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ABSTRACT

Plugging caused by adhesive particles remains an important problem in multiphase
fluid dynamics for decades and needs extensive theoretical research. This work aims
to investigate this problem using a coupled Computational Fluid Dynamics-Discrete
Element Method (CFD-DEM) approach, which allows for detailed tracking of particles
and their interactions. The study is methodically divided into four main stages, each
corresponding to a research paper.

The initial phase introduces the application of CFD-DEM to simulate the hydraulic
transportation of non-cohesive glass beads in a pipe. The simulations were conducted
after experimental data using the commercial software Star-CCM+. This step is essential
to evaluate how well the model predicts changes in the flow regime and validate these
predictions against experimental results.

The primary goal of this research is to simulate plug formation in a multiphase flow
with sticky ice particles. Before progressing to this complex stage, the study’s second
phase focuses on the cohesive collisions of individual particles. For this purpose,
sticky ice particles immersed in a subcooled oil phase are simulated. New data on
the collisional dissipation of energy and the ice particle coefficient of restitution were
obtained using three methods for velocity measurement: high-speed experimental
video recording, Positron Emission Particle Tracking (PEPT), and numerical simulations.
The cohesive collision process was simulated by considering particle cohesion, size,
and shape, providing information on the mechanical properties of particles for the
following research steps.

The third stage holds key importance, applying the CFD-DEM model to simulate
plugging in a slurry of ice in decane, using the foundational information gained from
the previous stages. This part of the research includes a detailed parametric evaluation,
focusing on the changes in the flow system’s characteristics, particularly the Reynolds
number, particle concentration, and surface energy. This section also compares the
simulation results with flow maps based on experiments.

Finally, the fourth stage presents the application of a machine learning classifier to
predict blockages at a given flow regime, indicating a relatively new and developing
approach in this field. A random forest classifier was applied using both experimental
and simulation data. Experimental data were obtained from a lab-scale flow loop with
ice slurry in decane, and the simulations are based on the CFD-DEM method. The
results of this research include a flow regime map with blockage formation boundaries
and its changes with variations in cohesion.

This thesis contributes not only to a better understanding of plugging in multiphase
flow with sticky particles but also offers practical insights through a CFD-DEM
approach. Additionally, it demonstrates the potential of advanced predictive models
based on machine learning.





SAMMENDRAG

Proppdannelse forårsaket av kohesive partikler er forblitt et viktig problem i fler-
fasefluidmekanikk i flere tiår og trenger omfattende teoretisk undersøkelse. Denne
avhandlingen har som mål å undersøke proppdannelsen ved hjelp av en kombinert
Computational Fluid Dynamics-Discrete Element Method (CFD-DEM), som tillater
detaljert sporing av partikler og deres interaksjoner. Avhandlingen er metodisk delt
inn i fire hoveddeler, hver tilsvarende en forskningsartikkel.

Den innledende delen introduserer utvikling og bruk av CFD-DEM for å simulere
hydraulisk transport av ikke-kohesive glasskuler i et rør. Simuleringene ble utført
basert på eksperimentelle data ved hjelp av den kommersielle programvaren Star-
CCM+. Dette forsøket er viktig for å vurdere hvor godt modellen forutsier endringer i
strømningsregimet og validere disse prediksjoner med eksperimentelle resultater.

Det primære målet med dette doktorgradsprosjektet er å simulere proppdannelsen
i en flerfase strømning med kohesive ispartikler. Før man kommer til denne komplekse
oppgaven, fokuserer forsøket videre på kollisjoner av individuelle partikler. For dette
formålet simuleres kohesive ispartikler nedsenket i en nedkjølt olje. Nye data om
kollisjonell dissipasjon av energi og ispartikkelens restitusjonskoeffisient ble oppnådd
ved hjelp av tre metoder: høyhastighets videoopptak, Positron Emission Particle
Tracking (PEPT), og CFD-DEM simuleringer. Den kohesive kollisjonsprosessen ble
simulert ved å vurdere kohesive krefter, størrelse og form, som gir informasjon om
partiklenes mekaniske egenskaper for de følgende forsøkene.

Den tredje fasen av stor betydning, har vært å anvende CFD-DEM-modellen for
å simulere proppdannelse i en slurry av is i oljen. Dette er gjort ved hjelp av den
grunnleggende informasjonen oppnådd fra de foregående stadiene. Denne delen av
forskningen inkluderer en detaljert parametrisk evaluering, med fokus på endringer i
strømningssystemets egenskaper, spesielt Reynolds-tallet, partikkelkonsentrasjonen
og overflateenergien. Denne delen sammenligner også simuleringsresultatene med
strømningskart basert på eksperimenter.

Til slutt presenterer den fjerde delen anvendelsen av en maskinlæringsklassifikator
for å forutsi blokkeringer ved et gitt strømningsregime, noe som indikerer en relativt
ny og utviklende metode i flow assurance. En "random forest" - type klassifikator ble
opplært ved hjelp av både eksperimentelle- og simuleringsdata. Eksperimentelle data
ble produsert i en lab-skala strømningsløyfe med isslurry i dekan, og simuleringene
er basert på CFD-DEM-metoden. Resultatene av denne forskningen inkluderer et
strømningsregimekart med grenser som viser til proppdannelse og beskriver hvordan
dette kartet forandres ved endring i kohesive krefter.

Denne avhandlingen bidrar ikke bare til en bedre forståelse av proppdannelsen i
flerfasestrømning med kohesive partikler, men tilbyr også praktiske innsikt gjennom
CFD-DEM metoden. I tillegg, demonstrerer den potensialet av avanserte prediktive
modeller basert på maskinlæring.
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OVERVIEW





CHAPTER 1
INTRODUCTION

The issue of plugging in multiphase flow systems with adhesive particles presents
a significant challenge for industrial pipelines. The problem arises from multiple
contributing factors, including interactions inside the particulate phase, particle-wall
collisions, and complex interactions between different phases of the transported
medium. These combined factors can lead to deposit formation and prevent the
smooth movement of liquids, impacting both fluid flow dynamics and the operational
efficiency of the systems. The cohesive nature of particles increases their tendency to
adhere to surfaces, leading to agglomeration and plug formation. This could completely
block the system in critical scenarios, leading to substantial financial losses. Only the
oil and gas industry spends over $200 millions annually to prevent plug formation and
maintain smooth operations [1].

In oil and gas production, the presence of hydrates, paraffin, asphaltenes, or
sand can lead to severe plugging issues in pipelines. Hydrate formation in subsea
pipelines remains a major flow assurance challenge today. In addition to mechanical
pigging, there are different available solutions for this case. In Norway, methanol
or monoethylene glycol are frequently used inhibitors to change hydrate formation
conditions by increasing temperature and pressure thresholds. Other options include
insulation, heating (limited by length), and low-dosage hydrate inhibitors effective at
low concentrations but less efficient at lower temperatures [2]. However, such control
strategies can be very expensive. For example, the insulation of subsea pipelines to
prevent hydrate formation during offshore operations costs about $1 million per mile
[3]. Interestingly, the industry has shifted focus from completely preventing hydrate
formation to managing hydrate slurry transport. This approach enables hydrate
formation but as a transportable solid suspension. With ongoing projects, Sintef,
Equinor, Chevron [4], Schlumberger [5], and other companies are actively involved in
this topic.

Paraffin deposition is also a common problem, where sticky wax-like substances
solidify and adhere to pipeline walls. Wax deposition blockages are recognized as
a billion-dollar problem in the oil and gas sector, with annual economic impacts
ranging from $14.74 to $330.59 billion [6]. Moreover, this issue is also relevant in
sand production, especially in reservoirs characterized by weak and unconsolidated
sandstone. In extreme cases, a high sand influx can abruptly clog or shut down the
well [7].

This problem extends beyond the oil and gas industry, where sticky particles present
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blockage challenges. These fields include medicine, chemicals, and food production,
among others.

In the medical sector, particularly in hemodynamics, conditions like thrombosis,
involving blood clots formed by adhesive platelets, present big concerns, obstructing
blood vessels and leading to health complications including stroke, heart infarction,
pulmonary embolism, etc. [8]. According to the World Health Organization report,
stroke stands as the second leading cause of death, responsible for approximately 11% of
total deaths [9]. In pharmaceutical manufacturing, solid particles can agglomerate and
cause blockages in processing equipment. Tubes in these systems often get blocked by
particles sticking to the walls or forming crystals [10]. Similarly, in consumer products
manufacturing, adhesive materials or particles in adhesives, coatings, or formulations
can disrupt the production line, necessitating thorough equipment cleaning, preventive
maintenance, and material reformulation for smoother operations. Moreover, the
blockage caused by sticky interactions is relevant to the food processing field [11].

The chemical industry faces plugging challenges due to the deposition of various
adhesive particles inside pipelines and reactors, such as polymers, resins, or solid
products. These particles agglomerate and adhere to surfaces, leading to reduced
flow rates, equipment damage, and production interruptions. Furthermore, sticky ore
particles or mineral slurries in mining operations can agglomerate and cause blockages
in transportation systems, affecting the efficiency of mineral extraction and processing.
Solutions for the aforementioned cases might involve advanced filtration systems,
anti-fouling agents, and high-pressure flushing methods [12].

In water treatment facilities, the accumulation of biofilms, sediments, or precipitates
on surfaces can lead to clogging in pipes and filtration systems [13]. These blockages
affect water flow and purification processes. In wastewater treatment, sticky substances
such as grease or oils can clog pipes and filtration systems, demanding specialized
treatment methods and filtration systems to prevent blockages and maintain operational
efficiency [14].

1.1 Methods and challenges

Across these diverse sectors, early detection of potential blockage events enables timely
preventive measures, reducing mortality, risk of system shutdowns, equipment damage,
and financial losses. These predictive methods support informed decision-making and
the formulation of efficient strategies. Hence, it is important to study this complex
process fundamentally and experimental studies play a crucial role as the foundation
for predictive methods.

Experiments or pilot studies can verify the accuracy of risk-assessing models and
refine their parameters for real-world application. In particular, flow loop-based
experiments are essential for understanding multiphase flow as they recreate real
conditions, enabling observation of phase interactions, flow behaviour, and material
performance. A series of studies are dedicated to examining the transport and
agglomeration of hydrate slurry using flow loops. Work by Vĳayamohan et al. [15]
presents a flow loop study of the gas hydrate formation and transportability in
water-continuous and partially dispersed systems. Similarly, Majid et al. [16] used a
high-pressure flow loop to study gas hydrate formation and plugging under different

4 Chapter 1
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conditions. A high-pressure flow loop to study hydrate slurry rheology was also
utilized by Ding et al. [17]. Moreover, different methods are also employed to study
slurry transport. For example, a transparent pipe was used to visualize the flow of
isothermal ice slurry in the study by Bordet et al. [18]. Hirochi et al. [19] used a tube
orifice to study the ice-particle/water slurry blockage, examining threshold values of
velocity and ice fraction for blockage. The range of experimental studies discussed
and other experimental works [20] in this field provides valuable insights into various
critical physical aspects of the process. However, experiments in this area usually
struggle to capture all the fine details of the processes and accurately recreate real-world
conditions.

Multiphase flow simulators are powerful tools that can be used to prevent and
mitigate pipe plugging problems with the ability to analyze and optimize the operation
of multiphase flow systems. The multiphase flow simulators OLGA [5] and LedaFlow
[21] are two of the most popular simulators available. The OLGA dynamic multiphase
flow simulator was developed by Schlumberger and can assist in mitigating flow
assurance challenges such as hydrate formation, wax deposition, and sand erosion,
which can affect the efficiency and safety of production systems. Similarly, LedaFlow
is highly regarded for its ability to simulate and predict transient multiphase flow
phenomena, such as hydrate formation, wax deposition, and other flow assurance
issues. In order to use simulators, it is necessary to provide information about the
geometry of the system, the properties of the phases, the operating conditions, and
the desired outcome. The simulation results can be useful in taking steps to prevent
or mitigate the blockage. They are both based on fundamental principles of fluid
dynamics to predict and analyze the behaviour of multiphase flow and, consequently,
flow assurance issues.

CFD (Computational Fluid Dynamics) is key in complementing experimental
studies, enabling the visualization and analysis of complex flow patterns, and predicting
potential agglomeration areas. Additionally, CFD models can help optimize system
designs by exploring various parameters without the cost and limitations of physical
experiments. Numerical models, highlighted in works by Eskin et al. [22] and Labois et
al. [23], focus on predicting the deposition of substances like asphaltenes and hydrates
in pipelines. In their study, Rukhlenko et al. [24] demonstrate CFD’s capability to model
phenomena like blood coagulation and particle flow modes, showcasing the diverse
applications of this technique in understanding blockage mechanisms. Furthermore,
studies by Yang et al. [25] and Ma et al. [26] provide details on modelling particle
plugging, considering how different particles interact and potentially lead to blockages.
Flow simulators and CFD have proven effective for predicting model depositions and
analyzing pressure gradients, but their application in accurately modelling plugging
phenomena requires further exploration.

By employing coupled simulations CFD-DEM (Discrete Element Method), it is
possible to provide a better understanding of hydrodynamic bridging, pore blockage,
and orifice jamming, as highlighted in studies by Mondal et al. [27], Shao et al. [28] and
Xu et al. [29]. Moreover, specific to hydrate blockage prevention, studies by Duan et al.
[30] and Wang et al. [31] utilize CFD-DEM methods to simulate the hydrate blockage
process, considering factors such as system characteristics and diameter reduction
in pipes. These simulations aid in understanding the deposition and accumulation
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Introduction

of hydrate particles, thus contributing to strategies to prevent blockages in pipeline
systems handling hydrate slurry.

Flow regime maps, based on system conditions such as flow rate, viscosity, and
density of the phases, provide a graphical representation of the different flow patterns
that can occur in a pipeline. These maps are crucial for predicting the conditions
under which various flow regimes, such as stratified, slug, or annular flow, might occur,
aiding in preventing blockages. Flow regime maps can be used in system design to
enhance safety and efficiency.

Machine learning algorithms have become instrumental in predicting and managing
various aspects of multiphase flow systems, particularly in understanding multiphase
flow regimes. For instance, studies by Manikonda et al. [32] and Alhashem [33]
demonstrate the use of machine learning classification algorithms to identify different
gas-liquid flow regimes. These algorithms analyze flow patterns and characteristics,
aiding in the real-time identification and classification of flow regimes in pipelines.
Similarly, research by Chaari et al. [34] presents an optimized artificial neural network
model for estimating steady-state liquid holdup, contributing to a better understanding
of flow behaviour. Furthermore, the works by Qin et al. [35] and Wang et al. [36]
utilize machine learning models to predict gas hydrate plugging risks and understand
blockage mechanisms due to hydrate formation in transmission pipelines. These
models use flow loop data and field observations, providing insights into potential
blockage occurrences.

In addition, the research of Kim et al. [37], and Amar et al. [38] focus on machine
learning-based models to predict wax deposition in oil pipelines. These models
aim to predict the location and quantity of wax deposition. Ahmadi’s [39] work
highlights data-driven approaches for predicting wax deposition, emphasizing the
role of ML techniques in understanding and managing deposition risks in energy
systems. Overall, these works collectively demonstrate the increasing utilization of
machine learning algorithms in predicting multiphase flow behaviours and identifying
flow regimes. However, using machine learning algorithms to solve blockage-related
issues is relatively rare in research. The machine learning models developed require
specialized training sets and are suited to specific system contexts, limiting their
universal application. For instance, a model for flow loops may not adapt well to
hemodynamics.

1.2 Objectives

Despite numerous studies on cohesive agglomeration, a comprehensive understanding
of how sticky particles contribute to blockage processes remains lacking. This project
aims to improve this understanding by applying the CFD-DEM technique to simulate
the plugging process in multiphase flow.

The project’s objectives can be divided into the following points.

Objective 1

The first goal of this research is to build a CFD-DEM model for a basic case study
before considering a more complex process of plugging with adhesive particles. To
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achieve this, simulate a case with hydraulic conveying involving glass bead particles
using the CFD-DEM model. This step aims to evaluate the model’s capacity to
accurately represent transitional flow regimes, such as dune flow, as a fundamental
step toward understanding particulate behaviour in various flow conditions.

Objective 2

This stage introduces cohesive interactions into the CFD-DEM model and simulates
cohesive interactions of ice particles in an oil phase. The model is then validated
using experimental videos and Positron Emission Particle Tracking [40]. This provides
essential details for the subsequent modelling of the entire flow in a similar medium,
representing the project’s next objective.

Objective 3

Having covered the first two objectives, the project’s main goal is to simulate
the plugging process in multiphase flow using the CFD-DEM method. Specifically,
simulation of ice slurry in decane in the flow loop test section and validating the data
against experimental results.

Objective

The final goal is to apply a machine learning classifier to predict blockages using
experimental flow loop data and CFD-DEM modelling data. Additionally, the aim is to
construct a flow map with a blockage boundary for a specific concentration range.

1.3 Outline

The thesis is divided into two main parts: the overview and the articles. The overview
section includes six main chapters. Following the introductory chapter, the second
chapter focuses on the physical principles related to the research. It discusses the
chosen method, model description with equations, and numerical algorithms.

The third chapter describes the machine learning part, explicitly discussing the
application of the random forest classifier. The fourth chapter summarizes the results of
four papers. The fifth section covers computational analysis, focusing on computational
time and methodology comparison. The overview part concludes with a sixth chapter
on conclusions and future work.

The second part of the thesis presents the full articles from A to D, which are
referenced in the summary of the results.

Chapter 1 7





CHAPTER 2
MULTIPHASE COMPUTATIONAL FLUID
DYNAMICS

This chapter is an important starting point for fully understanding the construction of
models and their fundamental principles.

Initially, the chapter presents the model description, introducing core concepts like
contact force and restitution coefficient through governing equations. The subsequent
section explains algorithms used, like SIMPLE (Semi-Implicit Method for Pressure-
linked Equations) algorithm and the two-way coupling scheme. Contact detection and
the discrete element method particle time scale are also considered in the final sections
of this chapter.

2.1 CFD-DEM method

The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) approach
combines Eulerian-Lagrangian methodologies because of their advantages in simulating
multiphase flows with particles compared to the other methods. CFD-DEM’s clear
advantage is its detailed treatment of particles as discrete objects compared to other
multiphase modelling methods. Consequently, compared to the Eulerian-Eulerian
approach, CFD-DEM offers a more detailed description of particulate flows.

The CFD-DEM method unites the advantages of both CFD and DEM. CFD, which
solves the Navier-Stokes equations, provides a detailed representation of fluid flow
dynamics. On the other hand, DEM simulates the motion and interaction of individual
particles based on Newton’s laws of motion and contact mechanics. By integrating
these two methods, CFD-DEM can simultaneously handle the fluid flow and particle
dynamics in parallel.

An essential feature of CFD-DEM is the two-way coupling between the fluid and
solid phases, allowing for an exchange of information where the fluid’s impact on
particles and vice versa are continuously updated and integrated into the simulation
through calculating drag forces, momentum transfer, and other interactions at each
time step. It allows the model to adjust as the simulation progresses dynamically [41].

The iterative process of the simulation continues with time-stepping, where both
fluid dynamics and particle movements are updated until the solution converges or
reaches the desired simulation finale. Post-processing then allows the analysis and
visualization of the complex dynamics of fluid-particle interactions. This combination
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of CFD and DEM provides detailed and accurate modelling of complex multiphase
flows, making CFD-DEM a powerful method in this research area.

Below is a detailed method description with governing equations that explains all
the parameters for simulating different cases presented in the research papers.

2.2 Model description

2.2.1 Continuous phase

The continuous phase in this research framework is analyzed using a system of Navier-
Stokes equations that are averaged over the volume of the fluid. These equations are
used to model unsteady, isothermal, and incompressible flow.

Dϕ

Dt
= 0, (2.1)

where ϕ represents the volume fraction of the continuous phase, and D/Dt is
the substantial derivative. The volume fraction is calculated as 1− Vp/Vc, where Vp

is the total volume of particles in a computational cell and Vc is the volume of the
computational cell.

The momentum equation [42]:

D(ρϕ−→u )

Dt
= −ϕ∇p+ ϕ(µ+ µt)∇2−→u + ϕρ−→g −

−→
F p, (2.2)

where −→u represents the velocity of the continuous phase, ρ signifies the density
of the continuous phase, p denotes the pressure, µ and µt refer to the molecular and
turbulent viscosity, and −→g stands for the acceleration due to gravity. The collective
influence of the inter-phase forces exerted by particles in the continuous phase is
summarized by the vector

−→
F p scaled with the volume of the computational cell.

The standard k-ϵ turbulence model calculates turbulent viscosity. This means
that for turbulent cases in the momentum equation, the turbulent viscosity term
µt depends on two additional scalars k (turbulent kinetic energy) and ϵ (turbulent
energy dissipation rate), that are introduced in two additional transport equations.
Consequently, the governing equations would be simplified for laminar flow by
removing the terms related to turbulent viscosity µt.

The turbulent viscosity concept accounts for the turbulent flow behaviour in an
average form. The parameter is given by the proportionality between the turbulent
kinetic energy k and the dissipation rate of turbulent energy ϵ [43]:

µt = 0.09ρk · max{k/ϵ,
√

µ/ρϵ}, (2.3)

The transport equations for k and ϵ are given as [43]:

D(ρk)

Dt
= ∇ · ((µ+ µt/σk)∇k) + Pk, (2.4)

D(ρϵ)

Dt
= ∇ · ((µ+ µt/σϵ)∇ϵ) + 1.44

ϵ

k
Pϵ − 1.92ρ

(
ϵ2/k+ ϵ0/T0

)
(2.5)
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2.2 Model description

where Pk and Pϵ are the production and dissipation terms, ϵ0 is the turbulent
dissipation at ambient conditions, T0=max{k0/ϵ0,

√
µ/ρϵ0}, σk=1, and σϵ=1.3. It is

important to note that, in the multiphase CFD model, terms in Equations 2.4-2.5 should
be scaled with the volume fraction of the continuous phase ϕ. However, this parameter
is reduced for the simplified notation presented in the thesis.

