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Abstract: High-utility itemset mining (HUIM) can consider not only the profit factor but also the profitable factor,

which is  an essential  task in data mining.  However,  most  HUIM algorithms are mainly developed on a single

machine,  which  is  inefficient  for  big  data  since  limited  memory  and  processing  capacities  are  available.  A

parallel  efficient  high-utility  itemset  mining  (P-EFIM)  algorithm is  proposed  based  on  the  Hadoop  platform to

solve  this  problem  in  this  paper.  In  P-EFIM,  the  transaction-weighted  utilization  values  are  calculated  and

ordered for the itemsets with the MapReduce framework. Then the ordered itemsets are renumbered, and the

low-utility  itemsets are pruned to improve the dataset  utility.  In  the Map phase,  the P-EFIM algorithm divides

the task into multiple independent subtasks. It uses the proposed S-style distribution strategy to distribute the

subtasks evenly across all nodes to ensure load-balancing. Furthermore, the P-EFIM uses the EFIM algorithm

to mine each subtask dataset to enhance the performance in the Reduce phase. Experiments are performed on

eight datasets, and the results show that the runtime performance of P-EFIM is significantly higher than that of

the PHUI-Growth, which is also HUIM algorithm based on the Hadoop framework.
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1    Introduction

Data  mining  is  the  process  of  uncovering  useful
patterns from a collection of data, which can be used in
a wide range of applications, such as fault diagnosis[1],
semiconductor  manufacturing  system[2],  and
manufacturing scheduling[3, 4]. Frequent itemset mining

(FIM)  is  used  to  identify  the  frequent  item
combinations  to  facilitate  decision-making[5−8],  which
is  one  of  the  earliest  data  mining  tasks.  However,  the
FIM  algorithm  focuses  only  on  the  occurrence
frequency  of  a  product  or  item,  ignoring  its  value  or
profit.  In  other  words,  the  most  frequent  pattern  may
not  be valuable  or  useful.  For  instance,  frequent  items
in supermarkets,  e.g.,  eggs and apples,  have very low-
profit margins. These are not the items decision-makers
want, even if they occur frequently. The FIM task was
upgraded  to  the  high-utility  itemset  mining  (HUIM)
task  that  can  identify  item  combinations  with  high-
profit  margins.  The HUIM algorithm focuses  not  only
on the frequency of  occurrence of  an item but  also on
its  quantity  value,  as  well  as  the  the  item’s  unit  profit
value.  In  FIM,  the  itemset  support  is  less  than  an
extended itemset, which is known to be anti-monotonic
and  helps  quickly  reduce  the  search  space.  However,
since  more  factors  are  considered  in  the  HUIM,  the
anti-monotonic  property  is  not  held  in  the  mining
progress.  Consequently,  the  relationship  between  two
utilities of an itemset and one of the extended itemsets
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is  complex,  increasing  the  complexity  of  the  mining
task. Hence, most HUIM algorithms must redefine new
upper  bounds  to  reduce  search  spaces.  Several  HUIM
algorithms  have  been  derived,  such  as  high  temporal
fuzzy  utility  pattern  mining[9],  sequential  itemset
mining[10, 11],  negative  utility  itemset  mining[12],  top-k
itemset  mining[13−15],  closed  high-utility  itemset
mining[16, 17],  fuzzy  utility  mining[18],  utility-oriented
pattern  mining[19],  and  targeted  high-utility  itemset
querying[20].

An  HUIM  algorithm  should  mainly  address  the
following  three  difficulties  in  general,  a  large  search
space,  too  much  memory  usage  to  run  the  algorithm,
and  long  runtime  consumption  to  calculate  the  utility
values  of  itemsets.  Depth-first  search and breadth-first
search  are  the  main  approaches  in  existing  HUIM
algorithms.  The  breadth-first  search  based  algorithms
mainly  include  UMing[21],  two-phase[22],  and  IIDS[23].
The  UMing  algorithm  was  the  first  to  introduce  the
HUIM concept and the associated solution. The Apriori
framework  is  used  to  traverse  the  search  space  in
UMing.  The  utility  values  of  the n-itemsets  are
estimated  based  on  the  former  (n−1)-itemsets.  The
candidate  itemsets  are  therefore  generated.  The
transaction-weighted  utilization  (TWU)  of  downward
closure  is  extensively  used  in  two-phase  HUIM
models.  In  the  first  phase  of  the  method,  (k−1)
candidate  sets  are  used  to  generate k candidate  sets.
The  algorithm  evaluates  the  utility  values  of  the
generated  candidate  itemsets  in  the  second  phase  in
order  to  mine  high-utility  itemsets  (HUIs)  or  the
qualified candidate itemsets. Once no candidate itemset
is formed in the first stage, the algorithm is terminated,
and the final results are generated.

