics.
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Figure 3.3.13: The confusion matrix for 500
GeV signals classified shows true positives
(83.04%), false positives (0.02%), false neg-
atives (16.96%), and true negatives (99.98%).

Performance metrics
Metrics Performance

Accuracy 0.998
Precision 0.965

Recall 0.830
F1-Score 0.893

Significance 1.775
ROC Score 0.999

Optimal Cutoff* 0.9900

Table 3.3.16: Performance metrics for 500 GeV signals
classified by the best neural network classifier.
*Optimal Cutoff value used to calculate the significance
score.

Figure 3.3.14: The confusion matrix for 750
GeV signals classified shows true positives
(59.65%), false positives (0.02%), false neg-
atives (40.35%), and true negatives (99.98%).

Performance metrics
Metrics Performance

Accuracy 0.997
Precision 0.955

Recall 0.596
F1-Score 0.734

Significance 1.360
ROC Score 0.999

Optimal Cutoff* 0.9899

Table 3.3.17: Performance metrics for 750 GeV sig-
nals classified by the best neural network classifier.
*Optimal Cutoff value used to calculate the significance
score.

Figure 3.3.15: The confusion matrix for 1000
GeV signals classified shows true positives
(58.65%), false positives (0.02%), false neg-
atives (41.35%), and true negatives (99.98%).

Performance metrics
Metrics Performance

Accuracy 0.996
Precision 0.955

Recall 0.586
F1-Score 0.727

Significance 1.417
ROC Score 0.999

Optimal Cutoff* 0.9899

Table 3.3.18: Performance metrics for 1000 GeV sig-
nals classified by the best neural network classifier.
*Optimal Cutoff value used to calculate the significance
score. 51



Figure 3.3.16: The confusion matrix for 1500
GeV signals classified shows true positives
(65.23%), false positives (0.02%), false neg-
atives (34.77%), and true negatives (99.98%).

Performance metrics
Metrics Performance

Accuracy 0.997
Precision 0.957

Recall 0.652
F1-Score 0.776

Significance 1.458
ROC Score 0.999

Optimal Cutoff* 0.9899

Table 3.3.19: Performance metrics for 1500 GeV sig-
nals classified by the best neural network classifier.
*Optimal Cutoff value used to calculate the significance
score.

Figure 3.3.17: The confusion matrix for 1750
GeV signals classified shows true positives
(69.79%), false positives (0.02%), false neg-
atives (30.21%), and true negatives (99.98%).

Performance metrics
Metrics Performance

Accuracy 0.998
Precision 0.958

Recall 0.698
F1-Score 0.808

Significance 1.528
ROC Score 0.999

Optimal Cutoff* 0.9899

Table 3.3.20: Performance metrics for 1750 GeV sig-
nals classified by the best neural network classifier.
*Optimal Cutoff value used to calculate the significance
score.

Figure 3.3.18: The confusion matrix for 2000
GeV signals classified shows true positives
(73.31%), false positives (0.02%), false neg-
atives (26.69%), and true negatives (99.98%).

Performance metrics
Metrics Performance

Accuracy 0.998
Precision 0.958

Recall 0.733
F1-Score 0.831

Significance 1.546
ROC Score 0.999

Optimal Cutoff* 0.9899

Table 3.3.21: Performance metrics for 2000 GeV sig-
nals classified by the best neural network classifier.
*Optimal Cutoff value used to calculate the significance
score.
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Figure 3.3.19: The confusion matrix for 2500
GeV signals classified shows true positives
(75.10%), false positives (0.02%), false neg-
atives (24.90%), and true negatives (99.98).

Performance metrics
Metrics Performance

Accuracy 0.998
Precision 0.956

Recall 0.751
F1-Score 0.841

Significance 1.507
ROC Score 0.999

Optimal Cutoff* 0.9899

Table 3.3.22: Performance metrics for 2500 GeV sig-
nals classified by the best neural network classifier.
*Optimal Cutoff value used to calculate the significance
score.