2.2.2 Dispersed phase

Newton’s second law describes the linear movement of discrete objects [42]:

mi

d−→v i

dt
=

−→
f p,i +

−→
f ls,i +

−→
f Σ,i +mi

−→g +
−→
f b,i +

∑
j=1,N

−→
F i,j, (2.6)

where mi is the mass of the particle and −→vi is the particle velocity. The right-hand
side of Equation 2.6 includes the buoyancy

−→
fb,i, the strongest inter-phase momentum

coupling terms represented by the drag force
−→
fp, the Saffman lift force

−→
fls, and the

rest of the forces applied from the fluid to the particles
−→
fΣ. They may include the

virtual mass force accounting for the additional resistance a particle experiences when
it accelerates in a fluid. As it accelerates, the continuous phase around the particle is
also agitated. The interaction with the moving fluid increases the resistance faced by
the particle, which requires additional force. It is also known as added mass [44]. This
force plays a rather minor role in the problems the thesis considers and is not covered
in great detail. More information on this term is given in e.g. [44, 45]. Another example
of

−→
fΣ is the Magnus lift force [45] applied to intensively rotating objects immersed in

the continuous phase. Finally,
−→
Fi,j refer to the interactions affecting the ith particle due

to its contact with N particles and solid walls [46].
The rotational motion of an individual particle is described as follows [46]:

d
dt(Ii

−→ωp,i) =
∑
k

−→
T i,k, (2.7)

where I is the moment of inertia of the particle, −→ωp is the angular velocity of the
particle rotation, and

−→
T is the torque given by the forces from the right-hand-side of

Equation 2.6.
This section presents the most frequently used expressions for the major inter-phase

momentum coupling terms below. The classical expression for the drag force reads as
[45]:

−→
f p,i =

π

2
r2i cD,iρ(

−→u −−→vi )|−→u −−→vi |, (2.8)

where cD,i is the drag coefficient, and r=1/2dp. This coefficient is, in many cases,
determined using the Schiller-Naumann‘s expression [45]:

cD,i =

{
(24/Rep,i) ·

(
1+ 0.15Re0.687p,i

)
Rep,i ⩽ 103

0.44 Rep,i > 103,
(2.9)

where Rep = 2ρ|−→u −−→vi |ri/µ is the particle Reynolds number.
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The model for the Magnus lift force determines the force for the case of a spinning
particle as it moves through a fluid. The particle’s rotation creates a difference in
velocity between the fluid on one side of the particle and the fluid on the other. Because
of this velocity difference, there is a corresponding difference in pressure, leading to a
force that acts perpendicular to the direction of motion and the axis of rotation [44]:

−→
f lr,i = 1/2ρπr2i clr|

−→u −−→vi |
−→
Ωi ×

(−→u −−→vi
)

|
−→
Ωi|

, (2.10)

where
−→
Ωi represents the angular velocity of the particle relative to the fluid as

follows [45]:

−→
Ωi = 1/2∇×−→u −−→ωp,i, (2.11)

The respective force coefficient clr,i is given as [47]:

clr,i = 0.45+

(
ReR,i
Rep,i

− 0.45

)
exp

(
−0.5684Re0.4R,iRe0.3p,i

)
, (2.12)

with ReR,i = 4ρr2i |
−→
Ωi|/µ.

The Saffman force, also called the shear lift force, is relevant for a particle moving
relative to a fluid when there is a perpendicular velocity gradient in the fluid to the
direction of the particle’s movement. This force is calculated as follows:

−→
f ls,i = clsρπr

3
i

(−→u −−→vi
)
×−→ωl, (2.13)

where −→ωl = ▽×−→u is the curl of the fluid velocity and cls is the lift coefficient [47]:

cls,i =
4.1126

Re0.5s,i

fi (Rep,i,Resl,i) , (2.14)

where Resl,i = 4ρr2i |
−→ωl|/µ is the Reynolds number for the shear flow, and function f is

computed as [43]:

fi =

{(
1− 0.3314β0.5

)
e−0.1Rep,i + 0.3314β0.5 Rep,i ⩽ 40

0.0524 (βRep,i)0.5 Rep,i > 40,
(2.15)

where β = 0.5Resl,i/Rep,i.

2.2.3 Contact model

The Hertz-Mindlin contact model proposes a helpful technique for problems in contact
mechanics. The model, illustrated in Figure 2.1, describes the elastic behaviour of
particles and computes the resulting deformations of particles in contact. This model
clarifies how the contact zone behaves, how the contact forces are distributed, and the
dynamics of deformations. The Hertz-Mindlin contact model calculates the contact
forces in normal (denoted n) and tangential (denoted t) directions relative to the contact
plane between the objects. The model assumes that the particles deform and overlap
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2.2 Model description

Fig. 2.1: Schematic description of Hertz-Mindlin contact model for two colliding
particles.

upon the collision and resist the deformation following two mechanisms: the "spring"
resistance proportional to the deformation and the "dashpot" resistance dependent on
deformation dynamics.

The contact forces are computed as [43, 48]:

−→
F i,j = F

(n)
i,j

−→n + F
(t)
i,j

−→
t . (2.16)

The normal component of the force [43]:

F
(n)
i,j = −K(n)δ(n) −N(n)v

(n)
r,i , (2.17)

where δ(n) is the particle-to-wall overlap distance, vr is the relative velocity between
the particle centres, K(n) is the "spring’s" stiffness in the normal direction employed in
the soft-sphere approach. It is dependent on δ(n) as:

K(n) =
4

3
Ee

√
re,iδ(n), (2.18)

where Ee is the equivalent of Young’s modulus [43] dependent on the Poisson ratio νi

of the particles, and re is the equivalent radius of the particles. N(n) is the damping
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coefficient in the normal direction [43]:

N(n) =
√

5K(n)me,i

− ln(ϵ(n))√
π2 + (ln ϵ(n))2

, (2.19)

where ϵ(n) is the coefficient of the particle material restitution in the normal direction,
and me is the equivalent mass of the particles. To account for the cohesive interactions,
the cohesive force may be added on the right-hand side of Equation 2.17. The force is
often expressed using the Johnson-Kendall-Roberts (JKR) model [49]. Developed by
Johnson, Kendall, and Roberts in 1971, this model is a theoretical approach to describe
the contact mechanics of elastic bodies with cohesion and adhesion. It describes how
elastic particles stick together, considering their elasticity and surface energy. The JKR
model calculates the contact area and the adhesion force, making it useful for studying
materials with elastic deformation at the contact point [43]:

Fc = 3/2 · πrc,iW, (2.20)

where rc is the minimum radius of the contact surface, and W is the work of cohesion.
In this thesis, the cohesion work values at various experimental temperatures were
obtained from the research by Yang et al. [50]. It is important to note that Fc in the
Hertz-Mindlin contact model equation will be absent for the non-cohesive cases.

The tangential component of the contact force is computed as [43]:

F
(t)
i,j = −K(t)δ(t) −N(t)v

(t)
r,i (2.21)

The stiffness coefficient in the tangential direction [43]:

K(t) = 8Ge

√
re,iδ(n), (2.22)

with the equivalent shear modulus Ge.
N(t) is the damping coefficient in the tangential direction:

N(t) =
√

5K(t)me,i

− ln(ϵ(t))√
π2 + (ln ϵ(t))2

, (2.23)

where ϵ(t) is the particle restitution coefficient in the tangential direction.
In case |K(t)δ(t)| ⩾ fs|K

(n)δ(n)|, the tangential component comes above the sliding
limit, a constant F(t) applies as follows:

F(t) = −fs|K
(n)δ(n)|sign

(
v
(t)
r,i

)
, (2.24)

where fs is the Coulomb friction coefficient.
The final element of the model involves rolling resistance µr, which contributes a

resisting torque as shown in Equation 2.7:

−→
T r

i,j = −re,iµrF
(n)
i,j

−→ωr,i

|−→ωr,i|
, (2.25)
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where ωr is the relative angular velocity. It is to be noted that the equivalent size re
and mass me of the particles turn to their actual parameters r and m for collisions with
walls, which are considered as objects with infinite mass and curvature [43]. In other
cases, the equivalent properties for the collision of particles 1 and 2 are defined as:

re =
r1 · r2
r1 + r2

(2.26)

me =
m1 ·m2

m1 +m2

(2.27)

Ee =

(
1− ν2

1

E1

+
1− ν2

2

E2

)−1

, (2.28)

where E is the Young‘s modulus of the particle.

Ge =

(
(2− ν1) (1+ ν1)

E1

+
(2− ν2) (1+ ν2)

E2

)−1

(2.29)

2.2.4 Coefficient of restitution

The coefficient of restitution characterizes an energy share that is conserved in a
particulate collision [44]. As shown in Fig 2.2 it compares the velocity of an object
after it bounces off a surface v1 (the rebound velocity) to the velocity it had before
the impact v0 (the approach velocity). A simplified definition valid for low particle
velocities follows below:

ϵ = −
v1

v0
. (2.30)

For perfectly elastic collisions, where energy is completely conserved, the coefficient
is 1, meaning the object bounces back with the same velocity as it hits the surface.
However, some energy is lost due to the deformation of particles, resulting in a
coefficient between 0 (no bounce back) and 1. The coefficient can vary depending on
the materials involved and the impact angle.

The method devised by Joseph et al. [51] was applied to account for lubrication
forces present in the continuous phase when the particles are about to touch each other.
It is based on a reduction of the coefficient of restitution (COR) for wet particles based
on the COR observed under "dry" conditions (in air or vacuum) and accounting for the
viscous dissipation [45] in a fluid gap between the colliding particles:

ϵ(n) = ϵ(n),dry +
1+ ϵ(n),dry

St0
ln xc

x0
, (2.31)

where St0 = me,ivi/6πµr
2
e,i is the particle Stokes number before contact. The ratio

of the inter-particle distance at the point of contact, xc, to the terminal position outside
the lubrication force range, x0, is typically around 10−3 [52]. Following the approach
by Reitter et al. [53], we propose that the coefficient of restitution in the tangential
direction remains largely unaffected by lubrication, thus ϵ(t) = ϵ(t),dry. In this work,

Chapter 2 15



Multiphase computational fluid dynamics

Fig. 2.2: Schematic view of restitution coefficient.

the temperature-dependent molecular properties of ice and decane were determined
using the NIST database [54]. The static friction coefficient values for ice are derived
from Sukhorukov’s recent experiments [55].

2.3 SIMPLE algorithm

In simulations, the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) is
applied as a numerical technique in Computational Fluid Dynamics (CFD) to solve
the Navier-Stokes equations. The strength of SIMPLE is its effectiveness in simulating
situations where the fluid is incompressible. This algorithm iteratively adjusts the
pressure and velocity fields in a flow to satisfy the Navier-Stokes and continuity
equations simultaneously.

The process starts with an initial guess for the pressure field p∗ to solve the
Navier-Stokes equations for incompressible flows [56]. This guessed pressure estimates
the fluid’s velocities by solving discretized momentum equations. The momentum
equation calculates these intermediate velocities, u∗, in a staggered grid format from
the assumed pressure field.

D(ρϕ
−→
u∗)

Dt
= −ϕ∇p∗ + ϕ(µ+ µ∗,t)∇2−→u∗ + ϕρ−→g −

−→
F∗p, (2.32)

A pressure correction equation [56], derived from the continuity equation, checks
how the current velocity field satisfies the continuity equation:
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∇2p ′ ∼
ρ

∆t
∇ · −→u∗, (2.33)

where p ′ is the pressure correction, and ∆t is the time step.
Next, the pressure field is updated using the pressure correction.

pnew = p+ αp ′, (2.34)

where α is an under-relaxation factor often applied to ensure numerical stability.
Then, the new velocity field −→u new is found again. At this stage, the rest of the transport
equations, e.g. the turbulence model, are resolved.

The entire process, from the solution of the momentum equation to correcting
the pressure, is repeated iteratively. Each iteration adjusts the velocity and pressure
fields to satisfy the momentum and continuity equations more closely. The iteration
continues until the differences in the fields between successive iterations become very
small, showing that a consistent solution has been reached.

2.4 Two-way coupling scheme

The methodology outlined in Fig. 2.3 is a numerical approach to resolving the
interactions between the fluid and dispersed particulate phases in a multiphase system.

The fluid flow field and particle dynamics are interdependent in multiphase flow
simulations. The fluid affects the motion of the particles through drag forces and
pressure gradients, while the particles can exert feedback on the fluid through these
forces. The iterative process described in the diagram accounts for these two-way
interactions.

During each iteration, the velocity of the particles is calculated based on the current
state of the fluid flow. Then, the source terms representing the momentum exchange
between the particles and the fluid are evaluated and used to adjust the fluid velocity
in the next step. The algorithm checks for the satisfaction of the continuity equation to
verify that the simulation respects the conservation of mass in the system. If continuity
is not satisfied, fluid velocity and pressure corrections are made.

Below, more detailed steps are provided.
The methodology begins by establishing initial conditions that define the state of

the fluid and particles. Quantities such as velocity and pressure are specified for the
fluid phase, while initial positions and velocities are determined for the particle phase.

Following initialization, the process progresses to a detailed CFD analysis where
the fluid flow field is computed. This calculation is based on solving the Navier-Stokes
equations to determine the velocity and pressure distributions in the fluid domain.
This step is the foundation for understanding how the fluid will interact with the
particles.

In the next step, the method measures how fluid and particles interact by considering
the forces on the particles, especially the drag force that results from the flow of the fluid.
This calculation may also include additional forces derived from specific fluid-particle
interaction models.

Using the calculated forces, the DEM simulation phase updates the positions and
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Fig. 2.3: Solution scheme for two-phase coupling. Reproduced from Crowe [45].

velocities of the particles following Newton’s laws of motion. This phase is particularly
complex as it considers interactions between particles and between particles and walls.

An important part of the coupling process involves a feedback mechanism to the
CFD analysis. This mechanism utilizes updated information about particles to refine
the properties of the fluid domain. Because the particle movements impact fluid
velocity and pressure fields, it is necessary to adjust the fluid field precisely to account
for these changes.

The process is iterative, with the cycle of force calculation, DEM simulation, and
feedback to CFD being repeated to ensure that the fluid flow and particle dynamics
are continuously updated based on their ongoing interaction. This iterative coupling is
essential for achieving a converged solution that represents the coupled behaviour of
the fluid and particles, describing their interaction and the mutual influence on each
other in the system.

2.5 Contact detection

In particulate flow modelling, collision detection is critical for determining when and
how particles in motion will interact.

Figure 2.4 illustrates a key concept in the dynamics of particle collision in a
simulation. Two particles are depicted, each with a specific diameter and an initial
location in space. Their locations at the start of a discrete-time step are defined by
the position vectors r10 and r20. In addition to these position vectors, each particle is
characterized by velocity vectors v10 and v20, representing each particle’s movement’s
initial speed and direction. The model assumes that the particles will move following
straight trajectories at these initial velocities throughout the time step, predicting
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Fig. 2.4: Collision detection principle reproduced from Kosinski [44].

collisions more simply by treating the motion as linear and uniform.
Using the starting positions r10 and r20 and the initial velocities v10 and v20 the

figure provides a scheme for calculating the potential intersection of the particles’
trajectories. If their final positions suggest an intersection, the model calculates the
collision time, which is the moment in the time step when the two particles are expected
to collide. This aspect of collision timing is important for simulations that analyze
how particles interact in a fluid, as these interactions can affect the system’s overall
behaviour.

Fundamentally, this process is about calculating the time until collision, known
as the collision time. This is computed using the relative positions and velocities of
the particles and applying the physical laws governing their interactions. Once the
collision time is determined, it checks if this collision is likely to happen in the current
step of the simulation. If a collision is predicted, the simulation algorithm adjusts
the positions of the particles to the point of collision, simulating the physical contact
between them.

Following the collision detection, the simulation must compute the resulting
outcome of the collision. This includes updating the velocities and trajectories of the
particles post-collision by conserving momentum and energy principles. Next, the
simulation updates its time settings based on the collision’s length and prepares for
the next time step.

The general goal of collision detection algorithms is to accurately and efficiently
simulate the interactions of particles in a given system, providing information into the
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dynamics of systems.
The process is iterative and involves the following steps:
•Initiation of the Time Step.
The simulation begins a new cycle, initializing variables that will track the progres-

sion of time and the number of collisions.
•Prediction of Upcoming Collision.
The simulation computes the time for two particles to collide based on their current

trajectories and velocities.
•Determination of Collision Occurrence.
The simulation checks if the calculated time until collision is in the current time

step interval.
•Adjustment of Particle Positions.
If a collision is about to occur, the particles are moved to the collision point according

to the calculated time until the collision. Otherwise, they are moved according to the
remaining time in the step.

•Collision Dynamics Processing.
If a collision is detected, the simulation uses the relevant contact model (e.g.

Hertz-Mindlin) to calculate the post-collision velocities and directions.
•Update of Time Variables.
The simulation updates the time to account for the duration of the collision.
Using the calculated forces, the DEM simulation updates the positions and velocities

of the particles following Newton’s laws of motion.
•Progression to the Next Cycle.
The simulation proceeds to the next time step, ready to repeat the process.

2.6 Discrete element method collision time scale

In the Discrete Element Method, the choice of the time step is important. The collision
time scale, and therefore the time step, depends on one of three times associated with
the particle: Rayleigh wave propagation time, impact duration, and particle transit
time [43].

The collision simulation is based on the principle that a particle’s force interactions
are influenced by its nearest neighbours within a single time step. During the time step,
the deformation Rayleigh wave is supposed to cross the particle’s surface. In this case,
the time of the Rayleigh wave propagation in a spherical particle is computed as [43]:

τ1 =
πr

VR

, (2.35)

where VR is the Rayleigh wave velocity, which depends on material properties. In
Simcenter STAR-CCM+, to reduce computational costs, this parameter is estimated
using a simplified expression [57, 58].

The second criterion for determining the appropriate time step in DEM simulations
involves the collision duration between two elastic spheres. Based on Hertz’s contact
mechanics theory, Timoshenko provided a suitable expression for this time scale [59].
The calculation of the parameter involves the radius of the particle and the elastic
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properties of the material. This rule helps keep the simulation realistic by considering
the important details of particle collision:

τ2 = 2.94

(
5
√
2πρp

4

1− ν2

E

) 2
5

r
5
√
vr

. (2.36)

The last rule for realistic simulations refers to a limitation of how far a particle can
move in one step of the simulation. If a particle moved too fast, it might skip past
another particle or a wall without ever "noticing" it. To prevent this, we set up the
simulation so that a particle can only travel the distance of its radius for 10 steps. In this
way, the interactions between particles and between particles and walls are accounted
for properly. The equation for the impact duration [43]:

τ3 = 0.1
r

v
, (2.37)

In CFD-DEM simulations, the time step is typically chosen based on the smallest of
the mentioned three time scales to ensure that all significant physical processes are
accurately captured. Therefore, the time step is defined as min (kDτ1, 0.1τ2, τ3), where
kD < 1 is the scaling pre-factor tunning up the model. It is to be noted that τ1 is often
the minimum number and, therefore, the major limiting factor, while the rest of the
time scales filter the fast particles. If the time step is too large to resolve the Rayleigh
wave propagation, the model may fail to capture critical aspects of particle interactions
during collisions. If the time step is longer than the impact duration, the model might
incorrectly calculate the energy transfer and momentum change during collisions.
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CHAPTER 3
MACHINE LEARNING APPLICATION

This chapter provides a theoretical description of the machine learning part of the thesis,
particularly the random forest classifier. Using machine learning-based predictions of
physical phenomena is a relatively new approach and is being actively implemented
in fluid dynamics and heat transfer, as discussed in the thesis introduction. Less
information is available on using machine learning methods in multiphase and,
particularly, on ML models of plugging and clogging of flow channels. This data-
driven approach is a time-efficient solution, capable of making predictions in several
seconds on ordinary machines. In contrast, a CFD-DEM case takes 2-4 hours to run on
a 30-core AMD-based PC, while a typical flow loop experiment takes about 3 hours. In
this research, the motivation to use the random forest classifier is based on its flexibility
with multidimensional datasets, making it a suitable method for the studied cases
involving multiple parameters and features.

Random forest is a machine learning algorithm in the supervised learning category.
This method applies to both classifying data and predicting continuous values. The
fundamental building block of a Random forest technique is the decision tree. Decision
trees are a helpful method used in decision-making processes. Their logical structure
of the blocks is similar to trees, featuring branches and leaves that represent different
decisions and outcomes [60]. Random forest classifier combines multiple trees to
improve predictive performance and control over-fitting. A group of trees, known as
an ensemble with unique trees constructed by various strategies, improves the overall
decision-making process.[61].

Figure 3.1 illustrates the Random Forest algorithm. The process starts with a
complete input dataset divided into two parts: the training set and the test set. The
training set is used to build the model, while the test set is used to evaluate its
performance. Using the training set, the algorithm begins the process of bootstrap
sampling. Multiple subsets of the training data are created, each selected randomly
with replacement. This allows the individual decision trees in the forest to be trained
on different data, providing a diversity that makes the model more robust. Each subset
of the training data is then used to create a decision tree. These trees are grown by
splitting them based on the data’s features. The trees are grown until they reach a
specified stopping criterion: a certain depth, a limiting number of samples in a leaf,
or another predefined threshold. After all the decision trees are constructed, they
collectively make predictions on new data. Each tree in the forest gives its prediction,
which is then combined through voting. The test set is then used to evaluate the model’s
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Fig. 3.1: The flowchart of the Random Forest algorithm.

performance, providing an unbiased assessment of its predictive power. The final
goal of the Random Forest algorithm is to achieve high accuracy while also preventing
overfitting.