Two-phase  and  one-phase  algorithms  are  the  main
types  based  on  depth-first  search.  For  a  two-phase
algorithm,  the  algorithm  generates  candidate  itemsets
by  overestimating  the  utility  values  in  the  database  in
the  first  phase.  In  the  second  phase,  the  algorithm
calculates  the  actual  utility  values  by  visiting  the
database.  Two-phase  algorithms  include  IHUP[24],
CHUI-Mine[13],  MU[25],  UP-Growth[26],  and  UP-
Growth+[27].  IHUP  was  the  first  to  introduce  a  tree-
based  structure,  called  IHUP-tree.  The  IHUP-tree  is
used  to  generate  the  candidate  itemsets.  The  IHUP
algorithm  constructs  the  IHUP-tree  by  scanning  the
database  twice.  The  first  scan  traverses  the  IHUP-tree
upward  by  extending  itemsets.  The  second  scan

considers the itemsets with utility values larger than the
pre-defined  threshold  as  candidate  itemsets  to  reduce
the candidate itemsets.

In  one-phase  HUIM  algorithms,  the  search  space  is
directly  traversed  according  to  the  order  of  itemsets.
Moreover,  the  actual  utility  values  of  the  itemsets  are
computed  without  generating  candidate  itemsets.  In
Ref.  [28],  the  first  one-phase  HUIM  algorithm  was
introduced, which is named HUI-Miner. In HUI-Miner,
the utility values of the itemsets are directly calculated
based on the utility-list structure. Since then, improved
one-phase  based  algorithms  were  proposed,  e.g.,
FHM[29],  HUP-Miner[30],  CHUI-Mine[13],  HUI-
Miner[28], CHUM[31], d2HUP[32], EFIM[15], BAHUI[10],
CHUI-Miner[33],  PB[34],  UFH[35],  ULB-Miner[29],  and
Hminer[14].  In  Ref.  [15],  efficient  high-utility  itemset
mining  (EFIM)  was  introduced,  which  uses  the
merging of transaction sets to reduce the dataset size of
each  item  effectively.  In  EFIM,  the  subtree  and  local
utilities are regarded as the upper bounds, reducing the
search  space  and  improving  the  runtime  and  memory
usage performance. EFIM is currently one of the fastest
HUIM algorithms.

The  rapid  evolution  of  information  technology  has
seen  a  drastic  increase  in  data  size.  HUIM algorithms
are  no  longer  suitable  for  larger  datasets  due  to  the
inefficiency  of  a  single  computer’s  CPU  processing
speed  and  memory  size.  Hence,  some  scholars
deployed  data  mining  algorithms  in  distributed  cluster
systems  to  improve  their  runtime  performance  and
apply  them  to  larger  datasets.  PHUI-Growth[12] is  a
MapReduce-based  HUIM  algorithm  based  on  the
MapReduce  computing  framework.  In  PHUI-Growth,
an iterative parallel structure using breadth-first search
is proposed. The search space is reduced by the DLU-
MR  pruning  strategy  in  the  second  phase,  which  can
address  the  issue  that  a  single  computer  cannot  mine
large  datasets.  However,  due  to  the  iterative  parallel
structure  and  low-performance  pruning  strategy,  the
PHUI-Growth runtime remains very long. Therefore, a
novel  parallel  EFIM  (P-EFIM)  is  proposed  in  this
paper.  First,  the  TWU  value  of  each  itemset  is
calculated,  and then the  dataset  is  pruned and recoded
using  these  ordered  itemsets  to  improve  the  dataset
utility.  Second,  the  algorithm  divides  the  entire  task
into  multiple  subtasks  using  the  MapReduce
framework and applies the S-style balancing strategy to
distribute  the  subtasks  across  all  nodes  to  ensure  as
close  to  load-balancing  as  possible.  Finally,  the  P-
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EFIM  algorithm  applies  the  one-phase  EFIM[15]

algorithm based on the depth-first search to mine each
subtask  on  each  node  rather  than  using  the  PHUI-
Growth. Additionally, the performance of the proposed
P-EFIM  is  improved  by  the  efficient  pruning  strategy
in EFIM.

