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ABSTRACT

Infrastructures like roadways and power lines are essential to our society’s economy
and quality of life, yet they are vulnerable to the environment and severe weather.
Trees falling on power lines or obstructing roadways are typical examples of how such
vulnerabilities can affect society.

These situations highlight the need for effective and efficient monitoring of infras-
tructure. Traditional monitoring methods, like ground patrols and visual inspections,
are resource-intensive, particularly in vegetation management. These methods are
costly, time-consuming, and pose safety risks and environmental concerns. Moreover,
the difficulty of monitoring infrastructure is exacerbated by the extensive scale of these
networks, especially power lines and roadways, which often span hundreds or even
thousands of kilometers. Consequently, the infrequency of inspections often leads to
reliance on outdated data, which can hinder the process of making timely and effective
decisions.

High-resolution satellite imagery offers a more efficient, cost-effective, and en-
vironmentally friendly alternative to traditional methods, providing frequent and
comprehensive coverage. This approach enables proactive infrastructure monitoring,
improving situational awareness and facilitating prompt action.

This research is centered on developing methodologies and algorithms within the
fields of computer vision and earth observation using the most recent remote sensing
technologies for infrastructure monitoring. Such methodologies are designed for
analyzing satellite imagery to characterize vegetation, detect changes, assess risks, and
offer current updates on the condition of infrastructure systems. It covers two main areas:
monitoring power line infrastructure to characterize vegetation encroachment and
ensure operational integrity and monitoring roadways in natural disaster management.
By utilizing satellite imagery, the research aims to offer more timely, cost-effective, and
comprehensive monitoring, significantly improving traditional methods and enhancing
infrastructure resilience.





SAMMENDRAG

Infrastrukturer som veier og kraftlinjer er essensielle for samfunnet, men er sårbare
for miljøet og ekstrem vær. Trær som faller ned på strømlinjer eller blokkerer veier er
typiske eksempler på hvordan slike sårbarheter kan påvirke samfunnet.

Disse situasjonene understreker behovet for effektiv overvåking av infrastruktur.
Tradisjonelle overvåkningsmetoder, som bakkepatruljer og visuelle inspeksjoner, er
ressursintensive, spesielt innen vegetasjonsforvaltning. Metodene er kostbare, tid-
krevende, utgjør sikkerhetsrisikoer og påvirker miljøet. I tillegg økes vanskeligheten
med å overvåke infrastrukturen av det omfattende omfanget av disse nettverkene, spe-
sielt kraftlinjer og veier, som ofte strekker seg over hundrede- og tusenvis av kilometer.
Følgelig fører sjeldenheten av inspeksjoner ofte til beslutninger basert på foreldede
data, noe som kan hindre prosessen med å ta rettidige og effektive beslutninger.

Høyoppløselig satellittbilder tilbyr et mer ressurs, kostnadseffektivt og miljøvennligt
alternativ til tradisjonelle metoder, og gir hyppig og omfattende dekning. Denne
tilnærmingen muliggjør proaktiv overvåking av infrastruktur, forbedrer situasjonsbildet
og letter rask handling.

Forskningen setter fokus på å utvikle metoder og algoritmer innen feltene for
datamaskinsyn og jordobservasjon ved hjelp av de nyeste fjernmålingsteknologiene for
infrastrukturovervåking.

Slike metoder er designet for å analysere satellittbilder for å karakterisere vegetasjon,
oppdage endringer, vurdere risikoer og tilby oppdatert informasjon om tilstanden til
infrastruktursystemer.

Forskningen dekker to hovedområder: overvåking av kraftlinjeinfrastruktur for
å karakterisere vegetasjon og sikre operasjonell integritet samt overvåking av veier i
forvaltning av naturkatastrofer. Ved å utnytte satellittbilder, muliggjør forskningsre-
sultatene mer rettidig, kostnadseffektiv og dekkende overvåking, noe som betydelig
forbedrer tradisjonelle metoder og øker infrastrukturens motstandsdyktighet.
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Part I

OVERVIEW





All truths are easy to understand once they are discovered;
the point is to discover them.

—Galileo Galilei (Astronomer and Physicist) [250] CHAPTER 1
INTRODUCTION

Infrastructures are the fundamental facilities and systems serving a country, city, or area
necessary for its economy to function. Roadways, power lines, and communications
networks are key examples of such infrastructure, enabling and facilitating essential
services like the distribution of electricity, transportation of goods and people, and the
exchange of services, forming the backbone of modern civilization.

1.1 Background and motivation

Most infrastructures are geographically and spatially extensive, covering hundreds or
even thousands of kilometers, frequently traversing challenging terrains or inaccessible
areas such as mountains and fjords. In addition to this, they are often exposed to
harsh nature and extreme weather events that can pose a threat to the integrity of the
infrastructure. The impacts of climate change have further increased these risks, leading
to more frequent and intense extreme weather phenomena [252]. This escalating trend
underscores the growing vulnerability of infrastructure to environmental challenges.
Because of its importance in society, infrastructure disruptions and outages can
directly affect people’s life. For instance, trees in proximity to infrastructure can cause
operational interruptions, falling and toppling over during severe weather conditions
[82]. This can result in trees entangling with electrical lines or blocking transportation
routes. In Norway, more than 80% of all power outages are due to a combination of
vegetation and weather events [210].

Such incidents can also serve as a catalyst for severe wildfires, which in dry areas
can expand quickly, leading to extensive damage and service cessation [28]. The
financial repercussions of these events are significant, encompassing not only the
direct costs of damage but also those incurred from the necessary repair and recovery
processes [205]. Disaster management and response is another critical aspect that
comes into play during extreme weather events like hurricanes, where fallen trees
can lead to substantial difficulties for local communities. Emergency response teams
need to swiftly gather data on the scope and intensity of hurricane-induced damage in
order to enhance the effectiveness of the recovery operations that follow such natural
catastrophes [117], [76].

Consequently, entities responsible for managing infrastructure assets (such as
electricity providers, governmental agencies, and local authorities) are compelled to
invest significant resources in the surveillance and monitoring of these infrastructures.
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In Europe and the US, vegetation management constitutes approximately 35% of the
total operational expenditures for utilities, amounting to a cost ranging from 100 to
1500 Euros per kilometer of power line per year, depending on technological factors,
geographic location, and the extent of the network [203]. Established methods involve
deploying ground crews for visual inspections of the infrastructure network and, at
times, utilizing drones or helicopter flights for aerial assessments [154].

Fig. 1.1: Transmission tower and relative
power line corridor in a forested area. Image
from [179].

In managing the electric grid, oper-
ators usually establish a clearance zone
along the power lines, typically clearing a
swath of land on each side, within which
they remove trees to prevent encroach-
ment on the lines. Figure 1.1 shows an ex-
ample of a transmission power line right
of way. Recently, new approaches con-
sist of replacing and replanting poten-
tially hazardous trees with species that
are inherently smaller or have slower
growth rates, maintaining biodiversity
[52]. Therefore, vegetation asset teams
can also benefit from knowing the tree
species along the lines, enhancing this
way the effectiveness of vegetation man-
agement strategies.

Despite their necessity, traditional methods of monitoring are not without drawbacks.
Manual surveys and visual inspections are labor-intensive, expensive, and potentially
dangerous, especially during or in the aftermath of events such as hurricanes where
emergency responders may encounter unstable structures or precarious trees that
pose additional safety risks. Traditional methods also contribute to environmental
pollution through CO2 emissions during patrols, whether by vehicle or aircraft. It has
been estimated that monitoring a 33,000 km stretch of infrastructure using helicopters
results in the emission of approximately 165 tonnes of CO2. This significant carbon
footprint reflects the fuel consumption and inefficiency associated with helicopter
patrols, especially over extended distances [188]. Given the scale of the infrastructure,
inspections are conducted at intervals rather than on a continuous basis, sometimes
with several years between assessments [70]. Similarly, tree species databases are
often created from field investigations or reference datasets that are typically low in
resolution or contain noisy data [68]. As a result, the availability of updated information
is infrequent, and the decision-making may not align with the rapid pace at which
certain risks, such as vegetation overgrowth, can emerge.

Recently, the advent of more cost-effective satellite launches and the deployment of
more sophisticated sensors have revolutionized the potential of using satellite imagery
for infrastructure monitoring. The affordability and quality of satellite imagery has
significantly improved, and satellite services now offer high-resolution images with
frequent updates and comprehensive coverage. Comparative analysis indicates that
satellite imagery can be up to 60% more economical compared to images obtained
from helicopters and drones [177]. This technology paves the way for a more efficient

4 Chapter 1



1.2 Research questions

approach to monitor potential vegetation encroachment near power lines, as satellites
can provide regular, wide-ranging surveillance without the high costs, time investment,
and carbon emissions associated with traditional methods. Satellite monitoring of
the same 33,000 km line considered before is estimated to result in only about 4.25
tonnes of CO2 emissions [188]. This drastic reduction is attributed to the satellite’s
ability to cover vast areas without the direct fuel consumption. The increase coverage
and cost efficiency can shift the infrastructure monitoring paradigm from the current
cycle-based and reactive protocols to a more proactive approach. By doing so, there
would be enhanced and more frequent situational awareness regarding the status of
the infrastructure, allowing for timely interventions before issues escalate.

1.2 Research questions

Taking into account the challenges and limitations of traditional infrastructure monitor-
ing methods, leveraging satellite imagery presents a promising avenue for enhancing
efficiency in this domain. Despite this potential, it is however impractical and inefficient
to manually analyze satellite images and observing infrastructure lines on computer
screens. The sheer volume and frequency of the satellite data necessitate the creation
of automated processes. These processes are crucial for effectively providing valuable
insights from the multitude of imagery, transforming raw data into useful intelligence
and decision-making tools without the need for exhaustive manual effort.

The research detailed within this thesis aims to explore how, upon the acquisition
of satellite imagery, to effectively monitor the infrastructure networks. The focus is
on developing methodologies and algorithms that can analyze satellite images to
identify potential physical threats from the surrounding environment, detect changes,
assess risks, and provide timely updates about the condition of critical infrastructure.
The trajectory of the research undertaken in this thesis is dual, concentrating on
two pivotal areas. One direction is the monitoring of power line infrastructure,
developing specialized techniques and tools for the surveillance and maintenance
of vegetation along power transmission and distribution networks, ensuring their
operational integrity and resilience. The second direction is the roadways monitoring
and disaster management, especially resulting from natural disasters and extreme
weather conditions, with the goal of mitigating the impacts of severe weather events,
enhancing the preparedness and responsiveness of communities and infrastructure
systems to such unpredictable challenges.

For each of these two directions, research questions, and associated sub research
questions have been identified and explored as follows:

• RQ 1: How to achieve a better situational awareness of the vegetation status
along power lines using satellites?

– RQ1.1: How to assess the risk of vegetation near power lines using high-resolution
optical satellite images?

– RQ1.2: How to improve the quality of forests inventory databases and classify tree
species?

Chapter 1 5
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– RQ1.3: How to characterize trees near infrastructure lines and estimate their
vulnerability with respect to weather?

• RQ2: How satellite imagery can help in roadways management against natural
disaster?

– RQ2.1: How to detect fallen trees on roadways after a hurricane with limited data?
– RQ2.2: How to characterize vegetation-induced roadways vulnerability and enhance

infrastructure resilience?

1.3 Research method and approach

The research in this thesis has been divided into two directions, each targeting one
of the two main research questions listed in Section 1.2. This structured approach
encompasses two distinct projects, each developed through collaborative efforts with
various partners over the course of the Ph.D. research period. These two projects are:

1. Power line monitoring. This research has been established by the GridEyeS
project [55], supported by the European Space Agency (ESA) with technical
collaboration from the industry partners, namely StormGeo [4] and eSmart
Systems [2]. The project focuses on the characterization and assessment of
vegetation along power lines to prevent service disruptions and maintain the
reliability of the electrical grid. Additionally, the project involves collaboration
with Linja [3], which plays a pivotal role as an electric utility end user, providing
practical insights and real-world applications for the research outcomes.

2. Roadway management against natural disasters. The research investigates
strategies and methods for managing and mitigating the damage caused by
extreme weather events, in particular hurricanes, with an emphasis on prepared-
ness, rapid response and recovery. This project (called internally DisasterView)
has been initiated as a collaboration between the Western Norway University of
Applied Sciences, Florida State University (FSU), and the City of Tallahassee, cap-
ital of Florida. Additional support and collaboration is provided by the United
Nations’s Focus Group on AI for Natural Disaster Management [234].

Figure 1.2 presents the overarching research approach and the associated activities
that form the backbone of this study, acting as both a roadmap and a visual guide
that captures the essence of the research conducted in this thesis. It graphically lays
out the research domains we have explored, marking out the specific questions that
each attached paper seeks to answer. The initial stage is characterized by a selection
process of the specific use case, task, and objectives, which are fundamental in directing
the course of the study. State-of-the-art methodologies and tools from the fields of
remote sensing and computer vision analysis provide the theoretical foundations upon
which tailored methodologies are built and then applied to the specific study area.
Following this, there is an acquisition of satellite imagery to the area under study.
The selection of these images is critical, with their quality and quantity being directly
influenced by the nature and demands of the task at hand. Additionally, when deemed

6 Chapter 1



1.4 Thesis outline

Infrastructure Monitoring 
using Satellite Imagery 

and Computer Vision

Paper A Paper B Paper C

RQ 1.1 RQ 1.2 RQ 1.3

RQ 1: Power line monitoring

▪ Project: GridEyeS
▪ Use case: Norway

Framework

Experiments

Pre-disaster 
(preparedness)

Post-disaster 
(damage detection)

RQ 2.1RQ 2.2

Paper E Paper D

RQ 2: Roadway management 
against  natural disasters

▪ Project: DisasterView
▪ Use case: Florida

DISASTER VIEW

Framework

Experiments

Results

Theoretical foundations
(remote sensing, 
computer vision)

Satellite imagery,
other relevant data

Ground truth data,
end-users feedback

implementation

acquisition

evaluation
Results

implementation

acquisition

evaluation

Fig. 1.2: Road-map delineating the scope of research in this thesis. It organizes the study
of this Ph.D. thesis into two principal categories: power line monitoring, and roadways
management against natural disasters. Within each of these two categories, targeted
research questions are formulated and systematically addressed in the respective
papers. Further details on Paper A-E are provided in Chapter 4 and Chapter 5.

necessary, supplementary data are gathered. To validate the robustness and accuracy
of our research findings, we conduct a series of experiments. Validation processes
involves the use of ground truth data, which typically encompasses high-resolution
aerial photographs, LiDAR point cloud data, as well as inputs and feedback from
domain experts, end-users, and partners of the projects. This multi-faceted approach to
validation ensures that our findings are not only theoretically sound but also practically
relevant and reliable.

Each research direction with relative research questions and corresponding papers
are further discussed in details in Chapter 4 and 5, respectively.

1.4 Thesis outline

The thesis is structured in two parts: Part I provides an overview of the research field
of this thesis. It lays out the theoretical groundwork in remote sensing and computer

Chapter 1 7
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vision and places the research within the current state-of-the-art through a review of
related work. Part II comprises the papers that are attached to this thesis and represent
its principal contributions. Part I is divided into the following chapters:

2. Remote sensing technologies: This chapter serves as an introductory overview
of the fundamental remote sensing technologies that form the basis of the research
presented in this thesis, with particular focus on satellite imagery. The chapter covers
the various types of satellite sensors, including optical, radar, and LiDAR, and delves
into the different aspects of satellite imagery such as spatial, spectral, and temporal
resolution.

3. Computer vision in remote sensing: This chapter focuses on the application
of computer vision techniques in remote sensing. It begins with an exploration of
traditional image processing methods, discussing how these techniques are used to
enhance and extract meaningful information from remote sensing data. The chapter
then transitions to more recent advancements in the field, focusing on how machine
learning and deep learning have revolutionized computer vision, particularly in the
context of remote sensing. Topics include the evolution and impact of machine learning
algorithms, the application of models like convolutional neural networks, autoencoders,
and the most recent research trends in computer vision.

4. Power lines monitoring using satellite images: In this chapter, we delve
into the contributions of this thesis within monitoring of power lines using remote
sensing techniques, specifically through the analysis of satellite imagery. The chapter
systematically introduces the three research papers. Each paper is examined and
linked to the specific research question it addresses. The emphasis is on showcasing the
approaches and findings that enhance the effectiveness of satellite-based monitoring
systems for power line infrastructure.

5. Roadways disaster management using satellite images: This chapter is ded-
icated to exploring the contributions of this thesis to the management of roadways,
particularly in the context of disaster scenarios, through the application of remote sens-
ing technologies. Similar to the Chapter 4, it provides an introduction of each research
paper pertaining to this area. The focus is on illustrating how satellite imagery and
remote sensing methods can be used to enhance the resilience and management of
roadway infrastructure with respect to natural disasters and other disruptive events.

6. Conclusion and future works: In this concluding chapter, we revisit the research
questions posed at the outset of this thesis to provide a cohesive summary of the
contributions made throughout the research. The chapter synthesizes the key findings,
insights, and advancements achieved in the areas of power lines monitoring and
roadways disaster management using remote sensing technologies. Additionally, this
chapter outlines potential future directions for research in these areas. It identifies
gaps in the current knowledge, suggests areas where further investigation could yield
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1.4 Thesis outline

significant benefits, and proposes new methodologies or approaches that could be
explored.

1.4.1 List of papers
Part II consists of four published journal papers and one submitted journal paper, as
listed in Table 1.1:

Table 1.1: List of publications included in Part II. The symbol ’*’ denotes papers
currently under review.

Paper Year Journal

Paper A: Automated power lines
vegetation monitoring using high-
resolution satellite imagery [70]

2021 IEEE Transactions on Power Delivery

Paper B: Tree species classification
using high-resolution satellite im-
agery and weakly supervised learn-
ing [68]

2022 IEEE Transactions on Geoscience and
Remote Sensing

Paper C*: ASPIRE-V: Artificial In-
telligence and Space-based Moni-
toring for Power Lines Risk Evalu-
ation against Vegetation

2024 IEEE Transactions on Power Delivery

Paper D: Automated satellite-
based assessment of hurricane im-
pacts on roadways [66]

2022 IEEE Transactions on Industrial Infor-
matics

Paper E: Roadway vulnerability as-
sessment against hurricanes using
satellite images [67]

2023 SAGE Transportation Research Record

The papers included in this thesis (Table 1.1) encompass a variety of studies and
advancements in the domain of infrastructure monitoring. Nevertheless, throughout
the duration of Ph.D. project, other significant papers have been published in the same
field. These papers offer additional insights and represent further progress in the area.
However, they have not been incorporated into this thesis. This exclusion is due to the
necessity of selecting only the most relevant papers specifically aligned with the theme
of infrastructure monitoring, while also maintaining a manageable number of papers.
Below is a list of the papers published during this Ph.D. that are not included in this
thesis.

• [65] Gazzea, M., Aalhus, S., Kristensen, L. M., Ozguven, E. E. and Arghandeh,
R., "Automated 3D Vegetation Detection Along Power Lines using Monocular
Satellite Imagery and Deep Learning," 2021 IEEE International Geoscience and
Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021, pp. 3721-3724,
doi:10.1109/IGARSS47720.2021.9554938.

• [71] Gazzea, M., Solheim, A. and Arghandeh, R., High-resolution mapping of
forest structure from integrated SAR and optical images using an enhanced U-net
method, Science of Remote Sensing, 2023, 8, doi:10.1016/j.srs.2023.100093.
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• [69] Gazzea, M., Miraki, A., Alisan, O., Kuglitsch, M. M., Pelivan, I., Ozguven, E.
E. and Arghandeh, R., Traffic monitoring system design considering multi-hazard
disaster risks. Sci Rep 13, pp. 4883, 2023. doi:10.1038/s41598-023-32086-6

• [72] Gazzea, M., Sommervold, O., and Arghandeh, R., "MARU-Net: Multiscale
Attention Gated Residual U-Net With Contrastive Loss for SAR-Optical Image
Matching," in IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 16, pp. 4891-4899, 2023, doi:10.1109/JSTARS.2023.3277
550.

Moreover, the collaborative efforts within the GridEyeS project and with Florida
State University have resulted in the publication of additional papers. My contribution
as a co-author in these works has further broadened the scope and impact of our
research. These papers are listed as follows:

• [180] M. Pacevicius, D. O. Dammann, M. Gazzea and A. Sapronova, "Heteroge-
neous Data-merging Platform for Improved Risk Management in Power Grids,"
2021 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL,
USA, 2021, pp. 1-7, doi: 10.1109/RAMS48097.2021.9605796

• [117] A. Karaer, M. Chen, M. Gazzea, M. Ghorbanzadeh, T. Abichou, R. Arghandeh,
E. E. Ozguven, "Remote sensing-based comparative damage assessment of
historical storms and hurricanes in Northwestern Florida", International Journal
of Disaster Risk Reduction, 2022, (72), doi:10.1016/j.ijdrr.2022.102857

• [208] Sommervold O., Gazzea M., Arghandeh R. "A Survey on SAR and Optical
Satellite Image Registration". Remote Sensing. 2023; 15(3):850. doi:10.3390/rs
15030850

• [118] Karaer A., Balafkan N., Gazzea M., Arghandeh R., Ozguven E.E. "Analyzing
COVID-19 Impacts on Vehicle Travels and Daily Nitrogen Dioxide (NO2) Levels
among Florida Counties". Energies. 2020; 13(22):6044. doi:/10.3390/en13226
044
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It’s tiny out there...it’s inconsequential. It’s ironic that we
had come to study the Moon and it was really discovering
the Earth.

— William Anders (Apollo 8 Astronaut) [249] CHAPTER 2
REMOTE SENSING TECHNOLOGIES

Remote sensing is a scientific discipline focused on collecting both quantitative and
qualitative information about an environment from afar, utilizing electromagnetic
radiation [167]. The term usually refers to employing satellite or aircraft-based
sensor technologies to identify and classify objects on the Earth’s surface. Remote
sensing is used in an extremely wide range of fields, including geophysics and
geography (terrain mapping and tectonic movements) [44, 165], hydrology (monitoring
of water levels in rivers and lakes) [166, 184], ecology (monitoring biodiversity)
[39, 199], meteorology (weather forecasting) [102], environmental monitoring (tracking
deforestation, desertification) [135, 192, 207], oceanography (measuring sea surface
temperatures, currents, and marine ecosystems) [16, 17], and glaciology (study glaciers
and ice caps, tracking changes related to climate dynamics) [32, 83]. Beyond these
scientific fields, remote sensing has vital roles in other various sectors such as military
and intelligence (reconnaissance, surveillance) [186], disaster management (damage
assessment post-natural disasters and planning evacuation routes) [66, 67, 117], and
industrial applications (detection of gas leaks and monitoring of infrastructure integrity)
[197]. Remote sensing technologies have evolved to serve these diverse needs through
a variety of platforms and sensor types, each tailored to capture different data types –
from thermal imagery for heat detection to multispectral imagery [270]. The versatility
of remote sensing makes it a crucial component in the toolkit of many professions,
enabling a deeper understanding of the Earth and its processes.

There are two main types of sensors in remote sensing technologies: active and
passive sensors. Active sensors emit their own signal, such as a laser or radar wave,
and measure the characteristics of the signal after it bounces back from the target such
as change in energy, direction, and signal properties. The returned signal provides
valuable data regarding the object’s properties, such as its distance, shape, and material
composition. LiDAR (Light Detection and Ranging) and radar systems are prime
examples of active remote sensing devices [224]. Unlike active sensors, passive sensors
do not emit their own signal. Instead, they detect energy that is reflected or emitted
by the object’s surface. Passive sensors include a wide array of camera-based optical
sensors, such as those on optical satellites, drones, and even the human eye. These
sensors depend entirely on external sources of light to capture images, which is in most
cases sunlight.

Below we provide an introductory overview of the primary remote sensing tech-
nologies utilized in this PhD research, with a specific focus on satellite imagery.



Remote sensing technologies

2.1 Satellites

A satellite is an object that orbits around the Earth. The historic milestone of launching
the first artificial satellite was achieved by the Soviet Union with Sputnik 1 on October
4, 1957. Since then, the number of satellites in space has grown exponentially. As of the
end of June 2023, the number of satellites in orbit has reached 11,330. This number is
obtained from the Index of Objects Launched into Outer Space, a registry maintained
by the United Nations Office for Outer Space Affairs (UNOOSA) [61], which keeps
a comprehensive record of all man-made objects in space. Most Earth observation
satellites are positioned in low Earth orbit (LEO) to capture high-resolution data, which
is crucial for detailed analysis and application. However, some satellites are placed in
geostationary orbit (GEO), which allows them to provide consistent, uninterrupted
coverage of specific areas of the Earth [130]. These Earth observation satellites are
equipped with an array of different sensors, making them one of the most versatile and
valuable instruments for monitoring and studying our planet [270]. Figure 2.1 shows
an illustration of a satellite scanning the Earth surface.

Fig. 2.1: Illustrative image of an Earth obser-
vation satellite from the Sentinel-2 mission.
Image from European Space Agency (ESA)
[56].

Space satellites take advantage of
outer space’s near perfect vacuum to ob-
serve objects in a wide range of the electro-
magnetic spectrum. Figure 2.2 illustrates
the electromagnetic (EM) spectrum, cat-
egorizing it by wavelength, denoted as
λ. The spectrum encompasses a wide
range of wavelengths, extending from ra-
dio waves, which have wavelengths in the
order of meters or even larger, to gamma
rays, with extremely short wavelengths
of 10−12 meters or less. It is important
to remember that, for an electromagnetic
wave, the wavelength λ and frequency
f are inversely related through the con-
stant speed of light c as described by the
equation c = λf. This fundamental re-
lationship allows space satellites to be
designed with specific sensors that can detect various portions of the EM spectrum.

The Earth’s atmosphere acts as a selective barrier to different wavelengths of
electromagnetic radiation, a phenomenon known as atmospheric opacity [157]. Certain
wavelengths are able to penetrate the atmosphere, while others are absorbed, heavily
attenuated or scattered by it. High-energy radiation such as the majority of ultraviolet
rays, X-rays, and gamma rays are largely blocked by the atmospheric layers. This
protective filtering is crucial as these types of radiation are ionizing, carrying enough
energy to detach electrons from atoms or molecules, which can damage living tissue
and have detrimental effects on life on Earth. Additionally, parts of the microwave
spectrum and long radio waves are also impeded by the atmosphere. Consequently,
satellites in orbit around Earth must operate within specific frequency ranges that can
pass through the atmospheric barrier unobstructed. For Earth observation satellites,
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Fig. 2.2: Complete electromagnetic spectrum. Different wavelengths λ have different
penetration capabilities through the atmosphere, therefore only certain wavelengths
(or frequencies) can be used for space-based remote sensing. The most common
intervals are in the visible and infrared band (optical satellites) and the microwaves
(SAR satellites).

the most commonly utilized portions of the electromagnetic spectrum fall within the
bands of visible light and infrared. Optical satellites make use of these frequencies to
capture detailed images of the planet’s surface in the wavelengths visible to the human
eye, as well as in the infrared range, which can provide information about heat and
vegetation health among other things. Synthetic Aperture Radar (SAR) satellites, on the
other hand, operate using a band of the microwave spectrum that can penetrate clouds
and provide imagery irrespective of the time or weather conditions. These capabilities
make SAR imagery particularly valuable for Earth observation applications, including
topography, agriculture, and disaster management. Detailed discussions regarding
the technical distinctions and applications of optical and SAR satellite imagery can be
found in Section 2.1.3 and Section 2.1.4 of this thesis, respectively.

2.1.1 Satellite geo-positioning

Irrespective of the satellite type, the end product of a satellite acquisition is a georefer-
enced image. This is essentially a raster-based image composed of pixels, each encoded
with geographic location data that allows the image to be mapped accurately onto
real-world coordinates [217].

The process of obtaining these images from satellites orbiting Earth at high velocities
involves intricate steps to ensure precise georeferencing. This is crucial for Earth
observation tasks that demand high accuracy, particularly when dealing with detailed

Chapter 2 13



Remote sensing technologies

observations at smaller scales. The processing steps required to achieve such accuracy
is tailored to the specific characteristics of the satellite’s sensors as well as the details of
its orbital path and speed. In their orbits, satellites are often not positioned to capture
images directly downwards (known as the nadir view). Instead, they collect imagery
at an angle. This off-nadir angle, or shooting angle, is a critical consideration. A higher
elevation angle (which corresponds to a lower off-nadir angle) is typically desirable,
particularly in regions with significant topographical variation or tall structures, to
reduce the distortion effect on buildings, known as the "building lean" [23]. However,
this preference can conflict with the goal of minimizing the time it takes for the satellite
to revisit and capture imagery of the same area again.

DEM

Satellite image

Incorrect Correct

Displacement error

off-nadir angle

Pixel

Fig. 2.3: The orthorectification is the process
to corrected satellite images with respect to
the acquisition conditions such as viewing
geometry, platform attitude, Earth rotation
and of the relief effects (parallax).

Consequently, acquired satellite im-
ages require geometric corrections, com-
monly referred to as orthorectification
(Figure 2.3) [11, 137]. This process trans-
forms raw satellite imagery into an or-
thophoto, a geometrically corrected image
that can reliably represent true distances
and features on Earth’s surface. This is
because orthophotos are adjusted for po-
tential distortions due to topographic re-
lief as well as the camera’s lens, and the
tilt during image capture. The result is a
highly accurate depiction of the Earth’s
surface that can be used for a multitude of
applications, from mapping and survey-
ing to detailed environmental monitoring.
To carry out the orthorectification of a
satellite image, a Digital Elevation Model
(DEM) is employed in tandem with rational polynomial coefficients (RPCs) [223], which
are provided by the satellite operator. The RPCs are derived from the satellite sen-
sor’s data and encode detailed information about the sensor’s orientation in relation to
the Earth’s surface, both horizontally and vertically. These coefficients are essential
for the accurate modeling of the image’s geometry and for ensuring that each pixel
is correctly aligned with its geographical position on the Earth’s surface. The DEM
provides the necessary topographic information to adjust for elevation differences,
which is crucial for reducing geometric distortions in the image. In instances where
the initial geolocation accuracy of the satellite imagery does not satisfy the specific
requirements of a project, the RPCs can be fine-tuned. This refinement is achieved by
incorporating additional ground control points (GCPs), which are precise geographic
locations on the Earth’s surface that have been identified in the satellite image. By
matching these known points with their corresponding locations in the image, the
RPCs can be recalibrated to enhance the positional accuracy of the orthorectified out-
put. This step is often necessary when the project necessitates a very high level of
precision in the geo-referencing of the satellite imagery. Typical elevation angles are
of 60 degrees (30-degree off-nadir angles). Higher off-nadir angles are often favored
when the objective is to capture views from multiple angles to create stereo images
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[107]. Stereo imaging involves taking two or more photographs from different points
to produce a three-dimensional effect when they are viewed together. This technique
is particularly useful in remote sensing for creating digital elevation models which can
accurately represent the Earth’s surface in three dimensions, providing valuable data
for topographical mapping, urban planning, and geological surveys [134, 222].

2.1.2 Satellite resolutions

When utilizing satellite imagery for various applications, resolution is a crucial factor
to consider, and it encompasses several different aspects, each of which is significant
depending on the specific task and cost constraints. The primary types of resolution in
satellite imagery are summarized below.

Spatial resolution: Spatial resolution (Figure 2.4) is the smallest object that can be
detected on the ground by the satellite sensor, and is essentially determining the detail
visible in the satellite images. From a practical point of view, it refers to the pixel size
of an image represented in a raster format, which ultimately dictates the level of detail
observable in the image. Higher spatial resolution provides more detailed images,
which is essential for applications like detailed mapping, surveillance, and detailed
environmental studies.

50 cm/pixel 10 m/pixel

Fig. 2.4: Spatial resolution is the physical
dimension of each pixel. The smaller the
pixel size, the greater the details of the im-
age.

The choice of the required spatial reso-
lution is often a trade-off between the level
of detail required and the cost. Higher
resolution images typically require more
advanced sensors and more data storage
and processing capacity.

Radiometric resolution: Radiometric
resolution (Figure 2.5) defines a sensor’s
ability to differentiate between levels of
signal intensity, essentially measuring the
sensitivity of the sensor to the magnitude
of the electromagnetic energy. A higher
radiometric resolution means that the sen-
sor can distinguish subtler differences in
energy, which translates to a greater vari-
ety of intensity levels in an image. This is typically expressed in bits. For example,
an 8-bit sensor can distinguish 28 = 256 levels, while a 14-bit sensor can distinguish
214 = 16, 384 levels.

Spectral resolution: Spectral resolution refers to a sensor’s ability to distinguish
between different wavelengths of the continuous electromagnetic spectrum. Because
spectral resolution is particularity important for optical sensors, more information is
provided in Section 2.1.3.
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Fig. 2.6: The diagram illustrates the importance of selecting the necessary spatial and
temporal resolutions based on different remote sensing applications.

2 bit: 4 levels
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Fig. 2.5: Radiometric resolution
is determined by the number of
bits used to define each pixel. The
larger the bit depth, the higher
the number of tones can be rep-
resented.

Temporal resolution: Temporal resolution
refers to the frequency at which a satellite cap-
tures imagery of the same location. It is a critical
factor in monitoring environmental changes, ur-
ban development, deforestation or agricultural
progress. High temporal resolution is vital for
time-sensitive studies, allowing for frequent obser-
vations to track rapid changes or for accumulating
data to create composite images that minimize
the effects of cloud cover or seasonal variability.
Picking the right spatial and temporal resolution
heavily depend on the application, and the need
for up-to-date information versus the costs asso-
ciated with more frequent image captures (Figure
2.6).

Choosing the appropriate spatial and temporal resolution is crucial and should
be tailored to the specific needs of the application at hand. For example, monitoring
climate trends or geological topography typically necessitate a long-term approach,
where data is gathered and analyzed over several years to identify gradual changes
and trends. The temporal resolution may be lower, with images acquired on a monthly
or yearly basis, while spatial resolution needs might vary depending on the scale
of geological features or climate phenomena being studied. Emergency response
situations in contrast require rapid data acquisition with a high temporal resolution, as
decisions must be made within hours or days at maximum. In these cases, the latest
imagery is essential to assess situations such as natural disasters, where changes occur
quickly and updated information is critical for effective response. When monitoring
forests, a higher spatial resolution, within sub-meter to tens meters, is typically needed
to detect and analyze changes such as deforestation or forest health. This allows for the
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identification of individual trees or small-scale changes in forest canopy. For land cover
and agriculture applications, the spatial resolution can be lower because the features
of interest, such as fields or land cover types, tend to be larger and do not require
fine detail to be effectively monitored. However, a moderate level of spatial resolution
is still important to distinguish between different types of land use and to monitor
agricultural practices. In essence, high temporal resolution is vital when changes
over time are rapid and require immediate attention, while high spatial resolution is
crucial when the focus is on small-scale features. The key is to balance the resolution
requirements with the specific objectives of the study or project to ensure that the data
collected is both relevant and useful.