Training a predictive model using the same data for learning and testing is flawed
because the model might memorize the data without learning to generalize. This issue,
known as overfitting, means the model performs well on data it has seen but poorly on
new data. To counter this, it’s standard practice in machine learning to set aside some
data as a test set.

In the Random Forest classifier, the feature importance indicates the relative
importance of each parameter in predicting the target variable. It shows how much
they contribute to the model’s decision-making process. The importance is calculated
at the model training stage when each tree in the forest evaluates how much adding a
specific parameter improves node cleanliness and how well it can help make a correct
prediction. Functions that lead to a significant increase in the model’s accuracy will
receive a higher importance score. This information is valuable because it helps to
understand the data better, optimize the choice of functions, and make informed
decisions about allocating resources for further data collection. This study considered
a case with three parameters, but for cases with larger sets, this is an essential aspect
for optimizing data and the model.

The classifier’s parameters define how the model behaves during the training
process. Each parameter serves a specific purpose, following a brief description of
some main parameters for the Random Forest Classifier in Skicit Learn. In Scikit Learn’s
Random Forest Classifier, the parameter "n_estimators" refers to the number of decision
trees included in the forest. The "max_depth" parameter specifies the maximum
number of levels allowed in each decision tree. The "random_state" parameter is used
to set seed to ensure consistent results across multiple simulation runs, which aids in
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the reproducibility of the results [62]. The parameters can be finely tuned to optimize
the model’s performance for specific datasets and problems.
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CHAPTER 4

SUMMARY OF THE RESULTS

This chapter presents a brief overview of four papers, covering objectives discussed in
the introductory section. Initially, the focus was on validating the CFD-DEM method,
accomplished using experimental data. The first validation case provided a foundation
for further application of this method. However, since the initial investigation only
involved glass bead particles and did not model cohesive interactions, which is a
key aspect of the research, it was essential to understand how the CFD-DEM model
handles cohesive particle behaviour before proceeding with the simulation of blockage
with sticky ice particles. As a result, the second article presents the findings of this
investigation, where the model was validated using experimental high-speed video
recordings and the Positron Emission Particle Tracking (PEPT) method. Subsequently,
the third article presents a simulation of the blockage process in the experimental flow
loop test section. Finally, with all available data collected, a machine learning classifier
was applied to predict blockage in the considered concentration range. The results,
including the flow regime map, are detailed in the fourth article.

At the very beginning of the project, the cohesive CFD-DEM model of STAR-CCM+
[43] was tested to simulate plugs blocking the entire cross-section of the flow channel.
As a referent model, the work by Mondal et al. [27] was used for the case settings. In
their work, the authors simulated the flow of particulate suspension in a rectangular
channel with a constriction, varying the particle concentration to study the jamming
process at a contraction of the flow channel. The focus was on how the probability of
jamming depends on particle concentration and the impact of various parameters on
the process. The current CFD-DEM simulations aimed to reproduce the process by
changing the particle concentration until jamming was observed using flow parameters
similar to those presented in the study. For the simulations, the case-settings with
the neutrally buoyant particles were reproduced. As follows from the referent work
[27], the particles jammed the contraction at the inlet volume fraction of 18%. In the
cohesive CFD-DEM with the surface energy of 824 mJ/m2, the particles blocked the
contraction at a lower inlet concentration of 5%, confirming the technical possibility
and qualitative realism of the simulation set-up.
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Fig. 4.1: Cohesive particles blocking the flow channel for flow conditions as in Mondal
et al. [27]. Scalar contours denote the volume fraction of particles.

4.1 Paper A: Simulation of horizontal hydraulic conveying and
dune formation based on CFD-DEM

In this phase of applying the CFD-DEM for analyzing non-cohesive particles, the CFD-
DEM model was successfully implemented to simulate the hydraulic transportation of
glass bead particles, each with a diameter of 100 µm, through a horizontal cylindrical
millifluidic tube that measures 2 mm in diameter and 20 cm in length. The simulations
were validated against experimental data from [63], showing the model’s accuracy in
predicting particle flow dynamics in a laminar regime. The focus was on the interaction
between the water flow and the glass bead particles under standard conditions,
reproducing a case where the particle concentration was 28%, and the flow rate was set
at 2 ml/min. Additionally, the simulations considered how the results are sensitive
to the variation of the restitution coefficient (0.70-0.98) to observe different results in
particle behaviour and dune formation in the flow.

The important result of the simulations was the ability to predict the formation of
dunes and to understand the behaviour of particles in hydraulic transport systems. The
model’s predictions of the velocity and the length of the dunes were then compared
to experimental data. The comparison demonstrated a discrepancy of approximately
10.7% from the observed experimental data for the velocity of the dunes.

The combined CFD-DEM method showed the ability to simulate complex regimes
in the particulate multiphase flow. This study also showed the potential of CFD-DEM
for simulating and analyzing hydraulic transport systems. With the implementation of
the CFD-DEM approach to predict dune formation, this work was an important initial
step in verifying the method’s performance with the particulate multiphase flow.
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4.2 Paper B: Cohesive collisions of particles in liquid media studied by CFD-DEM,
video tracking, and Positron Emission Particle Tracking

4.2 Paper B: Cohesive collisions of particles in liquid media stud-
ied by CFD-DEM, video tracking, and Positron Emission
Particle Tracking

In this part, the study extended toward investigating the cohesive collision of ice in
an oil-based continuous phase using the CFD-DEM approach. This paper presents
research on the ice-ice interactions under different temperatures, focusing on the
dynamics of their collision. The study combines high-speed video recording, Positron
Emission Particle Tracking (PEPT), and coupled CFD-DEM simulations.
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Fig. 4.2: Coefficient of restitution of ice in decane [40]

The combined experimental and CFD-DEM study of the ice particle drop and its
interaction with the inclined ice surface was conducted for a temperature range from
-15.7◦C to -0.3◦C to consider the influence of cohesive forces of different magnitude.
The coefficient of restitution (COR) value was extracted from the experiments and
simulations as the crucial parameter characterizing the collisions.

Figure 4.2 illustrates the main result of the study, which is the coefficient of restitution
(COR) of ice for the considered temperature range, derived from three research methods
used in this work: CFD-DEM simulations, experimental recordings, and Positron
Emission Particle Tracking (PEPT). The CFD-DEM results are presented with two
input datasets: median cohesion force values and 95%-based values from Yang et
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al. [50]. COR for ice particles varies between 0.57 and 0.82, and as can be seen from
the plot, the optimum temperature at the maximum COR is identified for -11.0◦C
(video), -10.5◦C (CFD), and -10.0◦C (PEPT). As the temperature rises, the COR initially
increases, peaking at the temperature of maximum COR. Following the peak, the
COR declines and stabilizes at around -4.2◦C. This pattern is explained by the two
factors which balance each other at the maximum point. The increase in the restitution
coefficient is due to the decreasing viscosity of the decane, while the decreasing values
are attributed to the enhanced cohesion at elevated temperatures. The model agrees
well with experimental data, showing the average and maximum discrepancies of 9.4%
and 12.1% respectively. However, the deviation of the PEPT experiments is higher,
with an average of 19.0% and a maximum of 21.7%. Despite this, the temperature trend
of COR is similar across all three methods. The results of this work demonstrate that
the CFD-DEM model predicts the behaviour of ice-ice interaction in the oil phase and
can be applied to simulate complex multiphase interactions with reasonable accuracy
in the same system.

This study improved our understanding of ice in the oil collision process, providing
new data on COR for the temperature range considered. Importantly, this work laid
the foundation for ice in oil collision dynamics for further simulations of the entire
flow, which will be discussed in the summary of the following paper.

4.3 Paper C: CFD-DEM model of plugging in flow with cohesive
particles

In the next stage, the CFD-DEM approach was applied to simulate and analyze plug
formation in an experimental flow loop’s test section, considering plugging dynamics
and validating results against experimental benchmarks. It is important to note that
the previous work(Paper B) was used to define the mechanical properties of ice.

The third article presents the CFD-DEM model built to investigate the plugging
process with cohesive particles, focusing on the impact of variables like particle
concentration, Reynolds number, and surface energy on plugging behaviour. It shows
a non-linear relationship between these factors.

The CFD-FEM model was validated against the experimental study by Struchalin
et al. [20]. The model reproduced an experimental case where a plug formed in the
test section at 400 kg/h initial flow rate and a particle concentration of 6.8%. The main
result of the work is presented in Figure 4.3 as a graph showing the temporal evolution
of the average flow velocity, where the experimental results are compared with the
CFD-DEM model results using three different cohesion to adhesion ratios (0.78, 0.8,
0.88). For this system, cohesion was derived from work by Yang et al. [50], while the
parameters of adhesion and friction of particles against the walls were fitted.

The study compares simulation results with existing flow maps from previous
experiments, proving the model’s capability to accurately predict plugging events in
multiphase flow despite simplifications and assumptions like 2D geometry, low Young
modulus, and no account for the geometry of the entire experimental setup. In terms of
experimental verification, this study successfully demonstrates the CFD-DEM model’s
ability to simulate plugging in multiphase flow with cohesive particles.
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Fig. 4.3: Average flow velocity as a function of time predicted by the CFD-DEM model
and compared with the experiment [20]. The simulations are carried out for different
ratios of particle-wall adhesion to the particle-particle cohesion cr.[46]

4.4 Paper D: Application of machine learning to predict blockage
in multiphase flow

The fourth paper presents the application of a machine learning classifier for predicting
blockage caused by cohesive particles in multiphase flows. The study focuses on
applying a random forest classifier to predict blockage. The classifier is trained using
the experimental and CFD-DEM data. The experimental setup involved a lab-scale
flow loop to study ice slurry in decane [20]. The simulation is based on the coupled
CFD-DEM method. The classifier was trained on parameters obtained from these
experiments and simulations, including flow rates, Reynolds number, and Capillary
number, to identify blockage conditions.

Figure 4.4 shows a flow map displaying the study’s main result, the blockage
threshold identified for a certain range of particle concentrations. The threshold
predicted by the ML model is represented in the figure by three lines, each varying
the dimensionless cohesion (granular capillary number). It’s important to note that
increasing the capillary numbers (and cohesion) by factors of 0.5 and 0.8 leads to a
decrease in the threshold predicted by the machine learning model. The CFD-DEM
simulations and experimental outcomes are also shown in the figure to validate the
results. As can be seen from the plot, the thresholds predicted by the machine learning
algorithm almost align with the upper experimental limit and the plugging boundaries
indicated with the CFD-DEM.
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Fig. 4.4: Flow map from the random forest classifier with three different cohesion
values. The plot includes the experimental [20] and the CFD training data points
with blockage. Experimental points excluded from training are labelled with star-like
markers. Reproduced from Paper D.

The model results demonstrated that the classifier predicted blockage occurrences
with a precision of 1.00 for no block cases and 0.96 for block cases, while the F1-score
is 0.89 for no block cases and 0.98 for block cases, demonstrating the effectiveness of
the chosen method. Sensitivity analyses showed the model’s adaptability to cohesion
variations.
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CHAPTER 5
EFFICIENCY AND APPLICABILITY OF THE
CFD-DEM MODEL

This chapter discusses aspects of using computational resources effectively to conduct
numerical simulations. It begins with a focus on achieving physically realistic and
time-efficient simulations and presents analysis results for computational costs. The
second part of the chapter provides analysis by comparing the Eulerian-Lagrangian
approach to the Eulerian-Eulerian model through a case study of plug formation in a
test section of an experimental flow loop. Before discussing comparison results, the
chapter briefly outlines the Eulerian-Eulerian method.

5.1 Notes on computational costs

Understanding the computational efficiency of numerical simulations is important
for optimizing the use of resources and reducing the time required for analyses. The
ultimate goal is to achieve simulations that are both accurate and time-efficient. This is
particularly important in simulating physical processes, like plug formation, where the
precision of results can impact the interpretation and applicability of research results.
Considering how computational time changes with different numbers of processor
cores is interesting, as is achieving a balance between computational demand and the
realism of physical systems.

In this research, numerical simulations were conducted to reproduce the conditions
described in Paper C, particularly the case with the maximum cohesion of 541 J/m2.
In these simulations, the adhesion of walls was set equal to the cohesion of particles.
These simulations aimed to observe the formation of plugs under different conditions,
specifically by changing the number of processor cores used. The simulations were
conducted on AMD Ryzen Treadripper RO 3975WX (3.8 GHz). The number of physical
cores ranged from 1 to 30, and the number of logical cores with hyperthreading from
35 to 60 [64].

Figure 5.1 illustrates how the total computational time, calculated per central
processing unit (CPU), changes with the number of processors engaged. As can be seen
from the graph, the optimal number of CPUs for efficient simulation is approximately
15. After reaching this point, the simulations do not get much faster because more
time is spent communicating between the processors. Moreover, as noted by the
documentation of STAR-CCM+ [43], expanding the simulation to logical cores hinders
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Fig. 5.1: Effect of processor utilization on computational time.

the computation.

5.2 Applicability of different multiphase CFD methods

5.2.1 Eulerian-Eulerian approach

The Eulerian-Eulerian model is a computationally efficient approach to modelling
complex multiphase flows, especially useful for high particle concentrations where
the direct interaction of individual particles would be challenging to resolve. The
Eulerian-Eulerian model describes dispersed and continuous phases as separate but
interacting liquids present in the same computational domain [65].

The most common approach, named the two-fluid model, treats the fluid and
particles as two continuous phases and solves the Navier-Stokes equations for each
phase separately. In this model, the conservation of mass for each phase is represented
by the continuity equation:

D(ϕmρm)

Dt
= 0, (5.1)

where ϕm is the volume fraction and ρm is the density of phase m.
The sum of volume fractions for all phases equals one, ensuring no overlap:

S∑
m=1

ϕm = 1.0. (5.2)

The momentum conservation equation accounts for the forces acting on each phase:

D(ϕmρm
−→um)

Dt
= −ϕm∇p+ ϕmρm

−→g + ϕm∇ · (τm + τtm) +
−→
F p, (5.3)
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where −→um is the phase velocity vector, p is the pressure, −→g is the gravitational
acceleration, τm and τtm represent molecular and turbulent stress tensors.

−→
F p is the

inter-phase coupling term, including the drag force, which is significant as it models
the resistance experienced by the particles moving through the fluid. In this model, the
deposited particles can hinder the dispersed phase through the momentum coupling
terms. In addition, rheological expressions representing the apparent viscosity of
suspensions could modify τm and thus simulate the inter-particle interactions [65].

One of the significant advantages of the Eulerian-Eulerian approach is lower
computational requirements. However, the noted disadvantage is that interactions
between particles are not modelled directly but instead are represented through an
averaged term of solid stress. This reduces the accuracy and limits the applicability of
the model.

5.2.2 Comparative analysis

In the second chapter, the advantages of the Eulerian-Lagrangian approach were
previously discussed, especially in comparison to the Eulerian-Eulerian model. To
provide a clear analysis, it was decided to compare the simulation results of plug
formation in a test section of an experimental flow loop as a case study. The Eulerian
Eulerian model is implemented following the methodology from Balakin et al. [66].
At the same time, the rheological expression for the ice slurry is provided in work by
Naukanova et al. [64, 67].

An experimental case of blockage in the test section of the experimental flow loop
was reproduced for comparative analyses. The case details are described in Paper
C. Both cases share identical boundary conditions for the fluids, including volume
fractions and particle dimensions, as well as matching time steps and computational
algorithms. The simulations were run on a similar computational setup with 32 CPUs
and utilized comparable mesh configurations.

The concentration profiles of particles at the same time interval were considered.
In the case of the Eulerian model, it was observed that particles did not block the pipe,
while particles did settle and formed a stationary bed.

Figure 5.2 demonstrates how the mean flow velocity changes with time during
the pipe plugging for the case where the adhesion of the walls was set to 80% of the
inter-particle cohesion. The graph shows that the velocity measured in the experiment
and predicted by the Eulerian-Lagrangian model both vary with time, experiencing a
drop after 60 seconds. On the other hand, according to the Eulerian-Eulerian model,
the mean velocity stays steady throughout the entire period. This demonstrates the
superiority of the Lagrangian method in modelling dynamic changes in flow with
cohesive particles interacting with the walls and each other.

Figure 5.3 illustrates a scalar scene depicting simulation results using two methods.
The scene visualizes the volume fraction of ice particles in an experimental flow loop
test section. Figure 5.3 shows that the Eulerian-Lagrangian method can reproduce
the plug. This method considers particles’ trajectories and interactions with a more
detailed and realistic particle dynamics simulation. In contrast, the Eulerian-Eulerian
model shows only the accumulation of particles near the constricted section.

Table 5.1 demonstrates the computational time scaled to the number of CPUs
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Fig. 5.2: Velocity comparison between experimental data and two computational
models.

1)

2)

Fig. 5.3: Comparison of two methods: 1) Eulerian-Eulerian and 2) Eulerian-Lagrangian.
The flow direction is left to right, and gravity is directed downwards.
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employed. As the table indicates, a quasi-2D CFD-DEM model (see paper C) does not
show a significant speed reduction compared to the Eulerian method. Additionally,
for comparative purposes, the computational costs for a fully 3D CFD-DEM model at
maximum cohesion, as outlined in the paper, were also presented.

Time/(CPU x 1 sec of process) Model
46384.203 Eulerian-Lagrangian 3D
221.42041 Eulerian-Lagrangian 2D
127.79211 Eulerian-Eulerian 3D

Table 5.1: Comparison of computational time for different simulation models.

It can be concluded that although the Eulerian-Eulerian model is computationally
more efficient, it does not provide the desired level of physical realism.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

The combined results from the four articles present coupled Computational Fluid
Dynamics-Discrete Element Method (CFD-DEM) simulations and machine learning-
based methods to address multiphase flow dynamics with cohesive particles.

In the project’s first stage, the non-cohesive CFD-DEM model was built to simulate
the hydraulic transport of glass beads. The simulation results provided insight into the
process of particle dune formation. The simulations aligned well with experimental
data, demonstrating the model’s predictive power.

A comprehensive theoretical and experimental investigation of cohesive collisions
of particles with inclined walls was conducted next. The CFD-DEM models have
been validated against experimental benchmarks to simulate particle behaviour with
reasonable accuracy. The simulations considered temperature effects on particle-wall
adhesion and their restitution coefficient for validation purposes. These parameters
were essential for realistically modelling multiphase systems with sticky particles. The
model was further updated to represent a multi-particle cohesive turbulent flow in the
experimental flow loop, reproducing the plugging of a test section conditioned by a
local flow restriction - a centrally open orifice.

As the final stage, a machine learning-based approach, the random forest classifier,
effectively predicted blockages in multiphase flows with cohesive particles. The model
demonstrated its capability to adapt to cohesion variations and could be extended for
real-time applications.

For future research based on the information from the four reported here studies,
the following areas of work are recommended to improve the understanding and
prediction of particle behaviour in flow systems.

Concentration variability: Future work could benefit from exploring a wider range
of particle concentrations. This expansion would provide a more detailed map of
plugging in densely packed and dilute systems.

Particle adhesion: It would be interesting to define the adhesion properties of
particles to surfaces more accurately. A refined understanding of adhesion could
lead to better predictions of plugging and improved design parameters for industrial
equipment.

Different particle shapes: Expanding simulations to cover a wider selection of
particle shapes with new capabilities of Star-CCM+ could help to understand better
how different particles behave and stick. Consequently, this would allow a complete
view of how various particle types influence flow patterns.



Conclusions and Future Work

In-situ PEPT validation: Positron Emission Particle Tracking (PEPT) conducted
directly in the multi-particle system could offer more precise data and validation
of simulation models. Tracking particles interacting with walls and deposits in the
turbulent flow is important for validating CFD-DEM models. This in-situ approach
would ensure that the behaviour of particles is captured in the exact operating conditions
they would encounter in practical applications.

Machine learning approach: Although using a random forest classifier has proven
effective, experimenting with other machine learning models, such as deep learning net-
works, could uncover hidden patterns and relationships in the data. New applications
may result in powerful predictive capabilities.

By considering these suggested areas, future research can advance the current work
with more detailed and improved methods for predicting and managing the plugging
process in multiphase flows.
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Abstract.
In this paper, the horizontal hydraulic conveying and dune formation in a millifluidic tube was simulated by the coupled computa-
tional fluid dynamics/discrete element method (CFD-DEM) method. The simulations were performed using experimental data sets
with the commercial package Star-CCM+. The interaction between the water flow and the particles of glass beads with a diameter
of 100 µm was considered using a two-way interaction strategy. Laminar flow with a concentration of particles around 28% was
simulated for the 2 ml/min flow rate value at different restitution coefficients. The flow characteristics of the hydraulic conveying
in a horizontal pipe, such as dune velocity and length, were considered in detail. The model was validated against an experimental
benchmark. Based on the simulation data, the formation of dunes is well predicted by the model. The anticipated results correlate
qualitatively with the experimental data with a 10.7% discrepancy for the dune velocity. This work demonstrates that CFD–DEM
is a promising approach to studying hydraulic conveying regimes in a horizontal channel.