2    Definition

2.1    HUIM-related definitions

D = {T1,T2, . . . ,Tn}
TID

I = {l1, l2, . . . , ln}

A  transaction  dataset  comprises
multiple  transactions.  The  refers  to  a  unique
identifier,  which  is  associated  with  each  transaction,
where  is  the  set  that  contains  all
nonduplicate items in D. Both internal utility value and
external utility value are assigned to each item in each
transaction. An example transaction database with five
transactions  is  given  in Table  1[15]. Table  2 gives  the
external utility values of seven items.

Tc q(i,Tc)
i p(i)

u(i,Tc) = p(i)×q(i,Tc)
i Tc u(X,Tc)

u(X,Tc) =
∑

i∈X u(i,T )
u(X) =

∑
Tc∈g(X) u(X,Tc)

g(X)

Definition  1 (Utility  of  an  item/itemset)  In
transaction ,  denotes  the  internal  utility  of
item , and  denotes the external utility value in this
paper.  means  the  utility  value  of
item .  In  transaction ,  denotes  the  utility
value  of  itemset X,  and  is  calculated  as

. In the entire transaction database,
 is  used  to  calculate  the  utility

value  of  the  itemset X,  where  represents  all  the
transactions that include itemset X.

b T3

u(b,T3) = 2×2 = 4 {a,b}
Take  item  in  transaction  as  an  example,  its

utility value is . For the itemset 

T3 u({a,b},T3) = u(a,T3)+
u(b,T3) = 5×1+2×2 = 9

{a,d} u({a,d}) = u({a,d},T1)+u({a,d},T3) = u(a,T1)+
u(d,T1)+u(a,T3)+u(d,T3) = 5+2+5+12 = 24

in ,  its  utility  value  is 
.  Considering  the  entire

transaction  database,  the  utility  value  of  the  itemset
 is 

.
Definition  2 (HUI)  An  HUI  refers  to  the  itemset X

with  the  utility  value  greater  than  the  user  defined
threshold. An HUIM algorithm is used to find all HUIs.

minutil = 30
u{b,d} = 30 u{a,c,e} = 31 u{b,c,d,e} = 40

u{a,b,c,d,e, f } = 30

For example, the threshold is ; In Table 1,
since , , ,  and

, these itemsets are HUIs.
Tc

TU(Tc) =
∑

x∈Tc u(x,Tc)
TWU(X) =

∑
Tc∈g(X) TU(Tc)

Definition  3 (TWU)  For  transaction ,  its  utility
value  is .  For  the  itemset X,  its
TWU value is ,  which is  the
sum of the transaction utility values of all  transactions
containing itemset X.

{g} TWU[g] =
TU[T2]+TU[T5] = 10+6+6+5+4+2+3+2 = 38

For  the  itemset ,  its  TWU  value  is 
.

minutil
Theorem 1 (TWU pruning) If the TWU value of any

itemset X is  less  than  the  threshold ,  then  the
itemset and its superset are low-utility itemsets[22].

≻

X
re(X,Tc) =

∑
i∈Tc∧(i≻x,∀x∈X) u(i,Tc)

Definition  4 (Utility  value  of  remaining  itemsets)
Suppose  is  an  ordering  scheme  for I,  and X is  a
subset.  The  remaining  itemsets  refer  to  the  itemsets
appearing  after  the  itemset  in  a  transaction  and  its
utility value is .

{a,c}
T3 re({a,c},T2) = u(e,T2)+

u(g,T2) = 6+5 = 11

Take  the  remaining  itemsets  of  itemset  in
transaction  as  an  example, 

.

Tc, iutil, rutil
Tc

iutil rutil
Tc (u(X,Tc))

Definition  5 (Utility-list  structure)  The  tuples
( )  represent  the  utility-list  structure  of
itemset X.  represents  the  transaction  containing  the
itemset X.  and  are the utility values of itemset
X in  .

{a,b,c,d,e, f ,g}
{a,c} {(T1,6,2), (T2,16,11),

(T3,6,23)}

Given  the  order I as ,  the  utility-list
structure  of  itemset  is 

.

2.2    Key definitions of the EFIM algorithm

The  EFIM  is  currently  one  of  the  fastest  HUIM
algorithms  with  two  effective  strategies:  merging
transactions containing identical items and subtree and
local utilities. Merging transactions containing identical
items  effectively  reduce  each  item’s  dataset  size  and
help reduce the runtime. The subtree and local utilities
are  used  as  two  pruning  upper  bounds  to  reduce  the
runtime and the search space.

