

A Parallel High-Utility Itemset Mining Algorithm Based on Hadoop

Zaihe Cheng, Wei Shen, Wei Fang*, and Jerry Chun-Wei Lin

Abstract: High-utility itemset mining (HUIM) can consider not only the profit factor but also the profitable factor,

which is an essential task in data mining. However, most HUIM algorithms are mainly developed on a single

machine, which is inefficient for big data since limited memory and processing capacities are available. A

parallel efficient high-utility itemset mining (P-EFIM) algorithm is proposed based on the Hadoop platform to

solve this problem in this paper. In P-EFIM, the transaction-weighted utilization values are calculated and

ordered for the itemsets with the MapReduce framework. Then the ordered itemsets are renumbered, and the

low-utility itemsets are pruned to improve the dataset utility. In the Map phase, the P-EFIM algorithm divides

the task into multiple independent subtasks. It uses the proposed S-style distribution strategy to distribute the

subtasks evenly across all nodes to ensure load-balancing. Furthermore, the P-EFIM uses the EFIM algorithm

to mine each subtask dataset to enhance the performance in the Reduce phase. Experiments are performed on

eight datasets, and the results show that the runtime performance of P-EFIM is significantly higher than that of

the PHUI-Growth, which is also HUIM algorithm based on the Hadoop framework.

Key words: pattern mining; data mining; Hadoop; parallel; high-utility itemset mining; big data

1 Introduction

Data mining is the process of uncovering useful
patterns from a collection of data, which can be used in
a wide range of applications, such as fault diagnosis[1],
semiconductor manufacturing system[2], and
manufacturing scheduling[3, 4]. Frequent itemset mining

(FIM) is used to identify the frequent item
combinations to facilitate decision-making[5−8], which
is one of the earliest data mining tasks. However, the
FIM algorithm focuses only on the occurrence
frequency of a product or item, ignoring its value or
profit. In other words, the most frequent pattern may
not be valuable or useful. For instance, frequent items
in supermarkets, e.g., eggs and apples, have very low-
profit margins. These are not the items decision-makers
want, even if they occur frequently. The FIM task was
upgraded to the high-utility itemset mining (HUIM)
task that can identify item combinations with high-
profit margins. The HUIM algorithm focuses not only
on the frequency of occurrence of an item but also on
its quantity value, as well as the the item’s unit profit
value. In FIM, the itemset support is less than an
extended itemset, which is known to be anti-monotonic
and helps quickly reduce the search space. However,
since more factors are considered in the HUIM, the
anti-monotonic property is not held in the mining
progress. Consequently, the relationship between two
utilities of an itemset and one of the extended itemsets

 • Zaihe Cheng is with the School of Internet of Things, Wuxi

Institute of Technology, Wuxi 214121, China and also with the
School of Artificial Intelligence and Computer Science,
Jiangnan University, Wuxi 214122, China.

 • Wei Shen and Wei Fang are with the Jiangsu Provincial
Engineering Laboratory of Pattern Recognition and
Computational Intelligence, Jiangnan University, Wuxi 214122,
China. E-mail: fangwei@jiangnan.edu.cn.

 • Jerry Chun-Wei Lin is with the Department of Computer
Science, Electrical Engineering and Mathematical Sciences,
Western Norway University of Applied Sciences, Bergen 5020,
Norway.

 * To whom correspondence should be addressed.
 ※ This article was recommended by Executive Editor-in-Chief

Ling Wang.
 Manuscript received: 2022-07-13; revised: 2022-10-20;

accepted: 2022-10-31

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 04/06 pp 47−58
Volume 3, Number 1, March 2023
DOI: 10 .23919 /CSMS.2022 .0023

© The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

is complex, increasing the complexity of the mining
task. Hence, most HUIM algorithms must redefine new
upper bounds to reduce search spaces. Several HUIM
algorithms have been derived, such as high temporal
fuzzy utility pattern mining[9], sequential itemset
mining[10, 11], negative utility itemset mining[12], top-k
itemset mining[13−15], closed high-utility itemset
mining[16, 17], fuzzy utility mining[18], utility-oriented
pattern mining[19], and targeted high-utility itemset
querying[20].

An HUIM algorithm should mainly address the
following three difficulties in general, a large search
space, too much memory usage to run the algorithm,
and long runtime consumption to calculate the utility
values of itemsets. Depth-first search and breadth-first
search are the main approaches in existing HUIM
algorithms. The breadth-first search based algorithms
mainly include UMing[21], two-phase[22], and IIDS[23].
The UMing algorithm was the first to introduce the
HUIM concept and the associated solution. The Apriori
framework is used to traverse the search space in
UMing. The utility values of the n-itemsets are
estimated based on the former (n−1)-itemsets. The
candidate itemsets are therefore generated. The
transaction-weighted utilization (TWU) of downward
closure is extensively used in two-phase HUIM
models. In the first phase of the method, (k−1)
candidate sets are used to generate k candidate sets.
The algorithm evaluates the utility values of the
generated candidate itemsets in the second phase in
order to mine high-utility itemsets (HUIs) or the
qualified candidate itemsets. Once no candidate itemset
is formed in the first stage, the algorithm is terminated,
and the final results are generated.

Two-phase and one-phase algorithms are the main
types based on depth-first search. For a two-phase
algorithm, the algorithm generates candidate itemsets
by overestimating the utility values in the database in
the first phase. In the second phase, the algorithm
calculates the actual utility values by visiting the
database. Two-phase algorithms include IHUP[24],
CHUI-Mine[13], MU[25], UP-Growth[26], and UP-
Growth+[27]. IHUP was the first to introduce a tree-
based structure, called IHUP-tree. The IHUP-tree is
used to generate the candidate itemsets. The IHUP
algorithm constructs the IHUP-tree by scanning the
database twice. The first scan traverses the IHUP-tree
upward by extending itemsets. The second scan

considers the itemsets with utility values larger than the
pre-defined threshold as candidate itemsets to reduce
the candidate itemsets.

