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PREFACE

The author of this thesis has been employed as a Ph.D. research fellow at the Departe-
ment of Computer Science, Electrical Engineering andMathematical Science at Western
Norway University of Applied Sciences, Norway. The author has been enrolled into
the PhD programme in Computer Science: Software Engineering, Sensor Networks
and Engineering Computing.

Part of the research presented in this thesis has been accomplished in cooperation
with the Division of Mathematical Statistics at the Department of Mathematics in KTH
Royal Institute of Technology, Stockholm, Sweden.

This thesis is organised in five parts: Part I gives a general introduction, Parts II, III
and IV concern the three broad and interconnected research topics (each with its own
introduction), and Part V discusses them together.

Scientific environment

The idea for the saliency topic came from Olivier Verdier (HVL) who followed and
counseled most of the research of the entire thesis.

Slobodan Drazic (HVL) suggested use of SIFT, and also provided valuable input on
some further details of Part III.

The Cryo-EM project of Part IV is lead by Joakim Andén (KTH), who provided the
synthetic data and the (cartesian) reference denoiser models.

Most of the path optimisation runs were carried out on the HVL cluster, adminis-
tered by Kyrre Skjerdal and Ilker Meric. The denoiser models were trained on C3SE
Alvis at Chalmers University, Gothenburg, with funding through the Wallenberg AI,
Autonomous Systems and Software Program.
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ABSTRACT

Machine learning systems (often referred to as AI, not always appropriately) are in-
creasingly used in varied applications, including ones with strong impact on human
lives. While this is expected to bring economic and scientific progress, it also has several
controversial aspects. A major one of these is that black-box models make it hard or
impossible to answer questions regarding e.g. the stability of an output or the influence
of biases in a training dataset, let alone to rigorously reason about correctness. It is
meanwhile known that AI systems can and do often produce convincing yet wrong or
misaligned outputs, with a significant potential for detrimental impacts on society.

Better understanding of such systems is therefore needed. The twomain approaches
to this are: finding explanations for the decisions of existing models, or designing mod-
els specifically to be more interpretable. This thesis investigates use of mathematical
methods towards both of these goals. We provide a toolkit that improves on existing
saliency methods for highlighting parts of images that are important for a classifier
on these images. Main contribution is the Ablation Path formalism, which generates
perturbations of inputs in a way that is convenient for a human to inspect and assess
the faithfulness of the explanation. Additionally we propose a new way of using the
SIFT technique as a feature basis for saliency. This overcomes some of the technical
challenges with existing methods, and also provides information that can be argued to
be more useful than the standard location-heatmaps.

More towards the interpretability front, we study a use case of machine learning
denoising in which symmetries play a crucial role: Cryo-EM. Symmetries are a known
aspect of many neural networks and their applications; for Cryo-EM these can be
unusually well exploited and quantified. We propose a variation of convolutional
network that is dedicated to the particular symmetries of the application, and investigate
how this impacts the performance and other properties.

These contributions push the state of the art for explainability of image classification,
and also provide a starting point for multiple further advances on both explainability
and interpretability in this application and others.





SAMANDRAG

Bruken av maskinlærings-system (ofte kalla KI, utan at det alltid nødvendigvis er
passande) er aukande i ulike anvendingsområde. Dette inneber nokre felt som har
sterk innverknad på liva til menneska. Forventninga er at desse systema kjem til å
skapa økonomisk og vitskapleg framsteg, men det er også kontroversielle aspekt knytt
til bruken av maskinlærings-system. Blant desse er det faktum at svart-boks modellar
gjer det vanskeleg eller umogeleg å gje svar på spørsmål om, til dømes, stabiliteten
til eit resultat eller kva slags innflytelse data-fordommar har hatt. Og ein kan snautt
bevise noko om riktigheita. Imedan er det kjennt at KI-system kan tilverka resultat
som er overbevisande men usanne eller misvisande, og at det faktisk skjer i mange
tillfelle. Dette har betydeleg evne for negativ påverknad på samfunnet.

Difor trengst det betre forståing av slike system. Dei to hovudtilnærmingsmåtane
til dette er: å finna forklaringar for avgjerslene til modellar som allereie finst, eller
å utvikla nye modellar med hensikt i å vera interpreterbare. Denne avhandlinga
granskar korleis matematiske metodar kan nyttast for å nå begge desse måla. Me har
utvikla ei verktøykasse for å forbetra kvaliteten til saliency-metodar, med oppgåva å
framheva delar til bilete som klassifiserast, nemleg delar som er betydningsfulle for
sjølve klassifiseringa. Hovudbidrag er Ablasjons-Pad-formalismen. Den framstiller
variasjonar til ei innmating på ein måte som lett kan inspiserast og gje inntrykk av
kor trufast forklaringa er. I tillegg føreslår me ein ny måte for å byggja saliency på
grunnlag av SIFT-teknikken. Slik slepp ein unna nokre av dei tekniske utfordringane i
andre metodar. Den gjev vidare informasjon som er på visse måtar meir nyttig enn dei
vanlege fargediagramma.

Til temaet interpreterbare modellar studerer me ein bruk av maskinlæringsbasert
støyrydding der symmetriar speler ein avgjerande rolle: kryo-elektronmikroskopi.
Symmetriar er eit kjent mønster i nevrale nettverk og anvendingane til desse. I Kryo-EM
kan desse nyttast uvanleg godt og målast nøyaktig. Me føreslår ein type av foldings-
nevralnettverk skreddarsydd til symmetriane i denne anvendinga, og undersøkjer kva
innflytelse dette har på nøyaktigheita til modellen.

Desse forskingsbidraga utvidar det siste skriket av forklarlegheit av bileteklassifiser-
ing. Dei gjev også eit utgangspunkt for fleire vidare framdrifter til både forklarlegheit
og interpreterbarheit, i bilete-anvendinga og andre.
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CHAPTERα
INTRODUCTION

α.1 The Age of Machine Learning

It is 2023, and AI is everywhere. At the time I am writing this paragraph, it is OpenAI’s
recently released ChatGPT model [71] which is most talked about – to the point that I
hear jokes along the lines that I don’t even need to bother writing a thesis anymore,
since GPT will be able to do it better already tomorrow. ChatGPT is not the first of its
kind, but it has made the term “artificial intelligence” ring more true than anything
before it, and made tangible a swath of outcomes that the technology will likely have
in the near future.

This includes much excitement about opportunities that are opened up, but also
much worry about societally detrimental ramifications.¹ The fact that ChatGPT is
literally able to do many homework tasks for students [97] – albeit nothing on the scale
of a whole PhD thesis yet – is hardly the most severe of these outcomes.

This thesis is not about ChatGPT or other large languagemodels, or indeed anything
else that comes close to general intelligence. In fact, the term “AI”will be largely avoided
in the remainder. What the thesis does share with said debate is that it is concerned
with machine learning (the heart technological paradigm behind today’s AI landscape),
and that it attempts to address some of the ethically critical aspects of machine learning
and its applications.

To only give a brief overview of thewiderAI issues: they can be divided in long-term
and short-term ones.

α.1.1 Short-term
In the present, machine learning systems are already deployed in numerous applica-
tions with various levels of impact upon human lives, and this is expected to increase
further. The most obvious are the ones directly interacting with humans and/or taking
their jobs, such as autonomously driving cars, but arguably more important are those
which invisibly take decisions about things like creditworthyness, criminal risk or
simply product recommendations. For them, a major concern is the susceptibility to
dataset biases and other undesirable, but hard to detect misalignments [9]. Many of
these misalignments are tangible, reflecting biases that humans display too (such as
discrimination based on race or gender), but there are likely also related effects for

¹And thirdly, also some derision claiming it is all simply over-hyped.
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which there are no human-known descriptions at all.
In addition, even machine learning systems that are not problematic per se are

being used for nefarious purposes such as spreading plausible-looking misinformation.
This will not be discussed here, as it is not a problem of machine learning itself but its
inappropriate use.

α.1.2 Long-term
In the longer term², the item of worry are artificial intelligences that truely possess
human- or superhuman level intelligence. Such a system could develop its own dy-
namic, whether in response to human-given tasks or a consequence of its own (possibly
misaligned) goals. It could actively trick and instrumentalize humans and make it
difficult to put any stop to its actions, if that should for any reason become necessary.

α.1.3 Courses of action
In both instances, the problem is not so much AI per se as its intransparency. A system
that can be understood by the humans affected by it could be kept in check, at least
given sufficient political goodwill. For a system that is not understood it is hard to
know even what about it might be necessary to keep in check. This brings with it a
dilemma of having to either accept considerable risks of deploying the system with its
unknown detrimental potential, or else restricting the use of such systems so much that
the benefits are also limited. What course of action to take in this dilemma is a matter
of politics and philosophy, and this thesis can not do much to provide an answer.³
What the thesis does contribute to however (or at least attempts to) is reducing the level
to which the dilemma arises in the first place. It does this by investigating how well
existing machine learning systems can already be understood, as well as proposing
steps that might be taken to improve their understandability.

α.2 Explainable? Interpretable?

In the coarsest terms, learning is an extrapolation problem: one starts with a finite
amount of training data, and uses this to infer a function or probability distribution
that resides in a much larger space. Specifically, supervised learning (which this thesis
deals with) is abstractly of the following form: assume there is a ground-truth function⁴
FGT : X→ Y, then given only n data points (xi, yi) ∈ X×Y such that FGT (xi) = yi, infer
a model function F : X → Y which agrees⁵ with FGT as well as possible, in particular
also on x ∈ X that were not in the training data.

²The consensus on how long in the future AGI is to be expected is shifting. Until recently, most
researchers considered this possibility still distant, unlikely to matter in the 21st century, but the recent
progress of large language models has caused many to think it plausible that such systems will emerge
within the 2030s.

³I, the thesis author, am of the opinion that society should strongly err on the side of caution, and
only deploy AI systems where the benefits clearly outweigh the risks and no traditional algorithmic
solutions are available.

⁴Unless otherwise specified, the term function is always used in the maths sense – i.e. a mapping
between two sets, not necessarily continuous, computable or some other sense of benign.

⁵The notion of “agreement” is deliberately left vague at this point.
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Clearly, this is in general an ill-conditioned problem: there is only limited infor-
mation available (though the amount is routinely in the giga- or terabytes nowadays),
whereas the space of all candidate functions F is wont to be infinite-dimensional. This
issue will be picked up at multiple points in the thesis.

Only in the most basic special cases, a strategy is available that is both theoretically
straightforward and performswell in practice – although the importance of these special
cases should not be underestimated. For example, for a signal with low-dimensional
domain that has already been sampled at an ample resolution, it is often perfectly
appropriate to interpolate between the sample points e.g. linearly or cubically; many
physical systems have a linear response which can be inferred with a basic least-squares
fit; software linters have hard-coded source code patterns that are deemed problematic,
etc..

Such models are schoolbook examples of interpretable models: we as humans have
a good overview of the principles behind them, intuition for when and why they
work (and just as importantly, when they fail), and ability to deliberately develop
them further to work in settings that require adaptions. They also tend to have good
possibilities for attribution:⁶ in the signal-oversampling example, every sample in the
output only depends on its nearest neighbours in the original data; in a linear fit model,
perturbations can be tracked by the gradient of the response, which is a global constant;
linter antipatterns can have a name and linked documentation with a specification in
terms of a formal grammar.

The diametric opposite of interpretable models are opaque black-box models. For
these, one has initially no information at all available, other than their final output
as a function. This is something of a caricature: technically speaking there is always
more information available – after all, any model has an implementation. However,
even a completely understood implementation will tend to yield an opaque model if its
behaviour depends on a sufficiently large number of trained parameters, unless there
is a strong mathematical structure behind the way these interact with the input and
output.

And even a partially or fully interpretable model may need to be considered as a
black box, if the implementation and/or parameters are unavailable to the user. This is
particularly relevant for commercial models deployed in a Software as a Service manner.
Thus, the term black box describes more how a model is used, rather than anything
intrinsic about the model itself. A model that is not used as a black box (“white box”)
may or may not be a transparent, interpretable model.

Note that the real, physical world could also be considered as a black box, the
only perfectly-opaque one: it is impossible to know what its inner workings are.⁷ This
illustrates however that it can be possible and useful to obtain information even for
a black box: this is precisely the job of science. Parts of the world are explainable in
that sense.⁸ This is taken to mean that is is possible to build interpretable auxiliary
models which are able to predict at least locally what the outcome of new experiments

⁶See chapter 1 and chapter 3.
⁷Whether the notion of the world’s inner workings is even in principle meaningful is a philosophical

debate of its own right, which will not be carried out here.
⁸All the science examples here are taken from the domain of physics. This does not mean that other

scientific disciplines are less relevant (though it might be argued they are indeed less explainable), but is
instead mostly an artifact of the author’s background.
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in the real world would be. By extension, the interpretations and attributions in these
auxiliary models also provide to some degree an interpretation of the world. This view
on explanations and how it relates to machine learning will be expanded in the next
section.

The literature does not always make the distinction between “interpretable” and
“explainable” followed here. Othertimes it is vocal about the distinction’s importance,
like in Rudin [80] who argues that interpretable models should always be preferred
whereas explanations about black boxes are generally unreliable.⁹ This thesis leans
towards that view as well, but also acknowledges that interpretable models are un-
available in many applications. Its contributions work on both interpretability and
explainability, with a focus on amending the shortcomings of existing explainability
approaches.

α.3 Maths and Physics

α.3.1 Interpretability
As said previously, physics is explainable in a peculiar way. Its hallmark is the ability
to break phenomena down to the most simple and general principles, from which all
more complex behaviour is emergent. These principles are formulated in mathematical
language, perhaps best known in equations such as Maxwell’s. The model defined
by such a set of equations allows deriving predictions about nature from previously
measured quantities. It is however worth noting that especially the more fundamental
equations, including the (differential) Maxwell equations, do not directly connect
prior-measured quantities to predicted experiment-measurable ones, but only provide
a description at the microscopic level. The integration procedure from this micro-
description to macroscopic predictions is what involves the bulk of mathematical
machinery used by the working scientist and engineer. It is also what changes the
scope of physical laws from the by-themselves nearly trivial micro-equations to the
complex applications frameworks which are based on them.

At first sight it might seem, then, that this complexity also destroys the model’s
interpretability. The reason this is not the case is that the process is deterministic:
to reconstruct a macro-result, it is not necessary to reproduce all the details of the
integration procedure, but only the fundamental equations together with the system
of mathematical axioms which define their meaning. All of this amounts only to
information on the order of a kilobyte (an amount a human can completely and exactly
process and memorize)¹⁰, and such information is in principle sufficient to build all the
derivations, numerical solvers etc. from scratch and still be confident that they will
converge to the same predictions as the previous version – provided all the maths was
carried out correctly, which can be objectively checked from the axioms.

Admittedly, the above paints a somewhat over-idealised picture; some caveats need

⁹Rudin furthermore argues that the term “explanation” is also misleading for saliency methods etc.,
and that these should rather be labelled e.g. “summary statistics“.

¹⁰Information content is a complex topic of its own. The estimate “order of a kilobyte” hardly holds up
to much scrutiny, but let’s take it to refer to something like the size of a gzipped LaTeX file. Whether this
is a good proxy for either Kolmogorov complexity or human-perceived complexity will not be discussed,
though Section 3.2 contains related points.
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to be discussed. For one thing, the assertion that all the required axioms can be packed
in such a small space assumes that a high-level representation is used to formulate
them. But that itself requires a foundational framework. Attempts at such frameworks
like the Principia Mathematica [108] span hundreds of pages without ever getting close
to describing calculus. This could be ignored from the complexity estimation, if one
such framework could be accepted as a truly universal convention for all maths and
then science to be built on. (After all, in that case there would be no need for additional
elaboration when describing a new model.) And although it is in a sense impossible to
develop a perfect foundation [33], mathematicians seem at least to have converged on
only few systems such as Zermelo-Fraenkel set theory or Homotopy Type Theory [102]
as candidate foundations to support all maths used in scientific practice.

Another caveat is that the scientific progress is perhaps less mechanistic than scien-
tists themselves perceive it. Kuhn [51] argues that most scientific work happens within
paradigma; that is, scientists implicitly work within a certain methodological and mental
context. Similar to maths foundations, this shapes what is even possible to express and
consider. The paradigm contains information which may be conveyed through educa-
tion, but is not explicitly associated with a given scientific model. That would mean
that for example physical models are indeed interpretable to contemporary physicists,
but not to physicists 200 years earlier who were working in a different paradigm.

All of this is, at any rate, in stark contrast to the interpretability level of most deep
learning models. For those, data is everything: the best image classifiers are useless
before having been trained on many examples. And the resulting parameters are at
least megabytes of weights which humans can only interpret to a very limited degree,
let alone memorize and reconstruct independently.

α.3.2 Generalization

Many physicists would consider the minimalist interpretability – or “elegance”, or
“beauty” – of physics a central feature of its own right; others would consider this
subordinate to more prosaic purposes as a tool for solving concrete problems. The
split is perhaps best exemplified by the Bohr-Einstein debates on interpretation of
quantum mechanics [64], but it has surfaced in various forms throughout history. The
interpretation-focused position goes back at least to Pythagoras and Plato [90].

The practical purposes can largely be summarized to making new predictions. In
its strongest form this is the problem of induction, which is remarkably similar to the
idealised goal of machine learning as per Section α.2: inferring from a limited amount
of evidence new truths. The Popperian school rejects the induction problem per se
as unsolvable [74], and focuses on falsifiability instead, which is one way of giving
preference to simpler, more definitive models.

Historically, both criteria have often gone hand in hand: a simpler, mathematically
confined theory (given validity with existing evidence) tended to also generalise bet-
ter. For example, the geocentric models of the ancients with their complex epicycles
were superseded by the Kepler model requiring only ellipses and simple relations,
which then turned out to be but a special case of the even simpler (within a suitable
mathematical framework!) Newtonian mechanics. The lattermost is ubiquitous even
today, whereas highly parameterised models have more typically been – if not outright
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disproven (like the geocentric models) – at least unable to produce new predictions
that went on the be experimentally confirmed (like string theory, as yet).

That it should be like this is by no means self-evident. The relation is also not quite
well-specified, or at least it is not clear that the notion of simplicity therein can be
equated with interpretability. For example, general relativity is extremely successful
prediction-wise, but while it is simple in the sense of not requiring many parameters,
most humans do not find it easy to understand at all. Thesematters have been discussed
at more length by Wigner [111].

There is meanwhile a general and fairly well understood term for the tendency of
excessively parameterized models to fail generalising well: overfitting. Crucial for this
discussion is that deep learning models often do not overfit even with a vast number of
parameters. For example, large language models currently improve at almost constant
rate asmore parameters are added [44]. And although there are other factors involved in
the design of models, the sentiment that the sheer size of data, parameters and training
(in short also called “the compute”) is the predominant cause for good performance is
now quite pervasive [98].
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CHAPTERβ
SUMMARY OF RESEARCH

The contributions in this thesis can be divided in two topics, which roughly parallel the
explainability vs interpretability divide discussed in Section α.2. Both lines of research
have produced artifacts that stand independent of the other, but there are recurring
themes and connecting ideas behind them.

β.1 Saliency

Ageneral approach to explainability of classifiers (particularly, but not necessarily, deep-
learning ones) is to disassemble their inputs into a-priori selected features, and then
attempt to analyse how much each of the features contributes to a given classification
result. Such a technique has to contend with two sub-problems: a useful choice of base
features, and how to attribute the classification to them.¹

β.1.1 Features
Much of the saliency literature does not venture explicit discussion of what features are
or should be. The most common incarnation by far is that of small regions of an image,
or indeed single pixels. See Section 3.1 for discussion. In brief, spatially seperated
features are both immediately tangible to a human, with their attribution easily visible
in form of heat maps (see Figure β .1), and they directly correspond to the default
vector-representation of image inputs in deep learning (as well as, indeed, most other
digital image processing).

For themost part, thiswork also complies to the pixel view, however the assumptions

¹Beware Remark 2.

Fig. β.1: Some examples of saliency heatmaps from methods off the literature. Each
frame shows a way the cause for the classification of the given image as “vulture” is
localised, by the various methods. Taken from [27].
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connected with it were regularly questioned during the research and attempts made
to keep the developed methods independent of this particular choice. Indeed, it was
discovered that some of the encountered difficulties of saliency methods can be seen as
resulting from shortcomings of the pixel basis; cf. in particular Section 2.5.1.

Meanwhile, chapter 4 reacts to both these observed shortcomings, as well as insights
from older literature, and works to make the features of the scale-invariant feature
transform [59] viable as an alternative to pixels as saliency features. This decomposition
has several properties that are desirable for the purpose, both ones of mathematical
and interpretational advantage as well ones that make it easier to obtain attribution
results in practice.

It does however also open up new challenges, not all of which could be overcome
within the time frame of this work.

β.1.2 Attribution
The more technical – and more literature-heavy – concern is how to determine which
of the available features are indeed important to the classification process, and which
are not. There is a large variety of approaches to this, discussed in Section 1.2; they
range from simple and generic like the Integrated Gradient method [96] and from
architecture-specific like Grad-CAM [87] to bespoke image decomposition algorithms
like Compositional Occlusion Explanation [19].

What these have in common (albeit to different degrees) is that there is no proof that
the features they indicate as important do indeed faithfully and universally represent
the decision made by the classifier under investigation.² Faithfulness is perhaps the
most important and most challenging concern [80]: when machine learning systems
are used for making critical decisions, a wrong explanation could be far more harmful
than no explanation at all, because it could lead humans to trust in these decisions
when they should not [39].

It is likely that a perfect, universal, proven, faithful saliency method is not even
possible in the general black-box case, which after all suffers from a similar problem
as the original machine learning conundrum touched upon in Section α.2: having to
infer a result of hopefully general validity from only a finite number of evaluations.
Nevertheless, it would be desirable to at least have a mathematical notion that can be
agreed upon of what importance should entail conceptually, which would have an
unambiguous solution at least under simplifying assumptions and/or given unlimited
computation resources, and which can be implemented in practice in a way that allows
obtaining attribution results in feasible time as well as some estimate of their quality,
stability and representativeness.

The present thesis has not reached something the author would consider as the
solution on this matter. But the Ablation Path method that was developed, as presented
in chapter 2, does at least constitute some progress. It provides partial mathematical
unification of the existing methods, an implementation that has been demonstrated to
work on a typical image classification task with similar ease and stability as the state of
the art, whilst providing additional information that is useful in particular for assessing
faithfulness.

²This is witnessed by the fact that the different method sometimes yield completely different results.
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β.2 Symmetry

On the interpretability side, there is an even larger variety of approaches in the literature.
Also here, a further split in two sub-fields can be made: interpretation of the inner
workings of the model, and interpretation of the training data’s influence. An extremely
simple example model would be a classifier for data in a metric space, which for a
given input looks up its nearest neighbour in the training data set. The result is the
class of the neighbour datum, and its interpretation consist of that concrete neighbour
and the distance function on the set of images.

This simplistic model is not suitable for e.g. photographic image classification, at
least not with distance functions that could be readily computed. In particular, common
distance functions like theL2 metric (cf. Section 3.1) would grade two images as similar
if they have a similar distribution of lightness at corresponding locations in the image
plane; however, even two images of the exact same scene at slightly different view angle
and illumination could be very different in that regard, whereas two images from a
stationary camera would rank similar even if they have completely different objects in
focus. The model would thus generalise very poorly on a typical image data set.

In that example, there was a symmetry present, which the distance function failed
to reflect: illumination, translation movement etc. should not have a strong influence
on the classification. These will be discussed in chapter 5, as well as parts of chapter 3.
Such symmetries are at the core of the rationel for interpretable techniques like SIFT, but
also important for elements of architectures that would rather be called black-box, in
particular convolutional neural networks (Section 5.3). It is oftentimes not thoroughly
investigated how important these built-in symmetry properties are for a system’s
performance, compared to plain learning from training examples. In chapter 6, Cryo-
EM, an application where the importance of the rotational symmetry is particularly
evident and quantifiable is the topic, both of which makes it a good use case for
investigations into increasing intepretability, as well as being an interesting and fruitful
research area of its own right.

In chapter 7, a particular variation of the common convolutional neural network
architecture is introduced for the task of image denoising, using a novel spiral-based
sampling strategy to better exploit rotational symmetries while staying close to the
way such networks operate otherwise. It is demonstrated that this slightly improves
both denoising performance and equivariance, which indirectly is evidence for the
interpretability level.

β.3 tl;dr

This thesis contains:
• A new saliency method (Ablation Path Saliency), with experiments for image

classification. See Part II.

• A novel way of using SIFT as the feature palette for saliencymethods, also applied
to image classification. See Part III.

• Investigations of symmetry in the denoising of cryo-EM images, and a new neural
network architecture (Spiral-CNN) to efficiently exploit them. See Part IV.
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Each part begins with 1-2 introductory chapters covering fundamentals and relevant
literature to the respective topic (chapters 1, 3, 5, and 6), followed by a chapter presenting
original work (chapters 2, 4, and 7).
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FROM HEATMAPS TO PATHS





CHAPTER 1
UNDERSTANDING SALIENCY METHODS

1.1 Problem setup

1.1.1 Concepts of supervised classification
In the next chapters, a classifier model F is at the center of discourse. In all the practical
examples this will be an image classifier, i.e. it maps two-dimensional arrays of colour-
valued pixels¹ to (conceptually) discrete labels from a predetermined set. However,
most of the methodology does not hinge on that particular setting and can be best
approached in a more generic way. The following lays out the notions that are used for
both the general problem setup and its concrete instantiations.

Input space

The space I is the domain of F, i.e. the set of all inputs it could in principle process. In
most implementations this is a high-dimensional vector space (particularly the space
spanned by individual pixels), but nothing in the present work requires such a strong
mathematical structure; for the most part, it suffices to consider I as some differentiable
manifold.

Examples of inputs include:

• Handwritten digits or letters: e.g. MNIST dataset [52], I = R64×64

• Low-resolution photos: e.g. CIFAR-10 [50], I = R32×32×3

• Medium-resolution photos, I = Rh×w×3: e.g. Pascal VOC [26], ImageNet [82]
with h ≈ 500, w ≈ 300; Microsoft COCO [56] with h ≈ 600, w ≈ 400

• Higher-resolution image, audio, video and evenmultimodal data are increasingly
used as well, but this thesis does not touch on them.

In chapter 3 there is some discussion about the mathematics behind such spaces and
why they are used for image-like data.

It is important to note that I is not the space of all images that F will in fact be
capable of classifying, nor the space from which the training inputs have been sampled.

¹In the typical implementations including PyTorch as used for this work, images are actually stored
in a transposed form, i.e. for each colour channel one scalar-valued 2D array. The reason is that this fits
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Those are in general much smaller spaces; in the image example, most of the possible
constellations of pixels do not correspond to an image that would be physically possible
as a photo, and typically F will have no clue what to do with them. Such inputs, called
out-of-distribution or off-manifold, are a case where most current machine learning
systems behave in a way that is quite counter-intuitive to humans; see Section 1.4.3.

We denote the space of images that is physically reasonable by IPh ⊂ I; however, this
has little merit except symbolically, since it is usually intractable to pin down its exact
properties.

Output space

For a pure supervised classification problem, the ground-truth data consists of samples
from I (indeed, from its IPh subspace) together with labels from a discrete set L.

Another way of looking at this is that each label ` ∈ L is associated with a set I|→` of
inputs mapping to that class. It is reasonable to assume that I|→` and I|→˜̀ be disjoint,
for ˜̀ 6= `: this means that a given input is never labelled in two different ways. See
Remark 1.4.1 for why this is a useful perspective (and for caveats); for now, suffice it to
say that disjoint class-domains allow the ground truth to constitute an at least partial
function. The idea of supervised learning is then to estimate a completion of this partial
function to a larger domain, ideally to all of IPh.

In practice, for various reasons another output space is also considered: the free
vector spaceR:=R|L| ' LR, i.e. the space of tuples of real numbers, one for each possible
label. The canonical categorical vector embedding (one-hot encoding)

111hot : L→ R

111hot (`) =

(
0, . . . , 0︸ ︷︷ ︸
Index of `

, 1, 0, . . . , 0

)
(1.1)

allows considering any function to L instead as a function to R, and is used to bring
the data in that format before training.

A more elegant way of expressing the same is to treat R directly as the space of
functions L→ R (this is still a free vector space), in which case the one-hot encoding is
simply²

` 7→ ˜̀ 7→
{
1 if ` = ˜̀

0 else
. (1.2)

In many situations, R is either implicitly or explicitly restricted to the range [0, 1]; cf.
Remark 1.4.1.

Remark 1. The one-hot encoding is right inverse to the argmax operation.

Classifier

The classifier F itself is first of all a function I→ R.
together well with the channel architecture of convolutional neural networks; see Section 5.3.

²Equation 1.2 uses curryed notation for multi-argument functions, retaining the L→ R type which is
in this case isomorphic to L× L→ R, and ` 7→ ˜̀ 7→ � corresponds to

(
`, ˜̀
)
7→ �.
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One property of classifiers that is suggested by the discrete nature of the ground-
truth labels is that the model output should be approximately discrete too, i.e. for most
inputs x there should be exactly one label ` such that (F (x))` ≈ 1, with (F (x))˜̀ ≈ 0 for
all other ˜̀. This property is encouraged by training F to match exact categorical labels:
certainly for x from the training dataset, and at least for the typical architectures (based
on ReLU activations and a softmax final layer) this also tends to hold even for many
inputs very different from the training data. It is this near-discreteness that allows
analysing F in terms of class domains and their boundaries; see Remark 1.4.1.

For the purposes of saliency, it is most often only the projections (F (·))` which are
pertinent, where ` labels the class of the fixed target input xTg whose classification is to
be explained. The notation F is employed for this projection:

F : I→ [0, 1]

F (x) = (F (x))` . (1.3)

1.1.2 Attribution
Remark 2. The terms “saliency” and “attribution” are used with somewhat inconsistent
meanings in the literature. Often they are synonymous, or distinguished in the opposite sense of
the one used here (cf. Section β.1). The use of the term “saliency” for explanation of classifiers
seems to stem from Simonyan, Vedaldi, and Zisserman [91], who still wrote specifically “class
saliency”, whereas later works typically write either “attribution” or “saliency” for the same
concept.

Earlier use of similar terms include the Salience Distance Transform [79], which is only
weakly related to the subject discussed here.

The previous section describes pure black-box classification, i.e. the user of F never
learns more about it and how it applies to an input xTg than the concrete prediction
F (xTg). Explainability is the attempt to gain information beyond that. This could mean
many different things, even without bringing any implementation details about F into
the picture: it could mean insights about the mathematical properties of F (beyond
being simply a function), it could mean insights about the training data and what about
it is relevant for classifying xTg, or insights about xTg itself and what about it is relevant
for F.

Saliency is particularly concernedwith the lattermost. Again, there are sub-distinctions:
it is possible to perform pre hoc analysis about xTg, finding properties that are likely
important. This can be augmented by taking the single classification F (xTg) into ac-
count, which is still quite limited information to work with. More powerful methods
generally also evaluate Fwith different inputs, and the generation of those inputs entails
a substantial part of the effort.

What, as widely agreed, saliency should not be is a mere reiteration of the input
information, an aspect emphasized by Adebayo et al. [2]. Neither should it provide
results that have little to do with xTg. In particular a saliency method should not only
procure so-called adversarial inputs of the classifier, i.e. extreme sensitivities of a neural
network [99], which – albeit relevant for the study of a classifier – do not actually have
much to do with the mechanism of the classification for xTg.
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1.2 Existing work on Saliency

This section introduces a selection of methods from the literature. The mathematical
definitions have been translated as far as appropriate to the terminology used in the
Ablation Path method presented in chapter 2, and in some cases details simplified.

1.2.1 Ante-hoc
Even without knowing anything about F or F (xTg), one can often make some estimates
as to what about an input xTg may be salient for the classification. As an extreme
example, for an image with uniform-coloured background and only a confined region
with much stronger value fluctuations, it is reasonable to assume that this region
corresponds to the foreground object which is classified. This line of thinking is not
much discussed in the saliency literature, and perhaps for good reasons: it is simply not
true that classifiers behave in general accordingly. For an opposite extreme, consider a
picture of a lake where the water itself may appear relatively featureless compared to
the strong contrast of trees near the shore. Regardless of that, the water should clearly
be more important for a classification of that image as “lake”.

Besides this, the idea of classifier-oblivious saliency is also counter to the very
concept of attribution, as per [2]. It is for two reasons that this branch of methods
nevertheless deserves mention:

1. Most of the saliency methods discussed in the next sections are, to different
degrees, implicitly sensitive to such image-intrinsic pseudo-saliency. This is most
evident in the integrated gradients method [96], which contains a factor xBL −xTg
(Equation 1.6) that is proportional to the local signal strength, regardless of what
the classifier does.

2. Many classifiers are as a result of their architecture particularly sensitive or
insensitive to kinds of features that can be named a priori. This is trivially true for
classifiers which operate on features extracted from the images by human-coded
preprocessing, but also for ones which directly process pixels.

Both of this is important to keep in mind when discussing saliency methods, inde-
pendently of whether or not they explicitly take image-intrinsic information into ac-
count. Such information can be for example: intensity, edges and similar (compare
Section 3.1.3), or multiscale properties (compare Section 3.4).

1.2.2 In situ
What we mean here are methods that evaluate one single input xTg, feeding it to the
classifier once. This reveals, at the very least, the class-probabilities assigned to that
image, though these come without explanation.

1.2.2A Tack-on model

The bare classification result does provide the information what should be explained.
One may use this as a key to more specialised analysis of xTg. A simple approach here
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would be to evaluate cross-correlations with training images of the top class, based
on the assumption that the target image contains a mostly unchanged copy of parts
of a training image. Such an assumption is valid in some applications, but these are
the ones where cross-correlation could also be used directly for classification[106][3],
which is a well-interpretable technique and therefore makes saliency methods quite
unnecessary.

The same idea can be extended to the more general case where the assumptions
of known interpretable techniques do not hold: as long as some classifier architecture
has been shown to succeed on the task (i.e., high validation accuracy), it is likely that
a similar architecture can also explain the classification. This leads to an approach
of training such a model specifically on the explanation task. The training data here
could be based on segmentation annotations, saliency from another method, or a
combination. The approach is workable [21], and it sidesteps many of the problems of
purpose-built saliency methods, but its main drawback is that it explains a black box
with another black box. In other words, it provides opaque explanations. Not only does
this limit the depths of insights that can be taken, it is also prone to alignment issues
[38][39][32]: the explainer will tend to, both through its training and model selection,
confirm what humans think the classification should be based on, with little guarantee
that this corresponds to what the classification actually is based on.

An extreme case of opaque explanation would be to literally ask a generic AI
system about the reasons for a decision that either the same system or another one
made. The latest generation of Large Language Models are able to produce answers
to such questions, but in a way that foremostly achieves a plausible appearance.[17]
They happily explain even an outright wrong decision in a way that might trick an
unprepared human into trusting it. And although it is foreseeable that future iterations
of such models will also become better able to handle such cases, perhaps by actively
criticising the original decision, this will still remain hard to verify. Indeed, as such
models get more powerful, refuting their mistakes will become only harder: both
will their capability for forging convincing explanations grow further, as will their
decision-making capabilities themselves increasingly exceed those of humans (if not of
field experts, then at least of layman users) who could catch out the mistakes.

All this is not to say that auxiliary explainer models are without merit, even black-
box ones. Especially when used only as one among a suite of explanation tools – so that
they can at least occasionally be double-checked – trusting themmost of the timemay be
acceptable. The advantages include flexibility to learn a variety of explanation formats
(e.g. particulary convenient visualisations), and non-necessity of evaluating F on more
inputs and/or with special tooling. The latter can make this approach particularly
fast and efficient [21], especially compared with the ones from Section 1.2.3 and the
Ablation Path method presented in this thesis. They should then however rather be
considered as usability-optimised approximations to a more principled, transparent
saliency method, than as methods of their own right. Transparent saliency methods
remain the topic deserving the most research attention.

Another use for explainer models could be to feed information back towards the
development of better classifiers. Ideally, this could catch the mechanisms behind
misaligned decisions and prevent them from happening in the first place. This is
somewhat utopic at present, albeit related to some existing approaches for making AI
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more well-behaved.

1.2.2B Augmented evaluation

Strictly speaking, for a black box, the evaluation F (x) is only a single value. But in
practice it is usually still possible to extract some more information, without needing
either detailed assumptions about the internal architecture nor explicitly probing F

with more inputs.
The simplest information of this kind is the gradient³∇F (x) , which describes the

behaviour of F as an affine function approximating it in a whole neighbourhood (how-
ever small) around x . Although differentiability is not a trivial property, a gradient
can – for the purposes of machine learning saliency – nevertheless be assumed to be
available. Non-differentiable models exist, but they are unlikely candidates for deep
learning because the training of those models normally also requires gradients. These
are in practice computed by reverse-mode automatic differentiation; see Section 5.3
for details. In brief, it is sufficient for the model to be a composition of differentiable
primitives.

Gradients can serve as saliency maps almost by themselves, and were used as such
early on [7]. The intuition is that a gradient points towards the direction of strongest
change; i.e. v:=∇F (x) is a vector such that F (x + ε·v) differs substantially⁴ from F (x)
even for small ε, suggesting that v involves features important for the classification.

The main problem with gradient saliency is that a function’s gradients are in gen-
eral only locally representative of its behaviour, possibly confined to very small input
regions. For an extreme example, consider a function with a slow- but steadily varying
contribution plus a low-amplitude but high-frequency “noise” component on top. The
noise would dominate the gradients (making them essentially random), despite being
largely irrelevant for differences between real-world inputs. For standard image classi-
fiers, even raw gradients are more useful than random noise [91], but they are hardly
stable either. Gradients are also the tool used for obtaining adversarial examples (Sec-
tion 1.4.3A), and thus at least as prone to their effects as other methods. The situation
is exacerbated by the fact that well-trained classifiers are often near-constant on whole
regions of the input space (Remark 1.4.1), such that in those regions noise / adversarial
fluctuations are the only significant contributions to the gradient. As a result of all this,
gradient saliency is usually highly grainy / noisy and unreliable. Some of the methods
in Section 1.2.3 can be seen as addressing this specific problem while still conceptually
following the affine-approximation idea behind the gradient method.

One can also obtain further information from F (x) beyond single-point gradients,
still with only weak and structure-agnostic assumptions about the model. In particular
a classifier made up only of piecewise linear layers can be considered as a network of
linear inequality constraints. This is useful not just for saliency purposes, but moreso
for assessing the classifier’s robustness or even proving it to be well-behaved within a
certain set of inputs [45][8]. This is a highly desirable research direction, but it does so
far seem to be restricted to rather small, low-dimensional datasets. It is unclear whether

³Or, arguably, rather the differential or weaker notions; see Section 1.4.2 for the mathematical nuances.
⁴The phrasing is vague here for briefness; a proper treatment requires metrics on both input- and

output spaces, see Section 1.4.2.
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this is only a result of computational expense, or of more fundamental limitations.⁵

1.2.2C Architecture-specific

Taking the structure of a classifier network into account opens up far more possibilities
for investigation. Such methods will be less generally applicable, but may still cover a
large swath of models.