Z’ Mass (GeV) Accuracy Precision Recall F1-Score ROC Score Significance Optimal Cutoff

500 0.9986 0.9650 0.8304 0.8926 0.9998 1.7751 0.9900
750 0.9967 0.9550 0.5965 0.7343 0.9994 1.3605 0.9899

1000 0.9965 0.9551 0.5865 0.7268 0.9993 1.4171 0.9899
1500 0.9972 0.9573 0.6523 0.7759 0.9992 1.4579 0.9899
1750 0.9976 0.9582 0.6979 0.8076 0.9992 1.5283 0.9899
2000 0.9980 0.9582 0.7331 0.8306 0.9992 1.5462 0.9899
2500 0.9982 0.9560 0.7510 0.8412 0.9990 1.5068 0.9899

Table 3.3.23: This table summarizes the performance metrics: accuracy, precision, recall,
F1-score, ROC score, significance, and optimal cutoff values for Z’ masses ranging from 500
GeV to 2500 GeV.

(i) Significance versus Z’ Particle Mass.
(ii) Performance Metrics versus Z’ Particle Mass.

Figure 3.3.20: Summary for significance and performance metrics for the classification of the Z’
particle with mass ranging from 500-2500 GeV.
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b) Regression model - mass estimation
The regressionmodel’s training over fifty epochs is summarized in Table 3.3.24. The learn-
ing rate was set at 1 × 10−2, and epochs 0, 9, 19, 29, 39, and 49 showcase the model’s de-
velopment. The RMSE’s standard deviation across these epochs is 441.88, reflecting early
learning and subsequent stabilization.

Figure 3.3.21: Results after training with a
learning rate of 10−2. The valley indicates a
starting point for finding the optimal learning
rate for the model.

Epoch Train Loss Valid Loss RMSE Time

0 2350989.00 2329793.50 1526.37 00:03

9 7301.82 1095.69 33.10 00:04

19 811.43 290.64 17.05 00:03

29 737.59 196.13 14.00 00:04

39 569.11 73.29 8.56 00:05

49 563.09 42.12 6.49 00:04

Table 3.3.24: Selected epoch training results for
the regression model, indicating the train and
validation losses, RMSE, and time per epoch.
Early epochs show higher RMSE values which
decrease as training progresses.

Metric Value

Mean Squared Error (MSE) 42.1217
Root Mean Squared Error (RMSE) 6.4901
Mean Absolute Error (MAE) 2.2942
R-squared 0.9998

Table 3.3.25: Regression Model Performance Metrics for the model training.

Histograms of mass estimations and mass parameters on signal files
Figures 3.3.22i and 3.3.22ii present the distributions of estimatedmasses and actualmass param-
eters used in the study, respectively. The histograms facilitate a side-by-side visual comparison,
serving as an assessment of the model’s estimation accuracy against the actual mass values.
Given that the regression model was trained exclusively on signal data, it was accordingly first
tested on signal fileswithmass parameters set at 500GeV, 750GeV, 1000GeV, 1500GeV, 1750GeV,
2000 GeV, and 2500 GeV. This approach ensured that the model’s performance was evaluated
on the same type of data on which it was trained.
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(i) Histogram of mass estimations from the regres-
sion model.

(ii) Histogram of actual mass parameters for the
dataset.

Figure 3.3.22: Comparative histograms of mass estimations and mass parameters.

Initial assessment of model accuracy
The scatter plot presented in Figure 3.3.23 offers an initial overview of the model’s prediction
accuracy by comparing estimated masses against actual masses. Points that lie close to the diag-
onal line, which represents perfect predictions, indicate where the model performs well. This
plot serves as a baseline assessment, helping to identify general trends in prediction accuracy.

Figure 3.3.23: Scatter plot of actual versus estimated masses, where each point represents a
test case with the x-coordinate indicating the actual mass (GeV) and the y -coordinate showing
the estimated mass by the model. Points close to the diagonal line, which depicts perfect
estimations, demonstrate high accuracy, while deviations from this line highlight areas needing
improvement. For example, for an actual mass of 750 GeV, some estimations are misclassified
around approximately 1400 GeV.
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Figures 3.3.24i and 3.3.24ii show the model’s estimations of masses for unseen data (1250 GeV
and 2250 GeV) before and after training the model with the new features.