INTRODUCTION

Hydraulic transport has many industrial applications. Therefore, significant efforts have been made to implement and
evaluate the computational fluid dynamics - discrete element method (CFD-DEM) coupling method for describing
transport systems. For instance, Zhou et al. [8] used CFD-DEM to study the flow regimes during the hydraulic trans-
port. This combined numerical approach was also used to model pneumatic transport [6]. A CFD-DEM model was
also developed by Zhao et al. [7] to investigate the pneumatic conveying in a horizontal pipe with further applica-
tion of the wall roughness (WR) and discrete random walk (DRW) method. Even though the discrete method offers
promising perspectives to model particulate hydraulic transport, the application of this numerical method remains
limited. Besides, detailed characteristics of dunes, which are most often called slugs in the context of pneumatic
transport, are seldom investigated using discrete numerical methods.

Therefore, in the present paper, we consider the combined CFD-DEM model of horizontal hydraulic conveying to
predict dune formation. In the simulations, we applied the Eulerian-Lagrangian method, which tracks each particle
and computes related forces. Eventually, experimental measurements of Dumazer and Gagnepain [3] were compared
with the model predictions.

MODEL

The numerical model was built in an Eulerian-Lagrangian framework [5], where the flow of the continuous phase is
described by solving the Navier–Stokes equations [2]:

∇u⃗ = 0, (1)

ρ f

[
∂ u⃗
∂⃗ t

+ u⃗∇u⃗
]
=−∇p+µ∇2u⃗− f⃗p,Σ, (2)

where u⃗ is the fluid velocity, ρ f , and µ are the continuous phase density and viscosity, respectively, and p is the
pressure.
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The last term in equation (2) is the drag force acting on an individual particle [2]:

f⃗p,i =
π
2

R2
0,iCD,iρc(⃗u− ν⃗i)|⃗u− ν⃗i|, (3)

where R0,i is the radius and ν⃗i is the velocity of the ith particle, and CD is the drag force coefficient. Thus, the integrated
drag force is given by:

f⃗p,Σ = ∑
i=1,N1

f⃗p,i/V, (4)

where N1 is the total number of particles in a computational cell with volume V . Newton’s second law describes the
linear motion of the discrete phase:

mi
dν⃗i

dt
= f⃗p,i + ∑

j=1,N2

f⃗i, j, (5)

where mi is particle mass, and f⃗i, j are the forces acting on the i-th particle due to contact with N2 other particles. The
particle rotation is calculated as:

d
dt
(Iiω⃗i) = ∑

j=1,N2

T⃗i, j, (6)

where Ii is the particle moment of inertia, ω⃗i is the angular velocity and T⃗i, j is the torque given by r⃗× F⃗i, j.
The contact forces are computed via Hertz– Mindlin contact model. This model is available in a variety of CFD

codes. The contact model built in STAR-CCM+ was successfully validated for similar systems [4]:

F(n)
i, j =−K(n)δ (n)−N(n)ν(n)

rel;i, j, (7)

where F(n) is the contact force in the normal direction to the plane of collision. K(n) is the stiffness in the normal
direction of a “spring" that mimics the deformation process. Also, δ (n) is the inter-particle overlap distance as it would
be if the particles were undeformed. Finally, N(n) is the damping coefficient in the normal direction. The stiffness
of the spheres depends on the mechanical properties of the particles. In contrast, the damping coefficient depends on
their coefficients of mechanical restitution, which is the ratio of the final to the initial relative velocity between two
objects after their collision [2]. The tangential component of the contact force is calculated similarly. In the expression
for the tangential component, the static coefficient of friction is used [4].

In this study, we sought to reproduce numerically the experiments by Dumazer and Gagnepain [3] where glass
spheres were transported by flow in a cylindrical 2-mm diameter pipe. Following the experiments, a stationary deposit
occupies the lower half of the pipe diameter. Therefore, we do not consider the lower half of the pipe in the model to
avoid facing enormous computational times. We reduced the geometry to a rectangular conduit with a height equal to
1 mm in order to obtain qualitative results. The pipe length was 20 cm. The width of the channel was set to three-fold
the particle size. The spherical particle size was 100 µm as used in the experiments.

The equations were solved numerically via the SIMPLE algorithm. The Euler implicit unsteady technique with
5.0·10−4s time step was used to progress in time and the computational domain was discretized into 5344 control
volumes. The flow was laminar with no-slip wall boundary conditions for horizontal edges, while periodic boundaries
were used at the vertical edges (see Figure1). The initial flow rate of the fluid was 2 ml/min, and the restitution
coefficient was 0.70, 0.80, and 0.98. The number of injected particles was determined according to the experimentally
measured transport rate of 0.19 g/min. The particles were removed straightforwardly from the domain while streaming
out of the outlet. The physical properties of glass beads and water in normal conditions were used in the model.

RESULTS AND DISCUSSION

In the numerical model, corresponding to the aforementioned volume flow rate of 2 ml/min, the inlet velocity of the
fluid phase was set to u = 0.021 m/s. The low speed of transportation leads to the deposition of particles formed at the
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(a) Computational grid and boundary conditions (b) Dune formation in a channel with restitution factor 0.8

FIGURE 1: Numerical model

bottom of the microchannel. Figure 1 shows the velocity of particles in the channel. The lowest velocities correspond
to particles closer to the bottom wall of the pipeline, while the uppermost ones have a high velocity. The model also
demonstrated the formation of dunes above the particle layer (see Figure 1). This process reproduces experimental
observations. The saltation of the particles is the primary reason for the formation of dunes [1].

Further, we compared the influence of the restitution coefficient. Also, the simulation results for hydraulic con-
veying in a horizontal pipe were validated against the experimental measurements. In Figures 2 and 3, we present
how the length of the dune and the dune velocity depend on the particle restitution coefficient. The dune velocity is
found as an average velocity of the particles within a tip of a dune, and further averaged over all the formed dunes.
Following the experimental observations, we identify the tip of the dune as a compaction of particles residing in the
computational cells that are adjusted to the top wall of the tube. It may be deduced from the plots that fewer particles
deposit with an increase in the restitution factor. Therefore, the size of the dunes decreases. The plot was also used
to validate the numerical results with the experiments by Dumazer and Gagnepain [3]: for the flow rate of 2 ml/min,
the experimental dune’s length was 29.5 mm. By implementing this result into Figure 2(denoted as a dot), we can
predict the coefficient of restitution from the experiments to be around 0.74. From the experiments by Dumazer and
Gagnepain [3], we also know that the dune’s velocity was 25 mm/s. By selecting the same coefficient of restitution
and comparing it with the results depicted in Figure 3, we see a discrepancy of 10.7%. Thus, the results from the
simulations confirm that the constructed CFD-DEM model can generate a reasonable qualitative agreement with the
experimental data.
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FIGURE 2: Dune length as a function of restitution coefficient. The blue point indicates the mean dune length
obtained experimentally for 2 ml/min in Dumazer and Gagnepain [3].
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FIGURE 3: Dune velocity as a function of restitution coefficient. The blue point indicates the mean dune speed
obtained experimentally for 2 ml/min in Dumazer and Gagnepain [3].

CONCLUSION

CFD-DEM computational model of hydraulic conveying was implemented to predict dune formation in a horizontal
pipe. The main objective of the work was to validate the CFD-DEM model against experimental data using the
commercial software Star-CCM+. We could qualitatively simulate the formation of dunes which occurs via saltation.
The dune’s average velocity and length were used as the main parameter for verification. The dune length predicted
by the numerical model could be fitted to the experimental one by varying the coefficient of restitution. In contrast, the
predicted dune velocity was larger than the measured one. These discrepancies could be because we had to simulate
a rectangular conduit half as high as the real cylindrical conduit for the sake of computational time.

In future studies, it would be worthwhile to extend our simulations to investigate the statistics of the length and
velocity of dunes. Also, it is necessary to look into other variables, such as the delay time between the appearance of
dunes at a given point in space.
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H I G H L I G H T S

• We consider ice-ice interaction in de-
cane from −15.7 ◦C to −0.3 ◦C.

• 4.7 mm particles collide on the inclined
ice surface.

• Video & PEPT reveal particle motion.
• CFD-DEM simulations match experimen-

tal data.
• Coefficient of restitution peaks around
−10.0 ◦C temperature.

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
CFD-DEM
Cohesion
Ice slurry
Coefficient of restitution
STAR-CCM+

A B S T R A C T

This paper investigates the cohesive collision of ice in an oil phase at temperatures ranging from −15.7 ◦C
to −0.3 ◦C. The new information on the coefficient of restitution (COR) was obtained using three different
velocity measurement methods: high-speed experimental video recording, Positron Emission Particle Tracking
(PEPT), and numerical simulations. A new type of PEPT tracer was developed for the experiments. The COR
values were in the interval 0.57...0.82, with a maximum at around −10 ◦C. The CFD-DEM coupled approach
was applied to reproduce experiments with an ice particle drop and its collision with an inclined ice surface in
a decane. The particle–wall interaction is modeled using commercial software, considering particle cohesion,
particle size, and shape. CFD-DEM predicted the COR with an average deviation ∼10% from the experimental
data. The numerical model’s results agree with the experiments, demonstrating that the CFD-DEM method is
suitable for describing multiphase cohesive interactions.
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1. Introduction

The hydraulic transport of ice particles is essential in energy and
powder technology as ice slurries are effective coolants and phase
change materials [1]. They are also used in the construction sector [2].
A majority of commercial ice slurries use aqueous media to disperse
ice [3], which makes them hardly applicable in systems where repeated
cycles of melting and solidification are expected since molten particles
dissolve in the carrier liquid. To tackle this issue, Matsumoto et al. [4]
proposed an oil-based ice slurry capable of turning to emulsion when
melting and restoring the suspension of solid particles at temperatures
less than 0 ◦C. Moreover, oil-based slurries are additionally crucial in
petroleum technology as ice particles constitute suitable models of gas
hydrates [5]. However, once dispersed in an oil phase, ice particles
increase their cohesion due to the formation of liquid films at their
surface [6]. Pumping an oily slurry through process equipment could
become a challenging problem due to the cohesive interactions of ice
particles. Their mutual collisions can lead to agglomeration, formation
of deposits, and plugging [7].

Several complex phenomena govern the collisions of ice particles
in the oil. Attractive cohesion [6] competes with repulsive lubrication
forces [8], which are induced by oil and water squeezed out between
the colliding surfaces. Mechanical deformation and surface friction of
particles during contact dissipate a significant share of their relative
energy before the collision [8]. The viscous phase can also influence the
process via, e.g., the formation of wakes [9], turbulence [8], thermal
convection, and partial slip [10]. In most cases, the shape [11] and the
roughness [12] of particles may become crucial.

A simplified approach to characterize particle collisions is to define
a coefficient of restitution (COR) [13], i.e., the square root of the ratio
of kinetic energy before the collision (𝐸𝑘1) to the kinetic energy after
the collision (𝐸𝑘2) [8]. Numerous works are considering the COR of
ice particles in a vacuum/gaseous media [14–17]. Dealing with high-
impact velocities, they primarily focus on aerospace applications where
a particle may crack during the impact. Higa et al. [15] determined
the restitution coefficient of ice particles impacting an ice block in
the normal direction. The experiments were carried out in vacuum
conditions, temperatures above 120 K, and impact velocities from 1 to
10 m/s. The restitution coefficient was based on the linear velocities of
the particles determined with a high-speed camera. They found that
the restitution coefficient was about 0.9 for velocities below 1 m/s
and temperatures below 245 K. Increasing the temperature, the COR
progressively reduced to zero at 237 K due to the formation of liquid
films at the surface of the ice.

Reitter et al. [17] used a high-speed camera to identify the influence
of liquid films and impact angles on the COR for ice particles in the air.
They found that COR for normal collisions reduced with the particle
Stokes number and the thickness of the film. At the same time, COR
for oblique collisions did not alter significantly and was in the interval
of 0.8–0.9. Once the so-far-determined ice CORs provide valuable input
for the analysis of cohesive slurries, the experiments did not yet account
for the influence of the continuous phase. In addition, the used ice
particles were not spherical and, depending on an initial orientation,
could rotate after the impact. This was not considered in their studies.

Although a limited number of factors influencing the collision of
ice particles have been considered, there is a wider knowledge base
describing collisions of metals, oxides, and semiconductors [18]. Colli-
sions of wet particles were studied in Antonyuk et al. [19] and Muller
et al. [20]. The experimental results demonstrated that COR was depen-
dent on the thickness of the liquid layer covering the particles [20],
the viscosity of the ambient media [21], the impact velocity [19],
the viscosity and the surface tension of the liquid film, and the size
of the colliding particles [19]. Hastie et al. [22] considered COR for
objects of irregular shape. The influence of natural [18] and artificial
roughness [23] on the COR was considered for different impact veloc-
ities. It was found that an increased roughness reduces the COR in the

air. However, as has been recently reported by Krull et al. [24], COR
increases with the height of the roughness when the impact happens in
liquid media. This is most possibly connected to an altered slip at the
tips of the roughness reducing the viscous lubrication [10].

A majority of the conducted COR tests study collisions using high-
speed video tracking. Despite the method’s accuracy, there are inherent
limitations of the technique. To follow a three-dimensional motion
of the colliding particles, which is highly relevant for objects of an
irregular shape, at least two cameras are required. Direct optical access
to the process demands transparency of the studied system, which
is hardly compatible with industrial conditions where pressurized,
semi-transparent, and often chemically aggressive media are used. A
promising alternative experimental technique was proposed by Oesau
et al. [11]. The authors studied CORs of colliding particles using the
magnetic particle tracking method based on continuous sensing of
a dipole magnet. After comparison with standard high-speed video
tracking, the method demonstrated surprisingly high accuracy and
repeatability of the results. However, the technique requires magnetic
tracer particles, which limit the selection of the tested materials. An-
other limitation is a restriction for using ferromagnetic materials other
than tracers. This again reduces the industrial relevance of the studied
phenomena and the process equipment that consists of this kind of
material.

In light of the discussed limitations, another method involving
radioactivity could be more applicable to studying cohesive collisions
of ice. Positron emission particle tracking (PEPT) was pioneered at the
University of Birmingham [25–28]. This technique allows tracking a
particle moving through a process located in the field of view (FOV)
of a 3D detector array. PEPT has been an advantageous experimental
method for validating and advancing computational fluid dynamics
(CFD). The method uses the radioactive decay of a suitable isotope with
which a tracer particle is labeled. In this work, Fluorine-18 (18F) gives
rise to the emission of a positron that travels a small distance through
the medium until it annihilates with an electron, resulting in a back-to-
back emission of two photons of 511 keV each. A straight line between
two detectors receiving the photon pair of the same annihilation event
(i.e., both within a very narrow time window) defines a ‘‘line of
response’’ (LOR). This indicates that the annihilation event must have
occurred somewhere along this line. From this, algorithms processing
many LORs within a short time interval allow the determination of the
centroid of the tracer particle. The accuracy of positioning the particle
depends mainly on the algorithm and the activity of the tracer particle.
Scatter is inherent in the process, and the reasons for this are discussed
in Bailey et al. [29] and Chang et al. [30].

PEPT has been utilized to acquire particle motion, settling, and
collision in various processes to overcome the limitations of optical
methods, such as particle tracking velocimetry (PTV), which works
only with an optically transparent system that is unavailable in many
cases. PEPT results can therefore reveal the otherwise undetectable
information, which can be further compared with the computational
models. For instance, Cole et al. [31] analyzed the PEPT tracer particle
velocity to deduce information on local foam structure and events, such
as coalescence, to study the structure in flotation froths and to improve
the CFD models of flotation. In Cole et al. [31], a 70 μm alumina
particle labeled with 18F was tracked with a temporal resolution of
approximately 7.5 ms during its ascent and descent in a foam column.
PEPT was also applied to study the effect of two and three spouts
on the flow dynamics in a pseudo-2D fluidized bed, where the depth
of the bed was assumed to be sufficiently small to display pseudo-2D
behavior [32]. A 3 mm glass bead labeled with 18F was tracked with a
temporal resolution of 3–10 ms. A discrete particle model (DPM) that
describes the dynamics of the continuous gas phase and particles was
used to simulate 3D fluidized beds. A soft sphere approach was used to
describe inter-particle collisions. The results of PEPT agreed very well
with the instantaneous 2D velocity data obtained by PTV. However,
the DPM simulations overpredicted the particle velocity in the annulus
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of the fluidized bed. This deviation was likely due to wall effects that
are more pronounced in pseudo-2D beds than in 3D systems, which are
not treated with sufficient accuracy in DPM. Although PEPT has never
been used before for studying adhesive collisions of ice, our group has
recently developed a method to produce radioactive ice tracers for this
purpose [33].

Based on the discussed experimental studies, we conclude that
the coefficient of restitution is not a universal parameter describing
the cohesive collisions of ice in oil. The influence of particle surface
properties, together with the behavior of the oil phase, alters the co-
efficient of restitution significantly. Another difficulty comes from the
experimental method itself, as the existing techniques are not entirely
applicable to the desired process. Theoretical studies of the problem
could shed light on those missing phenomena, but there are not many
papers published on the matter. Chen et al. [34] performed a CFD
study of the collision of a particle with the wall in a viscous medium.
In their work, solid particles were modeled as Lagrangian objects
using the discrete element method (DEM) to describe the particle–
wall interaction [35]. After experimental validation of the model, we
consider how the properties of the liquid phase influenced the contact
forces during the collision. However, this model did not account for
such important factors as lubrication and cohesion. A series of CFD-
DEM models devoted to cohesive gas hydrates was published during the
last decade [35–37]. In these works, standard collision models built in
commercial CFD codes were used to model multiple interactions among
particles and with walls. Although some of the models complied with
theoretical correlations for agglomeration in cohesive suspension [35],
they were applied without considering how realistically they repro-
duced individual contacts. The lubrication forces were not taken into
account there either.

The primary objective of this paper is to provide a detailed physical
description of the process of cohesive collisions of ice in an oily
dispersed phase. We start with experimental studies of the process at
different temperatures and, therefore, different cohesion, using video
tracking and PEPT of radioactive ice particles. The next stage is devel-
oping a CFD-DEM model accounting for the majority of factors missing
in similar studies and validating the model against our experimental
data.

2. Methodology

2.1. Experimental system

Cohesive collisions of ice in oil were studied by letting an ice
particle impact onto an inclined ice surface immersed in decane (Sigma
Aldrich >95%). For this, the ice surface (inclined at the angle of 45◦)
was placed in a holder within a vertical cylindrical column filled with
decane (Figs. 1, 2A). The column was made of a cylindrical pipe
(borosilicate glass 3.3) sandwiched between steel (SS 304) flanges with
ports equal to the inner diameter of the pipe (42 mm). A plastic plug
holding the ice surface was inserted into the lower flange. The resulting
distance along the central vertical axis from the upper edge of the
column to the ice surface was 260 mm. The total column height was
360 mm, and the diameter was less than 88 mm.

In the PEPT experiments, the column was covered with 17-mm
thick EPE foam thermal insulation. During the experiments, the column
was fixed on a tripod, and during the video track, a scale was placed
near the column. The column was kept at temperatures below the ice
melting point and thermally stabilized. An ice particle held in the upper
decane layer was released without initial velocity and fell onto the
ice surface. The entire settling process was registered to determine
the instantaneous velocities of the particle both before and after the
collision with the surface. As a final result, based on the particle
velocity history and assuming that the particle was nearly-spherical,
the ice-in-oil restitution coefficient was determined as (1):

𝜖 =

√
𝐸𝑘2
𝐸𝑘1

∼

√√√√𝑣22 + 0.1𝜔2𝑑2

𝑣21
, (1)

where 𝐸𝑘1, 𝐸𝑘2 are the particle kinetic energies and 𝑣1, 𝑣2 are particle
linear velocity before and after a collision respectively, 𝜔 is a particle
angular velocity after collision. The particle kinetic energy of rotation
before the collision is absent in Eq. (1) since no significant rotation
of the particles was detected before the collisions. It is also shown in
Section 3.1.

In the laboratory experiments, the particle tracking was done using
a high-speed video camera (Sony IMX586 Exmor RS, 48MPx, f/1.79,
240 fps). The focal plane of the lens was aligned with the inclined
ice surface. This made it possible to determine the collision moment
between the ice particle and the surface.

The ice particles and the inclined ice surface were produced the
same way, both for laboratory tests and tests with the PEPT scanner.
The ice surface was made by freezing water in a holder at −25 ◦C. We
used tap water for all the experiments, and its chemical composition is
presented in the Supplementary materials. After the ice was formed, the
surface facing the falling particle was exposed to a warm aluminium
plate to form a flat surface at the required angle. The holder edges
have the same inclination angle (45◦). So, during partial melting, the
ice surface is aligned with the edges, achieving the required inclination.
After melting, the ice surface was covered with a polished polyethylene
plate and placed back in the freezer at the same temperature to freeze
the residual water layer between the ice and the plate. This allowed
the formation of a flat ice surface. Due to the low adhesion of ice to
polyethylene, the plate could be removed without damaging the ice
surface.

Ice particles were made of water taken at room temperature. To
do this, 80 μl of water were drawn into a standard mechanical pipette
(Thermo Scientific Finnpipette EH81075 4500 mechanical pipette 10-
100 μl). The pipette was equipped with a standard plastic tip, which
was cut to increase the diameter of the tip’s outlet hole and to doze
out the required volume of water. The pipette tip was immersed in
decane at a temperature between −17 and −19 ◦C. This was done in
a supplementary vertical column, as mentioned above, but without the
inclined surface. The column had a bottom ball valve to remove the
produced ice particles. Ten seconds after the pipette tip was immersed
in the cold decane, the water was slowly injected into the decane and
formed a single drop. When the drop fell, an ice shell was formed,
retaining the shape of a particle close to spherical and holding the
rest of the non-crystallized water inside. The crystallization of the
remaining water occurred when the drop was at the bottom of the
column. Then a new portion of water was taken, and the production
process was repeated. Three to five particles were produced at a time.
After that, the ball valve at the bottom of the column was opened, and
the particles, together with some amount of decane, were extracted
into a 400 ml beaker. The beaker was tilted so that the decane with
particles fell down along the wall without a substantial impact on the
beaker’s bottom. At least 60% of the particles from one production
procedure remained intact and undamaged. The rest of the particles
were destroyed in the process due to high internal mechanical stresses
caused by the expansion of water during crystallization inside the pre-
formed ice shell. The resulting particles had a shape very close to
spherical, with a diameter 𝑑𝑖 = 2𝑟𝑖 = 4.7 ± 0.3 mm. Their typical
appearance is shown in Fig. 2B.