In one-phase HUIM algorithms, the search space is
directly traversed according to the order of itemsets.
Moreover, the actual utility values of the itemsets are
computed without generating candidate itemsets. In
Ref. [28], the first one-phase HUIM algorithm was
introduced, which is named HUI-Miner. In HUI-Miner,
the utility values of the itemsets are directly calculated
based on the utility-list structure. Since then, improved
one-phase based algorithms were proposed, e.g.,
FHM[29], HUP-Miner[30], CHUI-Mine[13], HUI-
Miner[28], CHUM[31], d2HUP[32], EFIM[15], BAHUI[10],
CHUI-Miner[33], PB[34], UFH[35], ULB-Miner[29], and
Hminer[14]. In Ref. [15], efficient high-utility itemset
mining (EFIM) was introduced, which uses the
merging of transaction sets to reduce the dataset size of
each item effectively. In EFIM, the subtree and local
utilities are regarded as the upper bounds, reducing the
search space and improving the runtime and memory
usage performance. EFIM is currently one of the fastest
HUIM algorithms.

The rapid evolution of information technology has
seen a drastic increase in data size. HUIM algorithms
are no longer suitable for larger datasets due to the
inefficiency of a single computer’s CPU processing
speed and memory size. Hence, some scholars
deployed data mining algorithms in distributed cluster
systems to improve their runtime performance and
apply them to larger datasets. PHUI-Growth[12] is a
MapReduce-based HUIM algorithm based on the
MapReduce computing framework. In PHUI-Growth,
an iterative parallel structure using breadth-first search
is proposed. The search space is reduced by the DLU-
MR pruning strategy in the second phase, which can
address the issue that a single computer cannot mine
large datasets. However, due to the iterative parallel
structure and low-performance pruning strategy, the
PHUI-Growth runtime remains very long. Therefore, a
novel parallel EFIM (P-EFIM) is proposed in this
paper. First, the TWU value of each itemset is
calculated, and then the dataset is pruned and recoded
using these ordered itemsets to improve the dataset
utility. Second, the algorithm divides the entire task
into multiple subtasks using the MapReduce
framework and applies the S-style balancing strategy to
distribute the subtasks across all nodes to ensure as
close to load-balancing as possible. Finally, the P-

 48 Complex System Modeling and Simulation, March 2023, 3(1): 47−58

EFIM algorithm applies the one-phase EFIM[15]

algorithm based on the depth-first search to mine each
subtask on each node rather than using the PHUI-
Growth. Additionally, the performance of the proposed
P-EFIM is improved by the efficient pruning strategy
in EFIM.

2 Definition

2.1 HUIM-related definitions

D = {T1,T2, . . . ,Tn}
TID

I = {l1, l2, . . . , ln}

A transaction dataset comprises
multiple transactions. The refers to a unique
identifier, which is associated with each transaction,
where is the set that contains all
nonduplicate items in D. Both internal utility value and
external utility value are assigned to each item in each
transaction. An example transaction database with five
transactions is given in Table 1[15]. Table 2 gives the
external utility values of seven items.

Tc q(i,Tc)
i p(i)

u(i,Tc) = p(i)×q(i,Tc)
i Tc u(X,Tc)

u(X,Tc) =
∑

i∈X u(i,T)
u(X) =

∑
Tc∈g(X) u(X,Tc)

g(X)

Definition 1 (Utility of an item/itemset) In
transaction , denotes the internal utility of
item , and denotes the external utility value in this
paper. means the utility value of
item . In transaction , denotes the utility
value of itemset X, and is calculated as

. In the entire transaction database,
 is used to calculate the utility

value of the itemset X, where represents all the
transactions that include itemset X.

b T3

u(b,T3) = 2×2 = 4 {a,b}
Take item in transaction as an example, its

utility value is . For the itemset

T3 u({a,b},T3) = u(a,T3)+
u(b,T3) = 5×1+2×2 = 9

{a,d} u({a,d}) = u({a,d},T1)+u({a,d},T3) = u(a,T1)+
u(d,T1)+u(a,T3)+u(d,T3) = 5+2+5+12 = 24

in , its utility value is
. Considering the entire

transaction database, the utility value of the itemset
 is

.
Definition 2 (HUI) An HUI refers to the itemset X

with the utility value greater than the user defined
threshold. An HUIM algorithm is used to find all HUIs.

minutil = 30
u{b,d} = 30 u{a,c,e} = 31 u{b,c,d,e} = 40

u{a,b,c,d,e, f } = 30

For example, the threshold is ; In Table 1,
since , , , and

, these itemsets are HUIs.
Tc

TU(Tc) =
∑

x∈Tc u(x,Tc)
TWU(X) =

∑
Tc∈g(X) TU(Tc)

Definition 3 (TWU) For transaction , its utility
value is . For the itemset X, its
TWU value is , which is the
sum of the transaction utility values of all transactions
containing itemset X.

{g} TWU[g] =
TU[T2]+TU[T5] = 10+6+6+5+4+2+3+2 = 38

For the itemset , its TWU value is
.

minutil
Theorem 1 (TWU pruning) If the TWU value of any

itemset X is less than the threshold , then the
itemset and its superset are low-utility itemsets[22].

≻

X
re(X,Tc) =

∑
i∈Tc∧(i≻x,∀x∈X) u(i,Tc)

Definition 4 (Utility value of remaining itemsets)
Suppose is an ordering scheme for I, and X is a
subset. The remaining itemsets refer to the itemsets
appearing after the itemset in a transaction and its
utility value is .

{a,c}
T3 re({a,c},T2) = u(e,T2)+

u(g,T2) = 6+5 = 11

Take the remaining itemsets of itemset in
transaction as an example,

.

Tc, iutil, rutil
Tc

iutil rutil
Tc (u(X,Tc))

Definition 5 (Utility-list structure) The tuples
() represent the utility-list structure of
itemset X. represents the transaction containing the
itemset X. and are the utility values of itemset
X in .

{a,b,c,d,e, f ,g}
{a,c} {(T1,6,2), (T2,16,11),

(T3,6,23)}

Given the order I as , the utility-list
structure of itemset is

.

2.2 Key definitions of the EFIM algorithm

The EFIM is currently one of the fastest HUIM
algorithms with two effective strategies: merging
transactions containing identical items and subtree and
local utilities. Merging transactions containing identical
items effectively reduce each item’s dataset size and
help reduce the runtime. The subtree and local utilities
are used as two pruning upper bounds to reduce the
runtime and the search space.

