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PREFACE

The author of this thesis has been employed as a Ph.D. research fellow in Neuroscience
at the Department of Health and Functioning, Section for Radiography at the Western
Norway University of Applied Sciences, Bergen, Norway.

The research presented in this thesis has been accomplished in cooperation with
the Norwegian Centre for Mental Disorders Research (NORMENT, University of Oslo)
and Mohn Medical Imaging and Visualization Centre Bergen.

The candidate was enrolled in the PhD programme in health, function and partic-
ipation in Health and Social Sciences, with the specialisation of this thesis, being in
Neuroscience.

This thesis is organized in two parts. Part I provides an introduction to brain health
and disease biomarkers (as part of the neuroimaging field), embedding the executed
studies within this PhD project in the field. Part II consists of a collection of published
and peer-reviewed research articles and submitted papers which are part of this PhD
project.
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ABSTRACT

Introduction: Examining brain changes through a lifespan perspective allows for mul-
tiple ways of answering fundamental questions about the brain’s development and
to identify biomarkers of ageing and disease. One opportunity is to establish a con-
nection between the brain’s architecture and chronological age using brain magnetic
resonance imaging (MRI) features. The resulting metric, often called brain age, can be
used as a proxy of a person’s general health status when comparing the prediction
to the chronological age, and can hence be used as a general identifier of disease or
symptom load. An adjacent goal was to establish a better understanding of the brain’s
development and ageing by examining MRI-features age dependencies, such as white
and grey matter. Here, we provide an overview of five studies conducted during this
PhD project, examining brain ageing as well as ageing and disease biomarkers, and
contextualise these in the embedding of the wider research field.

Methods: We examined brain-wide and hemispheric data from the voxel-to-global-
level in large cohorts and precision imaging data of healthy controls with a focus on
age-associations. We used several data sets, yet mainly cross-sectional MRI data from
the UK Biobank (N ⇡ ��,���). Additionally, we used longitudinal UK Biobank data
incorporating two time-points (N = �,���), local cross-sectional data (Tematisk Område
Psykoser (TOP) and Neurogenetics of cognition in aging (NCNG), Ntotal = �,���),
and repeatedly sampled data (Bergen Breakfast Scanning Club (BBSC) and Frequently
Travelling Human Phantom (FTHP)) Ntotal = � (M = ��� scans). For one paper (Study
C) we used minimally processed T1-weighted 3D volumes, which were aligned in MNI
space and empty-border cropped. All other studies used processed and regionally
or globally atlas-averaged white matter (WM) and grey matter (GM) metrics (John
Hopkins University WM atlas, and Desikan-Killiany atlas for GM and WM thickness,
area, and volume, respectively). Moreover, after estimating WM microstructure
metrics based on different biophysical models, we used tract-based spatial statistics to
obtain diffusion metrics of conventional and advanced diffusion approaches within the
fractional anisotropy (WM) skeleton. In brief, these approaches contain radial, axial and
mean diffusivity metrics, fractional anisotropy and water fractions, kurtosis metrics,
and additional information for these metrics for intra- and extra-axonal space. For brain
age estimations, we applied both a tree-based algorithm (extreme gradient boosting)
to processed and region-averaged multimodal magnetic resonance imaging metrics
(�D), and a convolutional neural network (CNN) to minimally processed structural
MRI data (�D).

Statistical analyses included associating the estimated brain ages with each other and
chronological age. All regional and global WM and GM metrics and their asymmetries
were age-associated for both cross-sectional and longitudinal data. We also associated
the resulting WM brain age with various bio-psycho-social phenotypes, and assessed
cross-sectional and longitudinal measures WM measures with polygenic risk scores.

Finally, we tested an existing brain age model’s applicability in practical, clinical
context (a pre-trained CNN using T1-weighted MRI data) by assessing the models’



prediction error in repeatedly sampled data of few individuals and in a cross-sectional
validation sample, as well as associations of brain age predictions with quality control
metrics and field strength.

Results: We benchmarked age-associations of various GM and WM metrics in midlife
to older ages and examined brain age estimated from varying MRI data in different
samples. Global brain ageing was characterised by decreases in GM volume, surface
area, and thickness, and WM fractional anisotropy, the intra-axonal water fraction, and
kurtosis metrics decreases, an axial, radial, and mean diffusivity metrics as well as
free water and extra-axonal water fractions increases. These trends were similar for
regional age-associations and were presented as age charts of normative white and
grey matter development across mid- and late life.

WM and GM regions presented some variability for age estimations, with mul-
timodal models presenting most accurate predictions. Yet, brain ages estimated on
metrics from different biophysical models were similarly associated to different bio-
psycho-social factors. Moreover, models including diffusion MRI derived WM metrics
provided slightly more accurate brain age estimates than T1-weighted MRI derived
metrics.