Di

Definition  6 (Transactions  containing  identical
items)  Each  item  or  itemset  has  its  transaction  set .
The  utility  values  of  identical  itemsets  in  the

 

Table 1    Transaction dataset.
TID Transaction
T1 (a,1)(c,1)(d,1)

T2 (a,2)(c,6)(e,2)(g,5)

T3 (a,1)(b,2)(c,1)(d,6)(e,1)( f ,5)

T4 (b,4)(c,3)(d,3)(e,1)

T5 (b,2)(c,2)(e,1)(g,2)
 

 

Table 2    External utilities.

Item Profit
a 5
b 2
c 1
d 2
e 3
f 1
g 1
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Ditransaction set  are summed. That is
 

q(i,Tm) =
∑

i∈T∈Di

q(i,T ) (1)

α

z α

Definition 7 (Subtree utility) Given an itemset , and
let  be a subset of . The utility value of this subset is
 

su(α,z) =
∑

T∈g(α∪z)

(u(α,T )+u(z,T )+ re(α,z,T )) (2)

α

z α

Definition 8 (Local  utility)  Given an  itemset ,  and
let  be  a  subset  of .  The  local  utility  value  of  this
subset is
 

lu(α,z) =
∑

T∈g(α∪z)

(u(α,T )+ re(α,T )) (3)

3    P-EFIM Algorithm

To solve the problem that a single computer is difficult
to  mine  large  datasets,  we  propose  the  parallel  HUIM
(P-EFIM) algorithm.  The P-EFIM algorithm leverages
the  MapReduce  computing  framework  to  mine  HUIs
efficiently. The key strategy of P-EFIM algorithm is to
decompose  a  dataset  into  multiple  smaller  datasets
through  HDFS  and  distribute  them  to  different  nodes.
The  proposed  P-EFIM  algorithm  mainly  comprises
four  phases,  namely,  TWU  value  ordering,  dataset
recoding, data decomposition, and data mining. Figure 1
shows  the  flowchart  of  the  proposed  P-EFIM
algorithm.  In  the  TWU  values  ordering  phase,  the
TWU value of each item is calculated in each node and
ordered  in  ascending  order  with  the  Map  and  Reduce
operators.  In the dataset  recoding phase,  the algorithm
recodes  the  datasets  using  the  order  of  the  itemsets

after  pruning  and  ordering,  and  prunes  the  low-utility
itemsets.  A  new dataset  is  obtained  after  the  recoding
phase.  In  the  data  decomposition  phase,  the  algorithm
decomposes  the  sorted  data  into  multiple  datasets
required  for  each  subtask.  The  decomposition  is
realized  based  on  the  S-style  distribution  strategy  in
order  to  distribute  the  subtasks  among  the  computing
nodes with a relatively balanced load for each node. In
the data mining phase, EFIM algorithm is used to mine
each subtask on each node individually and then get all
HUIs through the collect operator.

3.1    TWU values ordering and datasets recoding

n

I = { f , g, d, b, e, a, c}
f g

I = {d, b, e, a c}

According to  Theorem 1,  if  an  itemset  is  a  low-utility
itemset,  then  none  of  the  itemsets  containing  this
itemset are HUIs. Hence, calculating the TWU value of
each item and ordering them in ascending order help to
reduce  the  search  space[24].  Additionally,  pruning  the
first  items  whose  TWU  values  are  less  than  the
threshold,  and  recoding  the  transaction  sets  using  the
mapping  table  created  with  the  threshold  reduce  the
size of the original dataset. By using the data in Table 1,
we can then obtain the TWU values of all items in the
database.  For  example,  TWU(a)  is  calculated  as:
TWU(a)(=  65);  TWU(b)  is  calculated  as:  TWU(b)(=
61); TWU(c) is calculated as: TWU(c)(= 66); TWU(d)
is  calculated as:  TWU(d)(= 58);  TWU(e)  is  calculated
as: TWU(e)(= 61); TWU(f) is calculated as: TWU(f)(=
30); and TWU(g) is calculated as: TWU(g)(= 38). The
ascending order  of  them is       .  The
items  and  can be pruned if the defined threshold is
40, and the remaining items are    , .
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Fig. 1    Flowchart of the proposed P-EFIM algorithm.
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I = {d, b, e,
a, c}

The  dataset  recoding  process  mainly  comprises  two
phases.  In phase one,  the algorithm creates an ordered
mapping table, as shown in Table 3, using the itemsets
that appear after pruning and ordering, e.g.,   

 .  In  phase  two,  the  algorithm  reconstructs  the
datasets using the mapping table. It replaces the data in
the original datasets with the data in the mapping table,
prunes the data absent in the mapping table, and orders
the new datasets. The reconstructed datasets are shown
in Table  4.  The  dataset  recoding  process  has  two
features.  First,  the  datasets  with  the  TWU  values  less
than  the  threshold  are  pruned  in  order  to  reduce  the
datasets,  memory  size,  and  runtime  used  by  the
algorithm.  Second,  the  recoded  datasets  are  ordered,
thereby reducing the  runtime of  the  algorithm through
binary search.