Sequential deep neural networks are built as a composition of simple functions. Even
though the whole stack of them exhibits complex nonlinear behaviour, the individual
layers can be easier understood. Because composition is associative, one may split up
the network and explain only part of it. Most saliency methods can thus be run only
only a suffix of final layers, even high-level ones that could also be used on the full
network [27]. The saliency method itself will have an easier task then, but the price
for it is that the explanation will be in terms of abstract learned features, not obvious
pixels or otherwise inherently interpretable features (see chapter 3). There are ways of
visualising even such abstract features by attempting to “invert” the preceding layers
[62], so as to obtain again an image in I. Such an inversion is in general ill-conditioned;
it requires non-unique regularisation (in addition to regularisation that may be needed
for the suffix-layer saliency). Even then it is debatable how natural the inputs really
are, and whether they faithfully represent anything about the classifier decisions.

In the case of convolutional neural networks (cf. Section 5.3), one can exploit the
additional property that at least part of the spatial confinement is carried through the
layers (thanks to equivariance). As a result, one can a-priori map features in a layer
far to the back of the network to regions. This is the idea behind the Class Activation
Mapping [121], which essentially only computes saliency on the final layers of a CNN
architecture, specifically on a global average pooling- and fully connected layer, and
then uses this as a (potentially lower-resolution) saliency map for the input space. The
crucial calculation in this algorithm is to spatially attribute the gradient-saliency of the
fully connected layer across the pooling layer weighed according to the distribution of
inputs that were actually present during classification of xTg.

Grad-CAM [87] generalizes this, using a gradient-based technique to propagate the
localisation back to I even when not all layers are purely convolutional.

A main advantage of these methods is their simplicity and efficiency. They require
very little extra computation over a mere classification forward pass, and are straight-
forward to understand operationally. Less clear is what this procedure means from
a mathematical / statistical / data perspective. A main point of criticism is that the
faithfulness is dubious: CAM-based saliency is not directly connected to any changes
happening at the input. It makes the premise that the convolution layers are mere
pattern detectors, and displays the locations where the most relevant pattern occurs.
This works empirically well for many image classifiers, but it has no provisions for
the case that the classifier encodes some nontrivial logic in its layers (e.g. that some
pattern means something different depending on another pattern appearing in the
neighbourhood). These concerns manifest in problems like the fact (raised in [80]) that

⁵Finite-dimensional linear constraints might not be a suitable framework for capturing the dynamics
(diffeomorphisms etc., see Section 5.1) behind the data image classifiers deal with. In that case it could
be that any sufficiently powerful classifier would also have adversarial examples that to the verification
tool appear as errors.
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Grad-CAM may localise two different classes in the same spot in an image, leaving the
user unclear as to what is the difference between them.

1.2.3 Interventional
The remainder of the methods relevant to this thesis involve various kinds of purpose-
generated inputs onwhich the classifier is probed, in addition to xTg. There aremultiple
reasons for doing this:

1. Stability: as discussed in Section 1.2.2B, deep classifiers tend to have local fluctua-
tions that badly represent the real-world behaviour. Evaluating with different
inputs allows seperating such fluctuations from actual representative behaviour,
and ideally averaging them out.

2. Counterfactual: it is easier to assess the result for one input when being able to
contrast it with results for other inputs, and comparison which changes do and
which do not affect the classification.

3. Validation: concrete input-output pairs are at least for themselves beyond doubt
of faithfulness. If a fully representative set of inputs could be found, it would
guarantee that an explanation based on them is faithful.

None of these objectives are automatically reached by just throwing multiple inputs at
the model. Only well-selected / -generated inputs achieve that (if at all). Indeed, none
of the method discussed here evaluates F with purely synthetic inputs. This would
require highly application-specific knowledge, or else the output of a deep-learned
classifierwould be so erratic as tomake it hopeless to extract any attribution information
from it. In cases where such knowledge is present, one should consider whether a
black-box classifier is appropriate in the first place (cf. [80]). Instead, the inputs are at
least partially based on modifications of existing data, mostly xTg.

1.2.3A Baseline inputs

A common notion in the following is that of a single input xBL, which xTg is contrasted
with. The idea is that xBL should be a neutral input on a-priori grounds. Common
choices include entirely black or grey images [28][19][95], random noise [28], and
blurred versions of xTg [27][73]. In all cases, a requirement is that F (xBL) differs signifi-
cantly from F (xTg) – in other words, that xBL is part of a different class.

Evaluation on xBL by itself is relatively uninteresting, but xTg and xBL together give
rise to a fairly rich family of inputs.

In the following, we will always have xTg and xBL fixed, as well as F. The saliency
methods IntegratedGrads, RISE and MeaningPtrb defined below have these as implicit
parameters.

1.2.3B Interpolation

The simplest combination-inputs that can be generated with very little additional
assumptions are affine interpolations between xTg and xBL. Specifically, this gives a
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family of inputs parameterised by one argument, a concept called in the remainder of
the thesis a path:

xaff : [0, 1]→ I

xaff (t) := xTg· (1− t) + xBL·t, (1.4)

or equivalently
xaff (t) :=xTg + (xBL − xTg) ·t.

Notice that xaff (0) = xTg and xaff (1) = xBL.⁶
Equation 1.4 relies on (scalar) multiplication- and addition operations on I. See

Section 1.3 for discussion / generalisation. The rest of this section ignores the subtleties,
taking the array-vector/tensor view.

The Integrated Gradient method from Sundararajan, Taly, and Yan [96] works by
evaluating the gradient of F along xaff , and multiplying it (in the sense of a pointwise
scalar product) with the vector between the two end-point images:

AverageGrads:=
1∫
0

dt ∇x (F (x))|x=xaff(t)
(1.5)

IntegratedGrads:= (xBL − xTg)� AverageGrads (1.6)

(equation (1) in [96]). They presented this method as a unique choice following from
supposedly self-evident axioms, which are not discussed here. Their relevance is put
in some doubt by observations like those in Section 1.4.3B. Integrated Gradients do
however tend to be less noisy than a single-input gradient. A simplistic reason would
be that any integration tends to average out noise contributions, however the research
presented in chapter 2 rather refutes this. Instead, a better justification seems to be that
the path along which the evaluations happens necessarily crosses at least one decision
boundary (cf. Remark 1.4.1), and that it is really the orientation of this boundary that
the method evaluates.

The factor xBL−xTg is notmotivated very convincingly in [96]. A technicalmotivation
could be that the inner product sums over the colour channels, so one obtains a scalar,
purely spatial saliency. That much could also be accomplished with a pointwise
magnitude though. Empirically, the pointwise scalar product results in clearer-refined
saliency maps, but this is arguably not a feature of the integrated gradient but rather
of the fact that regions with high colour-difference between target and baseline are
inherently more likely to have a strong influence on classification, as mentioned in
Section 1.2.1. It has been argued [2] that this is a misfeature of Integrated Gradients
as a saliency method: it makes it prone so showing heatmaps that visually resemble
the target image, which makes for a convincing explanation but has little to do with
the classification which one is actually interested in. It is not entirely unreasonable

⁶The direction in which a path is traversed a matter of convention. In this thesis the view is always
that the path starts from the target image and leads to some other place. One of the reasons for choosing
this convention is adaptability to a scenario of multiple baselines (Section 2.8.5B).

In the literature the convention is often the other way around, including [96]. When integrating over a
path, the only difference is a flipped sign, which is cancelled by a flip of the difference it ismultipliedwith.
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either, though: one could say Equation 1.6 provides the intersection of the pixels that
the classifier is sensitive to, and those that actually have the possibility of affecting it.

In the work behind chapter 2, a third motivation for the xBL − xTg factor was found:
IntegratedGrads corresponds to the gradient of the retaining path score and thus to the
first step in an iterative optimisation of this score.

While the simplicity advantage of affine interpolation makes it attractive, it is
dubious how much utility it adds over the original images xTg and xBL. After all, for an
essentially featureless baseline, all the xaff (t) contain still the same selection of features
as xTg. In particular if the classifier includes some amplitude-normalisation (whether
explicit or learned), it should respond to most of these image in much the same way.
On the other hand, if xBL contains features of itself then these could combine with
the ones in xTg to entirely new features,⁷ which could be classified in ways completely
unrelated to either of them. This would then also show up in some of the gradients
along the path, which seems inapproprate for a saliency method intended to explain
the classification of xTg.

The latter concern is to some amount common to all the interventional methods; it
is only one of a number of ways probing the classifier can go astray, see Section 1.4.3.
Indeed affine interpolation may be among the less artifact-prone interventions. Its
inability to probe different varations of weightings of the original input features is
however a substantial limitation, as is the (related) fact that it still relies directly on the
highly local classifier gradients.

A tool that enables probing such variation that is used by the methods presented in
the following, and also in this thesis, are masks that select some regions of an image
from xTg, some from xBL. See Section 1.3 for a proper introduction of these. For now,
think of a mask ϑ ∈ M simply as a heatmap that can be applied to images with an
operation [ ·· ]ϑ such that, locally (see Figure 1.1),

[ xRxL ]0 = xL (1.7)
[ xRxL ]1 = xR. (1.8)

1.2.3C Exhaustive

Revisiting the idea that saliency should describe which features are capable of changing
the classification, it is sensible to search for actual examples of changes to the input
that do or do not affect the classification.Evaluating the model with all possible inputs
is a naïve ideal for interventions. All the possible (x̃, F (x̃)) : x̃ ∈ I pairs together
characterise exactly the function F itself. But even if this amount of evaluations was
feasible, it would not give much more insight about the reasons behind the different
outputs, as long as the x̃ can not be compared structurally.

Reducing it to only inputs of the form x̃ = [ xBL
xTg ]ϑ changes this. Thinking of the

⁷No particular notion of “feature” is intended here; a feature could be part of any representation
learned by the classifier. For nonlinear classifiers, affine combination need not correspond to combination
in its own feature representation. Pre-chosen features in image space, as discussed in chapter 3, are a
different matter.
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[ xB Lx ]ϑ =

Fig. 1.1: Example of a masking-interpolation (the simple affine variaty, Equation 1.12),
as used throughout this part of the thesis. Image: COCO [56]

mask ϑ as a way of selecting for each feature whether or not it is included in the input
makes it possible to see this as a game-theoretical problem, where each feature represents
a player who may or may not contribute to the coalition making up x̃ . The problem of
assessing howmuch of the value of the complete coalition should be ascribed to each of
the players is a well-studied one in the field of game theory, and it has a solid theoretical
solution in the form of Shapley values [89]. Direct computation of these values requires
iteration over all possible coalitions, which are in the applications considered here far
too many to be feasible. Lundberg and Lee [61] offered ways of approximating them,
an approach called SHAP. This is an important branch of the explainability field, but its
starting point from the view of features as discrete contributors makes it most suitable
for applications where the features are already high-level individually interpretable
ones. Although it has been demonstrated to work in some cases also with low-level
features like pixels, it is not particularly robust in that role, largely falling victim to
the same problems as other interventional methods (cf. Section 1.2.3E and following),
which are simpler and more easily amenable to addressing these problems. SHAP or
other game-theoretical approaches have not been followed in this work, though they
could well be useful in combination with the methods developed here, particularly the
SIFT technique of chapter 4.

1.2.3D Random sampling

The infeasability of evaluating for all possible inputs from a large set is a common
problem acrossmany domains, both theoretical and practical. A commonway out is the
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Monte Carlo approach: instead of probing with a well-controlled but small and likely
not representative selection of inputs, or a representative but insurmountable exhaustive
one, one probes the classifier with a substantial but still computationally handleable
number of random-generated inputs. The intention being that such a sample can be
representative already at much smaller size than if it were systematically structured,
while hopefully avoiding strong biases in the sampling process. Although this may
seem haphazard, Monte Carlo techniques have proven successful in many applications,
ranging from statistical mechanics [24] to computer graphics [36]. More generally this
is also the principle underlying e.g. randomised medical studies.

Petsiuk, Das, and Saenko [73] propose to use inputs arising from random masks to
assess how likely certain features are to influence the classification. To be precise, they
define the saliency of a pixel as the expected value of F over masked inputs, conditioned
on this pixel being in the mask:

RISE = r 7→ E
ϑ

[
F ([ xBLx ]ϑ)

∣∣ ϑ (r) = 0]
≈ 1

Eϑ

[
ϑ
] ·
∑

ϑ̃

F ([ xBLx ]̃ϑ) ·
(
1− ϑ̃

)
·P

ϑ

[
ϑ = ϑ̃

] (1.9)

(equations (2) and (5) in [73]).
Here, the expectations / probabilities over masks require pulling ϑ from an a-priori

distribution, and the ϑ̃ are from a fixed, finite sample off that distribution. The re-
quirement to select a distribution is not necessarily a downside of the method, but it
does pose some practical difficulties. The authors do it by sampling boolean masks
on a lower-resolution grid and upsampling them to image resolution using bilinear
interpolation. This way, even a evaluatably-small sample includes independent varia-
tions in most image regions, but there is a tradeoff to be made between the achievable
fineness of localisation and the sampling efficiency. The bilinear interpolation is argued
to avoid hard-edged masks (compare Section 1.4.3A and Section 3.1), but it also causes
large parts of the images to be half-masked (0 < ϑ (r) < 1), with similar concerns as
integrated-gradient. Furthermore, linear interpolation is known to have substantial
grid-dependent artifacts, whichmight easily bias the results. Higher-level interpolation
could address this to some extent, but brings its own considerations (such as overshoot
phenomena).

Most of these issues are avoided by Chockler, Kroening, and Sun [19], whose
method starts out by comparing the classification of very coarse random masked
images to first determine only the general location of the salient parts, before then
recursively narrowing them down to a more specific location. This combines in a sense
the advantages of the purely statistical approach from Petsiuk, Das, and Saenko [73]
and of the optimisation-based ones discussed in the next section. This combination
approach is highly promising, but in its current mathematical form it is far more
involved than the other methods, and has a mathematical structure that is both less
easily understood and more tied to the image-classification application. Also, they use
fully-boolean pixel masks for evaluation. While this certainly avoids any half-masking
concerns, it does on the other hand introduce very strong artificial edges that might
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easily have a substantial influence on the classifier. On the plus side, these edges are by
construction narrowly confined, and the low amount of choice at each refinement step
makes the method inherently less susceptible to adversarial traps than all of the others
considered in this thesis.

If [19] had already been published and come to our attention earlier, it would
probably have had a stronger influence on the research conducted for this thesis. The
methods introduced here have not taken inspiration from the ideas of that line of work,
but future research would likely benefit from this.

1.2.3E Perturbation

Instead, the general approach that is most similar to the Ablation Path method of
chapter 2 is the Meaningful Perturbation method from Fong and Vedaldi [28], and its
refinement in Fong, Patrick, and Vedaldi [27].

The idea here is to directly optimise amask ϑwith the objective of achievingmaximal
F ([ xBLx ]ϑ). This, while intuitively a desirable goal if one wants to obtain saliency, is by
itself hardly useful since the optimal mask will tend to be trivially ϑ ≡ 0 or similar, i.e.
the mask that more or less selects the full target image (which does, after all, by premise
contain the object of interest). To make the task meaningful, one needs to impose at
least an area- or mass constraint upon the mask, or alternatively an according penalty
term to the optimised cost function. This essentially limits the number of features that
can be selected from xTg, thus forcing the optimisation to prioritize the ones that are
actually most salient.

Unfortunately, this is in general not sufficient, because optimisation-based saliency is
extremely sensitive to adversarial effects. In fact, most methods of purpose-generating
adversarial examples use very similar optimisation techniques [99][13]. What this
means is that an optimised mask will typically highlight some individual pixels, such
that [ xBLx ]ϑ is perhaps only subtly different from xBL but classified completely different.
In these cases, the mask is useless as a saliency map.

Fong and Vedaldi [28] address this by optimising with regularisation. Specifically,
they impose a total-variation penalty on the masks, which is one way of punishing
masks that are highly localised but have strong small-scale fluctuations. Additionally
they introduce a “random jitter” of image-translations τ and take the expectation over
these, the idea being to avoid depending on mask features that must be placed in a
very specific way relative to the target image.

MeaningPtrb = arg min
ϑ

(
λ1·mass (ϑ) + λ2· ‖ϑ‖TV +E

τ

[
F
([

xBL
τ
(
xTg

) ]
ϑ

)])
. (1.10)

This regularisation approach, while being technically rather different, has an analogous
effect to the upsampling from low-resolution masks⁸ used by Petsiuk, Das, and Saenko
[73]: it restricts the masks to actually work as selectors of already-present features,
rather than new structures. The details, commonalities and differences are discussed
in Section 1.4.2, Section 1.4.3A and Section 2.5.1.

⁸Fong and Vedaldi [28] do in fact also store the masks internally at moderately lower resolution, but
more this seems to have less relevance compared to the TV regularisation.

Chapter 1 27



Understanding Saliency Methods

Striking about particularly the Meaningful Perturbation method is that there is no
obvious and universal recipe for interventions that lead to good saliency results. The
mask-regularisation, respectively λ2, is only one of several parameters that need to be
somehow chosen. Although total variation by itself is well understood and parameter
choices for a TV regularisation may in some applications be possible to make based on
physical principles, this is even in confined scientific fields often done in a fairly ad-hoc
manner [116]. For general-purpose image classification, or even more broadly data
classification, there is little hope of deriving a one-size-fits-all strategy for optimisation
and regularization from first principles. What is somewhat promising is to couple in
domain-specific but still inherently understandable and classifier-independent data
analysis to inform this strategy. This idea is explored in chapter 4. Methods like [19]
could also be seen as implicitly generating an optimalmaskwith very specific properties,
which is conceptually very similar but more difficult. There is much ongoing research
in this direction; particularly related to ours is the work by [46], which is discussed in
Section 3.4.

Neither [73], [28] nor [27] make such considerations, at least not explicitly. In fact
these papers do not elaborate at all how they arrived at their hyperparameters. They
merely give results for one parameter choice, and argue it to be good based on both
direct visual examples, and the score in a benchmark, success in which is thought to be
a way of validating that a saliency method behaves reasonably.

1.2.4 Saliency validation
Similarly to how a saliency method tests in a sense the classifier F, as a function of x ,
the saliency method itself may be considered as a (higher-order) function

S : (I→ R)× I→M

which can in turn be tested. There are essentially two levels on which this can be done:

• Evaluating Swith a given classifier input images, and comparing the results with
those from other methods and/or a-priori expected characteristics.

• Checking properties of S as a function.

The latter is the more complete approach, but more involved too.

1.2.4A Sanity properties

Adebayo et al. [2] work in that property-check direction; their main concern is investi-
gating whether a saliency method really depends on what classifier does. These are
relevant checks, however they should rather be understood in terms of properties that
a salience method should not have, rather than properties that it should have (thus the
title “sanity checks”.

1.2.4B Expected results

A more simplistic benchmark is to evaluate a classifier/saliency combination on a large
number of inputs from a suitable dataset, and cross-checking the resulting saliency
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maps against annotations about the data. For image classification, such annotations
are often available in form of bounding boxes of the physical objects appearing in each
image. More typically these would be used for training localising object detectors such
as YOLO [76]. The premise behind the pointing game[118] is that a saliency method for
image classification should at least typically highlight roughly the annotated objects.

It is human-intuitive that a good classifier should base its decision primarily on
features spatially confined at the object associated with the class, and in that case
a good saliency method would indeed also point in those regions. The premise is
nevertheless problematic, since there is no inherent reason why a classifier trained
only on labels would do this. As far as the cost function by which such a classifier is
trained is concerned, it could just as well use any bias found in the data set. And indeed
this has been shown to occur in real-world applications, the perhaps most infamous
example being the tendency of skin cancer classifiers to classify surgical skin markings
/ rulers in the image, rather than the lesions in which the cancer might actually be
developing. [112]

In such a case, a saliency method that correctly and importantly uncovers this
misaligned behaviour would score badly in the pointing game. Meanwhile, a method
that for whatever reason highlights the lesions instead would score high in the pointing
game, but would have utterly failed to give a faithful explanation of the classifier.

This concern does not completely disqualify the pointing game as an assessment.
For general-purpose image classification with many classes, it is reasonable to assume
that such a extreme biases are not present, at least not consistently across most of the
classes. In that case, a better saliency method should indeed perform at least as good
in the pointing game as a worse method. Even when severe biases are present, a bad
saliency method would not automatically have an advantage in the pointing game –
after all, it would not only have to disregard the actual classifier behaviour, but also
independently manage to match the annotations. Then again, it is not too far-fetched
that it would accomplish this: the annotations themselves could be biased in a sense,
for example it is typical for datasets to have the object of (human-) interest near the
center. Simply preferring an explanation near the center would then a saliency method
an edge that does not correspond to an improved accuracy in the classifier explanation.
In other cases, it might be inherent image features that pull the saliency method’s
attention. Skin lesions for example have a particularly simple contrast and shape.

What the pointing game does quite unequivocally offer is a straightforward way of
checking stability of a saliency method: a method that is disproportionally susceptible
to near-random purely-local fluctuations and/or adversarial behaviour will have a
correspondingly high fluctuation in where the saliency points. As a result, it will score
worse than a more stable method. Therefore, using the pointing game to inform choice
of hyperparameters of a given method that are specifically concerned with instability
is reasonable.

Fong, Patrick, and Vedaldi [27] have run the pointing game, comparing their method
with many other ones, on multiple commonly-used models and data sets. They ap-
parently also based the tuning of their hyperparameters on this. See Section 2.7.3 for
comparison of our method with this benchmark.
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1.2.4C Faithfulness post-check

One thing that particularly the Meaningful Perturbation method [28] offers is to as-
sociate with the heatmap one concrete input, the classification result of which can
be inspected by a human together with the image. This assures⁹ to some extend the
faithfulness of this explanation, in that an explanation which highlights only irrelevant
features would correspond to an image that does not have the desired classification.
This single input suggestion is not much data to go by, but at least the classification
can be compared with that of the target and baseline. Most other methods do not have
such a simple way of assessing relevance at all.

Petsiuk, Das, and Saenko [73] suggested a simple way to estimate faithfulness for
any heatmap-yielding saliency method. This method, which we shall call (ranked) Pixel
Ablation, has since become a standard test in the literature [27][95][19]. The following is
a description of it in plain language. See Section 2.1 for the mathematical realisation.

The idea is to interpret the heatmap as a ranking of pixels from least important
to most imporant. This can then be used for generating masks that contain a given
numberm of either only the most important pixels, or only the least important ones.
By “contain” it is meant here that for the pixel in question the value that it has in
xTg is chosen, whereas non-included pixels will take the value from the baseline xBL.
Doing this for all possiblem, i.e. between 0 and h×w gives a fine-grained (if not quite
continuous) sequence of mask-image-classification tuples. The F classifications can be
plotted as a curve, called deletion curve when only the allegedly least important pixels
are included (in other words, themmost important ones deleted) and insertion curve
for the opposite case (themmost important pixels inserted).

The premise, then, is that a deletion curve for a successful saliency heatmap should
drop to a low value already for smallm, since the important parts of the imagewould be
removed early on which should presumably result in images that are not classified like
xTg anymore. Vice versa, an insertion curve should rise early, or equivalently not drop
quickly traversing it right-to-left, since that corresponds to removing only unimportant
pixels so that F should continue treating the images largely like the original. How good
each of this holds up can be summarised as a single number, called variously ablation
score or simply area-under-curve: it is simply the average of the classifier outputs across
all the pixel-ablated images. Low deletion-AUC and high insertion-AUC are desirable.

These scores are a compelling check for a saliency method, and have been a major
inspiration behind the Ablation Path method.

1.3 Features, sets, modules, rings

All the above, in line with most of the literature, has not delved into the mathematical
structure behind the notion of features and masks. The simplest perspective on this
is that the input space I is a finite-dimensional free Euclidean space (in other words,
that xTg is an array of real numbers), that each dimension in this space corresponds to
one feature, and applying a mask (also an array) means multiplying each entry by an
individual gain factor:

(ϑ� x)i = ϑi·xi (1.11)

⁹Caveats to this in Section 1.4.3A and Section 1.4.3B.
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where i is a suitable multi-index. In the case where the array stores pixel-brightness
values, this corresponds to the intuitive operation of shading some regions in the input
into darkness.

The fixed choice of black (or other arbitrary reference point, can also be half-grey) as
“featureless” is problematic: after all in many images a black region would be quite a
strong artificial contrast. This is one of the reasons to employ a selectable baseline input,
and use the masked interpolation operation, which can be based on the pointwise
product to obtain a pointwise affine interpolation:

[ xRxL ]aff
ϑ = (1− ϑ)� xL + ϑ� xR. (1.12)

The space of masks ϑ ∈ M does not need to be the same as that of images x ∈ I: for
colour images the latter will generally be of the form Rh×w×3, but the three colour
dimensions would be hard to interpret as a saliency mask, so it is standard to adapt
only the spatial dimensions to get M = Rh×w. The pointwise multiplications are then
pointwise scalar-by-vector multiplications.

All of this can be directly generalised by only requiring M to be a ring and I a (left)
M-module. In chapter 3 it is detailed why such generalisation is useful, but to mention
just one aspect here: the need for regularization / upsampling in the literature methods
demonstrate that it is not really appropriate to consider arbitrary multiplication of
pixels, and that M should actually be a considerably smaller / more regular space
than I (or a greyscale version of it). This is awkward to express with array-vectors, but
readily allowed for by the module formulation.

The generalised form can be used not only for the explicitly mask-based methods
[73][28][27], but also for Integrated Gradients [96]: with rings that have an embedding
ϑhom : R → M (which would in the pixel case correspond to spatially constant /
homogeneous masks) Equation 1.4 can be rewritten as

xaff (t) = [ xBL
xTg ]

aff
(ϑhom (t)) (1.13)

– or simply [ xBLx ]t, with implicit “broadcasting”.

1.4 Geometric observations

1.4.1 The class-domain picture

As mentioned before, the classifier F may have a continuous space R as its codomain,
but at least conceptually it approximates a discrete-valued function assigning each
input x (at least each in-distribution one, cf. Section 1.4.3) one and only one label from
L. In reality, this is not exactly true, but the output of a typical image classifier on
validation-set inputs does indeed tend to be approximately one-hot, i.e. one class is
assigned a softmax probability of 90-100% and all others negligibly low.¹⁰

¹⁰This observation is to some extent vacuous, because the softmax function maps any sufficiently large-
magnitude vector (which not happens to have multiple equal maximal entries) to an approximately
1-hot output. What is not trivial is that this also happens with the particular amplitudes coming from
the trained pænultimate layer of a deep-NN classifier. See Section 5.3 for more on this topic.
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An explicit way of obtaining such a discrete function which F approximates¹¹ is to
only consider the single highest-scoring class, i.e.

F̂ : I→ L

F̂ (x) = arg max (F (x)) . (1.14)

Here, R was treated as the free space L→ R like in Equation 1.2.
Specifically for saliency-understanding purposes one can then consider the preim-

ages of individual labels under F̂ as a proxy for F. We call these preimage sets F̂− (`)

class domains.
Consider for the sake of argument the oversimplified case that F̂− (`) is a convex set¹².

This leads to a simple result¹³ about the Integrated Gradient method. It is somewhat of
a “spherical cow” model not necessarily very representative for real-world data, but is
still empirically close to true in many situations and has been another major inspiration
for the devolopment of the path method of chapter 2.

Lemma 1. For a saturated classifier F with smooth level sets, the average-gradient saliency
(Equation 1.5) corresponds to the orientation of the normal on the decision boundary where it is
crossed by the path of evaluations:

AverageGrads ∝ n̂
∂
(
F̂−(`)

) (xaff (ttrans)) , (1.15)

where ` = F̂ (xTg), the crossing point is located by ttrans that fulfills

F̂ (xaff (ttrans + δ)) =

{
` for δ < 0,
`BL for δ > 0,

(1.16)

with `BL = F̂ (xBL), and n̂∂
(
F̂−(`)

) (xaff (ttrans)) denotes the unique vector that is orthogonal to

all tangent vectors in the domain boundary ∂
(
F̂− (`)

)
, cf. Figure 1.2.

Proof. The saturated classifier can be modelled¹⁴ as the limit of a family of smooth
functions Fβ converging to a piecewise const one. For this, Lemma 11 guarantees that
any vector tangent to the decision boundary at the crossing point xaff (ttrans) has a
vanishing scalar product with AverageGrads. This is precisely the defining condition of
a normal vector to that boundary.

Remark 3. The conditions for Lemma 1 are in practice (deep learning image classifiers) not
fulfilled in the sense that the gradient is completely vanishing in the decision regions far from
a boundary, as evidenced by the fact that the gradient at xTg itself has been used for saliency
purposes [91]. The sense in which it is true is that the gradients near a decision boundary tend

¹¹The approximation is in the sense of following up F̂ with the explicit one-hot encoding again, so
both functions have codomain R.

¹²We do not really require convexity, but it is a simple way to ensure that paths cross a boundary only
once.

¹³Due to Olivier Verdier, see appendix.
¹⁴This is what requires smooth boundary. We do not go into the details.
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×xTg

×
xBL

n̂

Fig. 1.2: Low-dimensional sketch of decision regions and -boundaries. The blue region
represents the class-domain of the input xTg. A linear-interpolation path is shown, and
the point where it crosses the decision boundary with a normal on that boundary.
N.B.: this represents only very crudely the behaviour in real image classification appli-
cations, as inevitable with low-dimensional visualisations.

to be much stronger than far away, so that they dominate the integral. But the very concept of
distance from a boundary is not without its challenges, since the domain is high-dimensional. It
often seems that a fractal in which most points are very close to a boundary is a better model
for the geometry of the class domains, rather than the easily visualisable sets with manifolds as
their boundary as which they are often presented.

1.4.2 Differentials and gradients

Differentiation is employed for saliency in two senses: as a direct result contribution
or -propagation, for example in Integrated Gradients [96] and Grad-CAM [87], or as a
tool for optimisation purposes. The machine learning literature does usually not make
a fundamental distinction between these, but mathematically there are some subtleties
that merit discussion.

Conceptually, (strong¹⁵) differentiation is concernedwith finding a local linearization
to a function, i.e. given F : I→ R and x ∈ I to find a linear map F ′x : Tx (I)→ TF(x) (R)

fulfilling
F (x+ ∆x) ≈ F (x) + F ′x (∆x) (1.17)

for sufficiently small ∆x; more precisely it should converge quadratically:

F (x+ ε·∆x) = F (x) + ε·F ′x (∆x) + O
(
ε2
)
. (1.18)

In case of scalar-valued functions, the space of linear maps reduces to the dual space of
the tangent space, i.e. F ′x ∈ T∗x (I), which in case of a vector space domain is the same
as the dual of the entire space. In case of a Hilbert space (including Euclidean spaces),
it is furthermore isometrically isomorphic to I itself, giving rise to the common view of
differentials as gradients, which are elements of the domain space fulfilling in place of

¹⁵The issue discussed here also carries over to weak differentiation.
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Equation 1.17
F (x+ ∆x) ≈ F (x) + 〈∇x (F (x)) , ∆x〉 (1.19)

with the Hilbert space’s scalar product 〈,〉. Since ∇x (F (x)) ∈ I, one can then carry out
operations of the form x+h·∇x (F (x))which are the basis of gradient descent algorithms.
This is not possible with F ′x ∈ I∗. The flip side is that F ′x is uniquely determined from
only F, also when a scalar product is not available. Although it is usually possible to
define a scalar product on any space that can be used for computations at all, there
is not always one obvious choice. Using the Euclidean scalar product on the pixel
representation of images corresponds to working in a discretized form of the L2 (Ω)

Hilbert space; cf. chapter 3. Empirically, this is often a good starting point, but L2 (Ω)

has some properties that encourage problematic behaviour like the adversarial effects
discussed in Section 1.4.3A. In particular, narrowly localised features have a small L2

norm even if they contain e.g. visually striking edges.
A practical consequence of all this is that gradient-descent depends on the choice

of metric. The reason this can in some cases be disregarded is that a proper minimum
is still unambiguous. In particular, when optimising a strictly convex function on a
compact domain, gradient descent with sufficiently small step size always converges
on that minimum, regardless of the choice of metric.

This is however not very representative of the kind of optimisation problems con-
sidered here: F is highly nonlinear, and GD-optimisation (whether during training of a
classifier, or for saliency purposes) is understood to not yield an exact global minimum,
but rather approximates some local one. Precisely finding a narrow minimum may not
even be desirable, as it tends to yield solutions that generalise poorly. Arguably this is
a symptom that not the right optimisation problem was solved, but short of knowing a
better one the standard approach is to use stochasticity, momentum and/or large step
sizes, all of which encourage finding instead shallow, stable minima. This also voids
the argument of minima being metric-agnostic, though.

Specifically an L2 metric will tend to encourage steps towards high-frequency
features, as these often have a strong influence on the classifier but small norm. This
can be appropriate for training internal representations, but specifically for saliency
purposes it is rather undesirable (see next section).

A way to circumvent these difficulties is to carry out the optimisation in a space
that can legitimately considered to be finite-dimensional. This is at least part of the
idea behind the SIFT decomposition presented in chapters 3 and 4.

1.4.3 On- and off manifold
As mentioned above, the space of technically realisable inputs I is not the same as the
space IPh of inputs that could actually arise in intended use. The remainder IPh \ I

constitutes what are called off-manifold inputs. An alternative view is that such inputs
are still possible but extremely unlikely. This arises from the stance that every input
encountered in practice is sampled from some distribution, which features off-manifold
values with, if not zero, at least such low probability that they can be considered
out-of-distribution.

As concrete examples one could name things such as submarine images used as
input for a classifier trained on house cat images, but of more interest here are images
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generated from digital manipulation that is in some sense unnatural. This includes
particularly pixel-wisemodifications such as addition of excessive noise, introduction of
artificial colours, but also interpolation between different images or complete blurring.

There is no universal way to characterise what inputs are on-manifold; it depends
on the application. In some cases there is a fairly good theoretical understanding of the
physical process behind the input sampling (for example Cryo-EM images, chapter 6,
are generated by sending an electron beam through a particular kind of ice sample)
and then it can be possible to formulate rigorous criteria that would detect at least
some kinds of off-manifold inputs (in Cryo-EM e.g. large uniform-intensity regions are
exponentially unlikely due to the noise present). For the generic image datasets like
COCO [56], heuristics are harder to come by (see Section 3.1 for some attempts), but a
human would still discard many possible images immediately as nonsensical. This is
where there is an important difference between human perception and that of computer
vision systems: the standard deep-CNN based (Section 5.3) classifiers do not pause
even when given completely mutilated images as input, but associate them to labels
with similar confidence as images from the original training dataset. It is debatable
whether this difference has anything to do with a fundamentally different way humans
process images, or just with the fact that we humans have been trained with more
varied inputs and have additional meta-classifiers that distinguish e.g. photos from
pixel collages.

The following sections discuss some concrete challenges that various interventional
saliency methods have in keeping the generated test images on-manifold.

1.4.3A Adversarial phenomena

A particularly relevant kind of off-manifold input are adversarial ones, first reported
by Szegedy et al. [99]. These are inputs that differ from a realistic one in only a very
small way, often indeed so small that a human cannot tell them apart, yet are classified
in a completely different way. The perturbation itself (difference between adversarial
image and original) tends to be not human-plausible, appearing like random noise or
unrelated pixel defects. Adversarial attacks are most often discussed for images, but
exist also for other applications such as text [30].

Though there are numerous attempts to make deep learning systems robust against
adversarial attacks, these do generally not prove absence of adversarial examples and
typically attacks are found little later [101] with differentmethods.Theoretically it might
be possible to build a classifier that is provably robust to small adversarial perturbations
[45], but such attempts are so far restricted to applications much simpler than those
addressed by state-of-the art machine learning models. Built-in adversarial defense
also often comes at the price of reduced performance on real test data [4]. It is thus
currently necessary to admit that adversarial attacks are a possibility for all machine
learning systems that one might want to explain with saliency methods.

Remark 4. An interesting questing is whether better machine learning / AI systems will
inherently tend to become more- or less susceptible to adversarial phenomena, compared to worse
ones. Even before these effects were disseminated for neural networks [99], effects that might be
called adversarial were discussed by analogy with human “counterfeit utility”. Omohundro [70]
gave examples like drug addiction, but argued that AI would develop “protective mechanisms”
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against this.

Adversarial inputs are generated by solving an optimisation problem, namely
finding a small perturbation to the input that nevertheless effects a change to a different
class. Notice that this is almost the same optimisation problem as the Meaningful
Perturbation saliency method (Section 1.2.3E), except it skips the use of a mask for
the generation of a perturbed input. Although mask-interpolating between only two
images provides intuitively a much more restricted set of possible perturbed images,
the achievable small-scale changes are actually almost equally powerful if using full-
resolution masks, since a small contrast between target and baseline is enough to
introduce small-scale but arbitrarily high-frequency information.¹⁶ As such it is not
surprising that the rawest form of perturbation saliency gives not explainable heatmaps,
but rather produces masks that are just as inscrutable as the classical adversarial attacks.

The established way of avoiding this is regularization, as with the total-variation
penalty in Equation 1.10. This works, but it is a fairly blunt tool in the sense that
it restricts simultaneously not only the capability of masks introducing adversarial
information, but also to mask out finely separated features. The latter can to some
degree be amended with the techniques like multilevel area constraints [27], which
are however quite ad-hoc and parameter-reliant. An alternative is a recursive strategy
as used by Chockler, Kroening, and Sun [19], who use very restricted optimisation at
each step of the algorithm and avoid finding adversarial examples this way, but then
refine the search to nevertheless get good fits to narrowly confined features.

Both strategies, whilst empirically successful at avoiding adversarial masks, do not
solve the problem of keeping perturbations on-manifold; indeed they rather worsen
the distribution faithfulness, considering the effects discussed in the following.

1.4.3B Blending; (non-)convexity of domain

The premise behind all the methods involving paths is that it is possible to connect
the target image to the baseline in a continuous way, and evaluate the classifier along
the whole path. Specifically the affine path used in the integrated gradient methods
enforces this by using linear interpolation. The essential property required for this
is a convex domain. But while a vector space I is convex by construction, there is in
general no reason to assume that the subset IPh is convex as well. For some specific
applications this may be warranted for physical reasons; for example, sound has a
natural amplitude-scaling operation associated with distance between the source and
microphone, as well as a natural addition operation associated with simultaneous play
of multiple sources.

But specifically images are not of this character: whilst value-scaling is reasonable
for them due to the possibility of darker lighting conditions in a scene, one would need
to come up with quite contrived setups to implement addition in a physical way (e.g. a
half-reflecting glass pane). See Section 3.1 for more discussion.