2.1.3 Optical satellites

Optical satellites, a subset of remote sensing spacecraft, utilize sensors that operate
within the optical window of the electromagnetic spectrum, encompassing the visible
and infrared bands. The majority of these satellites are passive, relying on sunlight
reflected off the Earth’s surface and atmosphere to capture images. This passive
operation means that they require less power, which translates to lower operational
costs [156]. The reliance on solar illumination does, however, impose certain limitations
on optical satellites. They are generally unable to gather data at night due to the
absence of sunlight. Furthermore, their effectiveness is compromised by cloud cover,
which can obstruct the view of the Earth’s surface, often necessitating multiple imaging
attempts to acquire a clear picture of a given location.

Multispectral imagery: One of the remarkable capabilities of optical satellites is
their ability to detect not only the visible spectrum but also wavelengths beyond human
vision. Spectral resolution refers to the number and width of spectral bands that a
sensor can discriminate (Figure 2.7).

A higher number of spectral bands allows the sensor to capture a more detailed
spectral signature of the observed objects or materials. Similarly, narrower bands
provide more precise spectral information. Standard cameras typically capture images
in three primary bands corresponding to the colors red, green, and blue (RGB), which
are combined to create a full-color image as perceived by the human eye. Satellites with
multispectral capabilities, however, can detect a broader range of the electromagnetic
spectrum. These multispectral satellites are equipped with sensors that can capture
more than the basic RGB bands. They might include additional bands such as the
near-infrared (NIR) band, which is just beyond what the human eye can see and is
crucial for analyzing vegetation health, among other applications [212]. More advanced
multispectral satellites can carry sensors that capture up to ten or twelve different bands.
These can include varying levels of the infrared spectrum like the short-wave infrared
(SWIR), medium-wave infrared (MWIR), and long-wave infrared (LWIR). Each of these
bands can be used to identify different materials or conditions on the Earth’s surface,
such as moisture content, heat signatures, and geological compositions [26, 34, 247].
The spectral resolution of a satellite sensor thus significantly enhances the types of
environmental analysis and remote sensing applications that can be conducted
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Fig. 2.7: Spectral resolution describes the ability of a sensor to define wavelength
intervals. Most of sensors (standard cameras and the human eye) captures only three
bands: Red, Green and Blue. Multispectral images can have from four to twelve bands,
including infrared bands. Hyperspectral can have hundreds of bands.

Hyperspectral imagery: Hyperspectral imaging is concerned with images spreading
across an extensive range of the electromagnetic spectrum. Hyperspectral sensors can
detect dozens, if not hundreds, of narrow spectral bands [33, 131]. Unlike multispectral
imaging, which captures discrete bands within wider spectral ranges, hyperspectral
imaging provides an almost continuous spectral signature for each pixel in the image.
The ability to capture such a detailed spectral resolution makes hyperspectral imaging
particularly valuable for applications requiring detailed object identification, chemical
composition analysis, and subtle differentiation of materials [62]. This includes fields
like mineralogy, agriculture and environmental monitoring [146, 213]. Available satellite
are the PROBA-1 from ESA, EO-1 from NASA, and PRISMA from the Italian Space
Agency (ASI). They contain between 200 and 250 spectral bands, with a resolution of
30 meters per pixel. However, given the limited spatial resolution, they are challenging
to use for small scale applications like infrastructure monitoring.

Pansharpening: Multispectral satellite sensors typically include a panchromatic
band, which is a single band capturing a broad range of wavelengths, often spanning
several hundred nanometers. The panchromatic band is designed to have a wide
bandwidth, which allows it to gather more light, resulting in a higher signal-to-noise
ratio. This capability enables the panchromatic band to provide imagery at a finer
spatial resolution compared to the narrower spectral bands of multispectral data.
However, because it encompasses a broad spectrum of light, the panchromatic band
does not retain specific color or spectral information about the targets, it only measures
their apparent brightness in a form of grayscale image.

Pansharpening is a technique used to fuse the high-resolution detail of the panchro-
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Panchromatic Multispectral Pansharpened

Spatial resolution: high
Spectral resolution: 1 band
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Spectral resolution: 4-12 bands

Pansharpening

Fig. 2.8: Pansharpening is the technique used to fuse a panchromatic image (high
spatial resolution, but single band) with a multispectral image (high spectral resolution,
but lower spatial resolution).

matic image with the color and spectral information from the multispectral bands,
which often have lower spatial resolution. Figure 2.8 shows an example of the pan-
sharpining procedure on a sample satellite image. This process enhances the spatial
resolution of the multispectral image, producing a single high-resolution color image
that combines the best qualities of both data types. Pansharpening algorithms take
advantage of the spatial detail contained in the panchromatic image and apply it to the
multispectral image, effectively "sharpening" the multispectral data while preserving
its valuable spectral properties. A review of the different pansharpening methods can
be found in [159].

Spectral indices: The capability to capture images in multiple spectral bands
enables the computation of several spectral indices that are invaluable in remote
sensing applications [265]. One of the most widely known indices is the Normalized
Difference Vegetation Index (NDVI), which is particularly effective in identifying and
assessing the health and vitality of vegetation [6].

The NDVI takes advantage of the fact that healthy vegetation absorbs most of
the visible light (particularly the red wavelength) and reflects a large portion of the
near-infrared light (700nm to 1000nm). By using the red (RED) and near-infrared (NIR)
bands, the NDVI equation is formulated to highlight the density and health of plant
life in a given area. The calculation of NDVI is expressed by the equation:

NDVI =
NIR− RED

NIR+ RED
(2.1)

where NIR is the reflectance value in the near-infrared band and RED in the red part
of the spectrum. NDVI values range from -1 to 1, where higher values correspond
to greater density and health of plant life (Figure 2.9). NDVI has been used in many
applications of remote sensing [96], including change detection [147] and vegetation
time-series analysis [139].

Besides NDVI, several other spectral indices has been developed to extract informa-
tion about water content [150], soil moisture [80], and snow coverage [48]. Additionally,
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Fig. 2.9: The Normalized Difference Vegetation Index (NDVI) is one of the most used
spectral index to assess vegetation status. It is a number between -1 and 1 that has high
correlation with the chlorophyll content of vegetation.

satellites are equipped with specialized instruments designed to measure various
biogeophysical parameters of the Earth. For example, certain satellites within the
European Space Agency’s Sentinel program are tasked with specific observational
roles. ESA Sentinel-3 is particularly focused on acquiring data related to Earth’s oceans,
marine ecosystems, water quality and pollution. ESA Sentinel-4 and Sentinel-5 are ded-
icated to the observation of the atmosphere, detecting and measuring the concentration
of various atmospheric chemicals such as ozone, atmospheric water vapour content
and aerosols, and pollutants as nitrogen dioxide, sulfur dioxide and formaldehyde.

Availability Table 2.1 enlists some of the most common multispectral satellites
available. The Sentinel satellites [57] are operated by the European Space Agency (ESA),
and the products are open access via the Copernicus Access Hub [54].

2.1.4 Synthetic Aperture Radar satellites
Synthetic Aperture Radar (SAR) satellites represent a distinct category of Earth
observation technology, utilizing a different segment of the electromagnetic spectrum
compared to optical satellites. SAR systems operate primarily within the microwave
band, which, as depicted in Figure 2.2, is capable of penetrating the Earth’s atmosphere
[108].

Unlike optical sensors that depend on external light sources such as the sun, SAR
systems actively emit microwave signals towards the Earth’s surface and capture the
backscattered radiation. This active illumination allows SAR satellites to acquire data
day and night, overcoming the limitations of passive sensors which require sunlight.
Additionally, the lower frequency, (i.e., longer wavelength) of the microwaves, increases
the penetration into snow, water, and vegetation. In fact, the SAR microwaves has the
ability to penetrate atmospheric conditions, including clouds, smoke, and even to some
extent vegetation and soil. Therefore, SAR can provide high-resolution images in a
robust and reliable data stream for continuous Earth monitoring, especially in case of
extreme weather events or wildfires [24].
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Table 2.1: Comparison of some high and medium multispectral satellites

Satellite

System

Provider

Spatial

Resolution

(Meters)

Wavelength

(nm)

Radiometric

Resolution

Temporal

Resolution

Ikonos DigitalGlobe Panchromatic: 0.83
Multispectral: 4

Pan: 526-929
Blue: 445-516

Green: 506-595
Red: 632-698
NIR: 757-853

11-bit 2.9 days at 1m
1.5 days at 1.5m

WorldView-2 DigitalGlobe Panchromatic: 0.5
Multispectral: 2

Coastal: 400-450
Blue: 450-510

Green: 510-580
Yellow: 585-625

Red: 630-690
Red Edge: 705-745

NIR1: 770-895
NIR2: 860-1,040

11-bit
1.1 days at <1m
3.7 days at 20◦

off-nadir or less

Pléiades-1A Astrium Panchromatic: 0.5
Multispectral: 2

Pan: 470-830
Blue: 430-550

Green: 500-620
Red 590-710
NIR: 740-940

12-bit 1 day

Sentinel-2A ESA RGB, NIR: 10
Red-EDGE, SWIR: 20

Blue: 0.490
Green: 0.560
Red: 0.665

Red-Edge: 0.705-0.783
NIR: 0.842

SWIR: 1.610-2.190

12-bit 5 days

PlanetScope

Dove-R

Planet Panchromatic: n/d
Multispectral: 3.7-4.2

Coastal: 431 - 452
Blue: 465 – 515

Green I: 513 - 549
Green: 547 – 583
Yellow: 600 - 620
Red: 650 – 680

RedEdge: 697 – 713
NIR: 845 – 885

12-bit 1 day

Fig. 2.10: Visual comparison between optical image (left) and SAR image (right).
On the left, an optical image displays a rich variety of colors, providing a vivid
representation of the Earth’s surface. On the right, a SAR image, devoid of color,
illustrates structural and textural details through variations in grayscale, highlighting
the different imaging capabilities of these two satellite sensor types. Image taken from
the SpaceNet Challenge Datasets [209].
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However, SAR imagery is generated from the intensity and phase of microwave
signals reflected back to the satellite’s sensors, and these signals are typically represented
in grayscale values. Therefore, unlike optical images, it does not contain any spectral
information and the interpretation of SAR images can be challenging. Figure 2.10
shows a visual comparison between an optical and SAR image. SAR images reveal
textural and structural features of the Earth’s surface rather than color variations [230].
For instance, smooth surfaces like water bodies tend to reflect SAR signals away from
the satellite, appearing dark in the image, while rough surfaces like urban areas or
forests scatter the signal back, appearing brighter.

L-, C- and X- bands in the microwave spectrum are the most widely employed in
SAR instruments, with application in mapping and land cover classification and forest
monitoring [225].

Interferometric Synthetic Aperture Radar (InSAR) is an advanced remote sensing
technique that involves comparing two SAR images to measure changes in the Earth’s
surface. These images can be captured simultaneously by sensors mounted on the
same satellite platform, known as single-pass interferometry [112]) or they can be
acquired during separate orbits at different times, which is referred to as repeat-pass
interferometry [206]. The primary application of InSAR is to produce interferograms,
complex images that represent phase differences between the two SAR images. These
phase differences can be interpreted to detect subtle ground movement, providing
crucial data for surface deformation mapping. This capability is instrumental in
monitoring geological phenomena such as earthquakes, volcanic activity, and land
subsidence. InSAR is also employed to generate high-precision digital elevation models
(DEMs), which are detailed 3D representations of terrain elevations [183].

2.2 LiDAR

LiDAR (Light Detection And Ranging) is a technique that involves directing pulsed
laser beams towards an object or surface and measuring the time it takes for the reflected
light to return to the receiver [241]. This information can be used to reconstruct a precise
and three-dimensional shape of objects and surfaces, allowing to examine both natural
and human-made environments with accuracy, precision, and flexibility. LiDAR is
commonly used to make high-resolution maps, with applications in surveying, geodesy,
geomatics [110], archaeology, geography, geology, geomorphology, seismology, forestry
[42, 256], as well as robotics. It is utilized for creating digital 3-D models of areas on
the Earth’s surface, ocean floor, and near coastal zones by altering the wavelength of
light. Topographic LiDAR typically uses a near-infrared laser (1064 nm) to map the
land, while bathymetric LiDAR uses water-penetrating green light (532 nm) to measure
seafloor [141]. Figure 2.11 shows an example of a LiDAR point cloud over the City of
Tallahassee, Florida.

While LiDAR technology offers exceptional precision, it comes with significant
drawbacks. The equipment and operation of LiDAR technology are relatively expensive.
The cost factor can be a significant barrier, especially for extensive or repeated surveys
over large geographical areas. LiDAR sensors produce extremely dense point clouds,
resulting in vast datasets. These large volumes of data demand substantial storage
capacity and robust processing power, which can be costly and technically challenging
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Fig. 2.11: Example of LiDAR point clouds acquired for Tallahassee, Florida. Open
Access data available at [136].

to manage [246]. Due to these factors, the practicality of LiDAR for applications
that require ongoing or recurrent scanning over extensive regions such as regular
infrastructure monitoring is limited. Nonetheless, LiDAR data is invaluable for certain
applications. It provides highly accurate elevation data and it serves as an excellent
source of ground truth information. This is particularly useful for validating and
calibrating other remote sensing data and for training and refining machine learning
algorithms.
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A computer would deserve to be called intelligent if it could
deceive a human into believing that it was human.

—Alan Turing (Mathematician and Computer
Scientist) [248] CHAPTER 3

COMPUTER VISION IN REMOTE SENSING

Computer Vision (CV) is a branch of Artificial Intelligence (AI) that develop method-
ologies to enable automatic systems with the capability to interpret and comprehend
the content of visual inputs, including digital images, videos, and other forms of visual
media. Image processing is the foundation of computer vision and involves algorithms
and filters for image enhancement (e.g., blurring, sharpening, and denoising), color cor-
rection, image compression, geometrical analysis and feature extraction, making them
more suitable for further analysis. The focus of computer vision lies in the interpreta-
tion and comprehension of the imagery content, emulating human visual perception.
Currently, this is increasingly achieved through the integration of traditional image
processing techniques with the capabilities of machine learning, deep learning, and
pattern recognition [90, 153]. Machine learning offers a collection of methodologies
to learn, make predictions or decisions based on data. In the context of computer vi-
sion, machine learning algorithms are trained on images to recognize patterns, classify
objects, and infer semantic information. These technologies enable the extraction of
complex patterns and features from images, facilitating a deeper understanding of
visual content (Figure 3.1).

Image 
Processing

Computer 
Vision

Machine 
Learning

▪ Image enhancement
▪ Compression
▪ Feature extraction
▪ Interpolation

▪ Pattern recognition
▪ Classification
▪ Regression
▪ Anomaly detection

Fig. 3.1: Computer vision sits at the intersection of image processing and machine
learning, blending techniques from both disciplines. Image processing encompasses
a variety of techniques for processing images to improve their quality or to extract
features. Machine learning brings a set of methodologies for making classifications
and predictions based on data.

When applied to satellite imagery, the computer vision techniques become powerful
tools for addressing the unique challenges presented by large volumes of spatial
data. State-of-the-art computer vision techniques, with the ability to learn and
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identify features from the environment, can process satellite images with exceptional
accuracy and speed [100]. This enables the extraction of valuable insights for various
applications, making it possible to rapidly interpret vast datasets that would be
impractical to handle manually [221]. This interdisciplinary field is continuously
evolving, with advancements in both image processing techniques and machine
learning models driving the development of more sophisticated and accurate computer
vision applications. The use of AI and computer vision techniques now allows for the
handling of challenges in land monitoring in ways that were not feasible or easy to
accomplish just a few years ago. [263]. Below we introduce the most common methods
used in computer vision to process satellite imagery.

3.1 Basics of computer vision

The minimum input for any computer vision task is an image. In a digital representation,
an image is a grid of small units called pixels, each represented by a numerical values
that describe the luminance of a certain hue (Figure 3.2).

Fig. 3.2: A digital image is a matrix composed of numbers (pixels), each with finite,
discrete quantities of numeric representation for its intensity. The numerical range of
each pixels depends on the radiometric resolution (Section 2.1.2).

As mentioned in Section 2.1.3, the number of channels depends on the spectral
resolution of the satellite image. Most satellite images have at least four channels (Red,
Green, Blue and Near-Infrared bands). Computer vision algorithm analyze images by
examining the pixel values, identifying certain colors or particular patterns indicative
of a specific object category.

When analyzing the content of a remote sensing image, a key task often performed
is the classification of its content. Classification involves assigning a discrete label or
category to elements within the image to understand and categorize what is being
observed. The labeling can occur at different levels of granularity, as shown in Figure
3.3.

1. In scene classification, a single label is assigned to the entire image or scene,
characterizing the predominant feature or land use. This type of classification is
particularly useful in land use studies where the aim is to differentiate between
broad categories such as forests, urban areas, or agricultural land, and to identify
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“Harbor”

pixel-levelobject-level

scene-level
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WATER
BUILDING FIELD
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CLASSIFICATION

Fig. 3.3: Hierarchies of classification in remote sensing. This image showcases the
varying scales at which classification can be applied: from the broad identification of a
scene to the detailed segmentation of the image into pixel-level categories.

key locations like harbors or airports. However, scene classification does not
provide spatial details and the precise boundaries or locations of specific objects
within the scene.

2. Object classification involves identifying and labeling specific objects within an
image. Unlike scene classification, object detection provides spatial information
about the objects, including their boundaries and locations within the image.
This is valuable for tasks such as identifying buildings, vehicles, or other distinct
structures in remote sensing imagery.

3. Pixel-wise classification (also referred as image segmentation) is the most fine
granularity approach. Each pixel in the image is classified, resulting in a detailed
map that shows the exact boundaries and shapes of different features or land
covers. Segmentation is crucial for detailed analysis where spatial precision is
important, such as delineating agricultural fields, water bodies, or other specific
land cover types at the pixel level.

Classification, and especially segmentation, represents a challenge in the domain
of remote sensing. The integration of machine learning has significantly advanced
these tasks, rendering them more attainable. Conventionally, the process begins with
image processing techniques that enhance the image and extract salient features. These
features are then input into machine learning models that perform the classification

Chapter 3 27



Computer vision in remote sensing

[201]. With the advent of deep learning, more integrated approaches have become
prevalent. Deep learning models, particularly convolutional neural networks (CNNs),
are adept at both feature extraction and classification inference within a singular,
unified framework. This end-to-end process can learn hierarchical representations
of data, automatically determining the most effective features for the task during the
training phase, and subsequently applying this knowledge to classify new, unseen data
with high levels of accuracy [161]. In the field of remote sensing, the synergy between
image processing, machine learning, and deep learning has forged a powerful toolkit
for analyzing and interpreting satellite imagery. Below we provide a brief overview of
how these tools are commonly utilized.

3.2 Image processing methods

The field of remote sensing has benefited greatly from the development of several
tools of image processing and analysis techniques, each designed to extract valuable
information from imagery data [19]. In this section, we explore some of the most
commonly employed procedures for analyzing and interpreting remote sensing images.

3.2.1 Satellite image enhancement

To facilitate visual interpretation, the visual characteristics of objects within an image
can be optimized through various image enhancement techniques. Image enhancement
techniques are employed to bolster contrast, accentuate edges, and improving the
overall clarity and definition of the image [9]. Additionally, normalizing the images
is crucial for achieving consistent and efficient results, particularly when training
deep learning models. Normalization processes adjust the images to standardize the
pixel intensity distribution, which not only clarifies image details but also promotes a
more homogeneous pixel distribution. This step is also essential as it can significantly
accelerate the convergence of deep learning algorithms and contribute to the robustness
of the model’s performance [104].

Histogram normalization is a technique that rescales the pixel values across a speci-
fied range, enhancing the image contrast and making the features more distinguishable
[127]. The process can be mathematically represented as follows:

Pout = (Pin − c)
(b− a

d− c

)
+ a (3.1)

where a and b are the lower and upper limit of the resulting range, which typically
are zero and one,respectively, and c and d are the lower and upper values of the input
range. A simple method for determining c and d is to respectively take the min and max
values of the input data. However, this can be problematic in the presence of outliers,
as they can disproportionately influence the normalization range. To mitigate this, a
more robust strategy is to set c and d at the 2nd and 98th percentiles of the image’s
pixel value histogram at each band. By doing so, the influence of outliers is reduced,
providing a more representative scaling that ensures the main body of the image
data is effectively normalized, thereby enhancing overall image quality for subsequent
processing and analysis. Figure 3.4 shows visually two RGB images with each band’s
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pixel distribution and the resulting image after the histogram normalization using the
percentile method.

Raw image Normalized image

Fig. 3.4: Histogram Normalization on RGB Satellite Imagery. The left part displays
the original, raw image, characterized by a pixel intensity distribution in each of the
Red, Green, and Blue bands that is heavily left-skewed, where only a minority of pixel
values fall above 0.4, resulting in an overall dark and detail-deficient visual. In contrast,
the right part exhibits the results of applying percentile-based histogram normalization.
This method has stretched the pixel intensity values to a broader range, effectively
lightening the image and bringing out more discernible details, thus significantly
enhancing the visual clarity and interpretability of the satellite imagery.

3.2.2 Spatial feature extraction
In computer vision, the notion of a ’feature’ is fundamental and refers to distinctive
elements within an image that are particularly informative or relevant for a given
task [89]. The significance of a feature is determined by the extent to which it aids
in accomplishing a specific objective, such as identifying an object or categorizing
an image. For instance, in facial recognition technology, typical features that hold
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importance are identifiable parts of the face such as the eyes, nose, and mouth. These
features are key to distinguishing one individual from another and are therefore
integral to the recognition process. Similarly, in the domain of image classification,
the detection of specific attributes like wheels or roofs may suggest the presence of
a vehicle or a building, respectively, within the image. Features can be as simple as
edges and corners or as complex as shapes and textures that are distinctive to certain
objects or classes. Higher level features encode more complex objects information.
Computer vision algorithms often require a detailed understanding of the image,
which necessitates considering the contextual, textural, and geometrical properties
of features. These algorithms analyze the relationships between neighboring pixels
to extract spatial information, which can include the orientation, arrangement, and
frequency of patterns within the image.

Convolutional kernel: The use of convolutional kernels is one the most common
and simple ways to extract low-level features in an image. These kernels, also known
as filters, are small, square matrices used to transform an image through a convolution
operation. The kernel is applied to the image by sliding it over every pixel and
computing a weighted sum of the pixel values within its footprint. Certain kernels
are designed to blur an image, averaging out the pixel values to create a smoother
appearance. Others are crafted to sharpen the image, thereby enhancing the contrast
between adjacent pixels to make features more distinct. There are also specialized
kernels for embossing and for edge detection, which isolates and highlights the
boundaries within the image. Despite their simplicity, convolutional kernels are the
building blocks of more complex computer vision systems, including those based
on Convolutional Neural Networks (CNNs) [47]. In CNNs, kernels are learned from
the data itself during the training process, enabling the network to automatically and
adaptively extract features that are most useful for the task at hand. The basic principle
behind convolutional kernels is illustrated in Figure 3.5.

Convolutional kernels are versatile tools in image processing that, when strategically
combined and followed by thresholding techniques, can effectively highlight and extract
critical features such as edges (Canny edge detection [37]), corners (Harris corner
detection [81]), and other key structural elements within an image. Finally, kernels are
used for more advanced feature extractors and descriptors such as the Scale-Invariant
Feature Transform (SIFT) [145] and Speeded-Up Robust Feature (SURF) [27].

Textural operators: One of the most used methods to spatially analyzing the pixels
in an image is the Gray-Level Co-occurrence Matrix (GLCM). The GLCM measures
how often pairs of pixel with specific values and in a specified spatial relationship
occur in an image. Denoting with L the image radiometric resolution (image depth),
then the GLCM is an L×L matrix where each element in the position (i, j) in the matrix
counts the frequency with which a pixel with the value i is adjacent to a pixel with
the value j. Figure 3.6 shows graphically the computation of the GLCM matrix. More
information is provided in [85]. The GLCM is used for texture analysis in various
fields of imaging science, because it can help to identify areas of an image with similar
texture or to distinguish different textures within an image.
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Fig. 3.5: This figure illustrates how the convolution operation is performed and how
different kernels transform the input image.

Once a Gray-Level Co-occurrence Matrix (GLCM) has been constructed for an
image, a set of statistical measures can be computed from this matrix. These measures
are known as Haralick features, or Haralick texture descriptors [87]. They are used
to quantify the texture of an image based on the GLCM and are fundamental in the
analysis of spatial relationships between pixel intensities. Some of the commonly used
Haralick features include contrast, correlation, energy, homogeneity and entropy. These
texture operators serve as a bridge between the raw pixel data and higher-level image
properties, enabling advanced image processing and interpretation tasks. Texture
features can be used further as input to machine learning models to classify images, or
part of images. Figure 3.7 shows an example on how such texture operators can help in
distinguishing between forest and fields areas.

The GLCM is widely used technique in remote sensing to extract and classify textural
patterns from satellite images [129, 162, 219]. Other feature extraction techniques
include the Locally Binary Pattern (LBP) [239], and Histogram of Oriented Gradients
(HOG) [169].
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Fig. 3.6: The Gray-Level Co-occurence Matrix (GLCM) counts the occurrence of pixels
in an image. There are three occurrences in the image where a pixel with the intensity
value of 4 is adjacent to a pixel with the intensity value of 2. The GLCM will reflect
this by placing the value 3 at the position (4,2). This entry in the matrix indicates that
this specific pixel intensity relationship occurs three times. Similarly, if the sequence
where a pixel with value 0 is adjacent to another pixel with value 0 occurs just once,
the GLCM will have the value 1 at the position (0,0).

3.3 Machine learning and deep learning methods

Machine Learning (ML) is a branch of artificial intelligence that focuses on developing
systems capable of learning patterns, making predictions based on input data, without
explicitly programmed instructions [63].

The core idea of machine learning is about developing algorithms that can learn
a specific function or mapping from given input data, and use this mapping on new
input data.

The learning process usually entails training a model using a dataset. In this
phase, the algorithm iteratively modifies its internal parameters to reduce a certain
loss function between its predictions and the expected results. After the model is
adequately trained and demonstrates satisfactory performance, it can be utilized to
make predictions on new, unseen data.

Machine learning methodologies are commonly categorized based on the paradigm
of the learning process they utilize, with each category addressing different types of
data and learning objectives. These categories include:

• Supervised Learning: In this paradigm, the model is trained using a dataset that
includes both input features and corresponding correct outputs (labels) [109].
The model learns to map inputs to outputs, aiming to generalize this mapping to
new, unseen data. Supervised learning is further divided into two main types:

– Classification is used when the output variable is discrete, for example
tree species or a land use. Figure 3.3 provided details about the levels of
classification in remote sensing.
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Satellite image GLCM operators

Fig. 3.7: On the left, red and yellow patches represent 10 × 10 pixel extracted from
forested (red) and field (yellow) areas within a satellite image. On the right, we calculate
the GLCM for each patch and derive the correlation and dissimilarity Haralick features.
When plotted on a scatter plot, the correlation and dissimilarity values allow for a
clear distinction between forest and field areas, demonstrating the efficacy of texture
analysis in classifying different land cover types.

– Regression applies when the output variable is a continuous value, for
example the height of a tree, the size of a glacier, or forecast wind speed.

• Unsupervised Learning: This approach involves training models on data that
does not have labeled outcomes [15, 63]. The model tries to learn the structure and
patterns inherent in the data. Common applications of unsupervised learning
include:

– Clustering: grouping data points into subsets or clusters
– Anomaly Detection: identifying outlier data points that do not conform to

the general pattern of the data.
– Density Estimation: determining the distribution of data within the input

space.

• Semi-supervised and Weakly-supervised Learning: hybrid approaches are
developed when training examples have very limited, missing, noisy or unreliable
labels [236, 260]. Unlabeled data, when used in conjunction with a small amount
of labeled data, can produce a considerable improvement in learning accuracy.

Feature engineering: Machine learning algorithms often perform poorly when
dealing directly with raw data, such as unprocessed images or datasets containing
excessive or redundant information. To address this, the process of feature engineering
becomes crucial. Feature engineering involves transforming the data into a format that
is more suitable and effective for machine learning algorithms. In the context of image
data, feature extraction means converting images into numerical values or derived
metrics that capture the essential characteristics of the images [189]. The goal is to reduce
the complexity of the raw data while retaining its informative aspects. The selection
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of relevant features often requires domain knowledge and expertise from experts in
the remote sensing domain (e.g., agronomists, forest engineers, oceanographers, and
climatologists) to identify which characteristics of the data are most relevant to the
problem being addressed. Indeed, when dealing with raw images, particularly in
the context of remote sensing and computer vision, the extraction and combination
of various derived features into a feature vector is a critical step for effective image
analysis. For instance, spectral index calculation (2.1.3), filtering, color histograms,
texture descriptors, edge statistics (3.2) or additional derived information (geometric
properties, color histograms, edge features) can be consolidated into a comprehensive
feature vector. The vector serves as a condensed representation of the image’s most
informative attributes.This feature vector is then used as the input for a classifier.
Machine learning classifiers, trained to recognize patterns within these feature vectors,
can effectively categorize the images based on the extracted features. This approach
allows for a more nuanced and accurate classification than would be possible using
raw pixel values alone, as it leverages the underlying information content of the images
more directly and efficiently.

Machine learning algorithms: There exist several machine learning algorithms,
suited for both regression and classifications tasks. An overview of the different
methods can be found in [195]. Although several machine learning models exist, they
all operate under the same principle. Once the feature input is provided, machine
learning models divide the feature space into distinct regions, commonly referred to as
decision regions. This process is at the center of how these models make predictions or
classifications. The feature space is a multidimensional space where each dimension
represents a feature in the dataset. For instance, in a two-dimensional feature space,
each point can be represented in R2. The decision regions are the areas within the
feature space where all points are predicted to belong to the same class. The goal of
a machine learning model is to determine the boundaries of these regions based on
the training data it has been fed. When a new data point (or feature vector) is input
into the model, the model assigns it to one of these regions, and thus to a specific class,
based on where it falls in the feature space. The effectiveness of a machine learning
model in making accurate predictions or classifications largely depends on how well it
can learn and define these decision regions and boundaries from the training data. A
well-designed feature selection process simplifies the task of accurately dividing the
feature space into meaningful decision regions.

Figure 3.8 illustrates the process of classifying land use in a satellite image, specifi-
cally distinguishing between forests and farmlands, through a simple machine learning
pipeline. The effectiveness of this classification heavily relies on the number and quality
of features used, underscoring the significance of the feature engineering process. In
this example, the classification is based on just two simple features: average color and a
single texture operator. However, for more complex scenarios, such as multi-class clas-
sification or images with diverse content, a broader set of features is generally required
to achieve accurate results.

A potential practical challenge is dealing with an excessively large number of features,
many of which might not significantly contribute to the predictive power of the model.
To address this challenge, techniques such as feature selection and dimensionality
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Fig. 3.8: Process of classifying land use in a satellite image with a classic machine
learning pipeline. (a): Similarly to Figure 3.7, red and yellow patches represent 10× 10

pixel extracted from forested (red) and field (yellow) areas within a satellite image.
(b): feature extraction process where each patch is converted into a feature vector,
incorporating metrics like average color across bands and Haralick texture dissimilarity
score. (c): illustrates the feature space, formed by the aggregate of all feature vectors
from the extracted patches (training dataset). (d) A machine learning model (in this
example a Support Vector Machine) is trained to divide the feature space into decision
regions. (e): demonstrates the application of this model: feature vectors are calculated
for arbitrary patches in the image, and the model assigns a corresponding label (forest
or field) based on its learned decision regions.

reduction are employed. This include techniques like Principal Component Analysis
(PCA) [121] to transform the feature space to a lower dimension, and reducing
the number of features while retaining most of the original data’s variability and
information [229]. These methods help in building more efficient, effective, and
interpretable models.

The most common ML methods used in remote sensing are Support Vector Machines
(SVM) [164],[181], Random Forests (RF) [29], [215], AdaBoost [259], Gradient Boosting
(XGBoost) [7] and Artificial Neural Networks (ANNs) [152].

Deep learning: Deep learning is a subset of machine learning that employs artificial
neural networks with multiple hidden layers to approximate a complex function, which
is where the term "deep" originates. Deep learning models can process raw data
directly and autonomously extract relevant features, a process traditionally handled by
manual feature engineering in classical machine learning approaches.

Each layer comprises a certain number of neurons, where each neuron typically
performs a simple transformation (i.e., a weighted sum followed by a non-linear
activation). Information passes through these layers sequentially, allowing the network
to build increasingly abstract representations of the data. Deep learning models are
highly flexible and can be applied to a wide range of tasks, including speech recognition
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Fig. 3.9: In traditional machine learning approaches, a significant part of the process
involves feature engineering — the manual extraction and selection of relevant features
from raw data. These features are then used as input for a machine learning model
to perform tasks like classification or prediction. In contrast, deep learning models
streamline this process by integrating both feature extraction and inference within a
single model framework. As data passes through the successive layers of a deep neural
network, the model automatically learns to extract and represent features. After the
feature extraction, the same deep learning model continues to process these learned
features to make predictions or decisions based on them. This end-to-end processing
capability allows for a seamless flow from raw input to final output.

[191], natural language processing [132], and complex decision-making tasks [204].
Deep learning is nowadays heavily used for image classification and segmentation
[161, 243]. However, deep learning models typically require large amounts of training
data to perform well. The more data they are trained on, the better they become at
extracting features and making accurate predictions or classifications [163]. Figure 3.9
shows the main difference between machine learning and deep learning.

However, there is a trade-off between the flexibility and effectiveness of deep
learning models and their interpretability, which is well-acknowledged challenge in the
field [18].This issue is often referred to as the "black box" problem in machine learning.