(i) Initial estimation of masses on unseen data
before feature updates. (From Kaggle version 43
[48])

(ii) Comparison on how well the model estimated
masses on unseen data after feature updates.
(From Kaggle version 46 [48])

Figure 3.3.24: Comparative histograms showing the model’s estimations of masses on unseen
data before and after feature updates. These plots shows the significant improvement in model
accuracy following the incorporation of new features calculating the invariant mass from jet
decay.

By integrating invariant mass calculations directly into the feature set, the regression model
gains a refined understanding of the underlying physical phenomena, resulting in more precise
mass estimations. This is particularly evident in the clear differentiation of the two mass sig-
nals in the updated model’s predictions, showing the potential of tailored feature selection in
improving the outcomes of machine learning applications in particle physics. The comparison
of the models performance is shown in Table 3.3.26

Metric Before After Improvement (%)

Mean Squared Error (MSE) 288897.9169 90919.6797 68.5%
Root Mean Squared Error (RMSE) 537.4922 301.5289 43.9%
Mean Absolute Error (MAE) 446.0714 269.0298 39.8%
R-squared -0.1639 0.6337 -

Table 3.3.26: Regression Model Performance Metrics specifically for the unseen data (1250
GeV and 2250 GeV) before and after adding invariant mass calculated features. (From Kaggle
version 43 vs 46 [48])

Estimated masses for all classified signal samples
To filter out signal from background events for mass estimation, the classifier was applied to
all the data, including the new unseen datasets, resulting in an imbalance ratio of 1:107. Figure
3.3.25 presents the model’s estimated mass distribution for all the files classified as signal
(including misclassified background).
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(i) Estimated Masses for all Classified Signals (ii) Comparison of Estimated vs Actual Masses for
all Classified Signals

Figure 3.3.25: Distributions and comparisons of estimated masses post-classification.

In Figure 3.3.26, the scatter plot contrasts actual and estimated masses for classified true posi-
tives. Each point, aligned with a theoretical ideal line representing perfect matches, provides
insight into the model’s estimation accuracy. Notably, the points for 1250 GeV and 2250 GeV,
which represent new unseen data, deviate from this ideal line, revealing a reduced performance
in these regions. Particularly for the 1250 GeV estimations, subtle variations in color intensity
suggest a higher concentration of points around 750 GeV to 900 GeV, indicating that the cluster
is centered lower than it might initially appear.

Figure 3.3.26: This scatter plot compares actual and estimated masses for true positives. The
color intensity varies, indicating density levels of estimations. Estimations for 1250 GeV seem to
center around 750 to 900 GeV, while those for 2250 GeV have a large number of estimations
clustered around 2500 GeV. These patterns align with observations from previous analyses (see
Figures 3.3.24ii and 3.3.25).
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Classification performance on all data
The confusionmatrix (Figure 3.3.27) shows the classification performance of the undersampled
neural network model on all data, including the new unseen signal data. Performance metrics
are listed alongside.

Figure 3.3.27: Confusion matrix of the
model showing percentages of true positives
(92.52%), false positives (0.47%), false neg-
atives (7.48%), and true negatives (99.53%).

Metric Performance

Accuracy 0.9910
Precision 0.9280

Recall 0.9252
F1 Score 0.9266

ROC Score 0.997

Table 3.3.27: Performance met-
rics of the neural network classi-
fier, with an imbalance of 1:107.

Figure 3.3.28 shows the model’s predicted confidence, showing a clear distinction between sig-
nal and background events. Most background events cluster at lower confidences, and signal
events skew towards higher values, affirming the model’s discriminative power.