This does not necessarily mean that the domain is disconnected (though it could
be), just that interpolation in the vector-space representation is not a very appropriate

¹⁶There is a restriction in that no artificial colours can be introduced, but colour tends to play a rather
lesser role compared to luma-texture, a matter discussed in Section 4.1.2.
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strategy for constructing paths. This casts doubt particularly on the integrated gradient
method [96], but any method using [ ·· ]

aff
ϑ with masks ϑ that are not perfectly boolean

is subject to the same criticism. Indeed, most of them favour – either explicitly or
implicitly – the use masks that are mostly and/or approximately boolean:

• The Extremal Perturbation method [27] (unlike these authors’ earlier work [28])
uses optimisation with limits on the range of ϑ ∈ [0, 1], the boundaries of which
are booleans, and dedicated smoothing operators designed to preserve these
values.

• RISE [73] starts by randomly sampling purely-binary (but low-resolution) masks,
and only smoothens these afterwards to attain continuity.

• Occluded Explanations [19] use true binary masks with only few hard edges.

In all of these cases, the restriction to binary applies only to the generation of the images
used for classifier-evaluation. It does not mean the result of the saliency methods is
binary – which would only be little information, providing no relative importance
within the “in” and “out” parts. Rather, evaluation happens for multiple such masks
and a non-binary heatmap is generated based on the results (in each case this involves
averaging of some appropriate kind, weighted by the classification), which provides
more graduated information.

The downside of this is that the assessment capabilities are extenuated: while each
of the input-output pairs is verifiable and human-interpretable, their statistical analysis
is not. Avoiding this dilemma is perhaps the main advantage of the Ablation Path
method of chapter 2.

1.4.3C Cuts and blobs

Well-regularised¹⁷ binary masks are in principle reasonable for photos, since analogous
masking occurs in reality whenever one object is partially obscured by another one in
the scene. Unfortunately, even such masks can nevertheless lead to quite egregious
off-manifold inputs, because the transition edges between the regions belonging to
xTg and those belonging to xBL can act as distinctive features all by themselves. Such
features are however completely artificial, and if the classifier responds to them it
is just as detrimental to the purpose of the saliency method as classical adversarial
fluctuations are. In both cases, this is actively encouraged by an optimisation strategy
that includes the classification in its objective function.

Some methods introduce cutting edges only in very specific ways, for example
through using rectangular masks at the outset [19]. This restricts the potential for an
optimiser to invent new features to achieve high score, but is not beyond doubt either
because the rectangles introduce very hard corners which classifiers could plausibly
respond to strongly.

Particularly problematic is that these issues are aggravated by the preference for bi-
nary masks – continuous masks could avoid adding distinctive edges, at the price of the

¹⁷Meaning, neither excessively segmented, with ragged edges or other small-scale fluctiations typical
for adversarial attacks.
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issues discussed in Section 1.4.3B, but near-binary masks need near-instantaneous tran-
sitions. This leads to another dilemma: the necessity to find a sweet spot (Section 2.8.3)
for mask regularization parameters that provides a compromise between sufficient
avoidance of both artificial edges and large-scale blending. A possible solution is to
use a different notion of masking altogether. One such notion, based on multiscale
decomposition, is the topic of chapter 4. Related techniques have also recently been
published by Kolek et al. [46][47].
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CHAPTER 2
OPTIMISED ABLATION PATHS

This chapter represents the largest piece of the work done for this thesis. We published
that newly developed method in [85]; the following reiterates¹ that paper with some
more focus on certain technical / mathematical details.

2.1 Introduction

The concept of a mask-based interventional path was already shown in Section 1.3, the
simplest example being the affine path xaff , continuously connecting the inputs xTg and
xBL. That path is used in the Integrated Gradients method [96] as a pre-defined way to
obtain a whole family of inputs for which to evaluate the classifier F, instead of only
the two given ones.This has several advantages, but as argued in Section 1.4.3B affine
interpolation is of dubious merit for the intermediate points. Also, in this method the
interventions are without information; the actual result of the method is the namesake
integral over the classifier output (Equation 1.6), which provides no assurance regarding
faithfulness of the produced explanation.

By contrast, methods like Meaningful Perturbation [28] and Occluded Explanation
[19] generate masks that act as both tool for generating the interventions, as well as
saliency heatmaps (either directly or statistical contribution). This offers a certain
amount of faithfulness since the masked input with its classification can be directly
inspected by a human.

What it does not offer is much context. These individual interventional inputs will
generally differ from xTg in a major way, with differences in many features simultane-
ously. This makes it hard to estimate how stable the explanation is, what features are
only relevant in a particular combination, and which are standalone contributors. This
is arguably alleviated by using multiple such interventions, which most of these meth-
ods do in some way [27][19][73]. But when the interventions are obtained individually,
they can differ amongst each other just as substantially as from xTg, which does not
solve the problem of many-features-at-once. It only offers more information that may
or may not form a consistent picture of the classifier behaviour. What is at any rate not
provided this way is a continuous relationship between interventions and scores, the
like of the affine path behind Integrated Gradients.

Another way of obtaining at least a near-continuous path connecting xTg to xBL is
the Pixel Ablation technique [73]. It is a very different path from the affine-interpolation

¹Some parts of this chapter appear as verbatim in the paper.



Optimised Ablation Paths

0% 20% 40% 60% 80% 100%Ablation

0.0

0.5

score 0.684 (efficientnet_b0 bee)

Blur-baseline Optimised Path (filter: =2)

BaselineTarget image

In
te

rp
o
la

te
d
 i
n
p
u
ts

A
b
la

ti
o
n
 m

a
sk

 p
a
th

S
a
lie

n
t 

Fe
a
tu

re
s 

in
te

rp
re

ta
ti

o
n

Pr
e
d
ic

ti
o
n
s 

(E
ffi

ci
e
n
tN

e
t-

B
0
)

bee: 0.849

fly: 0.073

weevil: 0.008

...

bee: 0.861

fly: 0.069

leafhopper: 0.009

...

bee: 0.553

fly: 0.170

leafhopper: 0.077

...

nipple: 0.065

eggnog: 0.057

spaghetti squash: 0.030

...

bee: <0.001

21% ablated 79% ablated

Fig. 2.1: Example of how an ablation path (sequence of masks, middle row) gives rise to
a transition between a current target (a bee from ImageNet [82]) and a baseline (blurred
version of the same image).

one, yet both can be seen as special cases of the same formalism:

• A sequence, or parametrization², of masks, called an Ablation Path

ϕ : [0, 1]→M. (2.1)

• The corresponding parametrisation of images, obtained by using the masks for
interpolating between the inputs xTg and xBL.

t 7→ [ xBL
xTg ](ϕ (t)). (2.2)

The interpolation is in this chapter always understood as [ xBL
xTg ]

aff viz. Equa-
tion 1.12, though this can be generalised as in Section 4.3.

This can then be composed with the classifier F to obtain also a parametrization of
classifications, cf. Figure 2.1.Specifically, the Integrated Gradients method can be for-
mulated as using ϕaff (t) = ϑhom·t to generate the evaluations ∇x (F (x))|x=

[
xBL

xTg

]
(ϕ (t))

which are integrated (Equation 1.6).

²The argument, denoted with the symbol t, may be pronounced as “time” but there is no deep reason
for this choice; it only resembles physical time in the sense that it happens to be a linear dimension that
complements the spatial dimensions of the images / heatmaps.
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The Pixel Ablation (insertion curve) of a heatmap is based on the masks of a path

ϕpxIns : [0, 1]→ M︸︷︷︸
{0,1}h×w(

ϕpxIns (t)
)
j,k

=

{
1 if pixel (j, k) among the top tmost salient ones
0 else

(2.3)

where “the top tmost salient” is the set of bt·h·wc pixels with highest values in the
heatmap. The path ϕpxIns is a stepwise function, but it is easy to see that in the limit of
high resolution it becomes a continuous injection toL2 (Ω) if the heatmap is sufficiently
smooth.

This path, like the affine one in the Integrated Gradients method, is used by evalu-
ating F for the images [ xBL

xTg ]
(
ϕpxIns (t)

), the result being the deletion curve. And the
area under this curve is, again reminiscently of Integrated Gradients, calculated as an
integral:

AUCIns =

1∫
0

dt
(
F
(
[ xBL
xTg ]

(
ϕpxIns (t)

)))
. (2.4)

As discussed in Section 1.2.4C, a faithful saliency heatmap is expected to have high
values AUCIns. At its most basic, what our Ablation Path method does is to take this
condition, which would otherwise only be checked post facto, as the goal itself: it
optimises the expression of Equation 2.4 (or related ones, Section 2.3), with not an
already given path ϕpxIns but instead a variable ϕ as the optimisation parameter. This
simple idea is not quite as simple to realise, but it is possible to build a working saliency
method out of it. The following sections show how.

2.1.1 Assumptions
A brief reiteration of the setting, as introduced in Section 1.1:

Inputs

The image xTg ∈ I is being classified, which the saliency method shall explain. The
baseline image xBL is given to contrast it.

Classifier

The function F : I→ [0, 1] (Equation 1.3) satisfies F (xTg) ≈ 1 and F (xBL) ≈ 0.

Remark 5. Alternatively, F (xTg) 6≈ 1 is also possible, which means a label is explained other
than the one xTg is classified as.

Masks

The space M permits an injective operation

[ xBL
xTg ]· : M→ I
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fulfilling [ xBL
xTg ]000 = xTg and [ xBL

xTg ]111 = xBL. Furthermore we require here a norm on
that space, called mass |·| : M→ R+, satisfying

|000| = 0

|111| = 1. (2.5)

In practice, M is a cone of nonnegative-valued functions over the domain Ω, and –
assuming a measure in whichΩ has unit area – the mass is computed as

|ϑ| =

∫
Ω

dr (ϑ (r)) , (2.6)

which, given that ϑ is non-negative, is its L1 norm.

2.2 Axiom-based path notion

The concept of paths ϕ of masks will now be made precise. A path is a function
of a time parameter t, yielding a mask. Since masks themselves are functions of a
spatial parameter r ∈ Ω, we write interchangeably ϕ (t, r) ∈ R or the curried form
ϕ (t) ≡ ϕ (t, ·) ∈M, depending on context.

Directly optimising Equation 2.4 for arbitrary “paths” ϕ : [0, 1]→M would have a
trivial solution ϕ (t) ≡ 000. This guarantees a high score because [ xBL

xTg ]000 = xTg has by
assumption a classification near 1, which is the highest possible one. In other words,
an image’s classification could always be explained by the whole image as it is, but
that is utterly uninformative. It is thus necessary to define a more restricted notion
of ablation path over which the optimisation is carried out. What we propose are the
following axioms.

Definition 1. The set of ablation paths is denoted A ⊂ {ϕ : [0, 1]→M}. Each path in it
fulfils:

Boundary conditions
ϕ (0) = 000 and ϕ (1) = 111.

Monotonicity
t1 6 t2 =⇒ ϕ (t1) 6 ϕ (t2) for t1,t2 ∈ [0, 1].

Constant speed
|ϕ (t)| = t for all t ∈ [0, 1].

The ordering in the monotonicity condition is understood pointwise (aka pixel-
wise), i.e.

ϕ (t1) 6 ϕ (t2)⇐⇒ ∀ (r ∈ Ω) : ϕ (t1, r) 6 ϕ (t2, r) .

How these axioms can be fulfilled in practice is topic of Section 2.6. Therein, another,
weaker notion of path will be useful for auxiliary purposes:

Definition 2. Paths that obey the boundary conditions and monotonicity like in Definition 1,
but do not necessarily have constant speed, are called monotone paths.

Any monotone path gives rise to an ablation path in a canonical way; see Lemma 7.
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2.2.1 Rationale

The boundary conditions ensure that

[ xBL
xTg ](ϕ (0)) = xTg

[ xBL
xTg ](ϕ (1)) = xBL, (2.7)

meaning the path starts at xTg and ends at xBL, and therefore intuitively “connect”
them. Without additional restrictions, this would not have much effect though, because
it would allow contrived paths that e.g. stay at 000 for all t < 1 and only jump at t = 1
or at least at t = 1 − ε. In either case, scores like Equation 2.4 could be arbitrarily
high without meaningfully highlighting anything. They would however not have the
constant speed property, which ensures that the path has to “move away” from xTg in
due time.

Monotonicity ensures that this movement cannot be erratically back-and-forth,
highlighting entirely different features at different t. Without this condition, the Ab-
lation Path technique reduces to computing a family of independent perturbation-
optimisations like Fong, Patrick, and Vedaldi [27].

2.2.2 Mathematical properties

The boundary conditions together with monotonicity are sufficient to restrict the point-
wise range of any ablation path:

ϕ (t, r) ∈ [0, 1] ∀ (t ∈ [0, 1] , r ∈ Ω) . (2.8)

The paths have thus bounded sup-norm; consequently, when ignoring null sets,

A ⊂ L∞ ([0, 1]×Ω) . (2.9)

Recall that L∞ ([0, 1]×Ω) is isomorphic to the dual space of the L1 ([0, 1]×Ω) Banach
space.

At a glance, it could be thought that both the boundary conditions andmonotonicity
follow from constant speed, but constant speed only implies the boundary conditions
if the pointwise range is explicitly restricted to [0, 1], which is not necessary since it
also follows from the combination of boundary conditions and monotonicity.

Monotonicity is not implied by constant speed at all, since that makes no statement
about pointwise growth. The combination ofmonotonicity and constant speed however
imply a useful stronger property, that of continuity.

Lemma 2. Ifϕ is an ablation path as per Definition 1 whose masks haveL1 mass (Equation 2.6),
then

‖ϕ (t1) −ϕ (t0)‖L1 = |t1 − t0| . (2.10)

In particular, t 7→ ϕ (t) is continuous as a function [0, 1]→ L1 (Ω) (as this equation witnesses
in the limit t1 → t0).
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Proof. Choose t0 and t1 in [0, 1]. Without loss of generality, assume t1 > t0. Then,

‖ϕ (t1) −ϕ (t0)‖L1 =

∫
Ω

dr |ϕ (t1) −ϕ (t0)| =

∫
Ω

dr (ϕ (t1) −ϕ (t0))

due to monotonicity. Furthermore, by linearity of integration and Equation 2.6,∫
Ω

dr (ϕ (t1) −ϕ (t0)) =

∫
Ω

dr (ϕ (t1)) −

∫
Ω

dr (ϕ (t0)) = |ϕ (t1)|− |ϕ (t0)|.

Thanks to the constant speed axiom, this is simply t1 − t0, which is positive by assump-
tion. It follows that

‖ϕ (t1) −ϕ (t0)‖L1 = t1 − t0 = |t1 − t0| ,

from which we conclude that ϕ (t1) −ϕ (t0) is in L1 and fulfills Equation 2.10.

Continuity in L1 may seem a slightly obscure property, but the statement can be
generalised to include, amongst others, the more familiar L2 notion (though not L∞):

Theorem 3. If ϕ is an ablation path like in Lemma 2 and p > 1 finite, then t 7→ ϕ (t) is
continuous as a function [0, 1]→ Lp (Ω).

Proof.

‖ϕ (t1) −ϕ (t0)‖pLp =

∫
Ω

dr |ϕ (t1, r) −ϕ (t0, r)|
p

=

∫
Ω

dr
(
|ϕ (t1, r) −ϕ (t0, r)| · |ϕ (t1, r) −ϕ (t0, r)|

p−1
)
.

Because ϕ is bounded to the range [0, 1], we have −1 6 ϕ (t1, r) − ϕ (t0, r) 6 1 and
thus |ϕ (t1, r) −ϕ (t0, r)|

p−1 6 1, such that

‖ϕ (t1) −ϕ (t0)‖pLp 6
∫
Ω

dr (|ϕ (t1, r) −ϕ (t0, r)| ·1) = ‖ϕ (t1) −ϕ (t0)‖L1 ,

which is equal to |t1 − t0| by Lemma 2. Therefore,

‖ϕ (t1) −ϕ (t0)‖Lp 6 |t1 − t0|
1
p ,

proving continuity.

Remark 6. The case p = ∞ is not only not covered by Theorem 3, but has real counterexamples,
cf. Section 2.2.4.

Arguably, it would be more natural to directly require continuity as part of the
axioms, instead of monotonicity. The advantage of monotonicity, apart from being a
stronger condition enforcing more easy interpretability on the path³, is that it remains
an exactly stateable condition also when the path is represented with discrete t steps,

³This restriction can also have downsides, in that it encourages interpolation-like paths even when
this requires passing through off-manifold regions, cf. Section 1.4.3B.
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whereas continuity requires an arbitrary-resolution limit. Continuity could only be
emulated with additional regularisation, essentially smoothening out the t-valued
function. Regularisation has its own problems though, generally requiring a parameter
that trades off accuracy against stability; the choice of such a parameter already poses
problems for the regularisation in the spatial directions (Section 2.5.1).

Monotonicity has no such difficulties. It is somewhat more challenging to imple-
ment, but we were able to find a solution that works without parameters or other
problematic side effects, see Section 2.6.2B.

2.2.3 Equivalent formulations
An alternative representation to ablation paths (Definition 1) deserves brief mention. It
stores not a sequence of masks, but instead “updates”, or “patches”, between masks.
In essence, these represent the time-derivative of an ablation path⁴,

ψ (t) =
∂ϕ (t)

∂t
. (2.11)

Definition 3. A doubly-stochastic update sequence ψ : [0, 1]→M fulfils

Nonnegativity
ψ (t, r) > 0 for all t ∈ [0, 1], r ∈ Ω.

Complementation
1∫
0

dt (ψ (t)) = 111.

Constant speed
|ψ (t)| = 1 for all t ∈ [0, 1].

Remark 7. Complementation and constant speed can also be written in a way that shows a
striking symmetry between the time and spatial directions:

1∫
0

dt (ψ (t, r)) = 1 ∀ r ∈ Ω

∫
Ω

dr (ψ (t, r)) = 1 ∀ t ∈ [0, 1] .

These conditions are sufficient so that the path ϕ (t) =
t∫
0

dt ′ (ψ (t ′)) is an ablation

path as per Definition 1. Vice versa, if ϕ is an ablation path which is differentiable in
time, then ψ = ∂tϕ fulfils the axioms of Definition 3.

The constant speed requirement can also here be omitted; in this case, the path

ϕ (t) =
t∫
0

dt ′ (ψ (t ′))will only be amonotone path, andmay require reparameterization

(Lemma 7).

⁴This requires of course a path that is differentiable, which not all ablation paths are.
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2.2.4 Saturated paths
Definition 1 does not require any point-wise continuity. This is pertinent not only
because it means the axioms can be used without needing to ensure such continuity,
but also because there is a class of masks of particular interest that necessarily fail to be
spatially continuous: binary masks have local values of either 0 or 1, with hard jumps
at the boundary between each region. Such masks avoid the blending problematic
(Section 1.4.3B), making it desirable to support them.

A concrete example are the masks in the pixel ablation method (Equation 2.3) – or
their extension to continuous heatmaps Θ : Ω→ [0, 1], which can be formed thus:

˜ϕpxIns (t, r) =

{
1 if Θ (r) > 1− t,
0 else.

(2.12)

This is a monotone path after (Definition 2). Notice that the time variable is used
in the opposite orientation compared to Equation 2.4, which is inconsequential for
the optimisation problem but necessary to conform to the (arbitrary) convention of
monotone increase rather than monotone decrease.

˜ϕpxIns is an example of a path that is not continuous pointwise / as a function [0, 1]→
L∞ (Ω) (and neither is its reparametrized ablation path by Lemma 7). Consequently it is
also not differentiable in t, and does not permit aψ-based representation (Equation 2.11),
though in a discretised implementation this may be ignored since any finite difference
is nevertheless well-defined.

2.3 Score functions

As already said, the idea behind ourmethod is to optimise an ablation pathwith respect
to a score like the pixel-ablation AUC (Equation 2.4). We call this the

Retaining score function

P↑ : A→ R

P↑ (ϕ) :=

1∫
0

dt
(
F
(
[ xBL
xTg ](ϕ (t))

))
. (2.13)

This corresponds to optimising the insertion⁵ metric of Petsiuk, Das, and Saenko [73].
Likewise, the converse can be optimised – their deletion metric, which we call

Dissipating score function

P↓ (ϕ) :=1−

1∫
0

dt
(
F
(
[ xBL
xTg ](ϕ (t))

))
. (2.14)

⁵Onemight askwhywe deviate from the established terminology, i.e. “insert” vs “retain” and “delete”
vs “dissipate”. The reason is that the terms used by Petsiuk, Das, and Saenko [73] may describe well the
procedure employed in the pixel ablation, but not so much the optimisation problem. And “insertion”
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Intuitively, the first features to be deleted in a P↓-optimal pathϕ↓ should correspond
roughly to the ones longest preserved in a P↑-optimal path ϕ↑, meaning that a feature
that is potent at retaining the classification should be removed early on if the objective
is to change the classification. More generally, one would expect ϕ↓ to be similar to the
converse of ϕ↑ in opposite direction, i.e.

ϕ↓ (t) ≈ 1−ϕ↑ (1− t)?

We observe this to be often not the case: specifically, there are many examples
where either the classification is so predominant that it is almost indeterminate what
features should be preserved longest (because any of them is be sufficient to retain the
classification), or vice versa the classification is so brittle that it is indeterminate which
ones should be removed first. It is however possible to enforce features to be considered
simultaneously in a sense of their potency to preserve the classification when they are
kept, and changing it when removed. This is achieved by optimising a path with the
combined objective of retaining for the path itself and dissipating for its opposite: this
is expressed by optimising the

Contrastive score
Pl (ϕ) :=P↑ (ϕ) + P↓ (1−ϕ) . (2.15)

This too corresponds to ideas already used by other authors, called “hybrid game” or
“symmetric preservation” [28][21].

A related possibility is to train both a retaining and a dissipating path in tandem,
but with additional constraints to keep them in correspondence. Here, it is most useful
to keep them not opposites of each other, but rather to keep them as similar as possible.
This is achieved by a score of the form

Boundary-straddling score

P↑↓ : A×A→ R
P↑↓ (ϕ↑, ϕ↓) := P↑ (ϕ↑) + P↓ (ϕ↓) + λ±· ‖ϕ↑ −ϕ↓‖ , (2.16)

where ‖·‖ could refer to various distance notions on the space of paths, and λ± pa-
rameterizes the degree to which this distance is penalized. We call the corresponding
optimisation problem the boundary-straddling method, since (in the ideal of a classifier
with exact decision boundaries) it rewards ϕ↑ staying in the domain of xTg as much as
possible and ϕ↓ in the domain of xBL as much as possible, i.e. on the opposite side of
the decision boundary but as close as possible (Figure 2.2). Thus, ϕ↑ and ϕ↓ in effect
pinch the decision boundary between them.

2.4 Optimisation strategies

Ideally speaking, optimisation should simply find the global maximum of a function.
There are two main reasons why this is not doable for many applications that are

only makes sense when the path is traversed from xBL to xTg, whereas we traverse by convention always
from xTg to xBL.
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×xTg

×
xBL

ϕ↑

(ϕ↑↓)↑

(ϕ↑↓)↓

Fig. 2.2: Low-dimensional sketch of decision regions as in Figure 1.2, with a possible
retaining path and a pair of boundary-straddling ones.

formally optimisation problems:

• Computational infeasibility: whilst schoolbook problems allow analytically solv-
ing for all the local minima, which can the exhaustively be compared to find
the highest one, this is not possible for most practically interesting one, so that
numerical approximation is a necessity.

• Even if there is a clear global maximum and it could be found with sufficient
resource expense, it can be unstable, far-off, or even outside of the space one
conceptually wants to work in. This is technically speaking a symptom that the
problem setup was not right in the first place, but a better one may simply not be
known. It can nevertheless be possible to use an algorithm that, despite according
to theory only giving an approximation to the optimal solution, is in practice
better behaved than the exact maximum would be.

Training of deep neural networks is a well-known example subject to both of these
points. The standard approach to training such models is to randomly select a start
state and apply a finite number of stochastic gradient descent steps, a strategy that has
little in the way of theoretical guarantees but is vindicated where results empirically
outperform more principled approaches.

Gradient descent per se is a rigorous enough technique when used for specific types
of problem. For convex optimisation problems, there is only one unique extremum and
gradient descent can be made to approach it (though not necessarily with good speed;
there may be oscillations and other problems). Also many more complex nonlinear
problems behave convex in the vicinity of their local extrema, making gradient descent
usable to narrow down local optima (which may however be far from globally optimal.
The stochastic element of SGD is the primary means of avoiding to converge too soon
on an insufficiently good local extremum. The mechanism is related to well-understood
instances like simulated (or real metallurgic) annealing, and has also in its concrete
form some theoretical justification from Bayesian statistics [94], though whether it
works in a given situation like training a particular CNN architecture on a given dataset
is up to experiment.
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Gradient descent also has precedent for saliency purposes, being used in the Mean-
ingful Perturbation method [28], which is after all the method most closely related to
ours. While we also considered gradient-free methods such as simulated annealing,
these generally require far more evaluations and/or scale badly with dimension of
the domain, which is a severe challenge when both the dimension is high and the
evaluations expensive, as they are in our case (path of image-like masks; evaluation of
deep classifier along the whole path).

2.4.1 Iteration and start state
An iterative procedure like gradient descent needs to start with a pre-selected state, in
this case an initial path ϕ0. This should not introduce anything that biases the result,
nor should it prevent the algorithm from proceeding – specifically an already saturated
path would make this challenging for the reasons in Section 2.4.2A.

The choice of start state that fulfills this is the affine path

ϕ0 (t, r) = ϕ
aff (t, r) = ϑhom·t (r) = t, (2.17)

for largely the same reasons as Sundararajan, Taly, and Yan [96] also argued it to be
the canonical choice for Integrated Gradients. Unlike in that method, the start state in
ours does not commit the saliency result to depend only on images interpolated with
homogeneous blending mask (cf. Section 1.4.3B), because later iterations can and will
be carried out with stronger or even binary masks.

2.4.2 Constrained gradient descent
Remark 8. We continue using the term “gradient descent” for consistency, though since our
problem is formulated as maximising the score functions it is actually a gradient ascent.

Unlike with Meaningful Perturbations, our method demands optimisation not in a
straightforward slice of a vector space, but in the space A with hard constraints in form
of Definition 1. Of these, the boundary conditions and speed constraints by themselves
are harmless (essentially linear projection), but monotonicity is nontrivial. There are
broadly speaking three approaches by which to use gradient descent in such a setting:

2.4.2A Exact manifold

If the space A could directly be parameterised as a manifold, then a gradient would
lie in the tangent space, and a suitable exponential map⁶ could be used to apply the
update step. This is closely related to numerical integration on manifolds [42].

Unfortunately, A is not a manifold, as witnessed by the fact that different ablation
paths have very different degrees of freedom: an unsaturated path like ϕaff (cf. Sec-
tion 2.1) permits any sufficiently small, smooth [0, 1]→M function as a perturbation⁷

⁶This is a rigorous notion on a manifold with affine connection, in particular a Riemannian manifold.
Exponentials are particularly useful on Lie Groups (which are briefly discussed in Section 5.2.1).

⁷The word “perturbation” here used in the sense of small-magnitude change around the mask-path
ϕ+ δ, not as in Meaningful Perturbations where the masks themselves are considered pertubations to
an image.
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because adding something of small slope to the constant-slopeϕaff still leaves a positive
slope (preserving monotonicity). On the other hand, a fully saturated path like ϕpxIns

is constant at most points (t, r) and will therefore cease to be monotone if perturbed
with a function that is even slightly decreasing there.

2.4.2B Simpler, dense subset

Even though A itself is not a manifold, its interior is, specifically those paths that are
pointwise strictly monotone. Unlike A, this is not a compact space, which leads to
challenges of its own (particularly concerning convergence/termination). But at least
in principle it is possible to carry out gradient descent steps in this noncompact space
and use the embedding into A as the end result.

This is one approach where the ψ-representation (Equation 2.11) was considered as
potentially preferrable to ϕ, since the domain-interior has a more convenient descrip-
tion: strictly monotone paths ϕ correspond to strictly positive updates ψ, and those
can be represented as a pointwise exponential (or other homeomorphism R+ ↔ R) of
an unrestricted function ψ̃,

ψ (t, r) = exp
(
ψ̃ (t, r)

)
. (2.18)

Non-strictly monotone paths, including saturated ones, could still be approximated
arbitrarily well by way of ψ̃ (t, r)� 0 =⇒ ψ (t, r) ≈ 0.

This might work well if the paths of interest were mostly unsaturated / strictly-
monotone, but this is not the case: solutions are expected to bemostly saturated, and/or
saturation is desired for interpretability and the reasons listed in Section 1.4.3B. For such
highly saturated paths, the large amplitudes required in a ψ̃makes gradient descent
highly unstable, specifically when also the other constraints and regularisations are
taken into account. In our experiments, this approach largely failed to give usable
results.

2.4.2C Embedding—projection

The score functions of Section 2.3 are defined not only for paths ϕ ∈ A, but for any
integrable functions ϕ : [0, 1] → M. In the space L2 ([0, 1]×M) (as implicit with the
usual pixel representation), is is easy to compute the gradient and apply an update of
step size h.

ϕL2

i+1 = ϕi + h· ∇(P (ϕ))|ϕ=ϕi
. (2.19)

It is understood that this will result in a path ϕL2

i+1 6∈ A, violating one or more of the
path axioms. This can still be useful though, if one can project it back toA; conceptually

ϕi+1 = arg min
ϕ∈A

(∥∥∥ϕ−ϕL2

i+1

∥∥∥) , (2.20)

where various norms could be used. This will in general not have a unique solution,
but any solution will only deviate as little as possible. In particular, in the limit of small
step size h and consequently ϕL2

i+1 almost in A, the updated and projected ϕi+1 will
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deviate arbitrarily little from ϕi plus its locally tangential contribution of the update.⁸
Similar projection techniques are well-established in convex optimisation, where

proximal operators [66] have a solid theoretical backing. For the nonconvex problem we
deal with here, this is not somuch the case, but we have nevertheless been able to obtain
good results in many cases, though it required some amount of experimentation and
parameter-tweaking; more details in Section 2.6. A more mathematically principled
technique would be desirable, but it is doubtful if that is possible without substantial
assumptions about the classifier F.

The gradient itself in Equation 2.19 is easy to obtain for all the proposed score
functions. It suffices to carry out the computation for the archetypical retaining score.

Lemma 4. The gradient of the retaining score, with a differentiable classifier F and with respect
to the L2 (Ω) space, is

∇(P↑ (ϕ)) (t, r) = (xBL − xTg) (r) · ∇(F (x))|x=
[

xBL
xTg

]
(ϕ (t))

(r) , (2.21)

or, written in eta-reduced form of the spatial argument

∇(P↑ (ϕ)) (t) = (xBL − xTg)� ∇(F (x))|x=
[

xBL
xTg

]
(ϕ (t))

. (2.22)

Proof. The purpose of the differential is to describe the behaviour of the score function
for small deviations δϕ,

P↑ (ϕ+ δϕ) =

1∫
0

dt
(
F
(
[ xBL
xTg ](ϕ (t) + δϕ (t))

))

=

1∫
0

dt (F (xTg +ϕ (t)� (xBL − xTg) + δϕ (t)� (xBL − xTg))) .

Taylor-expand the integrand, using differentiability of F:

F (xTg +ϕ (t)� (xBL − xTg) + δϕ (t)� (xBL − xTg))

= F (xTg +ϕ (t)� (xBL − xTg))

+

∫
Ω

dr
(
(xBL − xTg) (r) · (∇(P↑ (ϑ)))ϑ=δϕ(t) (r) · (δϕ (t, r))

)
+ O

(
(δϕ)

2
)
.

The middle term is the interesting one,

M (t, δϕ) :=

∫
Ω

dr
(
(xBL − xTg) (r) · (∇(P↑ (ϑ)))ϑ=δϕ(t) (r) · (δϕ (t, r))

)
.

⁸In other words, the technique is consistent, if we adapt the language of ODE integrators.
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We shall match this with the gradient’s inner product with δϕ:

〈∇(P↑ (ϕ)) , δϕ〉L2 =

1∫
0

dt
∫
Ω

dr (∇(P↑ (ϕ)) (t, r) · (δϕ (t, r))) .

Inserting Equation 2.21 here, this is

=

1∫
0

dt
∫
Ω

dr
(
(xBL − xTg) (r) · ∇(F (x))|x=

[
xBL

xTg

]
(ϕ (t))

(r) · (δϕ (t, r))

)

=

1∫
0

dt (M (t, δϕ)) .

Taken together, we have

P↑ (ϕ+ δϕ) =

1∫
0

dt (F (xTg +ϕ (t)� (xBL − xTg))) +

1∫
0

dt (M (t, δϕ)) + O
(
(δϕ)

2
)

= P↑ (ϕ) + 〈∇(P↑ (ϕ)) , δϕ〉L2 + O
(
(δϕ)

2
)
,

as required by the defining condition for the gradient, Equation 1.19.

A direct consequence of this calculation makes the connection between our method
and the one by Sundararajan, Taly, and Yan [96] even clearer:

Theorem 5. The time-integral over the gradient of the retaining score evaluated for the affine
interpolation path is the integrated-gradient saliency.

1∫
0

dt (∇(P↑ (ϕ)) (t))

∣∣∣∣∣∣
ϕ=ϕaff

= IntegratedGrads. (2.23)

Proof. This is the chaining of Equation 2.22 and Equation 1.6.

2.4.3 Stochasticity

Using randomness to avoid getting stuck in suboptimal extrema is a fairly general idea,
which can be carried out in very different ways. The main way it is usually done in
machine learning is by pulling random batches from the available training set, which
may additionally have randomized data augmentation applied to them. This emulates
the actual random process that generated the training data in the first place. Likewise,
many Monte Carlo algorithms use randomness emulating a concrete physical process,
such as radioactive particle emmission.
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2.4.3A Disturbance

The Ablation Path optimisation problem has no suggestive physical random process at
hand. One alternative is to artificially add random disturbances to the paths between
and/or after the gradient descent steps. This is also the notion of stochasticity used by
Fong and Vedaldi [28] in their SGD optimisation for individual masks.

2.4.3B Collapse

To similar effect, the application of masks to images can be performed in a randomised
fashion. This is particularly interesting from the stance that binary masks are preferred
but binary paths are problematic for optimisation. The dilemma can be circumvented
by interpreting the ϕ (t, r) as probabilities that the pixel at r is taken from xBL (and not
xTg), rather than interpolation coefficients between these images. The result, when
using a discretised t-axis with n+ 1 samples, is a sequence of images (xi)i such that as
before x0 = xTg and xn = xBL, but the sequence does not represent a continuous path
in I anymore, though xi (r) will have a higher probability of being equal xj (r) when i
and j are similar.

2.4.3C Baselines

Unlike the target image xTg, which is to be explained and therefore must be fixed, the
baseline xBL is only auxiliary and routinely chosen ad hoc to whatever facilitates the
most successful explanations (in e.g. the pointing game sense, Section 1.2.4B). Since
xBL ∈ I, it is suggestive to use another real image from a dataset; this has the advantage
over a synthetic image that it is guaranteed on-manifold. This choice of baseline image
is a natural candidate source for randomness, which not only introduces stochasticity
but also avoids committing any single choice of baseline. Using a single image from a
dataset would have disproportionate influence on the saliency result, which is why
single choices of baseline in the literature generally try to be “neutral”; however that
itself is only a heuristic notion. This makes random sampling of baseline an attractive
alternative.

We implemented versions of all the above sources of stochasticity, but experimentally
none of them proved to be an improvement over the deterministic-descent version.
A main reason seems to be that any randomness in the update step Equation 2.19
leads to stronger violation of the path axioms than a pure interpolation update with
neutral baseline. As a consequence, it also demands a more intrusive repair in the the
projection step Equation 2.20, which in turn prevents the iteration from making any
consistent progress, even when many steps are carried out and momentum [81] used.

2.5 Soft constraints

2.5.1 Regularisation
Although an ablation path has a notion of continuity built in by way of Theorem 3, this
provides regularity only in the path’s time direction, which is an advantage primarily
for interpretability purposes, whereas hopes that it might also provide some inherent
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protection against adversarial behaviour (Section 1.4.3A) have largely been disproven
by experiment, see Section 2.7.3.

No spatial regularity is guaranteed, so that much like in case of the Meaningful
Perturbation method [28], optimising with respect to any of the scores in Section 2.3
under only the constraints of Definition 1 leads to a path with an extremely high score
(arbitrarily close to 1, meaning that even the smallest masks on the path lead to a near-
perfect classification, indeed typically higher than the class archetype xTg itself). The
standard strategy against such adversarial results is to impose additional conditions on
the smoothness of the masks. Such conditions can be added to our method in a similar
way as the Extremal Perturbation method [27]. The primary tool is a convolution that
smoothens out high-frequency components of themask before applying it to the images.
We specifically use this as part of the projection back to the allowed set of paths after a
gradient descent step is applied.

Fong, Patrick, and Vedaldi [27] replaced the convolution operator with a “smooth
max-conv”, whose purpose is to avoid (at least at most places) losing the binary char-
acter of highly-saturated masks. This specific operation is unfortunately badly suited
for the ablation path method, because it involves masks of both very low and very
high mass (Equation 2.6), but the max-conv treats these cases asymmetrically and in
particular increases even extremely small masks to a substantial mass.

We use an ordinary Gaussian convolution instead, which does not have these
problems. The observation by Fong, Patrick, and Vedaldi [27] that Gaussian filtering
disrupts the binary property remains true, but in principle this should not be too
problematic since a Gaussian kernel is fast-decaying so that regions⁹ of substantial
induced non-binariness are limited to a size on the order of few σwidths. Themax-conv
version has such an effect too affecting the value-0 regions; where it differs is in the
regard that values of 1 are exactly preserved.

We apply the smoothening after each gradient-descent step Equation 2.19; this can
be seen as a soft-projection onto the subspace of smooth masks (in addition to the hard
projection to the space of ablation paths).

ϕ (t)← γσreguBlur ?ϕ (t) , (2.24)

with the Gaussian kernel of dimension n = dim (Ω) = 2,

γσ : Rn → R

γσ (r) :=
1(√

2·π·σ
)n ·e− ‖r‖22·σ2 . (2.25)

The← notation is used in Equation 2.24 and onwards, as conventional, to express an
in-place update of the current state for the ablation path under optimisation.

An alternative that was considered is to instead smooth the gradient itself before
performing the update, which also has the nice interpretation in that the smoothing

⁹This assumes a mask that is not too fragmented. If it is fractal-like, with values both close to 0 and
close to 1 near to each other everywhere, then Gaussian filtering will smooth them to everywhere some
value in the middle. Then again, such fragmented masks are just what regularisation is supposed to
prevent happening in the first place.
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corresponds to the covariance operator corresponding to a more edge-sensitive metric
on the space of masks that maps the differentials (dual vectors) to update-usable
gradients as vectors, cf. Section 1.4.2. This too works, often with similar effect, but
since a Gaussian filter does not completely suppress high frequencies it still allows
these to accumulate over many iteration of the descent.