The produced particles were stored in a decane and were retrieved
from it only for use in the main experiment. Prior to this, the tem-
peratures of the decane in the main column and in the beaker were
equalized. The temperatures of decane at all the stages of ice particle
production and the experiments were controlled by immersed K-type
thermocouples (±0.1◦C) connected to the RS-42 RS PRO thermometer.

The settling of the particle in a column was analyzed from the
recorded video. The linear velocity of a particle was determined from
the difference in the coordinates of its geometric center. The coor-
dinates were determined relative to the chosen zero mark on the
ruler placed near the ice surface inside the column. For that, the X-Y
coordinate system defined in Fig. 2 was used. The processing of the two
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Fig. 1. Photos of the glass columns. The ice surface in a plastic holder (A), its position within a glass column (B), the main column for the drop (C), and the supplementary
column for the ice spheres production (D).

Fig. 2. Experimental set-up (A) and appearance of the ice particles (B).

frames taken at a known time interval 𝜏 made it possible to determine
the displacement of the particle by a set of initial and final coordinates
(𝑥1, 𝑦1), (𝑥2, 𝑦2) and calculate its velocity as 𝑣 = [(𝑥22−𝑥

2
1)+(𝑦

2
2−𝑦

2
1)]

0.5∕𝜏.
The rotational velocity, 𝜔, was determined using the rotational angle
𝛼 of a line passing through the center of an ice sphere as 𝜔 = 𝛼∕𝜏.
The time interval was limited to 𝜏 = 150 ms, corresponding with the
particle’s momentum response time [8]. To process the frames and
determine the particle coordinates, we used the Grafula 3 software.

We note that our method of velocity determination contains a
methodological uncertainty, leading to an underestimation of the in-
stantaneous linear velocity due to its unknown component in the third
direction perpendicular to the focal plane of the camera. However, this
error did not make a significant contribution. Considering the system
to be axisymmetric and assuming the probability of particle motion in
all horizontal directions to be the same, the unknown horizontal veloc-
ity component could be estimated. The unaccounted particle velocity
component underestimated its average absolute value at 0.43% and a
maximum value of 2.13%.

The uncertainties of linear velocities in the laboratory tests were
determined as 𝛥𝑣 = [(𝛥𝑥 ⋅ 𝜕𝑣∕𝜕𝑥)2 + (𝛥𝑦 ⋅ 𝜕𝑣∕𝜕𝑦)2 + (𝛥𝜏 ⋅ 𝜕𝑣∕𝜕𝜏)2]0.5
where the uncertainties of the particle coordinates and the time step
are 𝛥𝑥, 𝛥𝑦 = ±0.5 mm and (𝛥𝜏 = ±4.2 ms, correspondingly. The
uncertainty of the ratio of the linear velocities 𝑉 𝑅 = 𝑣2∕𝑣1 is taken
as 𝛥𝑉 𝑅 = [(𝛥𝑣2 ⋅ 𝜕𝛥𝑉 𝑅∕𝜕𝑣2)2 + (𝛥𝑣1 ⋅ 𝜕𝛥𝑉 𝑅∕𝜕𝑣1)2]0.5.

The COR’s measurement uncertainty was defined in the same way
from 𝛥𝜖 = [(𝛥𝑣2 ⋅ 𝜕𝜖∕𝜕𝑣2)2 + (𝛥𝑣1 ⋅ 𝜕𝜖∕𝜕𝑣1)2+(𝛥𝑑 ⋅ 𝜕𝜖∕𝜕𝑑)2+
(𝛥𝜔 ⋅ 𝜕𝜖∕𝜕𝜔)2]0.5.

2.2. Positron emission particle tracking

Positron emission particle tracking (PEPT) was used to track the
3D movement and velocity of the ice particles. For this purpose, ice
particles made of water solution of 18F were located in the ice decane
column with a millisecond temporal resolution. The [18F]fluoride was
produced from [18O]water targets by the 18O(p,n)18F nuclear reaction,
where a neutron (n) and fluorine-18 were produced by the reaction
of an accelerated proton (p) with oxygen-18. Each ice particle was
made of 80 μl of the 18F aqueous solution by the method described in
Section 2.1. The radioactivity per ice particle was around 20–40 MBq.

A detector array surrounding the decaying nuclei is needed to detect
the back-to-back photon pairs. In this study, the ‘‘Siemens Biograph
Vision 600’’ PET (positron emission tomography) scanner was utilized
as the detector array. The cylindrical scanner consists of 80 rings, and
each ring consists of 760 LSO (lutetium oxyorthosilicate) crystals in
the tangential direction and one crystal in the axial direction. Each
crystal is of the dimension 3.2 mm × 3.2 mm × 20 mm. A silicon
photomultiplier (SiPM) array couples with a mini block of a 5 × 5
crystal array. For more details on the scanner, refer to [38]. The crystal
arrangement creates an axial field of view (FOV) of 263 mm and a
radius of 410 mm. 64-bit list-mode data consisting of information on
the detector pairs and 1-ms timestamps were acquired. The lines of
response (LORs) identified by the detector pairs were then processed
to locate the ice particle.

The distance between the positron emission and the annihilation
events gives rise to uncertainty in locating the decaying nucleus. This
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Fig. 3. The number of lines of response (LORs) produced by the 22Na point source
placed at different locations along the scanner axial direction as the 𝑥–𝑦 coordinate is
around (1, −176). Each point represents an average of 60 data.

distance is related to the initial energy of the positron. For 18F and
22Na, the mean ranges of positrons in water are around 0.6 mm
and 0.53 mm, respectively [29,39]. Also, the non-zero momenta of
the positron and electron as they annihilate cause deviation from
collinearity, which contributes to further uncertainty in the localization
of the decaying nucleus. In addition to the above-mentioned sources
of uncertainty, other factors, including finite crystal size, depth of
interaction in the crystal, electronics properties, and photon deflection
due to interaction with other materials, also create false and deviated
signals.

To eliminate the influence of erroneous signals and to accurately
identify the centroid of the particle, several data processing algorithms
have been developed [30,40,41] and refined for the specific detector
system and experimental setup. Unlike the projection-based algorithms
that are used in general PET reconstruction, in-house developed PEPT
algorithms compare the LORs with each other to identify the most
probable location of the centroid of the radioactive ice particle. The
iterative operation was applied to eliminate false LORs (of which
examples are shown in Fig. 5) and increase the position accuracy.

To verify the positioning algorithm used to process the ice particle
data and also to check the variations of LOR amount affected by the
relative locations in the FOV, a 22Na point source (Eckert & Ziegler)
of diameter 250 μm was placed at various axial locations. Since in the
actual experiments, the ice particle generates 3000–15000 LORs per
positioning interval (4 ms in this study), a period was chosen to obtain
around 1700 LORs from the 22Na point source when it was at the FOV
center. Then the same data acquisition setting was used as the point
source moved to the FOV edge to check how the relative location affects
the LOR amount and the positioning accuracy.

As shown in Fig. 3, as the 22Na point source moved away from
the FOV center along the scanner axial direction by around 115 mm,
the number of LORs was reduced to 60% of the peak number. The
resulting positioning accuracy as a function of axial location is plotted
in Fig. 4. 3D standard deviations of 60 positions (Fig. 4) were obtained
at different locations corresponding to those shown in Fig. 3. Note that
in this verification test, 22Na point source was off the center in the plane
perpendicular to the scanner axial direction for around 176 mm. More
minor standard deviations can be expected if the positron emitter is
on the axial axis of the cylindrical scanner. Under this condition, the
positioning uncertainties, as indicated by the standard deviations, are
below 0.2 mm within around half of the axial FOV range.

Verified with the 22Na point source, the same algorithm was applied
to locate the ice particles. Fig. 5(a) shows the LORs of 0.1 ms acquired

Fig. 4. The 3D standard deviation of 60 positions, as an indication of the positioning
accuracy, obtained by processing the LORs of the 22Na point source using the in-
house developed algorithm. The point source was placed at different locations along
the scanner axial direction as the 𝑥–𝑦 coordinate is around (1, −176).

with a stationary ice particle made of 80-μl 18F aqueous solution and
the particle was kept still in decane. Fig. 5(b) shows the LORs used
for localization after being processed by the iterative algorithm. The
3D standard deviation of 60 positions, each obtained every 4 ms, is
177 μm under the condition of 3015 LORs per 4 ms and the particle
at the 𝑧-axis center and off 𝑥 − 𝑦 center for around 90 mm. Since the
LOR amounts in ice collision experiments are usually between 3000
and 15000, and the standard deviation scales with 1∕

√
𝑛, where 𝑛 is

the number of LORs [40,42], the accuracy in the actual experiments
are expected to be better than 177 μm.

The uncertainties of the linear velocities, their ratio, and COR for
the PEPT experiments were determined in the same way as for the lab-
oratory tests, using the corresponding uncertainties of the coordinates
(𝛥𝑥 = 0.081 mm, 𝛥𝑦 = 0.062 mm, 𝛥𝑧 = 0.145 mm), and time (𝛥𝜏 = 2
⋅10−12 s).

2.3. Model description

CFD-DEM model of a multiphase system was built using the com-
mercial software STAR-CCM+ 2210 17.06.007) [43]. This model was
recently validated for settling of Lagrangian particles in viscous flu-
ids [44]. The fluid and solid phases were solved separately in the
coupled CFD-DEM method based on the Eulerian–Lagrangian approach.
The liquid phase is described by the system of volume-averaged Navier–
Stokes equations formulated for a laminar, incompressible, and iso-
thermal fluid [8]:
𝐷𝜙
𝐷𝑡

= 0, (2)

where 𝜙 is the volume fraction of the liquid, and 𝐷...∕𝐷𝑡 is the substan-
tial derivative. For the computational cells where Lagrangian particles
reside, this parameter is calculated as 1 − 𝑉𝑝/𝑉𝑐 , where 𝑉𝑝 is the total
volume of particles and 𝑉𝑐 is the volume of the computational cell.

The momentum equation:

𝜌
𝐷𝜙𝑢
𝐷𝑡

= −∇𝑝 + 𝜇∇2𝑢 − 𝑓𝑝,𝛴 , (3)

where 𝑢 is the fluid velocity, 𝜌, and 𝜇 are the density and viscosity,
respectively, and 𝑝 is the pressure. The last term of Eq. (3) describes
the superposition of inter-phase forces (per unit volume) acting from
Lagrangian particles residing in a computational cell. This term is com-
puted scaling the inter-phase forces applied to an individual particle
with the number density of particles in the computational cell 𝑛 =
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Fig. 5. Lines of response (LORs) of 0.1 ms acquired with a stationary ice particle in decane. The particle was made of 80-μl 18F aqueous solution. The 𝑧-axis is the scanner axial
axis. (a) Unprocessed LORs. (b) The LORs is used for localization after being processed by the iterative algorithm.

3𝜙∕4𝑟3𝑖 , where 𝑟𝑖 is the radius of the 𝑖th particle. We note that Eq. (3)
is presented in a general form applicable to a system with multiple
particles. However, our system consisted of a single particle.

Newton’s second law describes the linear motion of the discrete
phase:

𝑚𝑖
d𝑣𝑖
d𝑡

= 𝑓𝑝,𝑖 + 𝑓𝑙𝑠,𝑖 + 𝑓𝑙𝑟,𝑖 + 𝑓𝑏,𝑖 + 𝑓𝑣𝑚,𝑖 + 𝑚𝑖𝑔 +
∑

𝑗=1,𝑁2

𝑓𝑖,𝑗 , (4)

where 𝑚𝑖 is particle mass, 𝑣𝑖 is the particle’s velocity, and indices 𝑙𝑠,
𝑙𝑟, and 𝑣𝑚 denote the shear, rotational lift forces, and the virtual mass
force, respectively, 𝑓𝑏,𝑖 = 𝜌∕𝜌𝑝𝑚𝑖𝑔 is the buoyancy force, and 𝜌𝑝 is the
density of the particle. Also, 𝑓𝑖,𝑗 are the forces acting on the 𝑖th particle
due to contact with 𝑁2 particles and solid boundaries, and 𝑔 is the
acceleration due to gravity. The particle rotation is calculated from:

d
d𝑡
(𝐼𝑖�⃗�𝑝,𝑖) =

∑
𝑗=1,𝑁2

𝑇𝑖,𝑗 , (5)

where 𝐼𝑖 is the particle moment of inertia, �⃗�𝑝,𝑖 is the angular velocity
of the particle, and 𝑇𝑖,𝑗 is the total torque of the forces acting on the
𝑖th particle due to its contacts.

The drag force acting on the particle is calculated as [8]:

𝑓𝑝,𝑖 =
𝜋
2
𝑟2𝑖 𝑐𝐷,𝑖𝜌𝑓 (𝑢 − 𝑣𝑖)|𝑢 − 𝑣𝑖|, (6)

where 𝑐𝐷,𝑖 is the drag force coefficient. The drag coefficient is calculated
according to the Schiller–Naumann drag coefficient method [8]:

𝑐𝐷,𝑖 =
⎧⎪⎨⎪⎩

(
24∕Re𝑝,𝑖

)
⋅
(
1 + 0.15Re0.687𝑝,𝑖

)
Re𝑝,𝑖 ≤ 103

0.44 Re𝑝,𝑖 > 103,
(7)

where Re𝑝,𝑖 = 2𝜌|𝑢 − 𝑣𝑖|𝑟𝑖∕𝜇 is the particle Reynolds number.
The shear lift force (Saffman force) applies to a particle moving

relative to a fluid with a velocity gradient in the fluid orthogonal to
the relative motion. The force is given as:

𝑓𝑙𝑠,𝑖 = 𝑐𝑙𝑠𝜌𝜋𝑟
3
𝑖
(
𝑢 − 𝑣𝑖

)
× �⃗�, (8)

where �⃗� = ▽ × 𝑢 is the curl of the fluid velocity and 𝑐𝑙𝑠 is the lift
coefficient. Sommerfeld’s definition of the lift coefficient is used in the
model [45]:

𝑐𝑙𝑠,𝑖 =
4.1126
Re0.5𝑠,𝑖

𝑓𝑖
(
Re𝑝,𝑖,Re𝑠,𝑖

)
, (9)

where Re𝑠,𝑖 = 4𝜌𝑟2𝑖 |�⃗�|∕𝜇 is the Reynolds number for shear flow, and
function 𝑓 is given as:

𝑓𝑖 =

{(
1 − 0.3314𝛽0.5

)
𝑒−0.1Re𝑝,𝑖 + 0.3314𝛽0.5 Re𝑝,𝑖 ≤ 40

0.0524
(
𝛽Re𝑝,𝑖

)0.5 Re𝑝,𝑖 > 40,
(10)

𝛽 = 0.5Re𝑠,𝑖∕Re𝑝,𝑖. The spin lift force (Magnus force) model is applied to
calculate the force acting on a spinning particle moving in a fluid [8]:

𝑓𝑙𝑟,𝑖 = 𝜌𝜋𝑟2𝑖 𝑐𝑙𝑟|𝑢 − 𝑣𝑖|
�⃗�𝑖 ×

(
𝑢 − 𝑣𝑖

)

|�⃗�𝑖|
. (11)

In the above, �⃗�𝑖 is the relative angular velocity of the particle to
the fluid:

�⃗�𝑖 = 0.5∇ × 𝑢 − �⃗�𝑝,𝑖, (12)

where 𝑢 is the fluid velocity and 𝜔𝑝,𝑖 is the angular velocity of the
particle. The coefficient of rotational lift 𝑐𝑙𝑟,𝑖 is according to Sommerfeld
given as [45]:

𝑐𝑙𝑟,𝑖 = 0.45 +
(Re𝑅,𝑖

Re𝑝,𝑖
− 0.45

)
exp

(
−0.5684Re0.4𝑅,𝑖Re0.3𝑝,𝑖

)
, (13)

where Re𝑅,𝑖 = 4𝜌𝑟2𝑖 |�⃗�𝑖|∕𝜇.
The virtual mass force affects the material particle as it accelerates

the surrounding continuous phase:

𝑓𝑣𝑚,𝑖 = 𝑐𝑣𝑚𝜌𝑉𝑝,𝑖

(
D𝑢
D𝑡

−
d𝑣𝑖
d𝑡

)
, (14)

where 𝑐𝑣𝑚 = 0.5 is the virtual mass coefficient.
When the particle comes into contact with its nearest neighbors at

the next DEM-time step, the contact forces and torque are activated
in Eq. (4),(5). The Hertz–Mindlin contact model with linear cohesion
calculates the contact forces in normal, 𝑛, and tangential, 𝑡, directions
relative to the plane of contact between the objects [35]:

𝑓𝑖,𝑗 = 𝐹 (𝑛)
𝑖,𝑗 𝑛 + 𝐹 (𝑡)

𝑖𝑗 �⃗�. (15)

The unit vector normal to the contact plane 𝑛 points from the center
of colliding 𝑖th particle towards the center of the 𝑗th particle or the
contact zone at the wall.

The normal component of the force then becomes:

𝐹 (𝑛)
𝑖,𝑗 = −𝐾 (𝑛)𝛿(𝑛) −𝑁 (𝑛)𝑣(𝑛)𝑖 + 𝐹𝐶 , (16)

where 𝛿(𝑛) is the particle-to-wall overlap distance. According to Hertz’s
theory, 𝐾 (𝑛) is the ‘‘spring’s’’ stiffness in the normal direction employed
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in the soft-sphere approach, and it is dependent on 𝛿(𝑛):

𝐾 (𝑛) = 4
3
𝐸𝑒

√
𝑟𝑖𝛿(𝑛), (17)

where 𝐸𝑒 = 𝐸𝑖∕(1 − 𝜈2𝑖 ) is the equivalent of Young’s modulus, 𝐸𝑖
is Young’s modulus, and 𝜈𝑖 is the Poisson ratio. 𝑁 (𝑛) is the damping
coefficient in the normal direction:

𝑁 (𝑛) =
√

5𝐾 (𝑛)𝑚𝑖
− ln(𝜖(𝑛))√
𝜋2 + (ln 𝜖(𝑛))2

, (18)

where 𝜖(𝑛) is the coefficient of the particle material restitution in
the normal direction. The cohesive force is expressed using Johnson–
Kendall–Roberts (JKR) model [46]:

𝐹𝐶 = 1.5𝑟𝑖𝑊 𝜋, (19)

where 𝑊 is the work of cohesion. The values for the cohesion work at
different experimental temperatures were taken from the work of Yang
et al. [6].

The tangential component of the contact force [35]:

𝐹 (𝑡)
𝑖,𝑗 = −𝐾 (𝑡)𝛿(𝑡) −𝑁 (𝑡)𝑣(𝑡)𝑖 (20)

where

𝛿(𝑡) = ∫
𝑡𝑐

0
𝑣(𝑡)𝑖 d𝑡, (21)

where 𝑡𝑐 is the contact duration [47]:

𝑡𝑐 = 2.94
⎛⎜⎜⎝
5
√
2𝜋𝜌𝑝
4𝐸𝑒

⎞⎟⎟⎠

0.4

𝑟𝑖𝑣
−1∕5
𝑖 . (22)

The stiffness coefficient in the tangential direction:

𝐾 (𝑡) = 8𝐺𝑒

√
𝑟𝑖𝛿(𝑡), (23)

where 𝐺𝑒 = 0.5 𝐸𝑖
(1+𝜈𝑖)

is the equivalent shear modulus.
𝑁 (𝑡) is the damping coefficient in the tangential direction:

𝑁 (𝑡) =
√

5𝐾 (𝑡)𝑚𝑖
− ln(𝜖(𝑡))√
𝜋2 + (ln 𝜖(𝑡))2

, (24)

where 𝜖(𝑡) is the particle restitution coefficient in the tangential direc-
tion.

In case |𝐾 (𝑡)𝛿(𝑡)| > 𝑓𝑠|𝐾 (𝑛)𝛿(𝑛)| the tangential component comes
above the sliding limit, a constant 𝐹 (𝑡) applies as follows [35]:

𝐹 (𝑡) = 𝑓𝑠|𝐾 (𝑛)𝛿(𝑛)| sign (𝛿(𝑡)), (25)

where 𝑓𝑠 is the Coulomb friction coefficient.
The last aspect of the model is the rolling resistance that gives a

resisting torque in Eq. (5):

�⃗�𝑖,𝑗 = 𝑟𝑖𝜇𝑟𝐹
(𝑛)
𝑖,𝑗

−�⃗�𝑖

|�⃗�𝑖|
, (26)

where 𝜇𝑟 = 2.5 ⋅10−2 is the coefficient of rolling resistance.
To account for the lubrication forces in the continuous phase, we

used the approach developed by Joseph et al. [48], extrapolating the
COR for wet particles from the COR in ‘‘dry’’ conditions:

𝜖(𝑛) = 𝜖𝑑𝑟𝑦 +
1 + 𝜖𝑑𝑟𝑦

St0
ln

𝑥𝑐
𝑥0

, (27)

where 𝜖𝑑𝑟𝑦 = 0.8 is the dry restitution coefficient, St0 = 𝑚𝑖𝑣𝑖∕6𝜋𝜇𝑟2𝑖 is
the particle Stokes number before the contact takes place, and 𝑥𝑐∕𝑥0
∼ 10−3 is the typical ratio between the inter-particle distance at the
point of contact 𝑥𝑐 and the terminal position outside the range of the
lubrication force 𝑥0 [48]. As in Reitter et al. [17], we set 𝜖𝑑𝑟𝑦 = 0.8, and
also assume the coefficient of restitution in the tangential direction was
not significantly altered by lubrication, i.e., 𝜖(𝑡) = 𝜖𝑑𝑟𝑦. The values of the
static friction coefficient for ice were taken from recent experiments by

Sukhorukov [49]. They were also linearly interpolated for the temper-
ature interval from our experiments — the obtained values of the static
friction coefficient range from 0.57 to 0.71. The physical properties of
the ice and the decane were set dependent on the temperature following
NIST database [50].