A,E
⟨7,E,1⟩ ⟨17,E,1⟩

⟨24,E,2⟩

In Table  4,  the  transaction  set  of  the  itemset  is
, .  If  two  or  more  transactions  contain

identical  itemsets  and  equal  numbers  of  itemsets,  e.g.,
E,  both  transactions  can  be  merged  to  obtain  the  set

.  Merging  transactions  containing  identical
itemsets  can  reduce  transactions,  thereby  reducing  the
time spent on traversing the dataset and runtime of the
algorithm.  Generally,  the  denser  a  database,  the  more
transactions  can be merged,  and the more time can be
saved.

α =C
C D and E su(α,D)=u(C,T2)+ re(α,C,T2)+
u(α,T3)+u(D,T2)+u(D,T3)+re(α,D,T3)

(α,E) = u(α,T5)+u(E,T5)+u(E,T3)+u(α,T4)+
u(E,T4)+u(α,T2)+u(E,T2)+u(α,T3)

In Table 3, suppose itemset , then the subsets of
 are ,  and 

=  6+6+3+10+5+
1=31,  su

 =  3+2+1+3+3+6+
6+3  =  27.  The  subtree  utility  value  is  applied  to  the
subnodes  of  the  current  node,  while  the  local  utility
value  is  applied  to  all  subtrees  of  the  tree  where  the

current  node  is  located.  Both  pruning  strategies  are
used to reduce the runtime and search space.

3.2    Data decomposition

The  search  space  for  HUIM  is  the  arrangement  of  all
itemsets. The EFIM algorithm searches the space from
top  to  bottom  in  an  in-depth  manner,  whereas  the  P-
EFIM  algorithm  searches  the  space  by  dividing  the
entire tree into multiple subtrees and distributing these
subtrees  across  computing  nodes  to  run  the  EFIM
algorithm.  The  data  decomposition  process  comprises
two  phases.  In  phase  one,  the  algorithm  splits  the
original  data  for  multiple  subtasks.  In  phase  two,  the
algorithm  distributes  the  subtasks  across  computing
nodes to ensure load-balancing.
3.2.1    Data splitting

⟨K,V⟩

V

(A,2)(D,5)(E,1)

⟨A, {2, (D,5) , (E,1)}⟩ ⟨D, {5, (E,1)}⟩ ⟨E, {1}⟩

⟨A⟩
⟨A⟩

The data splitting phase corresponds to the map phase
in  the  MapReduce  framework,  during  which  the
algorithm converts  each  transaction  set  into  the 
format.  The  algorithm  splits  the  transaction  set  by
items.  Here K is  the  value  of  each  item  and  is  the
data of the item with the utility value of K, and the set
of combinations of the utility values of the items after
K.  The  detailed  process  is  illustrated  in Algorithm  1.
The  data  splitting  process  is  illustrated  in Fig.  2.  The
transaction  sets  in  Mapper  1  are ,  and
the map converts them to three〈K,V〉transaction sets,
namely, , , .
After  splitting,  the  merged  datasets  in  Reduce  1  with
equal K are  the  datasets  required  for  the  subtrees.  For
example,  the  dataset  in  Reduce  1  with K =  is  the
dataset for root node .
3.2.2    Load-balancing strategy
The  most  important  aspect  of  distributed  parallel
computing  is  load-balancing,  which  entails  balancing
the  load  (a  task)  by  distributing  it  across  multiple
computing  nodes  to  complete  the  task  collaboratively.
When  it  comes  to  load-balancing,  our  concern  is  on
how to distribute subtrees, which are more than nodes,
to  the  computing  nodes  and  ensure  a  relatively

 

Table 3    Mapping table.

Item New item
d A
b B
e C
a D
c E

 

 

Table 4    Recoded datasets.