Di

Definition 6 (Transactions containing identical
items) Each item or itemset has its transaction set .
The utility values of identical itemsets in the

Table 1 Transaction dataset.
TID Transaction
T1 (a,1)(c,1)(d,1)

T2 (a,2)(c,6)(e,2)(g,5)

T3 (a,1)(b,2)(c,1)(d,6)(e,1)(f ,5)

T4 (b,4)(c,3)(d,3)(e,1)

T5 (b,2)(c,2)(e,1)(g,2)

Table 2 External utilities.

Item Profit
a 5
b 2
c 1
d 2
e 3
f 1
g 1

 Zaihe Cheng et al.: A Parallel High-Utility Itemset Mining Algorithm Based on Hadoop 49

Ditransaction set are summed. That is

q(i,Tm) =
∑

i∈T∈Di

q(i,T) (1)

α

z α

Definition 7 (Subtree utility) Given an itemset , and
let be a subset of . The utility value of this subset is

su(α,z) =
∑

T∈g(α∪z)

(u(α,T)+u(z,T)+ re(α,z,T)) (2)

α

z α

Definition 8 (Local utility) Given an itemset , and
let be a subset of . The local utility value of this
subset is

lu(α,z) =
∑

T∈g(α∪z)

(u(α,T)+ re(α,T)) (3)

3 P-EFIM Algorithm

To solve the problem that a single computer is difficult
to mine large datasets, we propose the parallel HUIM
(P-EFIM) algorithm. The P-EFIM algorithm leverages
the MapReduce computing framework to mine HUIs
efficiently. The key strategy of P-EFIM algorithm is to
decompose a dataset into multiple smaller datasets
through HDFS and distribute them to different nodes.
The proposed P-EFIM algorithm mainly comprises
four phases, namely, TWU value ordering, dataset
recoding, data decomposition, and data mining. Figure 1
shows the flowchart of the proposed P-EFIM
algorithm. In the TWU values ordering phase, the
TWU value of each item is calculated in each node and
ordered in ascending order with the Map and Reduce
operators. In the dataset recoding phase, the algorithm
recodes the datasets using the order of the itemsets

after pruning and ordering, and prunes the low-utility
itemsets. A new dataset is obtained after the recoding
phase. In the data decomposition phase, the algorithm
decomposes the sorted data into multiple datasets
required for each subtask. The decomposition is
realized based on the S-style distribution strategy in
order to distribute the subtasks among the computing
nodes with a relatively balanced load for each node. In
the data mining phase, EFIM algorithm is used to mine
each subtask on each node individually and then get all
HUIs through the collect operator.

3.1 TWU values ordering and datasets recoding

n

I = { f , g, d, b, e, a, c}
f g

I = {d, b, e, a c}

According to Theorem 1, if an itemset is a low-utility
itemset, then none of the itemsets containing this
itemset are HUIs. Hence, calculating the TWU value of
each item and ordering them in ascending order help to
reduce the search space[24]. Additionally, pruning the
first items whose TWU values are less than the
threshold, and recoding the transaction sets using the
mapping table created with the threshold reduce the
size of the original dataset. By using the data in Table 1,
we can then obtain the TWU values of all items in the
database. For example, TWU(a) is calculated as:
TWU(a)(= 65); TWU(b) is calculated as: TWU(b)(=
61); TWU(c) is calculated as: TWU(c)(= 66); TWU(d)
is calculated as: TWU(d)(= 58); TWU(e) is calculated
as: TWU(e)(= 61); TWU(f) is calculated as: TWU(f)(=
30); and TWU(g) is calculated as: TWU(g)(= 38). The
ascending order of them is . The
items and can be pruned if the defined threshold is
40, and the remaining items are , .

D
at
as
et

Data
blocks

Item
TWU

Item
TWU

Item
TWU
list

New
dataset

Data
blocks

Data
cuts

Data
mining

HUIs

HDFS
read Map Reduce Collect HDFS

read Map Reduce Collect

Fig. 1 Flowchart of the proposed P-EFIM algorithm.

 50 Complex System Modeling and Simulation, March 2023, 3(1): 47−58

I = {d, b, e,
a, c}

The dataset recoding process mainly comprises two
phases. In phase one, the algorithm creates an ordered
mapping table, as shown in Table 3, using the itemsets
that appear after pruning and ordering, e.g.,

 . In phase two, the algorithm reconstructs the
datasets using the mapping table. It replaces the data in
the original datasets with the data in the mapping table,
prunes the data absent in the mapping table, and orders
the new datasets. The reconstructed datasets are shown
in Table 4. The dataset recoding process has two
features. First, the datasets with the TWU values less
than the threshold are pruned in order to reduce the
datasets, memory size, and runtime used by the
algorithm. Second, the recoded datasets are ordered,
thereby reducing the runtime of the algorithm through
binary search.

A,E
⟨7,E,1⟩ ⟨17,E,1⟩

⟨24,E,2⟩

In Table 4, the transaction set of the itemset is
, . If two or more transactions contain

identical itemsets and equal numbers of itemsets, e.g.,
E, both transactions can be merged to obtain the set

. Merging transactions containing identical
itemsets can reduce transactions, thereby reducing the
time spent on traversing the dataset and runtime of the
algorithm. Generally, the denser a database, the more
transactions can be merged, and the more time can be
saved.

α =C
C D and E su(α,D)=u(C,T2)+ re(α,C,T2)+
u(α,T3)+u(D,T2)+u(D,T3)+re(α,D,T3)

(α,E) = u(α,T5)+u(E,T5)+u(E,T3)+u(α,T4)+
u(E,T4)+u(α,T2)+u(E,T2)+u(α,T3)

In Table 3, suppose itemset , then the subsets of
 are , and

= 6+6+3+10+5+
1=31, su

 = 3+2+1+3+3+6+
6+3 = 27. The subtree utility value is applied to the
subnodes of the current node, while the local utility
value is applied to all subtrees of the tree where the

current node is located. Both pruning strategies are
used to reduce the runtime and search space.