In traditional machine learning approaches with manual feature engineering
process, the nature and significance of each feature are well-understood and explicitly
defined by the data scientist. For instance, in the satellite image classification example
(referenced in Figure 3.8), features like color and texture are selected and engineered
with a clear understanding of their relevance and representation. In contrast, deep
learning models, especially those with multiple hidden layers, autonomously identify
and process features in a way that is not always interpretable. The features extracted by
these models, particularly in the deeper layers, often do not correspond to intuitive or
easily understandable characteristics. While these features may be highly effective for
the task at hand, understanding exactly what they represent and how they contribute
to the final decision or prediction can be challenging. This lack of transparency can be a
significant issue, especially in applications where understanding the decision-making
process is crucial, such as in medical diagnosis or autonomous driving. It raises
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concerns about accountability and trust in the models, particularly in scenarios where
decisions need to be justified or explained. Efforts to address this challenge include the
development of techniques in the field of explainable AI (XAI), which aims to make the
workings of complex models more transparent and their decisions more interpretable.
These efforts involve creating models that are both accurate and interpretable, or
developing methods to explain the decisions of existing complex models. We discuss
this further in Section 3.4.

Two of the most prevalent types of deep learning models are Recurrent Neural
Networks (RNNs) [93] and Convolutional Neural Networks (CNNs), each particularly
suited to specific types of data and tasks. RNNs are designed to process sequential
data, making them highly effective for tasks involving time series analysis. CNNs are
particularly well-suited for analyzing imagery. Given the focus on computer vision
in this context, CNNs are particularly relevant for this thesis and they are further
described below.

3.3.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) is a class of deep neural networks specifically
designed for processing data that has a grid-like structure, such as images [47, 140].
The architecture of a typical CNN includes several key components:

• Convolutional Layers: As in the traditional image processing methods described
in 3.2.2, convolutional layers in CNNs use filters to extract features from the input
images. These filters, or kernels, slide over the image and perform element-wise
multiplications followed by a summation. In the initial layers of a CNN, the filters
typically detect simple patterns like edges and textures. As the data progresses
through the network, subsequent convolutional layers combine these simple
patterns to detect more complex features. Compared to the traditional filters
however, these filters are learnable during the training process.

• Pooling Layers: These layers are used to reduce the spatial dimensions (width
and height) of the feature maps obtained from the convolutional layers. Pooling
helps in decreasing the computational load and the number of parameters.

Figure 3.10 illustrates two influential deep learning models, each serving distinct
purposes in computer vision.

The first model, VGG16, achieved notable success in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2014 [194] setting a benchmark for image
classification tasks. VGG16’s architecture is particularly effective in classifying images
into predefined categories [190, 262] and it is often fine-tuned for different applications
using transfer learning techniques [218]. However, the VGG16 model, like other image
classification architectures, is not inherently suited for segmentation tasks, as it tends to
loose spatial information which is crucial for pixel-level labeling (refer to Figure 3.3.) To
address segmentation challenges, architectures such as Fully Convolutional Networks
(FCNs) have been developed [143]. FCNs are designed for semantic segmentation and
are characterized by their use of only locally connected layers like convolution, pooling,
and upsampling, while removing dense layers. This enables them to maintain spatial
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Fig. 3.10: Two popular deep learning architectures for computer vision tasks. (a):
VGG16 for image classification. (b): UNet for image segmentation. Legend: con-
volution operation (yellow), pooling (red), up-sampling (blue), dense layers (green),
concatenation (gray)

information. One of the most used example of FCNs is UNet, initially conceived for
biomedical image segmentation [193]. UNet stands out with its unique architecture
that includes a contracting path for context capture and a symmetric expanding path for
detailed localization. This structure facilitates precise segmentation across various fields
within computer vision, including remote sensing. The versatility and effectiveness
of the UNet architecture have led to its widespread adoption and adaptation in a
multitude of segmentation tasks in remote sensing [149, 214, 261]. Throughout this
thesis, modified versions of the UNet architecture have been extensively utilized. The
original UNet model, known for its efficiency in image segmentation, has been adapted
and customized to suit the specific requirements of the tasks and different datasets
addressed in our research.

3.3.2 Convolutional Auto-Encoders (CAEs)

Convolutional Auto-Encoders (CAEs) [41] is another class of deep learning models.
They are a subset of CNNs that employs a similar toolkit of convolutional kernels and
pooling layers. CAEs however operate in an unsupervised manner, eliminating the
need for labeled data. Figure 3.11 shows the general architecture of a CAE.

An input image being is fed into the encoder part of the network. The encoder is
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Fig. 3.11: Architecture of a Convolutional Auto-Encoder (CAE).

typically composed of a series of convolutional and pooling layers, as those found in
Fully Convolutional Networks (FCNs) in 3.3.1. These layers progressively downsample
the image, mapping its content into a compact, encoded representation in a lower-
dimensional latent space called bottleneck. Following encoding, the network transitions
to the decoder phase. The decoder aims to reconstruct the original image from the
encoded representation. This involves a series of layers that gradually upsample the
encoded representation back to the original image size. The training objective of a CAE
is to minimize the reconstruction error e(·), which is the difference between the input
image x and its reconstructed output x̂.

The latent space is generally set smaller than the input dimensionality. Therefore
there is an inherent loss of information, leading to imperfect reconstruction and the
network has to compress the data. This constraint forces the CAE to learn and retain
only the most salient and relevant features of the input in its encoded representation.
Consequently, CAEs are effective tools for feature extraction and dimensionality
reduction, capturing the important content of the input [30, 158]. However, as
discussed in Section 3.3, because autoencoder is a type of deep learning models, the
extracted features can be difficult to understand and interpret.

Figure 3.12 demonstrates the application of a convolutional autoencoder in extracting
features from the EuroSAT dataset [92], a collection of 27,000 labeled 64× 64 images
from the Sentinel-2 satellite, aimed at land use and land cover classification.

In this example, each image from the dataset is processed through an autoen-
coder, which encodes the image into a 1024-dimensional feature vector. These high-
dimensional vectors encapsulate the essential characteristics of the images, capturing
meaningful patterns relevant to land use and land cover types. To visualize such
feature vectors the t-distributed Stochastic Neighbor Embedding (t-SNE) technique
[235] is used to map them in a more interpretable two-dimensional space (i.e., plane).
The t-SNE is a powerful nonlinear dimensionality reduction method that maps high-
dimensional data to a lower-dimensional space (in this case, R2), ensuring that similar
objects in the high-dimensional space are placed close together in the reduced space,
while dissimilar objects are placed far apart. Each point in the plane corresponds to
the encoded representation of an image, and these points are color-coded according
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Fig. 3.12: This figure illustrates the process of encoding satellite images from the
EuroSAT dataset [92] into a 1024-dimensional feature space using a convolutional
autoencoder. The feature vectors are projected onto a two-dimensional plane using t-
distributed Stochastic Neighbor Embedding (t-SNE), facilitating a visual representation
in R2. (a): Each point represents the encoded features of an image, with the points
color-coded according to the various land cover and land use categories defined in the
EuroSAT dataset. (b): To enhance interpretability, actual images from the dataset are
placed at their corresponding locations in the latent feature space.

to the various land use and cover categories defined in the EuroSAT dataset, such as
forests, rivers, highways, and so forth. As a result, similar images in the feature space
are located near each other in the t-SNE plot. Clusters of points representing forests,
pastures, and lakes are situated in closer proximity to each other, suggesting a higher
degree of similarity in their encoded features. In contrast, categories like permanent
crops or residential areas are noticeably distanced from these natural land cover types,
indicating distinct feature characteristics as perceived by the autoencoder. Furthermore,
the class ’highway’ is uniformly spread across the feature space. This observation
aligns well with the real-world understanding that highways traverse through diverse
types of land use. Unlike more homogeneous categories like forests or lakes, highways
can cut across urban areas, fields, forests, and various other landscapes.

Convolutional autoencoders have recently gained prominence in the field of remote
sensing due to their effectiveness in feature extraction through unsupervised learning.
They have demonstrated their versatility and efficiency in several key areas such as
unsupervised change detection [148], [53], semantic segmentation [144], and building
extraction [185]. This thesis also extensively utilizes convolutional autoencoders to
extract features from satellite images, as presented in Part II.

Variational Autoencoders (VAEs) are a specialized type of autoencoder that intro-
duce a probabilistic approach to encoding data. Unlike traditional autoencoders, which
learn a deterministic function to compress the input data into a latent (bottleneck)
space and then reconstruct it, VAEs model the latent space using probability distribu-
tions, typically Gaussian [20]. In VAEs, the encoder does not output fixed values for
the encoded representation of the input data. Instead, it produces parameters (mean
and variance) of a probability distribution (typically the Gaussian distribution), repre-
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senting the data in the latent space. Due to the probabilistic nature and regularization
of the latent space, VAEs are considered generative models, as they can generate new
data that is similar to the training data [49, 95].

3.4 Recent trends in computer vision for remote sensing

Recently, deep learning has seen significant advancements within the fields of computer
vision and remote sensing. Convolutional Neural Networks have emerged as a core
technology driving numerous applications in these fields. However, alongside this
growth, there is a burgeoning interest in enhancing the interpretability of machine
learning models, evolving training paradigms, and exploring novel model architectures.

As previously discussed, deep neural networks, despite being at the forefront
of various remote sensing tasks, often operate as "black boxes". Unlike traditional
methods where feature vectors are manually engineered and their significance is well-
understood, the features learned by deep learning models can be abstract and not easily
interpretable in physical or intuitive terms. To address this, recent developments in the
field have focused on methods that enhance model transparency and offer insights into
the decision-making process. Techniques such as Grad-CAM (Gradient-weighted Class
Activation Mapping) [198] and LIME (Local Interpretable Model-agnostic Explanations)
[10] have been developed. These methods aim to highlight which pixels or regions of
an image are most influential in the model’s predictions and improve transparency of
the decision-making process. These interpretability techniques are now being applied
in the context of remote sensing as well [74, 113].

Another recent research direction is the adoption of federated learning paradigms,
particularly in applications involving sensitive or private remote sensing data. Federated
learning involves training a machine learning model across distributed databases
without exchanging them. One of the primary advantages of federated learning is its
ability to maintain the confidentiality of individual datasets. Each client in the federated
network trains a model locally with their own data and only shares model updates
(e.g., gradients or parameters), preserving data privacy. Despite the decentralized
training, the shared knowledge from all clients is aggregated to improve the overall
model performance. Recent advancements in federated learning techniques specifically
tailored for remote sensing are explored in various studies, such as those by Zhu et al.,
2023 [269], Byktas et al., 2023 [36], and Zhang et al., 2023 [267].

In 2017, Vaswani et al. [237] introduced a novel architecture called Transformer,
which marked a significant milestone in the field of Natural Language Processing
(NLP). The core innovation of the Transformer is its self-attention mechanism, which
enables the model to weigh the significance of different parts of the input data (like
words in a sentence) relative to each other. This mechanism allows the Transformer to
understand long-range dependencies within the data, a critical feature for handling
sequences like sentences where context and order are essential. Some of the most
well-known language models, such as Google BERT [46] and the GPT-based models
(like OpenAI Chat-GPT), are built on the Transformer architecture. These models have
achieved state-of-the-art performance in a range of NLP tasks

In 2020, the concept of Transformers was extended to the field of computer vision
by Dosovitskiy et al. [50] with the introduction of Vision Transformer (ViT). The ViT
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model adapts the Transformer architecture for image processing by treating images
not as a grid of pixels but as a sequence of patches, similar to how words in a sentence
are treated in NLP. This approach marked a significant departure from traditional
convolutional models in computer vision, as ViT is free of convolutional layers. Recent
developments of transformers used in computer vision are presented in [86]. Motivated
by the recent advances in computer vision, researchers in the the remote sensing field
have explored te use of vision transformers for a wide array of tasks. A complete
survey covering recent transformer-based methods using very optical and synthetic
aperture radar (SAR) imagery is provided at [14].

In 2023, researchers from Meta, inspired by large language models, have introduced
Segment Anything Model (SAM) [122]. SAM represents a groundbreaking approach in
image segmentation, particularly with its capability for zero-shot segmentation. This
innovative model is trained only on labeled data from certain known (seen) categories,
but is still able to extend its segmentation capabilities to categories that it has never
seen during training. Building on this advancement, in 2023 Osco et al. [178], adapted
SAM for remote sensing imagery. Recent works make uses of SAM and existing remote
sensing datasets to develop pipelines for generating new large-scale segmentation
datasets [242, 257].
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Every leaf of the tree becomes a page of the book, once the
heart is opened and it has learned to read.

— Saadi (13th’s century Persian poet) [251] CHAPTER 4
POWER LINE MONITORING USING SATELLITE
IMAGES

Power transmission lines, responsible for transporting high-voltage electricity over
long distances from power plants, stretch over 7 million kilometers globally. These
transmission lines feed into a more extensive network of distribution lines, spanning
over 72 million kilometers, which carry lower-voltage electricity directly to consumers
[58]. These transmission and distribution lines constitute the backbone of the global
electric power market. This market is valued at approximately 151.99 billion USD and
is projected to grow at a Compound Annual Growth Rate (CAGR) of 6.4% from 2023 to
2030, indicating a substantial expansion in the coming years [211].

The global network of power lines is expected to undergo a significant expansion
to accommodate the increasing customer demand. In tandem with this growth, the
development of super grids and the rising integration of renewable energy sources
are anticipated to drive the deployment of even longer-distance grid systems. This
expansion of the grid network will add layers of complexity to the tasks of grid
monitoring and maintenance. Due to this increased complexity and scale, there is a
growing need for new, automated methods for conducting essential monitoring tasks
along power lines. Traditional, manual approaches will become impractical or too
costly as the grid expands and diversifies over a large scale. Therefore, the future of
grid management must rely heavily on innovative solutions that can offer efficient,
low-cost monitoring and maintenance to keep pace with the evolving demands of the
global power grid infrastructure.

In recent years, there has been a notable shift towards the adoption of advanced
remote sensing methods for power line inspection, leveraging technologies such as
LiDAR and Unmanned Aerial Vehicles (UAVs) [111, 154, 160, 200]. UAV and LiDAR
inspections greatly reduce inspectors’ work and improve the efficiency of power line
monitoring. However, this shift to more technologically advanced methods also
introduces new challenges, primarily related to data management and operational
costs. One of the main issues with both UAV and LiDAR inspections is the generation
of a substantial amount of data [142]. While these methods provide detailed and
high-resolution imagery, the sheer volume of data produced can be overwhelming.
Processing, analyzing, and storing this data require significant computational resources
and can be time-consuming, posing a challenge in terms of data management efficiency.
Furthermore, despite their advantages, UAV and LiDAR inspections are not without
cost implications. The acquisition and operation of these technologies can be expensive,
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and their coverage can sometimes be limited. UAVs, for instance, may have restrictions
in terms of flight duration and range, while LiDAR systems are limited by their
deployment and operational requirements. These limitations can affect the overall
cost-effectiveness and the extent to which these technologies can be deployed for
large-scale power line monitoring.

Space technologies, particularly satellite imagery, hold significant potential in
enhancing the efficiency of power line monitoring at a lower cost. According to [173],
the market for satellite-based earth observation (EO) predicts that annual revenues
from Big Data analytics utilizing satellite imagery will hit approximately $1.3 billion by
2026 (Figure 4.1).
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Fig. 4.1: Satellite-based earth observation market
forecast by region. Source: [173].

Satellite imagery can offer
wide-area coverage and frequent
updates at lower costs than UAVs
or other imagery sources. This
approach not only enhances the
reliability and efficiency of power
distribution, but also reduces
the operational costs and en-
vironmental impact associated
with traditional ground-based
or aerial monitoring methods.
Indeed, while satellite imagery
offers significant advantages in
terms of scalability and broad-
area coverage for power infrastructure monitoring, there are tradeoffs, particularly in
terms of spatial accuracy and detail. This limitation necessitates a balanced approach
that combines the strengths of both satellite-based monitoring and traditional visual
inspections. Visual inspections remain crucial for detailed assessment of specific power
line components such as insulators or the status of power poles, which typically re-
quire a high level of detail to evaluate effectively. Due to spatial resolution constraints,
such components may not be visible in satellite images. Therefore, ground-based or
close-range aerial inspections continue to play an essential role in comprehensive in-
frastructure assessments, providing the level of detail necessary for evaluating these
critical elements [170]. However, satellite imagery proves highly beneficial for general
monitoring of power line corridors and rights of way. It enables utilities to maintain
situational awareness over vast areas with greater efficiency and at a lower cost com-
pared to traditional methods. Satellite imagery has been recently used for different
power lines inspection tasks such as identifying the transmission towers and relative
corridors [116], assessing direct damages to power lines due to landslides [88], and
estimate fire ignition points on transmission line [268].

The European Space Agency (ESA) has been actively supporting the development
of various initiatives that leverage satellite technologies for energy sector applications.
One of these initiatives is the GridEyeS project [55] (introduced in Section 1.3), which
initialized the research presented in this PhD thesis. In the subsequent sections, we
review and associate our research questions with our contributions, demonstrating
how we have addressed these questions through our published papers.
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Fig. 4.2: Overview of our research on power line monitoring.

Overview and Road-map of the PhD research on power line monitoring Figure
4.2 provides an overview of the research papers attached to this thesis focusing on
power line monitoring. Each paper in this collection is dedicated to exploring a specific
task related to this area of study.

• Paper A started our research on this topic. It is centered on detecting trees along
power lines and developing a risk map. Such risk map is created based on the
proximity and distance of trees from the power lines, aiming to identify potential
hazards that these trees might pose.

• Paper B delves into the classification of tree species. It focuses on refining
available tree species databases, enhancing the accuracy and reliability of species
identification.
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• Paper C combines and integrates the results from our different past works, in
particular Paper A [70], Paper B [68] and [65], to characterize comprehensibly trees
along power lines. Moreover, it estimates the tree vulnerability to the power lines
under varying conditions, particularly considering the impact of environmental
factors such as weather.

The code of our framework for power line monitoring is available on GitHub [64].

4.1 Vegetation detection

Vegetation, particularly when interacting with strong winds and other extreme weather
events, has been identified as a primary contributor to power outages, as supported
by various studies and reports [12, 82]. This issue was further substantiated through
extensive surveys conducted with numerous companies and end-users during the
GridEyeS project [3, 210]. Diverse stakeholders underline the importance of an effective
vegetation management as a critical component in maintaining the integrity of power
networks (see Figure 4.3). Effective vegetation management involves regularly assessing
the growth and proximity of trees and other plants by setting a clearance zone along
power lines and their right-of-ways. After surveys, the vegetation management
teams consider appropriate actions such as trimming, removal or replacing trees with
less-dangerous trees, to mitigate risks on the infrastructure.

Fig. 4.3: A tree fallen onto the power line in
Innlandet, Norway, in 2021. Credits: NRK
[172].

Given this insight, the project empha-
sized monitoring and managing vege-
tation encroachment along power lines.
Vegetation growing too close to power
lines poses a substantial risk, as it can
lead to disruptions in service during ex-
treme weather conditions.

Several studies have explored the use
of stereo pairs of satellite images for iden-
tifying trees along power lines, demon-
strating the potential of this approach
in vegetation management near power
infrastructure, [13, 124, 255]. However,
obtaining stereo pairs that are accurately
aligned and suitable for creating precise 3D models can be technically challenging.
Furthermore, the process of capturing and processing stereo satellite imagery can be
costly. This cost factor becomes particularly significant when monitoring extensive
power line networks, making it less feasible for widespread, routine applications [79].

Vegetation detection using single images is a topic that has gathered considerable
attention, especially in the contexts of forest management and urban and agricultural
area monitoring. Traditional image processing tools have been effectively employed
for vegetation detection, as evidenced by several studies, [97, 98, 126, 182]. These
approaches, however, tend to be most effective in environments where trees are easily
distinguishable, such as areas with low-density vegetation or in orchards where trees
are regularly spaced. This is not typically the case for the areas surrounding power lines’
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rights of way (ROW), where vegetation can be denser and more randomly distributed,
posing challenges for traditional methods. Machine learning, when integrated with
vegetation indices and other relevant features, has also been utilized effectively for
vegetation detection. By combining these indices with other features and employing
machine learning techniques, researchers have developed more sophisticated and
accurate methods for vegetation detection [21, 151, 227]. In recent years, Convolutional
Neural Networks (CNNs) have emerged as a dominant methodology in various
fields, including vegetation detection, classification and segmentation [120, 138]. For
instance, [22] proposed a semantic segmentation-based deep learning method to
classify vegetation using RGB images. Similarly, segmentation models like the U-Net
architecture have been used to analyze high-resolution satellite images for forest
mapping [128, 151, 240]. However, a significant limitation of deep learning methods,
particularly in remote sensing applications, is their reliance on large labeled datasets
for training, which can be scarce and expensive to acquire for satellite imagery [245].

While various methodologies have been explored for vegetation detection, specific
focus on assessing the risk posed by vegetation encroachment in relation to power
lines has been limited in previous works. Our paper, titled "Automated Power Lines
Vegetation Monitoring Using High-Resolution Satellite Imagery (Paper A)" [70], and
published in the IEEE Transactions of Power Delivery journal addresses this gap. It
answers the first research question: "RQ 1-1: How to assess the risk of vegetation near
power lines using high-resolution optical satellite images?" by proposing a semi-supervised
approach for vegetation detection near power lines. We investigate spatial features
(such as the ones presented in Section 3.2.2) and train a machine learning classifier
to perform a pixel-level segmentation of trees. The output is further combined with
an unsupervised segmentation technique based on deep learning. Vegetation in the
vicinity of power lines is identified, and a risk index is formulated based on the density
and proximity of the vegetation to the power lines. The key output of this study is a
risk map that pinpoints vegetation-related threats along power lines. This map can be
a valuable tool for electric utility companies, providing them with updated situational
awareness that is crucial for effective vegetation management. The outcomes from
satellite images exhibited a high degree of correlation with the existing LiDAR survey
data, which served as the ground truth for our use case area. Additionally, in the
paper, we offer practical insights for electric utilities regarding the utilization of satellite
images for power line monitoring.

The complete paper is attached in Chapter A.

4.2 The importance of tree species for power lines

In the initial phase of the GridEyeS project, our focus was primarily on assessing the
risk posed by vegetation to power lines. Building on this foundation, we expanded our
research to include also the identification of tree species. The importance of having a
detailed inventory of tree species extends across various fields such as ecology and
conservation [254], wildlife habitat mapping [105], sustainable land use management
[25], and urban planning [133].

However, power line operator teams can also benefit from tree species inventories by
significantly enhancing the effectiveness of vegetation management strategies. Different
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tree species have varying growth rates, sizes, and branching patterns, which can affect
how they interact with power lines. By identifying the species, operators can tailor
their tree trimming and cutting plans more effectively. For instance, faster-growing
species might require more frequent maintenance, while certain species might have
characteristics that pose higher risks to power lines during extreme weather events
[264]. Additionally, recently, there has been a shift towards more environmentally
friendly vegetation management practices in the context of power line maintenance.
Rather than indiscriminately clearing all vegetation within the rights of way of power
lines, a more conservative approach is being adopted. New strategies focus on
selectively replacing certain tree species with others, aiming to balance the need for
safety and reliability in power transmission with the goals of maintaining biodiversity
and sustainability [176, 228]. Thus, the extension of our research to include tree species
identification not only broadens its applicability across various environmental and
urban planning contexts, but also provides a critical tool for power line operators
to optimize their vegetation management practices while contributing positively to
environmental conservation.

Conventional methods for tree species identification rely heavily on field surveys,
which are labor-intensive and time-consuming. These surveys often involve research
groups physically collecting samples and recording data using GPS devices, a process
that can be complex and slow. Remote sensing technology, particularly Airborne
Laser Scanning (ALS) tools [59, 115] plays a vital role in tree species classification.
Airborne vehicles can provide detailed data over small areas. Still, their use is limited
for systematic data acquisition over larger areas (greater than 1000 hectares), as they
are not considered stable or efficient platforms for extensive forest inventories [226].

Satellite imagery, combined with advancements in computer vision, offers an
alternative approach. Machine learning techniques such as decision trees, random
forests, support vector machines, and neural networks have become increasingly
popular for estimating tree species using satellite images [45, 60, 103]. Convolutional
neural networks (CNNs), more recently, have shown high accuracy in tree species
classification. In [101], the authors compared various neural network architectures for
detecting dominant forest species. In [40], the authors used WorldView-3 imagery and
a Res-Unet deep-learning model for individual tree species classification.

However, a significant challenge in these studies is the acquisition of reliable labels,
which often come from field investigations or existing reference datasets that may be of
low resolution or contain noisy data. The quality of these labels is crucial, as machine
learning models are highly sensitive to the accuracy of their training data. Inaccurate
or noisy labels can lead to a decline in the model’s generalization performance, as the
model might memorize incorrect labels and thereby degrade its performance on unseen
data [171]. This highlights the need for high-quality, reliable data in the development
of machine learning models for tree species classification using satellite imagery.

To illustrate the complexities involved in typical tree species inventories, especially
in high-resolution applications like infrastructure monitoring, Figure 4.4 shows an
example from the Norwegian tree species reference dataset [175].

This example highlights several challenges commonly encountered in reference
datasets for tree species. Some trees that are visible in the satellite imagery are
not included in the dataset. This incomplete coverage can lead to gaps in the data.
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Fig. 4.4: Challenges in a typical tree species reference dataset. Tree species inventory
databases often exclude certain trees and have imprecise boundaries between different
forest areas. Spruces (green), pines (blue), and deciduous trees (orange).

Moreover, the dataset often features boundaries between different forest stands that are
chunky and imprecise. These challenges pose significant difficulties for conventional
supervised classification procedures, which typically involve extracting patches from
satellite images and the tree dataset and using them to train a model. The inaccuracies
and imprecisions in the dataset can hinder the model’s ability to learn effectively,
resulting in poor performance and unreliable outcomes. This underscores the need for
improved methodologies and datasets for tree species classification.

To answer the second research question, "RQ 1.2: How to improve the quality of
forests inventory databases and classify tree species?" we wrote the paper titled "Tree
species classification using high-resolution satellite imagery and weakly supervised
learning (Paper B)" [68], published in the IEEE Transactions on Geoscience and
Remote Sensing journal. The study introduces an innovative automated approach
designed to enhance the accuracy and detail of tree species datasets using single
high-resolution satellite images. This method not only refines existing tree species
datasets but also enables classification at an almost individual tree level. The paper
presents a solution that significantly improves the quality of available forest inventories
by addressing some of the key challenges typically associated with tree species
classification, such as incomplete coverage, imprecise boundaries, and coarse-level
labeling. By employing weakly supervised learning techniques, the approach efficiently
overcomes the limitations of conventional supervised segmentation methods, which
often struggle with the imperfections and inconsistencies present in standard reference
datasets.

The complete paper is attached in Chapter B.

4.3 Tree characterization and dynamic risk assessment using satel-

lite images

Building on our initial research into vegetation-related risks to power lines, as detailed
in Section 4.1, our work has progressed towards a new, more comprehensive approach.
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We have expanded our focus beyond the presence and proximity of trees near power
lines, aiming to comprehensively characterize the trees in these areas with as much
detail as possible.

Existing literature includes several vegetation monitoring tools designed for forestry
and arboriculture, such as ForestGALES [5] and TREEFALL [84]. These models aim to
assess the vulnerability of trees with respect to environmental factors such as weather.
However, these models typically rely on pre-collected tree data, including location,
species, and physical characteristics, which are often gathered through field surveys or
ground inspections. The challenge lies in the high costs and logistical complexities
of monitoring expansive infrastructure networks, leading to infrequent data updates
and a potential mismatch between real-time vegetation growth and the data used for
management decisions. Estimating critical information from satellite imagery offers a
cost-effective and efficient way to obtain up-to-date data. Utilizing satellite technology
enables the frequent collection of information, which is especially advantageous in
scenarios where regular monitoring is necessary but difficult or expensive to conduct
through traditional means. We have advanced our research by integrating the analysis
from Paper A, which focused on detecting trees and developing a risk map along
power lines, with the tree species classification explored in Paper B. Building upon
these foundations, we have investigated estimating canopy height models from single
satellite images. This approach aligns with methodologies highlighted in existing
literature, such as those by [35, 75, 99], as well as our methodology presented in [65].
We employ a regression machine learning model to estimate the height of tree canopies
directly from satellite imagery. Combining tree detection, species classification, and
canopy height estimation offers a multidimensional approach to vegetation analysis
using satellite data.

To address the third research question: "RQ 1.3: How to characterize trees near
infrastructure lines and estimate their vulnerability with respect to weather?", we have
recently developed a new paper titled: "ASPIRE-V: Artificial Intelligence and Space-
based Monitoring for Power Lines Risk Evaluation against Vegetation (Paper C)",
currently under review process in the IEEE Transactions of Power Delivery journal. This
paper represents a pivotal advancement in our research, introducing a methodology
for the dynamic assessment of risks posed by vegetation to power lines. Our approach
leverages high-resolution satellite images to estimate crucial tree parameters, such as
tree crown position, canopy height, distance to power lines, and species type. It also
incorporates wind data, providing a dynamic and predictive element to risk assessment
by simulating the susceptibility of trees to falling due to wind impact and potentially
colliding with the power line.

The complete paper is attached in Chapter C.
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CHAPTER 5
ROADWAYS DISASTER MANAGEMENT USING
SATELLITE IMAGES

Natural disasters have a devastating impact on human life, property, and the environ-
ment. Between 2005 and 2015, these catastrophic events affected approximately 1.5
billion people worldwide in various ways. The toll included the loss of 700,000 lives,
1.4 million injuries, and the displacement of 23 million people who were rendered
homeless. The majority of these natural disasters were found to be hydrometeorologi-
cal in origin, meaning they were related to water (floods), weather (hurricanes), and
other climate phenomena [234].

Fig. 5.1: Picture of a tree blocking a road
in Florida due to Hurricane Irma in 2017.
Image from [220].

These events also significantly affect
infrastructure, leading to consequences
such as power outages [231], roadways
blockages [125], and service disruptions
[238]. In light of these impacts and the
increasing challenges posed by climate
change, it is crucial that infrastructure
networks, including electrical and trans-
portation systems, are designed for re-
silience. This means they should be capa-
ble of withstanding natural disasters like
floods, earthquakes, or wildfires, ensur-
ing their continued operation and rapid
recovery [94, 232, 233].

Remote sensing technologies, espe-
cially satellite imagery, combined with
the recent advancements in artificial intel-
ligence, have the potential to significantly bolster efforts in disaster management, relief,
and early warning systems. Despite these capabilities, AI is not currently a standard
element in the operational procedures for managing natural disasters. This indicates a
gap between AI’s potential applications and its actual integration into disaster manage-
ment strategies. Therefore, the second direction of this Ph.D. research, as illustrated
in Figure 1.2, centers on utilizing satellite imagery to enhance disaster management
practices. We established a collaboration between the Florida State University, the City
of Tallahassee, Florida, and the United Nation’s Focus Group on AI for Natural Dis-
aster Management (FG-AI4NDM) [234] to address this second direction, specifically
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targeting hurricanes as the primary natural disaster, with an emphasis on their impact
on roadways. This research direction has been divided into two distinct scenarios:

• Post-Hurricane Scenario: The objective is to analyze the aftermath of a hurricane.
The focus is on detecting changes and damages through satellite imagery for fast
damage assessment and efficient recovery efforts. This approach is crucial for
quick response and recovery of affected areas.

• Pre-Hurricane Scenario: In this case, the emphasis shifts to the period before a
hurricane strikes. Since no physical damages have occurred yet, the goal is to
identify vulnerabilities in infrastructure. By pinpointing these potential weak
spots, resources and attention can be allocated more effectively to mitigate the
impact of the impending hurricane.

This dual approach underscores the versatility of satellite imagery in both proac-
tive and reactive disaster management strategies, aiming to minimize the impact of
hurricanes on infrastructural systems. Each scenario is further described and related
to our research in Section 5.1 and Section 5.2.

Pre-disaster managementPost-disaster management

Paper D Paper E

Fallen trees Detection 
on Roadways

Roadway Vulnerability
Assessment

Fig. 5.2: Overview of our PhD research on disaster management.

Overview and Road-map of the PhD research on disaster management Figure
5.2 serves as an overview of the research papers included in this thesis and focusing on
disaster management. Each paper in this collection is dedicated to exploring a specific
task related to this area of study. Specifically:
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5.1 Post-disaster management: damage assessment and recovery

• Paper D is dedicated to the detection of fallen trees along roadways following
hurricanes. It proposes a methodology for identifying and assessing such
incidents to aid in prompt and efficient disaster response.

• Paper E deals with the pre-hurricane assessment of roadways. It evaluates
the vulnerability of roadways, taking into account factors such as exposure to
vegetation, the roadway network, and the potential impact on the population.

5.1 Post-disaster management: damage assessment and recovery

Assessing damage is critical following catastrophic events such as hurricanes, earth-
quakes, or tsunamis. Given the benefits of satellite imagery already outlined in this
thesis – namely scalability, cost efficiency, and extensive coverage – remote sensing has
increasingly been adopted for damage assessment purposes. For instance, recently, re-
mote sensing techniques have been used for damage assessment following earthquakes
[43], floods [187], building damages [216, 253], and hurricanes [31, 155]. Hurricanes
particularly inflict substantial damage in the United States, with the subtropical regions
of Florida, Alabama, and Louisiana often bearing the brunt. The U.S. ranks among the
top five countries most affected by natural disasters. From 1980 to 2019, the estimated
cost of damages from such disasters in the U.S. has reached approximately $1.75 trillion
[174].

In recent times, machine learning techniques have been introduced for detecting
hurricane-induced damages using satellite imagery, providing an efficient and accurate
approach to assess the extent of damage from such natural disasters [38, 119, 123, 258].
One significant limitation of supervised machine learning models, like those used
for damage assessment, is their heavy reliance on scarce and costly manually labeled
data. Moreover, it’s essential to have accurate, noise-free labels to train these models
effectively. For instance, obtaining extensive datasets with several images of damage
or covering the same area before and after a disaster is particularly challenging in
damage assessment scenarios. In addition to these challenges, supervised models
generally offer less scalability. They often require retraining for deployment in different
geographical areas [168].

In real-world remote sensing applications, unsupervised machine learning methods
often present more practical options [202]. Unlike supervised techniques, unsupervised
approaches in image processing automatically extract features for tasks like image
segmentation or change analysis. This methodology is particularly beneficial as it does
not require the labor-intensive and costly process of labeling data. Key examples of
these unsupervised approaches include the use of algorithms for unsupervised change
detection and autoencoders as discussed in [114, 266].

As part of our research on damage assessment for infrastructure, we focused
on identifying fallen trees that obstruct roadways after hurricanes. Utilizing high-
resolution satellite imagery captured before and after a hurricane, we developed a
change detection method to pinpoint areas where trees have fallen onto roads. In this
regard, to answer the research question RQ 2.1: How to detect fallen trees on roadways after
a hurricane with limited data?, we contributed with the paper titled Automated Satellite-
Based Assessment of Hurricane Impacts on Roadways (Paper D) [66], published in
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the IEEE Transactions on Industrial Informatics journal. The paper presents a novel
approach for detecting fallen trees on roadways following hurricanes, leveraging the
strengths of advanced machine learning techniques in remote sensing. Our approach
requires a limited number of labeled satellite images for trees in their normal state and
no labeled data for fallen trees. Effectively, it operates as an unsupervised method in
the context of fallen trees, enhancing resilience against the common issue of noisy or
inaccurate labels in satellite imagery and remote sensing.