The numerical model was built in the commercial CFD-package
STAR-CCM+. The geometry of the computational domain is the same as
experimental geometry. The boundary conditions include the pressure
boundary at the decane-air interface, and the rest of the surfaces are
no-slip walls. As presented in Fig. 6, the computational domain was
discretized using 143656 27-mm3 cubical control volumes to simulate
the process of the ice drop falling and the collision with the inclined ice
surface. The mesh around the inclined surface is refined to 20% of the
mesh base size. A mesh-independence study was performed using mesh
sizes twice smaller and 1.5 times larger than the used mesh size. The
chosen mesh size resulted in the lowest computational costs, yet the
best quantitative agreement with values of particle terminal velocity
computed using analytical expressions [8]. A two-grid procedure is
used to couple the phases in the vicinity of the boundaries, where the
computational cells are smaller than the particle. In this case, the fluid
phase was resolved on a larger grid, and then the velocity and the
pressure fields were linearly interpolated to the original mesh [51]. In
the experiments, the shape of the particles was not ideally spherical.
Therefore, composite particles were generated as an assembly of two
spheres with the sizes and the offset determined experimentally. They
are presented in Fig. 6.

The continuous-phase equations were spatially discretized using
central differences. The Euler implicit method was used to advance
time with a time step of 10 ms. The governing equations were solved
numerically using SIMPLE(Semi Implicit Pressure Linked Equation)
with relaxation coefficients: 0.8 velocity, 0.2 pressure, 0.9 volume
fraction. A study compared different collision models, including the
Hertz–Mindlin and Walton-Brown models [52]. The results showed that
both models produced similar outcomes. The minimum time step for
the DEM solver was set at 20% of the duration of the Rayleigh wave
propagation through the particle [53].

3. Results and discussion

3.1. Experimental trajectories

An example of the particle fall process is shown in Fig. 7 and in
the Supplementary video. From the experiments, we conclude that the
particle moved vertically enough for most of the drops. Deviations from
the vertical trajectory are insignificant, and the moment of collision is
well detected. The reason for the horizontal shifts during the falling
process is that the particle does not have an ideal spherical shape. Due
to the small magnitude, this was challenging to quantify the rotational
motion during the particle fall.

A clear rebound does not characterize the collision itself. The par-
ticle continues to move along the inclined ice surface without a de-
tachment but starts rolling after the impact. A similar movement of the
particle was detected in the PEPT experiments. Fig. 8 shows a typical
PEPT-track of the ice particle with a 4 ms time resolution.

The trajectory shows that the particle descended, collided with
the inclined ice surface, continued moving along the ice surface, and
eventually proceeded further down through a vertical column (Fig. 1A).
The particle speed, as shown in Fig. 8(b), downward velocity, and
acceleration can be further calculated. As it can be seen in Fig. 8(b), the
particle speed decreased abruptly once colliding with the ice surface.

As discussed before, if the particle is not perfectly round, it can
be subject to unbalanced lateral forces while settling in decane. This
results in lateral movements as can be seen in the figures. It is observed
that the particle experienced a speed drop and a speed recovery around
the collision event, which is likely an indication of a rebound. In the
PEPT experiments, the rebound velocity was identified at the time
when the descending speed reached a local minimum (minimal down-
ward motion). Also, the velocity before the collision was identified just
before this local minimum descending.
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Fig. 6. Computational grid at the inclined surface and particle geometry.

Fig. 7. Particle trajectory during experiments obtained combining video snapshots.

3.2. CFD-DEM

The numerical analysis was carried out for a temperature interval
from −15 ◦C to −1.4 ◦C. For illustration, Fig. 9 shows the particle
velocity as a function of time at −4.5 ◦C. As can be seen from the
figure, the first time interval (1) corresponds to the initial particle’s
downward motion when the velocity of the particle accelerates with
a simultaneous increase in the drag force. After the interval (1), the
terminal velocity was reached. According to the simulation, the average
value of this velocity was 12 cm/s. The time interval when the particle
moves with this constant speed is denoted as (2) in the figure. At the
next stage (3), when the ice particle collides with the inclined ice sur-
face, the velocity drops to about 7 cm/s due to mechanical deformation
(including lubrication) and cohesion. After collision (4), the particle
accelerates again due to gravity up to a value close to the terminal
velocity. At the last stage (5), the velocity drops sharply as the particle
reaches the bottom of the column and rebounds slightly, changing the
velocity magnitude. Fig. 9 also illustrates how the temporal change of
the total contact forces during motion along the ice surface. As follows
from the figure, the contact forces are negative at the first collision
of the particle with the wall due to the deformation of the materials.
The overlap reduces from an initial value of 16 μm to ∼7 μm during
the next rounds of particle deformation. The magnitude of the forces is
about 3 times higher than the cohesive force, which is ∼1 mN in this

case. The positive peaks appear at the moments of system reloading
after the first repulsion when the particle is directed back towards the
surface under the simultaneous action of gravity and cohesion. Fig. 10
demonstrates an imprint of the particle’s trajectory onto the velocity
field in the liquid. According to the figure, the particle’s trajectory is not
strictly vertical, which was also observed in the experiments. Due to the
non-spherical shape, the particle scours, and then lift forces come into
action. As expected, the velocity of the liquid phase reaches a maximum
around the moving particle. The average velocity values are observed
along the trajectory of the particle, and the lowest values correspond to
the remaining regions. The velocity in the area below an inclined plane
is almost zero before an ice particle collides with it, but it increases
slightly after the particle–wall collision.

3.3. COR and model validation

The video experiments were carried out in the temperature range
from −15 ◦C to −0.3 ◦C, while the temperature for the PEPT exper-
iments varied in the range from −15.7 ◦C to −4.2 ◦C. The summary
of these studies and their comparison with CFD simulation are dis-
cussed below. We note that the repeatability of experimental results for
temperatures above −2 ◦C was complex due to difficulties in thermal
stabilization. This was the primary source of scattering of the experi-
mental data. However, as it will be shown below, the reliability of the
obtained data is confirmed by their agreement in the measurements
done by different methods.

Fig. 11 presents the linear velocities of the particles before and
after the collision with the ice surface. We conclude that the velocities
obtained by the different methods are in good agreement with each
other. Taking the results from the video experiments as a reference, the
average/maximum deviations of the PEPT experiments and the simula-
tion results are 6.6/28.8% and 8.8/12.9% for the velocities before the
collision. They are 23.8/46.4% and 12.8/16.7% for the velocities after
the collision, respectively.

The effect of the temperature on the particle velocities before and
after the collision is different. Considering the results of simulation
and laboratory tests first, we observe the particle velocity before the
collision slightly increases with the temperature. In contrast, the par-
ticle velocity after the collision tends to have a maximum value at a
temperature of −9.9 ◦C (video) and −12 ◦C (CFD).

The velocity before the collision increases with the temperature as
the viscosity of decane reduces [50]. At the same time, the particle
velocity after impact increases too, but only up to a specific tempera-
ture. This is probably due to the reduction of the ice friction coefficient
with temperature followed by an increased cohesion of ice [6,7] coming
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Fig. 8. Particle track in decane obtained by PEPT with a temporal resolution of 4 ms (A), and particle velocity history (B). The particle is released (1) and sedimented in decane
(2), collided with the inclined ice surface (3), continued moving along the ice surface (4), and eventually fell further down through a vertical tunnel (5).

Fig. 9. Temporal changes in particle velocity (A) and contact forces (B) at −4.5 ◦C obtained using a CFD-DEM model, depicting the particle’s movement as it was released (1),
settled in decane (2), collided with the inclined ice surface (3), slid along the ice surface (4), and ultimately dropped down a vertical tunnel (5).

Fig. 10. Velocity distribution of the fluid phase at four different moments of the time at −4.5 ◦C.
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Fig. 11. Particle linear velocities as a function of temperature. Polynomial
approximations of experimental results are given for reference.

into action and dominating all other effects, continuously reducing the
velocity when increasing the temperature.

A slightly different behavior of particle velocities was found in PEPT
experiments. Here the velocity before the collision has a minimum value
at around −9.9 ◦C, while the velocity after the collision constantly
decreases within the entire studied temperature range. We attribute
these results to a broader spread of particle velocity caused by the lower
accuracy of the PEPT experiments because of the more complicated
experimental procedure. We also note that the thermal stabilization
was imperfect in the PEPT experiments as the portal of the scanner
is subjected to automatic ventilation. Therefore, thermal convection of
the decane was possible there.

Despite that, the linear velocity ratio (VR = 𝑣2/𝑣1) for all of the
methods is similar (Fig. 12). Taking the fitted values of VR from
the video experiments as a reference, the average deviation of the
CFD and PEPT is 4.2%, and 16.9%, respectively, and the maximum
deviations are 8.1% and 18.1%, respectively. All the methods show the
VR has a local maximum which is 0.711 at −10.8 ◦C (PEPT), 0.605 at
−11.1 ◦C (video), and 0.578 at −12 ◦C (CFD). The appearance of the
VR maximum is a consequence of linear velocity behavior. Ice cohesion,
friction, and viscosity are the primary factors affecting the maximum
linear velocity ratio. These factors affect particle motion differently
and contribute to the overall system behavior. Due to increasing ice
cohesion in decane when the temperature increases [6,7], the particle
impact becomes less elastic. In contrast, decreasing ice friction and
viscosity of decane with increasing temperature causes the drag and
shear forces acting on the particle to decrease, leading to a permanent
increase in particle velocity before impact. The observed maximum
VR results from a balance between the increased ice cohesion and
decreased friction, which simultaneously progress with the increased
temperature. Below the extremum, the friction is reduced with temper-
ature while the cohesion is still low. Therefore, VR increases. Increasing
the temperature above the extremum makes the cohesion effect more
dominant, decreasing the linear velocity ratio.

The influence of ice cohesion forces is also seen from the angular
velocities of the particle after the impact (Fig. 13). Here, the laboratory
experiments showed the angular velocity has a maximum at the temper-
ature of −9.6 ◦C. Then, the angular velocity reduces with the increase in
temperature. The simulation showed a slightly higher temperature for
the maximum angular velocity point, around −4.5 ◦C. Nevertheless, in
general, the data are in good agreement with each other.

Fig. 12. Velocity ratio as a function of temperature. Polynomial approximations of
experimental results are given for reference.

Fig. 13. Angular particle velocity as a function of temperature. Polynomial
approximations of experimental results are given for reference.

The average and maximum deviation of simulation from the video
experiments are 28.5% and 58.8%. This significant spread is, however,
expected since the shape of the particles is a non-ideal sphere. Due to
that, the variations of angular velocities appear if a particle touches the
ice plane with a more or less flat section of its surface. We note that
no information on the particle’s angular velocity is available from our
PEPT method.

The coefficient of restitution of ice in decane was determined using
linear and angular velocities as a square root of the ratio of particle
kinetic energies before and after an impact, according to Eq. (1). Fig. 14
presents these calculations. It should be noted that since the particle
rotation could not be quantified in the PEPT experiments, we took the
fitted values of particle angular velocity from the video experiments. To
illustrate how cohesion influences the COR, in this figure, we show the
CFD results from two different simulation series: one produced using
the median cohesive force from Yang et al. [6] and those with 95%-
based values. From Fig. 14, we conclude that there is a good agreement
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Fig. 14. Coefficient of restitution of ice in decane. Polynomial approximations of
experimental results are given for reference.

between the video experiments and CFD simulation. The average and
maximum deviation of simulation from lab tests are 9.4% and 12.1%.
Deviation of the PEPT experiments is higher and equals to an average of
19.0% and a maximum of 21.7%. For all three methods, a temperature
of maximum COR can be found at −11.0 ◦C (video), −10.5 ◦C (CFD),
and −10.0 ◦C (PEPT). These temperatures agree with each other, cor-
responding to the maximal values of COR 0.680 (video), 0.742/0.693
(CFD, median cohesive force/95%-based values), and 0.816 (PEPT).
The temperature trend of COR is similar for all three methods. With
increasing temperature, the COR first increases until the temperature of
maximum COR. Then, the COR decreases, reaching a similar or slightly
lower value at −4.2 ◦C than at the lowest considered temperatures. The
minimum obtained values of the COR are 0.567 (video), 0.574 (CFD),
and 0.682 (PEPT).

4. Conclusions

This paper provides new data on the restitution coefficient of ice
in decane in the temperature range from −15.7 ◦C to −0.3 ◦C. The
restitution coefficient was proportional to the ratio of kinetic energies
of a falling particle in decane before and after its collision with an
inclined ice surface. Particle velocity measurements were carried out
using the Positron-Emission Particle Tracking technique (PEPT) and
high-speed video recording. Both methods provided similar data on
the linear velocities, their ratios, and the restitution coefficient (COR).
However, the COR has average and maximum deviations between
PEPT experiments and the camera-recorded experiments of 19.0% and
21.7%. The reasons for that are thought to be the more complicated
procedure of the PEPT experiments compared to the laboratory tests
and the impossibility of determining the angular velocity of a particle
after its collision with the ice surface.

The coefficient of restitution has a maximum value at −10.0/
−11.0 ◦C (PEPT/video). This value is 0.816/0.680, while the min-
imum values within the temperature range of −15.7...−4.2 ◦C are
0.682/0.567 (PEPT/video). The increasing restitution coefficient is due
to the decreasing viscosity of the decane, and the decreasing values are
due to cohesion.

The experiments were reproduced using CFD-DEM, considering the
cohesion, temperature-dependent properties of the materials, and shape
of the particles. The restitution coefficient obtained in the simulations
deviates from the video-recorded experiments with an average discrep-
ancy of 9.4%. The simulation reproduced the actual particle tracks well,

giving particle velocities very close to the actual ones. The average
deviations of the simulated particle linear and angular velocities from
the experimental values were about 10.8%. Based on the successful
validation of the model with experimental results, we conclude that
the cohesive CFD-DEM model implemented in Star-CCM+ is sufficiently
accurate.
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CFD‑DEM model of plugging in flow 
with cohesive particles
Nazerke Saparbayeva * & Boris V. Balakin 

Plugging in flows with cohesive particles is crucial in many industrial and real‑life applications such as 
hemodynamics, water distribution, and petroleum flow assurance. Although probabilistic models for 
plugging risk estimation are presented in the literature, multiple details of the process remain unclear. 
In this paper, we present a CFD‑DEM model of plugging validated against several experimental 
benchmarks. Using the simulations, we consider the process of plugging in a slurry of ice in decane, 
focusing on inter‑particle collisions and plugging dynamics. We conduct a parametric study altering 
the Reynolds number (3000...9000), particle concentration (1.6...7.3%), and surface energy (21...541 
mJ/m2 ). We note the process possesses complex non‑linear behaviour for the cases where particle‑wall 
adhesion reduces by more than 20% relative to inter‑particle cohesion. Finally, we demonstrate how 
the simulation results match the flow maps based on the third‑party experiments.

Cohesive particles can significantly impact the morphology of multiphase flows. Sticking to each other and 
walls, the particles build an obstruction or plug in closed channels. The plugging is crucial in many applied 
fluid mechanics problems: flows in porous media, hemodynamics, and suspension  rheology1. The industrial 
relevance of the problems concerns petroleum, pharmaceutical, chemical, and food industries. More globally, 
the process of plugging is relevant for behaviour models of  animals1. The plugging is dependent on the flow 
field, the number of particles, their cohesivity, and contact behaviour. However, due to the complexity of inter-
particle and particle-fluid interactions, no reliable methodology is used to predict the plug formation process. 
Experimental flow maps enable evaluation of plugging risks for a limited interval of flow  conditions2. Therefore, 
a better theoretical understanding of the fluid mechanics of plugging is required to extend and update the exist-
ing empirical correlations.

For this reason, numerical models of plugging based on the principles of computational fluid dynamics 
(CFD) are developed. About a decade ago, simplified models of plugging were developed for  petroleum3,4 and 
medical  applications5. Eskin et al.3 considered the process of asphaltene deposition in petroleum pipes using 
the advection-diffusion method coupled with the population balance approach, which simulated the agglom-
eration of asphaltene particles. Cohesive interactions of particles were modelled using empirical correlations 
where coefficients were fitted to a smaller-scale experiment. The model could simulate a uniform, continuous 
deposit blocking ∼ 30% of the pipe-cross section with no overall flow reduction. A similar approach was used 
by Rukhlenko et al.5 to simulate thrombosis in a blood vessel. This work used a single-phase CFD model cou-
pled with a population balance approach to define a porous zone where the blood coagulation happened and 
resulting fibrin structures were deposited. The simulations resulted in flow maps highlighting intervals of vessel 
sizes and Reynolds numbers where the thrombus formation was most probable. Labois et al.4 presented a more 
complex three-phase Eulerian-Eulerian model of gas hydrate deposition in the subsea conditions of gas leakage. 
An innovative aspect of the proposed simulation approach was defining the second, stationary hydrate phase 
generated from the moving hydrate phase when it adhered to a structure. However, this transition’s details were 
unclear as the authors did not present sufficient details of the simulation approach. The considered  models3,4 were 
based on empirical closure relations and required input of several fitting parameters determined experimentally. 
Moreover, none of the models was verified against a relevant experimental benchmark.

A more accurate simulation approach would consider interactions of individual particles during the plugging. 
In this case, an Eulerian CFD model is combined with a Lagrangian Discrete Element Method (DEM) capable 
of reproducing inter-particle collisions. Several works used this method to study the clogging of relatively large 
particles at local flow restrictions. They considered how various parameters affect plugging, such as particle 
size, concentration, velocity, and shape. The study by Hilton et al.6 focused on the effect of particle shape on 
the volumetric dynamics of pneumatic transport systems. This model treated collisions of ∼ 400-µm particles 
using a standard soft-sphere model with the so-termed spring, dash-pot, and slider. The model, validated against 
experiments, was capable of depicting particle slugs blocking the entire cross-section of the pipe. Interestingly, 
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the simulations demonstrated that spherical particles or those close to spherical shape led to stable flow at vol-
ume fractions around 60%, while ellipsoidal particles led to slug formation when the ellipticity was under 0.7 
or above 1.3. Yang et al. used the CFD-DEM method to examine the plugging of particles in the shale  pores7. 
Their findings showed that particle size and concentration are crucial in plugging efficiency. Additionally, the 
authors noted that the particle velocity, roughness, and tortuosity significantly affect the blockage of the pores. 
Ma et al.8 utilized the CFD-DEM approach to investigate the blocking mechanism in pre-packed gravel screens 
commonly used in oil and gas wells. The study found that the size and concentration of large particles affected 
blockage, and increasing the screen’s porosity could reduce particle accumulation. Mondal et al.9 studied the 
behaviour of particulate suspensions at a constriction for concentrations < 50% using the CFD-DEM method. 
Their research revealed that the resolved approach is suitable for systems where the particle size is comparable to 
the flow geometry. They also investigated the phenomenon of multi-particle hydrodynamic bridging. They found 
that the probability of clogging increases with particle volume concentration, suggesting a critical particle volume 
concentration for the spontaneous formation of bridges. The critical concentration was in the interval of 7–32% 
and dependent on the ratio between the particle size and the diameter of the flow restriction. A similar system 
was considered by Xu et al.10, who modelled the clogging of a constriction by polydisperse sand particles. They 
examined how particle size and shape affect clogging probability and found that the largest particles from the size 
distribution formed a particle jamming arch. The probability of clogging approached unity when d84/d16 > 1.8 . 
None of the abovementioned CFD-DEM studies considered plugging by cohesive particles.

Several studies investigated the process of plugging with cohesive particles. Shao et al.11 analysed the mecha-
nism of clogging in microchannels by the gas-solid flow where the particles were sticky due to liquid bridges and 
van-der-Waals interactions. The size of the channel was comparable with the size of the particle ( ∼ dp ), and the 
particles’ Young modulus was lower than the respective parameter of most solid materials. The plugging event was 
defined as the channel blockage by a particle with no simultaneous stagnation in the gas phase. The simulation 
resulted in flow maps illustrating how the plugging depends on the particle Stokes number (St) and the Weber 
(We) number of the bridge. As follows from the maps, plugging took place for St < 3.5 and We < 10 . Duan 
et al.12 simulated an industry-relevant problem of methane hydrate blockage at two different flow restrictions 
in a water-dominant system. The CFD-DEM model treated cohesive collisions between particles, combining 
the Hertz-Mindlin approach with Johnson–Kendall–Roberts (JKR) cohesion model. A simplified validation 
of the model was performed comparing with the experimental pressure gradients for cases with no plugs in a 
homogeneous flow regime. The model reproduced the formation of a sand watch-like deposit at the restriction 
with no total flow stop by this deposition. The deposit size was proportional to the flow velocity and the size of 
solid particles. Wang et al.13 used a CFD-DEM approach to model gas-solid flow with hydrate particles through 
a pipe with varying diameters. The model simulated cohesive interactions using the JKR approach. Although the 
Young modulus of the particles was significantly below referent values for gas hydrates, and the surface energy of 
the particle is not provided in the paper, the simulation results were compared surprisingly well with the experi-
ments. Further, the authors considered how the particles’ deposition efficiency depends on mean flow velocity 
and the particle-to-diameter size ratio. The deposition efficiency appeared in the interval 2% to 34%, meaning 
that the model did not reproduce the process of plugging.