3.2 Data decomposition

The search space for HUIM is the arrangement of all
itemsets. The EFIM algorithm searches the space from
top to bottom in an in-depth manner, whereas the P-
EFIM algorithm searches the space by dividing the
entire tree into multiple subtrees and distributing these
subtrees across computing nodes to run the EFIM
algorithm. The data decomposition process comprises
two phases. In phase one, the algorithm splits the
original data for multiple subtasks. In phase two, the
algorithm distributes the subtasks across computing
nodes to ensure load-balancing.
3.2.1 Data splitting

⟨K,V⟩

V

(A,2)(D,5)(E,1)

⟨A, {2, (D,5) , (E,1)}⟩ ⟨D, {5, (E,1)}⟩ ⟨E, {1}⟩

⟨A⟩
⟨A⟩

The data splitting phase corresponds to the map phase
in the MapReduce framework, during which the
algorithm converts each transaction set into the
format. The algorithm splits the transaction set by
items. Here K is the value of each item and is the
data of the item with the utility value of K, and the set
of combinations of the utility values of the items after
K. The detailed process is illustrated in Algorithm 1.
The data splitting process is illustrated in Fig. 2. The
transaction sets in Mapper 1 are , and
the map converts them to three〈K,V〉transaction sets,
namely, , , .
After splitting, the merged datasets in Reduce 1 with
equal K are the datasets required for the subtrees. For
example, the dataset in Reduce 1 with K = is the
dataset for root node .
3.2.2 Load-balancing strategy
The most important aspect of distributed parallel
computing is load-balancing, which entails balancing
the load (a task) by distributing it across multiple
computing nodes to complete the task collaboratively.
When it comes to load-balancing, our concern is on
how to distribute subtrees, which are more than nodes,
to the computing nodes and ensure a relatively

Table 3 Mapping table.

Item New item
d A
b B
e C
a D
c E

Table 4 Recoded datasets.

Item Items data (ITD)
T1 (A,2)(D,5)(E,1)

T2 (C,6)(D,10)(E,6)

T3 (A,12)(B,4)(C,3)(D,5)(E,1)

T4 (A,6)(B,8)(C,3)(E,3)

T5 (B,4)(C,3)(E,2)

Algorithm 1　Map algorithm
Input: D: A transaction database;
Output: The itemset after map;

it = 0 i < D.length it++1: for ; ; do
2:　　T = D[it]

il = 0 il < T.length il++3:　　for ; ; do
4:　　　output(T[it],T.substring(il))
5:　　end for
6: end for

 Zaihe Cheng et al.: A Parallel High-Utility Itemset Mining Algorithm Based on Hadoop 51

balanced load for each node. By default, the data in 〈K,
V〉 format generated in the data splitting process are
distributed using the hash value of K. This distribution
strategy is highly random, and thus, the computing
loads of the nodes may differ significantly. From Fig. 3,
we observe that the loads of the subtrees are roughly in
descending order. Hence, an S-style distribution
strategy is introduced in P-EFIM to arrange the
subtrees and distribute them to the reduced computing
nodes.

{A,B,C,D,E}

⟨reduce1, {A}⟩ ⟨reduce2, {B}⟩ ⟨reduce3, {C}⟩ ⟨reduce4, {D}⟩
⟨reduce5, {E}⟩

⟨reduce1, {A,D,E}⟩ ⟨reduce2, {B,C}⟩

For example, the subtrees in Fig. 3 are .
If there are five parallel Reduces, the distribution is:

, , , ,
and . If there are two parallel Reduces, the
distribution is: , and .

3.3 Data mining

The data mining phase corresponds to the reduced
phase in the MapReduce framework, during which the
algorithm handles the data generated in the map phase
(data decomposition phase), or mines the data
generated in the reduced phase, as shown in Fig. 2, for
all HUIs.

Definition 9 (Merging transactions containing

Di

i q(i,Tm) =
∑

i ∈ T ∈ Diq(i,T)

identical items) Each item or itemset has its transaction
set . In the transaction set, the utility values of
identical itemsets are summed. The utility value of
itemset is defined as: .

{A,E}
{⟨7, {E,1}⟩ , ⟨17 {E,1}⟩}

{⟨24, {E, 2}⟩}

In Table 4, the transaction set of itemsets is
. If two or more transactions

contain identical itemsets and equal numbers of
itemsets, e.g., E, both transactions can be merged, and
the merged transaction set is .

α

z α

su (α,z) =∑
Tc∈g(α∪{z})(u(α,Tc)+u(z,Tc)+

∑
i∈Tc∩i≻z u(i,Tc)

Definition 10 (Subtree utility) Consider the itemset
and let be a subset of node in the depth-first search,
the utility value of this subset is calculated as

).
α = {C}

C {D,E} su(α,D) = u(C,T2)+u(C,T3)+
u(D,T2)+u(E,T2)+u(D,T3)+u(E,T3)

su(α,E) = u(C,T2)+u(E,T2)+u(C,T3)+u(E,T3)+
u(C,T4)+u(E,T4)+u(C,T5)+u(E,T5) =

In Table 4, suppose the itemset , and the
subset of is , then

= 6+3+10+6+5+1 =
31,

 6 + 6 + 3 + 1 + 3 + 3 +
3 + 2 = 27.

α

z α

lu(α,z) lu(α,z) =
∑

Tc∈g(α∪{z})(u(α,Tc)+
re(α,Tc))

Definition 11 (Local utility) Consider the itemset
and let be a subset of node in the depth-first search.
The local utility value of this subset is denoted as

 and given as:
.

α = {B}
{C,D,E} lu(α,C) = u(α,T3)+ re(α,T3)+u(α,T4)+

re(α,T4)+u(α,T5)+ re(α,T5) lu(α,
D) = u(α,T3)+ re(α,T3) = 4+6 = 10 lu(α,E) = u(α,
T3)+ re(α,T3)+u(α,T4)+ re(α,T4)+u(α,T5)+ re(α,T5)

In Table 4, suppose itemset , and the subset of B
is , then

 = 4+9+8+6+4+5 = 36,
, and

 =
4+1+8+3+4+2 = 22 .