The complete paper is attached in Chapter D.

5.2 Pre-disaster management: preparedness and vulnerability

analysis

Pre-disaster assessments involve analyzing an area before an event (e.g., a hurricane)
to evaluate vulnerabilities and enhance prevention and resilience. The general method-
ology involves assessing the current state of infrastructure and identifying areas more
susceptible to hurricane damage. Factors like infrastructure age, design, and location
relative to predicted hurricane paths are usually considered. By identifying these
vulnerabilities, preventative measures can be taken to reinforce infrastructure, and
emergency response plans can be tailored to anticipate areas of greatest need. This ap-
proach aims to mitigate the impact of hurricanes on infrastructure, potentially saving
resources and lives [51].

Current research primarily focuses on statistical methods to recognize spatial
patterns of potential outages and their correlation with demographic and socioeconomic
factors, as seen in [78] and [77]. Another emerging approach in vulnerability analysis
is analyzing the network topology [106]. This is done using graph mathematical tools
such as centrality [196] and percolation theory [8]. Moreover, traffic flow is integrated to
analyze the performance loss of road networks, or in general, any other transportation
system, in case of a failure [69, 91, 244]. However, vegetation, a significant contributor
to roadway blockages during severe weather, is often overlooked in calculating road
vulnerability.

We bridge the gap between vegetation detection and network topology analysis
with our paper Roadway Vulnerability Assessment against Hurricanes Using Satellite
Images [67], published in the SAGE Transportation Research journal. The paper
addresses the research question RQ 2.2: How to identify potential vulnerabilities in
roadways before a hurricane strikes?. The work proposes a new framework for rapid,
scalable, and cost-effective assessment of roadway vulnerabilities using high-resolution
satellite imagery. Our approach involves assessing the risk posed to roadways by
surrounding vegetation. This is achieved by evaluating tree characteristics from satellite
images, such as their height, distance to the road, health status, and density. We have
created a vulnerability index that combines this data on vegetation exposure with the
importance of each road. The potential impact of road closures on the transportation
network, including factors such as disruption to mobility and the number of buildings
affected, determines the road’s importance. This method enables the creation of a
detailed, road-specific vulnerability map for the entire network, which can be prepared
ahead of a hurricane. Such a map can significantly improve city and state agencies’
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planning and response strategies.
The full details of our method and findings are presented in Chapter E of our thesis.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORKS

This chapter summarizes the main research topic. Section 6.1 revisits the research
questions, providing an overview of how they have been addressed throughout this
thesis. Section 6.2 highlights the major contributions and advancements of this Ph.D.
study. Finally, Section 6.3 presents potential research efforts, suggesting directions for
continued exploration and development in the area.

The primary objective of this study has been to explore the application of high-
resolution satellite imagery in infrastructure monitoring, an area traditionally depen-
dent on manual surveys, ground patrols, aerial images, helicopters, and historical
datasets. However, these standard methods have significant disadvantages: they are
expensive, time-consuming, and, as a result, not regularly performed. This often re-
sults in the reliance on outdated or limited situational awareness regarding monitoring
infrastructure.

Additionally, the challenge is elevated by the vast spatial extent of infrastructure
networks, particularly power lines and roadways, which can stretch across hundreds
or even thousands of kilometers. The use of satellite imagery for monitoring offers a
promising solution to these challenges. It presents a more cost-effective and scalable
alternative, capable of covering extensive areas more efficiently. This approach can
significantly enhance the effectiveness and timeliness of infrastructure monitoring.

However, while we recognize the significant potential of satellite imagery in
infrastructure monitoring, it is important to note that it cannot replace entirely the
traditional approaches. Rather, it should be viewed as a complementary tool that
enhances conventional monitoring approaches. A more robust, comprehensive, and
efficient monitoring system can be established by integrating satellite imagery with
standard methods like manual surveys and ground patrols. This combination leverages
the strengths of both approaches, offering a more holistic solution to infrastructure
monitoring challenges.

6.1 Research questions revisited

Our research was divided into two interconnected use cases: (1) power line monitor-
ing and (2) roadway monitoring in disaster management. A particular emphasis was
placed on vegetation-related assessments. This focus stems from the recognition that
vegetation, especially when coupled with environmental factors such as weather, is the
leading cause of both power outages in power lines and roadway blockages during nat-
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ural disasters like hurricanes. By leveraging satellite imagery and artificial intelligence,
our research aimed to provide more timely, cost-effective, and comprehensive insights
into infrastructure vulnerabilities and damages. The use of satellite data offers a signif-
icant improvement over traditional methods, enabling more frequent, wide-scale, and
up-to-date monitoring.

In our study, we have identified two primary research questions, each of which is
further subdivided into a series of sub-questions focusing on specific tasks.

RQ1: How to achieve a better situational awareness of the vegetation status

along power lines using satellites? The first research question addresses specific
gaps in the field of power line monitoring through satellite imagery. To tackle these
gaps more effectively, we have divided RQ1 into three distinct sub-questions.

RQ1.1: How to assess the risk of vegetation near power lines using high-resolution optical
satellite images? Vegetation is a leading factor in power outages. Although numerous
methods for vegetation detection have been explored, the focus on evaluating the risk
posed by vegetation encroachment near power lines remains underrepresented in ex-
isting research. We propose an approach for vegetation detection that combines spatial
features, a machine learning classifier and an unsupervised segmentation technique
based on deep leaning to perform a pixel-level segmentation of trees. Furthermore, we
develop a risk index along power lines, pinpointing areas where vegetation encroaches
the corridor. This index is an important tool for identifying potential hazards and
minimizing the risk of power outages due to vegetation interference.

RQ1.2: How to improve the quality of forests inventory databases and classify tree species?
Power line operators can significantly improve vegetation management by utilizing tree
species inventories. Different tree species vary in growth rates, sizes, and branching
patterns, affecting their interaction with power lines. Also, recently, there has been
a shift towards environmentally conscious vegetation management in power line
maintenance. Knowing the species allows operators to customize their maintenance
strategies, such as adjusting the trimming frequency for faster-growing species and
selectively replacing certain tree species to ensure safety and reliability in power
transmission while preserving biodiversity and sustainability. Existing tree species
inventories frequently suffer from being scarce and lacking in detail. To address this,
we have developed a method to improve the precision and granularity of tree species
datasets using single high-resolution satellite images. This technique improves upon
current tree species datasets and facilitates classification at a near-individual tree level.

RQ1.3: How to characterize trees near infrastructure lines and estimate their vulnerability
with respect to weather? Expanding upon our studies on vegetation-related risk to power
lines (RQ1.1) and our investigations into tree species classification (RQ1.2), our research
has evolved to characterize the trees along power lines more comprehensively. Our
focus extends beyond assessing the proximity and density of trees near the power lines.
In our risk assessment calculations, we also incorporate additional parameters like
canopy height and meteorological data to estimate tree vulnerability.
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RQ2: How satellite imagery can help in roadways management against natural

disaster? The second research question tackles the challenges in roadway monitoring
with respect to disaster management. In particular, we have established collaborations
with multiple partners in Florida, leading us to select hurricanes as our focus of study.
Our work encompasses both pre-disaster and post-disaster management phases.

RQ2.1: How to detect fallen trees on roadways after a hurricane with limited data?
Addressing this question, we tackle the issue in damage assessment scenarios where
acquiring extensive remote sensing images after a disaster is notably challenging.
This scarcity of post-disaster data often hinders the effectiveness and generalizability
of traditional supervised machine learning models. To address this challenge, we
introduce a novel solution for detecting fallen trees on roadways in the aftermath of
hurricanes. Our method utilizes two satellite images – one taken before the hurricane
and another captured after it. In practice, this method works as an unsupervised
approach when applied to the context of fallen trees.

RQ2.2: How to characterize vegetation-induced roadways vulnerability and enhance
infrastructure resilience? Pre-disaster assessments involve analyzing an area before
an event, like a hurricane, occurs to evaluate vulnerabilities, aiming for enhanced
prevention and resilience. In most of the works in literature, the vegetation status is
often ignored or merely considered. We bridge the gap by including the vegetation
status (height, distance to the road, health status, and density) estimated from satellite
images on top of the traditional roadway network analysis.

Table 6.1 presents an overview of the research questions, linking them with the
respective research papers.

Table 6.1: Overview of the research questions and the research papers addressing
them. The symbol ’*’ denotes papers currently under review.

RQ Sub RQ Research focus Addressed in

RQ1
1.1 Tree risk assessment along power lines Paper A [70], Paper C [*]

1.2 Tree species classification
and database refinements Paper B [68]

1.3 Tree characterization and weather
risk assessment along power lines Paper C [*]

RQ2 2.1 Detection of fallen trees
along roadways after hurricanes Paper D [66]

2.2 Roadways vulnerability assessment
before hurricanes Paper E [67]

6.2 Contributions

The key contributions of this thesis are twofold, encompassing both theoretical advance-
ments in remote sensing and computer vision, and practical applications in the use
of satellite technology for infrastructure monitoring. These contributions are further
detailed below.
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6.2.1 Theoretical contributions to remote sensing and computer vision

Our work contributes to computer vision and remote sensing by developing approaches
specifically tailored to address challenges associated with incomplete or limited data.
In pursuit of this, we have designed and implemented customized semi-supervised
and weakly-supervised methods, as exemplified in our research presented in Paper
B [68] and Paper D [66]. These innovative approaches are particularly focused on
maximizing the effectiveness of data analysis under data-constrained scenarios.

6.2.2 Practical contributions to the use of satellites for infrastructure
monitoring

Our research has also made practical contributions toward enhancing the awareness and
application of satellite imagery in infrastructure monitoring. Following the publication
of Paper A and Paper C, our findings were recognized and included in the European
Space Agency’s market trend report [58]. This acknowledgment led to the extension of
the GridEyeS project into a new phase, where we are now tasked with deploying it
in real-world electric utility settings. Additionally, through our research presented in
Paper D and Paper E, we have actively contributed to the United Nations Group on AI
for Natural Disaster Management [234] in advancing the use of AI technologies in the
field of disaster management. This progression signifies our work’s tangible impact
and relevance in advancing satellite-based monitoring solutions in the infrastructure
sector.

6.3 Future work

Our research has laid the groundwork for utilizing satellite imagery in infrastructure
monitoring, covering various topics in this field with both theoretical and practical
implications. Nonetheless, there are promising new avenues worth exploring further.

Our studies predominantly employed multispectral optical satellite images, but
Synthetic Aperture Radar (SAR) satellites present an exciting new frontier in earth
observation, particularly for infrastructure monitoring. SAR’s significance is amplified
in the context of damage assessment following extreme weather events [73]. Obtaining
cloud-free images quickly is often crucial for emergency response, and this is where
optical images can fall short. SAR’s weather-independent capabilities could provide
a new level of robust analysis. While our research has delved into SAR applications
with some published papers, such as SAR-optical image matching [72] and forest
characterization [71], we have yet to apply SAR technology to infrastructure monitoring
tasks. Exploring the integration of SAR in infrastructure monitoring represents a
compelling and potentially fruitful research direction. This study area is currently
being pursued by other Ph.D. candidates in our research group, the Connectivity,
Information and Intelligence Lab [1].

Investigating the latest advancements in computer vision, such as the "Segment-
Anything" approach in remote sensing [178], is a prospective area for future exploration.
These cutting-edge techniques, which emerged late in 2023, were beyond the scope
of this thesis due to their recent development. They represent a promising method
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for processing images from a variety of geographical contexts and for generating new
samples and datasets thanks to their zero-shot learning capabilities. Their adaptability
and applicability to remote sensing data analysis make them a promising avenue for
further research.

Incorporating additional parameters into the risk calculation index presented in
Paper C could significantly enhance its comprehensiveness and accuracy. Integrating
more sophisticated weather and climate models and considering the effects of terrain,
slope, and topography would provide a more nuanced understanding of risk factors.
This enrichment of the risk index would allow for a deeper analysis of how various
environmental and geographical elements interact and impact the tree-related risk to
infrastructure.

Exploring the intersection of recent Large Language Models (LLMs) and remote
sensing presents another intriguing research direction. The integration of Natural
Language Processing (NLP) with convolutional neural networks could, for instance,
enable the formulation of textual queries and the extraction of answers from satellite
imagery. This approach would harness the capabilities of both language understanding
and visual data analysis, potentially revolutionizing how we interact with and interpret
satellite data.
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Automated Power Lines Vegetation Monitoring
using High-Resolution Satellite Imagery

Michele Gazzea , Member, IEEE, Michael Pacevicius, Dyre Oliver Dammann,
Alla Sapronova, Torleif Markussen Lunde, and Reza Arghandeh , Senior Member, IEEE

Abstract—Vegetation Management is a significant preventive
maintenance expense in many power transmission and distribu-
tion companies. Traditional Vegetation Management operational
practices have proven ineffective and are rapidly becoming
obsolete due to the lack of frequent inspection of vegetation
and environmental states. The rise of satellite imagery data
and machine learning provides an opportunity to close the loop
with continuous data-driven vegetation monitoring. This paper
proposes an automated framework for monitoring vegetation
along power lines using high-resolution satellite imagery and
a semi-supervised machine learning algorithm. The proposed
satellite-based vegetation monitoring framework aims to reduce
the cost and time of power line monitoring by partially replacing
ground patrols and helicopter or drone inspection with satellite
data analytics. It is implemented and demonstrated for a power
distribution system operator (DSO) in the west of Norway. For
further assessment, the satellite-based algorithm outcomes are
compared with LiDAR survey data collected by helicopters.
The results show the potential of the solution for reducing the
monitoring costs for electric utilities.

Index Terms—Satellite imagery, Vegetation management,
Power systems, Electric grid monitoring, Semi-supervised seg-
mentation

I. INTRODUCTION

POWER transmission and distribution networks spread
across countries and pass through forests, over various

terrain, and cities on their journey to electricity consumers.
Whenever vegetation interferes with power lines, it brings
safety, economic, and environmental risks. Vegetation, com-
bined with severe weather conditions, is the predominant
reason for outages in power systems that put millions of people
in darkness and bring billions of dollars in economic damage
[1]. In areas with severe drought, vegetation encroachment in
power lines’ right-of-way (ROW) can cause massive wildfires
with high fatality rate [2], [3]. Vegetation monitoring and
management is becoming ever more important in the wake
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of climate change and the increasing frequency and duration
of extreme weather events [4].

Utilities traditionally take a time-based approach with a
fixed cycle to vegetation monitoring by sending ground-based
patrol for visual line inspection and flying helicopters or
drones for optical and LiDAR surveys of the power lines. Due
to the vast size of service territories, the length of power lines,
and the line inspection costs, vegetation monitoring’s typical
cycle varies between one to ten years for different electric
utilities [5]. For example, the US electrical grid has more
than 200,000 miles of high-voltage transmission lines and 5.5
million miles of local distribution lines [6].

Existing literature on vegetation monitoring mostly uses
LiDAR surveys performed by helicopters or drones [7], [8].
LiDAR data provide an accurate 3D representation of an envi-
ronment. However, LiDAR data acquisition and processing are
extremely pricey and time-consuming. If LiDAR-based line
monitoring is performed for a large transmission or distribution
company, it is often done infrequently at an interval of once
every 5 to 10 years to scan the whole service area [9].

In recent years, the drop in launching costs and the growing
number of satellites and mini-satellites in orbit with high-
quality sensors has significantly reduced the cost of satellite
imagery [10]. Commercial satellite providers can offer high-
resolution images (0.25 or 0.5 meters/pixel) with frequent
revisiting time that covers most of the world. Consequently,
it brings the opportunity to combine scale, frequency, and
cost efficiency to enhance situational awareness regarding
vegetation encroachment in power lines’ right-of-way using
high-resolution satellite imagery [11], [12]. Therefore, vegeta-
tion management can be changed from traditional time-based
monitoring to risk-based monitoring.

Some studies [13], [14], [15] made use of multispectral
stereo pairs of satellite images for each specific area to
identify trees along power lines. However, stereo images are
challenging to capture and are costly for large scale areas [16].
This paper proposes a machine learning-based algorithm for
vegetation detection using a single satellite image, which is
more cost-effective.

Vegetation detection from single monocular images is also
a well-studied topic, particularly in the forest management of
agriculture and urban areas using classic image processing
tools for vegetation detection [17], [18], [19], [20]. However,
such approaches have been developed to work well where trees
are easily distinguishable, i.e., in low-density vegetation areas
[21] or when the trees are regularly spaced from each other in
orchids, which is not the case in the vast majority of power
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lines’ ROW [22].
Nowadays, Convolution Neural Networks (CNNs), have

become the leading machine learning methodology in many
fields due to their effectiveness at extracting feature repre-
sentations from images for classification and segmentation
purposes [23], [24]. For example, [25] proposed a semantic
segmentation-based deep learning method to classify vege-
tation (tree, shrub, and grass) using only RGB images. In
a similar work, [26] used a U-Net architecture for analyz-
ing high-resolution satellite images to map forests. However,
deep learning methods are generally supervised approaches
and need massive labeled datasets for the training, which
is extremely scant and expensive for satellite imagery and
remote sensing applications. Weakly-supervised methods are,
in general, more practical [27].

This paper proposes a framework to monitor vegetation
proximity to power lines using high-resolution satellite images.
From a methodological point of view, it is a semi-supervised
approach for vegetation detection that is a combination of
a deep unsupervised architecture and a supervised machine
learning algorithm. Being unsupervised, the first layer of the
proposed framework does not need any training data and takes
advantage of deep learning to capture meaningful patterns
in satellite images automatically. Nevertheless, it lacks the
semantic information about the physical meaning of the dif-
ferent clusters. On the other hand, the second supervised layer
contains the semantic knowledge of the vegetation patterns in
a satellite image, and it can be trained with minimal training
data. The proposed approach’s outcome is a geolocation map
for vegetation-related threats along power lines that provides
updated situational awareness to vegetation management teams
in electric utilities. The vegetation threat map is based on the
density and proximity of vegetation encroachment in power
lines’ right-of-way. The proposed framework is implemented
and validated in a vegetation management system for a power
distribution company in the western part of Norway. The
vegetation detection results from satellite images showed high
matching with the available LiDAR survey data which has
been used as the ground truth for the use case area.

II. USE CASE AND DATA DESCRIPTION

The study has been performed in collaboration with a power
distribution system operator (DSO) located in the western part
of Norway. The study area is a 22kV sub-transmission network
in a rural region that includes fields, sparse and dense forests,
and water streams. Power lines’ right-of-way is 20 meters
on each side which forms a 40 meter corridor (see Fig. 1).
Different datasets relative to the study area have been acquired
as further described in the following.

A. Satellite imagery
Two commercial high-resolution multispectral satellite im-

ages were used for the study area. The first is a Worldview-
2 8-channel image provided by Maxar and acquired in May
2018. The second is a Pleiades-1 4-channel image provided
by Airbus and acquired in September 2017, (see Fig. 2). Both
images contain separate channels ranging from visible to near-
infrared with a 0.5 meter/pixel spatial resolution.

Fig. 1: Study area located on the western coast of Norway

(a)

(b)

Fig. 2: RGB satellite image for the study area. The figure highlights the
regional power line (red) and sub-regional power line (green).

B. LiDAR point clouds

We also use LiDAR data in our study as a benchmark to
validate our satellite-based vegetation detection. The available
LiDAR data are grouped into different categories (vegetation,
buildings, roads, stones, poles), see Fig. 3.

The heights of 22kV overhead lines in the study area in
the western part of Norway are at a minimum of 7.8 meters
with an average of 10.8 meters. Trees should have at least
a 2.0 m distance to the conductors considering the catenary
curvature of wires [28], [29]. In this study, we used LiDAR
data provided by our electric utility partner as the ground truth
for trees’ location in the vicinity of power lines’ right-of-way.
However, the acquisition time for the available LiDAR data
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(a) 3D point clouds

(b) 2D projection

Fig. 3: Examples of LiDAR data used in the study

(Sep 2019) is different from the satellite imagery data we have
(Sep 2017 and May 2018) for the study area. To resolve the
time difference among data from LiDAR and both satellite
images, we assume that trees with a height higher than 2.5
meters in 2019, as observed in LiDAR data, are probably
older than two years old based on growth rate of trees in
this region. Therefore, the trees taller than 2.5 meters in 2019
are observable in satellite images from 2018 and 2017 at the
same location along the power lines’ ROW.

III. METHODOLOGY

The satellite image is analyzed using the proposed algo-
rithm, within a sliding window covering the power line right-
of-way. In this study, we use windows of 40 by 40 meters (80
× 80 pixels). The algorithm sweeps the whole length of the
electric power line in the study area.

Then, a segmentation map is created to show whether each
pixel is a part of a tree or not. The proposed machine learning
framework for satellite image processing is an ensemble of two
different algorithms to enhance the overall performance. The
first one is a supervised segmentation approach based on hand-
crafted features, while the second one is a fully unsupervised
algorithm developed for image segmentation tasks [30]. The
output of the proposed machine learning framework is used
for mapping vegetation risk along the power lines. Different
blocks of our proposed framework, as shown in Fig. 4, are
explained as follows.

A. Data Pre-processing Block

To develop a learning algorithm for tree detection, we need
to have labeled data for training and testing. Such labeled data
are a collection of binary images (for example ”1” for tree and

”0” for non-tree) that include the ground truth with the correct
location of trees. In this paper, we create the first labeled
dataset with the open-source raster graphics editor GIMP.
A second set of labeled data is created automatically using
LiDAR point-clouds for the same region. The 3D point clouds
are projected in 2D at Nadir and converted into gray-scale.
The resultant gray-scale binary image is smoothed through a
dilation operation (using a 3× 3 kernel).

The satellite image that we use is ortho-rectified and pan-
sharpened [31]. Ortho-rectification enables the correction of
potential defaults that exist due to satellite tilt or terrain
distortions in cases where the satellite on-board sensor is not
pointing directly at the Nadir direction. Pan-sharpening, on
the other hand, increases the natively low-resolution parts of
a multispectral image by combining them with the higher res-
olution panchromatic pixels. The image is in GeoTiff format,
which includes geo-references for each pixel, allowing for
proper location in real-world coordinates.

B. Supervised Image Segmentation Block

Specific features are extracted at pixel-level, directly from
the multi-channel images, and grouped into a vector associated
with each pixel. A machine learning classifier [32] is then
trained. In this paper, we use spectral features, texture features,
and a Gaussian kernel as follows:

1) Spectral Features: First, we extract the pixel values
coming from the different bands of a multispectral satellite
image. Furthermore, we use the Normalized Difference Vege-
tation Index (NDVI) [33] to recognize vegetation. NDVI is a
commonly used tool in remote sensing for vegetation detection
and defined as:

NDV I =
ρnir − ρred
ρnir + ρred

(1)

where ρred and ρnir stand for the spectral reflectance measure-
ments acquired in the red (visible) and near-infrared regions,
respectively.

2) Texture Features: Texture patterns are useful in identi-
fying objects that may appear very similar to each other in
an image from a color-based perspective (for example, trees
and green fields). We convolute the gray-scale image obtained
from the RGB components with a set of filter banks composed
by Gabor filters to generate pixel responses at different scales
and orientations [34].

As additional texture information, we also use the Gray
Level Co-Occurrence Matrix (GLCM) [35]. From such a
matrix, specific texture operators [36] can be extracted. Al-
though a large number of operators exist, most of them are
correlated, as explained in [37]. Therefore, we decided to use
only contrast and correlation operators.

3) Gaussian Kernels: The next feature we use in this study
is a Gaussian kernel. The Gaussian kernel (with variance equal
to 1) is convolved with a gray-scale image derived from the
RGB components. Such a kernel acts as a low-pass filter
leading to a slightly blurred image. The Gaussian low pass
filters are becoming more common in image processing to
cancel the noise [38].

Paper A 91



4
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Fig. 4: Overview of the proposed vegetation monitoring framework

4) Supervised Machine Learning Algorithm for Vegetation
Segmentation: The computed features values are stacked into
a vector and we use the AdaBoost ensemble technique [39] to
train a classifier. Such a classifier will assign a probability of
being part of a tree, Ptree, to each pixel in the image. Finally,
we use an energy minimization algorithm solved via graph cuts
[40] to turn the probabilistic map into a binary segmentation
map.

C. Unsupervised Image Segmentation Block
The unsupervised segmentation block is composed of a fully

convolutional neural network (FCN) [41] to extract features
and a superpixel refinement process [42] for self-training of
the model. Fig. 5 illustrates the architecture of this network.

Convolution Relu
Batch 

Nornalization

Features Extraction

Superpixel
refinement

Softmax Loss

Argmax
classification

Arg max

𝐱

𝒚

𝒄

𝒄

Fig. 5: Diagram of the unsupervised segmentation block

We compute the feature map x from the image I through
M (equal to 4 in our study) convolutional blocks consisting

each of a 2D convolution with a 3×3 kernel, a relu activation
function, and a batch normalization step. Then, a response
map is calculated through an additional convolution as y =
Wcx+bc where Wc, bc are, respectively, the weights and biases
of the last convolutional layer. Finally, we obtain the cluster
label c for each pixel by selecting the dimension along the
vector y that has the maximum value.

In image segmentation, the clusters of image pixels should
be spatially continuous. Therefore, we first extract K fine
superpixels from the image. Then, we force all the pixels in
each superpixel to have the same cluster label c̃, defined as
the most frequent cluster in each superpixel.

The self-training procedure is done solving two sub-
problems alternately: a forward process of the network fol-
lowed by the superpixel refinement and a back-propagation
process based on stochastic gradient descent with a learning
rate of 0.01. The loss function is calculated as the cross-
entropy between the network response y and c̃. Algorithm
1 shows the pseudo-code of such an approach.

D. Combination Strategy

The aforementioned fully unsupervised approach can seg-
ment the image into different clusters. A cluster is a group
of pixels sharing common properties (color, texture pattern,
etc). However, the algorithm lacks the semantic knowledge
about the physical meaning of different clusters available in
an image. On the other hand, the supervised model has been
specifically trained to recognize trees. Therefore, we combine
the output of the supervised block presented in subsection
III-B with the output of the unsupervised block of subsection
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Algorithm 1 Unsupervised image segmentation
Input: Image I
Output: Segmented image S
(Wm, bm,Wc, bc) ← InitializeWeights()
Sk ← GetSuperPixels(I)
for t = 1 to N iterations do

x ← getFeatures(I;Wm, bm)|Mm=1

y ← forwardStep(x;Wc, bc)
c ← argmax{y}
for k=1 to K do

cmax ← argmax c, ∀c ∈ Sk

c̃ ← cmax, ∀pixel ∈ Sk

end for
L ← CrossEntropyLoss(y, c̃)
(Wm, bm,Wc, bc) ← Update(L)

end for

III-C. In this way it is possible to understand whether a cluster
should be considered as ”trees” or ”non-trees”. Algorithm 2
shows how this combination is performed.

Algorithm 2 Combination of the two blocks
Input1: Multi-class segmentation image from the unsupervised

block (U) = {U0, U1, U2, . . . }
Input2: Binary segmentation image from the supervised block

(S) = {S0 = trees, S1 = no-trees}
for each cluster Ui in (U) do

Check in which class of (S) the pixels of Ui are mapped into
if most of the pixels are mapped into S0 = 0 then

Assign the pixels of Ui to S0

end if
if most of the pixels are mapped into S1 then

Assign the pixels of Ui to S1 = 1
end if

end for

IV. RESULTS AND DISCUSSIONS

To validate the performance of the proposed framework
for vegetation detection, we implement it on a 22kV sub-
transmission power line in the western part of Norway with
26 km of lines. Two high-resolution satellite images have been
used, as explained in subsection II-A. The available LiDAR
survey for the same part of lines has been used as the ground
truth to cross-validate our satellite-based solution’s outcomes.

To start the validation, we test the supervised block to
compute the segmentation output accuracy by applying differ-
ent combinations of features. We use the manually-annotated
dataset for the satellite imageries. The training dataset consists
of five manually labeled 800x800 pixels images, where a
subset of 1.500.000 pixels has been selected to have balanced
classes. The validation dataset is made of ten 400x400 pixels
images.

We found out that the GLCM texture operator performs
better than the Gabor filter. Surprisingly, adding the NDVI
lowers the overall accuracy. NDVI is an indicator of the
chlorophyll richness, so it can be used to detect vegetation.
However, it fails to sufficiently distinguish between trees
and grassy fields. Furthermore, trees with small canopies or
otherwise sparse foliage might not be adequately detected
using NDVI. However, NDVI remains an important vegetation

detection index that may still be helpful in other scenarios with
different datasets.

The machine learning algorithm output is a black and white
segmented image that shows tree and non-tree in each part
of the line, (see the blue-colored zone in the middle of
the Fig. 4). For the sake of visualization, Fig. 6 shows a
comparison between the manually labeled satellite images and
the classifier’s output for three image samples. A comparison
between the proposed approach’s output and LiDAR’s ground
truth is shown in Fig. 7.

Fig. 6: From top to bottom: RGB image (first row), ground truth provided
by manual labeling (second row), probabilistic map showing Ptree for each
pixel (third row), and segmentation output (last row)

.

We create an easy-to-understand metric, called Tree Density
Index (TDI), to present and visualize our vegetation detection
algorithm’s outcome for grid maintenance teams. The pro-
posed metric can be used in mapping vegetation encroachment
to power lines right-of-way. The TDI quantifies the presence
of trees near power lines, especially the trees that encroach
into the lines’ ROW.

We multiply the segmented images M with a Gaussian
kernel G as a weighting function within the window W , as
described in Eq. (2). The weighting function’s choice (TDI) is
based on the distance of trees to power lines, since trees near
power lines pose more risk.

TDI =

∫

W

M ⊗Gdw ∈ (0, 1) (2)

The TDI values, in the range of [0,1], are divided into
different levels of vegetation status using the following criteria.
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(a) Tree coverage scanned by LiDAR

(b) Tree coverage detected by the algorithm

Fig. 7: Example of trees detected along the power grid by (a) LiDAR and (b)
the proposed classifier





Level 0 (Negligible): TDI ≤ 0.2

Level 1 (Minor): 0.2 < TDI ≤ 0.4

Level 2 (Moderate): 0.4 < TDI ≤ 0.8

Level 3 (Severe): TDI > 0.8

(3)

Using the Tree-Density Index from Eq. (2), it is possible to
create a heat map showing vegetation density and proximity
levels along the power grid. We calculate TDI values for the
entirety of the power lines in our study area using the two
satellite images and the LiDAR ground truth. Fig. 8 shows
an example of the resultant heat map for the study area.
The vegetation density heat map shows that most of the line
sections are safe (green colored and TDI < 0.2). It also shows
that our partner electric utility does not need to make an
immediate tree trimming action in those areas.

A confusion matrix is then used to show the comparison
results for detected trees’ location in satellite images and
LiDAR data. Fig. 9a and 9b show the confusion matrices
for Pleiades-1 and WorldView-2 imagery respectively. The
upper-triangular part of each confusion matrix corresponds to
locations where the predicted TDI is higher than the true value;
it means that we are overestimating the vegetation density.
Symmetrically, the lower-triangular part corresponds to areas
where the predicted TDI is lower than the real value; in other
words, it shows that we are underestimating the vegetation
density.

We make the assumption that all locations with TDI values
higher than 0.4 can cause a vegetation related threat to power
lines. From Eq. (3), values higher than 0.4 cover areas with

Fig. 8: Heat-map showing areas where there is more vegetation around power
lines
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(a) Pleiades-1 satellite image
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(b) WorldView-2 satellite image

Fig. 9: Confusion matrix from the levelized values of the TDI along the line
using the Pleiades-1 and WorldView-2 satellite image

moderate to high vegetation densities, and they need to be
monitored carefully for possible tree trimming and cutting
actions. In this way, we can compute how well the algorithm
detects a vegetation threat. For example, using Pleiades-1
satellite image, the algorithm detects non-threat vegetation
zones correctly by 98.2% and it detects the threat vegetation
zones by 84.6%.

From Fig. 9, we also see that there are very few cases
in which the algorithm underestimates the vegetation level.
For example, using Pleiades-1 there are zero cases in which a
location detected as negligible (level 0) is severe (level 3) in
reality.

In practice, this means that our algorithm has high confi-
dence in detecting areas with low vegetation density. In other
words, the vegetation management team can avoid inspecting
areas that the algorithm points to as ”safe” (green) or with-
out risky vegetation. Consequently, it brings the vegetation
management teams’ attention on areas with high vegetation
density or with risky vegetation (red). It reduces the power
line inspection time and cost accordingly.

V. PRACTICAL CONSIDERATIONS FOR ELECTRIC
UTILITIES

The combination of satellite-based data and artificial intelli-
gence gives electric utilities a unique opportunity to modernize
tasks that incorporated repetitive observation and inspection,
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especially over large areas. This paper introduces a platform
for monitoring vegetation encroachment into power lines’
right-of-way using high-resolution satellite imagery.

A. On the classic close-up asset monitoring and satellite
images

It is worth mentioning that the need for close-up inspection
of power line components using ground patrol, helicopters, or
drones to check the asset’s mechanical and structural health,
in addition to vegetation monitoring, remains the same. In
reality, classic close-up visual inspections for the whole grid
are performed once within a long period (up to 10 years) due
to their high costs and time constraints. This infrequent inspec-
tion over a long span of time can increase the probability of
failures and outages specifically for vegetation-related events
considering vegetation growth rates. Therefore, vegetation-
related inspections need to be executed more often and in peri-
ods between classic close-up asset inspections. Our proposed
satellite-based vegetation monitoring approach complements
the legacy asset management practice by providing low-cost
and frequent situational awareness for vegetation management
teams.

Consequently, vegetation management can be changed from
traditional time-based ROW inspection (periodic) to risk-based
ROW inspection by improving scale, frequency, and cost-
efficiency in ROW inspection.

B. On the cost-effectiveness of satellite images for vegetation
monitoring

Satellite imagery data is typically more cost-effective than
other image capture methods such as helicopter and drone,
especially as the inspection area increases [11], [12]. Com-
mercial satellite providers can offer high-resolution images
with a high revisiting time covering most of the world. A
survey performed in 2015 [43] showed that satellite imagery
for a specific region was up to 60 % cheaper than using drone
images.