Item Items data (ITD)
T1 (A,2)(D,5)(E,1)

T2 (C,6)(D,10)(E,6)

T3 (A,12)(B,4)(C,3)(D,5)(E,1)

T4 (A,6)(B,8)(C,3)(E,3)

T5 (B,4)(C,3)(E,2)
 

 

Algorithm 1　Map algorithm
Input: D: A transaction database;
Output: The itemset after map;

it = 0 i < D.length it++1: for ; ;  do
2:　　T = D[it]

il = 0 il < T.length il++3:　　for ; ;  do
4:　　　output(T[it],T.substring(il))
5:　　end for
6: end for
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balanced load for each node. By default, the data in 〈K,
V〉  format  generated  in  the  data  splitting  process  are
distributed using the hash value of K. This distribution
strategy  is  highly  random,  and  thus,  the  computing
loads of the nodes may differ significantly. From Fig. 3,
we observe that the loads of the subtrees are roughly in
descending  order.  Hence,  an  S-style  distribution
strategy  is  introduced  in  P-EFIM  to  arrange  the
subtrees and distribute them to the reduced computing
nodes.

{A,B,C,D,E}

⟨reduce1, {A}⟩ ⟨reduce2, {B}⟩ ⟨reduce3, {C}⟩ ⟨reduce4, {D}⟩
⟨reduce5, {E}⟩

⟨reduce1, {A,D,E}⟩ ⟨reduce2, {B,C}⟩

For example, the subtrees in Fig. 3 are .
If  there  are  five  parallel  Reduces,  the  distribution  is:

, , , ,
and . If there are two parallel Reduces, the
distribution is: , and .

3.3    Data mining

The  data  mining  phase  corresponds  to  the  reduced
phase in the MapReduce framework, during which the
algorithm handles the data generated in the map phase
(data  decomposition  phase),  or  mines  the  data
generated in the reduced phase, as shown in Fig. 2, for
all HUIs.

Definition  9 (Merging  transactions  containing

Di

i q(i,Tm) =
∑

i ∈ T ∈ Diq(i,T )

identical items) Each item or itemset has its transaction
set .  In  the  transaction  set,  the  utility  values  of
identical  itemsets  are  summed.  The  utility  value  of
itemset  is defined as: .

{A,E}
{⟨7, {E,1}⟩ , ⟨17 {E,1}⟩}

{⟨24, {E, 2}⟩}

In Table  4,  the  transaction  set  of  itemsets  is
.  If  two  or  more  transactions

contain  identical  itemsets  and  equal  numbers  of
itemsets,  e.g., E,  both transactions can be merged, and
the merged transaction set is .

α

z α

su (α,z) =∑
Tc∈g(α∪{z})(u(α,Tc)+u(z,Tc)+

∑
i∈Tc∩i≻z u(i,Tc)

Definition 10 (Subtree utility) Consider the itemset 
and let  be a subset of node  in the depth-first search,
the utility value of this subset is calculated as 

).
α = {C}

C {D,E} su(α,D) = u(C,T2)+u(C,T3)+
u(D,T2)+u(E,T2)+u(D,T3)+u(E,T3)

su(α,E) = u(C,T2)+u(E,T2)+u(C,T3)+u(E,T3)+
u(C,T4)+u(E,T4)+u(C,T5)+u(E,T5) =

In Table  4,  suppose  the  itemset ,  and  the
subset of  is , then 

= 6+3+10+6+5+1 =
31, 

 6 + 6 + 3 + 1 + 3 + 3 +
3 + 2 = 27.

α

z α

lu(α,z) lu(α,z) =
∑

Tc∈g(α∪{z})(u(α,Tc)+
re(α,Tc))

Definition  11 (Local  utility)  Consider  the  itemset 
and let  be a subset of node  in the depth-first search.
The  local  utility  value  of  this  subset  is  denoted  as

 and  given  as: 
.

α = {B}
{C,D,E} lu(α,C) = u(α,T3)+ re(α,T3)+u(α,T4)+

re(α,T4)+u(α,T5)+ re(α,T5) lu(α,
D) = u(α,T3)+ re(α,T3) = 4+6 = 10 lu(α,E) = u(α,
T3)+ re(α,T3)+u(α,T4)+ re(α,T4)+u(α,T5)+ re(α,T5)

In Table 4, suppose itemset , and the subset of B
is ,  then 

 = 4+9+8+6+4+5 = 36, 
,  and 

 =
4+1+8+3+4+2 = 22 .