Figure 3.3.28: Histogram showing the distribution of confidence for signal and background
classes. The histogram is plotted with a logarithmic scale on the y-axis to account for the
disparity in class sizes.
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4 Discussion

In this study, advanced machine learning methods were employed to investigate the identifi-
cation and measurement of the hypothetical Z’ particle using simulated data from the ATLAS
experiment at the LHC. The models developed in this study highlighted significant insights
and implications regarding the robustness and limitations of machine learning in high-energy
physics, especially in handling imbalanced datasets and predicting rare event signals.

a) Data exploration
The initial analysis of the Monte Carlo datasets from the ATLAS experiment involved
detailed statistical evaluations and visualizations, including histograms and correlation
heatmaps for jet and lepton features. Key findings included skewed distributions and,
more importantly, differences in scale between features, which necessitated normalization
to enhance model training. The feature importance analysis, significantly influenced by
insights from the ATLAS Research Group, uncovered several key variables that impacted
the model performance. For instance, features like "met_et", "jet_1_m", "jet_1_pt", and
"lep_1_pt" were identified as the most influential variables in optimizing the classifier’s
performance, with their respective feature-importance scores ranging between approxi-
mately 4% and 7%.

Moreover, the comprehensive preparation of the datasets was evident as they exhibited
no missing values and displayed a high level of compatibility, facilitating seamless
integration and manipulation during the analysis. This level of data integrity not only
simplified the preprocessing steps but also enhanced the robustness of the subsequent
machine learning models. During this phase, we focused on studying metadata like
"eventWeight" and "mcWeight" to understand their implications for later phases, partic-
ularly in significance calculations. However, it was determined that scale factors such
as "scaleFactor_BTAG", "scaleFactor_ELE", and "scaleFactor_MUON", while crucial for
aligning simulations with experimental conditions, were excluded from the training
process to prevent model overfitting and ensure that the training focused solely on
inherent data characteristics.

b) Classification
Our classifier models initially exhibited artificially high accuracy due to severe data
imbalance. To address this, we employed various sampling techniques. The initial use of
oversampling techniques effectively equalized class distribution but led to overtraining, as
evident from the perfect recall scores in the oversampled models. These models, though
initially promising due to their high performance metrics, were ultimately disregarded
because they had become overtrained on too many repetitive duplicates of signal data.
On the other hand, the undersampling technique proved superior; it employed a signal-to-
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background sample ratio of 1:10, which significantly enhanced the models’ generalization
capabilities, striking a better balance between precision and recall, as detailed in Section 3.

The baseline models (with a traditional approach of not adjusting the class imbalance)
showed a high overall accuracy but significantly lower recall rates, indicating a tendency
to favor the majority class excessively. This was further evidenced by the performance
metrics of the baseline random forest model, which had a recall of only 37.95%, signifying
poor identification of the minority class. Conversely, the undersampled model displayed
a much higher recall of 74.71%, reflecting an improved ability to identify both classes
equally well without sacrificing precision, which remained commendably high at 90.2%.
The undersampled model not only demonstrates high accuracy but also maintains high
levels of other critical metrics like F1-Score and ROC, indicating robustness against
varying data scenarios.

This balanced approach in the undersampling method underscores the importance
of precision in handling data imbalances, facilitating models that are more reflective
of the real-world distributions they are meant to interpret. Additionally, the neural
network models, particularly the undersampled neural network, exhibited even more
promising results. The undersampled neural network achieved a precision of 95.79%, a
recall of 96.48%, and an F1-score of 96.13%, outperforming the random forest models
and demonstrating enhanced capability in handling imbalances and maintaining high
performance across various metrics.

c) Classification for different Z’ mass hypotheses
The performance of the undersampled neural network model, when employed to classify
signal datasets over a mass range from 500 GeV to 2500 GeV for the Z’ particle, led to the
following observations:

The recall metric demonstrated a non-linear response; it initially peaked at 500 GeV
with a recall of 0.8304, then declined through 1000 GeV before progressively increasing
up to 2500 GeV. This pattern suggests that while the model faced difficulties in differ-
entiating signal from background at intermediate masses, it adjusted better at higher
masses. Furthermore, the observed significance, starting at a high of 1.7751 at 500 GeV,
indicated intriguing findings but did not meet the gold standard of 5σ. The significance
then dropped at 750 GeV before gradually increasing, mirroring the recall’s trend and
suggesting an enhanced model confidence with higher masses, though still not achieving
definitive discovery.