Our study was performed under the GridEyeS project for
using satellite imagery for power system operation supported
by the European Space Agency [44]. We have surveyed 15
electric utilities in North America and Europe regarding their
typical practices and cost of vegetation monitoring during
our study. The line inspection cost using helicopters, light
airplanes, or drones varies from 60 to 1300 Euros per km of
the power line. The higher range of inspection costs belongs to
LiDAR scanning technologies. The high cost of power lines’
health condition monitoring (including vegetation encroach-
ment monitoring) and the vast size of service territories force
utilities to often cover the whole service area with a long
periodicity (typically 2 to 10 years) [5]. This leads to sub-
optimal revisiting frequency for each section of the line.

The use of high-resolution satellite imagery for vegetation-
related inspection costs is generally below 15 Euros, depend-
ing on commercial providers. This makes satellite-based solu-
tions economically attractive. The power line in our selected
study area is approximately 26 kilometers long. In total, 20
kilometers of the line are in a normal condition regarding

vegetation encroachment into power lines’ ROW. Using the
proposed platform, the vegetation management team has an
option to only focus on the 6 km of the line with a high
vegetation level, identifiable with the red color in Fig. 8.

The average cost of line inspection for our partner utility
using a helicopter or a drone is 1200 Euros per km, which
means an overall 26 x 1200 = 31200 Euros in the inspection
cost. Limiting vegetation-related inspections to only 6 km of
the red zone leads to inspection cost reduction depending on
the distribution of red spots across the entire line and the
number of helicopter or ground crew maneuvers to cover those
spots. This example aims to provide an idea of saving potential
for vegetation monitoring rather than a detailed cost-benefit
analysis.

C. On the selecting the appropriate satellite images for veg-
etation monitoring

From a practical point of view, remote sensing applications’
accuracy, including vegetation detection, is highly influenced
by different aspects.

• A major factor in the quality of vegetation detection is the
resolution of the satellite images. In this study, we used
50 cm resolution satellite images, which are one of the
best resolution available from commercial providers. For
example, there are no-cost to low-cost satellite images
with 10 meters resolution from Sentinel satellites under
the Copernicus program provided by the European Space
Agency [45]. However, such low-resolution images can
not provide the level of details needed to detect and
measure vegetation’s density in the vicinity of power
lines. Moreover, the high-resolution satellite images also
provide insights on vegetation type, growth rate, vege-
tation health, environmental impacts, and the quality of
trimming activities by using data from multiple satellite
images of the same area over time. Figure 10 shows how
the different resolution of some available products can
dramatically affect the detection quality.

(a) 10 meter resolution satellite
image

(b) 0.5 meter resolution satel-
lite image

Fig. 10: Visual comparison of the same area from two different popular
satellite providers

• Another important aspect is the acquisition date. As
shown in the Results section, Pleiades-1 provided slightly
better accuracy. A possible explanation is that in early
May, trees are not yet completely developed, especially
in Norway. Therefore, the algorithm has more difficulties
in precisely detecting trees, particularly deciduous ones.
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Fig. 11 shows a comparison between two image samples
from different seasons. Note that the foliage of some trees
are not as fully developed in May compared to the canopy
cover in September. It is worth mentioning that there
can be periods more suitable for vegetation monitoring.
Power companies should prioritize monitoring in specific
months rather than in other months (in summer, for
example) to generate the best results, taking geographical
location and growing seasons into consideration.

(a) WorldView-2: May (b) Pleiades-1: September

Fig. 11: Visual comparison between two images before and after summer. Note
how the canopy of some trees are not fully developed yet in May compared
to September

• Cloud coverage is also another factor that affects all
remote sensing applications which are based on opti-
cal imagery. Prior to our analytics, we tried to pick
proper satellite images that have less cloud coverage over
the target area. Nowadays, commercial satellite image
providers are launching more satellites to orbit using
private companies such as Space-X. More satellites in
the space means more frequent revisit for any location in
the world. Consequently, the recent increase in satellite
revisit frequency will make it easier to acquire a cloud-
less image for a specific area with a short waiting time.

VI. CONCLUSIONS

This paper presents a framework to monitor vegetation
along power lines using high-resolution satellite images and
machine learning. Satellite imagery data introduce a new
paradigm for power transmission and distribution companies
with the potential to reduce the time and cost of ground inspec-
tions. We propose a semi-supervised approach that combines a
supervised classifier with a deep learning-based unsupervised
architecture for image segmentation. This enables the detection
of vegetation close to power lines and thus pose a risk to power
line infrastructure. The proposed framework has the potential
to aid operators of power-line infrastructure with vegetation
management. We validated the image segmentation approach
for a power grid in western Norway using airborne LiDAR.
Initial results indicate that this approach can correctly identify
vegetation risk areas with 84% accuracy for this particular
area. Areas of no risk are identified correctly in 92% of cases.
These initial results demonstrate the potential promise of this
satellite-based framework. The future work is toward further
improving the detection accuracy.
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Tree Species Classification Using High-Resolution
Satellite Imagery and Weakly-Supervised Learning
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Abstract—Knowing vegetation type in an area is crucial for
several applications, including ecology, land use management,
and infrastructure risk assessment. In combination with recent
advancements in image processing, remote sensing technology has
been used to perform fast vegetation type estimation and reduce
the need for intensive and time-consuming field-based surveys.
This paper proposes a weakly supervised method based on deep
learning to estimate tree species relying on multi-spectral high-
resolution satellite images. We tested the approach against noisy
labels, which often occur in real-world datasets. We validate our
approach for a study area in Norway and in Italy using images
taken in different periods of the year. Our method significantly
enhances the quality of the available forestry inventory dataset.

Index Terms—Remote Sensing, Satellite Imagery, Tree Species
Classification, Weakly-Supervised Learning

I. INTRODUCTION

HAVING a spatial tree species inventory is fundamental
for a wide range of applications such as ecology and

conservation [1], wildlife habitat mapping [2], sustainable
land use management [3], urban planning [4], as well as
infrastructure monitoring and risk assessment [5], [6]. For
example, power lines and roadway maintenance teams can
make more effective tree trimming and cutting plans knowing
the tree species [7], [8].

Conventional methods for documenting tree species are
based on field surveys that are intensive, time-consuming,
and often impractical in mountainous or inaccessible areas.
However, remote sensing technologies such as optical satellite
images, Light Detection and Ranging (LiDAR), and aerial
images coming from helicopters or airborne vehicles have been
explored over the last few decades to address such challenges.
According to the review study conducted in [9], almost all
the recent works combine a passive sensor (hyper-spectral or
multi-spectral optical sensor) with an active sensor, typically
LiDAR. These kinds of sensors are often mounted on airborne
vehicles. For example, in [10], the authors used a combination
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navia: from experiments to models (PREWISS),” under Grant 315870 and in
part by the Project “Disruptive Technologies for a Resilient Future (INTPART-
DTRF)” under Grant 309448. (Corresponding author: Michele Gazzea.)

Michele Gazzea, Lars Michael Kristensen, and Reza Arghandeh are with the
Department of Computer Science, Electrical Engineering and Mathematical
Sciences, Western Norway University of Applied Sciences, 5063, Bergen,
Norway. E-mail: (mgaz@hvl.no

Francesco Pirotti is with CIRGEO, University of Padova, 35020 Legnaro,
Italy.

Eren Erman Ozguven is with the Department of Civil and Environmental
Engineering, Florida State University, Tallahassee, FL 32310 USA.

of Airborne Laser Scanning (ALS) and color-infrared imagery
to classify tree species in a mixed temperate forest in Poland.
Airborne vehicles can provide detailed data over small areas,
but they are still considered experimental [11] and, according
to [12] currently are not considered a stable platform to
efficiently acquire systematic data to support forest inventories
over large areas (> 1000 ha). Airborne sensors are limited by
flight time, large area coverage and high operations costs. For
example, LiDAR data is in the range of 62–240C per km2
while aerial imagery is approximately 35–62C per km2 [13].

Nowadays, several commercial satellite providers offer
easy-accessible images for any part of the world with a
high revisiting time (currently up to 0.25 - 0.5 meters/pixel
resolution). Furthermore, the drop in launching costs and
the growing number of satellites and mini-satellites in orbit
combined with high-quality sensors have reduced the cost of
satellite imagery to less than 15C per km2 [13]. Satellite
imagery is therefore currently the best trade-off between
acquisition price, quality, and revisiting frequency [14].

Remote sensing-based tree species discrimination and clas-
sification evolved with methodological developments in the
domain of statistical learning. In early studies, parametric
approaches have been used (discriminant analysis, maximum
likelihood) [15] while non-parametric approaches (decision
trees, random forests, support vector machines, and neural net-
works) have gained more popularity in recent years [16], [17],
[18]. Furthermore, the inclusion of texture information, mainly
related to crown-internal shadows, foliage properties (size, and
branching) provided by the grey-level co-occurrence matrix
(GLCM) [19] have been shown to result in improvement in
the accuracy [20].

Recently, deep learning has become an effective tool for
object detection and classification, especially in remote sensing
applications [21]. Among deep learning techniques, convolu-
tional neural networks (CNNs) have demonstrated high clas-
sification accuracy for digital images in the computer vision
field [22]. Using cascades of learnable convolutional filters, it
is possible to exploit the spatial relationship between pixels to
provide information regarding the textures and shapes of trees
[23]. In [24], the authors compared several neural network
architectures using a hierarchical approach to detect dominant
species in forests. In [25] the authors used WorldView-3 im-
agery and a Res-Unet deep-learning model for individual tree
species classification. One of the most notable advantages of
deep learning compared to other machine learning methods is
that deep learning does not require manual feature extraction.

In many current tree species classification works, labels are
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obtained via field investigation performed by research groups
collecting samples using GPS devices, which is a complex
and time-intensive task. Other sources include existing tree
reference datasets, which are often low resolution or noisy.
However, machine learning models are heavily affected by
the quality of data labels. Unreliable or noisy labels severely
degrade the generalization performance of such models as they
can easily memorize corrupted labels and correspondingly de-
generate their generalizations on unseen data [26]. Achieving
a good generalization capability in the presence of noisy labels
is still a key challenge [27].

This paper proposes an automated approach to detect tree
species using single high-resolution satellite images to lower
costs and ease of implementation for practical reasons. The
main contributions of this paper are two-fold:

• From a methodological point of view, we propose a
weakly supervised machine learning approach to improve
and refine forest inventory datasets. Our method relies
on feature extraction from noisy labels and relabeling the
data.

• From a practical point of view, our approach refines the
coarse and low resolution tree species maps using one
high-resolution satellite image. This process enhances the
quality of the available forest inventories at a lower cost
in scale in comparison to classic methods (e.g. sending
ground-based crew or taking LiDAR or aerial images
using helicopters and airplanes).

II. STUDY AREA AND DATA USED

The main study area is a ≈ 25Km2 region located in the
Sogn og Fjordane county in Western Norway. We used a high-
resolution satellite image from Maxar WorldView-2, acquired
in the middle of May 2017. The image has a resolution of 0.5
m/pixel and have been ortho-rectified and pan-sharpened [28]
by the provider.

The tree species reference dataset has been provided by
the Norwegian Institute of Bioeconomy Research (NIBIO)
[29], available and downloadable at [30]. The NIBIO dataset
shows the forest distribution over the entire country. The
dataset provides information such as the dominant tree species
in forest stands. The term forest stand in forest inventory
instructions defines a contiguous forested area sufficiently
uniform in essential characteristics to distinguish it from
adjacent communities.

The dominant tree species is defined on the basis of the
estimated share of volume in a population as follows:

• Spruces: If more than 50% of the trees are characterized
as spruces, then the tree type’s label is ”spruces” The
spruce group is mainly composed of Norway spruce
(Picea abies) but also contains small portions of other
spruce species such as Sitka spruce (Picea sitchensis).

• Pines: If more than 50% of the trees are characterized
as pines, then the tree type’s label is ”pines”, specifically
Scots pines (Pinus sylvestris).

• Deciduous: If more than 50% of the trees are character-
ized as deciduous, then the tree type’s label is deciduous”.
The deciduous group is dominated by birch species

(Betula pubescens and Betula pendula) but contains small
portions of aspen (Populus tremula) and rowan (Sorbus
aucuparia).

More detailed information on how the dataset has been created
and validated can be found in [31].

A second study area has been selected in Italy, in the
Dolomites and part of the Veneto region. An image of ≈
15Km2 in the study area has been acquired from July 2019.
The resolution is 0.5 m/px. The tree inventory dataset was
acquired from Regione del Veneto at [32]. Similarly to the
NIBIO dataset, it divides the forest stands of the selected
area into three groups: (1) Spruces, mainly Norway spruces
(Picea abies) which are also very common in the Dolomites;
(2) Larches (Larix decidua) and (3) Deciduous, mainly grey
alders (Alnus incana) and birches (Betula pendula).

The two study areas are shown in Fig. 1.

First study area: 
Sogn og Fjordane, Norway

Second study area: 
Regione del Veneto, Italy

Image from Maxar WorldView-2

Image from Regione del Veneto 

Fig. 1: The two study areas used. The first is located in the Sogn og Fjordane
county, Western Norway. The second one is located in the Dolomites, in the
Veneto region, Northern Italy.

The tree inventory datasets are raster images with the same
geographical extends of the satellite images where each pixel
has a discrete value as: 0-no-trees, 1: spruces, 2: pines/larches,
3: deciduous.

III. METHODOLOGY

We propose here a weakly-supervised learning approach that
produces a model capable of detecting the different species at
almost tree-level from a noisy low-resolution dataset.

To understand the reason and the advantages of such an
approach, we first explain some issues present in both of the
datasets used for tree species, and which may often be present
in other real-world datasets. Fig. 2 shows some issues in the
Norwegian tree species reference dataset.

We note, from Fig. 2, that some trees are not covered by the
dataset even though they are visible from the satellite imagery.
Moreover, the boundaries of the different forest stands are
often chunky, tight, and not always precise. Finally, labels
are assigned at a coarser level, and hence some regions are
marked even though they do not contain any trees. A conven-
tional fully-supervised segmentation procedure (i.e., extracting
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Fig. 2: Issues present in a typical tree species reference dataset. Some trees
are not covered by the dataset and the boundaries between regions are often
not precise.

patches from both the satellite image and the tree dataset and
directly training a model) will not handle these issues well
and the model will not be able to learn properly. We propose
a strategy to overcome these issues showing that we can learn
from this dataset and refine it. Specifically, the method has
the three-fold advantage: detecting trees, assigning a label to
those trees not initially covered by the dataset, and refining the
boundaries between classes. The overall pipeline is sketched
in Fig. 3 and each block is further described in the following.

A. Data Preprocessing

We first pre-process the multi-spectral satellite images. Pixel
values in each band are scaled and stretched to the minimum
and maximum value calculated, respectively as the 2% and
98% percentile of the pixel distribution. This leads to higher
contrast and better brightness uniformity among different
images.

We use the Normalized Difference Vegetation Index (NDVI)
as an additional channel in addition to the channels initially
present. NDVI is a popular index in remote sensing for
vegetation detection and it is defined as [33]:

NDVI =
ρnir − ρred
ρnir + ρred

(1)

where ρred and ρnir denote the spectral reflectance measure-
ments acquired in the red (visible) and near-infrared regions,
respectively. Green living plants are brighter in the near-
infrared band due to chlorophyll’s near-infrared high sensitiv-
ity. Each channel is then mapped into the same interval (0, 1)
to ease the training procedure.

B. Pixel-wise Tree Segmentation Model

We design a tree segmentation algorithm. Given an input
image, the corresponding output treemap is a single-channel
pixel-wise mask. The segmentation model detects and labels
the pixels that belong to (or are part of) a tree. We use
an encoder-decoder based architecture [34] as a segmenta-
tion model. The architecture is composed by a cascade of
[16, 32, 64, 128, 256] convolutional layers activated by a relu
activation function, followed by a batch normalization layer
and a Max Pooling layer. The architecture is shown in Fig. 4.

Binary cross entropy L is used as the loss function for
training the network since only two labels are considered (0

for no-trees and 1 for trees). To train the tree segmentation
model, we use a manually created dataset for the considered
study areas.

C. Tree Species Relabeling

The tree species reference we use in this study shows the
dominant tree species in forest stands. However, it presents
several issues (i.e., noisy or missing labels) as we showed in
Fig. 2. The first step is to relabel the dataset to reduce the
noise. This is because the species boundaries are coarse in the
original dataset, and some trees are assigned to the same label
as the surrounding trees, even if visually they are different
species.

Therefore, we assume that trees from the same species have
similar characteristics (features) in a feature space regardless
of their assigned label. Furthermore, we assume that in most
cases the given tree species inventory dataset Smap, provided
by the Norwegian and Italian authorities, is correct. In other
words, for example, the majority of trees marked as spruces
are indeed spruces. The principle is sketched in Fig. 5.
However, there are reservations regarding these assumptions
which we discuss in Section V.

The implementation of the principle is divided into three
steps.

1) Random Sample Extraction: We first multiply element-
wise the tree reference dataset Smap (i.e., NIBIO dataset)
with the treemask generated by the tree segmentation model
in III-B. We denote the result Smaptreemask ≡ Smap ⊗
treemask In this way, fields, bare lands, roads, and any other
non-tree elements which are included in the original dataset
are filtered out. Afterwards, a defined number N of patches,
each of size sp × sp, are extracted randomly from the input
satellite image, sampled among the three different families
(i.e. spruces, pines/larches, deciduous) of Smaptreemask. Each
patch Pi, whose dimensions are sp × sp × Nch, is naturally
associated (yet not necessarily correct) with the label l taken
from Smaptreemask.

Pi=1,2,...N → l ∈ {spruces, pines/larches, deciduous}

2) Feature Extraction: For each patch Pi, a feature vector
Fi is extracted. Although features can be calculated in several
ways, we use and compare two different techniques in this
paper.

The first approach is to hand-engineer the features. We
create F as follows. The first components are the mean of each
spectral band: j = 1, 2, . . . , Nch. In addition, texture signature
operators [35] derived from the Gray Level Co-Occurrence
Matrix (GLCM) matrix are used. The GLCM can be thought
of as a record of how often different combinations of pixel
brightness values occur in imagery. While many operators
exist, based on the Principal Component Analysis performed
in [18], we included the GLCM Variance and Mean over other
operators, as they showed the two highest eigenvalues. With
this approach, a feature vector is calculated from a generic
patch Pi as follows:
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Deciduous

Spruces

Pines

Random samples extraction Feature extraction

Feature relabeling

Pixel-wise tree 
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relabeling
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Relabeled tree 
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Multi-temporal images

Multi-temporal image 
analysis Cross-validation
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Tree species reference 
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Image for the training area

Data
preprocessing
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Fig. 3: Overall pipeline of the proposed approach. First, a binary tree segmentation model is trained to detect trees in the map. Random patches are extracted
from the considered tree families (here spruces, pines, and deciduous), and for each patch, specific features are calculated. Such features are relabeled based
on their position in the feature space. We then relabel the entire map, generating a pre-refined version of the original tree species dataset. The output is used
to train a deep learning model. Once the model is trained, it can be used to generate refined versions of the original dataset at tree level and with fuzzy
boundaries.
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Fig. 4: Architecture used for trees segmentation model. Given a satellite image
I as input, the corresponding output is a mask where trees are detected.

Pi → F engineered
i =




ENch
j=1Pi(:, :, j)

Variance(GLCM)
Mean(GLCM)


 (2)

The second approach is to take advantages of the deep
learning capabilities to extract features automatically using
convolutional autoencoders [36]. In an autoencoder, an input
image x is encoded through an encoder Eθ into a low-
dimensional representation z (often denoted as bottleneck
layer or code of the auto-encoder) through a cascade of
convolutional kernels. The code can then be decoded by a
decoder Dϕ to reconstruct back the original image through
up-sampling operations. The autoencoder, and its parameters
θ and ϕ, are trained to reconstruct as close as possible x in

terms of the mean square error (MSE). Following this idea,
we extract a feature vector Fi from the flattening of Pi’s low-
dimensional encoded representation:

Pi → F autoencoder
i = Eθ(Pi) (3)

In this paper, we used a encoder composed of a cascade
of two convolutional layers activated by a relu activation
function, followed by a batch normalization layer and a Max
Pooling layer as shown in Fig. 6. The decoder architecture is
symmetric.

3) Relabeling: Regardless of the method used for the
feature extraction, a feature vector-label dataset (∩N

i=1{Fi; li})
is generated, where F ∈ Rd. The value d is the dimension
of the feature space, which depends on how many features
are considered if the first approach is used (hand-engineered
features) or on the auto-encoder architecture if the second
approach is used instead. Nevertheless, following the idea in
Fig. 5, it is expected that trees that belong to different types
are mapped into different region of the Rd space. If it is
possible to learn the mapping regions in the d-dimensional
space, patches with a wrong label can be relabeled according
to their position in the feature space. We refer to the process of
assigning to each region of Rd a label as semantic embedding.
The assumption that each tree type is distinguishable in the
feature space holds, in theory. On the other hand, in practice,
the cohesion and separation of each tree type’s region in the
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Fig. 5: Principle of the relabeling process. There are two forest stands in the
example: (a) the first has three spruces and one deciduous tree, while the
second has three deciduous trees and one spruce. However, such information
is not available. (b) In the available tree species reference dataset, all the
trees in the first group are marked as spruces and all the trees in the second
group are marked as deciduous regardless of their real type. (c) Trees of the
same species should have similar characteristics (features) even if they are
wrongly assigned different labels if mapped into a feature space. (d) Trees can
be relabeled based on the position of their features in the feature space. The
image shows a two-dimensional feature space with only spruce and deciduous
classes for better visualization.
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8 r p
/ 2

8 r p
/ 4
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/ 4

8 r p
/ 2

Ch r p

Fig. 6: Architecture used for the auto-encoder. The feature vector F is
extracted from the bottleneck layer.

feature space heavily depends on the ”quality” of the feature
extracted, which in turn depends on the quality of the input
data as well as the power of the feature extraction method
used.

We implement the semantic embedding using a majority
voting scheme among the points. We first over-cluster the fea-
ture space with K clusters using the unsupervised clustering

algorithm Kmeans. Over-clustering means to cluster a space
with more clusters than the number of groups the elements
in the space belong to (which in our case is three, as the
number of the considered tree types). Within each cluster
k = {1, 2, . . . ,K} we compute a score Φ defined as the
number of points belonging to each tree type label l as follows:

Φl
k = Number of points in cluster k with label l (4)

We then assign to the cluster k the label with the highest score
among Φl

k. Each point in the cluster k is assigned the label l
set in the previous step. In this way, features ”close” to each
other in the feature space have the same label. Finally, patches
are extracted sequentially from the whole area and features
are calculated based on one of the earlier described methods
(engineered or autoencoder-based features). Each patch is
relabeled according to the learned semantic embedding and
the output is the relabeled map Smaprelabeled.

D. Tree Species Detector

Compared to the original tree type dataset Smap, the
relabeled map Smaprelabeled has the following advantages:
1) each pixel belonging to a tree has a label, 2) non-trees
are excluded from the dataset, 3) trees visually similar have
the same label. However, it has been generated patch-wise
from the previous step, and therefore it is blocky. We design
and train a CNN model to solve this issue. Such a procedure
has two advantages. The first is to refine the tree species
map Smaprelabeled further, making the output smoother. The
second one is to create a standalone model. Once it is trained,
such model can be used to directly estimate the tree species
in the surrounding areas with the same tree species that has
been trained on without performing the relabeling process
again. The architecture is similar to the one in Fig. 4 with
the difference that the task is now a multi-label segmentation
where the output is a three-label mask corresponding to
spruces, pines/larches, and deciduous trees. The output is
Smaprefined in Fig. 3.

E. Ground-truth Generation

Finally, Smaprefined is compared with the ground-truth.
Since the original tree inventory dataset Smap cannot be
used for comparison (because of the earlier discussed issues),
we generate a ground truth by visual inspection, taking ad-
vantage of available acquired multi-temporal images. For the
Norwegian use case we got two additional images: one from
Airbus Pleiades-1 (4 channels) acquired in September 2018
and another one from the Norwegian program NorgeIBilder
[37]. The image is a 3-channels image acquired in April
2019. For the Italian use case we acquired two images from
Planet, taken in April and October 2021 respectively. Similar
to the process done in [18], interpretation was conducted
using different imagery compositions of the available images
at different times, labeled by forest experts. The generation
of such ground truth was a time-intensive yet necessary task.
Although a certain degree of uncertainty still exists, the
obtained ground truth is more consistent than the original
tree inventory. However, our approach is using the original
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raw reference dataset Smap and therefore the ground truth
generation is not needed for the implementation.

IV. RESULTS & DISCUSSIONS

The proposed pipeline has been implemented in Python
using the Keras/Tensorflow [38] libraries for the deep learning
part, and the sklearn library [39] for the machine learning part.
QGIS [40] has been used to integrate data and results. The
testing platform is a computer equipped with an Intel i7 Core
10th Gen processor, 32GB of RAM, and an Nvidia RTX 2080
Super as a GPU.

To validate the overall procedure we divided each study
area into two non-overlapping regions A1 and A1 of similar
size. Area A1 is used for training and validation. This means
that we calculate Smaptreemask and Smaprelabeled on A1.
Also, we train the deep-learning model only on area A1.
Afterward, we tested the trained model in A2. The generated
map Smaprefined is compared with the ground truth. Ground-
truth has been created only for the testing region A2. To avoid
biases, A1 and A2 have been selected to have similar tree
species distributions. Fig. 7 shows the distribution of pixels as
percentages within each tree type group in the two study areas
(e.g. Norway and Italy).

(a) (b)

Fig. 7: Distribution of pixels as percentages for: (a) Norwegian study area,
(b) Italian study area

We notice that the datasets, as it often happens in practice,
are unbalanced. To overcome this issue, we sample the same
number of patches per tree group in the random sample
extraction step, when the patches are extracted to generate the
feature space. Hence a balanced dataset is used to create the
feature space. Furthermore, when evaluating our final model
in the testing area A2, we use the F1-score as a metric to
compare the different approaches. The F1-score is defined
as the harmonic mean of the precision and recall and has
been proven to be superior to accuracy when dealing with
imbalanced classification problems [41].

A. Tree Segmentation Model

We first trained and tested the tree segmentation model used
at the first stage of our methodology. The model is trained
using a manually created binary mask of trees in the A1 region.
The dataset is split into a training and a validation set with a
80-20% ratio, and the model described in III-B is trained. The
Adam optimizer is used with a learning rate of 10−4. An early
stopping callback, which monitors the validation loss, keeps
track of the loss, stopping the training to avoid over-fitting.

Fig. 8 shows the accuracy for the validation dataset, whose
value stabilizes at ≈ 95%.
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Fig. 8: Training and validation accuracy for (a) Norway and (b) Italy.

Once the model is trained, it can be used to generate the
treemask. We multiply pixel-wise the original tree species
dataset Smap with treemask calculated from the trained
tree segmentation model to get Smaptreemask = Smap ⊗
treemask, as presented in the methodology section.

B. Relabeling Process

Once Smaptreemask is created, randomly sampled patches
of fixed size sp × sp are extracted from it. A small patch
size makes it difficult to compute useful features out of it due
to the lack of contextual information. On the other hand, a
too large patch has the risk of incorporating different trees
under the same label. We chose a patch size sp = 12× 12px,
which is equivalent to 6 × 6 meters given the resolution of
our satellite images. A balanced dataset of 2500 patches per
tree type (spruces, pines, and deciduous) is extracted from the
satellite image. We recall that each patch P has an associated
label l derived from Smaptreemask.

Then, features are extracted using the two methods pre-
sented in subsection III-C (i.e. engineered and autoencoder-
based). The engineered features are calculated from each
patch using Eq. 2. The GLCM matrix is calculated over each
extracted patch P . We used the GLCM matrix computed with
angles in the set {0; π

2 } and offsets {1; 2}. Details on the
implementation can be found in [42]. The autoencoder in Fig.
6 has been used to extract feature automatically using Eq.
3. For visualization purposes, we make use of the Uniform
Manifold Approximation and Projection (UMAP) algorithm
[43]. to map the features space Rd into R2. Fig. 9 shows the
UMAP plots of the feature space generated via autoencoder for
WorldView-2 (Fig 9a) with labels taken from Smaptreemask

and the multi-temporal stacked image with labels taken from
the ground-truth (Fig. 9b).

We recall that the feature space is a mathematical space
where the points are the feature vectors F ∈ Rd extracted from
the patches Pi=1,...,N . The UMAP algorithm map the relative
position of the points in the higher-dimensional space into R2

positions while preserving the pairwise distance relations be-
tween points and the global structures. Therefore, the distance
between points and the orientation of the clusters do not have
a geographical meaning. From the UMAP plots, we observe
qualitatively that spruces, in particular, are more detached and
separable from deciduous and pines in WorldView-2 imagery.
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Fig. 9: UMAP plots of the feature space into R2. Feature space gen-
erated by the autoencoder from (a) WorldView-2 with labels taken from
Smaptreemask , (b) Feature space generated by the auto-encoder from multi-
temporal stacked image (WorldView-Pleiades-NorgeIBilder) with labels taken
from the ground truth.

From Fig. 9b we observe that the feature space generated
using all the available images and the labels from the ground-
truth provided by III-E is smoother, with each tree type
having its own region in the feature space. This supports
our assumptions and the idea presented in Fig. 5. We then
perform the relabeling process described in the methodology.
Points outside their semantic space are considered to have a
wrong label and are then relabeled accordingly. We recall that
the clustering is performed in the feature space Rd. Once the
semantic embedding has been performed in the feature space,
patches of size sp × sp are extracted from the whole A1 area,
and the new learned labels are assigned, generating this way
the output Smaprelabeled. It is worth mentioning that, besides
the relabeling of the existing labels, this procedure also assigns
to each tree that was not covered by the original tree reference
dataset Smap a new label.

C. Evaluation of the Inference Process

We train a CNN model using satellite images and the cal-
culated Smaprelabeled from both the engineered features and
the autoencoder-based features as a training dataset. Similar
to the tree segmentation model’s training, we extract 15000
tiles of 80 × 80 pixels (equal to 40 × 40 meters given the
resolution of our satellite images), randomly samples within
A1. We then train a model with the architecture and training
parameters of the tree segmentation model. The output is three-
channel, corresponding to the three tree types considered. Thus
categorical cross-entropy loss function is used. To show the
effectiveness of our approach, we test the performances using
a CNN trained in a traditional supervised procedure. It consists
in training the model using directly the original tree species
dataset Smap, without the relabeling process in our proposed
pipeline. In addition, we train the model using Smaptreemask

and the highly-refined ground truth.
1) Norwegian study area: First, we use confusion matrices

to visualize in particular the classification matches per each
category using WorldView-2 image, shown in Fig. 10.

Note how the confusion matrices with a standard approach
are far from being diagonal (Fig. 10b). Due to the intrinsic
noise of the dataset, a model trained with a traditional pro-
cedure (i.e. without relabeling) is incapable of learning, and
the performance easily degrades into low performances. In Fig.
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Fig. 10: Normalized confusion matrices (percentages) between predicted and
true tree type for WorldView-2 imagery using: (a) our learning procedure
and auto-encoder-based features, (b) traditional supervised approach without
relabeling.

10a we observe that while spruces and deciduous are correctly
identified with high accuracy, pines are more problematic.
There is a percentage of pines misclassified as deciduous trees.

Table I provides the F1-score per each class for WorldView-
2 using different approaches.

TABLE I: F1-scores for each class using our proposed approach and a
traditional training procedure.

WorldView-2 F1-score
Spruces Pines Deciduous

Weakly-supervised + F engineered 0.799 0.506 0.675
Weakly-supervised + F autoencoder 0.883 0.648 0.761
Supervised from Smap 0.458 0.322 0.531
Supervised from Smaptreemask 0.492 0.441 0.586

Learning from Smaptreemask slightly improves the perfor-
mances compared to learning directly from Smap. This is due
to the fact that in Smaptreemask the non-trees elements have
been filtered out. However, the coarse boundaries between
forest stands are still the same as Smap and many pixels
remain unlabeled. We note how using the relabeling step,
before training the model, greatly boosts the performances
with an average enhancement of the F1-score of 78% for the
WorldView-2 imagery compared to not using our relabeling
step. Finally, not surprisingly learning directly from the ground
truth leads to the best results (F1-score: 0.915, 0.797, 0.864).
However, this is not applicable in practice as the ground truth,
which has been created by visual inspection of multi-temporal
high resolution images, is not available in general. It is worth
mentioning that engineered features are challenging to design.
For example, texture operators can be applied to each channel
separately or any combination of them. Manually engineering
this considerable amount of combinations is impractical. Fea-
tures extracted from auto-encoders are, by definition, extracted
automatically from the network instead.

Finally, in Table II we show the computational running
times of the different methods.

TABLE II: Computational running times for the different approaches.

Routine Running time
Training Inference

Engineered features extraction — 491 sec
Autoencoder-based feature extraction 28.4 sec 5.3 sec
Tree species detector 36 min 8.2 sec

The high running time of the features extraction method lies
in the CPU implementation of the sklearn library. Features
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are extracted within a for-loop (which are usually slow in
Python), called several times in the main script. On the other
hand, auto-encoders are running on GPU using the TensorFlow
implementation, making much fast the process of feature
extraction. Furthermore, auto-encoders’ architecture contain
much less parameters (2,323 learnable weights) compared to
the segmentation model (1,946,993 learnable weights), making
the training procedure much faster.

2) Italian study area: For further validation we implement
the approach in the another study area located in Italy. Table
III provides the resulting F1-scores per each class.

TABLE III: F1-scores for each class using our proposed approach and a
traditional training procedure for the Italian use case.

Imagery and Feature Type F1-score
Spruces Larches Deciduous

Weakly-supervised + F engineered 0.381 0.387 0.442
Weakly-supervised + F autoencoder 0.422 0.450 0.494
Supervised from Smap 0.261 0.266 0.357
Supervised from Smaptreemask 0.312 0.304 0.408

We note that our relabeling approach improves the results
compared to the traditional approach, confirming the outcomes
found in the first use case. Learning directly from the ground
truth leads again to the best results (F1-score: 0.531, 0.495,
0.585). However, we also notice that the F1-scores in this case
are generally lower than the previous case study. This is due
to the fact that the image has been acquired in summer, which
is the season that minimizes the seasonality changes between
tree species. We provide further discussion in V.

In both cases, our methodology can properly train a model
through a two-step relabeling procedure, showing clear ben-
efits compared to tradition approaches without the relabeling
step. It can generate a more detailed version of the original
tree species dataset. A visual example is shown in Fig. 11.

We note how the generated output is much more refined
and semantically more coherent than the original dataset. Our
procedure can greatly enhance the quality of available datasets
for tree species.