Applying the filter to the iterated optimisation state instead avoids this. It also has
the effect that mask-contrasts introduced early during the optimisation which do how-
ever not appear in the gradients later on get progressively smoothed away completely,
which may be seen as either an advantage or disadvantage: it is an advantage if the
early gradients were sporadic, possibly caused by the blending (Section 1.4.3B) of the
start state per Equation 2.17. It can be a disadvantage if the gradients become (at least
locally) very small late in the iteration, which is not untypical because the classifier
tends to be mostly class-saturated when evaluated along a well-optimised path.

We also considered using a sinc filter (brickwall in Fourier domain). Since that is a
proper projection, the above questions do not arise, but it has its own problems that
are more severe: it is much more delocalised than a Gaussian filter and lacks positivity,
which is particularly problematic since it interferes with the projection of Equation 2.20.

See Section 2.8.3 for details on how regularisation affects optimised path results.

2.5.2 Saturation

Our method includes a dedicated means of preserving (near-) binary masks, and also
attaining them in the first place: artificial saturation. This involves slightly modifying
the signal such that values below 0.5 are progressively stronger pushed towards zero,
and values above 0.5 towards one (Figure 2.3). The concrete expression we use for this
is, defined pointwise,

ϕ (t, r)← Πsat (ϕ (t, r)) :=
1

2
·
(

tanh ((ϕ (t, r) ·2− 1) ·ζsat)

tanh (ζsat)
+ 1

)
, (2.26)

where the parameter ζsat determines how strongly binary values are encouraged. The
exact formula for Equation 2.26 is uncritical; what matters is that it is a smooth, mono-
tone function that has 0 and 1 as attractive fixpoints, 1

2
as a repulsive fixpoint, and

approches the identity in the limit ζsat → 0.
In practice, relatively low values ζsat < 1 are used, so that the first gradient-descent

steps proceed almost unaffected and only mask-regions that are already significantly
saturated are progressively further nudged towards the binary extremes. Selecting too
high values for ζsat risks overwhelming the optimisation. In this case, even a slight
contrast in an early state of the optimisation would get amplified to high saturation,
which has the side-effect of largely “locking in” the first selected features. Since the first
steps correspond to the Integrated Gradient method by Theorem 5, the consequence is
that our method’s result then degenerates to a binary-clipped version of that saliency
method, rather than informing about the classifier beaviour along the more meaningful
ablation path.
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Fig. 2.3: The pointwise soft-projection function for artificial path saturation. The symbol
ϕ here represents a single pointwise value ϕ (t, r) of the ablation path.

2.5.3 Boundary-pinching

For the boundary-straddling method (Equation 2.13) there is another requirement:
making ϕ↑ and ϕ↓ similar to each other can be achieved by explicitly penalizing their
distance in the score function, but in our implementation this too is done by a dedicated
algorithm step that manipulates the masks pointwise to become more similar. For
interpretability purposes it is particularly desirable for ϕ↑ (t) to contain only few
features that ϕ↓ (t) does not, since that allows direct comparison between two images
showing how inclusion of these features bring the classification into the target class.
The exact difference in strength of features meanwhile is less relevant (even when
the masks themselves are not boolean). Accordingly, we suggest a pinching tweak that
diminishes specifically the smaller positive differences between ϕ↑ and ϕ↓, in addition
to any negative differences. The manifestation used in our experiments is of this form:
(recall that values close to 1 correspond to masked-away features)

ϕ↓ (t, r)← ϕ↑ (t, r) + Πpinch (ϕ↓ (t, r) −ϕ↑ (t, r)) (2.27)

where

Πpinch : [−1, 1]→ [−1, 1]

δ 7→ Πpinch (δ) (2.28)

is a continuous function with an attractive fixpoint at δ = 0 , and a repulsive one at
δ = 1 (see Figure 2.4). The former is responsible for squelching unsubstantial contrasts
between ϕ↑ and ϕ↓. The latter allows the most salient features of ϕ↑ to stay absent
from ϕ↓, as necessary for a high P↑↓.The concrete definition of Πpinch is again uncritical;
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Fig. 2.4: The pointwise difference-pinching function for the boundary-straddling
method.

in our experiments we used a simple polynomial expression:

Πpinch (δ) :=δ· (1− ζpinch) + δ
2·ζpinch. (2.29)

Notice that in Equation 2.27, ϕ↑ is not affected by ϕ↓, only vice versa. But conceptually,
the update is performing a change to δ, i.e. the difference between the paths, rather
than either of them individually.

2.6 Implementation

2.6.1 Data structures
The paths are in practice stored (for the image application in pixel representation) as
3-dimensional arrays aka tensors, with dimension 0 representing the time axis and
dimensions 1 and 2 representing the spatial axes. Such arrays can readily be processed
on both CPU and GPU, which is in our case largely taken care for by the PyTorch
framework [29]. Concretely, this layout matches well the conventional data format of
batches of images, which is how the mainstream deep-learning classifiers are also trained.
The framework also provides the gradients required for optimisation, calculated with
reverse-mode automatic differentiation (backprop).

The concrete shapes of the discretised ϕ depend on the images to be explained.
Ideally one would sample the time axis very tightly and use the image resolution
also for the masks, but this is expensive and unnecessary since (usable) paths have
more regularity than general sequences of images. Particularly each sample on the
t-axis is expensive, since it demands an entire evaluation of the classifier (forward and
backward-gradient). While these can be batched on the GPU, we only have limited

Chapter 2 57



Optimised Ablation Paths

GPU memory available.
As for the spatial resolution, how high this needs to be is mostly dependent on

the regularisation. The masks can only have so much detail in them as permitted by
the filtering. Consequently they can be represented at fairly low resolution, which
means the implementation of the interpolation operation [ xBL

xTg ]needs to also perform
suitable resampling to carry out the pointwise multiplications. This also has precedent
in the related saliency methods [73][28].

We carried out most of the tests with 14 × 64 × 64 arrays, which seems to be
appropriate for the Pascal [26] and COCO [56] datasets and many ImageNet [82]
examples.

2.6.2 Projections

We will now explain how the correction step Equation 2.20 can be realised in detail, for
each of the axioms from Definition 1.

2.6.2A Boundary conditions

Since the boundaries ϕ (0) and ϕ (1) have completely fixed prescribed values, rein-
stating is only a matter of literally writing zeroes and ones into the array, respectively.
Indeed this is not even necessary: because these values are known a-priori, and would
always give the same classifier output, we do not include them in the array in the first
place, i.e. if we intend to sample n time slices, these will be at

t ∈
{

1

n+ 1
,
2

n+ 1
, . . . ,

n

n+ 1

}
, (2.30)

a set which includes neither 0 nor 1.
Both the hard-enforcing and omitting strategies would not be so trivial if the axioms

contained explicit continuity/regularity. But because the time-continuity is emergent
via Theorem 3, it is possible to treat these entries separately from all the others. However,
with the boundary-omitting array representation it needs to be ensured that the 0- and
1-values are still taken into account by the other processing steps. This amounts to
letting these steps treat theϕ (0) andϕ (1) values as “read only parts” of the state array.

2.6.2B Monotonicity

The non-local monotonicity condition is the most challenging one for the projection
step. We have attempted multiple ways of solving it, only one of which deemed to be
usable.

Update clipping

Intuitively, this condition seems to be easier to fulfil in the ψ representation viz. Def-
inition 3. There, it is a pointwise nonnegativity condition, which could be fulfilled
by clipping the values to zero or larger. That would however interfere with the other
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conditions, and though it is possible to repair these afterwards¹⁰, this would be a non-
local correction and in particular not be able to act even approximately local to where
the original nonmonotonicity was. As a result, this approach is unstable except under
unrealistic homogenity assumptions; specifically, we found counterexamples where an
arbitrarily small noise perturbation leads to a substantial deviation in the result after
both corrections, see Figure 2.6.

Descent flattening

The algorithm we decided on using instead manipulates the path ϕ near-locally, avoid-
ing the above problems. This works for each r separately (in other words, pixel-wise),
so the problem is reduced to the one of monotonising a [0, 1] → [0, 1] function. The

Algorithm 1 Make a function p : [0, 1]→ R nondecreasing
∪i[li, ri]← { t ∈ [0, 1] | p ′(t) 6 0 } . Union of intervals where p decreases
for i do
mi ← p(li)+p(ri)

2

li ← max{ t ∈ [ri−1, li] | p(t) 6 mi }

ri ← min{ t ∈ [ri, li+1] | p(t) > mi }

for i, j do
if [li, ri] ∩ [lj, rj] 6= {} then

ifmj < mi, merge the intervals and recomputem as the new center

return t 7→

{
p(t) if t 6∈ ∪i[li, ri]

mi if t ∈ [li, ri]

algorithm is easiest understood by example, see Figure 2.5. Working pixel-wise is not
without disadvantages, both mathematical and technical. First, it makes the algorithm
oblivious to whatever regularity the masks might have in M. This turns out not to be
too problematic in practice though, because such regularity also causes any changes
performed by the monotonisation algorithm to be similar in nearby pixels, thanks to
its stability.

On the technical side, it has the disadvantage that the calculations cannot be ex-
pressed in terms of standard tensor operations provided by theGPU-capable framework.
That is not to say that it could not be implemented on GPU, but it would require manual
writing of a low-level language. We currently have only a CPU implementation¹¹, which
is sufficiently fast not to be a bottleneck of Algorithm 2 (since the classifier evaluations
dominate the computational demands), though this did require reasonably performant
programming.

The most compelling argument for this method is that it is optimal in the following
sense:

Lemma 6. The result ṕ of Algorithm 1 applied to a function p : [0, 1]→ [0, 1] has the minimum
possible L∞ distance from p for a monotone function.

¹⁰Without disrupting monotonicity again.
¹¹Initially implemented inHaskell, then ported to Python towork together with the remaining PyTorch

code. The vanilla Python version was too slow, but could be sped up by using Numba.
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(a) Original
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(e) Monotone projection
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Fig. 2.5: Example view of the monotonisation algorithm in practice. (a) contains
decreasing intervals, which have been localised in (b). For each interval, the centerline
is then extended to meet the original path non-decreasingly (c). In some cases, this will
cause intervals overlapping; in this case merge them to a single interval and re-grow
from the corresponding centerline (d). Finally, replace the path on the intervals with
their centerline (e).

Proof. Assume for the sake of contradiction that there is a function p̃ : [0, 1] → [0, 1]

with
‖p̃− p‖L∞ < ‖ṕ− p‖L∞ .

Thatmeans that |p̃ (t) − p (t)| is everywhere smaller than the greatest value
∣∣ṕ (t̂)− p (t̂)∣∣

attains. This necessarily corresponds to one of the distances |m− p (t)|, where

m =
p (l) + p (r)

2

from the calculation in the algorithm. Here, p (l) is a local maximum by construction
of the descending-intervals, p (r) a local minimum, and l < r. Notice that

|m− p (l)| = |m− p (r)| ,

i.e. either of them alone would effect the known L∞-norm, and we can select either
t̂ = l or t̂ = r. For both, the assumption, ensures

∣∣p̃ (t̂)− p (t̂)∣∣ < ∣∣ṕ (t̂)− p (t̂)∣∣. In
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particular,

|p̃ (l) − p (l)| <m− p (r) |p̃ (r) − p (r)| < p (l) −m,

which due to p (l) > p (r) implies that p̃ (l) > p̃ (r), meaning p̃ is not monotone. It
follows that any function which is monotone cannot satisfy the assumption of having a
lower L∞-distance to p.

Recall that L∞-optimality does not uniquely identify a solution. It is therefore
possible that other algorithms could produce results that are both also optimal in the
L∞ sense and superior in other ways. Moreover, it is valid to ask whether L∞ is the
most relevant metric in the first place.

We do therefore not claim that Algorithm 1 is the canonical way of making general
functions monotone, only that it has expedient properties and appears to work well for
the intended use case.

Generic optimisation problem

Instead of a bespoke algorithm that can be proven to fulfil a property like Lemma 6, one
can also use an off-the-shelf solver to find a monotone function nearest to the current
state. The main advantages of this are much higher flexibility (any norm can be used,
rather than a specific one like L∞) and being able to tap into existing work. The main
disadvantage is that such a solver can not exploit the domain knowledge of this highly
specific problem.

It does fall in the well-researched category of convex optimisation, because the
set of monotone functions is a convex subset of the set of general functions on an
interval and norms are convex functions. Convex optimisation is tractable compared to
nonlinear optimisation (like the path-optimisation), but still generally requires iterative
methods. Particularly rigid, non-smooth constraints can be challenging for them, and
this includes the pointwise monotonicity condition. We essayed the odl library [34] for
this purpose. It includes several solver algorithms, which will not be discussed here in
detail. It was straightforward to set this up to solve the problem iteratively using the
Primal-Dual Hybrid Gradient [18] using an L2 or H1 norm. The latter (Sobolev space)
were particularly interesting because they subsume also regularity, but we found this
to be of little use (or indeed counterproductive¹²) when applied to a distance ‖ϕ− ϕ́‖.

Without going into further details, we summarise that the experiments with convex
solvers were not a failure; still we concluded that their use is not worthwhile, adding
mostly complexity compared to the evidently satisfactory one-step Algorithm 1. It
adds more parameters (of which there are already more than desirable anyway, cf.
Section 2.8), and is also simply slower due to the iterative nature, despite making better
use of hardware than our pixel-wise implementation.

Remark 9. This is not to say that using existing solvers could not have merits over our
ad-hoc implementations, but this would only pay off if it encompassed also at least the mask-
regularisation in a more principled way, and ideally the whole path-optimisation iteration. To

¹²H1 distance forces ϕ́ to “copy” high-frequency components from ϕ, but those are in practice mostly
undesirable/adversarial anyway, and only interfere with the more important goal of stability.
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Fig. 2.6: Comparison how the different monotonisation approaches behave on an input
that is noisy, but otherwise already monotone. (a) noisy input (b) nonnegative-clipping
of ψ-representation and rescaling (c) L2-optimal monotone approximation according
to convex solver (d) our custom Algorithm 1.

our knowledge no available solver has the necessary combination of features to accomplish this,
though.

2.6.2C Constant speed

Despite being in some sense the most specific amongst the path axioms of Definition 1,
the constant speed property is easier to ensure than monotonicity, and there is a
canonical way of doing it.

Lemma 7. Every monotone pathϕ after Definition 2 has a representative ablation pathΠCS (ϕ).
If ϕ is continuous, then ΠCS (ϕ) is faithful to ϕ in the sense that all its masks occur also in
exact form in ϕ.

Proof. The functionm : t 7→ |ϕ (t)| is at least monotonically non-decreasing, because
ϕ is pointwise monotone and |·| monotone in each of the point-values. Therefore, for
each w ∈ [0, 1] the preimage m− (w) is convex. To define ΠCS (ϕ) (w), we need to
distinguish the three possible cases for convex subsets of [0, 1]:
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• m− (w) = {t}, which is guaranteed in the continuous and strictly monotone case
by the intermediate value theorem and injectivity of strictly continuous functions.
In this case, let (“faithfully”!)

ΠCS (ϕ) (w) :=ϕ (t) .

This satisfies, by definition of the preimage,

|ΠCS (ϕ) (w)| = |ϕ (t)| = w

as required by the constant speed axiom.

• m− (w) = {}, which can only happen if ϕ is discontinuous. This is the only
case where ϕ contains no mask of suitable mass, but one can be constructed by
interpolation: let

t<:= sup
{
t ∈ [0, 1] : |ϕ (t)| < w

}
t>:= inf

{
t ∈ [0, 1] : |ϕ (t)| > w

}
.

These exist because the boundary conditions guarantee |ϕ (t)| = 0 and |ϕ (t)| = 1

are covered. Let then

w<:= |ϕ (t<)| w>:= |ϕ (t>)|,

and
η:=

w−w<

w> −w<

.

This allows defining

ΠCS (ϕ) (w) :=ϕ (t<) · (1− η) +ϕ (t>) ·η.

This satisfies, by linearity of |·|,

|ΠCS (ϕ) (w)| = |ϕ (t<)|· (1− η) + |ϕ (t>)|·η
=w<· (1− η) +w>·η

=w<·
w> −w< −w+w<

w> −w<

+
w>· (w−w<)

w> −w<

=
w<·w> −w<·w
w> −w<

+
w>·w−w>·w<

w> −w<

=
w>·w−w<·w
w> −w<

=w.

• m− (w) = S with |S| > 1. In this case, due to monotonicity of ϕ and strict
monotonicity of |·|, ϕmust be constant for all t ∈ S, therefore one can arbitrarily
choose any of them and again define faithfully

ΠCS (ϕ) (w) :=ϕ (t) .
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In the discretised representation, the preimage queries are realised by an index
search. This can be done efficiently because a monotone path is constructed from
another monotone path, so that the read- and write locations can be moved in tandem
(rather than having to use an e.g. binary search). Continuity is only ever approximated,
so that the interpolation in performed unconditionally. Interpolation in general does
again incur blending concerns (Section 1.4.3B), but this is tolerable especially since in
the case of already almost-constant speed, the coefficients are mostly η ≈ 0 or η ≈ 1,
meaning that paths that were almost binary will stay so. Furthermore, interpolation
only happens between neighbouring masks in the path, which are already similar¹³
and specifically in the saturated case across most of the domain identical, so that even
aggressive interpolation only leads to intermediate values at the mask-region edges,
and there they are incurred by regularisation anyways.

2.6.3 Complete algorithm

We proceed to show how all the elements above are used together, as an algorithm that
optimises one of the score functions P from Section 2.3.

Algorithm 2 Projected Gradient Descent
1: ϕ← ((t, r) 7→ t) . Start with linear-interpolation path
2: while ϕ is not sufficiently saturated do
3: for t in [0, 1] do
4: xϕ,t := (1−ϕ(t)) xTg +ϕ(t) xBL
5: compute P(xϕ,t) with gradient g := ∇P(xϕ,t)
6: let ĝ := g −

∫
Ω

g . ensure ĝ does not affect mass of ϕ(t)
7: update ϕ(t)← ϕ(t) − h ĝ
8: (optional) apply a regularisation filter to ϕ(t)
9: (optional) adjust learning rate h according to size of the actual step performed

10: (optional) apply saturation to ϕ (Section 2.5.2)
11: (optional) apply pinching to the paths ϕ↑, ϕ↓ (Section 2.5.3)
12: for r inΩ do
13: re-monotonise t 7→ ϕ(t, r), using Algorithm 1
14: clamp ϕ(t, r) to [0, 1] everywhere
15: re-parametrise ϕ, such that

∫
Ω
ϕ(t) = t for all t (using Lemma 7)

In case of P↑↓ (Equation 2.16), all occurances ofϕ in the algorithm concern in fact the
two paths ϕ↑ and ϕ↓, which are optimised independently of each other with respect to
P↑ and P↓, respectively, and only interact with each other via the pinching correction.

The termination condition does not necessarily have to be “sufficient saturation”,
however we found this to be the most consistently applicable one. It might be more
intuitive to base termination on the running path-score, however this is fraught with
problems:

¹³Assuming sufficiently high resolution of the time axis, which may not always be feasible.
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• A constant value for what score is good enough would not work across many
different examples, because the realistically achievable score differs vastly from
case to case.¹⁴

• Saturation-effects in the classifier can result in a (legitimately) high and stable
score already early on in the optimisation, when however the path is not saturated
at all yet, making for a poorly interpretable saliency result. Running the algorithm
longer gives the artificial saturation time to achieve a more usable result; often
this happens whilst the path score stays nearly constant.

In our experiments we generally terminated on a saturation level of 0.8, meaning

1∫
0

dt
∫
Ω

dr (2· |ϕ (t, r) − 0.5|) > 0.8. (2.31)

This too is not always feasible: in some cases the classifier gradientsmay actively oppose
the artificial saturation, meaning the algorithm gets stuck in a low-saturation state. In
such cases it is most prudent to not rely on the result as a classification-explanation,
since this is an indication that the issues discussed in Section 1.4.3B are at play. A change
of hyperparameter may help, or a switch to an entirely different saliency method.

Alternatively, one can make the artificial saturation progressively stronger as the
algorithm proceeds, and thus force a near-binary final state; however that will typically
have only a low path score (since the saturation had to “fight” the classifier). Or one can
“give up” and terminate the algorithm also at exceeding a preset iteration count and try
to make the best use possible of the undersaturated masks. This is not recommendable
for critical use cases, but it is what we did for the pointing game comparisons Section 2.8
in order to have at least some results for those examples, to allow taking statistics.

Many details are omitted in the high-level view above, such as the way batch pro-
cessing is employed to make good use of GPU capabilities. The real implementation
also contains several more processing options that we tried to tackle the various dif-
ficulties encountered in practice, but that did not have noteworthy success in their
current form. See [84] for the full code¹⁵.

2.6.4 Performance
There is no way to escape the fact that our method is computationally quite expensive.
We found that roughly 50 iterations of the algorithm are necessary to obtain a useful
result, quite often more (the exact number varies strongly between examples, even
within a single dataset). Each of the iterations requires several classifier evaluations
along the path (at least ≈ 10, better 20 or more), and though these can be batched
on GPU there is for any deep neural networks a limit to how fast one evaluation can
be carried out. Combined with the other processing steps, best-case wall-times for

¹⁴Unless insufficient regularisation gives way to adversarial paths, in which case the score is always
100% but the result unusable.

¹⁵https://github.com/leftaroundabout/ablation-paths-pytorch/blob/xAI-paper/experiments/
ablation_paths.py#L762
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obtaining an optimised path are around 1
2
minute, but realistically one should expect

having to wait for 10minutes when computing it on consumer-available hardware.
The custom parts of our algorithm could possibly be sped up substantially, but this

is not to be expected for the classifiers where vast amounts of effort have already been
put into those to make them fast to train. Investing work into performance-optimising
the other parts would therefore have diminishing returns.

2.7 Evaluation

While it is possible to get an impression of a saliency method’s quality by trying it on
individual examples, looking at the resulting heatmaps and pondering how reasonable
they are, insights obtained this way often do not generalise well to other examples.
This necessitates the use of assessment metrics that can be computed automatically, to
summarise performance over a larger selection of examples. One such metric, the pixel
ablation [73](Section 1.2.4C), is not usable for our method because it is almost literally
part of the algorithm itself, and achieving arbitrarily high scores is possible through
adversarial masks.

The main alternative we relied on is therefore the pointing game [118], whose
definition is completely detached from anything the optimisation could subvert. It
gives an estimate about both to what extent the method can compete with existing ones
from the literature, as well as an aid for deciding which variations of the method work
better or worse, in a sense that is not just single-image sporadic behaviour. All this
should be weighed with the caveats from Section 1.2.4B.

2.7.1 Baseline choice
The choice of the baseline image xBL is somewhat orthogonal to the Ablation Path
method, so we did not put very much focus on its investigation. What is imperative is
that xBL lies in a different class from xTg; apart from that it is sensible to keep it simple
and similar to xTg to avoid influences from entirely different features. An established
option is the blurred baseline, specifically the convolution of xTg with a single Gaussian:

xBL = γσBLblur ? xTg, (2.32)

whereσBLblur is chosen to aminimumsize that ensures arg max (F (xBL)) 6= arg max (F (xTg)),
and at least 4 pixels, at most 100 pixels.

2.7.2 Heatmap reduction
The result of theAblation Pathmethod in its variations is one ormultiple paths, whereas
the pointing game expects a single heatmap. There are multiple ways of reducing to
such a map:

2.7.2A Averaging

One can simply average over all the masks in a P↑-optimal path. This operation is
(modulo a time renormalisation) left inverse to the pixel ablation of a saliency map
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(Equation 2.3).

Θavg (ϕ) :=

1∫
0

dt (ϕ (t)) . (2.33)

This works well in some cases, but the result can be disproportionally affected by
low-discriminate contrasts of masks generated far from a decision boundary, which
are unstable in a similar way to plain gradient methods.

2.7.2B Class transition

Taking the point of view that the decision boundary is what matters, one can seek the
position where the path crosses it by tracking the classifier outputs along the path.

Empirically, this gives better results than averaging (both for the pointing game and,
to our eyes, ease of interpretation), but it hinges on the assumption of there being a
single boundary-crossing (as in the assumption to Lemma 1). In general, there may be
multiple crossings, or the classifier might have a far more gradual transition, or (in case
an explanation for a class different from the prediction for xTg is sought) it might not
cross a boundary at all.In our implementation, we therefore make a case distinction:

• If there exists t such that F (ϕ (t)) is dominated by the target class, then we select
the largest of these t as tclt. In other words, we select the most confined mask
that results in the classification of interest. Here (unlike the rest of the chapter)
we consider the full multi-class output of F, and by “dominate” we mean that the
target class ranks higher than all others.

• If no such t exists, we select simply tclt = arg maxt (F (ϕ (t))). This may not be
the best selection strategy in all applications, but it does guarantee always getting
a result that can be compared in the pointing game. In critical applications it is
likely better to discard paths that do not cross a boundary, and consult a different
method in such a case.

In either case the heatmap is then the single mask from the path at the selected place,

Θclt (ϕ) :=ϕ (t) . (2.34)

Class transition heatmaps do not have the problem of considering many indetermi-
nate masks far from a boundary, but the somewhat opposite problem of considering
only a single heatmap, which may also be unstable (in particular if the domain bound-
ary is not very sharp) in the sense that it is poorly defined where the boundary is but a
change in location can have strong influence on the result. The two following reductors
provide a compromise.
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2.7.2C Influence-weighted averaging

A thirdmethod averagesmultiple heatmaps like Equation 2.33, but weighted differently.
Specifically, it weighs updates by how strongly they affect the classification:

Θiwa (ϕ) := −

1∫
0

dt
(
∂ϕ (t)

∂t
·∂F

(ϕ (t))

∂t

)
. (2.35)

This has the advantage compared to class transition that it is not based on a single mask,
but takes any change between masks into account that influences the classification.
Note that this can also be changes that influence the classification negatively, which can
give some hints about not only the features belonging to the target class but also features
belonging to other classes that work against the target classification; see Figure 2.7.

2.7.2D Contrastive averaging

For the two paths optimizing P↑↓, the property of interest is that they pinch the decision
boundary between them. That means that for each t, the normal direction of the
boundary is approximated by ϕ↑ (t) − ϕ↓ (t) (at least coarsely, cf. Figure 2.2). This
suggests averaging between these values, i.e.

Θcav (ϕ↑, ϕ↓) :=

1∫
0

dt (ϕ↑ (t) −ϕ↓ (t)) . (2.36)

Indeed this appears to give comparatively good, stable results in practice. Our interpre-
tation is that on any indiscriminate parts of the path, the pinching tweak Equation 2.27
reduces ϕ↑ (t) −ϕ↓ (t) so these parts do not contribute to the result like they would in
Equation 2.33. The reason for this behaviour is that indiscriminate parts do not have a
consistent F-gradient that would keep ϕ↑ (t) and ϕ↓ (t) apart during optimisation. On
the other hand, stably-salient differences do keep them apart and therefore prevail in
Θcav. Contrastive averaging therefore fulfills the goal of taking only classifier-affecting
changes into account, but without being excessively singular like the class transition or
requiring differential operators like the influence-weighted averaging.

2.7.3 Pointing game
With the paths reduced to single heatmaps, these can be used in saliency benchmarks
just like any other. We used the benchmark included in the TorchRay repository [103],
which was part of the work of Fong, Patrick, and Vedaldi [27] and used by them to
evaluate several literaturemethods on the entire PASCALVOC [26] test set (4952 images)
and COCO [56] validation set (≈ 50k images). In all cases, they run an explanation
with respect to not only the top class, but each of the classes human-annotated for some
object visible in the image. In the COCO set, these are often quite many. Two classifiers
were used for all of this, VGG [91] and ResNet [37].¹⁶

¹⁶These models are by now quite dated. Arguably it would be more appropriate to do comparisons
with newer models, but we stuck to the existing literature.
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0% 25% 50% 75% 100%
Ablation
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score 0.706 (wine glass)
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Class transition Influence-weighted avg.

Fig. 2.7: Example how different classes within a single image (COCO) can be explained.
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VOC07 Test COCO14 Val
Method (All%/Diff%) (All%/Diff%)

Ctr. 70.9/41.9 26.0/15.4
GCAM 90.5/80.4 57.1/49.2
Ours 84.3/64.8 49.3/41.0

VOC07 Test COCO14 Val
Method (All%/Diff%) (All%/Diff%)
RISE 86.4/78.8 54.7/50.0

GCAM 90.4/82.3 57.3/52.3
Extr 88.9/78.7 56.5/51.5

Table 2.1: Left: the highest-scoring results for the pointing game over 1000 images with
ResNet50 classifier, for comparison with the state of the art. Right: excerpt from table 1
in [27] (theirs is the “Extr” method), which contains the scores of more methods from
the literature for the complete datasets.
The “All/Diff” refer to a “difficult” subset of the data chosen in [118]. RISE is from [73],
GCAM is Grad-CAM [87]. The “Ctr.” method does not compute saliency but always
points at the center, as a trivial null-score.

Due to the expensiveness of our method, we did not carry out the full benchmark,
but only ran it for the subset of the first 1000 images from each of the datasets (with
all the classes). Using the best parameter setup we found (see next section), Table 2.1
shows our method getting close to the state-of-the-art scores, but it does not quite reach
them.

This demonstrates that the Ablation Path method can to a large degree do what
existing methods can, in addition to giving considerably more information to interpret
in the form of a browsable path. It is unclear what causes the gap that remains between
our method and the top state of the art. Three plausible reasons are:

• We have not found the best settings / hyperparameters for the respective datasets.
Though we have spent considerable effort in search (Section 2.8), it is not exhaus-
tive.

• Our algorithms still lack features that are necessary for some examples, such as
the max-convolution operation [27].

• The use of paths puts a fundamental limitation on how well 2D heatmap reduc-
tions can condense the information.

Section 2.9 discusses.

2.8 Variations / hyperparameters

As the previous sections lay out, the Ablation Path method is not so much a single
method but awhole family. This can be seen as good in terms of flexibility of use, but for
the unprepared user it may present rather a disadvantage, since it will not be obvious
which manifestation to use. The differences between them have both subjective and
objective aspects. The former include the choice of score function: these correspond
to different settings for the classification process, all of which are useful in their own
different way (Section 2.8.1). Similarly, some saturation/regularisation combination
may be more useful for deciding between smaller or bigger features, etc..

The objective aspect is that many parameter combinations simply do not give an
informative explanation at all, but only adversarial masks, unspecific over-smooth ones,
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or prematurely saturated and suboptimal, etc.. Unfortunately, estimation of when one
of these is happening in a given examined image is risky: what looks like a fragmented,
nonsensical saturation artifact could also be a precise highlight of a classification based
on biases in the dataset (which is bad from the classifier perspective, but good for the
saliency method). A smooth mask on the other hand can invite the human investigator
to apply confirmation bias, focusing on the object they expect the classification should
be based on and happens to be within the fuzzy highlight, but is not actually relevant
to the classifier’s decision.

Vice versa, a fragmented binary mask can also have a disproportionate influence
(essentially adversarial) on the classifier via its introduced artificial edges, wheras a
fuzzy one can simply be testament to the fact that the classifier is reacting to the entire
scene of the image, with no individual object being singled out as particularly critical
nor sufficient when taken standalone.

Against all this confusion, our method provides some benefits through offering a
whole path, compared to single-heatmap methods. This helps in the sense that the
investigator can look at the sections of the path both with and without context, form
hypotheses to be tested, and check small changes by moving back and forth along the
path. It still leaves a significant risk of misinterpretation though.

At any rate it can be constated that a good choice of hyperparameter is important,
and the choice cannot reliably be made based on only a given example. In the following,
we attempt to make some statements regarding good/stable parameter choice, based
on statistics about path scores and the pointing game. This can be seen critically for
both the inherent reasons in Section 1.2.4B as well as quite practical that for many kinds
of applications, something analogous to the pointing game is simply not available.
Nevertheless we decided to rely on it here.

After all, the pointing game – in spite of all criticism – remains the most reliable
independent assessment for how consistently the saliencymethod highlights something
that has with high probability to do with what the classifier bases its decision on. Due
get insights in reasonable time, we ran these experiments on only 100 images.

In Table 2.2 we show the same experiments as compared in Table 2.1 but with only
100 images and part of the used configuration shown. Note that the best results are
achieved with slighty different configurations for both of the dataset; Table 2.1 shows
only the better one for each dataset, labelled in Table 2.2 “OursV” for the best in VOC
and “OursC” for the best in COCO.

Remark 10. The astute reader may also notice that on only the first 100 images, the results
are systematically worse than on the first 1000 or all of the datasets. This is less due to these
images being more difficult, than artifact of the way the TorchRay benchmark gathers the results:
specifically, it counts success rate for each class separately and averages in the end, but rates
classes that are not even present in the smaller subset as 0% success.

2.8.1 Score functions
The score functions serve somewhat separate purpuses, for example a high-scoring
retaining path will show how a region of the image achieves the target classification
with minimal other features from the image xTg, which can be seen as more generalised.
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VOC07 Test COCO14 Val
Method opt.cr ζsat σreguBlur postproc (All%/Diff%) (All%/Diff%)

Ctr. 71.4/36.6 26.5/11.2
GCAM 90.4/64.2 48.9/35.2
OursV Pl 0 7.0px window 80.5/46.1 46.2/31.0
OursC P↑↓ 0.8 7.0px 72.2/47.5 48.3/34.8

Table 2.2: The same experiments as in Table 2.1, but with only 100 images.

COCO14 Val
Method opt.cr ζsat σreguBlur Hm.red (All%/Diff%)

Ret. P↑ 0.8 8.0px Θclt 37.8/24.0
Ret. P↑ 0.8 8.0px Θiwa 38.9/25.7

Contr. Pl 0.8 7.0px Θclt 40.6/26.7
BndStr P↑↓ 0.8 7.0px Θcav 48.3/34.8

Table 2.3: Pointing games with the different score functions and heatmap reductions.

A high-scoring dissipating path on the other hand will show specifically how a region
can be removed to most effectively change the classification away from the target one,
which tells more about how the corresponding object is classified in the particular
context of xTg. Both are useful in their own way.

All of them can also be used for the pointing game, via suitable heatmap reductions
from Section 2.7.2. We observe that the boundary-straddling method gives rise to the
most consistently good scores, presumably because it takes advantage of evaluating
the classifier at many different points with relevant behaviour, and averages these
stably. Particularly for the COCO dataset this is very effective. This dataset annotates
in many images both big objects that are hard to obscure and small objects that are
hard to highlight; all the other score functions have trouble with either category, but
the boundary-straddling method can adapt by localising the divergence between ϕ↑
and ϕ↓ accordingly to the size of the objects. For the VOC dataset meanwhile, the
single-path contrastive score can achieve slightly better score, probably because in
simple images the main object does have one mask size corresponding both to object
size and class transition, which is then used as the sole heatmap. All the following
experiments are based on ResNet50 and 100 images from the COCO14 dataset (the
more difficult dataset).

Even if the boundary-straddling method tends to fare best in the pointing game,
this need not be reason to consider it the best one for practical use. The twin paths in
this method make its result a bit less ergonomic to inspect, though it can certainly be
also informative in ways the other varieties are not.

2.8.2 Step size

For the multiplier of applying the gradient to the current path state, there is at least
one upper bound: it should not result in so strong violation of the path axioms that
their repair leads to an entirely different state. A particularly simple consequence of
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σreguBlur = 0.5 σreguBlur = 2 σreguBlur = 8

Fig. 2.8: Example of how both too little and too much regularisation can be detrimental
for interpretability. Image from VOC2007 test set; saliency is class transition of a Pl-
optimal path.

the axioms is that the range is limited to [0, 1]. As such, there is a natural size scale for
steps that work together with the projection: the change should have an L∞-norm on
the order of 1. We generally ensure this by normalising the step taken accordingly.

It is possible that smaller steps would in some cases be preferable, because even
an axiom-conforming step can already correspond to a traversal of too much of the
classifier domain to allow the gradient descent to work optimisingly. We tried smaller
steps occasionally with different variations of the algorithm, but found that they only
make the optimisation even slower than it is already otherwise. It can also make the
artificial tweaks like saturation overpower the classifier updates, though these can
always be downscaled accordingly.

2.8.3 Regularisation

The spatial regularisation is the hyperparameterwe sharewithmany literaturemethods,
but surprisingly the literature does not say much about how it can be chosen. One
has to assume it is generally based a lot on benchmarks like the very pointing game.
Since the blurring parameter σreguBlur is not quantised in any way, it lends itself well for
closer invesigation of how it interacts with other parameters and result characteristics.

Readily apparent is that both too weak and too strong regularisation is detrimental.
Too weak, it will not protect against adversarial behaviour. Too strong, and it will
not only (obviously) restrict how precise spatial features can be localised, but can also
introduce severe biases. E.g. in Figure 2.8, the strongly regularised saliency is not
only condensed to a single location, but also specifically to a corner of the image. Our
interpretation is that this happens because it reduces the total variation (since 75% of
the mask’s gradient contributions lie outside of the image frame). And although the
mask in this example still contains enough of the dog’s head to keep the classification,
its maximum lies misleadingly in front of its nose, outside of the dog’s silhuette. This
specific phenomenon – condensation of the highlighted regions near the boundaries
– occurs quite often in the experiments when strong regularisition is applied. The
pointing game scores reprimand this misbehaviour (Table 2.4), since the annotated
objects are seldom located at the boundary.

This particular problem is not really specific to the Ablation Path method but
generally regularised mask optimisation, but in individual-mask methods it can simply
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COCO14 Val
Method σreguBlur Hm.red (All%/Diff%)
Pl 1.0px Θclt 40.3/25.9
Pl 2.0px Θclt 38.8/26.4
Pl 3.0px Θclt 36.3/25.5
Pl 5.0px Θclt 32.0/22.1
Pl 7.0px Θclt 32.5/23.1
Pl 10.0px Θclt 24.0/16.8

postproc COCO14 Val
Method (All%/Diff%)
window 37.6/21.8
window 39.6/22.9
window 40.2/24.2
window 40.9/24.7
window 40.6/26.7
window 37.5/23.6

Table 2.4: Pointing games with different regularization strengths and postprocessing.

Fig. 2.9: Two heatmap extractions (class transition) of the same ablation path; the
objective is to explain “oven”. Left: the optimised mask contains a strong regularisation
artifact in form of the highlighted band at the bottom. Right: applying the window
postprocessing of Equation 2.37 (and normalising) shifts the maximum to the originally
less prominent region considered correct by the pointing game.

be avoided (and is! [27]) by constraining the masks to vanish at the boundaries.Perhaps
the best argument justify this constraint is to see it as prior knowledge that important
objects seldom occur at the boundaries; it has two problems of its own though:

• It introduces another bias. The extremal perturbation method cannot detect at all
important features which really are at the boundaries.