Additionally, the optimal cutoff values utilized for determining significance were con-
sistent across the different mass settings, ranging closely around 0.99. This uniform
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approach in setting cutoff values might have influenced the results, particularly in the
context of significance, where despite a similar number of true positives before weighting,
the significance should theoretically decrease with increasing mass. This expectation
stems from the principle that with a growing mass, the challenge in distinguishing
between increasingly rare signal events and background noise should intensify, theoreti-
cally diminishing the significance unless the model’s sensitivity markedly improves. The
consistency in significance levels across various masses, therefore, raises questions about
the cutoff strategy’s impact on the measured outcomes, suggesting that adjustments or a
more dynamic approach to setting these thresholds might provide a clearer understand-
ing of the model’s performance across the studied mass spectrum.

d) Mass estimation
The regression model developed to estimate the Z’ particle’s mass demonstrated variable
performance across the mass spectrum. Initially, it performed exceptionally well on
familiar mass values from the training set, such as 500 GeV, 750 GeV, etc. The inclusion of
invariant mass calculations in the new variables significantly improved the model’s accu-
racy, especially on the new unseen data, as evidenced by a dramatic 44% reduction in Root
Mean Squared Error and a substantial increase in R-squared value from -16.39% to 63.37%.

Building on these initial evaluations, the regression model was then applied to all files
classified as signals by the undersampled neural network model, including misclassified
background files. In this broader application for mass estimation, the model yielded a
Mean Squared Error (MSE) of 8480, a Root Mean Squared Error (RMSE) of 92.1, a Mean
Absolute Error (MAE) of 41.3, and an R-squared of 0.979. Although thesemetrics indicate
a slight performance degradation compared to the initial training phase, they still affirm
the model’s high accuracy in practical testing scenarios. This phase of analysis highlights
the effectiveness of the neural network in classifying signal files and underscores the
regression model’s capability to reliably estimate mass from the data classified as signals.

That being said, Figure 3.3.25i illustrates a clear distinction between the mass estimations
from trained data and those from new, unseen data. The discrepancies observed on un-
seen data, with predictions for the new mass points (1250 GeV and 2250 GeV) being no-
tablymore spread, underscore the challenges and the necessity for continuous refinement
of both the feature set and model parameters.
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Future directions and enhancements
This paper follows a framework established by the Atlas research group with focus on utilizing
machine learning techniques to analyze particle collision data. Grefsrud et al. (2024) applied
advancedmodels like XGBoost and ResNet for image classification, converting complex particle
interactions into image data for improved detection at the LHC [9].

On the other hand, our research diverges significantly by leveraging simulated tabular data de-
rived from theATLAS detector. Rather than converting complex particle interactions into image
data, we analyze structured, high-dimensional tabular data that includes a variety of physical
measurements such as energy levels, momenta, and other particle identifiers. This approach
allows for a more direct interpretation of the raw numerical data, facilitating detailed statistical
analysis and feature selection that are not typically focused on in image-based analysis. By
focusing on new particle physics phenomena through the novel use of deep learning, we be-
lieve our approach, however humble, makes a valuable contribution to the progress of this field.

It is important to acknowledge that this investigation encountered several limitations. Inter-
preting high-energy particle physics data was challenging without specialized knowledge in
the field. Furthermore, the selection of machine learning algorithms might have been biased,
which could distort the results. Moreover, the significant imbalance within the dataset added
complexity to the training and evaluation processes of the modela. While methods such as
oversampling were employed, they led to overtraining, evident from the perfect recall scores
in oversampled models. This indicates that models likely memorized the signal characteristics
rather than learning to generalize, a limitation that could potentially be mitigated by employing
more sophisticated techniques like Synthetic Minority Over-sampling Technique (SMOTE)
[49]. Further testing and development of our undersampling technique could also enhance
the model’s performance. Alternatively, techniques such as weighted loss functions, the focal
loss function, and balanced random forests could further enhance the robustness and fairness
of the model training process, as detailed in the study on class imbalance techniques for high
energy physics by Christopher W. Murphy [50].