⟨Key, D⟩ minutil

Algorithm 2 illustrates the underlying process. The
mining process is in the Reduce phase of the
distributed framework. The data output by Map in the
Reduce phase, i.e., and threshold serve
as the input, and the identified HUIs are the output. The
algorithm performs a depth-first search with Key as the

Mapper 1

Mapper 2

Mapper 3

(A,2)
(D,5)
(E,1)

(C,6)
(D,10)
(E,6)

(A,12)
(B,4)
(C,3)
(D,5)
(E,1)

(A,2), (D,5), (E,1)
(C,6), (D,10), (E,6)
(A,12), (B,4), (C,3), (D,5), (E,1)

‹A,{2 D,5 E,1}›
‹D,{5 E,1}›
‹E,{1}›

‹C,{6 D,10 E,6}›
‹D,{10 E,6}›
‹E,{6}›

‹A,{12 B,4 C,3 D,5 E,1}›
‹B,{4 C,3 D,5 E,1}›
‹C,{3 D,5 E, 1}›
‹D,{5 E,1}›
‹E,{1}›

Reducer 1

Reducer 2

Reducer 3

Reducer 4

Reducer 5

‹A,{2 D,5 E,1}›
‹A,{12 B,4 C,3 D,5 E,1}›

‹B,{4 C,3 D,5 E,1}›

‹C,{6 D,10 E,6}›
‹C,{3 D,5 E, 1}›

‹D,{5 E,1}›
‹D,{10 E,6}›
‹D,{5 E,1}›
‹E,{1}›
‹E,{6}›
‹E,{1}›

Fig. 2 Data decomposition process.

B E

D E

E

A D

EB

DC

D

C D

D

C

D

C

D E

EE

E

EE E

E E

E

E E

{A, B, C, D, E}

Fig. 3 An example search space.

 52 Complex System Modeling and Simulation, March 2023, 3(1): 47−58

root node, uses the subtree utility value to identify the
subnodes of Key and traverses the subnodes. The
algorithm reduces the number of nodes at the next layer
using the subtree and local utility values. Next, the
search algorithm performs the depth-first search using
a recursive approach[15].

4 Experimental Results

1.9.0_191

The proposed P-EFIM algorithm is compared with the
performance of the PHUI-Growth algorithm, which is
also a parallel HUIM algorithm using the MapReduce
framework. The comparison experiments between the
PHUI-Growth and P-EFIM ran in a Hadoop cluster
environment of five desktop computers. The
configuration of each computer is as follows: 2.8 GHz
Intel i5-8400 processor, 1 TB HDD, 8 GB RAM,
ubuntu 16.04 OS, java , and Hadoop 2.7.7.

4.1 Experimental datasets

All datasets for the experiments come from SPFM† .
The eight datasets used for the experiments are
Chainstore, Kosarak, Pumsb, Accidents, kddcup99,
PowerC, RecordLink, and PAMP. Their characteristics
are listed in Table 5, including each dataset’s average
transaction length, item count, and transaction count.

Three real-life transaction datasets, which are Pumsb,
Accidents, and Kosarak datasets, are with synthetic
utility values in SPMF. For Chainstore dataset, it is
with real utilities from a real-life customer transaction
dataset of a major grocery store chain. The utility of the
remaining four datasets is generated by the generation
tool in SPMF.

4.2 Comparison on the runtime with different
thresholds

The runtime value of an algorithm is a critical criterion
for its performance assessment. The thresholds at
which both algorithms differ in performance were
selected for the different datasets. The runtime values
of the two algorithms at different thresholds with
Reduce = 12 and 8, respectively, are shown in Figs. 4
and 5. From Fig. 4, the P-EFIM algorithm is at least
one order of magnitude faster than the PHUI-Growth
algorithm on the Chainstore, Kosarak, and Pumsb
datasets and at least five times faster than that on the
Accidents, RecordLink, and PAMP datasets. From Fig. 5,
the P-EFIM algorithm is one order of magnitude faster
than the PHUI-Growth algorithm on the Pumsb dataset
and at least three times faster than that on the
Accidents, Chainstore, Kosarak, RecordLink, and
PAMP datasets. The higher runtime performance of the
P-EFIM algorithm is mainly attributed to its efficient
parallel structure and higher-performance algorithms.
Furthermore, the iterative parallel structure of the
hierarchical search approach was replaced by the
efficient single-layer parallel structure of the depth-first
search approach. The approach can reduce the number
of parallel MapReduce tasks and HDD data access
operations, thereby improving the performance of the
P-EFIM algorithm. The pruning strategies and the
transaction merging strategy of the EFIM algorithm
significantly improved the performance of each node
by reducing the runtime, thereby improving the
performance of the distributed parallel algorithms.

4.3 Performance comparison on two load-
balancing strategies

The performance of P-EFIM algorithm (Reduce = 8)
with two load-balancing strategies is evaluated. P-
EFIM with the S-style distribution strategy is denoted
as P-EFIM(S), and P-EFIM algorithm with hash-based
distribution strategy is denoted as P-EFIM(hash).
Standard deviations, which are listed in Table 6, were

Table 5 Characteristic of the datasets.

Dataset Transaction
count

Item
count

Average transaction
length

Chainstore 1 112 949 46 086 7.23
Kosarak 990 002 41 270 8.10
Pumsb 49 046 2113 74.00

Accidents 340 183 468 533.80
kddcup99 1 000 000 135 16.00
PowerC 1 040 000 140 7.00

RecordLink 574 913 29 10.00
PAMP 1 000 000 141 23.93

Algorithm 2　Reduce algorithm
minutilInput: D: a transaction database, Key: an item, and : a

user-specified threshold;
Output: The set of the HUIs;
α = Key ≻1: , and sort transactions in D according to ;
KeyPrimary(α) = i|z ≻ i∧ su(z, i) ⩾minutil2:

j = 0 j < KeyPrimary(α).length j++3: for ; ; do
α α4:　　 .add(KeyPrimary()[j])
Primary(α) = {i|z ≻ i∧ su(z, i) ⩾minutil}5:　　

Secondary(α) = {i|z ≻ i∧ lu(z, i) ⩾minutil}6:　　