• It is irreconcilable with the ablation path axioms, specifically the boundary con-
ditions.

An even more crude way of achieving a similar effect is to remove the boundary parts
of a reduced heatmap as a postprocessing step (Figure 2.9), by multiplying with a
window function

Θwindow (r = (x, y)) :=Θ (r) ·
√

sin (π·x)· sin (π·y) (2.37)

– which we find does indeed improve the pointing-game score in strongly regularised
cases, see Table 2.4 and Figure 2.10.

The boundary-straddling method does not have the boundary problem, because
it only takes differences between ϕ↑ and ϕ↓ into account, and both of these paths are
attracted to the boundary by regularisation in the same way.

Even if the boundary-condensation phenomenon can be circumvented, this does
not avoid the need to select appropriate regularisation strengths. The pointing game
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Fig. 2.10: Dependence on the size of the regularization filter, for both the distribution of
boundary-straddling ablation-path scores and the (“All”-) pointing game score. Paths
optimised for the contrastive score; pointing game evaluated on both standard class-
transition masks (Equation 2.34), and with or without a boundary-suppressing window
(Equation 2.37) applied.

shows that there is a certain sweet spot, but without it, with less well understood data,
it is unclear how to find it. The ablation path method give one additional hint that
may be at least somewhat helpful in this situation: the path-score after optimisation.
This should for good saliency operation be expected to alway come out somewhere
in the middle of the range [0, 1], because the objects of interest have some finite size
in the image and after ablating into them the classification should drop even for an
optimal retaining path. Only if due to underregularisation the path has developed
adversarial masks is it to be expected that scores of almost perfectly 1 are achieved,
and Figure 2.10 shows this happening quite often when σreguBlur < 4, in form of the
violin plots reaching a flat top with Pl = 1. This a clear indication that regularisation
σreguBlur > 4 is necessary, and indeed the pointing game confirms this with its peak at
σreguBlur = 6. The conclusion is that one should choose regularisation slightly stronger
than required to avoid the indication for adversarial behaviour, but not much stronger
since that would unnecessarily reduce precision and introduce other disadvantageous
effects of smoothing. Statistics about the path-score for this purpose can be obtained
without need for the pointing game or similar independent validation.

Note that this heuristic ismore difficult to usewith the boundary-straddlingmethod:
it seldom attains scores close to 1 even when regularisation is very weak (Figure 2.11),
because it has additionally the boundary-pinching mechanism (Equation 2.28) working
against this.Still, also in this case at least a drop in average score at σreguBlur = 4 is
visible, followed by a peak in pointing-game score at σreguBlur = 6.
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Fig. 2.11: Like Figure 2.10, but evaluated with contrastive averaging (Equation 2.36).

COCO14 Val
Method opt.cr ζsat (All%/Diff%)
Contr. Pl 0 39.9/28.4
Contr. Pl 0.8 29.4/21.1
BndStr. P↑↓ 0 46.8/32.8
BndStr. P↑↓ 0.8 48.0/35.7

postproc COCO14 Val
Method (All%/Diff%)
window 45.5/30.1
window 39.3/27.9
window 48.0/32.5
window 46.4/30.8

Table 2.5: Pointing games with different saturation in different contexts.

2.8.4 Saturation
The artificial saturation of Section 2.5.2 was introduced mainly to avoid the blending
problematic of Section 1.4.3B, as well as to get a clearer, less nebulous and there-
fore easier to interpret ablation path. Unfortunately, saturation also can easily have
detrimental side effects.In Table 2.5 we see that it can quite dramatically lower the
score, as for the contrastive path. In this specific example this is largely avoided with
windowing, indicating that the problem is again the boundary behaviour (which sat-
uration generally exacerbates), but other times there is no such explanation, like for
the boundary-straddling where windowing actually reduces the score but increases it
when no saturation is applied.

We have no satisfying justification for why such behaviour happens, but what is
clear is that saturation is counterproductive when it overpowers the classifier’s gradient
and becomes the dominating contribution to the optimisation procedure. This must
be avoided, but unfortunately is hard to control since it depends on how the gradient
updates interact with both the saturation and the axiom projections. Figure 2.12 seems
to show such effects, but it is uncertain what exactly is happening there.
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Fig. 2.12: Examples of plain nonsensical ablation path results. These may be a result of
overzealous saturation, or some other problem of parts of the algorithm getting in each
other’s way.

2.8.5 Others
The parameter space is too large to investigate every possible combination, especially if
quantitative assessment is desired, given the high computational cost for a pointing
game run. Some more variations of the method deserve at least brief mention, though
we have not (as yet) been able to obtain satisfying results with them.

2.8.5A Blur pyramids

All the results shown were obtained with a blurred baseline Equation 2.32. Many other
kinds of baseline would be possible, but if one is chosen then there are good arguments
for using a Gaussian filtered one. The fixed size however is not necessarily the best. A
way to avoid the size choice is already used by Fong, Patrick, and Vedaldi [27]: they
use an interpolation operator that chooses locally between different-filtered baselines.
This can also be used with the ablation path method, which we implemented, but it
did not improve results over the linear interpolation to a single select baseline. It is
quite possible that this could be overcome by adjusting other parts of our algorithm.

This blur-pyramid is essentially a multiscale method. chapter 4 develops another
such method, one that embraces the concept more consequently.

2.8.5B Stochastic baselines

In Section 2.4.3C we also touched on the possibility of using not one artificial, neutral
baseline, but instead many different ones from a real dataset. We tried this, but failed
to achieve any consistent convergence. That is not entirely surprising since these
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baselines have strong classifier responses of their own, which push the optimisation in
very different directions. Other applications of stochastic gradient descent manage to
cope with this though, through various minibatch, momentum etc. techniques. The
main hurdle appears to be that our algorithm in its current form is quite stiff, with
its projections interspersed between the update steps. Changing this would require
fundamentally restructuring the algorithm, and it is not clear whether it would work
at all then.

2.8.5C Dynamic parameters

In principle the parameters do not need to stay fixed during the optimisation. For some
of them, the best values towards the end of the optimisation are not necessarily the best
at the start. In particular the artificial saturation can be detrimental if it is applied too
strongly early on in the optimisation, whereas later on high values can be necessary to
achieve interpretably saturatedmasks. Both can be facilitated by progressively ramping
up ζsat during the optimisation.

2.9 Discussion

We have presented a novel kind of saliency method and demonstrated its feasibility. In
many examples, the results are convincing, and the pointing game score demonstrates
that these are not mere flukes (though several literature method score slightly better).
The form of the results as paths is informative and friendly for human inspection with
interactive tools like the HoloViews/Panel widgets we developed for the purpose¹⁷.

Nevertheless, the method leaves many wishes. Even with the (presumed-) best
parameter choices, many inputs lead to cryptic ablation paths, and with suboptimal
parameter choices the results are prone to suffer undesired effects of the implementation.
Because the algorithm combines many interacting components, parameter choice and
debugging are difficult, if not outright hopeless for data lacking the possibility of checks
like the pointing game. This problem is not exactly new to our method, with others
also having more hyperparameters than desirable, but the complexity of ours certainly
exacerbates it.

On the plus side, the path also offers some unique diagnostic opportunities like
discussed in Section 2.8.3. Building on that together with more principled optimisation
techniques could still improve the method a lot. Perhaps this would require writing
the algorithm from scratch, perhaps incremental improvements would be sufficient.

But after already having spent great efforts on such improvements, our verdict is
that these improvements mostly suppress the symptoms of a more general issue that is
not somuch about ablation paths but about perturbation-based saliency in general: that
the pixelwise modification of images is too crude a tool to be reliably used for probing
image classifiers. chapter 3 takes a step back to survey possible approach directions
for alternative kinds of intervention, one of which we formalise and implement in
chapter 4.

Another topic of interest, which we did not have time to cover, is the use of Ablation

¹⁷https://github.com/leftaroundabout/ablation-paths-pytorch/blob/xAI-paper/experiments/
ablation_saliency_plotting.py#L548
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2.9 Discussion

Paths for classifiers of entirely different kinds of data. Nothing in the method’s formali-
sation is specific to the image application. It is wide open in which kind of data the
method would work as good as on images, or worse, or better (because the conditions
are more concilatory than e.g. the rather conflicting fulfilment of mask saturation and
image regularity).
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CHAPTER 3
FEATURES, WHAT ARE THEY?

So far in this thesis, two notions of what features can be have been considered:

• The basis expansion already used for the inputs. This has upfront the advantage
that the features themselves are completely understandable, so the explainability
task is reduced to one of attribution. This attribution is however fraught with
difficulties, as the previous chapters have touched upon. More discussion in
Section 3.1.

• Abstract representations of some machine-learned nature. These are in the oppo-
site position: they can empirically be attributed more easily, but even a perfect
attribution provides not a very satisfying explanation. More in Section 3.3.2.

This chapter tries to pin down the difficulties with the former approach, and why the
latter approach does not suffer from those. Then, chapter 4 proposes an alternative
feature expansion that (specifically for images) attempts to avoid the attribution diffi-
culties of a purely spatial / pixel expansion similarly to how abstract representations
can, while still being completely transparent in the construction of the features.

In these two chapters, I can always be taken to be a space of images/photos. Unlike
in chapter 2 (which used image classification for all examples but did not fundamentally
rely on that choice), the feature expansions discussed here would hardly be applicable
to other kinds of data, at least not without major changes.

This chapter explores mostly how features can be designed that allow the idea of
ablation (or pertubation in [28]) to be carried out such that removing features only
removes information. Before getting into solutions, it will be necessary to ponder what
that should even mean. But before even that, we set aside both AI explainability and
mathematical abstraction a bit and discuss more about the concrete manifestation of
data, how it relates to the real world.

3.1 Some intuitive / naïve approaches

3.1.1 Pixels of light
When all inputs come in form of multidimensional arrays, it seems the obvious thing
to formulate as much as possible of a method’s implementation in terms of the entries
of these arrays. For some operations this is completely uncontroversial; in particular
linear combinations of elements of a vector space can be expressed with element-wise
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scalar-multiplications and additions and the results are covariant with respect to any
possible basis expansion. For more complicated operations this does not hold though,
and it is worth pondering a while why e.g. masking on pixels works at all in a usable
way.

Photographic images are a representation of a physical phenomenon, concretely
the irradiance upon the sensor of a camera. Ignore for the moment the fact that the
sensor is already divided into pixels; it could after all also be a frame of analogue film
instead. A physicist might abstract this irradiance as a scalar field, i.e. as a continuous
function; ignoring colour,

E : [0, 1]
2 → R+

E ∈ C0
(
[0, 1]

2
)
.

Remark 11. When getting to sufficient small scale, even analogue physical manifestations are
also subject to effects that could be described as discretisation – at the very least, when getting
down to the atomic scale and/or when quantum effects enter the picture. Specifically analogue
film has a finite average grain size, entailing that the continuous description breaks down even
earlier. Nevertheless, this sort of discretisation is of a rather different nature compared to the
pixels in a digital image, and its characteristic scale still much smaller than the features in the
image.

The domain does not need to be a rectangle. The following treats it as a general
compact Lipschitz domainΩ.

The continuous functions form a vector space, and scalar-valued ones furthermore
a ring, with addition and multiplication defined pointwise

+,� : C0 (Ω)× C0 (Ω)→ C0 (Ω)

(ϑ0 + ϑ1) (r) = ϑ0 (r) + ϑ1 (r)
(ϑ0 � ϑ1) (r) = ϑ0 (r) ·ϑ1 (r) .

Vector-valued functions are a module over this ring, again with pointwise operations

+: C0 (Ω,V)× C0 (Ω,V)→ C0 (Ω,V)

(x0 + x1) (r) = x0 (r) + x1 (r)
�∗ : C0 (Ω)× C0 (Ω,V)→ C0 (Ω,V)

(ϑ�∗ x) (r) = ϑ (r) ·x (r) .

Treating the RGB colour space simply as V = R3, this is already sufficient to formulate
masks and ablation paths for image classification directly on these continuous functions,
without any mention of pixels. The correspondence with the pixel case only stops
holding true when it comes to gradients, because unlike in the finite-dimensional case
the dual space of C0 (Ω) is not isomorphic to the space itself (though it can be extended
to a Hilbert space which is again self-isomorphic).

The above view lends some legitimacy to the use of the pixel basis, as more than
just an arbitrarily-chosen basis of a vector space. In particular, it is possible to think of
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the features as being conceptually patches of continuous images, and merely use pixels
as an approximate representation of these, although there are some technical subtleties
with this (Section 3.2) which are often glossed over.

3.1.2 3D scenes

However, it is worth questioning whether light intensity at the sensor is actually what
the image classification is concerned with. The objects the class labels refer to are, after
all, not physically located on the camera sensor, but rather in the three-dimensional
space before the camera. And what arrives at the sensor is affected not only by the
objects themselves but also by lighting conditions and possibly obstructions.¹

An ideal feature basis for a saliencymethod could be envisioned as starting with full
inverse modelling to infer from the input photo the 3D scene it was taken from, with
discrete solid objects in it that could be reordered or removed at will and a new image
rendered from this. 3D scene reconstruction is indeed possible in some applications.
This thesis does not directly deal with it, although this is one of the goals of the Cryo-
EM techniques (chapter 6) to which it contributes – but these are very much application
specific.

Reconstructing a scene from a single image is still an open problem, and in general
quite ill-conditioned because depth information is simply not available in the 2D
projection; it can at best be deduced from prior knowledge about relative sizes, aided
by shading clues. In addition, parts of the scene that are obscured by an object of interest
might need to be guessed if they would become visible with that object removed. This
is essentially an inpainting problem.

Humans are capable of this (though by no means infallible), and deep learning
has made strong advances in the field too. But even if these techniques worked with
good reliability for the inputs of interest, they would still be wanting of explanation
at least as much as the basic image classifiers that this thesis attempts to explain.
Inpainting, while by itself a quite well-explored problem with capable solutions [115],
adds another issue since it is literally designed to add information not present in the
original image. Artificial information is already a problem in the sense of adversarial
attacks as discussed before, and would probably become even harder do keep in
check in this approach, though it would likely help if this was integrated in the 3D
reconstruction (also an active research topic [22]), and correspondingly constrained in
what it could do spatially.

Nevertheless, this is a promising direction for future research. Even if such a
method would involve deep-learned 3D reconstruction, the use of an explicit and
physically motivated feature space would add a large amount of understanding and
credence compared to completely abstract representations learned by a black box
(Section 3.3.2), in particular if the reverse direction is a rendering engine based on well-
interpretable techniques like raytracing. This would still leave several technical hurdles
to be overcome though. For one, such 3D rendering remains computationally expensive
and not readily combinable with an optimisation strategy that requires differentiability.

¹In fact, the masking away of features could be interpreted as literally putting a black object between
the camera and part of the image. This raises the delicate point that it is now in a quite rigorous sense
the obstruction that stands in the foreground, rather than any of the objects in the original image.
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3.1.3 Edges and shapes
A similar but less ambitious approach could be to separate the image in 2D into discrete
objects. Again, this is well doable in an interpretable way for specific kinds of images
but far more problematic in the general or photographic case.

The simplest possible way this could be tackled is edge-detection based segmenta-
tion. This works easily for clean 2D graphics, where regions can readily be found as
“watersheds” of a colour-gradient magnitude, but this has considerable problems in
the presence of noise. Ways to address these have been proposed [86], with successes
even for large photographic images, but ultimately there still remains the necessity of
hard, arbitrary cutoffs, which mean small changes in parameters as well as lighting
and/or noise in the image can lead to topological changes in the decomposition. That
would entail a completely different feature basis and correspondingly explanation.

There also is still the question of, if the features are image segments, what removing
them shouldmean. This is perhaps evenmore problematic if they have exactly confined
contours, because then any means of removing the interior would still leave those exact
contours, albeit with different contrast. But a classifier would plausibly use the very
shape of the contours to a strong degree for its decision. Replacing a rabbit with a
rabbit-shaped hole seems like a bad way of making an image non-rabbitlike. The only
way to avoid this effect when removing hard-confined regions seems to be inpainting
[107], with the problems mentioned in the previous section.

Perhaps more promising use of edges could be to treat them as features them-
selves.² This has indeed been a common tenet in the field of mathematical morphology.
However, the edges alone do not contain sufficient information to reconstruct a full
image, as would be necessary for explaining an image classifier along the lines of
Section 1.2.3/chapter 2. There are ways to essentially associate pixels to edges [79]
which might allow this.

None of this helps with the problem that pure 2D analysis is oblivious to much
of the inherent structure of photographic images. It might be argued that this is a
fundamental limitation and that anything short of 3D reconstruction falls foul of 3D
phenomena. However at least some aspects of the original 3D scene composition can
readily be described purely in 2D terms.

• Translation of objects in 3D manifest as 2D translations and/or scaling of their
size in the projection.³

• Lighting changesmap to local changes in lightness in the photo. Typically (though
not always), these changes have less spatial varation than the variations corre-
sponding to actually material/paint colour of physical objects in the scene.

Both of these facts can be seen as motivation for the SIFT method [59], whose use
for saliency purposes is established in chapter 4. But before delving into that specific
method, it is worth to visit some of the theoretical underpinnings of both SIFT and

²Edge location can even be used as a representation for real-world image classification, at least for
specific applications [77], though this does not seem to have reached noteworthy success for general
photo datasets [82] (possibly for similar reasons as those mentioned above).

³Here we disregard translations which result in one object obscuring another one (or not-anymore
obscuring it).
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other methods, including the ones presented in chapter 5 and chapter 7.
Even if they are not used as tweakable features themselves, edges (specifically, their

prevalence) can still be considered as a proxy for complexity of an image. It has been
suggested to use this as the basis of a “hallucination score” [47], which essentially
attempts to measure how adversarial a perturbed input is. A good interventional
saliency method should not generate artificial edges, and thus have a low hallucination
score.

3.2 Signal theory

A term that has been mentioned multiple times so far but not been properly defined
is information. This is nowadays an intuitive concept due do the ubiquitousness of
digital files, but measuring information in bits or megabytes assumes that the data is
already represented in a discrete form. But while this given in the sense that all the
computation happens in the digital realm, the previous section has emphasized that
especially for explainability concerns it is helpful to look back at the continuous signal
form that is closer to the nature of the physical origin of the data samples.

Remark 12. This section uses the term “signal” as a shorthand for data from any function-space
like C0 (R) or H1

(
[0, 1]

2
)
, i.e. not just signals in the sense of continuous time series but also

scalar- and vector fields. We do assume the domain to be a cartesian product of intervals though.

Naïvely, such a signal would seem to contain an infinite amount of data: a general
function needs to be evaluated on all points of its domain to be reproduced, and if
that domain is a continuum like the real line or a square those are uncountably many.
The function being continuous allows reducing this to countably many, but still not
a finite number (even with stronger regularity, like multiple times differentiable). As
such, it is somewhat remarkable that signals can be represented digitally at all, but
evidently this is possible and has been done for a long time. A pragmatic reason is that
an approximate reconstruction is sufficient, however one needs to be specific about
what sense this approximation is to be understood in.

A basic framework in which this can be discussed is as follows: let IC the space of
signals and ID a finite-dimensional space intended to contain the discretised form of
the signals. Then we consider the pair of operators

d : IC → ID

c : ID → IC. (3.1)

One would generally require that d is left inverse to c, but for it to be also right inverse
is more elusive, and not surprisingly because this would immediately entail that both
spaces are isomorphic.

This is however indeed the case for bandlimited signals, i.e. those signals whose
Fourier transform is compactly supported. Such signals can be discretised by sam-
pling on equal-spaced points, and then be reconstructed exactly by the Whittaker
interpolation formula [109] (convolution with a sinc kernel). This result, also known as
Shannon-Nyquist sampling theorem, is often considered the basis of all digital signal
processing. The superficial paradox of isomorphy between a continuous and a discrete
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space is perhaps not the most remarkable consequence of it – after all, it is only a
particular subspace of the function space on which this holds, and one could always
choose explicitly the image of an interpolation operator as the subspace.

What is remarkable is that this subspace has particularlymaths- and physics-friendly
properties. In particular, a large class of wideband signals can be projected to an
approximately bandlimited form by purely analogue filtering, which is explicitly done
in analogue-to-digital converters. For photos, this is less obvious, but indeed the
sharpness limitations of a camera’s optics also provide at least some filtering, though
not always enough to prevent the aliasing /Moiré effects that can arisewhen attempting
to sample a signal that is not in the bandlimited subspace.

The physics-compatibility turns Shannon-Nyquist into an obvious choice, or even
the canonical way of sampling signals. This, in combination with quantization of the
samples to digital numbers, is called pulse-code modulation (PCM) and gives rise to
one way of measuring the information capacity of a signal. Is is made precise by the
Shannon-Hartley theorem [88]:

C = B· log2 (1+ SNR) (3.2)

i.e. the achievable bitrate is proportional to the highest frequency⁴ and the number of
bits needed to enumerate every possible instantaneous signal-level, modulo changes
within the expected amplitude of noise fluctuations. This formula is however often
misunderstood: the original motivation is concerned with how much information can
be transmitted via a signal over an analogue, Gaussian-noisy channel.

This does not mean that all such signals actually contain this amount of information:
they contain typically much less, as witnessed by the fact that compression algorithms
such as JPEG [100] can routinely reduce storage requirements by more than an order of
magnitude. It is sometimes argued that the lossy nature of such algorithms disqualifies
them as a way of measuring information, but this is dubious since Shannon-Nyquist –
despite its aforementioned advantages – also is lossy, if the required bandlimiting is
taken into account. Even lossless algorithms can achieve a substantial reduction in the
size of typical photo files (though these, for example PNG [1], generally perform much
better on graphics like plots).

One way this could be interpreted is that the local signal-to-noise ration is lower
than the global one – which can sometimes be quite obvious, for example in audio files
that contain only occasionally loud noises (e.g. timpani hits in an orchestral recording)
but overmost of the time far lower levels, and are thus in a spatial sense sparse. A purely
spectral consideration of the signal would not be able to take that into account, since
even (or particularly!) highly localised peaks have a broadband frequency spectrum.
Vice versa, the purely-spatial PCM representation disregards any sparsity in frequency
space, which is also highly common in both audio and image data.

Successful compression algorithms take both kinds of sparsity into account, which
can be accomplished either by the use of constant-size windows as in JPEG, or (often
more effective) by multiscale techniques (Section 3.4) which adapt to the fact that
different spatial locality typically occurs in different frequency ranges.

⁴Strictly speaking, the bandwidth B is the difference between the highest and lowest frequency, but
for signals like images the spectrum reaches down to the constant level, i.e. zero frequency.
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A consequence of the non-optimality of PCM is that a change performed in this
representation – even one that seemingly only removes information (like replacing
a pixel of the target image with this pixel from a neutral baseline) – can easily add
information instead. That is in some cases obvious enough (if the thus changed pixel
forms a strong contrast with its surrounding), in others subtle but just as consequential
(low-amplitude adversarial examples).

It is debatable whether information is the best point of view from which to capture
the possibility of adversarial masks versus true saliency. It is in a profound sense
impossible to prove that a masking-change does not add information, because one can
never be sure that the representation one is working on was optimal, information wise.
If x (in PCM-digital form) is considered as a generic digital string, finding the minimal
representation would amount to computing its Kolmogorov complexity [49], but this
is known to be uncomputable.

It should also be remembered that every practical notion of information will be
relative to some context. The classifier may respond excessively to some particular
kinds of input changes, but it may also ignore many changes even if they add lots
of information. The extreme example is adding literal white noise. This has a high
information content in the Shannon sense, but might reasonably be filtered out in
the early layers of a classifier, either because it was explicitly designed this way or
because denoising turned to be a useful instrumental goal during training.⁵ Confer
also Remark 4.

Nevertheless, it does match experimental evidence that low-information masks fare
better in the adversarial aspect of the saliency problem: in Meaningful Pertubation
[28] and Ablation Paths [85], information is kept low through regularisation; in RISE
[73] through the lower-resolution random masks that are only then upsampled; and
in Occlusion Explanation [19] through the recursive refinement algorithm with only
minimal choice at each stage. In all of these cases, the means of “compression” is by
itself interpretable, which is the other aspect that makes low information desirable
specifically for a saliency method.

Such ad-hoc restrictions on the possible masks lead to hyperparameter tradeoffs
though, to which metrics like the pointing game can provide only unsatisfactory guid-
ance (Section 2.8). Even the best possible parameter choices might be adequate only
for some inputs. For others, the regularisation might completely miss how information
is present in that particular instance. For example, in a photo picturing several people
gathered in a small spot of the scene, none of the coarse-oversampled random-sampled
masks in a RISE shootout might sufficiently separate them, but simultaneaously they
could still manage to add artificial information through inpainting into the previously
featureless sky.

3.3 Learned representations

Some readers may be surprised that the previous section did not mention the term “en-
tropy”. This was a deliberate choice, to make the point that information can usefully be

⁵This would be analogous to how the denoising in chapter 7 is a preprocessing step to the Cryo-EM
reconstruction problem (chapter 6).
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discussed without any reference to probability distributions. Probability distributions
are, however, the standard approach to the subject and deserve discussion as well. In
fact it could be argued that all the discussion about compression algorithms hinges on
some suitable distribution of the signals that could possibly be encountered.

In that approach, information of each sample x from a distribution Ψ is equated
with entropy of the distribution:

H (Ψ) = − E
x←Ψ

[
log2 P

x̃←Ψ

[
x̃ = x

]]
. (3.3)

For some quantities, one can come upwith reasonable prior distributions, often of some
Gaussian form. For x as images from photo datasets, this is however all but hopeless.
Estimating the distribution from the dataset can be feasible to some extent, though it
requires considerable care.

3.3.1 Simple statistics

In low dimensions, approximating the distribution by a histogram⁶ can be appropriate.
This works only if sufficiently many samples are available for each of the bins, which in
practice necessitates quantization.

Without sufficient binning, the estimated distribution would be a sparse one, as-
signing equal probability to the exact samples encountered in the data set and zero to
anything else. Designing a coding based on that distribution would amount to assign-
ing each sample from the dataset a discrete number. This is certainly very “efficient”
(only a few bytes), but it completely fails to encode any new inputs that were not already
in the dataset, though such inputs are the ones that actually matter.

Moreover, the discrete numbers do not meaningfully split into features to which
the classification of this example could be attributed, even for training-set inputs.
Each input would consist of only one “feature”. This problem would also persist
if a sufficient discretisation could be found for histogram bins that would allow for
frequency statistics, though that is largely hopeless anywaywhen starting out in a space
with as high dimensionality as pixel images: rasters defined on a high-dimensional
space have exponentially many bins, so even a vast dataset would not be representative.

It is not entirely clear what properties of a distributionwould be required to facilitate
a split into features, but a sufficient condition is if the probability is separable, i.e. if
there are spaces

(
Îj

)
j
such that I =

⊕
j Îj and a distribution Ψ̂j on each Îj such that

P
x̃←Ψ

[
x̃ =

⊕
j

x̂j

]
=

∏
j
P

ˆ̃x←Ψ̂j

[ˆ̃x = x̂j

]
.

This is another way of saying that the x̂j are independent of each other. In that case the
entopy separates as

H (Ψ) =
∑
j

H (Ψj) , (3.4)

⁶Most of what is said in this section about histograms would also apply for similar tools such as
Kernel Density Estimation, which is in several ways more usable but not quite as easy to discuss.
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where each summand can be understood as a “chunk of information” and each chunk
in the representation can be modified independently.

The lower-dimensional Îj also make it more feasible to estimate the individual
distributions. The extreme case, for images, would be that all pixels are completely
uncorrelated; in that case, a simple 1D histogram could be obtained for each pixel.
But that is only really given for pure noise images, or (statistically equivalent) images
which are being used as an optimal transmission channel for unknown data. Then we
would be back to allowing individual tweaking of pixels. This provides another way
of looking at adversarial examples: if the dataset has some correlation built in that
the feature basis does not take into account, tweaking the features independently can
lead to perturbed inputs outside of the distribution.⁷ For such inputs, the classifier
behaviour is effectively indeterminate as they would not have occurred during training.

Ensuring all correlations are preserved in feature-tweaking would prevent this. But
even relatively large regions of an image would still have correlations between them,
though they would be less obvious and hardly possible to pin down reliably, certainly
not with traditional statistical tools.

Points to take away here are

• Even a feature-basis where the features are somewhat correlated can be useful
for explainability. The smooth masks used in the literature clearly fall in that
category, but this does not necessarily incur adversarial-style non-explanations –
so long as the classifier itself does not respond too erratically to these unnatural
inputs.

• The distribution approach to information makes it clear that a linear decomposi-
tion is not really at the heart of the concept. Direct sums are merely a particularly
simple decomposition which is highly convenient (Equation 3.4), but should,
apart from the simplest applications, not be expected to be ideal as an encoding
(information-wise) or as the features of a saliency method.

To the latter point it should also be remarked that even a direct-sum decomposition
does not have to be of a spatial nature at all. The obvious counterexample are spectral
decompositions that were already discussed in Section 3.2 but are for different reasons
hardly suitable for explanation; these reasons and possible compromises are the subject
of Section 3.4.

3.3.2 Autoencoding
Estimating the distribution Ψ from which a dataset has been sampled is by no means
only of interest for explainability purposes. On the contrary, this could be seen as
the underlying task behind all machine learning. Particulary unsupervised learning
can do litte else but find a representation that allows fulfilling tasks like generation
of new values as if they were sampled from Ψ. If the task is literally synthesizing
such samples, it is called a generative model. This already suggests a parallel with the
intervention approach to saliency. Generating unrelated data points is not enough:

⁷For distributions like Gaussians, there is no hard cutoff what is “outside”, but points sufficiently far
from the mean do become so unlikely that they may as well be considered impossible.
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even for amethod like RISE [73] one needs for each random sample also the information
how it is similar and/or different from the target image. A fully black-box generative
model would not provide such information.

Most such models are anyways not structured as random generators per se though,
but decouple at least the nondeterminism injection from the representation aspects.
Furthermore, they are usually equipped to take also inputs x , if only because these
are used during training. The general architecture in which this is most evident are
autoencoders: they are built from a pair of functions

Eφ : I→ Λ

Dθ : Λ→ I (3.5)

whereΛ is a latent space of encodings without prescribed meaning; one would normally
attempt for this to be as low-dimensional as possible. Both the encoder E and the
decoder D are parameterised in some suitable way, and these parameters φ and θ are
what is trained.

What concrete function architectures are used for E and D is subject to choice.
A particulary simple option are linear functions, which would mean the synthetic
images are a simple weighted superposition of fixed basis functions. Such a basis
can be searched with simple Principal Component Analysis. A linear basis would
largely avoid the concerns about use of autoencoders for saliency purpose that are
discussed below. Unfortunately, in case of images this is workable only for some specific
applications such as already aligned face pictures [93]. For general image datasets, the
basis would either be so low-level as to offer little advantage over single pixels, or else
just copy training images verbatim.

In practice, the go-to candidate for an image autoencoder are neural networks, most
typically convolutional and can be structurally very similar to the ones used for image
classification or the denoising task of chapter 7. The reasons such networks work well
for those tasks are much the same as why they are good candidates for autoencoders.
See Section 5.3.

The objective to the training of an autoencoder is to achieve Dθ (Eφ (x)) ≈ x for
x from the dataset/distribution. This if of course very similar to the operators in
Equation 3.1, except that in this case even Eφ ◦Dθ = id is only approximated through
training, and there are not necessarily clear subspaces on which the two functions act
as isomorphisms.

That notwithstanding, if the approximations are good and the latent space low-
dimensional then it is a promising representation for performing the masking in. This
could be done with

[ xRxL ]
(
Eφ,Dθ

)
: Λ→ I

[ xRxL ]
(
Eφ,Dθ

)
ϑ =Dθ ((1− ϑ)� Eφ (xL) + ϑ� Eφ (xR)) . (3.6)

This, combined with standard gradient-based explanation techniques, is essentially
the approach taken by Bordt et al. [12], who understand the autoencoder as a way of
staying in the data manifold, or equivalently projecting any gradients into its tangent
space. We have not yet attempted using something akin for the ablation path saliency
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or one of the other interventional methods. One practical hindrance is that the latent
space is completely abstract and a “heatmap” in it would not provide any explanation
at all. This would be dispensable for an ablation path though, because of its ability to
highlight small changes (regardless of what nature) together with their impact upon
the classification; for the other methods it might also be possible to retrieve a spatial
heatmap through some additional gradient-based attribution transfer.

A more fundamental issue is that the encoding is not interpretable itself. This is
perhaps not quite as problematic as with a single mask-producing explainer black-
box model (Section 1.2.2A), because one still has input-output pairs that offer some
faithfulness check. But it is nevertheless far from ideal. In particular, it is conceivable
that both the classifier and the autoencoder would learn a bias in the dataset, with the
result that the synthetic inputs would all share a trait (perhaps delocalised and nearly
invisible to humans) that makes the classifier behave more as it did on the training and
validation set. This might result in innocuous-looking saliency maps even though the
classifier is actually much more erratic on real data that do not have this bias.

None of this is necessarily disqualifies autoencoders for feature generation, but
it does at any rate demand careful research into the influence of such issues and
possibilities to mitigate them. This might be worth it for a classifier that cannot stably
be explained in any other way, but if an explanation using only inherently interpretable
features is possible than this does seem strongly preferrable. For this thesis, it was
decided to focus the effort into the latter direction, as detailed in the next section and
chapter 4.

It is also worth noting that a deep neural network classifier itself contains a learned
representation in its intermediate layers, which can be quite similar to the one of an
autoencoder trained on the same dataset.⁸ For these internal learned features, Grad-
CAM [87] already provides an efficient attribution technique. Comparing this to an
independent autoencoder would be interesting regardless, but it might not provide
much new insights.

3.4 Multiscale methods

The pixel basis is maximally localised (for a given bandwidth). The opposite is the
Fourier basis, which is maximally localised in frequency space (for a given image
size), which entails being maximally delocalised in position space. Locality per se is
advantageous for a saliency method, and at least some degree of locality is required for
methods like RISE to give usable results at all. On the other hand, it is quite nonsensical
for a saliency method to locate e.g. individual spots in a homogeneous surface in an
image. The only way this kind of locality can matter is in adversarial masks. Therefore
it it sensible to relax the locality demand. Smoothness regularizations have this as a
side effect, but they are a fairly blunt tool that also precludes finely locating true small
physical objects in a photo.

It was discussed above that the capability for adversarial interventions is related
to information introduced by the masking process. Fourier analysis demonstrates a
simple way how even a large image can have low information content: if it is sparse in

⁸It will not be similar in the sense that there are co-aligned baseis in the latent spaces, but it may still
describe a very similar distribution.
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frequency space; being homogeneously coloured is a special case of this. In that case,
most pixel-wise masking will effect an increase in information content. It is uncommon
for images to be globally sparse in Fourier space, though: most do contain at least some
sharp edges / transients or otherwise broadband components, and even if these are
themselves spatially confined the Fourier decomposition has no way of keeping them
apart from the frequency-sparse regions. This, combined with the non-locality, makes
a simple Fourier decomposition quite useless for explainability.

A compromise between pixel space and Fourier space is a promising way of resolv-
ing the dilemma. This can be approached from either space, and both are deployed in
image compression:

• Grouping together pixels within each homogeneous or near-homogeneous region
is one way to interpret PNG compression [1]. This is not literally how it works,
but the use of delta coding and run-length coding has a similar effect. In the
literal sense, such a grouping requires edge detection, watersheds etc. as in [86].
PNG compression is highly efficient for simple graphics, but not very effective
for photos (at least without dedicated quantization [54]); this can be explained as
the region decomposition being unstable under lighting subtleties and noise. As
long as the goal is only to reconstruct the original image, the only consequence
is large file size. But if the corresponding features are supposed to be used for
interventional saliency, such instability is hardly tolerable. Anyway this would
be difficult to carry out; at least PNG is constructed with purely discrete concepts
and it is doubtful how it would permit any notion of attenuating features.

• Splitting an image into small regions (typically square blocks) and Fourier-
transforming these allows strongly compressing only the ones that are frequency-
sparse, while mostly keeping the local information of broadband regions. This is
the main principle behind JPEG [100] and many other compression algorithms.
Audio compression too usually employs short-time Fourier transform. Such
transforms are purely linear decompositions, which makes them easy enough
to use for interventions. However, they require a fixed choice of block size, and
modification of the coefficients (including the quantization needed to use this
for actual compression) is known to manifest in substantial ringing- / blocking
artifacts.

Both approaches are successful at capturing some of the regularity inherent to images,
but neither is really suitable for our purposes. Though the concrete problems are quite
different, part of the underlying cause is shared: slow-varying, long-distance pixel
correlations are only captured when not disturbed by higher-frequency contributions,
or only under a tradeoff of accuracy of these contributions. A solution is to treat
different frequency ranges differently, such that high-frequency contributions can stay
localised whereas low-frequency ones can stay long-ranged.

That is the idea behindwavelet transforms. Like the Fourier transform, these represent
any signal as a superposition of basis functions from an orthogonal set with respect to
the L2 scalar product, or at least a set of biorthogonal pairs. In particular, they are true
transforms in the sense of isomorphism.

Unlike with the Fourier transform, most of the basis functions are still localised in
the sense of being supported within a small area of the domain. The more localised
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elements of the basis inhabit a higher frequency band than the more extended ones;
this is typically ensured by using a single “mother wavelet“ and scaling it down, which
simultaneously scales up the frequency components.

All of this makes wavelets fairly good candidates as features for saliency. Again,
there is a choice between multiple versions, including:

• The Haar wavelet [35] is a simple pair of adjacent, opposite-polarity boxcar func-
tions. It has advantages of simplicity and lack of ringing, but a disadvantage of
discontinuity. Particularly troubling is that changing the amplitude of a single
long-range wavelet would in general imprint the hard edges of its boxcar halves
into the image.

• Daubechies wavelets [23] generalise and smoothen these. The price for this is a
considerably more complicated shape and loss of shift invariance, though they
are still efficient to compute.

• Morlet / Gabor wavelets [67] are simple and have good properties in the sense
of both translation invariance and continuity. They are literally defined as spa-
cially confined versions of sinusoidals (i.e. Fourier basis functions). They are
computationally somewhat less efficient, though this would hardly matter. More
problematic is that they do ring/oscillate multiple times within the window,
albeit with exponential decay.

At least some sign change is unavoidable for wavelets, since in order to form an or-
thogonal system (or even just a well-conditioned invertible transformation matrix) the
inner products between different base functions need cancelling contributions. This
could potentially be a problem for saliency interventions because removing a feature
can cause the maximum to increase, i.e. leave the allowed amplitude range, though
this seems relatively easy to address and wavelets still remain an interesting option for
saliency purposes. This combination has recently been realised [46], and also extended
to shearlets [47] which are more suitable for capturing in particular edges.