V. PRACTICAL CONSIDERATIONS AND LIMITATIONS

Correctly recognizing tree species from satellite images is
a difficult task, especially when available tree inventory are
noisy and not precise enough, like in this study. However,
there is another consideration. Available imagery might not
be sufficient to recognize the different species effectively. To
demonstrate this problem, we extracted random patches from
the three species, labeled according to the original tree inven-
tory dataset Smap and from the ground truth, respectively in
the Norwegian study area. We compute and plot the mean (as
solid line) and standard deviation (as confidence interval line
plot) per channel in Fig. 12.

We observe that in the Norwegian use case (WorldView
imagery from May), if we sample from the ground truth (Fig.
12a) each tree specie has a specific spectral curve. On the other
hand the spectral curves taken from Smap (Fig. 12b) are more
mixed. This shows that the ground truth is more consistent
than the starting tree species inventory Smap. However, we
recall that the ground truth is not available in practice in

most of the cases. It is worth mentioning that spectral curves
only show pixel intensity in the different spectra but other
contextual information (related for instance to texture) that can
potentially be use to discriminate between species is missing.
This suggests, and confirms several studies [44], that the
number of channels available (i.e., the amount of information
we can extract from satellite images) and the seasonality plays
an important role indeed.

Spruces have been found to be easily identified in Norway.
However, compared to spruces, which have large, dark green
canopies, pines have more scattered and pruned canopies with
little foliage, making them more difficult to distinguish from
deciduous trees. The fact that pines are the most problematic
type is also confirmed by Fig. 9 where we observe that their
features generally lay between the spruces and deciduous’
space, making it less separable. In Italy, on the other hand, we
found spruces and larches to be less distinguishable. This is
because they have nearly the same canopy structure. However,
larches are one of the few conifers that lose their needles
in the autumn. Therefore, it is desirable to align the time of
image acquisition with the phenological cycle of the species
under investigation to increase the performance of tree species
classification.

As presented in the Methodology section, we use two main
assumptions to facilitate our framework development. The first
assumption is that trees of the same species share the same
position in the feature space. However, there is a possibility
that two or more different tree species have similar visual
characteristics. Therefore we suggest, in regions where such
tree species exist, to combine classic ground-based approaches
in addition to satellite surveys. The second assumption is that
the majority of trees have the right label in the given tree
species inventory data set Smap. However, generating tree
inventories at national or regional-level is a time-consuming
and challenging task which has some uncertainties. In regions
where existing tree inventories have low accuracy, it is possible
to manually label part of the satellite images by experts on a
limited scale.

While the proposed methodology works with any num-
ber of images, we were particularly interested in evaluating
the method when only one multi-spectral satellite image is
used. Acquiring multi-temporal images has some advantages
in terms of performance (because more information can be
extracted) but also exhibits some potential drawbacks. Multi-
temporal high-resolution images can be expensive. In addition,
land use can change and large portions of trees can be
cut down between two frames, making the analysis more
complicated to automate.

Furthermore, hyper-spectral imaging is an option to dis-
criminate even further different types of trees. Hyper-spectral
images contain multiple (typically between 64 and 256) con-
tinuous narrow bands, providing significant levels of detail,
which allow for the distinction of fine spectral variations
among tree species [45]. However, the main limitations of
such images are the costs, complexity, and their availability in
different locations. Recently some hyper-spectral sensors have
been launched, including EO-1 from NASA and PROBA-1
from ESA, spanning from 60 to 200 spectral bands with a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11: Sample of the WorldView imagery in Norway (top row) and Italy (bottom row): (a,e) optical image, (b,f) starting tree species dataset Smap, (c,g)
refined tree species map Smaprefined, (d,h) Ground-truth. Note the issues present in the original dataset. Despite these, the output generated via our approach
can automatically capture new trees and refine better the forest stands. Legend: spruces (green), pines/larches (cyan), deciduous (orange).
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Fig. 12: Spectral curves per channel with: (a) patches sampled from the ground
truth (b) patches sampled from the Smap (NIBIO dataset).

30-meters resolution. To our knowledge, no satellite providers
offer high-resolution hyper-spectral images (i.e., 1-meter or
less). The current studies on hyper-spectral images are limited
to airborne scanning, which faces the challenges introduced in

Section I.
Different available approaches exist, each with specific

advantages and disadvantages (quality, data availability, cover-
age, storage constraints, costs, etc.). We find that our method
can serve as a complementary source to the other approaches,
providing a high potential for added satellite based observabil-
ity with minimal costs and high availability.
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VII. CONCLUSIONS

This paper has proposed a framework to identify tree
species using high-resolution satellite images and a noisy
reference forestry survey dataset. The proposed methodology
relies on feature extraction from samples in the tree reference
dataset to learn the characteristic properties of each class.
The features are relabeled based on their position in the
feature space, and a pre-refined map is generated using an
additional tree segmentation model. A deep learning model
is then trained with the pre-refined map to further smooth
the pre-refined map. The strength of our approach is that
refined version of tree species inventories, often available at
regional-scales, can be generated automatically from single
images as input, making the approach practical and relatively
cheap. Multi-temporal images and different case studies have
been used for cross-validation. Our evaluation shows that the
proposed methodology exhibits clear benefits compared to
traditional training procedures. Our method can be helpful
as a complementary source, providing a high potential for
added observability with minimal costs and high availability
for everyone. Future work will be towards improving further
the performances, especially with trees with less foliage. In
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addition, we plan to improve the methodology by detecting
outliers (trees that do not belong to any of the specified
species) in the feature space and testing the approach with
more tree species.
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Abstract—Power lines traverse diverse terrains over vast1

distances to deliver electricity. Vegetation near power lines,2

especially during severe weather, can fall and disrupt the electri-3

cal network, causing power outages and considerable economic4

losses. Traditional monitoring procedures are time-consuming5

and costly, requiring on-the-ground teams and aerial surveys by6

helicopters. However, the decrease in satellite launch costs, the7

increasing satellite population, and advancements in technology8

have made satellite imagery more affordable. In our study, we9

introduce Artificial Intelligence and Space-based Monitoring for10

Power Lines Risk Evaluation against Vegetation (ASPIRE-V), a11

framework that enables up-to-date assessment of vegetation-12

related risks to the power lines. It uses high-resolution satellite13

images and weather data to create 3D model of trees plus key tree14

characteristics such as height, species, and strength against wind15

within the power lines right-of-way (ROW) to identify susceptible16

trees that can collide with the power lines automatically. The17

proposed framework is implemented and validated on an actual18

distribution grid in Western Norway. Our findings, corroborated19

by LiDAR data and other in-situ ground truths, show a strong20

capability to monitor tree conditions. This method enhances21

the toolkit available to vegetation management teams within22

electrical utilities, contributing to a more reliable and secure23

power supply.24

Index Terms—Risk Assessment, Remote Sensing, Satellite Im-25

agery, Power Line Monitoring26

I. INTRODUCTION27

POWER transmission and distribution networks are vital28

for many societal activities and services but are suscepti-29

ble to extreme weather like heavy snow, hail, and strong winds.30

Trees near these lines, aggravated by harsh weather, are major31

contributors to power outages [1]. In Norway, over 80% of32

outages are due to vegetation and wind issues [2]. Trees falling33

on lines can cause disruptions, outages, and in dry areas,34

even lead to wildfires [3]. Therefore, continuous vegetation35

monitoring and management are crucial for electric utilities,36

which invest significant financial resources to maintain them.37

Typically, utility operators conduct visual inspections by38

sending ground crews to drive along power lines, identifying39

and documenting areas at risk and trees encroaching on40

the right-of-ways (ROWs). Another method involves aerial41

surveys using helicopters or drones equipped with cameras or42

LiDAR technology to scan the lines [4]. Nonetheless, these tra-43

ditional approaches are labor-intensive and highly expensive.44

The costs escalate further due to the extensive reach of power45

line networks, which can stretch for hundreds of kilometers.46

In countries like Norway, the challenge is compounded by47

power lines that traverse through remote and difficult terrains48

like mountains and fjords. Therefore, vegetation management 1

remains an ample item in electric companies’ operation and 2

maintenance costs. 3

Current literature features a few vegetation monitoring tools 4

like ForestGALES [5] and TREFALL [6], designed primarily 5

for forestry and arboriculture to assess risks from wind- 6

induced forest damage and identify trees posing threats to 7

infrastructure. These models require pre-gathered tree data, 8

including location, species, and physical characteristics, typ- 9

ically obtained through field surveys or ground inspections. 10

However, due to the high costs of monitoring extensive infras- 11

tructure networks, data collection is often sparse, conducted 12

over multi-year periods and on a fixed schedule. This leads 13

to infrequent updates of information, causing a disconnect 14

between the management of vegetation tasks and the swift 15

emergence of certain risks like vegetation overgrowth. 16

The decrease in satellite launch costs and the introduction of 17

advanced sensor-equipped satellites have substantially lowered 18

the price of satellite imagery. Commercial providers now 19

offer high-resolution images with regular updates and global 20

reach. This technology has been successfully applied in infras- 21

tructure monitoring post-natural disasters [7] and pre-disaster 22

vulnerability assessments [8], [9]. This progress presents an 23

opportunity to combine large-scale monitoring with frequent 24

updates and cost-effectiveness, bridging the observability gap 25

in traditional cycle-based monitoring. It improves situational 26

awareness around power lines, facilitating proactive measures. 27

Vegetation detection and mapping have been extensively 28

studied in forestry works [10], [11]. However, unlike forestry 29

tasks, high-resolution imaging is crucial for power line mon- 30

itoring, providing the sub-meter accuracy required to discern 31

critical distances. Even a small 1 to 2-meter discrepancy can 32

be significant in this context. 33

This paper presents ”ASPIRE-V,” a novel framework aimed 34

at improving vegetation management for transmission and 35

distribution companies. It facilitates monitoring and risk as- 36

sessment of vegetation near power lines by integrating remote 37

sensing data, machine learning, and mechanistic models. This 38

approach estimates key tree parameters such as height, proxim- 39

ity to power lines, and species type from high-resolution satel- 40

lite images, offering a cost-effective alternative to traditional 41

field surveys and incorporating real-time weather data for risk 42

assessment. The framework produces two types of risk maps: 43

a static map identifying trees that could fall onto power lines, 44

and a dynamic map using wind data to evaluate the risk of trees 45

breaking and affecting the lines. These maps enhance proactive 46
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vegetation management and situational awareness, improving1

the power grid’s reliability and resilience. By integrating2

this framework into existing vegetation management systems,3

utilities can gain deeper insights into vegetation conditions,4

ultimately enhancing management and operational efficiency.5

Our contributions are as follows:6

• we offer in-depth characterization of trees along power7

lines using satellite imagery8

• we compute multi-level risk assessments for power lines,9

incorporating collision and weather-related factors.10

• we have applied this solution in a real-world setting11

and present insights on practical implications for electric12

utility companies.13

II. STUDY AREA AND DATA USED14

The research was conducted in collaboration with a power15

distribution system operator (DSO) in Askvoll, Western Nor-16

way, covering an area of approximately 20 square kilometers.17

This area includes a rural 26-kilometer-long 22kV distribution18

network characterized by fields, scattered and dense forests,19

and waterways. The monitored corridor for the power lines20

extends 10 meters on either side, creating a 20-meter-wide21

strip. It is important to note that the width of the monitoring22

corridor can be adjusted by the electric operator according to23

local or national requirements, and this choice does not restrict24

the applicability of the methodology described in the study.25

For the specified region, a high-resolution satellite image from26

Maxar’s WorldView-2, captured in mid-May, was acquired.27

The image has a resolution of 0.5 m/pixel, ortho-rectified, and28

pan-sharpened [12] by the provider. This satellite image is29

distinguished by its eight unique spectral bands, which include30

the standard red, green, and blue bands and several infrared31

wavelengths.32

We used the study region’s LiDAR point cloud data obtained33

through airborne laser scanning (ALS) to train and validate the34

deep learning models. This LiDAR data is made accessible35

through a Norwegian national program [13], offering nation-36

wide point cloud coverage for public use. The point clouds are37

characterized by a density of 25 points per square meter, with38

each point in the point cloud representing a specific height39

above sea level.40

The reference dataset for tree species was supplied by the41

Norwegian Institute of Bioeconomy Research, detailed in [14].42

This dataset offers extensive data on forest distribution nation-43

wide, categorizing forest stands by the dominant tree species44

present. It explicitly identifies stands of Norway spruces, Scots45

pines, and various deciduous trees, mainly birches, aspens, and46

rowan. For more intricate details on the creation and validation47

of this dataset, one can refer to the cited study by Astrup et48

al., [15]. The collected data for the study area is summarized49

in Figure 1 in the paper.50

Lastly, historical wind data relative to wind direction, speed,51

and gust is obtained from [16].52

III. METHODOLOGY53

The overall pipeline of ASPIRE-V is shown in Fig. 2, and54

each block is described in detail in the following subsections.55

Askvoll, Norway

LiDAR

Satellite image

Tree species inventory

Fig. 1: The study area for this study is a 26-kilometer-long distribution
network (shown as orange lines in the top figure) in western Norway. A
WorldView-2 satellite image has been acquired for the region. Additionally,
national tree species inventory and LiDAR data are acquired.

A. Input Data and pre-processing 1

A pre-processing procedure for multi-spectral satellite im- 2

agery is used to facilitate machine learning training. Initially, 3

pixel values in each spectral band are scaled and contrast- 4

enhanced by adjusting the minimum and maximum values to 5

the 2nd and 98th percentiles of pixel distribution, respectively, 6

and normalizing each channel to the (0, 1) interval. 7

The Normalized Difference Vegetation Index (NDVI) is 8

calculated from the satellite image red and infrared band to 9

detect vegetation, using the formula NDVI = NIR−RED
NIR+RED 10

[17]. NDVI values, ranging from -1 to 1, help differentiate 11

between non-vegetated areas (low NDVI, 0.1 or less), sparse 12

vegetation (moderate NDVI, around 0.2 to 0.5), and dense 13

vegetation or peak growth crops (high NDVI, 0.5-1). 14

LiDAR point clouds are used to create a Digital Surface 15

Model (DSM) and a Digital Terrain Model (DTM), the latter 16

representing the Earth’s surface without vegetation or build- 17

ings. Heights in the DSM are normalized relative to the ground 18

surface, creating a normalized Digital Surface Model (nDSM). 19

A tree reference map Mtrees (ground truth) is generated 20

using thresholds 1.3 meters and 0.1 on the nDSM and NDVI, 21

respectively, differentiating trees from other green areas and 22

filtering out non-vegetative or man-made structures. The tree 23

map is then refined using morphological image processing 24

techniques like erosion and dilation to eliminate artifacts and 25

isolated points. 26

B. Tree Inventory Generation 27

Trees pose a substantial threat as they can be susceptible 28

to falling onto power lines during strong wind events. When 29

evaluating the risk to nearby infrastructure lines, it is crucial 30

to consider various factors related to the trees, including their 31

locations, proximity to the power lines, species, size, and 32

height. For example, in [18], the authors show that Norway 33

spruces are more vulnerable overall than Scots pines and 34

birches are the least vulnerable. In our framework, we use a 35
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Satellite imagery LiDAR Tree species dataset

Pre-processingPre-processing

Weather data

Wind speedWind direction
NDVI

Module A: 
Input Data

Tree inventory
• Position
• Crown radius
• Species
• Height
• DBH
• shield factor

tree position

tree height
tree species

crown radius

trainingtrainingtraining

Module B: Tree Inventory Generation

Tree segmentation
block

Tree species
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Tree crown 
delineation block

nDSM estimation
block

Tree inventory
Shielding effectAllometric equations

Static risk Dynamic risk

Module C:
Risk Assessment

Dynamic risk map

Collision tree-line

Static risk map

Collision tree-line

Critical wind speed
calculation

▪ Safe trees
▪ Colliding trees

▪ Safe trees
▪ Wind-exposed trees
▪ Colliding trees

ASPIRE-V

Fig. 2: Graphical overview of the ASPIRE-V framework. (1-Input data): The framework starts with the acquisition of satellite imagery for the designated
region. It also utilizes LiDAR point cloud data and tree species inventory for the initial training of the machine learning models, although these inputs are not
required once the models are developed. (2-Tree inventory generation): Different models are developed to segment trees, estimate their height, classify their
species, and extract their crowns. Information regarding the tree’s position, crown radius, species, and height is collected to create a tree catalog. Allometric
equations are utilized to estimate the tree diameters at breast height (DBH) as well as the shielding effects of the trees. (3-Risk): All the information is
integrated to determine the critical wind speed required for each tree to break. A comparison between the calculated critical wind speed and the actual wind
data is performed to assess the vulnerability of each tree. This information is used to generate a dynamic risk map that indicates the potential risk to nearby
infrastructure lines caused by trees in various weather conditions.

satellite image to estimate these tree parameters and generate1

a tree inventory.2

1) Tree segmentation block: We initiate our methodology3

by developing a tree segmentation model that processes an4

input image to produce a pixel-wise mask, denoted by M̂tree,5

which assigns a probability to each pixel indicating whether6

it is part of a tree.7

For the segmentation model, we chose an encoder-decoder8

architecture with a Unet backbone [19]. This architecture9

consists of a series of convolutional blocks with sizes10

[16, 32, 64, 128], each followed by Max Pooling layers. Each11

block contains two convolutional filters, a batch normalization12

layer, an elu activation function, and a dropout layer for13

regularization. In the decoder section, an attention mechanism14

is utilized to merge features at different scales using the15

attention mechanism proposed by [20]. Binary cross-entropy16

serves as the loss function during network training, fitting for17

a scenario with binary labels, where ’0’ signifies ’no-trees’18

and ’1’ indicates ’trees’. The model is trained with the ground19

truth provided by Mtrees, generated in the data pre-processing20

step.21

2) nDSM estimation block: The second block of our frame- 1

work is focused on estimating tree height, a challenging task 2

when working with single optical images due to the inher- 3

ent lack of height information. There are well-documented 4

ambiguities in translating color measurements into height 5

values, making this task inherently ill-posed (as noted in 6

[21]). Typically, 3D height models are created using stereo 7

imagery [22], multi-angular photogrammetry [23], Synthetic- 8

aperture radar (SAR) interferometry [24], and LiDAR [25]. 9

However, recent research has investigated machine learning’s 10

potential in 3D reconstruction from single optical images [26]. 11

The fundamental concept is to use both satellite imagery and 12

LiDAR data to train a model to discern the relationships 13

between contextual information (such as texture, color, and 14

shading) and elevation to estimate a Digital Surface Model 15

(DSM) [27]. We use the same architecture presented in III-B1, 16

modified to perform regression tasks. Therefore, the final layer 17

of the decoder is activated by a linear activation function, and 18

we use the mean squared error as a loss function. The deep 19

learning model is shown in Figure 3. The upper branch is 20

used for binary segmentation, and the lower branch is used 21

for height regression. 22
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Bottleneck

80x80x8 80x80x16
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Fig. 3: Deep learning model architecture used to segment vegetation from
a satellite image (upper branch) and estimate height (lower branch). Convo-
lutional block (orange), pooling layers (red), up-sampling layers (blue), and
classifier (purple).

3) Tree species classification block: In this block, we carry1

out a tree species multi-class segmentation task. Similarly to2

the segmentation block in III-B1, we take an input image and3

generate a pixel-wise mask denoted as M̂species
tree . Each pixel4

in this mask contains the probability of belonging to one of the5

primary tree species categories, which, as outlined in Section6

II, include spruces, pines, and deciduous trees.7

(a) (b)

Fig. 4: (a): Typical tree species reference datasets may have certain limitations,
such as incomplete coverage where some tree species are not included and
imprecise demarcations where the boundaries between different regions or
stands are not clearly defined. (b): Refined tree species mask using our
approach. Legend: spruces (red), pines (green), deciduous (blue).

In a recent work presented in [28], we introduced an8

innovative approach that enables the model to identify different9

tree species at a level of detail close to the individual tree. This10

approach is designed to handle the inherent noise and low-11

resolution issues in the tree species dataset, greatly enhancing12

the quality of the available forest inventories (Figure. 4). We13

encourage interested readers to refer to the corresponding14

published paper for more in-depth information on this method-15

ology.16

4) Tree crown delineation block: The segmentation model17

presented in III-B1, produces a binary mask M̂tree, that18

differentiates areas with and without trees. This mask indicates19

the presence of trees but does not specify individual tree20

locations or counts.21

To address this, we integrate the tree crown delineation 1

approach outlined in [29] with our binary tree mask M̂tree 2

to enhance its robustness in areas that may contain both trees 3

and non-tree elements. A step-by-step graphical representation 4

of the crown extraction is shown in Figure 5. 5
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Fig. 5: A step-by-step graphical representation of the crown extraction.

The input satellite image is multiplied by the tree mask 6

M̂tree to extract the tree areas. The resulting image is con- 7

verted to grayscale and smoothed using two 2D Gaussian 8

filters G with standard deviation, σ1 and σ2. When such a 9

Gaussian filter is applied to the image, tree crowns with a 10

similar shape and size to the filter are enhanced, and smaller 11

objects are suppressed. The strength of each Gaussian filter σ 12

is set to 0.3d, as explained in [29], with d = 1, 2 meters, which 13

is the typical size of tree crowns in the area. The smoothed 14

image is inverted, and local minima in the image are identified, 15

which serve as markers for watershed segmentation [30]. Each 16

segmented region is converted into a circle, encompassing 17

the same area. The tree crowns extracted at each scale are 18

then merged together. This integration removes smaller crowns 19

located within or having significant overlap (more than 80%) 20

with larger crowns. Additionally, any tree crown with a 21

center close to another tree crown (less than two meters) is 22

removed. The geographical information associated with the 23

input satellite image is utilized to project the extracted tree 24

crowns into a real-world coordinate system to complete the 25

process. This step ensures that the delineated tree crowns are 26
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accurately positioned within the geographical context of the1

area covered by the image.2

5) Tree inventory: After extracting the tree crowns, the3

position of each tree, specifically the centroid of each crown,4

becomes readily available. Leveraging the information ob-5

tained from M̂nDSM
tree for tree height and M̂species

tree for tree6

species, we can integrate such information into each identified7

tree. This process enables the creation of a tree inventory fully8

derived from satellite remote sensing techniques, where each9

tree entry encompasses information about its geographical10

position on the map, tree height, crown size, and species.11

a) DBH estimation: The diameter at breast height (DBH)12

is a standard measurement for tree trunk diameter at about 1.313

meters high. It is crucial for assessing a tree’s susceptibility14

to wind but can’t be directly measured from satellite images.15

Instead, allometric equations are used to correlate DBH with16

measurable parameters like tree height and generally expressed17

as H = ( DBH
b1+b2DBH )3 + c, with b1, b2, c species-specific18

coefficient. However, these equations can vary by geographic19

region and tree species. In Norway, specific non-linear height-20

DBH models have been developed for major tree species [31].21

Notably, these allometric functions are invertible, allowing22

DBH estimation from tree height data in the inventory.23

b) Shielding effect: Evaluating a tree’s vulnerability to24

wind involves considering the shielding effect of nearby trees.25

For each tree within the designated corridor, the surrounding26

360-degree space is divided into eight sectors aligning with the27

main wind directions (e.g., North, North-East, East, etc.). For28

each direction, the presence of surrounding trees is assessed.29

A shielding factor is assigned based on these observations: 130

if there are at least two trees in that sector, or 0.2 if fewer.31

These values are based on research suggesting that multiple32

trees significantly reduce the wind’s bending force on a tree33

by a factor of approximately 5 [32]. The presence of multiple34

nearby trees can significantly reduce the wind-induced bending35

moment. To accurately calculate the shield factor for all trees,36

even those on the corridor’s edge, trees in an extended area37

beyond the corridor need to be detected. Figure 6 graphically38

shows the shielding factor calculation.39

Corridor

10 meters

N

S

SE

EW

SW

NW NE
Example

trees outside of the corridor

Fig. 6: Tree Shielding Factor Calculation: For each tree within the corridor,
the 360-degree space is divided into eight sectors representing the main wind
directions. Surrounding trees within a 10-meter radius are considered for each
sector. A shield factor of 1 is assigned if there are more than two trees within
the sector and a factor of 0.2 if not.

C. Risk Assessment 1

A tree inventory has been generated at this stage, as 2

described in Section III-B. Each tree within this inventory 3

is characterized by the following properties: position, crown 4

radius, species, height, diameter at breast height (DBH), and 5

shield factor. This information serves as the foundation for 6

generating two distinct types of risk assessments: static risk 7

and dynamic risk. 8

1) Static risk: The static risk assessment considers the 9

positions and heights of the trees relative to the power lines. A 10

trigonometric collision calculation is used to evaluate whether 11

a tree has the potential to fall onto or disrupt the power 12

line. Specifically, denoting with d the distance of a tree 13

from the power line, h the power line height, and with H 14

the tree height, we mark a tree as potentially dangerous if 15

H + ∆ ≥
√
d2 + h2 (see Figure 7). A safety margin ∆ 16

is introduced to accommodate inaccuracies from the height 17

estimation model and consider the bending catenary curvature 18

of power lines wires. 19

Distance from the power line

Power line
height

h

d

margin

Tree
height
H

Fig. 7: A trigonometric collision calculation is performed to determine whether
a tree has the potential to fall onto the power line. This calculation considers
the tree’s distance from the power line d, the height of the tree H , the height
of the power line h, and a safety margin. Trees that can potentially collide with
the overhead lines are flagged as potentially dangerous in the risk assessment.

The outcome of this static risk assessment is a risk map, 20

which highlights trees encroaching too closely into the right- 21

of-way. This map helps identify areas of concern where 22

vegetation management actions may be needed to mitigate 23

potential risks to the power lines or to investigate further. 24

2) Dynamic risk map: In the dynamic risk assessment, 25

weather data is also considered, and the focus shifts to how 26

trees can withstand wind and extreme weather conditions. This 27

assessment aims to evaluate the resilience of trees to wind- 28

induced forces during adverse weather events. The dynamic 29

risk assessment involves the utilization of various parameters 30

and models, as described in previous sections, to estimate each 31

tree’s ability to withstand wind. It incorporates factors like tree 32

height, species, diameter at breast height (DBH), shield factor, 33

and local wind conditions. 34

The study conducted by [33] demonstrated that, across a 35

range of stand and soil conditions and for different tree species, 36

there exists a conservative relationship between the maximum 37

turning moment Mmax and the square of the hourly wind 38

speed at the top of the tree canopy ω2, Specifically, for well- 39

acclimated trees the authors found that Mmax = ω2 ·Tc, where 40
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Tc is a turning moment coefficient. This coefficient depends1

on tree’s physical properties and, as a first approximation,2

results in Tc = 117.3 · DBH2 · h, where DBH is the3

diameter at breast height, and h is the tree height. The critical4

bending moment at which stem breakage occurs was defined5

by [34] as: Mcrit = π
32 · MoR · DBH3 where MoR, or6

Modulus of Rupture, is a material property, measured in7

Pascal, used to describe the stress within a material just before8

it yields or fractures in a flexure test. Importantly, the MoR can9

vary among different tree species because the specific wood10

properties of each species influence it. The modulus of rupture11

per each wood can be found in wood property databases such12

as [35]. Finally, combining the previous equations, the critical13

wind speed for breakage for a particular wind direction is14

derived as:15

ωbreakage
kr (dir) =

√
MoR ·DBH3 · fshield(dir) · π

32 · Tc · fCW
(1)

where fCW is the additional moment multiplier provided by16

the overhanging displaced mass of the canopy, set to 1.25, and17

dir is the wind direction used as input data. A comprehensive18

explanation of the calculations and the underlying details19

can be found at [36]. To account for the fact that trees can20

be shielded from both the trees behind and in front of the21

oncoming wind, the parameter fshield(dir) is calculated as the22

mean of fshield in the direction of the wind and the opposite23

direction of the wind. fshield acts as a multiplier, modifying24

the critical breakage speed when trees are isolated25

The critical wind speed for breakage is individually cal-26

culated for each tree within the power line’s corridor using27

Equation (1), considering the wind direction (dir) provided28

as input. Each tree’s critical wind speed ωbreakage
kr (dir) is29

compared to actual wind gust speeds ω(dir). If ω(dir) ≥30

ωbreakage
kr (dir), the tree is expected to break due to wind.31

Additionally, a collision calculation determines if a wind-32

damaged tree could collide with power lines. This method33

combines assessments of wind vulnerability and collision34

potential, offering a comprehensive dynamic risk evaluation35

for each tree in relation to wind conditions and their impact36

on power lines.37

IV. RESULTS38

The framework was developed in Python, with the deep39

learning modules implemented using the TensorFlow library.40

Geographical visualization of the data was performed using41

QGIS. For the development of the machine learning models,42

the study area is divided into two non-overlapping parts, each43

with a similar distribution of land use, including forests, fields,44

water basins, and more. The training part of the study area45

encompassed 10 square kilometers, while the testing part46

covered 4.7 square kilometers. Within the training part, a47

dataset is created by randomly extracting 20,000 patches, each48

measuring 80x80 pixels (equivalent to 40x40 meters given the49

image resolution). This dataset is split into 75% for the actual50

training and 25% for validation. During the training process,51

the model is trained with the training patches and fine-tuned52

for each batch using the validation patches. To prevent over- 1

fitting, an early stopping callback monitored the validation 2

loss, and a learning rate adjustment callback is implemented 3

to reduce the learning rate when the loss function reached a 4

plateau. The Adam optimizer is used with an initial learning 5

rate of 10−3. Figure 8a displays the training history plot for 6

the tree segmentation, while Figure 8b presents the training 7

history plot for the height estimation. 8
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Fig. 8: (a) Segmentation training history. The model stabilizes approximately
after 25 epochs, reaching an accuracy of 0.96 and an Intersection over
Union of 0.84. (b) Height estimation training history. The model stabilizes
approximately after 40 epochs, reaching a Mean Absolute Error of 1.21
meters.

Once the trained models are applied to the testing area, 9

they generate a tree segmentation map, a normalized Digital 10

Surface Model (nDSM) map, and a tree species map. It’s 11

important to note that the model has not been exposed to the 12

testing area during training. Because the testing image is too 13

big to fit into the model, it is divided into overlapping 80×80 14

tiles. Predictions are made on each tile, and the resulting 15

predicted tiles are then smoothly combined to reconstruct the 16

entire area [37]. 17

The evaluation metrics for the tree segmentation map in 18

the testing area are shown in Table I. Each task is evaluated 19

using specific metrics such as F1-score, Intersection over 20

Union (AoU), ROC-Area under Curve (ROC-AuC), Mean 21

Absolute Error (AME), and Coefficient of Determination (R2), 22

depending on the specific task (binary classification, multi- 23

class classification and regression). 24

These metrics indicate the accuracy and effectiveness of the 25

model in segmenting trees in a previously unseen region. The 26

evaluation metrics for height estimation in the testing area 27

show a Mean Absolute Error (MAE) of 2.10 and an R-squared 28
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TABLE I: PERFORMANCE METRICS FOR THE TREE SEGMENTATION, TREE SPECIES CLASSIFICATION AND HEIGHT ESTIMATION TASKS
OVER THE TESTING AREA.

Model Tree segmentation Tree species classification Tree height estimation
Test metrics F1-score AoU ROC-AUC F1-score spruces: F1-score: pines F1-score: deciduous MAE R2

Performance 0.88 0.80 0.92 0.88 0.65 0.76 2.10 0.74

(R2) value of 0.74. The MAE indicates that 2.10 meters is the1

average absolute difference between the predicted heights and2

the actual heights of the trees. The R-squared value of 0.743

measures the goodness of fit of the model, with a value closer4

to 1 indicating a better fit. In this case, an R2 value of 0.745

suggests that the model explains a significant portion of the6

variance in tree heights. For the tree species model, an accurate7

analysis of the results is presented in [28].8

Figure 9 shows visually the output of the three models,9

namely the tree segmentation map M̂tree, the estimated10

nDSM M̂nDSM
tree and the tree species map M̂species

tree .11

(a) (b)

0

20 m

(c)

spruces
pines
deciduous

(d)

Fig. 9: Testing area. (a) satellite image, (b) tree segmentation map, (c) nDSM
estimation map, and (d) tree species map.

The tree crowns are extracted along the power line’s corri-12

dor, and the tree inventory is generated using the information13

of height derived by M̂nDSM
tree , the tree species from M̂species

tree ,14

as well as the estimated DBH from the available allometric15

equation and the shielding effect, as described in III-B (Figure16

11b).17

From the generated tree inventory, the static risk map and18

dynamic risk map are calculated according to III-C1 and19

III-C2. In the study area, the heights of the 22kV overhead20

lines have an average height of 10.8 meters, as reported by21

[38]. Considering the estimated height error in the model, a22

safety margin of 2 meters is added. The collision simulation 1

is used to identify trees that have the potential to fall onto the 2

power line. For the dynamic risk map, we compute statistics 3

for the historical weather data in the region over the last four 4

years. Results are shown in Figure 10. 5

Extreme wind gust

Fig. 10: Histogram of the historical data over the last four years (wind speed,
gust, and direction) for the study area. We define an extreme weather event
based on a wind gust threshold set at three times the standard deviation of
the wind speed distribution (blue vertical line).