α7:　　create D* according to and D
i = 0 i < rootWidthnode.length i++8:　　for ; ; do

α,D∗,Primary(α),Secondary(α)9:　　　Search()
α10:　　　 .removelast();

11:　　end for
12: end for

†http://www.philippe-fournier-viger.com/spmf/

 Zaihe Cheng et al.: A Parallel High-Utility Itemset Mining Algorithm Based on Hadoop 53

4.0 4.1 4.2 4.3 4.4 4.5
Minimun utility threshold (×10−5)

101

102

R
un

tim
e

(s
)

(a) Chainstore

PHUI-Growth
P-EFIM

0.20 0.21 0.22 0.23 0.24 0.25
Minimun utility threshold

102

103

104

102

103

104

102

103

104

R
un

tim
e

(s
)

(b) Kosarak

PHUI-Growth
P-EFIM

0.20 0.21 0.22 0.23 0.24 0.25

R
un

tim
e

(s
)

(c) Pumsb

PHUI-Growth
P-EFIM

0.10 0.11 0.12 0.13 0.14 0.15

R
un

tim
e

(s
)

(d) Accidents

PHUI-Growth
P-EFIM

Minimun utility threshold

0

100

200

300

400

0.35 0.36 0.37 0.38 0.39 0.40

R
un

tim
e

(s
)

Minimun utility threshold

Minimun utility threshold

(e) kddcup99

(g) RecordLink (h) PAMP

PHUI-Growth
P-EFIM

0

80

40

120

160

200

240

0.05 0.06 0.07 0.08 0.09 0.10

R
un

tim
e

(s
)

Minimun utility threshold
(f) PowerC

PHUI-Growth
P-EFIM

100

200

300

400

500

600

700

0.15 0.16 0.17 0.18 0.19 0.20

R
un

tim
e

(s
)

Minimun utility threshold

PHUI-Growth
P-EFIM

200

400

600

800

1000

0.20 0.21 0.22 0.23 0.24 0.25

R
un

tim
e

(s
)

Minimun utility threshold

PHUI-Growth
P-EFIM

Fig. 4 Runtime values of the two parallel algorithms with Reduce = 12.

 54 Complex System Modeling and Simulation, March 2023, 3(1): 47−58

4.0 4.1 4.2 4.3 4.4 4.5
Minimun utility threshold (×10−5)

150

200

250

300

350
400

R
un

tim
e

(s
)

(a) Chainstore

PHUI-Growth
P-EFIM

7.5 7.6 7.7 7.8 7.9 8.0
Minimun utility threshold (×10−3)

103

2×102

R
un

tim
e

(s
)

(b) Kosarak

PHUI-Growth
P-EFIM

0.20 0.21 0.22 0.23 0.24 0.25
102

103

104

102

103

104

R
un

tim
e

(s
)

(c) Pumsb

PHUI-Growth
P-EFIM

0.10 0.11 0.12 0.13 0.14 0.15
Minimun utility threshold

R
un

tim
e

(s
)

(d) Accidents

PHUI-Growth
P-EFIM

Minimun utility threshold

0.35 0.36 0.37 0.38 0.39 0.40
0

100

200

300

400

R
un

tim
e

(s
)

(e) kddcup99

PHUI-Growth
P-EFIM

Minimun utility threshold
0.05 0.06 0.07 0.08 0.09 0.00

0

40

80

120

160

200

240

R
un

tim
e

(s
)

(f) PowerC

PHUI-Growth
P-EFIM

Minimun utility threshold

0.15 0.16 0.17 0.18 0.19 0.20

100

200

300

500

600

400

R
un

tim
e

(s
)

(g) RecorkLink

PHUI-Growth
P-EFIM

Minimun utility threshold
0.20 0.21 0.22 0.23 0.24 0.25

200

400

600

800

1000

R
un

tim
e

(s
)

(h) PAMP

PHUI-Growth
P-EFIM

Minimun utility threshold

Fig. 5 Runtime values of the two parallel algorithms with Reduce = 8.

 Zaihe Cheng et al.: A Parallel High-Utility Itemset Mining Algorithm Based on Hadoop 55

calculated to compare the performance of two load-
balancing strategies. From Table 6, the S-style
distribution strategy is more stable than the hash-based
distribution strategy in 20 out of 24 cases. On Pumsb,
Kosarak, and kddcup99 datasets, P-EFIM(S) has
achieved an overall better performance than P-
EFIM(hash). On Chainstore, Accidents, RecordLink,
and PAMP datasets, the S-style distribution strategy is
slightly worse than the hash-based distribution strategy
since the computing loads of the items were not strictly
in descending order. The load-balancing performance
of the S-style distribution strategy is higher because the
computing loads of the nodes are roughly in
descending order and can be effectively balanced using
the S-style distribution strategy.

4.4 Comparison on the runtime between EFIM
and P-EFIM

We also performed comparison experiments on the
runtime between EFIM and P-EFIM to show the
effectiveness of the proposed parallel strategy. Figure 6

shows the runtime of EFIM and P-EFIM (Reduce = 12)
on Chainstore dataset. The thresholds used in the
experiment are very small, which brings difficulty to
mine the HUIs for EFIM. From Fig. 6, it is clear that P-
EFIM runs more quickly than EFIM. On the other
datasets, since the thresholds are large, EFIM can mine
all the HUIs quickly, and the parallel performance of P-
EFIM on Hadoop can not show. The comparison
results on runtime on the other datasets are not given
here.

5 Conclusion

This paper proposes a distributed parallel EFIM (P-
EFIM) algorithm based on Hadoop. The P-EFIM
algorithm uses TWU values to prune and order
datasets, thereby improving their efficiency. The
proposed S-style distribution strategy can effectively
balance the computing load among the nodes.
Additionally, the previous mining algorithm using the
hierarchical search was replaced with the EFIM
algorithm based on the depth-first search to eliminate
the iteration process, thereby significantly improving
the efficiency of the P-EFIM algorithm. Experiments
with several datasets showed that the runtime
performance of the P-EFIM algorithm was much
higher than that of the distributed parallel PHUI-
Growth algorithm using the Hadoop framework.