Key insight for the method presented in the next chapter is that orthogonality,
or indeed the notion of basis in the linear algebra sense altogether, is not necessary
for features. This allows constructing the method based on only Gaussian kernels,
avoiding any negativity as well as information addition, while still having similar
frequency-dependent locality as a wavelet expansion.

3.5 Linear vs nonlinear

One aspect common to Fourier and wavelet representations, and also to the Shannon-
Nyquist interpretation of PCM, is that the complete image is considered to be a linear
superposition of multiple components. This can in many cases be argued to be un-
problematic; for example sound waves do also in the physical reality superimpose in
a way that simply adds the pressures (relative to ambient). In this case it is exploited
that the appropriate physical model (compressible Euler equations) can as a good
approximation be linearised, at least for relatively low-amplitude signals.At sufficiently
high amplitudes, linear approximations generally break down. For some physical
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systems like the vacuum Maxwell equations that would mean so high field strengths as
to be unachievable anyway, but for pixel brightness variations a linearised view already
breaks down very quickly, since there is a hard-limited range of permittable pointwise
values and certainly no such thing as negative brightness. This limitation is somewhat
ironic since light is a phenomenon. Moreover it is often dubious whether addition in a
vector space is an appropriate framework at all. Particularly for photographs, a view of
overlapping patches seems a more appropriate paradigm.

Even when accepting superpositions as in principle reasonable, it is still important
to consider that whilst they commute with arbitrary basis transformations on the vector
space, they do not commute with nonlinear transformations. Particularly relevant for
image applications (unlike audio⁹), the actual pixel values are usually not stored as
numbers proportional to physical intensities, but rather in a nonlinearly mapped colour
space like sRGB [41] or CIELAB [83]. These nonlinearities are intended to more closely
match human perception, which has advantages including more efficient use of the
bits (this could incidentally be seen as a form of entropy-coding compression), and
are possibly also benefitial when using the representation for saliency intervention
(particularly for metrics on the mask space, cf. Section 4.3.3).

The prevalence of linear-based representations certainly has at least as much to do
with computational practicality as with properties of the application domains. Even if
a dataset results from a highly nonlinear process, linear tools can still have their uses
here¹⁰, but they will always be limited.

It may well be one of the reasons of the success of deep learning that it better
embraces nonlinearity than traditional methods. It is possible, too, that an explanation
technique based on any linear basis expansion can not hope to properly capture deep
learning decisions, but in absence of interpretable nonlinear explanation techniques it
seems necessary to try making the best of the linear approaches.

⁹Formats like µ-law aside, which are of mostly historical relevance.
¹⁰An example from physics is the use of Fourier analysis to study turbulence [48][114].
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CHAPTER 4
SIFT-BASED ABLATION

The Scale-Invariant Feature Transform was developed by Lowe [59] as a technique for
extracting information from images that is practical to use and stable with respect to
commonly encountered disturbances that hamper many other techniques. Concretely,

• It separates large-scale, low-frequency features from small, high-frequency ones
– much like the wavelet transforms discussed in Section 3.4. This is particularly
relevant for stability under lighting conditions and noise.

• It avoids depending on ad-hoc choices for rasterisation or basis-functions. The
only consequential fixed choice is that of Gaussian filters, for which there are
very compelling reasons.[58]

• Translations, rotations and scalings of the inputmanifest directly in corresponding
transformations, thus the name “scale-invariant”. This makes it stable under
changes in the exact manner a photo is taken.

• It is efficient to compute. This was more important in 1999 than with the GPU
resources available nowadays, but it is still useful. The adaptation presented here
only exploits some of the efficiency tricks of the original; this is enough to avoid
it being a computational bottleneck.

Remark 13. Arguably, the method should not be called SIFT but SEFE: Scale-Equivariant
Feature Extraction. Were it actually invariant, the outputs would not change at all under
scaling (see chapter 5 for terminology). The name “transformation” is not very fitting either
since, unlike Fourier- or wavelet transforms and many others, SIFT results in only discrete
keypoints. It does not depend on the entire input information, and certainly is not invertible –
although, as this chapter demonstrates, it is still reconstructible in a different sense that turns
out to be sufficient for saliency purposes.

A nutshell description of how SIFT works is that it extracts the extrema of an image in
its scale-space representation. These extrema or keypoints are used as the features.

The nutshell description of our extension to it is that associates each of these key-
points with the actual signal information most pertaining to it, and devises a way to
reconstuct the entire image from that, with the possibility to attenuate each of the
features independently.

Several reasons for using the SIFT keypoints as features for image classification were
given in chapter 3; the arguments are elaborated in the following sections. Another
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reason which is perhaps even more compelling is that SIFT was once itself a main
tool within the state of the art of image classification. Most entries to the ImageNet
Large Scale Visual Recognition challenge 2010 [82][11] used SIFT in some way¹, before
deep learning pushed such methods out of competition starting in 2012. SIFT may
thus provide the most promising interpretable decomposition, inasmuch as its notion of
information has proven sufficient for a good part of the classification task, while still
being simple and sparse.

4.1 SIF-Transform: a reconstructible formulation

Recall the general notions from Section 1.1 of the space I of inputs/images, which is
some function space on a domainΩwith values in a space V that usually represents
colour. This section always considers a single given image x ∈ I with I = L2 (Ω,V)

and Ω = [0, 1]
n. In the image application it is n = 2, whereas in the figures below

demonstrating the concept n = 1 is used for visibility. The image x can be treated as a
function

x : Ω→ V.

To be pendantic, elements of L2 are equivalence classes of functions, but they can
for the purposes relevant here be treated like single functions. The main reason for
working in L2 is that Fourier transform is well-behaved on that space, which is useful
for the theory employed here.

4.1.1 To scale space and back

The first processing step of SIFT is to transform this image into its scale-space represen-
tation, specifically its Difference-Of-Gaussians Pyramid.

4.1.1A The space of scales

Scale space was introduced byWitkin [113]. The idea is to avoid choosing any particular
length scale or frequency range, or grids in either position- or frequency space, but
instead using all the scales. This amounts to adding a dimension to the signal’s domain,
the scale dimension, which is indeed physically a length dimension. In that combined
domain

Z:=Ω× R+, (4.1)

define the progressively low-pass filtered image:

Γ : Z→ V

Γ (r, σ) := (γσ ? x) (r) , (4.2)

with the (L2-normalized) Gaussian kernel (Equation 2.25).

¹According to the ImageNet publications, the winning entry to ILSVRC2010 is among those using
SIFT. The paper associated with that method [57] does not mention this, though.
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4.1.1B Fourier analysis

Wedefer to textbooks for the basic definitions of Fourier theory. Details such as absolute
amplitudes are inessental for the following discussion; what is important is mostly the
standard results for Gaussian functions, and that a normalisation convention is used
where the convolution theorem holds as

FT (f ? g) (k) = FT (f) (k) ·FT (g) (k) (4.3)
∀f, g : L2 (Rn) .

The Gaussian-lowpass filtered cascade Γ is a highly redundant representation of
the image x : all sufficiently low-frequency information will be present at full strength
in all the Γ (·, σ) slices at sufficiently small σ. This can be seen in its Fourier transform:

FT (Γ (·, σ)) (k) = FT (γσ) (k) ·FT (x) (k)

= e−
‖k‖2·σ2

2 ·FT (x) (k) . (4.4)

Specifically, the exponential approaches constant 1whenever σ·k� 1, which makes
the result approximately independent of the concrete value σ within that domain. By
contrast, the differential of Gaussians representation

∆ : Z→ V

∆ (r, σ) := − σ· ∂
∂σ

(Γ (r, σ)) (4.5)

retains for each σ only that information which is added as decreasing size of the
Gaussian kernel increases the bandwidth (cf. Figure 4.1).

Remark 14. The factor −σ in Equation 4.5 is largely unmotivated at this point, except for
the superficial benefit of avoiding a 1/length contribution in the physical dimension of ∆. The
factor is not necessary for the purposes of the current section, but it does make the differential
formulation match up with the practical difference of Gaussians formulation; see Lemma 9.

The Fourier transform shows the bandpass property explicitly:

FT (∆ (·, σ)) (k) = − σ·
(
∂

∂σ
(FT (γσ) (k))

)
·FT (x) (k)

= ‖k‖2 ·σ2·e−
‖k‖2·σ2

2 ·FT (x) (k) . (4.6)

Here, the lowest frequencies approach zero gain (instead of unity gain as in Equation 4.4)
due to the ‖k‖2 factor, but the magnitude still depends on σ2.

The bandpass filtering can also directly be expressed as convolution with a different
kernel:

∆ (r, σ) = (BPKσ ? x) (r) (4.7)

where the kernel BPKσ (Figure 4.2) is obtained either by inverse Fourier transform, or

Chapter 4 99



SIFT-based Ablation

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
r

10−1

100

σ

−0.9
−0.6
−0.3
0.0
0.3
0.6
0.9

Γ

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
r

10−1

100

σ

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1

0

1

x

−0.9
−0.6
−0.3
0.0
0.3
0.6
0.9

Δ

Fig. 4.1: TheGaussian lowpass and differential-of-Gaussians representations of a simple
sinusoidal sweep, demonstrating the bandpass character. Observe that the minima
and maxima of the original signal manifest in extrema of ∆ that are isolated in both of
the r and σ dimensions.

by differentiation of the Gaussian kernel:

BPK (r) = −σ· ∂
∂σ

(γσ (r)) . (4.8)

4.1.1C Original image reconstruction

Each band pass filter discards² most of the information in the image, but it is still
preserved in the collection of all of them together:

Lemma 8. The image x ∈ L2 (I) can be computed exactly from the scale-space representation
∆ ∈ L2 (Z):

x (r) =

∞∫
0

dσ ∆ (r, σ)

σ
.

Proof. This is essentially only application of the fundamental theorem of calculus. The

²Technically speaking, the information is not completely discarded: unlike in a Fourier transform,
each layer also lets some of the neighbouring frequencies through and technically speaking even faraway
ones – but with over-exponential attenuation, so that reconstructing from a single bandpass-filtered
version would be highly unstable. The leakiness in frequency space is a tradeoff for the much better
locality in position space of a Gaussian kernel, compared to the sinc kernels that correspond to hard
frequency cutoffs.
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Fig. 4.2: The kernel corresponding to the band-pass interpretation of ∆. This kernel is
not explicitly used in the implementation, only shown for reference. Notice that this
could also be considered as a wavelet (cf. Section 3.4).

improper integral is defined as a limit of proper ones, to which the theorem applies:

∞∫
0

dσ ∆ (r, σ)

σ
= lim

R→∞
R∫

0

dσ ∆ (r, σ)

σ


= lim

R→∞
R∫

0

dσ
(
−
∂

∂σ
(Γ (r, σ))

)
= − lim

R→∞
(
[Γ (r, σ)]|

R
σ=0

)
= Γ (r, 0) − lim

R→∞ (Γ (r, R)) .

Both contributions can only be understood in a limit sense. The Fourier transform is a
bounded³ linear operator and thus continuous, meaning it commutes with the limit
and can directly be evaluated from Equation 4.4:

FT (Γ (r, 0)) (k) = e0·FT (x) (k) = FT (x) (k) ,

and thus Γ (r, 0) = x (r); and

FT
(

lim
R→∞ (Γ (r, R))

)
(k) = lim

R→∞
(
e−

‖k‖2·R2
2

)
·FT (x) (k) = 0,

for any k = 0. Since {0} is a null set and values on a null set do not matter for Lebesgue
integration, this means FT (limR→∞ (Γ (r, R))) = 0 in the L2 sense. It follows that
limR→∞ (Γ (r, R)) = 0.

³In fact, it is unitary (Parseval’s theorem).
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Putting it together, one obtains

∞∫
0

dσ ∆ (r, σ)

σ
= x (r) − 0 = x (r) .

The above result demonstrates exact reconstruction is possible from the fully-
continuous, unlimited-scale representation. In practice it is neither feasible nor nec-
essary to integrate all the way to infinity, instead one simply goes to a finite size σ,
generally chosen as similar to the whole image size R, and stores the single low-pass
representation from there on, which is added to the remainder of the integral.

As a justification, the information in ∆ (r, σ) for σ� R is not relevant as features
of x . In particular, there can be no local maxima here (see next section) because of the
monotonic decay with σ. Thus it is fully suffcient to store it only up to a maximum on
the order of R, and basing the reconstruction on that finite range.

4.1.2 SIFT keypoints – idealized
The idea behind the Scale-Invariant Feature Transform [60] can be summarized as
tracking all the extrema of ∆, i.e. all pairs

κi = (ri, σi) ∈ Z

for which ∆ (κi) is either a local minimum or local maximum. These κ are called
keypoints.

A principal, and namesake⁴, property of SIFT is that the output is equivariant under
several input transformations; cf. chapter 5. Specifically, translations, rotations and
scalings of the input images map to corresponding translations of the keypoints. This
property was considered important for use of SIFT in its original applications, it ties
in to the symmetry investigations in the next chapters, and more concretely it is also
precondition for the notion that the keypoints are located inside an image’s scale-space
expansion, which is needed for the following construction.

It has several advantages to take the extrema in the n + 1-dimensional space Z,
instead of the extrema of x inΩ (which would still be equivariant). One of them is that
significant extrema from the signal are decoupled from those of noise contribution, as
demonstrated in Figure 4.3. The (typically lower-frequency and/or higher-amplitude)
features of interest can thus be used uninterfered by the sporadic noise ones.

A caveat that needs to be made here is that a continuous, physical signal has an
unbounded noise spectrum.⁵ That means there are an infinite number of extrema
at values of σ smaller than the features of the actual signal, which cannot even be
processed (making the point moot of whether they would interfere with the signal
ones). In practice, this situation analogous to the classical ultraviolet-catastrophe is

⁴Barring Remark 13
⁵Being evenmore pedantic, the spectrum is bounded due to quantummechanics at finite temperature.

For most applications this cutoff is not of relevance though, since it occurs many orders of magnitude
above the frequencies that are actually captured.
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Fig. 4.3: DOG of a sinusoidal sweep as in Figure 4.1, but with (bandlimited) noise
superimposed. In this case the extrema in ∆, and thus SIFT keypoints, do not coincide
with those in the noisy signal x anymore.

avoided by a combination of limiting the smallest σ and a minimum contrast between
minima and maxima, in addition to other conditions.

Remark 15. Critical readers may remonstrate that when SIFT is used for saliency, such cutoffs
have an analogous effect to the regularization employed in the literature (Section 1.2.3). This
cannot be dismissed entirely, but a crucial difference is that for SIFT the cutoff is directly
concerned with noise in the image itself. The properties of this noise can be obtained in quite
reliable and transparent ways (ideally from e.g. camera metadata, but it is also doable with
interpretable heuristics on the pixel data [75]). By contrast, e.g. the undersampled masks used
in RISE [73] preclude an entire frequency band from the masks, and the target image will
in general contain not only noise but also many signal features in that high-frequency band.
TV-regularization has slightly different, but still analogous problems.

The criticism may nevertheless have some relevance in practice, because what should be
considered (or at least, what the classifier considers) as signal vs noise can be quite different
from the purely physical image noise.

The original version of SIFT [59] computed the extrema directly on the chosen
discretized form of ∆, see Section 4.2.2. These can differ considerably from the extrema
in the continuous form. The version that is now considered the standard SIFT [60] uses
however a cubic interpolation [14] that gives a much better approximation to the true
continuous extrema, so much that it is appropriate to consider them as interchangeable
and base the discussion here entirely on the continuous case.

Another caveat is that the notion of minima andmaxima only makes sense for scalar
fields, but ∆ is vector valued with colours in V ' R3. There are extensions of SIFT that
work directly with colour images [15], but for this work the keypoints were simply
obtained on a greyscale reduction of the image. This is justified insofar as the luma
component of an image generally holds the most information. Arguments in support
of this include the fact that image encodings (not only digital ones like JPEG [100],
also analogue ones like PAL) assign most of the bandwidth to the luma, more than
both chroma channels combined; this is based largely on human perception, which
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does not uniformly respond to RGB changes [16]. Another one is the possibility to
reconstruct convincingly all the colour of many photographic images from only the
greyscale-reduced version [117], though this does not always work and relies on deep
learning.

It is clear that there are examples where greyscale-based keypoints are not appro-
priate, but often they appear to be sufficient.

For the purposes of this chapter, the keypoints are all that is needed. Most appli-
cations employing SIFT use also additional orientation information computed from
image gradients. These could potentially be useful also for a feature decomposition
similar to the one proposed in the following, but this possibility has not been explored
yet.

Inclusion of colour and/or directional information are interesting possibilities for
future research.

4.1.3 Feature cells
In Section 4.1.1 we showed that the differential-of-Gaussians ∆ contains all information
to reconstruct the signal, which does in principle allow using it as a latent space on
which masks could be applied, like the ones considered in Section 3.3.2. This would
however not be usable for saliency because ∆ is even less information-efficient than x
in pixel representation.

On the other hand, the SIFT keypoints κ are a highly efficient representation in the
sense of information: for the typical images from datasets like ImageNet [82] or COCO
[56] with sizes around 500× 400 pixels, the SIFT with typical cutoff parameters yields
on the order of 1000 keypoints. But as said before, these points are (notwithstanding
their usefulness for image processing tasks) not sufficient to accurately reconstruct x .
They inhabit the domain of ∆, but only meagrely.
Remark 16. There exist also attempts to reconstruct images directly from only their SIFT
keypoints or similar representations, but the only workable solutions use deep learning [62].
Apart from the inherent concerns about interpretability, bias susceptibility etc. that this raises
again, it is also fundamentally only able to generate approximations to x which have significant
errors without guaranteed bounds. The method presented here can meanwhile do it exactly (up
to numerical rounding).

The solution we propose combines the advantages of ∆ and κ: it applies masks
only as gain factors ϑi to each of the manageably few κi, but then reconstructs entire
images under use of additional information from ∆. The trick to this is determining
what information of ∆ pertains to each of the κi, which is feasible since these keypoints
are scattered in the domain of ∆.

In terms of encoder/decoder signatures as in Section 3.3.2, a type like the following
would be suggestive if the keypoints were all that is needed:

ESIFT : I→ P (Z)

DSIFT : P (Z)→ I (4.9)

Here, sets of keypoints κwould be the intermediate representation, so that the latent
space is the power set of the scale space Z. As said above, this is not practical:
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• The keypoints are not sufficient. Our solution is to add the entire DOG expansion
∆ ∈ L2 (Z, V) to the intermediate representation as well, i.e. making the latent
space a cartesian product with Λ:=L2 (Z, V).

• Workingwith sets is impractical. Althoughfinite sets can be computer-represented
with tree data structures or hash maps, they are not efficient for GPU computa-
tions. Those require flat data storage (readily achievable by storing the points in
an array, modulo ordering) with predictable dimensions (requiring to keep track
of the number of keypoints and using correspondingly-sized arrays). More fun-
damentally, even a set of sets of fixed size does not have an easily usable topology
on it, but the K-fold cartesian product ZK has the usual inherited geometry.

The full signature can be expressed with the following (dependent, à la Martin-Löf
[65]) types:

ESIFT : I→
∑
K:N

Λ× ZK

DSIFT :
∏
K:N

(
Λ× (Z× R)K → I

)
(4.10)

The pi- and sigma types express that the number of keypoints is image-dependent; K
is the number of keypoints and κ are the keypoints themselves. The decoder accepts in
addition to the data given by the encoder a gain factor associated with each keypoint.

Remark 17. A simpler, weaker-typed formulation is that ESIFT yields a list of keypoints, and
DSIFT takes a list of keypoint-gain pairs.

ESIFT : I→ Λ× Z∗

DSIFT : Λ× (Z× R)∗ → I. (4.11)

This signature is however badly suited when the decoder will be regarded as a differentiable
function of the gain factors.

ESIFT and DSIFT represent an encoding in the sense that, if

ESIFT (x) = (K, (∆, κ)) ,

then
(DSIFT)K (∆, [(κi, 1) |i < k]) = x, (4.12)

i.e. setting the gain of each keypoint to 1 reconstructs the original image. Simplifying
this notation, write (with implicit K)

DSIFT (∆, zip (κ,111)) = x (4.13)

or even
D∆,κ

SIFT (111) = x. (4.14)
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4.1.3A Encoder

ESIFT was essentially defined already: it simply maps the image x to its scale-space,
differential-of-Gaussians expansion ∆ and the SIFT keypoints κ in an array with arbi-
trary ordering. None of this is novel.

4.1.3B Decoder version 1 (partition)

A main part of the decoderDSIFT is the recomposition derived in Section 4.1.1, but that
by itself does not provide a way to apply the gain factors.

The simplest way to accomplish this is to partition the whole domain Z into K
sectors Ži, one for each feature. A natural requirement is that each keypoint should be
“within” its associated feature:

κi ∈ Ži. (4.15)

Each such sector gives rise to a restricted function

∆̌i : Ži → V

∆̌i:= ∆|Ži
. (4.16)

Since a partition is disjoint and covers the entire space, the full ∆ can be re-assembled
from that:

∆ (r, σ) = ∆̌ι̌r,σ (r, σ) (4.17)

where ι̌r,σ is the unique index such that (r, σ) ∈ Žι̌r,σ .

Remark 18. In practice, it is sufficient for the Ži to cover only almost the entire space Z,
because ∆ is continuous and can therefore be reconstructed from its restriction to any dense
subset. See Remark 19 for why this is important.

Since the scale space Z is just a direct-sum space with in total 3 length-like dimen-
sions (two from r ∈ Ω, one from σ)⁶, it is suggestive to use the Euclidean R3 metric
for constructing the partitions. This has several desirable properties, in particular it
is equivariant under scaling (r, σ) 7→ (µ·r, µ·σ) and invariant under translations and
rotations. The behaviour under translations and scalings is a key property of the SIFT
algorithm, and it makes sense to preserve these properties also for the decomposition.
Rotations however are only meaningful in the spatial components, i.e. within the I ⊂ Z

slices. Rotations outside of the spatial planes (in other words, with a rotation axis
not parallel to the σ-axis) would mix localization with frequency information, which
is nonsensical. Although the filtering parameter σ is physically length-like, it is not
directly comparable to lengths in the sense of distances between pixels. This is because
although σ parameterizes the width of the Gaussian peak γ, it is not the unique way of
measuring it. These peaks are after all not sharply delimited – in a sense their size is
infinite. More pragmatically, the size could be defined as the radius where γσ vanishes
in the noise floor.

These considerations lead to a Euclidean-like distance function, but with a weighing

⁶One fewer dimension in the example figures with 1-dimensionalΩ.
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Fig. 4.4: Two Voronoi tesselations for the same selection of random-synthetic points,
with different parameters η = 1 (left) and η = 4 (right). The σ-coordinates are sampled
from a truncated exponential distribution, emulating the fact that most SIFT keypoints
belong to high-frequency, narrow-localised features.

hyperparameter η that distinguishes the different coordinates:

dZ,η : Z× Z→ R>0

dZ,η ((r1, σ1) , (r0, σ0)) :=

√
(dR2 (r1, r0))

2
+ η2· (σ1 − σ0)2. (4.18)

Effects of the choice of η are discussed below and in Section 4.3.4.
This distance function (or any other) can then be used for creating a partition. The

most straightforward way of doing that is to associate each point in Z with the dZ,η-
nearest keypoint (respectively, its index). The result is a Voronoi tesselation, a standard
tool [5] for extending discrete data points to a metric space they are embedded in.

V:
∏
K:N

(
ZK → (P (Z))

K
)

(VK (κ))i =

{
λ ∈ Z : arg min

j

(dZ,η (κj, λ)) = i

}
. (4.19)

Remark 19. The Voronoi tesselation is not strictly speaking a partition: points that are equidis-
tant from multiple keypoints cannot be unambiguously assigned to any of them. This does –
at least in principle – not pose a problem for the recomposition, because these points form a
null set in Z; in particular a set whose complement is dense, so that Remark 18 applies. It
would nevertheless lead to unbalanced results if the ι̌r,σ are only assigned to the finitely many
pixels and some of these (or, their centroids) are equidistant between keypoints (which would
happen if the keypoints themselves have exact pixel centroid coordinates). In this case, the set of
ambiguous assignments would not be a null set. This is another reason for using a Brown and
Lowe [14] version of SIFT, because its cubic-estimated maxima almost never coincide with pixel
centroids, whereas discrete-extremum keypoints [59] lie per definition always on a centroid.
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Remark 20. For the discrete pixel case, it would arguably be better to not assign each pixel
to exactly one Voronoi cell, but instead consider the pixel as a rectangle intersecting possibly
multiple cells, and assign it to all of them weighted by size of overlap. The reason this was
deemed unnecessary here is that the filtering applied later (Section 4.1.3C) has a similar effect
already, smoothening out cell boundaries and assigning pixels at a boundary to a combination
of the adjacent cells.

Taking into account only a single cell simplifies the computation; indeed it is not neces-
sary to construct the Voronoi tesselation as a collection of cells, but only to query for each
Z-voxel–centroid the nearest neighbour among the κj.

The effect of the η parameter in Equation 4.18 is to select how de-localised the
Voronoi cells should be. Notice in Figure 4.4 that with η = 1, even the keypoints with
σ > 20 still have cells fairly localised in space, though they correspond to Gaussian
filters that would smear almost the entire image to a single uniform colour. With a
higher value like η = 4, the cells stretching over almost the entireΩ domain embody
this fact better.

The idea for building a decoder in the sense of Equation 4.10 based on the Voronoi
decomposition is to perform the recomposition as in Equation 4.17, but with each ∆̌i

scaled by a gain factor ϑi. In other words, we define a kind of pointwise- or rather
cellwise-multiplication operator�∗, which applies each gain factor to the corresponding
cell:

(ϑ�∗ ∆) (r, σ) :=ϑι̌r,σ ·∆̌ι̌r,σ (r, σ) . (4.20)

In this case, the “mask” ϑ is only a vector / 1D-array of real numbers, and all spatial
association it has is stored separately in the keypoints.

An equivalent formulation is as an entry-wise product with weighted characteristic
functions⁷ for each cell:

(ϑ�∗ ∆) (r, σ) =
∑
i

ϑi·χi (r, σ) ·∆ (r, σ) , (4.21)

with

χi (r, σ) :=

{
1 if ι̌r,σ = i

0 else.
(4.22)

The above defined SIFT-Voronoi decomposition already provides a notion of feature-
basis that can be used for interventional saliency, albeit without a baseline as used
previously (Section 1.2.3A). Namely, one can sandwich the cell-weighing Equation 4.20
between the computation of ∆ (Equation 4.5) and the reconstruction of a feature-
ablated version of x from it (Lemma 8). This does indeed work, however the resulting
reconstructed images do not, in general, have the desirable properties suggested from
the scale-space construction. Specifically, every σ-slice of ϑ�∗ ∆ (r, σ) has hard edges
where twoVoronoi-cells (i.e., the slices of them)with differentweights from ϑmeet. As a
consequence, the resulting ablated image is not continuous, even if x is. For example, in

⁷Apologies for the use of the near-lookalike symbols x and χ in this chapter. The former is based
on saliency literature, whereas χ (chi) is conventional notation for characteristic functions. Beware the
distinction, as well as the threefold distinction between Σ (being the capital version of sigma) for sets of
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=
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+

Fig. 4.5: One SIFT-Voronoi cell feature isolated from an image. Top: without smoothen-
ing; bottom: with smoothening (lowpass-after-gain, Equation 4.25). Photo: ImageNet
[82]. Scaling-factor η = 1 (cf. Equation 4.18); N.B. larger η-values tend to avoid such
strong edges turning up in the first place since they let the feature-separation take place
more in the σ-dimension, but this does not completely avoid the phenomenon.

Figure 4.5 the removed feature in the flower petal introduces an almost perfectly sharp
polygonal patch of different colour, which constitutes an obvious artificial addition to
the image. This is reminiscent of artifacts that can arise from direct pixel modification
(though these are usually far less clearly structured), and problematic as explained
earlier (the newly introduced edges are prone to affecting the classifier directly, perhaps
even adversarially).

For this reason, it is preferrable to use a slightly different notion of recomposition.

4.1.3C Decoder version 2 (smooth cells)

The discontinuity issue is particularly paradox since each σ corresponds not only to a
particular part of the input information, but also to a particular degree of smoothness,
induced by the Gaussian lowpass. It would be natural for this imposed smoothness
to also apply to the ablated version ϑ �∗ ∆, but Equation 4.17 does not achieve that:
the cell-wise weighing disrupts all smoothness previously introduced by the lowpass
filtering. This order of operation arose naturally from the definition of∆ as a differential
of pure low-pass filtering, but as per Equation 4.7 this is equivalent to directly applying
bandpass filters, and these in turn are (by the convolution theorem) equivalent to a
sequence of low pass and highpass filtering, in arbitrary order. Naïvely, one might
rearrange Equation 4.6 into said form, separating the low-cutting and high-cutting

σ-values vs. the uses of the
∑

notation for both sums and dependent types.
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factors:

∆ (·, σ) = FT−1
(
k 7→ ‖k‖2 ·σ2

)
? FT−1

(
k 7→ e−

‖k‖2·σ2
2

)
? x

= FT−1

(
k 7→ e−

‖k‖2·σ2
2

)
? FT−1

(
k 7→ ‖k‖2 ·σ2

)
? x. (4.23)

Remark 21. That simple decomposition is strictly speaking not well-founded since k 7→
‖k‖2 ·σ2 diverges by itself. A proper factorization into high-pass and low-pass filters is possible
by adding cancelling factors to both of them, in a way that makes the low-cut limited to gains
below unity, for example thus:

FT−1

(
k 7→ e−

‖k‖2·σ2
2 ·

(
1+ ‖k‖2 ·σ2

))
? FT−1

(
k 7→

‖k‖2 ·σ2

1+ ‖k‖2 ·σ2

)
? x. (4.24)

It is not necessary to use such a construction explicitly because in practice the filter is anyway
not computed according to Equation 4.7, but rather as a finite difference of only lowpass filters
that approximates Equation 4.5.

The trick to retaining smoothness of the ablated recomposition is, then, to reorder
the computation such that the lowpass filtering is performed after the cell-wiseweighing
à la Equation 4.20.

I Z Z I

Z

Z Z I

bandpass

highpass

ϑ�∗cellwise recombine

lowpass

ϑ�∗cellwise

lowpass recombine

(4.25)

In the case of a constant c = ϑi ∀i, this reordering does not make a difference. In
particular, for ϑi ≡ 1, one still retains the exact original x after recombination. On
the other hand, any edges introduced on the boundary between cells with different ϑi
will get smoothened out by the subsequent filtering, and this at the appropriate scale
(Figure 4.5 bottom).

The image reconstruction from the ablated scale space reconstruction is carried
out as before. Lemma 8 still holds, since in the unablated case all the processing steps
commute and the derivation via the differential remains equivalent to the split-up
bandpass filter.

This trick can also be expressed in the style of Equation 4.21, and that corresponds
more closely to how it is computed in practice:

(ϑ�̃∗∆) (r, σ) =
∑
i

ϑi·χ̃i (r, σ) ·∆ (r, σ) (4.26)

=:
∑
i

ϑi·ζ∆i (r, σ)
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with
χ̃i (r, σ) := (γσ ? χi (·, σ)) (r) . (4.27)

I.e., instead of delaying the lowpass filtering in∆until after the pointwisemultiplication,
one applies the same lowpass filter also to each cell’s characteristic function (by itself).
This is another way of preventing the cell boundary from imprinting hard edges into
the recomposed image. χ̃ is now not a partition in the sense of subsets, but rather a
partition of unity as used in signal processing.

Remark 22. Applying the lowpass filter to signal and characteristic function separately is
not exactly equivalent to applying it after the pointwise multiplication of both. We see no
inherent reason for preferring one over the other, though it might be interesting to investigate
the differences between them more closely.

The way Equation 4.26 is used in practice (details in the next section) is that all
the ζ∆i are precomputed and stored as a form of matrix. Then, applying a mask ϑ just
amounts to applying the linear operator defined by this matrix to ϑ in its Euclidean
vector form. Written compactly,

ζ∆ : RK → L2 (Z, V)

ϑ�̃∗∆ = ζ∆ (ϑ) . (4.28)

Because this mapping is linear, it is in particular also differentiable and can thus easily
be used with optimisation algorithms.

4.2 Implementing the feature decomposition

The previous section introduced a mathematical method for using the SIFT keypoints
as ablatable features. But in its given form, it not only deals with images as signals in
an infinite-dimensional space, but even adds an extra scale dimension as well as the
Voronoi split. Continuous signals cannot be directly stored or processed digitally, but
that is not fundamentally different from the situation for the original images.

What is different is that 2D images can still be quite easily handled in the common
pixel / PCM representation, whereas for the scale-space expansion this is almost
completely infeasible. More sophisticated discretisation schemes need to be used.
Nevertheless, the homogeneous voxel view is a good starting point for the discussion.

4.2.1 Discretization for σ
Like the input images are given in the format of a homogeneous 2D pixel array, so
could also the σ dimension be sampled uniformly. ∆ would then be a 3D array (4D
if counting colour channels. Although such sampling is usually understood in the
Shannon-Nyquist sense (Section 3.2), this relies too heavily on the uniformity and it is
here more useful to think of the discrete σ-slices as subintegrals of the integral used in
Lemma 8, since that is what generates the recombined images.

This has in particular the advantage that the additional term Γ (r, R) as an (infinite)
integral, so that all can be phrased as a single sum ofM+ 1 sub-integrals over intervals
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Σl that tile R+:
Tl:=

∫
Σl

dσ ∆ (r, σ)

σ
, (4.29)

∑
l

Tl =

∞∫
0

dσ ∆ (r, σ)

σ
= x. (4.30)

Here, all the Σl for l < M are bounded intervals of the form [σl, σl+1[, whereas the
final one ΣM = [R,∞[, so that.

TM =

∞∫
R

dσ ∆ (r, σ)

σ
= − [Γ (r, σ)]|

∞
σ=R = Γ (r, R) . (4.31)

The same partition is used also for storing the (semi-) discretized versions of χ̃ 7→ Ỹ

and ζ∆ 7→ Z∆, with the Voronoi split as discussed in Section 4.1.3C. The latter satisfies

Z∆
i,l =

∫
Σl

dσ ζ
∆
i (r, σ)

σ
(4.32)

and is computed, analogously to Equation 4.26, from

((ϑ�̃∗T)l) (r) =
∑
i

ϑi·Ỹi,l (r) ·Tl (r) . (4.33)

Ỹ itself is prepared directly in the discretised form, by first computing the non-smoothed
form Y from voxel-wise cell-membership queries, and then convolving each Yi,l with a
Gaussian kernel.

In this setting, combined with also a discretisation of the spatial dimensions (not
explicitly shown here; standard pixel/PCM basis), the decoder DSIFT boils down to
the matrix multiplication of Z with ϑ, followed by summation over the index of the
discretized σ dimension. In the style of Equation 4.14,

D∆,κ
SIFT (ϑ) =

∑
l

Z∆
·,l (ϑ) . (4.34)

Thanks to linearity, this is the same as

D∆,κ
SIFT =

∑
l

Z∆
·,l; (4.35)

intuitively it should be more efficient to pre-sum this, but that would interfere with the
optimisations below.

As already said, using a homogeneous grid for the entire scale space (even the
R-limited version) is not actually feasible, so that alternatives are developed in the next
sections. To wit: homogeneously covering the σ-dimension space for a 500× 500 image
would require another array axis for theM ≈ 500 scale-layers. If the image contains
1000 keypoints and correspondingly many ∆̌i, that requires a total of 125 billion voxels
inZ∆, or 1.4 terabytes if using RGB and single-precision floats. Machineswith capability
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to handle such amounts of data exist, but they are expensive and impractical to use for
a single image of not even high resolution.

That problem is not new to this application, and it can be solved with a combination
of standard techniques and purpose-crafted ones.

4.2.2 Nonuniform grid
The first and most straightforward memory optimisation is to sample the σ axis loga-
rithmically, in other words have the intervals of each layer grow exponentially:

Σl = [σl, σl+1] (4.36)

σl = 2
l

ρ8ve ,

where the parameter ρ8ve determines how many scales are sampled per octave (i.e.
doubling of scale).This is reasonable because filtering with e.g. σ = 30 and σ = 31

gives nearly the same result (unlike e.g. σ = 3 vs σ = 4), and storing both of them
independently would be mostly redundant.⁸ Logarithmic sampling of σ is standard
practice and used internally by most, if not all, implementations of scale-space algo-
rithms. This allows in practice reducing the number of layers by a factor of ca. 10–20,
which still leaves memory need at around 100 gigabyte.

A related technique is to also reduce the spatial resolution asσ increases. This is even
more intuitive, since low-pass filtering directly removes high-frequency components.
Ignoring the very low amplitude remainders after the exponential cutoff, this means the
bandwidth is not lower therefore allows downsampling without loss of information.

The standard SIFT implementation [60] achieves both the logarithmic σ and the
downsampling in a way that is highly efficient on CPUs. It first calculates the sequence
of lowpass filtered images, starting at the unfiltered, full resolution one, and compute a
small number (3–6) of versions filtered with small kernels, specifically only within one
“octave” of σ values – i.e. up to a doubling. Then it decimates the most filtered of these
versions to half the resolution, and uses this to compute the next octave of σ values.
Since this happens at the lower resolution, again only small kernels are used, which
makes the computation cheap.

There are two reasons why this cannot be used for the method proposed here:

• The decimation at the octave is not quite lossless: after the Gaussian filters there is
still some content left at frequencies above the newNyquist frequency. Discarding
those may be harmless when SIFT is only used to find the keypoints, but it would
prevent the original from being exactly reconstructed.

• The sequential resampling is ill-suited for GPU-parallelization and differentiable
computation, both of which is necessary when using the SIFT feature basis for
saliency purposes.

On the plus side, the availability of GPUs means that at least the speed aspect of using
smaller filters in the decimated versions is less crucial now than it was in 1998.

⁸This argument arises in essence from the fact that σ appears in an exponential in FT (∆ (·, σ)); see
Equation 4.6.
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Resolution σ

h×w
]
0, 9
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h
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⌋ ]
9
2
, 9
]⌊

h
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⌊
w
4

⌋
]9,∞[.

Table 4.1: The chosen default settings of the resolutions/ranges in scale space for an
image of resolution h×w. All the σ values are measured relative to the pixel size of
the original image.

This suggests using a compromise: the high-σ layers are stored in a downsampled
form, but not in the sense of sequential decimation at every octave but rather in a
fixed and conservative downsampling (using a standard resizing routine with bilinear
interpolation) of several of the layers. Table 4.1 shows concrete parameters that were
found useful.