The analysis indicates that the most common wind direction 6

in the region is from East to West. Typical wind speeds range 7

from 0 to 5 meters per second, with occasional peaks reaching 8

up to 10 meters per second. However, there are instances of 9

wind gusts reaching speeds of up to 25 meters per second. 10

To define an extreme weather event, a wind gust threshold is 11

set at three times the standard deviation of the wind speed 12

distribution, which corresponds to 17.4 meters per second in 13

this case. This threshold aligns with the Beaufort scale [39], an 14

empirical measure that associates wind speed with observed 15

conditions at sea or on land. Wind speeds of 17.4 m/s fall 16

within Category 8 on the Beaufort scale, where trees are 17

known to begin breaking. Therefore, we simulate the dynamic 18

risk map using a wind gust speed of 17.4 meters per second 19

and from East to West as wind direction. Figures 11c and 11d 20

show an example of the static and dynamic risk map for a 21

portion of the grid, respectively. 22

In the static risk map, trees are flagged whether they can 23

disrupt the power line due to their proximity and height to 24

the overhead wires. In the dynamic risk map, the analysis 25

compares the critical wind speed for breakage for every tree 26

with the wind gust speed. A collision assessment is performed 27

if a tree is found to be vulnerable to the wind. Trees are flagged 28

on the dynamic risk map if they are susceptible to falling 29

against the prevailing wind and potentially hitting the power 30

line. This map considers the proximity of trees to the power 31

line and their vulnerability during extreme weather conditions. 32

The dynamic risk map provides a two-fold advantage: it 33

can utilize historical or synthetic weather data and conduct 34

Paper C 121



8

(a) (b) (c) (d)

Fig. 11: (a): Satellite image for a portion of the power line. (b) The tree inventory is created by combining information from the binary tree segmentation
map (M̂tree), the extracted crowns, the estimated height map (M̂treenDSM ), and the tree species map (M̂species

tree ), along the power line corridor. Each
tree is visualized as a cylinder with height derived from M̂treenDSM and color-coded by the species derived by M̂species

tree (red: spruce, green: pine, blue:
deciduous). (c-d): Example of the risk map along the power line corridor. The purple dashed line is the power line. The power line is denoted by the purple
dashed line, with a 10-meter corridor on each side marked in yellow and a 30-meter corridor on each side in white. While the risk assessment maps are
specifically computed for trees within the small corridor, it’s essential to detect trees in the larger corridor as well to account for the shielding effect, as
explained in section III-C2. (b) Static risk map: trees color-coded in red have the potential to hit the power line due to their proximity or height. (c) Dynamic
risk map: trees color-coded in orange are exposed to incoming wind (in this case, from East to West) and can fall. However, they cannot collide with the
power lines if they fall. Trees color-coded in red are exposed to incoming wind and can fall. Additionally, they can collide with the power lines. Visualizations
made in QGIS.

simulations using weather forecast data to predict potential1

tree collisions with power lines. This approach enhances2

the ability to anticipate and mitigate risks associated with3

extreme weather events and their potential impact on power4

line vegetation management.5

V. PRACTICAL CONSIDERATIONS FOR SATELLITE-BASED6

VEGETATION MANAGEMENT IN ELECTRIC POWER7

COMPANIES8

This study, conducted from 2019 to 2023 under the9

GridEyeS project [40], represents a collaborative effort with a10

Norwegian electric company, two international weather intelli-11

gence and asset management companies, and Western Norway12

University. The Electric company’s asset management and13

vegetation management teams provided continuous feedback,14

while the two service companies offered partial insights and15

guidelines for the development, implementation, and valida-16

tion of the proposed ASPIRE-V framework. The GridEyeS17

project, funded by the European Space Agency, has influenced18

the utilization of satellite imagery for power line surveillance,19

as evidenced by its contribution to the 2023 European Space20

Agency (ESA) market report [41].21

A. Cost Effectiveness22

In Europe and the US, vegetation management constitutes23

approximately 35% of total operational expenditures for utili-24

ties, amounting to a cost ranging from 100 to 1500 Euros per25

kilometer of power line per year, contingent on technological26

factors, geographic location, and the extent of the grid terri-27

tory [42], [43]. Comparative analysis indicates that satellite28

imagery for a specific region is up to 60% more cost-effective29

than helicopter and drone images [44]. Commercial high-30

resolution optical satellite images, priced between 7 and 4031

Euros per square kilometer, supplement the cost-effectiveness32

of free low-resolution satellite images, such as those from the33

Sentinel-2 constellation under the Copernicus program by the34

European Space Agency. A study conducted by the Norwegian 1

Transmission System Operator (TSO), Statnett, affirms that 2

satellite imagery significantly reduces the cost of power line 3

monitoring per kilometer of line per year [45]. 4

The market for satellite imagery applications is projected 5

to experience substantial growth until 2030, according to 6

a recent study by the European Space Agency [41]. This 7

expansion, coupled with anticipated advancements in reduced 8

costs and enhanced image quality, underscores the increasing 9

attractiveness of high-resolution satellite monitoring as a vi- 10

able solution for vegetation management in power distribution 11

and transmission companies, particularly when integrated with 12

traditional power line monitoring approaches. 13

B. Situational Awareness Enhancement 14

The elevated cost of power line vegetation monitoring and 15

the expansive service territories necessitate utilities to conduct 16

periodic assessments of their entire service area, spanning from 17

two to ten years [46]. Satellite-based monitoring addresses 18

this challenge by providing frequent revisits to a given area. 19

Commercial satellites from various constellations offer multi- 20

ple high-resolution images (25-50 cm) per day for any location 21

globally [47], [48]. The broad perspective afforded by satellite 22

imagery facilitates a comprehensive understanding of power 23

lines’ right-of-way (ROW), encompassing factors such as land 24

cover, elevation, and the condition of objects and vegetation, 25

within a condensed timeframe. 26

C. Enhancing Decision Support for Vegetation Management 27

Teams 28

Figure 12 illustrates a sample vegetation risk map for 29

power lines generated by the proposed ASPIRE-V. This map, 30

highlighting trees near power lines with color-coded risk 31

indicators, can be seamlessly integrated into legacy notification 32

dashboards for utilities. This integration enables a focused 33
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approach to high-risk zones, optimizing inspection costs and1

efforts. The utilization of risk maps holds the potential to2

significantly reduce overall ROW inspection time and cost,3

offering more updated situational awareness.4

Fig. 12: Points are extracted along the power lines, and trees within 10 meters
that could potentially fall onto the power lines are counted. The color-coding
system is as follows: green is used if there are no trees posing a collision
risk to the power line, yellow is employed if there are between one and three
trees, and red is indicated if there are more than three trees.

D. Challenges of Using Satellite Images5

Despite the advantages of satellite-based monitoring, certain6

limitations merit consideration. Establishing a 3D vegetation7

model and estimating vegetation risk for power lines involves8

complex tasks dependent on various parameters with varying9

degrees of stochasticity in vegetation and weather behavior.10

Modern satellite imagery, while of high quality, has a11

maximum resolution of 15 cm based on current technology12

in the market [49]. This limitation may impede the detection13

of vegetation health conditions. Achieving enhanced perfor-14

mance in tree health assessment may necessitate additional15

in-situ data or synchronizing image acquisition timing with16

the phenological cycle of the relevant species [28].17

Furthermore, estimating tree height from satellite images18

poses a challenge due to the absence of direct height infor-19

mation. Similar to other studies in the literature, our model20

is trained to establish a relationship between optical images21

and tree height using LiDAR data. It is important to note22

that model retraining may be required when deploying the23

framework in a different geographical area with significant24

changes in vegetation coverage and type.25

The tree characterization presented in this work relies on a26

combination of mechanistic models and information obtained27

from remote sensing technologies. While the framework pro-28

vides valuable insights and risk assessments, predicting the29

future behavior of trees in response to weather conditions30

remains inherently challenging due to the stochastic nature31

of weather data and the variability in tree properties.32

Notwithstanding the inherent uncertainties, our tree detec-33

tion and characterization methods have demonstrated effec-34

tiveness. The proposed risk maps serve as valuable tools35

for electric utilities, enhancing their awareness of vegetation36

near power lines. However, these maps are not universally37

applicable, and utilities may adapt the risk assessment param- 1

eters based on their on-field requirements, regulations, and 2

expertise. 3

VI. CONCLUSIONS 4

This paper introduces an innovative framework for moni- 5

toring trees along power lines using high-resolution satellite 6

imagery. The framework leverages computer vision techniques 7

to detect and characterize trees. It has been deployed in 8

an existing power network in Norway and validated against 9

LiDAR data and national databases, demonstrating high per- 10

formance in assessing tree status. A collision simulation is then 11

performed to identify trees along the corridor that can hit and 12

disrupt the power lines. Additionally, tree mechanistic models 13

are employed to assess each tree’s resilience against incoming 14

winds. By incorporating wind data, the framework can simu- 15

late which trees are more susceptible to falling due to wind and 16

colliding with the power lines. This comprehensive approach 17

has the potential to significantly assist operators of power-line 18

infrastructure in vegetation asset management transmission 19

and distribution companies, providing an additional decision- 20

making tool, ultimately improving the reliability and safety of 21

the power supply. 22
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Automated Satellite-based Assessment of Hurricane
Impacts on Roadways

Michele Gazzea , Member, IEEE, Alican Karaer , Mahyar Ghorbanzadeh , Nozhan Balafkan ,
Tarek Abichou, Eren Erman Ozguven and Reza Arghandeh , Senior Member, IEEE

Abstract—During extreme weather events like hurricanes, trees
can cause significant challenges for the local communities with
roadway closures or power outages. Local responders must
act quickly with information regarding the extent and severity
of hurricane damage to better manage recovery procedures
following natural disasters. This paper proposes an approach
to automatically identify fallen trees on roadways using high-
resolution satellite imagery before and after a hurricane. The
approach detects fallen trees on roadways via a co-voting strategy
of three different algorithms and tailored dissimilarity scores. The
proposed method does not rely on the large manually labeled
satellite image data, making it more practical than existing
approaches. Our solution has been implemented and validated
on an actual roadway closure dataset from Hurricane Michael
in Tallahassee, Florida, in October 2018.

Index Terms—Remote Sensing, Satellite Imagery, Tree Debris
Detection, Post-Hurricane Assessment, Deep-learning

I. INTRODUCTION

DAMAGE assessment is essential after catastrophic events
like hurricanes, earthquakes, or tsunamis. Hurricanes,

in particular, cause significant damages in the US, which is
among the five countries most hit by natural disasters with
an estimated cost of $1.75 trillion for damages from 1980 to
2019 [1].

Aerial images are a valuable source of data for hurri-
cane damage assessment [2]. However, flying helicopters and
drones over damaged areas are highly prone to weather
conditions. Moreover, their high operating costs are a burden
on large-scale applications. In recent years, the dramatic
drop in satellites’ launching cost and the growing number
of satellites in orbit significantly reduced the cost of high-
resolution satellite imagery [3]. Commercial satellite providers
can offer high-resolution images (0.3 to 0.5 pixels/meter) with
a daily and sub-daily revisiting frequency for most parts of the
globe.

The combination of coverage, frequency, and cost-efficiency
of satellite imagery in addition to advancements in machine
learning (ML) creates a paradigm shift for enhancing sit-
uational awareness in infrastructure networks [4], [5]. In
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the recent literature, there are examples of using machine
learning for assessing impacts of tsunamis [6], earthquakes
[7], and floods [8] on infrastructure networks. In the event of
hurricanes, fallen trees are one of the most common causes
of damage to roadways, buildings, and electric lines. A major
body of literature on hurricane-induced tree failures is focused
on estimating tree failure probability concerning wind data (
[9], [10]). Although such models are useful for better assessing
fallen trees’ consequences, few works have been done to
automatically detect fallen trees using satellite images and
machine learning.

Recently, supervised learning methods have been proposed
to detect roadway closures using satellite images, typically
by using Convolutional Neural Networks (CNNs) [11], [12],
[13]. The major drawback of supervised models is that they
rely highly on scant and expensive manually labeled data. It
is also crucial to have clean and noise-free labels to train such
models. Furthermore, supervised models, in general, are less
scalable, and they need to be often retrained if we want to
deploy them in another area, [14].

Unsupervised methods usually are more viable options in
real-world remote sensing applications [15]. In unsupervised
ML image processing approaches, features are extracted au-
tomatically for image segmentation or change analysis [16],
[17]. Autoencoders (AEs) are one of the most efficient algo-
rithms for images feature extraction. They represent data in a
latent (usually smaller than the original) space preserving as
much relevant information as possible.

In this paper, we focus on detecting fallen trees that cause
roadway closures after hurricanes. We use high-resolution
satellite images taken before and after a hurricane to perform
change detection analysis and automatically locate areas where
trees have landed on the roadways.

The main contributions of this paper are listed as follows:
• From the application point of view, our proposed ap-

proach needs limited labeled satellite images for trees
in normal condition and it does not need any labeled
data regarding fallen trees. In practice, our approach is
unsupervised in relation to fallen trees. This increases the
robustness of the approach against noisy or faulty labels,
which are often acquired in satellite images and remote
sensing applications. Our algorithm is also more scalable
since it does not rely on an extensive training data set.
Moreover, it has a lightweight open-loop architecture for
fast computing time.

• From the methodology point of view, we propose a
framework consisting of three different and powerful
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algorithms, i.e. a segmentation model, a spectral vege-
tation index and Variational Autoencoders. We adapted
and combined them to work together to overcome the
shortage of each one of these methods to detect the fallen
trees. This is done using tailored dissimilarity scores for
changes in satellite images and a heuristic approach for
thresholding.

II. STUDY AREA

Hurricane Michael was one of the strongest storms hitting
the Southeast coast of the United States. It made landfall
as an unprecedented Category 5 hurricane in the Florida
Panhandle region with maximum sustained wind speeds of
140 knots (161 mph) bringing catastrophic storm surge to the
Florida State and Big Bend areas (especially Mexico Beach
and Panama City) [18]. It hit the City of Tallahassee between
October 10th and 11th 2018, leaving 1.2 million electricity
customers without power in several east coasts and southern
states. Estimated damage from Michael throughout the United
States reached $25 billion [19]. Hurricane Michael hit the City
of Tallahassee, Florida’s capital, on October 10th 2018. As a
medium-sized city, Tallahassee has a population of 193,551
as of the year 2018 [20]. We acquired two high-resolution
satellite images on a large portion of Tallahassee (Fig. 1)
before and after Hurricane Michael. Images are provided by
WorldView satellites, as described in Table I.

Fig. 1: Study area in Tallahassee (Florida) where satellite images before and
after Hurricane Michael are acquired.

TABLE I: Satellite images used in this paper

Date Channels Resolution
Pre-event image September 14 2018 RGB-NIR 0.5m/pixel
Post-event image October 13 2018 RGB-NIR 0.3m/pixel

For validation purposes, we use the dataset related to tree
debris locations acquired from the contractual company hired
by the City of Tallahassee to remove the debris.

III. METHODOLOGY

In this paper, our goal is to automatically detect fallen trees
along roadways. Our method works with very limited training
data and doesn’t need explicit training to recognize tree debris.
To do so, our major assumption is that a fallen tree will exhibit
a change that is possible to detect between satellite images
from the same area taken before and after a hurricane. In
literature, autoencoders have been used to extract and compare
important features from images and perform change detection

[21]. The fundamental challenge with autoencoders is the lack
of control over where the features are mapped and this is
challenging in satellite images where feature vectors shall be
compared. Therefore, we used Variational Convolutional Au-
toencoders (VAEs) [22] to overcome this issue. Relying solely
on either autoencoders or variational autoencoders can be
problematic due to the lack of semantic information about the
changes. For example a passing vehicle or other environmental
artifacts can be detected as changes but erroneously marked
as tree debris. To solve the issue, we assume that a fallen tree
should lead also to a change in the vegetation characteristics
(coverage, chlorophyll index) in a particular location. There-
fore we add semantic vegetation-related information. Given
these considerations, from a practical point of view, we detect
tree debris along roadways in satellite images using three
different algorithms with their own limitations which we aim
to overcome using them in a collaborative framework. Our
selected methods are:

– AEs/VAEs: They are powerful feature extractors, and it is
possible to compare the generated features in the latent
space by analyzing satellite images before and after a
hurricane. On the other hand, they are unsupervised, and
they do not have semantic knowledge of the objects in
satellite images.

– NDVI: It is one of the most common indexes for detecting
vegetation in remote sensing applications. It uses the
infrared band for evaluating chlorophyll-rich vegetation.
However, it can’t properly distinguish grown trees from
other types of vegetation, for example, grass or bushes.

– Unet: It is a modern segmentation method that is pos-
sible to specifically train to recognize trees in images.
However, it is susceptible to shadows and occlusions.

We extract several patches, both from the image before the
hurricane (Ibfr) and from the image after the hurricane (Iaft)
to cover the whole roadways in the area. Based on the assump-
tions above, we develop three sub-models (called hereafter
blocks), each computing a tailored, customized dissimilarity
score as shown in Fig. 2. We threshold the dissimilarity score
histograms to flag the presence of a potential fallen tree. We
combine the three blocks together using a co-voting strategy
to overcome each block’s inherent limitations and increase
performances. The following subsections explain each block
of our proposed algorithm.

A. Tree Segmentation Block

The first block is a tree segmentation algorithm. Given an
RGB image I as input, the corresponding output M tree is
a single-channel image where trees are detected. The Tree
Segmentation Block is the only supervised component of our
proposed framework. To perform the tree segmentation task,
we created a labeled dataset to train the model. However,
it is worthwhile mentioning that the training task for tree
segmentation in a given area can be done just once using
a satellite image in normal conditions before the hurricane.
From a practical point of view, it saves the effort and time for
labeling images of fallen trees after hurricanes which would
be required for traditional supervised methods.
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Fig. 2: Overview of the proposed approach for tree debris detection. Each of the three blocks computes a tailored, customized dissimilarity score from patches
extracted before and after the hurricane. It does this using tree semantic segmentation (first block), vegetation index comparison (second block) and features
comparison (third block).

We use a U-net architecture [23] which is a very popular
segmentation model. Initially developed to segment biomed-
ical images, it was successfully applied to a wide range
of applications. The architecture is composed by a cascade
of [16, 32, 64, 128, 256] convolutional layers activated by an
Exponential Linear Unit (Elu) function, followed by a batch
normalization layer and a Max Polling layer, as shown in
Fig. 2. During the up-sampling procedure, concatenations layer
have been used to ensure better spatial localization. We use
the U-net to segment each patch Ibfr and Iaft separately.
Finally, to quantify a dissimilarity between the two predicted
segmentation maps, a dissimilarity score Dtree is computed
as the integral over the patch P of the pixel-wise difference
between the segmentation map after the hurricane (M tree

aft )
and the segmentation map before the hurricane (M tree

bfr ). Such
difference is then multiplied by a Gaussian kernel K centered
at the center of the window (Equation 1).

Dtree =

∫∫

Patch

(
M tree

aft −M tree
bfr

)
⊗K (1)

The Gaussian kernel is a function centered at the center of the
acquired patch. It has larger values in the middle and decaying
values as we move towards the edges of the patch. Since the
patch is acquired at the center of the roadway, such weighting
function is introduced so that differences in pixel values close
to the center of the patch are weighted more than differences
near the edges as we are more interested in assessing the
condition at the center of the window. From Equation (1) we

note that the more Mbfr and Maft are similar, the lower the
value of Dtree is.

B. NDVI Difference Block
The second block takes advantage of the multi-spectral data

coming from satellites to compute the Normalized Difference
Vegetation Index to recognize vegetation. NDVI is a popular
index in remote sensing for vegetation detection and it is
defined as:

NDV I =
ρnir − ρred
ρnir + ρred

(2)

where ρred and ρnir stand for the spectral reflectance measure-
ments acquired in the red (visible) and near-infrared regions,
respectively. The reflectance measurements come directly with
the optical images and are provided by the satellite operator
as a bundle product. Green living plants look brighter in
the near-infrared band due to chlorophyll near-infrared high
reflectance. Similar to the previous block, we define a dis-
similarity score DNDV I as the integral over the patch of
the difference between NDV I computed after the hurricane
(NDV Iaft) and the NDV I computed before (NDV Ibfr),
with a multiplication with a Gaussian kernel K:

DNDV I =

∫∫

Patch

(
NDV Iaft −NDV Ibfr

)
⊗K (3)

C. Variational Autoencoders-based Change Detection Block
The third block is an unsupervised change detector that

computes a dissimilarity value between images before and
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after to detect whether a significant changes occurred. A
direct pixel-wise comparison in the images is not optimal
due to possibly different illumination and noise. Therefore,
we use VAEs as deep feature extractors with a Siamese
configuration [24]. The use of convolutional autoencoders has
been motivated by the strong capabilities of deep learning
methods to learn useful features in a low-dimensionality space.
Variational autoencoders are also used to assure a well-defined
topology of the latent space in which images are projected.
This can be extremely irregular using standard autoencoders.

A variational autoencoder learns to map an input x into a
distribution p(z|x). It is composed by an encoder qθ, a decoder
pϕ, a sampler and a loss function. Since the encoder and the
decoder are implemented as neural networks, θ and ϕ are all
the trainable parameters of such networks. Mathematically it
can be formulated as:

Encoder: x → qσ(z|x) Feature space (4)
Sampler: z ∼ p(z|x) (5)
Decoder: z → pϕ(x|z) = x̃ (6)

Since the distribution P (z|x) is not known, Bayesian vari-
ational inference is used. We assume that the latent space,
whose dimension K is chosen as hyper-parameter, follows
a prior distribution which is assumed to be Gaussian in our
study: z ∼ P (z) ∼ N(µk, σk), with k = 1, . . . ,K. We use
as a loss function the sum of a reconstruction term (typical of
standard autoencoders) with a regularization term calculated
as the Kullback-Leibler divergence between the latent space
distribution and the prior distribution as follows:

L(θ, ϕ) = MSE(x, x̃)︸ ︷︷ ︸
Recostruction loss term

+KL
(
qθ(z|x)||p(z)

)

︸ ︷︷ ︸
Regularization term

(7)

The first term is the reconstruction loss defined as Mean
Squared Error (MSE) between the original input and the
reconstructed one, this term encourages the decoder to learn to
reconstruct the data well from the feature space. The second
term is the Kullback-Leibler (KL) divergence between the
distribution of the latent space retrieved by the encoder qθ(z|x)
and the prior distribution p(z). The Gaussian prior distribution
p(z) keeps the representations z of each input sufficiently
diverse and allows a closed-form expression for the KL diver-
gence [22]. Using the loss function in Eq. (7), one autoencoder
(V AE1) is trained to learn features from the images before
while the other one (V AE2) is trained with the images after
(see the last block of Fig. 2). Features are then extracted from
the bottleneck layer. The two autoencoders, V AE1 and V AE2,
have been trained with the architecture described in Table II.
We use the same idea as the previous block to calculate a
dissimilarity score DV AE between the two images (before
and after the hurricane). Hence, we compute the difference
between features extracted from V AE1 and V AE2 which
is then evaluated using an Isolation Forest algorithm [25].
Isolation forest is a tree-structure based unsupervised learning
algorithm for anomaly detection, enabling isolating anomalous
points in a dataset.

From Table II, each input image is encoded into a vector
µ ∈ RK where K = 128 is the dimension of latent space.

TABLE II: Autoencoder architecture

Encoder Decoder
Input(80,80,3) Dense(20*20*64)
Conv2D (3,3,32) + Relu Reshape(20,20,64)
MaxPooling(2) TransConv2D (3,3,64) + Relu
Conv2D (3,3,64) + Relu UpSampling(2)
MaxPooling(2) TransConv2D (3,3,32) + Relu
Flatten(20*20*64) UpSampling(2)
Dense(1024) TransConv2D (3,3,3) + Sigmoid
Dense(dim(z) = 128) Output(80,80,3)

The 3-layers architecture of our deep learning, composed
by Conv-Relu-BatchNormalization, with a number of filters
increasing by the power of 2 is a popular choice when
building Convolutional Networks for computer vision tasks.
On the other hand, the parameter K, which is the dimension
of the latent space, is chosen empirically. The parameter K
sets the amount of “compression” we are expecting from the
autoencoder. A value too large does not provide a good feature
representation in the latent space. On the other hand, a value
too small will destroy most of the information during the
encoding step. Section IV will justify our choice of the latent
space dimension K.

D. Fallen Tree Detection

Our proposed framework includes three blocks, including
tree segmentation, NDVI, and deep features comparison as
presented in subsections III-A, III-B, and III-C. Each block
computes a dissimilarity score between a pair of patches from
two satellite images captured before and after a hurricane.

We extract N patches from the images before and after
a hurricane to cover the roadways area. Then, we calculate
the dissimilarity values per each patch location i = 1, . . . , N
along the roadways for each block of the algorithm. Then, the
block’s outcome (a vector with N component) is represented in
a histogram. We expect the histogram to be an unimodal distri-
bution where one set (clear, debris-free locations) dominates
the histogram with respect to the secondary set (obstructed
locations). We used the maximum deviation method [26],
especially designed for unimodal histograms, to compute a
threshold and to divide the histogram in two parts. The
threshold Th is selected at the point of the histogram furthest
from the straight line connecting the histogram peak and the
tail (Fig. 3).

Counts

Dissimilarity values

Clear Tree debris

Fig. 3: Histogram of the dissimilarity values computed for each block from
extracted patches. We say that there is a tree debris in a location if the
corresponding dissimilarity score is greater than the threshold Th.

We also use a piece-wise linear mapping to map each dis-
similarity score, computed at location i = 1, . . . , N to create
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a probabilistic value of having a tree debris Pdebris ∈ (0, 1)
in a location. The threshold Th calculated in the previous
subsection corresponds to Pdebris = 0.5 as shown in Fig. 4

 Dissimilarity score 

Fig. 4: Map from the dissimilarity score to the probability of tree debris
Pdebris.

Locations with Pdebris > 0.5 will be flagged as fallen tree
or tree debris, and clear otherwise.

E. Co-Voting Scheme

Since each block’s output is independent from the other
blocks, a combination strategy can possibly increase the per-
formances. We call Pi, i = 1, 2, 3 the tree debris probability
coming from block 1, 2 and 3 respectively. The Pdebris is the
overall tree debris probability. Here we present three possible
combinations:

• Combination 1 - Aggressive: a location is marked as tree
debris if at least one of the three blocks has Pi > 0.5.

Pdebris = (P1 > 0.5) ∨ (P2 > 0.5) ∨ (P3 > 0.5)

• Combination 2 - Moderate: a location is marked as tree
debris if at least two of the three blocks has Pi > 0.5.

Pdebris = (P1 > 0.5 ∧ P2 > 0.5)∨
(P1 > 0.5 ∧ P3 > 0.5)∨
(P2 > 0.5 ∧ P3 > 0.5)

• Combination 3 - Conservative: a location is marked as
tree debris if all the three blocks has Pi > 0.5.

Pdebris = (P1 > 0.5) ∧ (P2 > 0.5) ∧ (P3 > 0.5)

Furthermore, we can combine probabilities P1, P2, P3 to-
gether using weights κ1, κ2, κ3 as follows:

Pdebris = κ1P1 + κ2P2 + κ3P3 (8)

where
∑

i κi = 1 In this way it is possible to estimate
the contribution of the three blocks to the overall detection
performance, and determine the weight of each block for an
optimal combined decision.

IV. RESULTS & DISCUSSIONS

For validation purposes, two satellite images have been
acquired for a portion of the City of Tallahassee (Florida),
as described in Section II. We use a 24 × 24 meters sliding
window (corresponding to 80 × 80 pixels given the satellite
resolution) along the roadway’s path to extract patches from

the two different satellite images before and after the hurri-
cane. Patches are spatially spaced no more than 10 meters
along the road center lines. In this way, N = 5116 single
patches are extracted, covering the whole roadway network
in the study area. Due to the different resolution, the patches
extracted before the hurricane have been up-sampled to match
with the number of pixels of the same patches extracted after
the hurricane. The three blocks have been implemented as
described in subsections III-A, III-B and III-C.

The code has been implemented in Python using the sklearn
library for machine learning and Tensorflow/Keras for the deep
learning part. The testing platform is a computer equipped
with a 10thGen i7 CPU, 32GB of RAM and an NVIDIA
GeForce RTX 2080 Super as GPU. The images are encoded
in GeoTiff format, so all pixels can be geo-referenced and
precisely located in real-world coordinates. We use QGIS to
integrate and visualize all the data.

To train the tree segmentation block (see section III-A), we
created a labeled dataset from a part of the study area not over-
lapping with the locations along the roadways where we imple-
mented and tested our algorithm. This training dataset is made
of 1200 images of 160x160 pixels. The segmentation model
is trained using the training dataset. The Adam optimizer has
been used with a learning rate of 0.001 and exponential decays
factor of 0.9. The model, with 1,944,049 trainable parameters,
has been trained using binary cross-entropy as loss function.
Once the model is trained to effectively recognize trees, it
is used to segment trees along the 5116 patches extracted
along the roadways to compute the dissimilarity scores. It is
worthwhile mentioning that the model has not seen those 5116
patches during the training phase.

The variational autoencoder has been trained using the
same optimizer as the tree segmentation model. The loss
function is defined in Eq. 7. The encoder has 26,497,216
trainable parameters while the decoder has 3,358,659. Since
variational autoencoders are unsupervised models, the usual
training/validation split is not necessary.

In Table III we show the computation time needed to train
each single block and compute the corresponding dissimilarity
scores for all the locations along the roadways.

TABLE III: Computation time per block for training (Ttraining) and for the
calculation of dissimilarity scores (TD) for the entire study area.

Subroutine Ttraining (sec.) TD (sec.)
1: Tree Segmentation (Supervised) 135 4.2
2: NDVI (no-learning) not applicable 1.6
3: VAE (Unsupervised) 113 2.1
Patches extraction along roadways 1.73

We note that the most computationally-intensive operations
are the training process for the tree segmentation block and
the variational autoencoders block. Despite that, the entire
framework is able to scan and locate fallen trees across the
entire study area, which is ≈ 6Km2, in less than 5 minutes.

Fig. 5 shows visually an example of a hurricane-induced
vegetation change. Note that the NDVI difference and the tree
segmentation difference (Fig. 5e and 5h respectively) clearly
illustrate such changes.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 5: An example to show a Hurricane-induced vegetation change in a patch:
(a) RGB image sample acquired before the hurricane; (b) RGB image sample
acquired after the hurricane; (c) NDVI of the image before the hurricane;
(d) NDVI of the image after the hurricane; (e) NDVI difference; (f) tree
segmentation of the image before the hurricane; (g) tree segmentation of the
image after the hurricane; (h) Tree segmentation difference.

Fig. 6 shows an example of a reconstructed patch. With the
proposed variational autoencoder architecture, the raw input
RGB image (3 × 80 × 80 = 19200 pixels ) is encoded into
only 128-values vector (dimension of the latent space), thus
achieving a high compression rate. Nevertheless, it is possible
to decode the patch back without losing many details, as shown
in Fig. 6, therefore such features catch the relevant patterns in
the initial images.

Fig. 6: Example of reconstructed patch: (left) original patch extracted after
the hurricane, (right) reconstructed patch.

For each patch, dissimilarity scores Dtree, DNDV I and
DV AE are calculated and normalized into the interval (0, 1).
To validate the algorithm, we use the geo-location of stacked
piles of tree debris provided by the City of Tallahassee
municipality to us, as described in Section II. The debris piles
location on the map are not accurate in some cases. It can
also be more than one report referring to the same fallen
tree. To solve these issues, we spatially cluster the reported
trees locations (using MeanShift algorithm). We introduce
a distance threshold of d = 40 meters between the points
reported by the City and the points detected by our algorithm
from satellite images. The accuracy scores, True Positive (TP),

False Positive (FP), and False Negative (FN), are calculated
as follows and as sketched in Fig. 7.

• True Positives: Number of debris detected by the algo-
rithm (red points) close to the ground-truth debris (stars)

• False Positives: Number of debris detected by the algo-
rithm (red points) not close to the ground-truth debris
(stars)

• False Negative: Number of ground-truth debris (stars) not
close to debris detected by the algorithm (red points)

FPTP FN

= Ground Truth = detected debris

Fig. 7: Calculation of True Positive (TP), False Positive (FP) and False
Negative (FN).

Then, we calculate the recall, precision and F1-score (har-
monic mean of recall and precision) of the model compared
with the ground truth as follows:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP

F1 =
2(Recall · Precision)

Recall + Precision

(9)

Since in our application both recall and precision are important
measurements, we used F1-score as a final metrics.

We first used Eqs. (9) to evaluate the performances of each
block in our approach independently. To show the effective-
ness of the proposed threshold Th, a sensitivity analysis is
performed to evaluate the effect of the threshold on recall,
precision and F1-score values. These scores are plotted as a
function of the threshold in Fig. 8. We note that such an anal-
ysis is only possible when having the ground-truth. In other
words, it is not possible to develop an algorithm to choose the
optimal threshold that optimizes the performances in advance.
We notice that the threshold we choose heuristically in the
subsection III-D (vertical purple line) approximates closely
the argmax of the F1-score. This shows the strength of our
threshold choice in this case. Most importantly, it is evaluated
a-priori based on the distribution of the dissimilarity scores.

Finally, we compare the different blocks as well as the
different combinations proposed in Section III-E. The results
are presented as bar plots in Fig. 9.

From the accuracy comparison we see that Combination 1
and 3 achieve the highest recall and precision respectively.
However, Combination 1 results in an over-estimation of
tree debris in the area, leading to low precision, because
it merges the obstructed locations detected by all the three
blocks. Combination 3 is too conservative and unable to detect
most of the tree debris resulting in high number of false
negatives (low recall). Combination 2 (moderate strategy) is
the most balanced and achieves the highest F1-score among
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(a) Histogram of Dtree
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(b) Histogram of DNDV I

��� ��� ��� ��� ��	 ���
����������� �������

�

��

���

���

���

���

���

�
��

��
�

���������
����
����������� �������������������
����

(c) Histogram of DV AE
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(d) Accuracy scores as a function of Thtree
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(e) Accuracy scores as a function of ThNDV I
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(f) Accuracy scores as a function of ThV AE

Fig. 8: Sensitivity Analysis: first column) Tree segmentation block, second column) NDVI block, third column) VAE block. Recall, precision and F1 curves
are plotted in blue, orange, green respectively as function of the threshold. The purple vertical line shows the threshold value we heuristically selected using
the procedure explained in subsection III-D
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Fig. 9: Recall, precision and F1-score for each single block presented and the
different combinations presented in subsection. III-E.

the three combinations. Moreover, it is possible to estimate
the contribution of the three blocks to the overall detection
performance, and determine the weights κ1, κ2, κ3 of each
block for an optimal combined decision. The weighting shows
that TREE and NDVI have a slightly better F1-score than VAE.
Therefore, we assigned proportionally-derived values to κ1, κ2

than κ3 as: κ1 = κ2 = 0.35, κ3 = 0.3 using the F1-score as
metrics. With such weighting combination, the performances
are further improved by 3.6%.

We compared our best results, with other state-of-the-art
machine learning algorithms. Table IV shows the comparison
results.

We noted that our approach outperforms other state-of-
the-art methods. Autoencoders-based algorithms are used for

TABLE IV: Comparison between our final approach and other deep-learning
methods (Autoencoder-based, CNN-based) and machine learning methods
(features descriptors + Support Vector Machines).

Algorithm Recall Precision F1-score
Our approach 0.875 0.845 0.859
Sparse AEs [27] 0.708 0.587 0.642
Joint AEs [28] 0.841 0.668 0.744
CNN [13] 0.947 0.725 0.821
GLCM+SVM [29] 0.816 0.691 0.748
LBP+SVM [30] 0.828 0.698 0.757

change detection but they can’t effectively recognize tree
debris due to their fully unsupervised nature. Other machine
learning-based methods exploit specific descriptions, specifi-
cally Gray-Level Co-Occurrence Matrix (GLCM) and Local
Binary Patterns (LBP) to extract texture signature classified
then using a Support Vector Machine (SVM). However, our
approach outperform them by 13%. CNN achieves a higher
recall accuracy than our method. Nevertheless, if we compare
the F1-score, our model shows an improvement by 4%. It
is noticeable that the CNN model is supervised, thus it has
been trained directly with tree debris ground truth data to
recognize them. However, the tree debris ground truth may not
be available always in real-world application. Our approach
shows comparable performance without relying on actual
fallen trees data for training. Therefore it is more practical
in areas where such labels might not be available.