⟨Key, D⟩ minutil

Algorithm  2 illustrates  the  underlying  process.  The
mining  process  is  in  the  Reduce  phase  of  the
distributed framework.  The data  output  by Map in  the
Reduce phase, i.e.,  and threshold  serve
as the input, and the identified HUIs are the output. The
algorithm performs a depth-first search with Key as the

 

Mapper 1

Mapper 2

Mapper 3

(A,2)
(D,5)
(E,1)

(C,6)
(D,10)
(E,6)

(A,12)
(B,4)
(C,3)
(D,5)
(E,1)

(A,2), (D,5), (E,1)
(C,6), (D,10), (E,6)
(A,12), (B,4), (C,3), (D,5), (E,1)

‹A,{2 D,5 E,1}›
‹D,{5 E,1}›
‹E,{1}›

‹C,{6 D,10 E,6}›
‹D,{10 E,6}›
‹E,{6}›

‹A,{12 B,4 C,3 D,5 E,1}›
‹B,{4 C,3 D,5 E,1}›
‹C,{3 D,5 E, 1}›
‹D,{5 E,1}›
‹E,{1}›

Reducer 1

Reducer 2

Reducer 3

Reducer 4

Reducer 5

‹A,{2 D,5 E,1}›
‹A,{12 B,4 C,3 D,5 E,1}›

‹B,{4 C,3 D,5 E,1}›

‹C,{6 D,10 E,6}›
‹C,{3 D,5 E, 1}›

‹D,{5 E,1}›
‹D,{10 E,6}›
‹D,{5 E,1}›
‹E,{1}›
‹E,{6}›
‹E,{1}› 

Fig. 2    Data decomposition process.
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root node, uses the subtree utility value to identify the
subnodes  of  Key  and  traverses  the  subnodes.  The
algorithm reduces the number of nodes at the next layer
using  the  subtree  and  local  utility  values.  Next,  the
search  algorithm performs  the  depth-first  search  using
a recursive approach[15].

4    Experimental Results

1.9.0_191

The proposed P-EFIM algorithm is compared with the
performance  of  the  PHUI-Growth  algorithm,  which  is
also  a  parallel  HUIM algorithm using  the  MapReduce
framework.  The  comparison  experiments  between  the
PHUI-Growth  and  P-EFIM  ran  in  a  Hadoop  cluster
environment  of  five  desktop  computers.  The
configuration of each computer is as follows: 2.8 GHz
Intel  i5-8400 processor,  1  TB  HDD,  8  GB  RAM,
ubuntu 16.04 OS, java , and Hadoop 2.7.7.

4.1    Experimental datasets

All  datasets  for  the  experiments  come  from  SPFM† .
The  eight  datasets  used  for  the  experiments  are
Chainstore,  Kosarak,  Pumsb,  Accidents,  kddcup99,
PowerC, RecordLink, and PAMP. Their characteristics
are  listed  in Table  5,  including  each  dataset’s  average
transaction length, item count, and transaction count.

Three real-life transaction datasets, which are Pumsb,
Accidents,  and  Kosarak  datasets,  are  with  synthetic
utility  values  in  SPMF.  For  Chainstore  dataset,  it  is
with  real  utilities  from a  real-life  customer  transaction
dataset of a major grocery store chain. The utility of the
remaining four  datasets  is  generated by the  generation
tool in SPMF.

4.2    Comparison  on  the  runtime  with  different
thresholds

The runtime value of an algorithm is a critical criterion
for  its  performance  assessment.  The  thresholds  at
which  both  algorithms  differ  in  performance  were
selected  for  the  different  datasets.  The  runtime  values
of  the  two  algorithms  at  different  thresholds  with
Reduce = 12 and 8,  respectively,  are shown in Figs.  4
and 5.  From Fig.  4,  the  P-EFIM  algorithm  is  at  least
one  order  of  magnitude  faster  than  the  PHUI-Growth
algorithm  on  the  Chainstore,  Kosarak,  and  Pumsb
datasets  and  at  least  five  times  faster  than  that  on  the
Accidents, RecordLink, and PAMP datasets. From Fig. 5,
the P-EFIM algorithm is one order of magnitude faster
than the PHUI-Growth algorithm on the Pumsb dataset
and  at  least  three  times  faster  than  that  on  the
Accidents,  Chainstore,  Kosarak,  RecordLink,  and
PAMP datasets. The higher runtime performance of the
P-EFIM  algorithm  is  mainly  attributed  to  its  efficient
parallel  structure  and  higher-performance  algorithms.
Furthermore,  the  iterative  parallel  structure  of  the
hierarchical  search  approach  was  replaced  by  the
efficient single-layer parallel structure of the depth-first
search approach. The approach can reduce the number
of  parallel  MapReduce  tasks  and  HDD  data  access
operations,  thereby  improving  the  performance  of  the
P-EFIM  algorithm.  The  pruning  strategies  and  the
transaction  merging  strategy  of  the  EFIM  algorithm
significantly  improved  the  performance  of  each  node
by  reducing  the  runtime,  thereby  improving  the
performance of the distributed parallel algorithms.