This is a compromise in which the various disadvantages are largely avoided: the
decimation artifacts are kept very small due to the Gaussian filters’ exponential HF
rejection, memory usage is significantly reduced since most of the layers are at least
somewhat downsampled, and there is no need for sequential resampling or filtering.
Going to even lower resolutions would have diminishing saving returns and only make
worse use of the GPU capabilities. The exact σ ranges used are uncritical, so long as it
is ensured the resolution is not decimated by more than the blur size (nor close to it).
With the ranges in Table 4.1, the minimum σ for each sub-resolution level corresponds
to 2.25 pixel sizes in that resolution.

This filtering also means that the resampling algorithm is uncritical, with high-
frequency artifacts being suppressed afterwards. Similarly, the filters smoothing over
the boundaries of the Voronoi cells allows cell-assignment to be carried out in a sim-
ple/efficient manner (nearest keypoint to the centroid of each voxel) without concerns
that aliasing will have strong influence on the results.

The grid defined this way brings the memory consumption down enough so low-
resolution images can just barely be de- and recomposed on consumer-grade hardware
(ca. 10 gigabytes). It is still too much for practical saliency use (where the classifier
needs to be kept in memory too, with backpropagation records for batches of inputs,
and the input resolution can be higher).

The logarithmic sampling is also the reason⁹ for the so-far mysterios factor −σ in
the formula for ∆. This does not need to be multiplied explicitly, because it arises from
the discrete difference in the logarithmic sampling.

Lemma 9. In the limit of ρ8ve → ∞, the discrete difference of the Gaussian lowpass-filtered
signals Γ (with a suitable factor to avoid vanishing difference) approaches the differential of
Gaussians ∆ (Equation 4.5).

Proof. Expand the logarithmic sampling,

σl+1 = 2
l+1
ρ8ve = σl·2

1
ρ8ve .

⁹Regardless of historical reason, the factor also simply benefitial for getting suitable minima and
maxima as the SIFT keypoints.
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Because we consider the limit of large ρ8ve, we can use the first Taylor terms

2
1

ρ8ve = 1+
1

ρ8ve
+ O

(
1

(ρ8ve)
2

)
,

so, choosing the factor ρ8ve itself for scaling the differences,

lim
ρ8ve→∞ (ρ8ve· (Γ (r, σl) − Γ (r, σl+1))) = lim

ρ8ve→∞
(
ρ8ve·

(
Γ (r, σl) − Γ

(
r, σl +

σl

ρ8ve

)))
= − lim

h→0
(ρ8ve· (Γ (r, σl) − Γ (r, σl + σl·h)))

= − σl·
∂Γ (r, σ)

∂σ|σ=σl

= ∆ (r, σl) .

4.2.3 Sparsity
Apart from the excessive resolution, a naïve 4D-array sampling (scale space times
keypoint cells) also has the inefficiency that every cell is stored on the complete domain
Z, although from the definition via the Voronoi tesselation it is evident that each of them
is confined to a rather small region around its corresponding keypoint. Particularly for
the decoding as per Section 4.1.3B/Equation 4.20, this means that most of the entries
of ζ as a matrix are zeroes. There are standard routines for handling of such sparse
matrices, which also occur in many other applications such as finite elements analysis.

Remark 23. Arguably, sparse matrices are a symptom indicating that an algorithm should
not be using matrices at all but rather a direct computation of the linear function. For a CPU
implementation, this would likely be the best choice here, but testing the Voronoi-cell membership
directly on a GPU is considerably more difficult. It was thus most pragmatic to compute the
sparse matrix from the Voronoi cells on the CPU, and use that sparse matrix for the linear
function on the GPU.

The problem is that the post-filtered version (Equation 4.26) does not have this exact
sparsity: the χ̃i are in most of the domain close to zero, but nowhere exactly zero. One
way this could be addressed is by using a filter with compactly supported impulse
response instead of the Gaussian in Equation 4.27. This would probably work well in
practice, but it requires choosing such a filter; the advantage of the Gaussian¹⁰ is that
its choice is obvious since it is already used for the signal as well.

Another option, whichwas chosen here, is to first compute χ̃with Gaussian lowpass,
and then truncate entries below a threshold s to zero. This causes two new problems
though.¹¹

¹⁰Another advantage is that Gaussian filtering has efficient implementations available, but even generic
convolution filters could probably be used without creating a performance bottleneck in the intended
path-saliency application, since the χ̃i are anyway only computed once, stored (as s

χ̃i) and then reused
in the computationally heavy path-optimisation steps. The bottleneck is GPU memory rather than -time.

¹¹It is not clear whether these problems would have really mattered in practice so long as s is small
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Fig. 4.6: How a hard cutoff or a soft one (Equation 4.37 with s = 0.1) makes a Gaussian
kernel compactly supported. In practice, the threshold is typically chosen (much) lower
than 0.1, making both tweaks less perceptible.

4.2.3A Cutoff edges

The main reason for filtering χ̃ in the first place was to avoid the discontinuity of the
Voronoi-cell boundaries from appearing in the recomposed image. Filtering blurred
these edges away, but any cutoff would introduce new discontinuities, albeit with
smaller value-jump.

This can be avoided by applying the cutoff not as a hard threshold, but instead a
continuous tweak that moves small values progressively closer to zero and eventually
to exactly zero. Such tweaks are known in the design of window functions for signal
processing, which is also related to the design of compact-support filter kernels. Here,
the following is chosen:

s

χ̃i (r, σ) :=

{
χ̃i(r,σ)−s

1−s
if χ̃i (r, σ) > s,

0 else.
(4.37)

Notice that this particular tweak only guarantees continuity, but no higher-order regu-
larity. Also notice that it has 1 as the only fixpoint (apart from 0). That means it keeps
the parts that are fully inside one Voronoi cell at 100%, but it modifies everything at
χ̃i (r, σ) < 1, including even parts with relatively high amplitude that would have
retained their strength with the hard cutoff (Figure 4.6). This could have been avoided
with more sophisticated formulas than the simple affine stretch in Equation 4.37, but
it was decided against this to avoid complexity (which would again raise questions
about ambiguous choice that might influence classification later on) and because it
would have not prevented the fundamental issue of the next section, whose solution
also undoes part of this amplitude-sagging.

enough. Possibly this section is over-engineered, but it was considered important to minimise the
influence of a pure computation-optimisation like sparsity on the actual behaviour of the method.
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4.2.3B (Non-) partition of unity

Since Equation 4.37 systematically reduces the values of χ̃, the resulting s
χ̃i do not

sum to 1 anymore. As a consequence, using this as in Equation 4.26 would not give
back the original x even when ϑi ≡ 1. This would be quite unacceptable for saliency
purposes, since one wishes after all to make statements about interventions around x .

(a) Original (b) One feature (c) Sparsified

(f) Recomposed fixed (e) Re-distributed mass (d) Corrupted

Fig. 4.7: How (exaggerated) sparsity cutoff prevents exact original image from being
reconstructible, and how this can be fixed again. (a): original image; (b): reduced to the
feature corresponding to a single SIFT-keypoint; (c): that feature with an aggressive
sparsity cutoff applied; (d): how the image would get (not-) reconstructed from such
trimmed features; (e): the example feature after mass-redistribution (Equation 4.39); (f):
near-perfect original-image reconstruction using the redistributed masses. — Image:
ImageNet

One solution is to re-distribute the “missing mass”

w̃ (r, σ) :=
∑
i

(
χ̃i (r, σ) −

s

χ̃i (r, σ)

)
= 1− m̃ (r, σ) (4.38)

m̃ (r, σ) :=
∑
i

s

χ̃i (r, σ)

to other s
χ̃j. This way, the complete sum will again be 1. It only requires some care to
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ensure that

1. The re-distribution should keep the locality of s
χ̃j. It must be avoided that a

decision is attributed to ϑj but actually originates in a part of the scale space far
away from κj, which would be highly misleading in a saliency result.

2. It should not distribute back to parts that were already truncated to zero. That
would undo the sparsity, which was the whole point of truncating in the first
place.

Both can be achieved by making the redistribution dependent on the value s
χ̃j (r, σ)

itself:
s,111

χ̃ j (r, σ) :=

s

χ̃j (r, σ) +

s
χ̃j (r, σ) ·w̃ (r, σ)

m̃ (r, σ)
. (4.39)

Intuitively, that means the lack of mass at each point in scale space is taken over by the
features which already have the most significance at that point anyway. This way, the
relative order of feature-importance is preserved for each point too.

Lemma 10. If m̃ (r, σ) > 0 everywhere, then

∑
j

s,111

χ̃ j (r, σ) = 1.

It follows that
s
χ̃ gives rise to an exact reconstruction of the original image.

Proof.

∑
j

s,111

χ̃ j (r, σ) =
∑
j

(
s

χ̃j (r, σ) +

s
χ̃j (r, σ) ·w̃ (r, σ)

m̃ (r, σ)

)

=
∑
j

s

χ̃j (r, σ) ·
(
1+

1− m̃ (r, σ)

m̃ (r, σ)

)

=
∑
j

s

χ̃j (r, σ) ·
1

m̃ (r, σ)

=

(∑
j

s

χ̃j (r, σ)

)
·

(∑
i

s

χ̃i (r, σ)

)−1

= 1.

The condition m̃ (r, σ) > 0 is not strictly speaking guaranteed, but should be fulfilled
with any reasonable choice of s. The converse would mean the sparsification was so
aggressive as to completely remove parts of the scale space from the representation, in
which case it is not surprising that a reconstruction is not possible anymore. This is
the case in Figure 4.7, though the reconstruction is still very good, much better than
without the mass redistribution.
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4.2 Implementing the feature decomposition

The implementation contains a guard for the zero case, replacing the denominator
with max

(
m̃ (r, σ) , 10−3

)
, which has the effect that parts with very low combined

mass are simply omitted the reconstructions. In practice this then still gives close
approximations to x even with extreme sparsity thresholds.

With reasonable s, recomposing with s,111
χ̃ gives results almost indistinguishable

from the fully-smooth χ̃ but takesmuch lessmemory. Because theweight re-distribution
contains the factor s

χ̃j, it preserves zeroes so that s,111
χ̃ is no less sparse than s

χ̃.

4.2.4 Differentiable recomposition

Equation 4.34 gives the linear-map form of the decoder that reconstructs full images.
This would be a matrix if all the σ-layers had the same spatial resolution.

Each Z∆
i,l is an image, but their resolutions differ (Section 4.2.2). There are still

(by design) many layers that share resolution though: if Σ̄ρ is the interval of σ values
associatedwith resolution ρ, then ζ∆|

σ∈Σ̄ρ has a propermatrix representation. Therefore,
when calling Lρ the set of indices such that

⋃
l∈Lρ Σl = Σ̄

ρ,

Z̄∆,ρ
l :=

∑
l∈Lρ

Z∆
·,l (4.40)

is a well-formed sum and generates a (still sparse) matrix representing the mapping
of ϑ to the whole frequency range of the correspondingly weight-recomposed image
which can be efficiently stored at resolution ρ. Putting these together after each matrix
multiplication still requires resampling, but only for a small number of images, which
has therefore little performance impact. The complete operation, as implemented, is
thus

D∆,κ
SIFT (ϑ) =

∑
ρ

rρ7→(h,w)

(
Z̄∆,ρ

l (ϑ)
)
. (4.41)

The resampling operator r uses again simple and efficient bilinear interpolation, suffi-
cient since the lower-resolution layers have ample Gaussian filtering applied to them.

Remark 24. If the decomposition were to be used with much higher-resolution images than the
ones from the considered datasets, it might become necessary to downsample more aggressively
to still stay with the memory limitations, and that would mean more care needs to be taken with
respect to aliasing and other artifacts. It would require substantial further efforts to get this
right. For the present work, it was unnecessary since the sparsity and downsampling settings
already cause the cost of the SIFT recomposition to be much less than that of the subsequent
network evaluations, making further performance optimisation of this component largely futile.

Because the whole decoder is linear, its derivative is the same as the operation itself.
Practically speaking, what is needed is the transpose of the Jacobi matrix, to carry out
reverse-mode automatic differentiation togetherwith the classifier network that receives
D∆,κ

SIFT (ϑ) as its input. All of this is handled automatically by the PyTorch framework
[29], given the Z̄∆,ρ

l as sparsematrices as well as the resampling specifications. Typically
a whole batch of applicationsD∆,κ

SIFT
(
ϑb
)
is computed, which is equivalent to treating ϑ

also as a matrix and computing matrix-matrix products in Equation 4.41.
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Fig. 4.8: The two SIFT features for the highest-σ keypoints in this image essentially
constitute the background colours, which could also be considered as a neutral baseline.
Photo: ImageNet [82]

4.3 Saliency use

In the form of Equation 4.41, the SIFT recomposition can directly be used in the in-
put stage of most interventional saliency methods (Section 1.2.3). This involves an
evaluation of the form

F
(
D∆,κ

SIFT (ϑ)
)
,

in other words, one is dealing with a simple function composition of type

F ◦D∆,κ
SIFT : RK → R. (4.42)

The main changes compared to chapter 1 are that ϑ does not represent a spatial mask
anymore, that there is no explicit baseline, and that the space of masks M is not fixed
anymore.

4.3.1 Implicit baseline

The case ϑi ≡ 0 corresponds (by linearity) also to an all-0 input to the classifier. This
may be considered problematic, especially when thinking of R as only an affine space,
not a vector space. Concretely, zero could just as legitimately represent black or white or
(in the reference implementation) middle grey. Unlike with spatial masking, this is not
much of an issue for the SIFT version though, since there are only very few keypoints in
the lowest-frequency regions of Z. These effectively encapsulate the background colour
as one or a few features of their own right (Figure 4.8), which in itself is interesting
and useful since these features can well have significance to the classification. It would
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also be possible to fix the layers above a certain σ as constant and this way have again a
blur baseline like used in chapter 2. On the other hand, not having to choose a baseline
even in the sense of a filter cutoff is also desirable.

For uniformity of formulation and code reuse, the implementation of the following
does employ explicit dummy target and baseline values in form of all-one and all-zero
arrays, which serve no purpose but to be used in the familiar masked-interpolation
construct, which then yields the mask verbatim. This is finally passed through D∆,κ

SIFT,
which is what introduces the proper x-targeting.

D∆,κ
SIFT ([ 111

000 ]ϑ) = D
∆,κ
SIFT (ϑ) (4.43)

4.3.2 Interventions
The SIFT decomposition should be usable for saliency methods akin to RISE [73],
Meaningful Perturbation [28] and Ablation Paths (chapter 2). It is perhaps particularly
interesting for RISE, since the discrete nature of the featuresmeans the randomsampling
is much more straightforward than for a spatial representation where it required very
ad hoc choices of subsampling and interpolation.

So far, only the Ablation Path version has been implemented and tested, since that
method is anyway part of this thesis. The dummy target and baseline are multiplied
with the masks within the ablation path

ϕ : [0, 1]→ RK. (4.44)

The fact that RK is not a fixed type like M in chapter 2 might at first be considered an
aspect in favour of a dynamic language like Python, but actually this makes it rather
more complicated. In particular, initializing a path requires knowledge of K as the
dimension of each ϕ (t). A static language with rank-2 polymorphism could handle
this automatically, but in a dynamic language the dependent type in Equation 4.10
needs to be manually unwound. This amounts to first evaluating ESIFT (x) separately,
which provides both the information for DSIFT and for path initialization. Then DSIFT
is treated as a curried function to obtain the partially evaluated form D∆,κ

SIFT, and also
the initial affine path generated. Only with all that in place is the optimisation started.

The optimisation itself works much like in chapter 2, except that the filtering steps
which relied on the function-space nature ofM do notmake sense anymore – but neither
are they necessary in the way as before, since the SIFT basis enforces to a considerable
extent regularity by itself. Notice how in Figure 4.9 no artificial graininess or edges
are visible, despite the quite narrowly confined selection of information patches of the
target-class giraffe.

4.3.3 Geometry
One aspect that nevertheless remains subtle is that of a metric on the mask space. Since
RK is legitimately a finite-dimensional, Euclidean space, the standard isotropic L2

metric is a plausible enough choice, arguably more so than in the pixel case. On the
other hand, the SIFT features are not a priori equiponderous: the main condition for a
keypoint is just to be local extremum in Z, but the prominence and isolation of these
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retain dissipate

Fig. 4.9: Example slices through a straddle-optimised ablation path using the SIFT
feature basis. Photo: COCO [56]; classifier: ResNet [92].

extrema can vary, apart from the ones too minor for the cutoff criterion. It is reasonable
to weigh them accordingly in the metric. Such weight can be obtained by evaluating
D∆,κ

SIFT once for each feature in isolation (i.e. for the canonical basis inputs ϑj satisfying(
ϑj
)
i
= δi,j).

Wj:=
∥∥D∆,κ

SIFT
(
ϑj
)∥∥ . (4.45)

Any choice of norm could be used here; so far tried was the usual L2 one.
For the Ablation Path method, the metric in which these weights can be used has

an effect upon both the time-normalisation and the computation of the gradient from
the differential. Empirically, this has rather little influence on the actual results though,
in the experiments carried out so far; Figure 4.9 and Figure 4.10 show almost identical
slices. The only effect that seems to cause a small difference is that spatially extended
low frequency features tend to have higher mass, which means that turning only few
such features on/off can still correspond to a fairly large time-step in the ablation path.
This may be the reason for the slightly lower ablation-path scores.

4.3.4 Interpretation and comparison
While the SIFT de- / recomposition is inherently interpretable, it is not quite as obvious
what is going on as when looking at purely spatial heatmaps. The easiest way to inspect
the results is by looking at small changes and how they affect the classification, for
which Ablation Paths provide an excellent framework. For example, in Figure 4.9 one
can immediately see some aspects that would not have been obvious in the pixel-based
version, including that the colours are not very relevant, that the distribution of fur-
patterns and shades on the giraffe is sufficient to classify as such, but also that small
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Fig. 4.10: Like Figure 4.9, but with L2-weights in the metric on M.

changes in the lighting conditions such as the darker region on the giraffe’s breast are
sufficient to dissipate this classification. This would not have been possible to notice
with a purely spatial basis.

Such observations can not always be made reliably; indeed it is still quite often the
case that strong classification changes occur from inoccuous changes that seem nonsen-
sical to a human. This may again be considered as adversarial effects, however due to
the principled construction of the SIFT features and avoidance of information-adding it
could then be argued that these are more due to aberrant classifier extrapolation than
an unrealistic intervention space.

4.3.4A Heatmaps

At any rate, what is not directly possible anymore is to compare the SIFT-based saliency
method with others, like in the pointing game [118] as used by Fong, Patrick, and
Vedaldi [27]. This is fully based on a spatial heatmap. It is however still possible
to extract only spatial aspects of the SIFT saliency, although this betrays in a sense
the very point of using it. One way of doing that is to use the same keypoints and
mask-amplitudes as for the intervention-modified classifier input, but with an artificial
homogeneous scalar field in the scale space instead of a Gaussian-derived field ∆:

IκSIFT (ϑ) :=DCZ,κ
SIFT (4.46)

where CZ : Z→ R is spatially symmetric, i.e.

CZ (r, σ) = C (σ) (4.47)

for some function C that may weigh different scale-length differently. Note that a field
such as CZ could not have arisen from the differential of Gaussians construction of an
image, because that entails high-pass filtering and does therefore surpress constant
contributions in all the σ-slices with σ� R (as is the case for most of the Z∆

i,l). Because
of this, I does not benefit from the artifact avoidance implemented in Section 4.1.3C
but has the Voronoi cell boundaries imprinted quite visibly (Figure 4.11).
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ISIFT Iimg

Fig. 4.11: Different heatmap extractions for the example in Figure 4.9.

An entirely different approach for generating heatmaps is to disregard the details
of the feature generation entirely, and instead post-analyse the imagesD∆,κ

SIFT (ϑ) as they
are also fed to the classifier. There are many ways this could be done, a simple one
being a local detection of amplitude of colour-fluctuations. This can be implemented
as a rectifier sandwiched between a highpass- and lowpass filter:

IσLP,σHP
img (x) :=γσLP ? |x − γσHP ? x | (4.48)

where the rectifier |·| is understood pointwise.
This approach inherits all the regularity properties guaranteed by the image recon-

struction technique, but its problem is that the result is strongly biased by the original
image, favouring regions of high contrast over highly classifier-salient but low-contrast
ones. For example, in Figure 4.11, the shadow of the tree in the background is quite
prominent (lower left). Though this shadow does appear in the “last retaining” slice in
Figure 4.9, it is hardly the most striking there. In this particular case this bias could
have been avoided by selecting a lower σHP (so that relatively low-frequency features
do not even reach the rectifier). That would however only exacerbate the problem in
images that have localised high-frequency contrast.

4.3.4B Pointing game

Combining the abovemask-to-heatmap extractionwith an appropriate path-to-heatmap
one from Section 2.7.2 allows the SIFT-Ablation-Path saliency to compete in the pointing
game (even though this is somewhat unnatural, since the saliency result inhabits a
much more complicated space than the ordinary 2D heatmaps provided by most other
saliency methods). Table 4.2 shows some concrete results. We will not discuss these
in great detail. Evident is that not as high scores are reached as with the pixel-based
Ablation Path method, let alone the state-ef-the art scores. This is disappointing, but
not too surprising since the method is not really designed to “point” in space.

Where it appears to have an advantage is in stability: although the methods adds
even more parameters, we do not observe the pointing game scores to be as sensitive
to their choice as in the pixel-based case. In particular it avoids the delicate interaction
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4.4 Discussion

COCO14 Val
Method opt.cr η ζsat Heatmap Hm.red (All%/Diff%)
Contr. Pl 1.0 0.8 Voronoi Θclt 32.5/18.9
Contr. Pl 2.0 0.8 Voronoi Θclt 31.8/19.1
Contr. Pl 4.0 0.8 Voronoi Θclt 35.5/22.0
Contr. Pl 4.0 0.8 σLP = 8, σHP = 5 Θclt 42.0/28.1
BndStr. P↑↓ 4.0 0.8 Voronoi Θcav 42.7/29.7

Table 4.2: Pointing games for the SIFT saliency.

between regularisation and saturation parameters: the optimisation take place simply in
a Euclidean space without any further structure imposed on it, and all signal regularity
is already determined when the SIFT decoder is setup. This decouples it from the
saliency generation, making both aspects easier to inspect.

4.4 Discussion

We demonstrated that it is possible to use SIFT features as a per-image re-composable
basis through which it is possible to apply interventions in a very controlled and
theoretically understood manner. Although the method was developed as a tool for
making better use of theAblation Pathmethod,many other applications are conceivable,
including non-path saliency but also entirely unrelated signal processing. Indeed, the
Ablation Path method may not even be a particularly good showcase for the SIFT
decomposition, since the optimisation algorithm is known to have problems which
may overshade the quality of the SIFT basis.

Notwithstanding, the combination of Ablation Paths and SIFT features does work,
and does fit together well in some ways: the Ablation Paths (with an interactive tool)
provide a useful setting in which to visually observe small SIFT changes (although they
are, in spite of their elegance, still much less self-explanatory as pixels), and the SIFT
method avoids one of the problems of the current Ablation Path method, namely the
tug-of-war behaviour between constraints that are hard to reconcile with one another.

For future work it will be interesting to attempt making even better use of the
mathematical properties of SIFT. Furthermore, different use cases for the method are
inviting, in particular a scheme similar to RISE [73] which entirely avoids an iterative
optimisation and interpolation; unlike in the pixel case where a somewhat dubious
subresolution choice had to be made the SIFT feature could be directly turned on or off
individually.
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CHAPTER 5
SYMMETRIES

The previous chapters were concerned with explaining black-box models. This repre-
sents the bulk of the research done for this thesis. But although some progress was
made there, it was overshadowed by recurrence of mysterious results – inputs that a
network apparently classifies correctly, but with saliency pointing to neither a human-
reasonable object in the image nor anything indicative of a plausible dataset bias. To
some extent this may still be due to insufficient stability of the representations and
algorithms used. But the whole approach of black-box explanation is, if not outright
fraught as argued by Rudin [80], then at least limited and unreliable. When a black box
is all one has the pragmatism may require making this compromise to get any insights
at all, but in the long run such explanations remain unsatisfactory.

The remainder of the thesis is therefore rather concerned with interpretability
instead – not in the sense that it develops a fully interpretable alternative to black boxes
image classifier, but in that it summarizes an aspect in which current models are already
interpretable, identifies an application where this aspect is particularly significant, and
then presents a new model designed specifically towards it. That aspect is symmetry.

This chapter provides a general overview, whereas chapter 6 introduces the specific
application to which we present a symmetry-based solution in chapter 7.

5.1 The physical world

Most data of interest for machine learning arise in some way from measurements.¹
A measurement is a physical process that results in gain of knowledge about some
real-world system. For many applications, a data scientist might not give much thought
to these physical processes, but that does not mean they have no relevance upon the
data and the ways one can learn from them.

Particulary for the case of photographic images, some aspects of the physics behind
their generation were already discussed in Section 3.1. Many of them are application-
specific, but there are also some physical principles that are relevant for nearly all
applications. Symmetry may be the most important of these, turning up prominently
in everything from fundamental physical theories to concrete engineering challenges.
Historically, symmetries have often played a central role in the development of theories,

¹There are certainly also counterexamples, perhaps the most important being (written) natural
language. For these applications, symmetries may still be present in some way, but they are at least
much less evident.
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with Galilean invariance having paved the way for Newtonian mechanics, Lorentz
invariance prepared special relativity, and particle physics being rooted in various gauge
theories.The result that best typifies the importance of symmetries is Noether’s theorem
[69], which demonstrates that every² symmetry gives rise to a conserved quantity.
This thesis is not primarily concerned with the physical phenomena themselves, and
therefore does not go into any of these details.

What it is concerned with instead are machine learning systems dealing with such
real-world data. It makes some evident sense for such a system to be invariant under a
symmetry of the experimental setup, but this is actually a somewhat problematic notion,
if not outright meaningless. If one would understand e.g. translational symmetry
(translation being part of Galilean transformations) in the sense that both the camera
and all visible objects (and light sources) are moved by the same displacement, then
this leaves already the measurement data (i.e., the photos) completely invariant, and a
classifier on these photos could not possibly be anything but invariant (short of being
indeterministic). If on the other hand one understands it in the sense of translating only
the camera or only select objects in the scene, then this can in general not leave the
classification invariant: if the translation is such that the object previously in center and
focus completely leaves the image frame, then it would be odd to expect the classifier
to still classify the image based on this now-invisible object. If anything, it would
demonstrate a strong bias in the background or other parasitic features of the scene.
Anyways, physics is not symmetric under translation of only part of a system to begin
with.

What is in practice relevant are instead transformations such as changing the camera
angle slightly, changing the brightness at which a scene is lit, zoom, etc..

5.2 Mathematical formulation

5.2.1 Basic concepts

In the most general terms, a symmetry is the property of a function f : A→ B to change
when its inputs are modified by a transformation αg : A → A as if the result was
modified by another transformation βg : B→ B, i.e.

f (αg (x)) = βg (f (x)) ∀x ∈ A, (5.1)

or compactly f ◦ αg = βg ◦ f, or in category-theory notation that the diagram

A B

A B

f

αg βg

f

(5.2)

commutes. Two important special cases are

Definition 4. When βg = idB, then f is said to be invariant under the action αg.

²The theorem only applies to differentiable symmetries. Every symmetry discussed herein is differ-
entiable / Lie-group-action, though that is not to say that discrete ones are without importance.
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Definition 5. When A = B and βg = αg, then f is said to be equivariant under the action
αg.

Usually, one considers not only a single pair of transformations (αg, βg) but a whole
family. Indeed, from symmetry of f underαg it follows that f◦αg has the same property,
and therefore f is also symmetric under αg ◦ αg as well as, by induction, any higher
powers αn

g . This fact is deeply ingrained to the mathematical formalism of symmetry,
but it alsomeans that notions like “symmetric only under sufficiently small translations”
do not really fit the framework, since one could always extrapolate from this to larger
transformations.

Two possibilities to avoid this conflict could be
• Restricting αg to a subdomain of A, such that f ◦ αg is less capable for further

transformation than f.

• Allowing for a certain small discrepancy between f (αg (x)) and βg (f (x)), which
would increase through compounding of transformations.

Neither of these is explicitly formalised here, but the ideas were influential on the
development of the technique in Section 7.3.

The standard treatment is to abstract the composition of transformations into the
acting elements g:

αg·h = αg ◦ αh (5.3)

where g and h inhabit the monoid G with identity eG such that αeG
= idA, and the

associative product ·. Usually one assumes also invertibility, which makes G a group.
In that case, equivariance can also be expressed as

αg−1 ◦ f ◦ αg = f. (5.4)

Remark 25. Invertibility is natural for many symmetries; for example a translation is inverted
by simply translating in the opposite direction. The term “group” is sometimes used also more
generally for anything with an action. But some examples like the renormalization group in
physics are in fact only monoids, since their action does not preserve all information and can
thus not be exactly invertible.

Translations have in fact a much stronger structure: they form a vector space, with
the group product being addition of displacements and additionally the scalar product
that changes the magnitude of displacement. Such a vector-space structure is not very
common for symmetry groups, but an only slightly weaker one is: that G is a manifold
and the product continuous in both arguments, in which case G is called a Lie group
[55]. This provides at least a way to discuss “smallness” of actions: as a manifold, G has
a tangent space g:=TeG

(G) around its identity called the Lie algebra. It contains in a
sense infinitesimally small transformations.

Much more could be said about the theory of Lie groups, but it has beyond these
basic concepts not found use in the research presented in the following, and therefore
will not be layed out further here. We defer to Munthe-Kaas [68] for a treatise on their
use in related applications. That is not to imply that the deeper subjects of the theory
could not be useful for the goals pursued here, which is left for future work.
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5.2.2 Actions on function spaces
The spaces of interest here are those containing signals / images as their elements. This
topic was covered from several perspectives in chapter 3, but should be seen a bit more
generally and abstractly in the following.

The simplest manifestation of a signal space is literally as functions (e.g. continuous
ones) x on a domainΩ. In that setting, an invertible action onΩ lifts to an action on
C (Ω) as

α̂g (x) (r) = x
(
αg−1 (r)

)
. (5.5)

ForL2, an equivalent (for the continuous representatives) lift is obtained by havingα act
non-inverted before the test functions one integrates against, provided the integration
measure is invariant under the action:

〈α̂g (x) , y〉L2 =

∫
Ω

dr (α̂g (x) (r) ·y (r))

=

∫
Ω

dr
(
x
(
αg−1 (r)

)
·y (r)

)
=

∫
αg(Ω)

dr (x (r) ·y (αg (r)))

=

∫
Ω

dr
(
x (r) ·y

(
α̂g−1 (r)

))
=
〈
x, α̂g−1 (y)

〉
L2 .

Note that α̂g−1 (y) could be computed without an actual inverse action onΩ.

Remark 26. The reason for using the inverse g−1 in Equation 5.5 is that this has the effect of
moving a localised feature in the function x at position r to the position αg (r). One way of
seeing this is integrating against a correspondingly localised test function.

All of the following will be concerned with actions on function spaces, i.e. A =

L2 (Ω) or similar. The models whose symmetries are of interest are functionals of the
type L2 (Ω)→ L2 (Ω), and symmetry is understood in the sense of α̂. The codomain
of these function spaces can vary, but is in practice a generic Rn Euclidean space.

5.2.3 The simple case and its generalisations
The vector space structure of the group of translations includes a commutative addition
/ group-product, and the translation group is isomorphic to the domain with αg (r) =

r+ g. This allows a dramatic reduction in complexity of, specifically, linear functionals
of the above type which are equivariant; in signal processing these are called “linear
time-invariant [sic]”. All of these can be computed as a single convolution with some
suitable kernel ψ, or in other words in Fourier space as frequency-wise multiplication
with the kernel’s Fourier transform.³

The idea of Cohen and Welling [20] is⁴ to generalise these convolutions to other Lie

³This standard result follows from the fact that equivariant functionals must have complex exponen-
tials as eigenfunctions.

⁴In [20], the formula is written for discretized representations, i.e. with sums instead of integrals,
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groups, using an analogous definition

· ? · : L2 (Ω)× L2 (Ω)→ L2 (G)

(x ?ψ) (g) =

∫
Ω

dr
(
x (r) ·ψ

(
αg−1 (r)

))
. (5.6)

Remark 27. A detail that is often glossed over, and also here, is the terminology between “con-
volution” and “correlation”. Equation 5.6 is more convention-adheringly called “correlation”,
whereas a convolution would use the kernel with flipped inputs. The distinction is in practice
unimportant because the kernels are freely learned, which works the same with or without flip.

Cohen and Welling [20] also offer a version operating on inputs as functions in the
group itself, the motivation being to compose multiple convolutions (since Equation 5.6
does not give back a L2 (Ω)signal as its result):

· ? · : L2 (G)× L2 (G)→ L2 (G)

(x ?ψ) (g) =

∫
G

dh
(
x (h) ·ψ

(
g−1·h

))
. (5.7)

Both of these constructions are equivariant in the sense that the action of u ∈ G on
the input (α̂u in case of Equation 5.6) corresponds to an action of u on the result (with
simple group multiplication as the position-action).

These group-convolutions work well for discrete groups (truely discrete, not just
discretized), but they are in the original form from [20] not amenable for, particu-
larly, continuous rotational symmetry, because the integral could not be implemented
efficiently enough.

Numerous special versions of the general idea have been published since, but all
that we were aware of either diverge too far from the ideal of a general-purpose linear
equivariantmapping, or have their own computation challenges, which iswhy chapter 7
develops a new scheme instead. It is very likely that some existing method could also
be adapted, but this project did not have time to try this.

5.3 Convolutional neural networks

Although linear mappings are useful for many purposes, most real-world relationships
are at least moderately nonlinear, and often completely nonlinear (in the sense that
they can not satisfyingly be described by a linear term with added perturbations).
Attempting to directly fit a completely general function to anymeasured data is however
hopeless. Classical approaches include fitting special classes of functions such as
polynomials, but this tends to only work for sufficiently low-dimensional data.

5.3.1 Neural networks
The currently highly popular approach of Deep Learning can be summarized as exploit-
ing the simplicity and well-behavedness of linear mappings within an architecture that
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can model nonlinear relationships. In the broadest terms, a deep neural network is a
composition of linear functions (“layers”) which are highly parameterized (but linearity
severely reduces the possibilities; these parameters amount to matrix entries), and non-
linear but fixed ones (generally a selected R→ R function applied to each vector entry).
More specifically, a (fully connected) feedforward neural network alternates between
such linear layers plus biases (in other words, affine layers) and pointwise-nonlinearity
layers (called activations).

The activation is regularly just a single function chosen once for the entire network.
The most popular choice are historically sigmoidal functions, i.e. smoothened versions
of a Heaviside function (the motivation being a “either activate or not” behaviour,
inspired by the namesake biological neurons), or nowadays predominantly ReLU
functions, i.e. max (·, 0). Considerations in the choice of activation will not be discussed
here.

Such networks were originally called (multilayer-) perceptrons. Part of the reasoning
often cited for this particular layout is that it satisfies a universal approximation prop-
erty [40], meaning any sufficiently wide feedforward neural network can to arbitrary
accuracy model any continuous function; this argument should be taken with some
care though because much the same could be said about many other classes of models,
which nevertheless have failed to achieve similar success to deep learning architectures.
Existance of an approximation does after all not prove anything about that an approxi-
mation can also be constructed efficiently and stably for a relationship to be inferred
from limited data.

5.3.2 Convolutional
Indeed, the fully connected version of feedforward network is hardly usable for appli-
cations like image processing either, having still too much freedom and being prone
to overfitting – much like more traditional highly-parameterised models. What has
brought such networks to today’s success in these applications is the use of convolutions
as the linear layers, in combination with efficient gradient-based training, with the
gradients being computed by reverse-mode automatic differentiation (also known as
backpropagation).[52]

The most interesting aspect of these architectures for the present discussion is
that the convolutional layers are equivariant under translations, and the pointwise
activations are trivially equivariant too. An entire fully-convolutional deep neural
network, as a composition of only equivariant functions, is therefore also as a whole
equivariant under translations in the input.

It would be suggestive to implement the convolutions in Fourier space, where they
simply amount to a frequency-wise multiplication. The problem with this is that if the
activations are to work in position space, an entire Fourier transform would need to be
performed in between each linear and nonlinear layer. While FFT algorithms make
this in principle feasible (O (n· logn)), it would still incur a substantial computational
cost compared to the very cheap O (n) and embarrassingly parallelizable nonlinearity
and multiplication steps.

which fits the implementation and their examples, but not so much the general concept and the symme-
tries relevant here.
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Direct (integral-as-sum) computation of a general convolution meanwhile has a
cost on the order O

(
n2
)
, which disqualifies it altogether. This can be dramatically

reduced though for the special case of (very) compactly supported kernels, such that
the integral/sum only needs to be carried out over a few pixels. It can then be unrolled
by an optimizing compiler, runs in O (n) and almost as fast as the activation functions
on GPUs.

This can also be motivated from more deep reasons: locality is another far-reaching⁵
principle in physics. Physical interactions always originate on the microscopic level,
and all long-range interactions can be seen as propagation of chains of local-scope
interactions. This motivates also why the activations should happen in position space:
a nonlinearity in Fourier space would be highly non-local in position space. In the
mathematic formulation of classical physics, this locality manifests mostly in the fact
that systems are usually described by differential equations. That provides another
motivation for the significance of small convolutions in particular: in a finite-differences
discretisation of differential equations⁶, differential operators are represented by com-
pactly supported convolutions.

Remark 28. The term “local” can have two related yet distinct meanings relevant for the
present context: a local symmetry may be understood as a symmetry under only small or even
infinitesimal input transformations. This is often a more tractable notion of symmetry than
global in the sense of e.g. arbitrary large translations [63]. The above paragraph however refers
to locality in the spatial structure of image-like inputs instead.

5.3.3 Symmetry breakers
Perfect equivariance is not always desired (Section 5.1), or potentially even nonsensical.
An image classifier for example does not even have any capability of expressing spatial
information in its output, the output space being not a function space over a domain
likeΩ but only a space spanned by finitely many labels. This is why image classifiers
generally have at least one fully connected layer at the end, mapping from a spatial
space to an abstract one. Having such a layer fully parametric in all h × w > 105

inputs would however still be prone to overfitting and loss of all the spatial symmetry
preserved so far in the convolutional parts.

This is less of an issue if the resolution is reduced beforehand. To this end, image
classifiers typically employ pooling layers, which group together several neighbouring
pixels using a mathematical operation which may be linear or nonlinear, a popular
choice being a maximum. Such pooling layers are strictly speaking neither local nor
equivariant, but do satisfy both properties in an approximate sense: translations of
a sufficiently oversampled (or lowpass-filtered) signal by 2·k pixels in the input to a
2× 2 pooling operation results approximately in a translation by k pixels in its output.
Notice that very small translations map to even smaller ones (relative to the respective
pixel scales). Suitable lowpass filtering for this to work can be provided by preceding
convolutional layers, though this is not perfect, the convolutions do in principle not have

⁵Pun not intended.
⁶More precisely, an explicit discretisation. In an implicit scheme, the operators can in effect have

infinite support.