Finally, the framework’s output is used to automatically
create a map showing all the detected fallen trees within the
area, see Fig. 10. In case of a future hurricane, such a map can
be generated quickly after the hurricane hits and used by the
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city municipality or transportation authorities responsible for
hurricane restoration to overview the most damaged areas. The
satellite images provide wide area situational awareness after
a hurricane with low cost and in a short time. Therefore, our
proposed automated approach using satellite images is adding
extra value to the emergency management teams on top of the
information from traditional ground based inspections.

Fig. 10: Example of map showing all the detected anomalies within the area
using Combination 2 in the study area. Blue stars are the reported debris
locations. Red points are the debris detected by our algorithm. The yellow
lines are the scanned roadways.

V. PRACTICAL CONSIDERATIONS FOR EMERGENCY
MANAGEMENT TEAMS

Satellite data has a number of advantages compared to other
infrastructure monitoring approaches such as post hurricane
ground-based inspection, aerial inspection with helicopters or
drones, and direct reports from citizens.

Our proposed satellite based framework can serve as a
complementary source for emergency management teams in
addition to the traditional roadway inspection approaches
especially in rural areas, remote locations, and less populated
regions. Depending on the extend of hurricane damages or
the weather conditions, ground-based inspection of roadways
may not be possible or it is limited by roadway closures.
Helicopters and drones are also prone to weather conditions.
Cities can get advantage of active participation of citizens
through phone calls or recently mobile applications, called
city dashboards, to receive report of damages or roadway
closures. However, not all cities have mobile applications
in operation or they face a low adoption rate among their
citizens [31], [32]. Moreover, cellular networks and internet
access aftermath a natural disaster may fail. Therefore, citizens
can not provide critical information to the city government
using mobile applications. Above all, the tremendous drop
in satellites data costs in recent years made them more cost
effective than aerial inspection methods, such as helicopters
and drones especially for large areas [4].

It is worth while mentioning that are some practical limi-
tations in using optical satellite images. The first is the cloud
coverage. It is not always possible to acquire a cloud-free

image right after the event of hurricane. For example, in this
study the first suitable image could be acquired two days after
the hurricane hit.

Moreover, the accuracy of fallen tree detection depends on
ecological aspects of the target area such as the tree coverage
density.In our case, the city of Tallahassee in Florida is highly
covered with large trees such as Tupelo (Nyssa sylvatica) and
Red maple (Acer rubrum) with wide canopies that mostly
make (beautiful and tourist attractive) canopy roads. In such
canopy roads, it is challenging to distinguish fallen trees from
standing ones. Canopy roads impose a geometric limitation for
inferring fallen trees on the roads’ pavement. The satellite’s
view from the top cannot always realize that a tree is on the
pavement or if it is standing over the road. Fig 11 shows a
view of a canopy road in Tallahassee. However, such tangled

Fig. 11: A typical canopy road in Tallahassee. Photo courtesy of https:
//leontrees.org/explore/

canopy roads are limited, and their locations are already known
in advance by the city municipality. They can rely more
on ground-based inspections or residents’ reports for such
areas. In our study, most false negatives occurred in such
roads that brought our accuracy to 86%. In other words, the
classic ground-based inspection is more critical in specific
geographical areas in each city where the remote sensing
approaches have limitations.

In terms of satellite data storage requirements, commercial
satellite image providers and data companies offer cloud-based
solutions to access and analyze the images in archive or on
demand. A typical high resolution satellite image can be up to
few GigaBytes. If one does not use a cloud based service, the
local workstations can usually handle such images for limited
studies or proof-of-concepts. There are a number of standard
formats for satellite images such as GeoTiFF, NetCDF, and
HDF. In this study we used GeoTiff format. A GeoTiff image
is a normal bitmap image that contains additional metadata
about the geo-locations of the pixels. In this way it is possible
to map each pixel into a real-world coordinate system.

Finally, the proposed satellite based approach for hurri-
cane impact study on roadways can be extended to other
infrastructure networks such as electricity lines, rail roads,
and natural gas pipelines. Specifically, the electric grid has a
similar topology to roadways in some parts of the world like
the United States where overhead power lines are laid parallel
to roadways. Fallen trees induce similar threats to power lines
and can cause power outages after hurricanes. Our approach
with some modification can be used for electric grid damage
assessment.
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VI. CONCLUSIONS

This paper proposes an automated framework to detect
fallen trees on roadways after hurricanes. We use two satellite
images for the City of Tallahassee in Florida, acquired before
and after Hurricane Michael in October 2018. Our proposed
satellite-based analytical framework relies on three different
methods integrated into an automated setting. Despite the
challenging task from the remote sensing perspective, our
solution leads to 0.86% accuracy in detecting fallen trees. It
is also more practical since it works with a limited training
dataset and has a fast computing time. Our approach is
complementary to the classic hurricane damage assessment
practices. It provides the emergency management teams with
a wide area of situational awareness at a lower cost and in
a shorter time, which can be beneficial for stakeholders. This
study focused only on the impact of Hurricane Michael on
the City of Tallahassee. However, the proposed methodology
can be successfully extended to other locations given the
data availability on satellite imagery and hurricane-induced
disruptions. This would especially be useful to cities when set-
ting priorities in their disaster improvement programs and for
regulating vegetation management through zoning. A similar
methodology can be also used for other types of infrastructure
networks rather than roadways. Therefore, our future work will
be toward investigating different machine learning algorithms
and expanding our platform to other applications such as
electricity networks.
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Abstract
Infrastructures such as roadways, power lines, and communications networks play a critical role in our society. However, they
are also susceptible to failures, especially those caused by extreme events, quickly affecting large geographical areas.
Predicting where and when these failures will occur with high confidence is very difficult because of the stochastic nature of
such events. Nevertheless, it is possible to know in advance which areas are more vulnerable and plan accordingly. This paper
aims to use remote sensing techniques based on satellite images to detect roadways’ vulnerabilities to hurricanes. Each road
is assigned a vulnerability score based on the information retrieved from the satellite image and other geographic information
system (GIS) data, which can be used to create a vulnerability map of the area. Both vegetation exposure along the roads and
the consequences of the closures are considered in the vulnerability assessment. The study area has been selected in
Tallahassee, Florida, U.S., where a high-resolution satellite image was acquired in September 2018, 2 weeks before Hurricane
Michael. The findings of this work can help management teams and city responders to identify the most vulnerable regions at
risk of disruption and organize resources before the event.

Keywords
data and data science, remote sensing, sustainability and resilience, transportation infrastructure protection and prepared-
ness, vulnerability and threat assessment

Our modern society relies on critical infrastructures to
support all its operations, functionalities, and enterprises.
Such infrastructures are composed of public and private
physical structures such as roads, railways, bridges, tun-
nels, water supply, sewers, electrical grids, and telecom-
munications networks (1). They are considered so vital
because their incapacitation or destruction would have a
debilitating effect on security, national economic secu-
rity, national public health or safety, or any combination
thereof (2). Such fundamental elements are often exposed
to failures and disruptions, dramatically affecting citi-
zens’ lives and causing society stress. Thus, it is funda-
mental to understand and monitor the vulnerability of
such infrastructures to ease or limit outages’ conse-
quences. Disruptions can be caused by various events,
from technical failures (electric outages, traffic incidents)
to natural disasters (floods, landslides, hurricanes, wild-
fires, earthquakes, etc.). While accidents and technical
failures may have limited effects, disruptions caused by
nature may cover large areas. Among the different

infrastructures, the road network is critical for transpor-
tation and all services’ accessibility, and it is often
severely affected by natural disasters like hurricanes.

Hurricanes and the damage they cause have gained
attention recently, with disaster management analysis
spanning two different directions. Post-disaster assess-
ment deals with the consequences of a natural disaster,
detecting and estimating damages, recovery optimization,
resource allocations, and so forth. On the other hand,
pre-disaster assessment copes with analyzing the area
before the event for vulnerability analysis to achieve bet-
ter prevention and resilience. Traditionally, such evalua-
tions are performed by manual or visual inspection,
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which is a time-consuming and risky operation, especially
in the proximity of collapsed buildings or fallen trees.
However, remote sensing technologies are growing in
use. Aerial images are a valuable source of data for hurri-
cane damage assessment (3). Still, the high operating
costs of helicopters and limited coverage of drones are a
limitation to large-scale applications. In recent years, the
dramatic drop in the launching cost of satellites and the
growing number of satellites in orbit has significantly
reduced the cost of high-resolution satellite imagery (4).
Commercial satellite providers can offer high-resolution
images (0.3–0.5m/pixel) with a high revisiting frequency
for most parts of the globe. Furthermore, single snap-
shots can cover large areas at once. Therefore, the combi-
nation of coverage, frequency, and cost-efficiency of
satellite imagery, in addition to advancements in machine
learning, creates a paradigm change for cities enhancing
situational awareness for infrastructure networks (5).

Concerning post-disaster assessment, recently, in two
studies by Gazzea et al., the authors developed a frame-
work to automatically detect fallen trees at roadway-level
after a hurricane using high-resolution satellite images (6,
7). Similarly, in Kaur et al., a deep-learning technique for
detecting damaged buildings in post-hurricane satellite
images is proposed (8). In two studies by Karaer et al.,
the authors introduce a remote-sensing-based approach
that can rapidly analyze the damage caused by cata-
strophic storms at a city scale (9, 10).

Concerning pre-disaster assessment, the current works
are focused on statistical analyses to identify spatial pat-
terns of outages and their relationship with demographic
and socioeconomic variables, such as in two studies by
Ghorbanzadeh et al. (11, 12). While these studies can
provide valuable information for city officials to better
prepare emergency policies for potential hurricanes, these
analyses are done a posteriori. Furthermore, vegetation,
one of the primary causes of roadway outages during
extreme weather events, is often either not considered or
not taken into account with simple metrics, for example,
computing vegetation indexes like the Normalized
Difference Vegetation Index (NDVI) (13).

Some studies, such as Gullick et al. and Ø̂iftØ̈i et al.,
tried to quantify single tree failure probability resulting
from extreme weather events by proposing empirical
mechanical models to estimate the possibility of trees
failures (14, 15). Such works take into account tree char-
acteristics (e.g., tree canopy, stem mass, tree mass, and
diameter at breast height), soil strength, and wind-
induced bending moment on each tree, and combine
them with wind data (16). However, because of the com-
plexity and limitations of measuring such characteristics,
which are required information for mechanistic models,
it is often impossible to obtain accurate estimations of
the failure probability for trees. Statistical models are

another approach for predicting the probability of wind-
related tree failure, as shown in Kabir et al. but they still
require data from surveys and inventories (17).

In this paper, we propose a framework for rapid, scal-
able, and low-cost vulnerability assessment along road-
ways using high-resolution satellite images. We
implemented our framework in a portion of the City of
Tallahassee, the capital of Florida, U.S., in September
2018, before Hurricane Michael.

The contributions of our approach are as follows:

� We calculate the vegetation exposure of roadways
based on tree parameters estimated via satellite
imagery, such as height, distance to the roadway,
health, and density.

� We propose a vulnerability index which combines
the vegetation exposure with road importance, cal-
culated based on the consequences that such clo-
sures have on the transportation network, such as
mobility and number of buildings affected.

Study Area and Data Description

Hurricane Michael was one of the strongest storms that
hit the U.S. southeast coast. It made landfall as a
Category 5 hurricane in Florida’s Panhandle region with
maximum sustained wind speeds of 140knots (161mph),
bringing a catastrophic storm surge to the State of
Florida and Big Bend areas (especially Mexico Beach
and Panama City) (18). It hit Florida on October 10,
2018, and the related power outages, at their greatest
extent, affected nearly 400,000 electricity customers in
Florida, representing about 4% of the state (19).
Furthermore, damage to over 2.8million acres (1.1mil-
lion hectares) of forested land caused an estimated
$1.29 billion in damage to the timber industry. The 12%
of damaged forest area was classified as ‘‘catastrophic’’
by the Florida Forest Service (20). Estimated damage
from Hurricane Michael throughout the U.S. reached
$25billion (21).

To develop our framework, we acquired data from
both satellite images and the municipality. Figure 1 sum-
marizes the data used.

We acquired one high-resolution multi-spectral satel-
lite image for a 6.5 km2 (2.5mi2) portion of Tallahassee,
the capital of Florida. The image, provided by Maxar
WorldView-2 satellite, is composed of four channels: red
(R), green (G), blue (B), and near-infrared (NIR) with a
spatial resolution of 0.5m/pixel. The given resolution
allows for recognizing trees, buildings, and other infra-
structure. The image is encoded as a GeoTIFF file so
that each pixel can be precisely located in a geographical
reference system. The picture was taken in September
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2018, two weeks before Hurricane Michael. In addition,
to estimate tree health, we acquired multi-temporal satel-
lite images spanning equal intervals within the period
2017–2018, from a five satellites constellation operated
by Planet company with a resolution of 3m/pixel and
composed of four bands (RGB-NIR) (22).

We acquired the buildings’ footprints and the loca-
tions of roads from publicly available databases of the
municipality of Tallahassee. Laser imaging detection
and ranging (LiDAR) point clouds, freely available
from the city, have been used to train the height estima-
tion algorithm and to extract building height. LiDAR
is a reliable tool that maps an environment and pro-
vides the corresponding 3D point cloud representation.
Still, it is also costly and generates a massive amount of
data to be processed. The idea of our approach is to use
available LiDAR data to train a suitable deep-learning
model. Finally, we use the geo-locations of stacked piles
of tree debris collected by the authorities after the hur-
ricane and provided by the City of Tallahassee munici-
pality to justify and discuss the proposed vegetation
exposure scores.

Methodology

This paper aims to assess vulnerabilities along roadways
using satellite images. In our study, we identify the vul-
nerability Vr of a road r as a combination of the vegeta-
tion exposure VEr in that road and the consequences I r

of the closure on the road r, specifically based on road
importance and amount of buildings (both private and
public) along the road (23). Mathematically, we say that:

V = (buildings; road importance)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

� (vegetation exposure)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VE

ð1Þ

Equation 1 claims that, even if a road has high vegeta-
tion exposure, the associated vulnerability can still be low
if nobody lives in the surroundings or if the road is not
critical for the mobility network, reinforcing what is also
expected from common sense. Therefore, our framework
is composed of two parts. The first part assesses the vege-
tation along roadways using satellite images, assigning
each road a vegetation exposure score based on the quan-
tity, health, and height of trees, and their distance to the
road. The second part integrates data from the munici-
pality, specifically the volume of buildings along the road
and roadways locations. Topological analysis is also per-
formed to detect more critical roads in relation to mobi-
lity. Finally, vegetation exposure, road importance, and
building volume are combined into a vulnerability score
per road. The output is a vulnerability map of the road
network of the area. The overall pipeline is shown in
Figure 2, and each part is further described.

Remote Sensing Module

The first module deals with vegetation, which is the main
cause of roadway closures after hurricanes. Tall trees
pose a significant threat, as strong winds can easily cause
them to fall on the road corridor. Furthermore, locations
with an increased number of trees are also dangerous as,
from a probabilistic point of view, it is more likely that
some of them may fall. Therefore, the density and height
of trees, and distance from the road are essential factors
to consider for vulnerability analysis. All the parameters
above can be estimated using one satellite image.

Height Estimation. This module estimates the tree canopy
height from the satellite image. Measuring tree canopy
height accurately from single images is, in general, an ill-
posed task because optical images taken from above
clearly do not contain height information and there are
intrinsic ambiguities in mapping a color measurement
into a height value (24). Usually, the most common tech-
niques for 3D generation include stereo images, multi-
angular photogrammetry, synthetic-aperture radar
(SAR) interferometry, and LiDAR (25–28).
Nevertheless, some papers addressed the issue by resort-
ing to machine learning for 3D reconstruction using sin-
gle optical images. Fully convolutional-deconvolutional
network architectures are a useful tool that has been pro-
ven to be capable of guiding the model through the pro-
cess of learning this ambiguous mapping with
considerable accuracy (29). The main idea is to use satel-
lite images and LiDAR data to train a model to learn
the complex relationship between contextual information
(texture, color, shading, etc.) and height, to regress a
digital surface model (DSM). Mathematically, we denote
with yi the true height of a pixel obtained from the

Figure 1. Summary of the data used for the study.
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ground-truth (LiDAR in our study) and ŷi = f (x, u) the
predicted height obtained from the model with para-
meters u using the input image x. We formulate the task
as a regression problem, and we define a loss function as
the mean squared error between the true height and the
predicted height:

L(y, u, x)= 1

N

XN

i= 1

(yi � ŷi)
2 =

1

N

XN

i= 1

(yi � f (xi, u))
2 ð2Þ

The model should minimize this loss function.
Therefore, given a training dataset fx, yg, we aim to learn
the weights of the model such that
u�=argminuL(y, u, x). In this paper, we use a neural-
network-based model called Res-UNet (Figure 3), which
has been found to perform better for such regression
tasks (30). The model uses the popular U-net for seman-
tic segmentation as a backbone where residual blocks
have replaced the traditional convolutional blocks. The
architecture is composed by a cascade of (16, 32, 64, 128,
256) residual blocks, consisting of convolutional layers,
batch normalization, and relu activation. The final layer
of the decoder is activated by a sigmoid function.

Tree Detection. The output of the height estimation model
is a DSM, which represents the height of the pixel. Trees
are then detected using a local maxima filter running on
the predicted DSM to estimate the position of the tree
stem. The filter finds the peaks on the image

corresponding to the highest values. A minimum dis-
tance between peaks is set to 6m, and the minimum
intensity of peaks set to 4m to prevent oversampling the
DSM with spurious peaks (caused by, for example,
noise), (Figure 4).

Health Estimation. Furthermore, inspired by the work
done in De Petris et al., we estimate the health of the
vegetation in the considered area by analyzing the trend
of vegetation index over the acquired multi-temporal
images (31). An anomalous negative vegetation index
trend can be caused by transitory problems, for example,
insect attacks or gradual biomass decrease resulting from
plant pathologies/tree aging. An unhealthy tree shows
characteristics suggesting that rapid development in
pathogenic wood-induced decay is ongoing and, conse-
quently, its general propensity to fail is higher (32). We
used the NDVI, defined as:

NDVI =
rNIR � rRED

rNIR + rRED

ð3Þ

where
rred = the spectral reflectance measurements acquired

in the red (visible) region, and
rnir = the spectral reflectance measurements acquired

in the NIR region.
Green living plants look brighter in the NIR band

because of chlorophyll NIR high reflectance. We com-
pute the NDVI value in the study area for each of the

Figure 2. Overall pipeline of the approach.
Note: We use remote sensing data to get vegetation parameters and compute the vegetation exposure VE of roads. Vegetation exposure is combined with

the road importance i, derived from a topological analysis of the network with the amount of buildings B to compute a vulnerability score V . The output is

a score V for each road in the network.
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five satellite images acquired during the years 2017 and
2018. To filter out spurious changes resulting from sea-
sonality, we computed the average value of the index per
each year and calculate the difference:

DNDVI ¼ E½NDVI �2018 � E½NDVI �2017 ð4Þ

We assign the corresponding value from DNDVI to each
detected tree location. We expect the histogram of DNDVI

for all the trees in the city to follow a Gaussian-like distri-
bution centered approximately at 0. Practically, it means
that most of the trees have been neutral over the 2 years,
while a minority of them experienced a positive DNDVI

(growth) and others a negative DNDVI (decay) trend. To
isolate the most significant negative trend in DNDVI , we

set a threshold Th as Th=m� s, where m and s are the
mean and standard deviation of the distribution. We
assign the trees with DNDVI.Th the value ‘‘1’’ (healthy)
and trees with DNDVI\Th the value ‘‘0.5’’ (unhealthy). See
Figure 5.

Vegetation Exposure. The previous part estimates trees’
height, location, and health status. The number and dis-
tance of trees from the roadway can be derived from their
location using the Euclidean distance. All these para-
meters are essential factors to consider and should be
combined to assess the vegetation exposure to hurricanes
for a given road. We extract equally distributed points
every 20m along the road. For each point, we compute
the vegetation exposure VEpoint by taking into account
the height, health, and distance from the roadway, and
the number of all the trees within a certain radius R from
the point, as described in Equation 5:

VEpoint =
XNtrees

i= 1

Hi

Di � Hei

� �
ð5Þ

where
H = the height of the tree,
He = the health of the tree, and
D = the distance of the tree.
Figure 6 illustrates the process graphically.

Finally, the vegetation exposure for the entire road is
defined as the maximum value among all the vegetation
exposure calculated at the different points, Equation 6:

Figure 4. Digital surface model (DSM) represented as 3D
surface.
Note: Local maxima filter is used to detect the peaks in the DSM,

estimating the position of the trees.

Figure 3. Deep-leaning model architecture used to regress the digital surface model (DSM) from a single satellite image.
Note: blue shading = up-sampling layers; grey shading = residual block; purple shading = regressor; red shading = pooling layers. Residual blocks add a

shortcut between the input and the output to bypass standard cascade of two or more stacked convolutional layers.
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VEroad = max (VEpoint) 8point 2 road ð6Þ

Topological Analysis

The previous part computes a value related to how
exposed a road is, based on vegetation. However, as pre-
sented in Equation 1, the consequences of the closure
should also be considered. Specifically, some roads are
more important than others if we consider how they are
connected. For instance, if a road has many connections,

there exist several routes to bypass it in case of a block-
age. On the other hand, a closure can potentially discon-
nect the network if the road has low redundancy. The set
of all roads naturally forms a complex network that can
be studied within graph theory. We first translate the
roadway shape-file locations into a graph. We first
remove the ‘‘dummy’’ nodes in the original file. Roads
are usually composed of piece-wise linear segments and
include nodes that exist only as points to help streets
bend around curves, but they are not nodes in a topolo-
gical sense. Topological nodes consist of all the intersec-
tions between roads. Figure 7 shows the process of
converting the road shape-file into a graph structure
visually. Note that we are only interested in the relation
between nodes and edges in the graph analysis. Thus, the
geographical shape of the road is irrelevant.

In this paper, we use the centrality indicator to rank
the importance of edges in the graph network (33). In
particular, we use the betweenness centrality of edges.
Betweenness centrality measures the importance of an
edge over the flow of information (i.e., traffic flow)
between a pair of vertices in the graph under the assump-
tion that information primarily flows over the shortest
paths between them. From a transportation point of
view, the betweenness centrality of a road (edge) is com-
puted as the percentage of all shortest paths between two
intersections (nodes) in the network that passes through
the considered road (edge). Thus, a road with high
betweenness centrality may have considerable influence
over the information passing between other roads. So,
they represent a critical part of the network, since remov-
ing them will disrupt the information flow in the
network.

Betweenness centrality cB of an edge e is calculated as:

cB(e)=
X
s, t2V

s(s, tje)
s(s, t)

ð7Þ

where
V = the set of nodes of the graph,
s(s, t) = the number of shortest path between s and t,
and
s(s, tje) = the number of those paths passing through
edge e.
Furthermore, we further classify the roads into two dif-
ferent groups, assigning a multiplier of l= 1 or l= 2 if a
road is a Common or County/State road, respectively.
The reason is that usually County and State roads expe-
rience a larger traffic flow than common roads. Thus,
this a priori information should be reflected in the road
importance calculation. The road importance ir is calcu-
lated directly and proportionally to the centrality values,
multiplied by corresponding road label as ir = cB(r)� l.

Figure 6. Vegetation exposure for a road.
Note: The road is sampled into equally distributed points. For each point

we take into account the number of trees, distance to roadway, height, and

health for the calculation of the vegetation exposure.

Figure 5. Based on the histogram of DNDVI, we define a
threshold to classify trees as healthy and unhealthy.
Note: DNDVI = DNDVI is the difference between the NDVI in the two time

periods, 2018 and 2017; pdf = probability density function.
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Vulnerability Score

Keeping in mind Equation 1, we calculate the vulnerabil-
ity of a road r combining the vegetation exposure VEr

calculated from Equation 6 with the road importance ir

and the volume of buildings Br along the entire road.
Specifically, the volume of a building is calculated as the
product of its footprint, derived from the building foot-
print dataset, and its average height, derived from the
LiDAR point cloud. This calculation is performed for all
the buildings within a specific buffer size (set to 50m)
along the road. Finally, we normalized each term within
the range (0, 1) and multiply them together as:

Vr =(VEr)� (ir)� (Br) ð8Þ

Results and Discussion

The framework has been developed in Python, using the
Tensorflow/Keras libraries for the deep-learning modules,
scikit-image for the image processing parts, and networkx
library for the topology analysis (34–36). QGIS has been
used to visualize and integrate all the different data (37).
We first trained and tested the height estimator module.
We trained the model described in Figure 3 using an
Nvidia RTX 2080 Super as GPU. We used the Adam
optimizer with a learning rate of 10�4. A 1.5 km2

(0.57mi2) area of the city has been selected as a training
dataset. The model is then tested in the remaining 5 km2

(1.93mi2). An early stopping callback monitors the vali-
dation loss, keeps track of the loss function, and eventu-
ally stops the training to avoid over-fitting. Trees are
then detected using the local maxima filter on the surface
output of the model.

We calculate the distribution of the absolute error
between the ground truth (derived from LiDAR) and the

estimated height (from the model) as e= jy� ŷj. The dis-
tribution of the error in Figure 8a shows a mean error of
1.4m. Figure 8b shows the resulting distribution of
DNDVI . As presented in Figure 5, the selected threshold is
computed as m� s= � 0:03. Therefore, we label the
trees with DNDVI\� 0:03 as unhealthy, and healthy
otherwise.

Figure 9 shows a visual example of the estimated digi-
tal surface model (DSM) and the detected tree positions.

A tree catalog is built to store the information about
each detected tree’s position, height, and health, as esti-
mated in the previous steps. Once the tree catalog has
been created, we compute vegetation exposure for each
road. First, we sample a road every 20m and use
Equation 5 to compute the vegetation exposure per each
location. The radius R is set at 20m. Equation 6 is then
used to compute the vegetation exposure per road It is
worth mentioning that it is very challenging to validate
the obtained vegetation exposure fully. However, we can
use the tree debris dataset provided by the municipality
to investigate the relation between vegetation exposure
on the road and the a posteriori presence of fallen trees
after the hurricane. We classify the roads into two
groups. One group is composed of all the roads that had
tree debris within a buffer zone of 20m. The other group
is composed of all the debris-clear roads after the hurri-
cane. For each road, we compute the vegetation expo-
sure level as described in Equation 6. We then plot the
calculated vegetation exposure levels within the two
groups. Results are shown in Figure 10.

We observe that roads that did not have tree debris in
the proximity have, statistically, a lower vegetation expo-
sure level. On the other hand, roads with tree debris have
a higher vegetation exposure level. Nevertheless, because
of the stochastic nature of the hurricane, there is a slight

Figure 7. A roadway network shape-file (a) is converted into a graph structure (c) by removing the non-topological nodes (b):
(a) Roadway network, (b) Roadway network where only the topological nodes are maintained, and (c) Roadway network as graph.
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overlap between the two distributions. In other words,
some roads with relatively significant vegetation expo-
sure levels did not have fallen trees.

Before using Equation 8, we normalized the values
within the range (0, 1) for each considered term in the
vulnerability function (i.e., volume of buildings along the
road Br, importance of the road ir, and vegetation expo-
sure of the road VEr). Figure 11 shows the distributions
of the values for each element.

Finally, we can use Equation 8 to assign a vulnerabil-
ity score to each road. Figure 12 shows the vulnerability
map geographically displayed over the study area.

It is possible to automatically highlight the most vul-
nerable locations at the city scale. This can help the man-
agement teams and city responders to organize and
allocate resources at specific points in the city.

Practicalities

We trained a deep-learning model to regress the DSM
using LiDAR data from the municipality in the proposed

(a) (b)

Figure 8. (a) Distribution of the height error between the estimated digital surface model (DSM) and the ground-truth, (b) Distribution
of DNDVI.
Note: DNDVI = DNDVI is the difference between the NDVI in the two time periods, 2018 and 2017; pdf = probability density function.

Figure 9. Digital surface model generated from the satellite image—trees are detected as the local maxima on the surface: (Left) Digital
surface model generated from the satellite image, (Right) Trees are detected as the local maxima on the surface.

Figure 10. Vegetation exposure level for all the roads that had
tree debris after the hurricane (top). Vegetation exposure level
for all the roads that did not have tree debris after the hurricane
(bottom).
Note: pdf = probability density function.
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framework. However, it is not always possible to have a
DSM training dataset for the specific study area, espe-
cially when the ground truth comes from expensive
sources such as LiDAR or time-consuming surveys. If
LiDAR data or any height information is not available,
training a model using a manually created dataset is
impossible. Nevertheless, the model shown in Figure 3
can still be used to segment vegetation. Although the
height cannot be retrieved this way, the distance and the
number of trees can still be estimated from the segmenta-
tion map. A similar vegetation exposure function can
then be modified to remove the height from the calcula-
tion. The advantage is that training datasets are generally
easier to acquire in segmentation tasks than complete 3D
point clouds. For example, free data can be used to train
a segmentation model. If a model has been properly
trained, it can still achieve sub-optimal yet accurate
results.

To illustrate this concept, we trained our model using
both our data from Tallahassee and data from the

Potsdam dataset. The dataset, from a portion of the
German city of Potsdam, is downloadable at the
International Society for Photogrammetry and Remote
Sensing (ISPRS) (38). The output of the model, in this
case, is a binary map where ‘‘1’’ is if a pixel is part of a
tree and ‘‘0’’ otherwise. Instead of the regression loss pre-
sented in Equation 2, binary cross-entropy L should be
used as loss function for training the network, since only
two labels are considered (0 for no-trees and 1 for trees)
(39). Such loss is often used in binary classification tasks,
and it is defined as:

L= � (y log (p)+ (1� y) log (1� p)) ð9Þ

where
p = the predicted probability value, and
y= f0, 1g= the true label.
The output of the model is a probability value between 0
and 1. Cross-entropy loss increases as the predicted prob-
ability diverges from the actual label.

Accuracy score metrics is defined as:

Accuracy=
Number of pixels correctly predicted

Total number of pixels

ð10Þ

and results are shown in Table 1.
Figure 13 shows an example of vegetation segmenta-

tion for a portion of the area using our model.
There is a drop in the performances when we use the

model trained in a completely different area. However,
this is not very limiting from a practical point of view as
the model can be fine-tuned using the new area, with less
data.

Finally, it is worth mentioning that the proposed vul-
nerability function (Equation 8) is not unique and local
authorities might implement different functions.
Furthermore, other data can be included, depending on

(a) (b) (c)

Figure 11. Normalized distributions for the three elements considered in Equation 2: (a) Normalized distribution of the vegetation
exposure, (b) Normalized distribution of the road importance, (c) Normalized distribution of the buildings volume.
Note: The histograms are colored according to the value: from 0 (low level, blue) to 1 (high level, red).

Figure 12. Vulnerability map of the study area generated using
our remote sensing approach.
Note: Values have been visually clusterized into three classes: green (low

level), orange (medium level), and red (high level).
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their availability. Nevertheless, in this paper, the scope is
to show the capabilities of remote sensing to retrieve
helpful information that can be used for vulnerability
assessment.

Conclusions

This paper developed an automated framework to detect
vulnerabilities at the roadway level using satellite ima-
gery. We used high-resolution satellite images of a por-
tion of Tallahassee (Florida) acquired before Hurricane
Michael in September 2018. The framework calculates
the vegetation exposure of roads based on tree para-
meters estimated from satellite images, such as height,
health, proximity to roads, and density. Additionally, it
integrates the vegetation exposure with the number of
buildings and the road importance and assigns each road
a vulnerability score. A vulnerability map can be gener-
ated road-wise for the whole roadway network. It can be
quickly generated before the event and can improve the
planning procedures conducted by city and state agen-
cies. Compared with visual or manual surveys, it is also

cheap and practical to implement. The proposed metho-
dology can be applied to other cities prone to hurricanes,
given the data availability. Especially for small and
medium coastal towns with limited resources prone to
storms in Florida, the proposed approach can help
quickly identify highly vulnerable locations on roadways
without the need for sophisticated technology. Finally,
local authorities could implement customized or adapted
functions based on additional data and their prior knowl-
edge and experience. We believe our method can serve as
a complementary source to the other existing approaches
(e.g., manual surveys, drones), providing a high potential
for added satellite-based observability with minimal costs
and high availability, and attaining traction as our indus-
try becomes better at storing and sharing datasets.

Acknowledgments

Our involvement in the ITU/WMO/UNEP Focus Group on
AI for Natural Disaster Management (FG-AI4NDM) activities
and leading a use case on AI for hurricanes’ impact inspired
this paper (40). We greatly appreciate the FG-AI4NDM team
and chair (Dr. Monique Kuglitsch) for creating a collaborative
learning and knowledge exchange environment. Finally, the
authors want to thank the City of Tallahassee for their support
and for providing data.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: M. Gazzea, A. Karaer, M.
Ghorbanzadeh, E. E. Ozguven, R. Arghandeh; Data collection:
M. Gazzea, A.Karaer, M.Ghorbanzadeh, E.E.Ozguven and R.
Arghandeh; analysis and interpretation of results: M.Gazzea,

A. Karaer, M. Ghorbanzadeh, R. Arghandeh; draft manuscript
preparation: M. Gazzea, A. Karaer, M. Ghorbanzadeh, E. E.
Ozguven, R. Arghandeh. All authors reviewed the results and
approved the final version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

ORCID iDs

Michele Gazzea https://orcid.org/0000-0003-0759-4887
Alican Karaer https://orcid.org/0000-0002-6704-0379
Mahyar Ghorbanzadeh https://orcid.org/0000-0002-5651-
7573
Eren Erman Ozguven https://orcid.org/0000-0001-6006-7635
Reza Arghandeh https://orcid.org/0000-0002-0691-5426

Figure 13. Output of the model in Figure 3, trained to perform
vegetation segmentation instead of height regression.
Note: The output shows the pixels that are part of trees but information

about the height is not available.

Table 1. Comparison Between the Tree Segmentation Model
Using the Potsdam or Tallahassee Dataset as Training. The Testing
Area is Tallahassee for Both Cases

Approach Training set Accuracy (%)

Tree segmentation Potsdam 89.3
Tallahassee 96.4
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