Additionally, the scalability of our approaches was limited by the large sizes of the datasets
and the high processing needs. Assessing the benefits of ensemble methods, such as XGBoost
[51]—a highly efficient implementation of Gradient Boosting, might prove useful in enhancing
the performance of the classifiers. These methods have shown promise in improving model
robustness and generalization capabilities in several fields. Incorporating physics-based
constraints on the models, such as conservation laws and symmetry properties, may improve
accuracy and reliability on both classifier and regression models.

Furthermore, exploring new features based on domain knowledge of particle physics, like de-
rived variables that may capture underlying physical processes better than raw measurements,
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could enhance both classification and regression model performance, as our regression model
demonstrated. Finally, more testing can be done on the benefits of using a transfer learning
approach, potentially accelerating the model’s training time and improving its performance,
especially when dealing with limited labeled data or complex feature spaces [52].
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5 Conclusion

Our research utilized advanced machine learning techniques to enhance the detection of the Z’
particle and estimate its parameters using simulated data from theATLAS experiment. The clas-
sifiers, while initially showing high accuracy due to data imbalance, were effectively optimized
through techniques like undersampling, which improved their ability to generalize across differ-
ent scenarios. Despite the artificial inflation of accuracy, the classifiers performed commendably
across othermetrics, establishing their efficacy in high-energy particle physics applications. The
regressionmodel, tailored formass estimation, excelledwith training data but encountered chal-
lenges with new, unseen data points. The subsequent integration of features based on invariant
mass calculations markedly improved performance, showcasing the model’s adaptability and
the potential for further refinement. As we look forward, it becomes apparent that further ad-
vancements could be achieved by exploring ensemble methods and integrating physics-based
constraints to enhance the robustness and accuracy of the models. Collaborative efforts and
further research are essential to overcome existing limitations and fully harness the potential of
machine learning in this complex domain.
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7 Appendix

A Gantt Chart

Figure 7.A.1: Gantt chart illustrating the scheduled tasks and their durations as planned for the
project.

B Risk assessment

Figure 7.B.2: Overview of key project risks and mitigation strategies.
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C Jet and Lep feature histograms

Figure 7.C.3: Feature histograms

Figure 7.C.4: Feature histograms
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Figure 7.C.5: Feature histograms

Figure 7.C.6: Feature histograms

Figure 7.C.7: Feature histograms
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Figure 7.C.8: Feature histograms

Figure 7.C.9: Feature histograms

Figure 7.C.10: Feature histograms
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Figure 7.C.11: Feature histograms

D Complete training and validation with 50 epochs for the regression model

Table 7.4.1: Complete Training and Validation with 50 Epochs for the Regression Model

Epoch Train Loss Valid Loss RMSE MSE MAE R2 Score Time

0 2350989.000 2329793.500 1526.37 2329793.500 1387.73 -4.5314 00:03

1 2326283.250 2292158.250 1513.99 2292158.250 1383.94 -4.4421 00:04

2 2266187.750 2205153.250 1484.98 2205153.250 1370.77 -4.2355 00:03

3 2123028.000 1981692.250 1407.73 1981692.250 1323.32 -3.7049 00:03

4 1801505.750 1570904.000 1253.36 1570904.000 1218.38 -2.7296 00:03

5 1296204.375 1011602.375 1005.78 1011602.375 1002.64 -1.4018 00:03

6 720953.812 406873.781 637.87 406873.781 636.10 0.0340 00:03

7 235471.594 53064.793 230.36 53064.793 222.94 0.8740 00:03

8 42175.813 1665.836 40.81 1665.836 31.59 0.9960 00:03

9 7301.821 1095.694 33.10 1095.694 23.87 0.9974 00:04

10 2278.098 1448.708 38.06 1448.708 26.95 0.9966 00:03

11 1489.174 486.911 22.07 486.911 15.62 0.9988 00:03

12 1202.062 696.083 26.38 696.083 18.50 0.9983 00:03

13 1184.137 529.725 23.02 529.725 16.42 0.9987 00:03

14 1186.375 530.868 23.04 530.868 15.82 0.9987 00:03

15 1075.815 946.685 30.77 946.685 23.12 0.9978 00:03

16 1238.171 1014.205 31.85 1014.205 24.35 0.9976 00:03

17 840.954 311.035 17.64 311.035 11.89 0.9993 00:04

18 843.714 519.926 22.80 519.926 15.69 0.9988 00:03

19 811.432 290.643 17.05 290.643 12.73 0.9993 00:03

20 840.657 327.261 18.09 327.261 12.41 0.9992 00:03
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Table 7.4.1 continued from previous page