Concluding the introductory part, we note very few models are tailored to accurately predict mechanisms 
that govern the plug formation process. The models strongly rely on empiricism or fail to reproduce the process 
as it happens for most real-life situations: a full flow stop caused by a sticky deposit of particles. The models are 
not validated against a plugging experiment. This study addresses the challenges by introducing a CFD-DEM 
model validated against a well-defined experimental benchmark by Struchalin et al.2 for plugging in an ice-decane 
slurry. Previously, in our study, Saparbayeva et al.14, we utilized the CFD-DEM model to investigate the ice-ice 
cohesive collision and obtained insights helpful to develop the CFD-DEM model for the entire flow. For the first 
time, the model reproduces the plug formation process in sufficient detail and demonstrates how the plugging 
depends on the critical parameters of the process.

Methods
Model description
The CFD-DEM approach employed an Eulerian-Lagrangian framework to solve the fluid and solid phases inde-
pendently. The fluid phase was described by a system of turbulent, incompressible Navier-Stokes  equations15,16:

where φ is the volume fraction of the continuous phase, �u is the velocity of the continuous phase, ρ is the density 
of the continuous phase, p is the pressure, µ and µt are molecular and turbulent viscosity, �g is the acceleration 
due to gravity. The standard k-epsilon turbulence model computes the turbulent  viscosity16. We further assumed 
that the heat transfer with the ambient environment did not sufficiently influence the properties of the continuous 
phase and then excluded the energy equation from the analysis. The combined effect of the drag and lift forces 
exerted by DEM particles in the continuous phase is presented by �Fp14 for a computational cell.

Newton’s second law governs the motion of the i th DEM  particle15:

where mi is the mass of the particle, �vi is the particle’s velocity, ρp is the density of the particle. The drag force 
is determined as �fp,i = π

2 r
2
i cD,iρ(�u− �vi)|�u− �vi|,where ri = 200 µm is the radius of the particle, cD,i is Schil-

ler–Naumann’s drag  coefficient14,17. The lift force is calculated as �fl,i = clρπr
3
i (�u− �vi)× �ω with lift coefficient cl 

(1)Dφ/Dt = 0; D(ρφ�u)/Dt = −φ∇p+ φ(µ+ µt)∇2�u+ φρ�g − �Fp,

(2)mi
d �vi

dt
= �fp,i + �fl,i +mi�g − (mi/ρp)∇p+

∑

j=1,N

�fi,j ,
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calculated according to Sommerfeld’s  expression18 and curl of the fluid velocity �ω =
�

×�u . The contact forces 
induced due to the collision with the N of j th neighbour particles (or the walls) are given by �fi,j . The DEM solver 
activates this term when the particles are expected to contact their collision pairs at the next temporal substep 
of the DEM model. The particle rotation is calculated by accounting for the described forces. This is in detail 
described in Saparbayeva et al.14

The Hertz-Mindlin contact model accounting for cohesion determines the contact forces acting between 
particles and walls during the collision. They are given in normal (n) and tangential (t) directions relative to the 
plane of collision whose normal points from the i th  particle14,19:

The contact force in the normal direction can be expressed  as14:

where δ(n) is the particle-to-wall overlap distance, vr,i is the inter-particle relative velocity, K and N represent 
the stiffness and the damping coefficients. These parameters depend on the particles’ mechanical properties: the 
Young modulus, Poisson’s ratio, and the coefficient of restitution (COR). The cohesive force is computed using 
the JKR  approach20 Fc = 1.5πriγi , where γ is the work of cohesion ( γice ) or the work of the adhesion to walls 
( γwall ). The tangential component of the contact force is determined in a similar to Eq. (4) fashion yet excluding 
the cohesive interaction F(t)i,j = −K (t)δ(t) − N (t)v

(t)
r,i  . A detailed description of the contact treatment is presented 

in Saparbayeva et al.14

Boundaries and mesh
The numerical model was developed in the commercial CFD-package STAR-CCM+ 2210 (specifically version 
17.06.007). To tailor the simulation to the specific needs of our research, we extended its capabilities by incor-
porating user-written codes, known as ’field functions’. These field functions played a crucial role in our work 
by allowing us to modify the default settings and configurations of the standard model. The geometry of the 
computational domain resembles the test section of the experimental flow loop described in Struchalin et al.2: 
20 cm long pipe with an internal diameter of 22 mm contains a 1 cm long orifice blocking 80% of the pipe cross-
section. In the experiments, the orifice was used to induce plugging in the test section. To conserve computational 
costs, we produced two geometries: a full-scale 3D test section, which was further sliced to a quasi-2D element 
bounded by periodic boundaries in a horizontal direction orthogonal to the main flow. The thickness of the slice 
was equal to 3 diameters of the particle. The periodic boundaries recycled the secondary flow and particles in 
this direction. As presented in Fig. 1, other boundaries include the pressure at the inlet and outlet of the pipe, 
and the rest of the surfaces are no-slip walls. The computational mesh was made of 8 mm3 rectangular volumes. 
A rather coarse mesh resulted in elevated Y+ < 6 . This meshing was chosen to ensure the Lagrangian particles  
were  subgrid17, which also complies with the software developers’  guidelines16. For the current flow geometry, we 
did a mesh independence study. The analysis was conducted for mesh sizes ranging from 1 to 3 mm with a step 
size of 0.5 mm. When changing the mesh size, we noted a low statistical spread of plugging dynamics at ∼ 15% . 
Finally, we tested how a fully 3D case differs from a quasi-2D simplified model. To speed up the formation of 
the plug, we set the cohesion to the maximum 95% experimental  value21 and used γice = γwall = 541 mJ/m2 . 
The difference was evaluated in terms of the rate of plug formation. The simulations revealed that the 2D results 
compared well to the 3D simulation with an average discrepancy of about 8%. However, we note the formation 
of more massive particle slugs in the 3D model. The 2D model used 142 times less computational time.

Model settings
Multiple parameters of the model were set according to experimental conditions to reproduce plugging experi-
ments. The process of plugging took place for ∼ 100 s, and the temperature in the cross-section linearly increased 
from −1.1 to −0.6◦C during the process. The heating of the flow was due to the particle-wall friction. The 

(3)�fi,j = F
(n)
i,j �n+ F

(t)
ij
�t

(4)F
(n)
i,j = −K (n)δ(n) − N (n)v

(n)
r,i + FC

Figure 1.  Geometry and boundaries.
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molecular properties of the phases were set for the time-average temperature according to the NIST  database22. 
Since plugging resulted in a continuous reduction of flow rate, a flow regime transition was expected at the end 
of the process. The model simulated this effect by scaling the turbulent viscosity to zero when the flow Reynolds 
number fell below 2300. Table 1 presents the parameters of the model.

For the mechanical properties of ice, we used the approach described in detail by Saparbayeva et al.14. We 
computed the normal coefficient of restitution εn accounting for lubrication force from decane using the method 
proposed by Joseph et al.23 for particle Stokes numbers beyond 17. For the lower Stokes numbers, εn was set at 
0.05. The tangential coefficient of restitution was assumed to be unaffected by lubrication and then equal to the so-
termed “dry” value εt = 0.824. Poisson’s ratio for ice was set as 0.3625. To limit the computational costs by increas-
ing the DEM temporal sub-stepping14,16, the Young modulus of the particle was artificially reduced below the real 
 values26 to 0.1 MPa. We carried out simulations to test the influence of this parameter on the dynamics of the 
process. The model was weakly sensitive to the increase of the Young modulus by 3 orders as the average change 
pipe blockage dynamics was ∼ 30% while resulting in a 15-fold increase of the computational time. Although 
the rolling resistance may be significant in contact  interactions27, the rolling friction coefficient was set at a low 
value of 0.001. Additional experiments are required to determine this parameter accurately for interactions of 
ice in decane. The default mechanical properties of  glass16 were set for the walls of the computational domain.

We extended the model to more effectively account for temperature-dependent variables, including friction 
and cohesion, which previous studies have identified as significant factors influencing ice  collisions14. The experi-
mental temperature log was imported into the model. The cohesive surface energy was set linearly increasing with 
the temperature. For this, we interpolated experimental measurements for ice in decane presented by Yang et al.21. 
In the interpolation, we used data points obtained in the interval −4.0 . . .− 1.5◦C where γice ∼ 21 . . . 172mJ/m2 . 
The cohesive energy is calculated in the JKR limit from the micromechanical force measurements reported by 
Yang et al.21. We note that these values of cohesion energy are about 3-orders greater than the cohesion of clot-
ted blood  particles28.

A similar interpolation was conducted for the coefficient of friction fr based on the data from  Sukhorukov25. 
For the interpolation, we used measurements taken in the interval −8.0 . . . 1.8◦C for the shortest contact time 
between ice surfaces. The friction coefficient was in the interval ∼ 0.60 . . . 0.69 . The friction coefficient reduced 
with the temperature.

The adhesive energy of ice to the walls of the test section filled with decane and the coefficient of friction with 
the walls are not explicitly available in the literature. According to Aspenes et al.29, the adhesion is proportional 
to the free energy of the solid surface. The free energy of the  walls29 is lower than the cohesive energy of  ice21. The 
friction coefficient of ice at the pipe material is also lower than the ice-to-ice  friction25. Therefore, we explored 
how the ratio of the ice-wall adhesion to the ice-ice cohesion cr = γice/γwall < 1 influences the simulation results. 
We also noted that ice adhesion to different materials reduces with  temperature30,31. Therefore, as a conservative 
estimate, the adhesion was set as a constant proportional to the initial value of cohesion. We also assumed that 
the friction coefficients between the particles and the walls were scaled proportionally to cr.

The pressure at the inlet was specified to reproduce the experimental mass flow with neutrally buoyant and 
non-cohesive particles, which was determined in separate calibration simulations. Zero velocity and pressure 
fields were used as initial conditions for simulations. Initially, the flow field in the test section was established 
for about 2 s to the experimental value without DEM particles. In this way, we prevented the formation of par-
ticulate deposits during the start-up phase of the process. Then, the particles were injected at the inlet at 13 000 
1/s, corresponding to the experimental volume fraction. To avoid phase slip at the inlet, mean flow velocity was 
continuously monitored and over-prescribed as the inlet velocity of DEM particles. In this model, we assumed 
that the significant deposition of the particles took place in the test section and neglected possible deposition in 
the rest of the experimental system. Moreover, due to the large volume of the system compared with the volume 
of the test section, we assumed that the deposition of the particles in the test section did not significantly influ-
ence the volume fraction of the particle at the inlet.

We used the SIMPLE in STAR-CCM+14,32 to solve governing equations for the continuous phase. The fol-
lowing relaxation coefficients were set for the solver: 0.8 velocity, 0.2 pressure, 0.9 volume fraction, and 0.9 

Table 1.  Model parameters. Relative Stokes number St0 = mivr,i/6πµr
2
i

23, x/x0=10−3 , T is the experimental 
temperature in 0 C. aAsymptotic value, bSimplified simulations.

Diameter of particles di 400 µm

Density of fluid ρ 747 kg/m3

Density of particles ρp 916 kg/m3

Fluid viscosity µ 1.25 mPa s

Normal COR εn23
0.8+ 1.8 ln xc/x0/St0 , 0.63a , 0.8b

Tangential COR εt 0.8

Sliding friction coefficient f −0.015T + 0.574 , 0.1–0.6b

Rolling friction coefficient µr 0.001

Surface energy γ 0.280+ 0.061T , 0.541b J/m2

Young’s modulus Ep 0.1 MPa

Poisson’s ratio νp 0.36
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turbulence model. The equations were spatially discretized using upwind discretization in space and the implicit 
Euler method (2nd order) in time. The time step was 0.5 ms. The time step of the DEM model parameter was 
set at 20% of the duration of the Rayleigh wave propagation through the  particle16,33. The absolute values of the 
DEM time step were ∼ 20µs.

Results and discussion
Model validation
It is noteworthy to highlight the significance of previous studies as they have contributed to our understanding 
of particle deposition and cohesive interactions in a pipe flow. We validated the applied CFD-DEM model with 
no account for cohesion in Eq. (4). First, we reproduced the blockage for the process described in Mondal et al.9. 
The obtained results reproduced clogging of the flow channel at a particle volume concentration of 13%  close to 
the value of 10% reported in the original work. In addition, by applying the non-cohesive CFD-DEM approach to 
experimental data sets, we successfully simulated dune formation in a microchannel during horizontal hydraulic 
 transport34. The predicted velocity of the dunes exhibited a 10.7% deviation from the corresponding experimental 
values. Cohesive particles significantly contribute to block formation in this study. It is worth noting a related 
study using our CFD-DEM model with included cohesion accurately predicted restitution coefficients, with a 
10% average deviation from experimental  data14.

The CFD-DEM model was then validated against the experiment by Struchalin et al.2. The model reproduced 
experimental case 2 from Struchalin et al.2, where a plug was formed in the test section at an initial flow rate of 
400 kg/h and a particle concentration of 6.8%. For this system, cohesion was known from the experiments by 
Yang et al.21 while the adhesion and the friction of the particles at the walls were fitted parameters. They were 
tuned proportionally to the cohesion to match the experiment. The left plot in Fig. 2 demonstrates how the mean 
flow velocity changed with time during the plugging of the pipe. We note a slug-like behaviour of the flow in the 
CFD-DEM model for low adhesion cases. This is connected to more sticky particles re-dispersed deposits formed 
at less sticky walls. This phenomenon is illustrated in Fig. 3A. As presented in Fig. 3B, in these simulations, the 
maximum coefficients of restitution for the particle-particle and particle-wall conditions reduced from 0.8 to 
0.55 and 0.35 due to the lubrication effects (see Methods). The reduced restitution coefficients contribute to the 
faster plugging of the test section.

The best correspondence to the experiments was obtained when adhesion and friction were ∼ 88% of the 
cohesion; the average discrepancy of the model was 25%. For lower adhesion, the simulated velocity sharply 
reduced to ∼ 50% of the initial values; the flow rate remained at this value for 60-100 s without a significant 
reduction due to the re-dispersion of the deposited particles. However, as the model incorporated the experi-
mental temperature log and the cohesion was set dependent on the temperature, this parameter increased with 
time. Large particle slugs formed when the cohesion significantly increased. At the end of the process, the slugs 
blocked the orifice. For the high adhesion values, the step-wise shape of the experimental curve corresponded 
to the experimental. The differences are addressed in the secondary deposition and jamming in other parts of 
the experimental system that are not modelled in CFD-DEM (e.g. pump, mixing tank, flow meter). The respec-
tive growth of the secondary flow resistance in non-modelled locations contributes to the rate of flow velocity 
reduction.

It is interesting to consider how the CFD-DEM model reproduced the third-party flow maps. We present this 
information in Fig. 2 (right). Here, we collect data for flow regimes in horizontal flows of slurries and suspensions 
of particles. To exclude the influence of pipe material, we set cr = 1 . Next, speeding up the simulations, fr = 0.6 , 
which is the maximum for the considered system, and εn = 0.63 corresponding to the maximum relative velocity. 

Figure 2.  CFD-DEM model compared with experimental results: (left) average flow velocity as a function 
of time for difference cohesion to adhesion ratios cr = γwall/γice compared to Struchalin et al.2 at Re = 4996, 
φp = 6.8% ; (right) flow maps by Poloski et al.35, Doron and  Barnea36, Hirochi et al.37, Struchalin et al.2 
(Experiment) compared with the CFD-DEM predictions at cr = 1 , εn = 0.63 , fr = 0.6.
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The experiments are compared with cases where simulations resulted in plugging of the test section. As in the 
experiments by Strcuhalin et al.2, the model reveals plugging in flow regimes where stationary deposits with no 
plugging are supposed to be formed. This is an expected trend since the maps are developed for particles with 
significantly lower cohesion and adhesion. However, the model corresponds to the referent experiment demon-
strating plugs and the flow rates below the experimental and comparable concentrations.

Plugging dynamics
Figure 4 considers the dynamics of blockage in more detail. Here, to shorten the simulation and limit the re-
dispersion of the particles, we set the cohesion to the maximum experimental value 541mJ/m2 according to Yang 
et al.21, neglect lubrication, and minimize the friction. The simulation results reveal a continuous reduction of 
mean flow velocity after the particles were injected at t = 2 s. Shortly after the injection, the particles were driven 

Figure 3.  (A) Scrubbing of deposited particles from the walls. Color scale denotes the magnitude of the 
continuous phase velocity. (B) Coefficient of restitution for particle-particle and particle-wall collisions.

Figure 4.  Dynamics of plug formation. Surface energy γice = γwall = 541 J/m2 , mean flow velocity u = 0.39 
m/s, particle concentration φp = 5.9% , coefficient of restitution εn = 0.8 , fr = 0.1 . Flow direction from left to 
right, color scale denotes the magnitude of the continuous phase velocity.
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to the bottom of the pipe, where they adhered to the walls and formed stationary deposits. The volume fraction 
of the particles in the deposits was about 50%, close to the packing limit reported in the benchmark  study2. Once 
the deposition progressed, the particles experienced inertial deposition at the surface of the orifice for t = 2.6 
s. Smaller deposits were built both at the frontal part of the orifice and directly in its throttle. The deposition 
resulted in an elevated flow resistance, which led to a dramatic flow reduction for a fixed pumping pressure drop. 
As in the  experiments2, the plug was formed at the very end of the process due to trapping the bottom deposits 
with those formed at the orifice. After the stationary plug was formed, the flow experienced low-magnitude 
oscillations. This chocking happens due to the inertial motion of particles in the upflow part of the test section.

Sensitivity analysis
In addition to blockage dynamics, we evaluated the validity of the model’s response to variation in flow rate 
(Reynolds number), the concentration of particles, and the granular capillary  number2 Ca = uµ/γice with u which 
is an average flow velocity. These parameters were defined at the inlet of the model. As in the flow map study, 
to speed up this parametric analysis, we used constant cohesion and restitution coefficients without accounting 
for lubrication. We aimed to highlight how the blockage time depended on these parameters. The simulation 
results are presented in Fig. 5. The left plot in this figure illustrates a correlation between the temporal dura-
tion of blockage, the Reynolds number, and the concentration of particles. The considered interval of Reynolds 
numbers is relevant in the food industry (e.g. ice  slurries38) and represents transient cases in petroleum and 
mining  industries39. The findings clearly indicate that when the volume fraction of particles exceeds 4% , the 
blockage time is consistently below 10 s. As the particle concentration rises, it increases the probability of particle 
interaction and agglomeration. Consequently, this contributes to the rapid formation of blockages within the 
pipe. The relationship between blockage time and Reynolds number shows the transition point. Prior to reach-
ing a Reynolds number of approximately 6000, a consistent uprising trend is observed. However, beyond this 
threshold, a reduction in blockage time becomes apparent. Then, at Re ≈ 8000 , the blockage time dramatically 
increases, so the blockage takes several hundreds of seconds. The observed trend is rather straightforward as 
by increasing the Re we increased the relative velocity between the particles and then reduced the efficiency of 
clogging due to cohesion. However, the number of collisions also increases with Re, which is the reason for the 
existence of the local minimum blockage time. The right plot in Fig. 5 highlights the significance of the capillary 
number, which is inversely proportional to adhesion. Reading the plot, it becomes apparent that the blocking 
time remains mostly within the range of 0–10 s for different capillary number values. The blockage time is 
inversely proportional to the capillary number. In these simulations we highlighted the influence of cohesion 
reducing the mechanical deformations ( εn = 0.8 ) and the friction ( fr = 0.1 ). We again note a non-linear trend 
when increasing the cohesion. Namely, at Ca ≈ 2 · 10−3 , the blockage speeds us by a factor of two. This happens 
due to the enhanced scrubbing of deposited particles from the walls by the clusters of those remaining in the 
bulk of the flow, promoting partial re-suspension of particles, slugging, and thus bringing more particles to the 
orifice. When the cohesion increased from this point, the effect is compensated by even more intense deposition.

Concluding remarks
This study demonstrates that the CFD-DEM approach is capable to reproduce the process of plugging in turbulent 
multiphase flows with cohesive/adhesive particles with minimal modifications to the standard model. Our model 
was simplified and based on several assumptions: 2D geometry, low Young modulus, and no influence of the 
entire experimental system considered. The simulations do however return reasonable results when experimental 
measurements well support the cohesive properties and the concentration of particles. From the simulations, 
we found that the inertial collisions and the gravity-driven deposition are the dominant mechanisms leading to 
plugging the pipe. Although many flow maps are developed to account for these phenomena, the stickiness of 
the particles, in our case, dislocates plugging towards lower concentrations and higher flow rates on the map. 