4.3    Performance  comparison  on  two  load-
balancing strategies

The  performance  of  P-EFIM  algorithm  (Reduce  =  8)
with  two  load-balancing  strategies  is  evaluated.  P-
EFIM with  the  S-style  distribution  strategy  is  denoted
as P-EFIM(S), and P-EFIM algorithm with hash-based
distribution  strategy  is  denoted  as  P-EFIM(hash).
Standard  deviations,  which  are  listed  in Table  6,  were

 

Table 5    Characteristic of the datasets.

Dataset Transaction
count

Item
count

Average transaction
length

Chainstore 1 112 949 46 086 7.23
Kosarak 990 002 41 270 8.10
Pumsb 49 046 2113 74.00

Accidents 340 183 468 533.80
kddcup99 1 000 000 135 16.00
PowerC 1 040 000 140 7.00

RecordLink 574 913 29 10.00
PAMP 1 000 000 141 23.93

 

 

Algorithm 2　Reduce algorithm
minutilInput: D: a transaction database, Key: an item, and : a

user-specified threshold;
Output: The set of the HUIs;
α = Key ≻1: , and sort transactions in D according to ;
KeyPrimary(α) = i|z ≻ i∧ su(z, i) ⩾minutil2: 

j = 0 j < KeyPrimary(α).length j++3: for ; ;  do
α α4:　　 .add(KeyPrimary( )[j])
Primary(α) = {i|z ≻ i∧ su(z, i) ⩾minutil}5:　　

Secondary(α) = {i|z ≻ i∧ lu(z, i) ⩾minutil}6:　　

α7:　　create D* according to  and D
i = 0 i < rootWidthnode.length i++8:　　for ; ;  do

α,D∗,Primary(α),Secondary(α)9:　　　Search( )
α10:　　　 .removelast();

11:　　end for
12: end for
 

  
†http://www.philippe-fournier-viger.com/spmf/
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Fig. 4    Runtime values of the two parallel algorithms with Reduce = 12.
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Fig. 5    Runtime values of the two parallel algorithms with Reduce = 8.
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calculated  to  compare  the  performance  of  two  load-
balancing  strategies.  From Table  6,  the  S-style
distribution strategy is more stable than the hash-based
distribution strategy in 20 out  of  24 cases.  On Pumsb,
Kosarak,  and  kddcup99  datasets,  P-EFIM(S)  has
achieved  an  overall  better  performance  than  P-
EFIM(hash).  On  Chainstore,  Accidents,  RecordLink,
and PAMP datasets, the S-style distribution strategy is
slightly worse than the hash-based distribution strategy
since the computing loads of the items were not strictly
in  descending  order.  The  load-balancing  performance
of the S-style distribution strategy is higher because the
computing  loads  of  the  nodes  are  roughly  in
descending order and can be effectively balanced using
the S-style distribution strategy.

4.4    Comparison  on  the  runtime  between  EFIM
and P-EFIM

We  also  performed  comparison  experiments  on  the
runtime  between  EFIM  and  P-EFIM  to  show  the
effectiveness of the proposed parallel strategy. Figure 6

shows the runtime of EFIM and P-EFIM (Reduce = 12)
on  Chainstore  dataset.  The  thresholds  used  in  the
experiment  are  very  small,  which  brings  difficulty  to
mine the HUIs for EFIM. From Fig. 6, it is clear that P-
EFIM  runs  more  quickly  than  EFIM.  On  the  other
datasets, since the thresholds are large, EFIM can mine
all the HUIs quickly, and the parallel performance of P-
EFIM  on  Hadoop  can  not  show.  The  comparison
results  on  runtime  on  the  other  datasets  are  not  given
here.

5    Conclusion

This  paper  proposes  a  distributed  parallel  EFIM  (P-
EFIM)  algorithm  based  on  Hadoop.  The  P-EFIM
algorithm  uses  TWU  values  to  prune  and  order
datasets,  thereby  improving  their  efficiency.  The
proposed  S-style  distribution  strategy  can  effectively
balance  the  computing  load  among  the  nodes.
Additionally,  the  previous  mining  algorithm  using  the
hierarchical  search  was  replaced  with  the  EFIM
algorithm  based  on  the  depth-first  search  to  eliminate
the  iteration  process,  thereby  significantly  improving
the  efficiency  of  the  P-EFIM  algorithm.  Experiments
with  several  datasets  showed  that  the  runtime
performance  of  the  P-EFIM  algorithm  was  much
higher  than  that  of  the  distributed  parallel  PHUI-
Growth algorithm using the Hadoop framework.
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