Epoch Train Loss Valid Loss RMSE MSE MAE R2 Score Time

21 1119.188 243.160 15.59 243.160 9.93 0.9994 00:03

22 868.210 322.330 17.95 322.330 12.76 0.9992 00:04

23 778.519 379.718 19.49 379.718 14.82 0.9991 00:03

24 778.582 444.723 21.09 444.723 14.35 0.9989 00:03

25 879.049 275.875 16.61 275.875 11.47 0.9993 00:04

26 618.338 216.696 14.72 216.696 11.03 0.9995 00:03

27 890.185 264.560 16.27 264.560 10.72 0.9994 00:04

28 814.186 274.843 16.58 274.843 12.96 0.9993 00:03

29 737.586 196.125 14.00 196.125 8.97 0.9995 00:04

30 666.618 175.555 13.25 175.555 9.83 0.9996 00:03

31 718.041 225.475 15.02 225.475 11.07 0.9995 00:03

32 606.718 140.033 11.83 140.033 8.02 0.9997 00:04

33 540.264 90.059 9.49 90.059 5.64 0.9998 00:05

34 670.219 89.842 9.48 89.842 5.58 0.9998 00:05

35 518.222 99.042 9.95 99.042 5.90 0.9998 00:04

36 667.512 144.818 12.03 144.818 7.77 0.9997 00:04

37 575.715 120.792 10.99 120.792 7.20 0.9997 00:05

38 606.067 64.216 8.01 64.216 3.75 0.9998 00:05

39 569.112 73.287 8.56 73.287 4.48 0.9998 00:05

40 527.358 48.506 6.96 48.506 2.76 0.9999 00:05

41 459.714 56.229 7.50 56.229 3.49 0.9999 00:04

42 451.556 93.122 9.65 93.122 6.81 0.9998 00:04

43 494.874 54.064 7.35 54.064 3.71 0.9999 00:04

44 449.734 70.747 8.41 70.747 4.84 0.9998 00:04

45 486.534 45.304 6.73 45.304 2.49 0.9999 00:04

46 429.109 57.048 7.55 57.048 3.84 0.9999 00:05

47 437.374 54.326 7.37 54.326 3.65 0.9999 00:04

48 482.992 46.684 6.83 46.684 2.49 0.9999 00:05

49 563.088 42.122 6.49 42.122 2.29 0.9999 00:04
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E Correlation heatmaps for features

Correlation Heatmaps for Jets

Figure 7.E.12: Heatmap illustrating the correlation between various jet features in the dataset.
The white spaces are feeatures that offer no variability. These are removed before training.
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Correlation Heatmaps for Leptons

Figure 7.E.13: Heatmap illustrating the correlation between various lepton features in the
dataset.
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Correlation Heatmap for Specific Jet Features

Figure 7.E.14: The heatmap is entirely white, indicating that all these features show no variability.
The features involved are: jet_6_SV0, jet_7_SV0, jet_8_SV0, jet_9_SV0, jet_8_trueflaw, and
jet_9_trueflaw. These are all excluded during feature selection.
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F ROC Curves

(i) ROC curve for the baseline random forest
model.

(ii) ROC curve for the oversampled random forest
model.

(iii) ROC curve for the undersampled random for-
est model.

Figure 7.F.15: ROC curves for various random forest models.
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(i) ROC curve for the baseline neural network
model.

(ii) ROC curve for the undersampled neural net-
work model.

(iii) ROC curve for the oversampled neural network
model.

Figure 7.F.16: ROC curves for various neural network models.

G Prosjekthåndbok

Prosjekthåndbok is uploaded as a single pdf file together with this document.
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