Figure 5.  Blockage time as a function of flow Reynolds number, particle concentration φp , and Ca when 
the following parameters are fixed: (left) cr = 1.00 , Ca = 1.18 · 10−3 , εn = 0.63 , fr = 0.60 ; (right) cr = 1.00 , 
Re = 4714 , φp = 6.90% , εn = 0.8 , fr = 0.1.
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The CFD-DEM method provides excellent insight into the physics of the process. However, due to the high 
computational costs, which can extend up to 12 h on a system utilizing 30 CPUs of AMD Ryzen Threadripper 
PRO 3975WX at 3.8 GHz, this approach is hardly applicable for simulating the entire flow system or providing 
decision support. A more pragmatic yet accurate simulation approach still needs to be developed.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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Abstract: This study presents a machine learning-based approach to predict blockage in multiphase
flow with cohesive particles. The aim is to predict blockage based on parameters like Reynolds and
capillary numbers using a random forest classifier trained on experimental and simulation data.
Experimental observations come from a lab-scale flow loop with ice slurry in the decane. The plugging
simulation is based on coupled Computational Fluid Dynamics with Discrete Element Method
(CFD-DEM). The resulting classifier demonstrated high accuracy, validated by precision, recall, and
F1-score metrics, providing precise blockage prediction under specific flow conditions. Additionally,
sensitivity analyses highlighted the model’s adaptability to cohesion variations. Equipped with
the trained classifier, we generated a detailed machine-learning-based flow map and compared it
with earlier literature, simulations, and experimental data results. This graphical representation
clarifies the blockage boundaries under given conditions. The methodology’s success demonstrates
the potential for advanced predictive modelling in diverse flow systems, contributing to improved
blockage prediction and prevention.

Keywords: multiphase flow; blockage prediction; machine learning classifier; CFD-DEM simulations;
flow loop experiments.

0. Introduction

The issue of pipeline blockage is relevant in multiple industries, resulting in environ-
mental concerns and financial losses. Applying machine learning methods is becoming
a promising solution in flow assurance [1]. This methodology is a potentially powerful
tool for analyzing, classifying, and predicting flow regimes, including critical aspects such
as pipeline blockage. Numerous studies exist where machine learning methods consider
challenges associated with multiphase flows and pipeline blockages.

Manikonda et al. [2] applied machine learning methods to identify vertical gas-liquid
two-phase flow regimes. The study aimed to determine the current flow regime using data
collected from over thirty articles and two experimental flow loops. They utilized super-
vised and unsupervised ML classification models, including a Multi-class Support Vector
Machine, K-nearest neighbour Classifier, K-means clustering, and hierarchical clustering to
separate different flow regions. The study found that the K-Nearest Neighbor Classifier
achieved a 98 % classification accuracy and matched the flow regime maps from Hasan
et al. [3].

Similarly, Alhashem [4] employed a machine learning model using a Stanford Multi-
phase Flow Data dataset to classify multiphase flow regimes in a horizontal pipe. Fluid
flow and pipe configuration descriptions were used as input variables, while the output
corresponded to the flow regime type. The authors used the F-1 accuracy score as the per-
formance metric to compare five machine learning methods. After evaluating five methods,

Version March 7, 2024 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified
Paper D 85



Version March 7, 2024 submitted to Journal Not Specified 2 of 10

including decision tree, random forest, logistic regression, support vector machine, and
neural network (multi-layer perceptron), the authors observed that the Decision Tree and
Random Forest achieved the highest accuracy rates with 86% and 89%, respectively, with
minimal training times less than 0.005 seconds.

While these studies have primarily focused on horizontal flows, Chaari et al. [5]
introduces an Artificial Neural Network (ANN) model for steady-state liquid holdup
estimation in two-phase gas-liquid flow, designed to be unifying and applicable across
all pipe inclinations and flow patterns. Utilizing the ANN model, this study incorporates
16 dimensionless groups to effectively account for the inertial, viscous, and gravitational
effects experienced by both the liquid and gas phases, based on a Stanford Multiphase Flow
Database dataset. The proposed model outperformed two established models, showing
improved coefficients of determination and significantly lower average absolute relative
errors, with improvements of up to 57% in inclination ranges and 66% in various flow
patterns.

In addition to the aforementioned non-particle-based studies, certain works show that
machine learning methods have great potential for the future of hydrate management and
studies of plugging in multiphase flows. It is relevant to evaluate these ML-models using
three main criteria defining their industrial applicability: accuracy, size of the datasets, and
scalability of the model parameters. Qin et al. [6] considered two machine learning methods:
the support vector classifier (SVC) and the regression neural network (NN). The models
were trained using 4500 experimental cases, which was the largest dataset of those used
in plugging studies. The authors applied the ML-methods to analyze hydrate risks and
construct field risk maps using an experimental flow loop and field databases. The accuracy
of the SVC was about 0.99 while the NN method was ∼ 96%. Their study demonstrates that
a coupled regression and classification learning model can simultaneously predict hydrate
volume fraction and plugging risk using process variables. These variables include water
cut, gas-oil ratio, liquid velocity, operating time within the hydrate domain, oil properties,
and the inter-particle cohesive force of hydrates. However, these variables were not made
dimensionless using the standard π-theorem analysis [7] so that the ML-models could be
hardly scaled for applications other than hydrates.

Furthermore, Wang et al. [8] applied ML to assess the risk of hydrate formation
and blockage in a pure water system. The multi-layer perceptron (MLP) model and the
logistic regression (LR) model were used in this work. Although the models achieved
99% accuracy, the training dataset’s size was dramatically limited as six cases were fed
into the model. The researchers used data from experiments conducted in a high-pressure,
entirely visual flow loop for the training. The input variables for these models included
time, temperature, pressure drop, gas consumption, remaining water, and the water-cut
ratio at each data point. The output of the models aimed to determine the risk of blockage
and was based on defining three regions and two critical transition points in the hydrate
formation process, namely the "action point" and the "blockage point." The input data was
non-dimensionalized using the statistical parameters with StandardScaler [9]. However,
the nondimensionalization did not follow the principles of π-theorem [7].

In recent years, scientists have started using machine learning techniques to predict
and reduce wax deposits in petroleum pipelines, offering fresh approaches to address this
common issue in the oil sector.

For instance, Kim et al. [10] integrated Artificial Intelligence (AI) through the Stacked
Auto-Encoder (SAE) model, using an OLGA simulator to generate learning data and em-
ploying the RRR (Ryg, Rydahl, and Ronningen) model to describe the molecular diffusion
and shear dispersion aspects of wax deposition. It demonstrates impressive accuracy in
predicting the location and maximum volume of wax accumulation with over 90% accuracy.
However, there may be discrepancies between the predicted wax thickness and actual data,
possibly due to the limited initial dataset. Despite this, the model performs effectively at
the early detection of wax deposition and accurately predicts the location and amount of
wax buildup, showing potential in maintaining a continuous flow of petroleum pipelines.
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Additionally, Amar et al. [11] proposed a multilayer perceptron model (MLP) for
predicting the weight percent of deposited wax under different production conditions
using experimental measurements. After utilizing the Levenberg-Marquardt algorithm
(MLP-LMA) and Bayesian Regularization algorithm (MLP-BR) during the MLP’s learning
phase, it became evident that MLP-LMA outperformed MLP-BR with an overall root mean
square error of 0.2198. Furthermore, its potential for digital implementation makes it more
useful in controlling wax deposition in oil and gas pipelines.

Ahmadi [12] proposed a novel approach: combining fuzzy logic and genetic algorithm
(GA) to create an efficient method for predicting wax deposition. The model considers im-
portant input variables such as oil composition, temperature, pressure, and oil-specific grav-
ity. Parameters like mean square error and relative deviation are quantitative benchmarks,
highlighting the model’s accuracy and reliability. The developed model demonstrates high
performance and reliability compared to other methods in determining wax deposition
values, with the key advantage of rapid calculations and cost-effectiveness. However, like
other modelling methods, the proposed machine learning models have limitations related
to the range of input and output values. They can only be applied to oil samples and
conditions similar to the available data.

After reviewing the aforementioned research, it becomes evident that the application
of machine learning methods represents a potent tool for flow assurance issues, particularly
for predicting multiphase flow regimes. Collectively, these studies contribute to the ongoing
efforts to improve predictive methods for flow patterns, providing valuable insights into
potential challenges such as pipeline blockages.

In previous studies, our group focused on understanding how particles can clog up
flowing systems. In the work by Struchalin et al. [13], we expanded upon the experimental
approach of Hirochi et al. [14] by conducting flow loop experiments employing a decane-
oil slurry. These experiments involved controlling particle concentration and size and
carefully regulating temperature to affect particle cohesion. Our work led to an improved
understanding of the plugging process with the given experimental conditions. These
findings act as a reference point for validating numerical models of plugging. In the second
study by Saparbayeva and Balakin [15], we applied a CFD-DEM to better understand
plug formation in a multiphase system with a cohesive dispersed phase. The process
parameters were dimensionless according to the π-theorem principles [13]. Many models
from the literature lacked validation against actual plugging experiments. To address
these limitations, we introduced a CFD-DEM model validated against the well-defined
experimental benchmark for plugging. Notably, our prior work by Saparbayeva et al. [16]
laid the foundation for this model by investigating ice-ice cohesive collisions, offering
valuable insights into successful application in understanding the entire flow process.

The novelty of this paper is highlighted by its ability to predict blockage without the
need for model execution or experimental trials. This is achieved by integrating a machine
learning model that utilizes experimental and CFD-DEM model datasets as inputs. In
contrast to the previously discussed studies in machine learning application, our research
introduces the application of a machine learning classification model to predict blockages
in multiphase systems with unique characteristics, specifically the presence of ice particles
in a decane-oil slurry. The presence of ice particles introduces an extra layer of complexity.
In our case, this involves utilizing a more precise CFD-DEM model.

1. Methodology

The dataset used for the classifier’s training consists of two parts: the plugging
data collected in the flow loop experiments and the database of CFD-DEM simulations
expanding the experimental dataset.

1.1. Experiments

The flow experiments were carried out using a lab-scale multiphase flow loop. A
cohesive slurry of ice in decane circulated in the loop. These materials were chosen due
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to the known cohesive surface energy for different temperatures below the ice formation
point [17]. The ice particles were produced outside the flow loop by crushing ice blocks.
The size of the particles was in the interval 200-400 µm. The particle size distribution was
log-normal. The maximum volume fraction of particles used in experiments was 15%.
The maximum Reynolds number Re =ρvd/µ ∼25000, where ρ, µ are the density and the
viscosity of decane, v is the mean flow velocity, and d is the diameter of the pipe. The flow
loop consisted of a centrifugal pump, a temperature-controlled stirred tank, and a steel test
section (ID=22 mm). Negative temperatures of -3...-10 C were set in the loop by connecting
tank coils to a chiller and thermally insulating the flow loop. Plugging occurred in the
test section, where a 9.5-mm orifice was installed. The local resistance of the orifice and
secondary wake flow in the corners of the orifice promoted the deposition and sticking of
cohesive particles.

The flow loop and its hydraulic scheme are presented in Figure 1. The experiments
were carried out by loading a controlled amount of ice in a highly agitated and pre-cooled
flow, reducing the flow rate to a set point, increasing the temperature to a given value, and
monitoring the flow using the mass flow meter. In addition, the measurement system of
the loop included a differential manometer controlling the test section and thermocouples
for temperature control. A successful plugging event was defined as a sensor-confirmed
zero flow condition following the set point without further action from the loop operator.
More details about the experiments are found in [13].

Figure 1. Hydraulic diagram of the experimental flow loop [A] and photo of the central part of the
flow loop [B].

1.2. CFD-DEM model

To complement relatively few flow loop experiments, we generated additional data
points from CFD-DEM model developed for this study. In particular, the CFD model
allowed us to study cohesion parameters more closely. In the experiments, the cohesion
was altered by changing the temperature of the coils in the tank. However, due to the large
thermal inertia of the flow loop, the cohesion was defined with significant uncertainties.
Therefore, a multiphase CFD-DEM model of the test section was built to highlight the
influence of cohesive forces and to consider the physics of the plugging process in greater
detail. The model was based on the Eulerian-Lagrangian approach, where Navier-Stokes
equations described the flow of decane, while the particles were treated as Lagrangian
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objects following Newtonian mechanics. The phases were coupled via drag, lift, and
pressure gradient forces calculated in each computational cell of the model. The contact
interactions between the particles were resolved using the so-termed "soft-sphere" tech-
nique, accounting for their deformations upon collisions. The Hertz-Mindlin approach
was used for this purpose, considering cohesive forces acting during the collision. While
the inter-particle cohesive energy γ was known from the third-party experiments, the
particle-wall cohesion was not known in the experiments. Therefore, a ratio of the cohesive
energy of the walls to the cohesive energy of the ice cr=γwall/γice was used as a fitting
parameter to validate the model. As the model treated every particle separately, and many
particles were present in the experiments, this was required to limit the computational
costs. Therefore, as shown in Figure 2(left), the geometry of the experiment was simplified
to a thin slice of the test section bounded by periodic boundaries. A constant pressure
drop resulting in the experimental flow rate was set at the ends of the model. The model is
described in greater detail in Saparbayeva and Balakin [15].

Figure 2. Geometry and boundary conditions of the model (left) and comparison between experimen-
tal data and CFD-DEM model: average flow velocity over time with different cohesion-to-adhesion
ratios cr=γwall/γice in comparison to the findings of Struchalin et al.[13] at Reynolds number Re=4996
and particle volume fraction ϕp=6.8% (right).

1.3. Machine learning

We employ the random forest classifier as our machine-learning tool to analyze block-
age in the considered multiphase flow. This choice is driven by the classifier’s adaptability
and robustness when dealing with multidimensional datasets, making the classifier a
well-suited approach for our case with multiple parameters and features [18], [19]. The
random forest classifier offers the advantage of feature importance analysis, enabling the
identification of the critical factors of the process [20]. Additionally, this classifier type can
handle non-linear data and overfits at a lower rate than similar ML techniques.

We implemented this method using the scikit-learn library, a standard Python tool for
machine learning tasks [21]. Scikit-learn offers a user-friendly interface for methods like
the random forest and supports various models and data processing techniques. Adjusting
model parameters and evaluating performance allows for a comprehensive analysis of the
classifier’s usage.

The flowchart of the constructed ML technique is presented in Figure 3. We used
input data from two primary sources to train our model: experimental flow loop data and
CFD-DEM simulations. Each entry in the input file contains four key parameters: Reynolds
number, concentration, capillary number, and the fourth parameter, a binary classifier
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indicating whether blockages are present or absent in the system. The Reynolds number is
a dimensionless parameter used to evaluate the significance of inertial forces compared to
viscous forces in a fluid motion, while the capillary number indicates the balance between
viscous forces and surface tension forces in a system. To evaluate the model’s performance
and ensure its stability, we employed a cross-validation method with a parameter k=5.
This means the treated multidimensional datasets were divided into five folds (subsets) for
training and testing. Each model was trained on four folds. 80% of data and tested on the
remaining 20% of the data. The cross-validation procedure was repeated five times with
different fold combinations. The outcome is the model performance verification. In total,
150 cases were used for the training.

In the machine learning model, we adjusted several key parameters to optimize the
model’s performance. We selected a fixed random seed value of 42 and set the random
forest classifier with 100 estimators while limiting the maximum depth of each decision
tree to 10. These parameters were selected to establish a well-balanced model combining
accuracy and adaptability across various parameter conditions. Other parameters are
configured with their default values. After selecting the best hyperparameters, we train a
final Random Forest classifier on 100% of data to produce the most accurate flow map.

Figure 3. Schematic description of the developed ML model.

2. Results
2.1. Experiments and CFD-DEM model

An example of the experimental log is presented in Figure 2(right) in terms of the
history of flow velocity. The plot shows that the velocity gradually reduced until the
plugging condition. There were several significant steps of the velocity reduction. This is
related to the propagation of particulate slugs, which were formed due to the accumulation
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of particles in quiescent zones of the flow loop. Depending on the set point, the duration
of the plugging process in different experiments was in the interval 50...1000 s. The
experimental results for various flow conditions are summarized in Figure 5, where the
flow map of plugging is presented in terms of flow Reynolds number and the concentration
of particles. A referent flow map from similar experiments of Hirochi et al.[14] is shown
in the figure. As follows from the map, plugging happened when the concentration of
particles was above 14%, and the Reynolds number below 10000. These values differ
from Hirochi et al.[14] as ice particles in decane are more cohesive than ice particles in an
aqueous media, as considered in the referent study. There were also untypical cases where
the plugging was registered at low concentrations and high Re. These plugging events,
labelled separately in the figure, are attributed to the blockage of clearances in the pump.

The CFD-DEM model was validated against the experimental logs; an example of
the validation plot is shown in Figure 2(right) for different values of cr. As shown by
Saparbayeva and Balakin, [15] and presented in the figure, the best match of the experiment
is found for cr=0.88. The model does not entirely reproduce the stepwise drops of the flow
velocity as it does not replicate the entire flow loop with places where the particle slugs are
formed. After the validation, the CFD-DEM model produced new points for the flow map
(Figure 5). The model data correspond to the experimental dataset. Additional simulations
were carried out to test how the process is sensitive to variation of γice. This was done by
altering the dimensionless granular capillary number Ca = vµ/γice, where v is the mean
flow velocity, µ is the viscosity of the continuous phase, and γice is the cohesive surface
energy of the ice particles. In the simulations, the capillary number was in the range from
0.001 to 0.003.

2.2. Machine learning
2.2.1. Dataset

Using the classifier, we predicted the presence of blockages across a range of parameter
conditions. In this figure, we present an array of process conditions at which the classifier
forecasts plugging events. The contrast between the plugging and non-plugging conditions
defines boundaries where blockages occur, as depicted in Figure 4. At lower concentrations,
up to about 15%, the boundary appears around a Reynolds number of 10,000. Later, as
concentrations increase, this boundary reduces. Figure 4 shows that the model predicted
blockades at high Re and low particle concentrations. This happens because the imported
dataset contains several specific experimental data points with high Reynolds numbers
that indicate the cases when the pump of the flow loop experienced blockage.

Figure 4. ML-predicted process conditions resulted with plugging. Intermediate result produced
from the original dataset.
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2.2.2. Validation

Our accuracy evaluation analyzed key performance measures, including precision,
recall, and F1-score. The results are presented in table 1, with accuracy scores ranging
from 0, indicating the worst, to 1, indicating the best accuracy. Precision represents the
proportion of true positive predictions among all positive predictions made by the classifier.
Recall measures the proportion of true positive predictions among all actual positive cases.
The F1-score is the harmonic mean of precision and recall, providing a balanced assessment
of the classifier’s performance. As demonstrated in Table 1, all of these measures show
notably high values for both cases, whether with or without blockage. The case without
blockage exhibited a minimum recall value of 0.80 and a maximum precision value of 1,
while the blockage case achieved a maximum recall value of 1. The F1-score for both cases
is high, indicating that the classification model performs well. These metrics collectively
demonstrate the effectiveness of the chosen method.

Table 1. Summary of random forest classifier performance.

Case Precision Recall F1-score

No Block 1.00 0.80 0.89
Block 0.96 1.00 0.98

2.2.3. Results

Figure 5 represents a flow map by Hirochi et al. [14] in comparison with a representa-
tion of the three blockage boundaries predicted by the classifier, as well as experimental
[13] and simulation data points. The boundaries of the ML-predicted plugging regimes are
presented as in Figure 4. We have excluded an unphysical boundary showing blockage at
high Reynolds numbers for the flow map construction. Four data points from the imported
dataset discussed earlier in Figure 4 were excluded for the training of the final version of
the ML model. Furthermore, we presented three different results for machine learning lines
corresponding to changes in cohesion. As depicted in the figure, the scaling of the cohesive
surface energy by factors 0.5 and 0.8, and the respective increase of the granular capillary
number, lower the boundary predicted by the machine learning model. An interesting
observation is that the upper limit set by the machine learning classifier closely aligns with
the line when the Reynolds number is around 104. This alignment is particularly in line
with the upper boundaries observed in CFD-DEM simulations and experimental results.
We also point out that the isolines of cohesion set horizontal at the concentrations above
15% which might not be entirely realistic as more particles might enhance plugging and
thus lift the boundary as in Hirochi et al. [14]. This artifact is related to the fact that the
training dataset was limited by 15% due to the experimental limitations and enhanced
computational costs in the CFD-DEM model.
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Figure 5. Flow map from the random forest classifier with three different cohesion values. The
datapoints in the plot represent experimental [13] and the CFD-DEM cases where the blockage was
detected. Experimental points excluded from training are labeled with star-like markers. Flow map
from Hirochi et al. [14] shown for comparison. The lines present the boundaries of the plugging
regime predicted by the ML-model and shown in Hirochi et al. [14].

It has to be noted that the time spent for every CFD-DEM case was about 3.0 hours
when running on 30 cores AMD Ryzen Treadripper RO 3975WX (3.8 GHz), and a typical
plugging experiment was run for 2.5-4.0 hours. The ML code was significantly faster,
returning the entire flow map within 10 s of physical time using an ordinary laptop (Intel
Core i5-1235U).

3. Conclusions

In this study, we applied the machine-learning tool, a random forest classifier, to
predict the occurrence of blockage caused by cohesive particles in the multiphase flow
loop. Our methodology combined experimental data from flow loop experiments and CFD-
DEM simulations to train a predictive model. Evaluating the model’s performance using
precision, recall, and F1-score metrics showed its high accuracy in blockage prediction in
given conditions, demonstrating a maximum precision score of 1 for the blockage case and
0.96 for the case without.

As the important contribution of the study, we presented the flow map detailing
comparisons between the machine-learning predictions, CFD-DEM simulations, and exper-
imental data. Our multi-parameter ML model allowed us to extend traditional flow maps
to assess the blockage boundary’s sensitivity to changes in cohesion. The secondary contri-
butions include the developed ML methodology, the code, and the databases (available
upon request).

The methodology’s success highlights the potential for further advancements in pre-
dictive modelling. Exploring advanced machine learning techniques, refining datasets,
and incorporating real-time data can lead to models capable of predicting and preventing
blockages in diverse and dynamic flow systems.
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