References

 X. Li, S. Cao, L. Gao, and L. Wen, A threshold-control
generative adversarial network method for intelligent fault
diagnosis, Complex System Modeling and Simulation,
vol. 1, no. 1, pp. 55–64, 2021.

[1]

 Q. Yu, L. Li, H. Zhao, Y. Liu, and K.-Y. Lin, Evaluation
system and correlation analysis for determining the
performance of a semiconductor manufacturing system,
Complex System Modeling and Simulation, vol. 1, no. 3,

[2]

Table 6 Standard deviations of the two distribution
strategies.

Dataset minutil P-EFIM(hash) P-EFIM(S)

Chainstore
0.000 40 163.31 245.86
0.000 41 300.94 193.74
0.000 42 255.64 82.53

Kosarak
0.005 00 639.94 621.76
0.006 00 243.05 189.87
0.007 00 372.10 318.64

Pumsb
0.150 00 9365.56 6973.80
0.160 00 3225.53 2465.36
0.170 00 1291.40 1175.39

Accidents
0.060 00 449.75 325.39
0.070 00 371.49 152.53
0.080 00 253.73 379.48

kddcup99
0.200 00 1377.73 620.08
0.210 00 1563.50 967.20
0.220 00 1497.76 1135.34

PowerC
0.050 00 708.71 577.24
0.060 00 758.60 604.08
0.070 00 691.12 569.88

RecordLink
0.170 00 496.00 446.60
0.180 00 554.10 474.11
0.190 00 472.61 505.01

PAMP
0.020 00 4947.75 2715.20
0.021 00 7594.63 7618.90
0.022 00 7453.76 2862.00

5000
EFIM
P-EFIM4000

3000

R
un

tim
e

(s
)

2000

1000

0
4.0 4.1 4.2 4.3

Minimun utility threshold (×10−5)
4.4 4.5

Fig. 6 Comparison on runtime between EFIM and P-EFIM
on Chainstore dataset.

 56 Complex System Modeling and Simulation, March 2023, 3(1): 47−58

pp. 218–231, 2021.
 J. Li, X. Gu, Y. Zhang, and X. Zhou, Distributed flexible
job-shop scheduling problem based on hybrid chemical
reaction optimization algorithm, Complex System
Modeling and Simulation, vol. 2, no. 2, pp. 156–173,
2022.

[3]

 L. Wang, Z. Pan, and J. Wang, A review of reinforcement
learning based intelligent optimization for manufacturing
scheduling, Complex System Modeling and Simulation,
vol. 1, no. 4, pp. 257–270, 2021.

[4]

 Z. -H. Deng and S. -L. Lv, PrePost+: An efficient N-lists-
based algorithm for mining frequent itemsets via
children–parent equivalence pruning, Expert Systems with
Applications, vol. 42, no. 13, pp. 5424–5432, 2015.

[5]

 T. L. Dam, K. Li, P. Fournier-Viger, and Q. H. Duong, An
efficient algorithm for mining top-rank-k frequent
patterns, Applied Intelligence, vol. 45, no. 1, pp. 96–111,
2016.

[6]

 G. Grahne and J. Zhu, Fast algorithms for frequent itemset
mining using FP-trees, IEEE Transactions on Knowledge
and Data Engineering, vol. 17, no. 10, pp. 1347–1362,
2005.

[7]

 Z. H. Deng, DiffNodesets: An efficient structure for fast
mining frequent itemsets, Applied Soft Computing, vol. 41,
pp. 214–223, 2016.

[8]

 T. Ryu, H. Kim, C. Lee, H. Kim, B. Vo, J. C. -W. Lin, W.
Pedrycz, and U. Yun, Scalable and efficient approach for
high temporal fuzzy utility pattern mining, IEEE
Transactions on Cybernetics, doi: 10.1109/TCYB.2022.
3198661.

[9]

 W. Song, Y. Liu, and J. Li, BAHUI: Fast and memory
efficient mining of high utility itemsets based on bitmap,
International Journal of Data Warehousing and Mining,
vol. 10, no. 1, pp. 1–15, 2014.

[10]

 C. -W. Wu, P. Fournier-Viger, J. -Y. Gu, and V. S. Tseng,
Mining compact high utility itemsets without candidate
generation, in High-Utility Pattern Mining, P. Fournier-
Viger, J. C. -W. Lin, R. Nkambou, B. Vo, and V. S. Tseng,
eds. Cham, Switzerland: Springer, 2019, pp. 279–302.

[11]

 Y. C. Lin, C. -W. Wu, and V. S. Tseng, Mining high
utility itemsets in big data, in Proc. 19th Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
Ho Chi Minh City, Vietnam, 2015, pp. 649–661.

[12]

 W. Song, Y. Liu, and J. Li, Mining high utility itemsets by
dynamically pruning the tree structure, Applied
Intelligence, vol. 40, pp. 29–43, 2014.

[13]

 S. Krishnamoorthy, Hminer: Efficiently mining high
utility itemsets, Expert Systems with Applications, vol. 90,
pp. 168–183, 2017.

[14]

 S. Zida, P. Fournier-Viger, J. C. -W. Lin, C. -W. Wu, and
V. S. Tseng, EFIM: A highly efficient algorithm for high-
utility itemset mining, in Proc. 14th Mexican International
Conference on Artificial Intelligence, Cuernavaca,
Mexico, 2015, pp. 530–546.

[15]

 T. L. Dam, K. Li, P. Fournier-Viger, and Q. -H. Duong,
CLS-miner: Efficient and effective closed high-utility
itemset mining, Frontiers of Computer Science, vol. 13,
no. 1, pp. 357–381, 2019.

[16]

 J. C. -W. Lin, Y. Djenouri, G. Srivastava, and J. M. -T.
Wu, Large-scale closed high-utility itemset mining, in
Proc. 2021 International Conference on Data Mining
Workshops (ICDMW), Auckland, New Zealand, 2021, pp.
591–598.

[17]

 W. Gan, Z. Du, W. Ding, C. Zhang, and H. -C. Chao,
Explainable fuzzy utility mining on sequences, IEEE
Transactions on Fuzzy Systems, vol. 29, no. 12,
pp. 3620–3634, 2021.