Chapter 5 135



Symmetries

to act as lowpasses at all, and even if they do then the nonlinear activations introduce
again harmonics which can subvert this.

Indeed, the nonlinearities themselves are not equivariant under sub-pixel transla-
tions, even though they conceptually represent perfectly equivariant post-composition
of continuous functions. This could be reinstored through antialiasing techniques [119],
but that is seldom done in practice.

Another effect that prevents convolutional networks from being truely symmetric is
that the bounded rectangular domains they work on cannot even express translations
except of signalswhich are compactly supported on sufficiently a small subdomain. This
is seldom given for photos (and anyways requires a suitable convention of zero colour).
Equivariance does still hold generally for a convolutional layer in the sense that the
restriction of the output to a co-translated subdomain is invariant under the translation;
however again in practice no such domain-restriction is part of the architecture.

For these reasons, saying image classifiers are invariant under (even small) transla-
tions is problematic, if not not outright wrong; indeed it is easy to observe that very
small translations can strongly change their outputs [6] in a way almost reminiscent of
the adversarial effects discussed in Section 1.4.3A and Section 2.5.1. How important
the architecture-imposed symmetry properties of deep neural networks’ components
nevertheless are is still a matter of debate, which this thesis can not hope to settle
for the general case. Instead, the next chapters focus on a specific application that is
particularly amenable to investigations of symmetry. This can however also include
symmetries that are not pre-determined by architecture.

5.3.4 Semi-intrinsic symmetry

Even a fully-connected network can in principle learn any symmetry, if it is sufficiently
exhibited by training data. Such learned symmetry can be artificially encouraged by
the use of data augmentation, i.e. by representing each sample in the original data
set with not just itself but multiple symmetry-transformed copies of it. This could
be seen as increasing the dataset to arbitrary size. Alternatively one could also use
completely synthetic data, which can include the symmetry action systematically or
randomly. Making a fully connected network e.g. translationally invariant in tis way is
still impractical, since it would require that it had seen every possible pixel shift (or at
least a large fraction of them) for each image. For a data set that is by itself of large size,
and a high resolution, this would even on modern hardware require excessive training
time.

For discrete symmetries, this is far more promising, but empirically it also works
for making a model that already obeys a translational symmetry (in particular, convolu-
tional neural networks) symmetric under another group. It is common practice to use
random rotation as data augmentation for image classifiers; this may not be sufficient
for making the classifier perfectly invariant under rotations [31], but can still succeed in
making it sufficiently robust under the rotations encountered in testing (or application)
data to increase the accuracy there, which is often worth some additional training time.

Likely, a main reason this works is that local translational symmetry already sub-
sumes much of the combinational complexity of rotational symmetry. To wit, the effect
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of any small rotation upon a localised feature is approximated by the action of a trans-
lation on that feature. For larger rotations this is not true anymore, but any rotation
can be decomposed into one of only a few large rotations (which could be learned
brute-force) and a smaller one that is sufficiently approximated by local translational
symmetry.

5.3.5 Diffeomorphisms (excursion)
A notion of input-transformation that generalises local translations as well as rotations
is that of diffeomorphisms on the input domain, i.e. smooth deformations that trans-
port different parts of an image in ways that need not be globally connected at all.
Diffeomorphism invariance has been argued to be a more powerful and likely more
relevant notion of symmetry [63], instead of rigid translations. It approximates the
effect of more changes that could happen to the physical scene depicted in a photo,
and also sidesteps some of the issues that make translations inapplicable (in particular,
boundary limitations).

Diffeomorphisms are locally a combination of translations and linear stretch/s-
hear/rotations. Specifically for diffeomorphisms whose displacement field has small
partial derivatives⁷, the latter are near-identities so that the local translations dominate
the effect of the diffeomorphism, much the same arguments as for translations and
rotations apply also for why convolutional architectures are good candidates when
diffeomorphism equi- or invariance is desired.

Also, the same caveats apply as in Section 5.3.3. Even an ideal (infinite-resolution)
convolutional layer is not exactly diffeomorphism equivariant, and a realistic deep
convolutional classifier certainly is not exactly diffeomorphism invariant. Whether
it even is benefitial to have approximate invariance is not completely settled either,
but Petrini et al. [72] have observed that specifically the relative equivariance under
diffeomorphisms compared to general input changes correlates to performance, and
increases during training of a classifier. In other words, trivial invariance through
general insensitivity is (unsurprisingly) not benefitial, but dedicated invariance to
diffeomorphisms in particular is.

This subject is of high interest for future research, but made difficult by the inex-
actness and need for dedicated regularisations. This thesis does not contribute results
on diffeomorphism properties but sticks to rigid transformations, appropriate to the
particular application of Cryo-EM.

⁷This is a natural condition: being differentiable is half of the definition of a diffeomorphism, and
slow-changing displacement is a sufficient condition for also being invertible with differentiable inverse,
which is the other half.
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CHAPTER 6
CRYO-EM

In chapter 5 a very general overview was given about the topic of symmetries and
their relevance and use possibilities for deep learning. This chapter introduces the
concrete application inwhichwe apply this theory, in form of the purpose-built network
architecture we present in chapter 7.

6.1 Introduction

Much of the discipline of chemistry is concerned with the structure of molecules,
which is crucial for their physical, chemical and biological properties. While in some
simple cases the structure is uniquely determined by the atomic stochiometry, for most
nontrivial molecules it needs to be determined by dedicated means. They are too small
to be seen in a conventional sense, since the wavelength of visible light is larger than
the patterns that need to be resolved. One option are shorter-wavelength photons, in
particular X-rays. These are indeed used¹, but they cannot be focused the way light
can; this makes it necessary to rely on wave-vector based analysis, which can only be
applied to periodic structures (such as crystals).

An alternative are electrons, which can be focused thanks to their charge, while
having De Broglie wavelengths short enough to resolve features on scales down to few
ångströms. They have their own challenges, but are now used in several different mi-
croscopy technologies. The particular one that is the topic here, single-particle cryogenic
electron microscopy, applies transmission electron microscopy to samples in the form of
e.g. protein molecules dissolved in a layer of vitreous ice. These show up in the images
taken (the micrographs) as a kind of shadowcast.

Remark 29. Some details of the physical process are glossed over here. It is intuitive to think of
the molecules as casting shadows, but in fact the amplitude of the electron beam is not greatly
affected by passing through the target molecules, compared to the surrounding medium. What
is affected instead is the phase of the electrons’ wave function. Making this detectable requires
a slight defocus of the beam, such that the phase-shifted contributions interfere destructively,
which is what causes a shadow-like picture as the result.

Furthermore, in practice the images taken are not static in spite of the frozen state of the
specimens, requiring additional frame-alignment [78].

¹X-ray spectroscopy was the method behind, for example, the discovery of the helical structure of
DNA [105].
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Fig. 6.1: Some examples of how Cryo-EM micrographs would look in a hypothetical
noiseless projection, and how they rather look with a realistic amount of (artificial)
noise.

The synthetic data used for the experiments discussed in the following were generated from
a simple static density projection. This may not be very representative of the real defocus-
interference mechanism, but should sufficiently reflect the symmetry-related challenges that the
algorithms need to deal with.

The main problem with the cryo-EM method is a very low signal-to-noise ratio [10],
as visualised in Figure 6.1. This is an consequence of two fundamental physical factors
(limited contrast from the interference technique, and limited electron dose lest the
probe suffer damage). It can therefore not be much improved with e.g. better sensors,
as might be done in other applications.

There are essentially two approaches to deal with this; in practice a combination/-
compromise is employed.

• Seeing the individual-molecule micrographs themselves as the signal to be ob-
tained, one should apply denoising to them as individual images. This can hardly
be done with traditional general-purpose image denoising algorithms (which rely
on the fact that the signal normally dominates and the noise is only a perturba-
tion), but is possible to some extent with dedicated methods. This is the approach
to which the next chapter contributes, although this is fundamentally limited by
the smallness of the information amount (in the Shannon noisy-channel sense; cf.
Section 3.2) contained in a single projection.

• Since there are in practice many copies of the same molecule in a given sample,
better results can be obtained by combining the information from all (or at least
several) of them. This would be easy if the molecules were present in a regular
pattern and with predictable orientation. In the extreme case of them being all
aligned in the same way, they could simply be stacked, averaging out the noise.
But both location and orientation of the molecules are in fact random, adding
much complexity to the challenge. This aspect deserves some brief discussion.
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6.2 Tomography

Reconstructing three-dimensional information from projections is a common prob-
lem. When the experimentalist has freedom to choose the projection directions, this
has a straightforward solution thanks to the Fourier-slice theorem: the collection of
all² directions corresponds to the density distribution’s Radon transform; taking the
Fourier transform of each slice and arranging them radially is equivalent to the entire
distribution’s Fourier transform, which can readily be inverted. Even when not all
directions are available, this still provides a linear inverse modelling problem which
can be solved with various regularization means. This is relevant for many applications,
ranging from many medical ones to geophysics. Traditional regularizations can work
well but often do not allow for satisfyingly high resolution. Machine learning can be
applied to improve the resolution [104], though with the usual caveat that this may
cause unknown training-data biases to infest the results.

In either case, the tasks of denoising and reconstruction would generally be tackled
as one single inverse problem, taking raw measured projections as input and giving
a noise-stable 3D reconstruction as the result. The denoising therein can for the case
of Gaussian noise be interpreted as achieving a least-squares optimal solution; such a
method may still also work for other types of noise. Since sets of many images are used
as the source material, the denoising performance benefits from the stacking effect.

Even in applications where the projection directions cannot be chosen (yet are
known), a similar approach to the above can still be carried out, by treating the available
sample directions as points in ameshwithout a-priori structure, which can nevertheless
be used as a discretisation in e.g. a finite-element sense.

In the case of cryo-EM, the challenge is that the directions are not even known, since
the orientation of eachmolecule cannot be determined except from the image itself. And
with the initial high level of noise, an estimation based on e.g. edge / keypoint based
techniques would be too unstable. This leaves two possibilities: first performing single-
image denoising and then “classifying” them according to orientation, or obtaining
a representation that is invariant under the unknown rotations and performing the
stacking-denoising in that representation. Such representations exist [120], but they are
mathematically and computationally involved and lose much of the locality, simplicity
and interpretability of the original input format.

In the present work, the tomography problems are not addressed per se but only
the single-image denoising. It is nevertheless to be noted that this denoising has a
particular responsibility which would not be obligate in most other applications: each
denoised image needs to be suitable for accurately estimating the orientation of the
molecule contained therein. In particular, the denoising should not introduce any
biases towards particular orientations, since that would systematically misalign the
images to be stacked. A sufficient condition for avoiding such biases is if the denoiser
is equivariant under rotations.

²Of course, in practice only a finite sample of directions is obtained, but they can be chosen along a
regular grid, so what one gets is rather a (standard) discretisation of the Radon transform.
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6.3 Noise

Noise was mentioned in Section 3.2 in information-theoretical aspects, but not treated
explicitly.

A common view is to consider noise as an additive perturbation on top of a signal,
i.e.

x = xsig + xnoise.

This is certainly appropriate for the noisy-channel setting, specifically for a transmission
through a linear medium (e.g. Maxwell equations) with independent interference. It is
also a good model for many other scenarios, including Johnson noise from the resistors
in analogue electric circuits (which appears in essentially all measurements in practice).
The predominant noise source in Cryo-EM images however is technically not of this
nature: it is Poisson noise arising from the quantization of the electrons. Though in
the limit of many electrons per pixel, the Poisson distribution converges to a Gaussian
one centered on the expectation value, this is not well approximated by the low-dose
images used in Cryo-EM. In particular, the statistics depend on the pointwise intensity,
i.e. the signal itself.

This detail, too, is not considered in the next chapter, and (artificial) additive Gaus-
sian noise used instead, as this simplifies the analysis and comparison of SNR and
equivariance concerns. The denoiser models based on neural networks do not explicitly
assume additive and/or Gaussian noise, so it is reasonable to assume they would be
usable for Poisson noise as well if they work for the Gaussian case. This is not to say that
future investigation of the performance for the Poisson case is not important, though.

The additive model also makes the notion of signal-to-noise ratio straightforward,
as the ratio of the amplitudes or norms of xsig and xnoise.

Many different approaches exist for the attenuation of noise, i.e. estimation of xsig
when only x is known. The simplest rely on a known frequency-domain split: for
typical e.g. audio signals, much the noise energy is in high-frequency components of
the Fourier decomposition whereas the signal’s energy is concentrated in the lower
frequencies. As a result, applying a simple lowpass filter to x produces something closer
(in the L2 sense) to xsig. Except for specific use cases³, the side effects of such crude
filtering (such as the smearing out of transients) will however scarcely be acceptable.

Thanks to linearity, the filtering approach is very well understood theoretically and
has for the Gaussian case an optimal solution regarding the tradeoff between noise
supression fidelity, in form of the Wiener filter [110], whose theory will not be covered
here.

Like with several applications mentioned earlier in this thesis, neural networks
have in recent years become an alternative to such traditional methods also for the task
of denoising signals / images. The idea is to use some deep, usually convolutional
network and train it to approximate, as a generic regression problem, the hidden xsig
associated to training examples of x [43]. Alternatively it can be made to estimate xnoise,
which appears to be an equivalent problem (this estimated xnoise can then be subtracted
from x) but is claimed to have some practical advantages [118]. Curiously enough, it

³One use case where it is acceptable is indeed in Cryo-EM, but only for the preliminary step of
determining the molecule positions, not for any structure investigations.
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is even possible to use different noisy images as the training target, but still obtain a
network that removes noise [53]; this has the advantage of only requiring realistic data
with both signal and noise for training. In the following, the noise will however always
be synthetic, so this does not have much advantage and direct signal estimation makes
for clearer comparisons.
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EQUIVARIANT DENOISING

This chapter presents a particular architecture that can be used for denoising Cryo-EM
images in an approximately equivariant way. This is part of a larger project on Cryo-EM
which is still very much work in progress, so the following will not go into great depth
but only show one idea and how it links to the topics covered previously.

7.1 Problem formulation

The concrete problem to be solved here is the estimation of xsig from a given x =

xsig + xnoise,¹ where all three signals live in a space I. In practice these are normally
taken to be square pixel images, but conceptually it is rather a function space on a disc
with the molecule’s center of mass as its midpoint. Assume therefore

I = L2
(
D2
)
, (7.1)

with
D2 =

{
r ∈ R2

∣∣ ‖r‖2 6 1
}
, (7.2)

for which we use the standard parametrisation with r ∈ [0, 1] and ϑ ∈ [−π, π] under
the equivalence relation identifying all ϑ when r = 0, and only ϑ = π with ϑ = −π else.

The rotation group SO (2), which is a Lie group homeomorphic to the circle S1 that
we parameterise by δϑ ∈ [−π, π], acts on D2 by way of

(r, ϑ) 7→ (r, ϑ+ δϑ) (7.3)

(mod 2·π), and in the correspondingly induced way (Equation 5.5) on I.

Remark 30. SO (2) is only a small subgroup of the rotations a molecule can undergo, namely
those whose axis is aligned with the projection direction (z-axis). Furthermore, since the
measurement setup cannot distinguish flips along the z-axis, the actual symmetry of relevance
is O (3). But the plane rotations are already a nontrivial and useful special case.

The objective of an equivariant denoiser F : I→ L then is to

1. Denoise, in the sense that ‖F (x) − xsig‖ should be small

2. Be equivariant in the sense of Definition 5.
¹See additivity caveats in Section 6.3.
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Fig. 7.1: The fields of reception in an ordinary convolution are simply translated copies.

7.2 Existing approaches

Standard convolutional neural networks have translationally equivariant layers². This
is a useful property for many image applications but not really appropriate for this
denoising problem as formulated, because translations of a molecule would co-shift
its center of mass and thus actually leave the representation invariant rather than
equivariant. Convolutional neural networks are not inherently rotation-equivariant at
all. It turns out that they can readily learn to be approximately equivariant when given
enough data, though at least in the case of SO (3) acting on the sphere it was found
[31] that such data-augmentation-based equivariance can not take it up with built-in
equivariance.³

As such, using a convolutional network on the cartesian representation of the noisy
image is a possible strategy, but it is not ideal when equivariance is important as it is in
the first stages of a Cryo-EM pipeline.

An alternative is to use them on the polar representation, in which case one of the
axis of the network’s equivariance becomes the desired angular equivariance of the
images. The problemwith this is that it is badly compatible with another central feature
of convolutions, that of weight-sharing: in a normal convolution, a given filter kernel is
used in the same way everywhere across the image (Figure 7.1).If the convolution is
performed in polar coordinates however, the real shape of each kernel as applied to the
image varies dramatically (Figure 7.2). Particularly critical is that the fields of reception
get very narrow in angular direction as the radius is decreased. Such a narrow field is
not enough to gather sufficient data to perform the kind of local averaging required for
denoising (or to gain enough information to perform statistical lookupwith the internal
representation learned from the training data). Another way of looking at this is is that
the frequency accuracy of the filters that the convolution kernels implement get poorer
and poorer towards the center. There are ways of addressing these problems, but this
is mathematically challenging and requires foregoing the simple local computation
nature of the convolution operations. We will not address any of these techniques here,

²This is a simplification not entirely true due to the finite resolution, unless antialiasing is employed
[119].

³They found that invariant models trained by augmentation can reach the performance of inherently
invariant ones, though. Both of these observations are empirical and may not hold for all applications.
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Fig. 7.2: How the fields of reception thin out towards the center in a polar version of
convolution.

Fig. 7.3: The spiral sampling with approximately constant point density in both radial
and angular direction.

but instead suggests a rather simple alternative that allows using standard convolution
implementations and still get a nearly rotation-equivariant operation with fields of
reception that have suitable homegeneity.

7.3 Spiral convolutional neural network

The idea is to use instead of a grid of concentric rings one made up from a single spiral
path, specifically an Archemedean spiral.

7.3.1 Spiral sampling
The Archimedean spiral has the property that each winding is equidistant from the
next, measured in the radial direction. When many windings are used (as they will
be to realise a typical image resolution), they are also asymptotically orthogonal to
the radial direction and therefore then equidistant in the sense of the R2 they are
embedded into. Because the windings, unlike the rings in a polar grid, do not have to
close upon themselves with an integer count, they can also at every location be spaced
out arbitrarily, allowing in particular making the angular spacing also equidistant in the
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l2
(
R2
)
sense. Figure 7.3 demonstrates how this by itself makes the fields of reception

behave more like in the cartesian case.

Normally, the Archimedean spiral is presented by the radius parameterised by the
angular coordinate:

r (ϑ) = b·ϑ.

Our construction can be understood as inverting the dependency and then sampling ϑ
so that at each radius an appropriate spacing is reached. In the limit of an infinitely tight
sampling this is equivalent to parameterising r so its derivative is inversely proportional
to the circumference at that radius:

∂r (t)

∂t
=

1

2·π·r (t)
, (7.4)

the solution of which is (modulo time shift)

r (t) =

√
t

π
. (7.5)

The steepness b is now chosen to facilitate that the disc (conventionally of radius 1) is
covered by a choosable number of windings nwind:

ϑ (t) = 2·π·nwind·r (t) = 2·nwind·
√
π·t. (7.6)

This is then sampled homogeneously to cover the entire range t ∈ [0, π]with a choosable
number nspls of total sample points:

ti =
i·π
nspls

. (7.7)

7.3.2 Spiral sampling

So far, this construction only samples a one-dimensional path. That would at most give
rise to a convolution operation with kernels extending only in (near-) angular direction.
But a convolution that expresses kernels covering an open set in R2 requires taking
also the topology of the neighbour winding in radial direction into account.

To this effect, we define the convolution not on the spiral sampling itself but rather
on a spiral ribbon of desired thickness, which is then (validly) convolved down to
the 1D path on which the result is represented (Figure 7.4). With the ribbon being a
3× nspls array (or 5× nspls, depending on what size of convolution one wishes to use),
the convolution on it can be carried out with standard routines (PyTorch conv2d in
our implementation). But to obtain the values on the ribbon in the first place requires
resampling from the representation used by the preceding layer. We chose to implement
this based on a generic method: using the Delauney triangulation of the preceding
layer’s output sample point, and linear interpolation in the barycentric coordinates of
the source triangle containing the point at which the representation is to be sampled.
This is a fairly standard technique (corresponding e.g. to some finite element methods),
so we will not go into the details.
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Fig. 7.4: The spiral ribbon on which the convolution actionally is carried out.

The thus defined convolution can then be applied to arbitrary images on the disc.
There are some subtleties to take into account at the outer rim and near the center,
but these are mostly analogous to questions that also arise for ordinary convolutional
networks at the boundaries.

In Figure 7.5 we see that this convolution does, as desired, to good approximation
rotate the patterns in the kernels. Furthermore it also shows a (less ideal) radial equiv-
ariance. It is not clear whether this is actually advantageous for Cryo-EM denoising,
but at least for the processing of the noise it is sensible (certainly much more sensible
than angularly squished kernels of the polar representation), and though the molecules
in the images this is intended to be used for will be centered it is still plausible to see
similar patterns at different radii, e.g. corresponding to chemically similar groups at
the rims of different-size molecules. Radial equivariance is more sensible than cartesian
equivariance in this regard.

Near the center (or when using very large convolutions or low resolutions, like in
Figure 7.4) the radial symmetry breaks down due to the increasingly tight flexing of
the convolution ribbon.

Remark 31. Outside of the disc of interest the behaviour of the convolution is generated by
extrapolation; this might best be considered as undefined behaviour.

7.3.3 Spiral deep network
To tie it all together into an architecture that can be effectively trained requires pre-
computing all of the spiral geometry. This concerns only the step of resampling to the
ribbon representation; the convolutions can be carried out without knowledge of what
space they are assumed to be embedded in.

The resampling meanwhile is a fixed linear mapping, and therefore can be fully
expressed by a single matrix. Due to the high locality, it is importantly a sparse matrix,
making this feasible to compute even for higher resolutions. Unlike in Section 4.2.3, it
is exactly sparse by construction, so no enforced cutoffs are needed (though they can
still be benefitial to reduce the number of nonzero elements further⁴).

⁴The reasons is that the edges of the ribbon mostly lie right on the centerline of the neighbouring
windings. As such, the interpolation takes in practice mostly place between only two, not three points.
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[ [ 0, 0, 1, 0, 0]
, [ 0,-1, 1,-1, 0]
, [-1, 0, 2, 0,-1]
, [ 0, 1, 1, 1, 0]
, [ 0, 1,-1, 1, 0] ]

★ =

[ [-1, 0,0,0,0]
, [ 0,-1,0,0,0]
, [ 0, 0,0,0,0]
, [ 0, 0,0,1,0]
, [ 0, 0,0,0,1] ]

★ =

Fig. 7.5: Test patterns for the spiral convolution. The original images contain here only
several Dirac peaks, whose place is after convolution taken by almost-copies of the
convolution kernel.

In other regards, the networks we tried are fairly simplistic standard ones, with
RELU activation between the convolutions and batch-normalisation. We tried various
numbers of layers and sizes of the hidden ones.

7.4 Results

We trained this new architecture on a (simulated, to have noiseless ground truth)
dataset that had also previously been used for other denoisers. This section only briefly
summarizes some of the results that we find to hold quite consistently; our experiments
included many more variations of network sizes, data selection etc.. than will be
compared here. As Figure 7.6 shows, the new architecture works and is able to perform
the task just as well as the conventional one – in fact they are hard to even distinguish.

Differences, apart from the guarantee of equivariance (not exactly but approximate)
in the spiral version, can be found in the details, particularly with regard to how the
properties develop during training. The most obvious difference is that the spiral
denoiser is nearly (rotation-) equivariant already right from the start of the training,
whereas the cartesian version has much higher non-equivariance at the start. When
the signal-to-noise ratio is reasonably low, it can catch up almost perfectly though
(Figure 7.7), apparently because there are enough instances of rotated near-copies in
the dataset.

It is a different story at lower SNR (i.e., higher noise level, as it realistically will be):
in this case, the cartesian version does not match the equivariance performance of the
spiral even after longer train, and it also does not achieve as high denoising fidelity
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DN-CNN

SpiralNN

Fig. 7.6: How a normal cartesian convolutional network, and a spiral one as proposed
here denoise the examples from Figure 6.1.

Fig. 7.7: Comparison of the two denoiser architectures’ score- and equivariance perfor-
mance, with images of signal-to-noise ratio 1

4
.
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Fig. 7.8: Like Figure 7.7, but with signal-to-noise ratio 1
64

.

Fig. 7.9: Like Figure 7.8, but with random rotations applied to the images in each
training epoch.

(Figure 7.8) – which is plausible, since it did not take the additional information from
rotational equivariance into account. The performance difference is not big though,
unlike the equivariance difference. It mostly shows up in the form of slightly more
overfitting of the cartesian network.

This changes slightly when more rotation examples are supplied in the form of
random data augmentation. In this case, the cartesian version comes closer to the spiral
one in terms of equivariance, but still does not quite reach it (Figure 7.8). This matches
the experience of reports concerning other use cases of equivariance [31].
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CHAPTERω
CONCLUSIONS

ω.1 Summary of Results

In Part II, we developed a novel formalism for saliency. The Ablation Path method has
merits both theoretically and practically:

• It demonstrates how the Integrated Gradient method, Meaningful Perturbation
methods, and ablation scores can be seen as more or less special cases or aspects
of a single formalism.

• It proposes axioms for paths that are at least in principle sufficient to discuss the
optimisation problem over them. Whilst the concept of paths per se is not new,
this formalisation was required to use them as first-class citizens. Within that
framework, we demonstrate that optimisation of the paths leads to a saliency
method that comes close to establishedmethods, even in ametric like the pointing
game.

• It comes with a convenient interactive tool, letting users not only look at the
saliency as a heatmap but actively investigate what it means in terms of input-
output pairs of the classifier.

The last point, although it did not take up a lot of space in chapter 2, is the most valuable
in practice, and also the one that justifies the claim that this method has forayed into
making explanations reliable: it does this not by guaranteeing a good explanation, but
by giving the user the best chance to assess how good the explanation is.

The flip side is that the explanations really are not guaranteed to be good. In fact,
the results provide in many cases more confusion than clarification. Part of the reason
for this seems to be to blame on the algorithm, or perhaps even the idea of tracing paths
through their input domain of a classifier.

But we are confident that this is not the whole reason. Though the state-of-the-art
literature methods outperform ours in the pointing game, they do not do so by a large
margin, also producing in many cases heatmaps that seem rather nonsensical, so it is
not just our algorithm that has these issues.

What the heart of the problem is, we cannot say with certainty. But it seems likely
that it has to do with the whole notion of pixels as features being a flawed concept, for
purposes of classification-explanation. We have highlighted in particular the dilemma
that smoothing / regularisation is simultaneously necessary and detrimental. Different
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methods use various tricks to work around this [27][19][46], but though this can work
it makes the interventions idiosyncratic in their own way (blobby / straightedges /
cartoon-look, for these respective answers). At best, this makes it somewhat of a gamble
whether the classifier will respond sensibly to such inputs; at worst a malicous black-
box could actively detect them and proceed to adjust its behaviour, appearing more
innocuous than it really is (à la Volkswagen emissions scandal).

These considerations, amongst others, lead us to Part III. Therein we first broadly
surveyed possible alternative notions of feature-interventions instead of pixels, before
deciding on the SIFT decomposition. Although it was challenging to implement this
decomposition in the required encoder-decoder fashion, we arrived at a solution which
appears to solve the problem without reservations. The only point of worry is the still
rather high memory demand, which has no bearing upon the mathematics (only makes
use more hardware-demanding).¹

We then succeeded in using the SIFT decomposition together with the Ablation
Path method, and deem that it works – rather better than in the pixel basis. This
would still benefit from more experimental backing; these are somewhat hindered
by the fact that the SIFT attributions cannot entirely well be converted into spatial
attributions for running the pointing game. We do not consider the non-spatialness a
deficiency of the decomposition, only an (admittedly inconvenient) incompatibility. A
human employing Ablation-Path+SIFT in search of explanations can after all look at
the input/classification pairs without any need for the masks to be shown as heatmaps;
the actual intervention images are anyways more informative, being also capable of
expressing changes like background colour.

It would however also be dishonest to claim that the SIFT basis provides a wonder
cure to the occurance of wrong/useless path optimisations. Examples where the
saliency does not seem to make any sense can still readily be found. Nor does it count
the possibility of volkswagening, although SIFT-manipulated images (with the right
smoothing, Section 4.1.3C) tend to have far less obvious artifacts than pixel-manipulated
ones.

And it is likely the fate of any black box explainability method to be vulnerable
in such ways: there is always the possibility for the classifier to do something truely
incomprehensible or malicious. This general truth about such methods became again
and again clear during the work on the thesis: black-box explanations are often useful,
but one should never take this for granted.

As such, it was fitting to conclude the thesis with the topic of Part IV. It is only
weakly connected to that of the preceding parts, and does not deal with black box
explanation at all. This part is more an excursion than a research project of its own.² It
would be an exaggeration to call the spiral convolutional network developed therein an
interpretable model, but what can be said is that it has an aspect that is advantageous
in an interpretable way.

The thesis-relevant achievement here is not necessarily the specific denoising archi-

¹Even this could be partly circumvented through more agressive sparsity cutoff and/or downsam-
pling, which we eschewed for the time being – mostly to ensure we do not mistake issues arising from
these implementation details for more fundamental problems.

²It is a small part of a larger and still ongoing project.
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tecture with spiral convolutions. Rather, it is the gathering of domain knowledge about
an application that is on one hand difficult enough to warrant use of deep learning,
on the other hand unusually well understood and controlled. From there, the spiral
convolution was more or less just a demonstration that this knowledge can be used
to make a small and simple change to the architecture, that has as an effect a small
improvement in performance and more importantly reliability.

ω.2 Takeaways

To wrap up these four years of research attempting to understand deep learning also
requires to put it in the context of the time. The years 2019-2023 have been turbulent in
many ways, and the progresses in the AI field are among them.

I reckon myself to have achieved success in my work, yet it makes only a very slight
contribution to the state of the art in explainability. And that progress concerns models
that were already available before I started the project.I would claim that my work was
reasonably successful, yet it makes only a very slight contribution to the state of the art
in explainability, and this regards models which were already available before I started
the project. Other authors have of course made progress too, but we are still far from
having a firm grip on the understanding of those models.

In the meantime, the machine learning industry has moved on in leaps and bounds
with the development of models vastly more complex than were available in 2019.
Extrapolations about an entire research field’s future are risky, but it is hard to escape
the feeling that the endeavour of explainability is falling further and further behind
the goals it aspires to.

Clearly, not everybody agrees – with that assessment itself, or whether it is a bad
thing. Many would say that explainability of neural networks has not really been
necessary so far and progress in AI capabilities is always good (with negative outcomes
only being a matter of humans using the systems in bad ways). There are many
legitimate reasons to be enthusiastic about the progress in generative AI, and the
opportunities it opens up. Yet, severe negative ramifications (aside from humanmalice)
are plausible and just as numerous. And even if we understood these systems well, it
would be hard to estimate how likely each such scenario is.

The experience I made during this work with probing image classifiers in many
different ways and building denoising models has made me both more impressed of
how deep neural networks can solve some tasks with unexpected autonomy (such as
the rotation-equivariance developed by a cartesian convolutional network), as well as
dismayed for how easily they flip to sudden, unexplained and drastic misbehaviour
(as with the manifold adversarial-like responses in ablation-path intervention).

I actually do not know what conclusions to take from this, regarding black-box
explainers. On one hand, they seem more needed than ever and in need of research
to improve their reliability, on the other hand I am doubtful whether they ever will
be reliable. A stance that I subscribe to more than ever is the one expressed by Rudin
[80]: that critical decisions should not be left to black box models at all, and inherent
interplainability is the way forward.

No doubt both will stay relevant, but inherent interpretability is perhaps the branch
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deserving of more research effort and also political support to increase adoption. I
do not believe this is possible without sacrificing performance in some cases (where
deep neural networks manage to be “magically” good), but do think it is a price worth
paying. For the uses where black boxes are the only option, we should not leave it to
a probability game to make failure unlikely. Instead we should expect that failures,
biases etc. can and do happen, and install safeguards to take care of this. The ideal use
for such models seems to be exploratory tasks, where they suggest solutions that would
be too tedious to find in other way. Then the solutions should however be validated
by other means, whether with robust algorithms (ideally, formally verified ones) or
through human quality control.

Remark 32. On the subject of formal verification: one takeaway that is contestable, and only
tangentially related to this thesis’ subject, is that the Python programming language should be
avoided. It is poorly suited for devoloping large systems in a reliable way, let alone validating
them. One aspect to this is type safety³. Although several additions have been made to Python’s
typing capabilities, they are still mostly ad-hoc and not comparable in power to strong-statically
typed languages. Since machine learning architectures are generally built declaratively, a
functional language would be a very natural fit [25], such as the Haskell language.

What on the other hand seems haphardous is to couple black boxes to fragile data
systems such as web applications. Here, small misbehaviour could trigger cascades of
failure. On a different level this is also something encountered during the Ablation
Path experiments: the interaction between the classifier and the heuristic gradient
descent algorithm often went astray.

The interactions between the classifier and more principledly designed components
meanwhile, such as the SIFT decomposition and themonotonisation-projection, worked
with far less troubles.

Another takeaway is that one should not be too quickly satisfiedwith an explanation
to a black-box’ decision. In my work, I often tried some modification of the algorithm,
ran a handful of examples, got results that looked clear and plausible and though I had
“finally fixed it”. But there always turned out to be more problems which only surfaced
with deeper investigation, and sometimes a plausible saliency map was really only
plausible because of some bias effect that made it less faithful to the classifier behaviour.
This ties to the following – which I consider paramount to keep in mind, so I leave it as
the final sentence: a wrong explanation is worse than no explanation.

³Arguably the most important aspect, since via the Curry-Howard correspondence types are exactly
what expresses theorems, with programs as their proofs.
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APPENDIX

Proof of equality between average gradient and boundary-normal

These are the technical details behind Lemma 1, written by Olivier Verdier.
Define the logistic function σ by

σ(y) :=
1+ tanh(y/2)

2
=

exp(y)
1+ exp(y)

Consider a vector space V and a smooth real valued function G : V → R.
This function can be saturated with the logistic function by defining the function

Fβ : V → R as
Fβ(x) = σ(βG(x))

In the limit when β → ∞, the function Fβ takes only the values one and zero at
points x ∈ V whenever G(x) 6= 0, hence the name of “saturation”.

Fix two points x−1 and x1 in V . Define the segment

[x−1, x1]t := ((t+ 1)x1 + (t− 1)x0)/2

Define also for convenience the points xt := [x−1, x1]t, for t ∈ [−1, 1].
For any smooth function F, we define the average differential A(F) ∈ V∗ to be

〈A(F), v〉 :=
∫1

−1

〈dF, v〉xt
dt v ∈ V

Define the function g(t) := G(xt). We now assume that the function G is such that
g(−1) < 0 and g(1) > 0, that g crosses zero at only one point t∗ ∈ (−1, 1), and that
g ′(t∗) > 0.

The set {G(x) = 0} is the decision boundary.
In terms of average gradient, the following result states that, in the saturation limit

β→∞, the average gradient is perpendicular to the decision boundary.

Lemma 11. With the definitions and assumptions above, if a vector v is tangent to the decision
boundary, that is, if 〈dG, v〉x∗ = 0, then

lim
β→∞ 〈A(Fβ), v〉 = 0.

Proof. First, we make the assumption that g is strictly increasing on [−1, 1], if not, one
can simply restrict to a smaller interval by choosing other points x−1 and x1.

We now use the function G as one coordinate variable denoted by X and complete
it to a full set of coordinates, collectively denoted by X, Y. We further choose it so that
the points xt have coordinates (Xt, 0) (i.e, all coordinates other than the first vanish on
the segment [x−1, x1]). By definition, in those coordinates, G(X, Y) = X. The crossing is
thus at the point (Xt∗, 0) in these coordinates.



The parallel transport of a vector v along the segment x−1, x1 in those variables is
no longer trivial. It is a vector with coordinates vX(t), vY(t) at the point xt.

In the coordinates X, Y, the function Fwrites F(X, Y) = σ(βX), so the differential is
just dF = βσ ′(βX)dX, and the average differential thus

〈A(F), v〉 =
∫1

−1

βσ ′(βXt)vX(t)dt

Define the function f(t) = vX(xt). The main assumption above amounts to f(t∗) = 0
and Xt∗ = 0.

The result now follows from Lemma 12, if, without loss of generality, we assume
that t∗ = 0.

Lemma 12. Suppose that a positive continuous function C : R → R has a finite integral.
Consider a continuous function f : [−1, 1] such that f(0) = 0, and a strictly increasing C1

function g : [−1, 1]→ R such that g(0) = 0. Then we have

lim
β→∞

∫1

−1

βC(βg(t))f(t)dt = 0

Proof. With the change of variable u = βt, rewrite the integral as

I(β) =

∫β

−β

C(βg(u/β))f(u/β)du

and then for any fixed u0 such that 0 < u0 < β, as

I = I0(β, u0) + I1(β, u0)

with
I0(β, u0) :=

∫
|u|<u0

C(βg(u/β))f(u/β)du

and
I1(β, u0) :=

∫
u0<|u|<β

C(βg(u/β))f(u/β)du

Focus first on the integral J :=
∫
u0<u<β

C(βg(u/β))f(u/β)du. We assume that g ′
is strictly increasing, so g ′ is bounded below on [−1, 1] by a positivem > 0, in other
words, g ′(t) > m, or, g ′(t)/m > 1. Now since f is continous on [−1, 1] it is bounded,
so |f(t)| 6M. We thus obtain

J 6M
∫
u0<u<β

C(βg(u/β))
g ′(u/β)

m
du

Changing variable with w = βg(u/β) now gives

J 6
M

m

∫
βg−1(u0/β)<w<βg−1(1)

C(w)dw
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which is further bounded by

J 6
M

m

∫
βg−1(u0/β)<w

C(w)dw

Now, since g(0) = 0 and by integrating the inequality g ′(t) 6 1/λ (since g ′ is bounded),
we obtain for positive t that t > λg(t), so βg−1(u/β) > λu0, and

J 6
M

m

∫
λu0<w

C(w)dw

Crucially, this bound in independent of β, so I1(β, u0) goes to zero uniformly in β.
This means that I1(β, u0) is arbitrarily small for all β > 0, as long as u0 > U for some
value U > 0.

Nowuse the boundonC, that is, |C(x)| 6 C0 for x ∈ R. We get |I0| 6 C0

∫
u6u0

f(u/β)du,
and this goes to zero for any fixed u0 since f is continuous and f(0) = 0.
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