[18]

 W. Gan, J. C. -W. Lin, P. Fournier-Viger, H. -C. Chao, V.
S. Tseng, and P. S. Yu, A survey of utility-oriented pattern
mining, IEEE Transactions on Knowledge and Data
Engineering, vol. 33, no. 4, pp. 1306–1327, 2021.

[19]

 J. Miao, S. Wan, W. Gan, J. Sun, and J. Chen, Targeted
high-utility itemset querying, IEEE Transactions on
Artificial Intelligence, doi: 10.1109/TAI.2022.3171530.

[20]

 H. Yao and H. J. Hamilton, Mining itemset utilities from
transaction databases, Data and Knowledge Engineering,
vol. 59, no. 3, pp. 603–626, 2006.

[21]

 Y. Liu, W. Liao, and A. Choudhary, A two-phase
algorithm for fast discovery of high utility itemsets, in
Proc. 9th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, Hanoi, Vietnam,
2005, pp. 689–695.

[22]

 Y. C. Li, J. S. Yeh, and C. C. Chang, Isolated items
discarding strategy for discovering high utility itemsets,
Data and Knowledge Engineering, vol. 64, no. 1,
pp. 198–217, 2008.

[23]

 C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Y. K. Lee,
Efficient tree structures for high utility pattern mining in
incremental databases, IEEE Transactions on Knowledge
and Data Engineering, vol. 21, no. 12, pp. 1708–1721,
2009.

[24]

 U. Yun, H. Ryang, and K. H. Ryu, High utility itemset
mining with techniques for reducing overestimated utilities
and pruning candidates, Expert Systems with Applications,
vol. 41, no. 8, pp. 3861–3878, 2014.

[25]

 V. S. Tseng, C. W. Wu, B. E. Shie, and P. S. Yu, Up-
growth: An efficient algorithm for high utility itemset
mining, in Proc. 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, 2010, pp. 253–262.

[26]

 V. S. Tseng, B. E. Shie, C. W. Wu, and P. S. Yu, Efficient
algorithms for mining high utility itemsets from
transactional databases, IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 8, pp. 1772–1786,
2013.

[27]

 M. Liu and J. Qu, Mining high utility itemsets without
candidate generation, in Proc. 21st ACM International
Conference on Information and Knowledge Management,
Maui, HI, USA, 2012, pp. 55–64.

[28]

 P. Fournier-Viger, C. -W. Wu, S. Zida, and V. S. Tseng,
FHM: Faster high-utility itemset mining using estimated
utility co-occurrence pruning, in Proc. 21st International
Symposium on Methodologies for Intelligent Systems,
Roskilde, Denmark, 2014, pp. 83–92.

[29]

 S. Krishnamoorthy, Pruning strategies for mining high
utility itemsets, Expert Systems with Applications, vol. 42,
no. 5, pp. 2371–2381, 2015.

[30]

 Zaihe Cheng et al.: A Parallel High-Utility Itemset Mining Algorithm Based on Hadoop 57

 J. Sahoo, A. K. Das, and A. Goswami, An efficient fast
algorithm for discovering closed+ high utility itemsets,
Applied Intelligence, vol. 45, no. 1, pp. 44–74, 2016.

[31]

 J. Liu, K. Wang, and B. C. M. Fung, Direct discovery of
high utility itemsets without candidate generation, in Proc.
2012 IEEE 12th International Conference on Data Mining,
Brussels, Belgium, 2012, pp. 984–989.

[32]

 C. W. Wu, P. Fournier-Viger, J. Y. Gu, and V. S. Tseng,
Mining closed+ high utility itemsets without candidate
generation, in Proc. 2015 Conference on Technologies and

[33]

Applications of Artificial Intelligence, Tainan, China,
2015, pp. 187–194.
 G. -C. Lan, T. -P. Hong, and V. S. Tseng, An efficient
projection-based indexing approach for mining high utility
itemsets, Knowledge and Information Systems, vol. 38,
no. 1, pp. 85–107, 2014.

[34]

 S. Dawar, V. Goyal, and D. Bera, A hybrid framework for
mining high-utility itemsets in a sparse transaction
database, Applied Intelligence, vol. 47, no. 3, pp. 809–827,
2017.

[35]

Zaihe Cheng received the master degree
from Jiangnan University in 2012. He is
now a senior visiting scholar of Jiangnan
University and an associate professor at the
School of Internet of Things, Wuxi
Institute of Technology. His research
interest is data mining and big data
analysis.

Wei Shen received the master degree from
Jiangnan University in 2020. His research
interest is evolutionary algorithm and data
mining.

Wei Fang received the PhD degree from
Jiangnan University in 2008. He is now a
professor of Jiangsu Provincial
Engineering Laboratory of Pattern
Recognition and Computational
Intelligence, Jiangnan University. His
research interest is evolutionary algorithm
and its applications.

Jerry Chun-Wei Lin is currently a full
professor with the Department of
Computer Science, Electrical Engineering
and Mathematical Sciences, Western
Norway University of Applied Sciences,
Bergen, Norway. He has published more
than 360+ research articles in refereed
journals (IEEE TKDF, IEEE TCYB, IEEE

TII, IEEE TITS, IEEE TIAS, IEEE TETCI, IEEE SysJ, IEEE
SensJ, IEEE IOTJ, ACM TKDD, ACM TDS, ACM TMIS, ACM
TOIT, and ACM TIST) and international conferences (IEEE
ICDE, IEEE ICDM, PKDD, and PAKDD), 11 edited books, as
well as 33 patents (held and filed, 3 US patents). His research
interests include data mining, soft computing, artificial
intelligence and machine learning, and privacy preserving and
security technologies. He is the editor-in-chief of the
International Journal of Data Science and Pattern Recognition,
and the guest editor/associate editor for several IEEE/ACM
journals such as IEEE TFS, IEEE TII, ACM TMIS, ACM TOIT,
and IEEE Access. He has been recognized as the most cited
Chinese researcher respectively in 2018 and 2019 by
Scopus/Elsevier. He is the fellow of IET (FIET) and senior
member of both IEEE and ACM.

 58 Complex System Modeling and Simulation, March 2023, 3(1): 47−58