Across studies, the fornix repeatedly appeared as one of the most age-sensitive
region across WM metrics in the UK Biobank. However also forceps minor was highly
age-sensitive in addition to the middle cerebral peduncle, which was strongest related
to the polygenic risk of Alzheimer’s Disease. The annual rate of change in WM was
a magnitude stronger associated to the polygenic risk of Alzheimer’s Disease and
psychiatric disorders than cross-sectional measures. However, effect sizes were small
for both global and regional brain-polygenic risk associations.

We furthermore identified a tendency of higher regional GM and WM asymmetry at
higher ages. In that sense, for GM, amygdala, hippocampus, pallidum, ventricle volume,
thalamus and accumbens were strongest associated with age. For WM, the cingulate
tract, unicate fasciculus, superior longitudinal fasciculus, and cerebral peduncle
asymmetries were strongest associated with age. New measures of hemisphere-
specific age-predictions were suggested and demonstrated promising results to further
investigate asymmetric ageing of the brain or diseases affecting the brain asymmetrically.
Predictions were highly similar across hemispheres, modalities and handedness-
preference. Yet, important sex-differences applied to the sensitivity of brain age to the
MRI modality and hemisphere.

When testing a pre-trained brain age model in repeatedly/densely sampled data,
we found low correlations between predicted and chronological age in the repeatedly
sampled data. In an attempt of explaining such variability by scan quality, we identi-
fied inconsistent associations of brain age with quality control parameters. We also
found a stronger associations of brain and chronological ages at a higher field strength
for one repeatedly sampled individual (where data was available at different field
strengths), which was validated in cross-sectional samples.

Conclusion: Central and deep brain regions including the corpus callosum, the brain
stem, the limbic system, and the ventricles were regions which were repeatedly strongly
associated with age, ageing, and the polygenic risk of ageing related pathology. Among



these regions, fornix stood out as most prominent region. Fornix characteristics have
been identified previously as biomarkers of Alzheimer’s Disease (AD) progression.
Subsequently, fornix has already been used as a target region for deep brain stimulation
for AD treatment. We underlined these findings by showing the region’s strong
age-association, which might be useful to identify earlier stages of cognitive decline
and neurodegenerative disease. Additionally, longitudinal changes unveiled a unique
pattern of WM changes not only affecting the limbic system (including fornix) but
also presenting an anterior-posterior gradient of WM change of WM loss and de-
differentiation in superior frontal regions compared to differentiating and potentially
plasticity in occipital, brain stem and cerebellar regions. We furthermore provided a
spatially distributed pattern of associations between polygenic risk scores and WM,
particularly outlining the cerebral peduncle. These genetically informed risk scores
associations with brain WM were stronger for the annual change in WM than time-
point specific/cross-sectional scores, emphasising the importance of using longitudinal
data. The newly tested hemispheric brain age might hold some promise for precision
medicine by assessing differences between left and right brain ages. Concerning the
test of the existing model, part of the prediction error seems to be driven by differences
in field strength. Yet, additional confounds need to be identified and addressed to
move brain age towards higher clinical utility.





SAMMENDRAG

Introduksjon: Å undersøke hjerneforandringer gjennom et livstidsperspektiv gir mu-
lighet for flere måter å svare på grunnleggende spørsmål om hjernens utvikling og
blant annet å identifisere biomarkører for aldring og sykdom. Dette gir mulighet til
å forstå sammenhenger mellom hjernens arkitektur og kronologisk alder ved hjelp
av hjerneavbildninger fra magnetisk resonanstomografi (MRT). Det resulterende esti-
matet, ofte kalt hjernealder, kan brukes som et uttrykk for den generelle helsetilstanden
til en person når man sammenligner prediksjonen med personens kronologisk alder.
Hjernealder kan på denne måten brukes som en generell indikator for sykdom eller
symptombelastning. Et tilstøtende mål var å etablere en bedre forståelse av hjernens
utvikling og aldring ved å undersøke aldersavhengigheter i hjernen, som hvit og grå
substans. I denne avhandlingen inkluderes fem studier som undersøker hjernealdring
og biomarkører for aldring og sykdom. Videre kontekstualiseres disse studiene i det
bredere forskningsfeltet.

Metode: Vi undersøkte hjernedata fra voxel til globalt nivå i store kohorter og
presisjonsavbildningsdata fra friske kontrollgrupper med fokus på sammenheng med
alder. Vi brukte flere datasett, men hovedsakelig tverrsnitts-MR-data fra den britiske
kohorten UK Biobank (N ⇡ �� ���). I tillegg brukte vi longitudinelle UK Biobank data
fra to tidspunkter (N = �.���), lokale tverrsnittsdata (TOP og NCNG, Ntotal = �.���), og
presisjonsdata med gjentatte opptak (BBSC og FTHP) Ntotal = � (M = ��� skanninger).
For en studie (studie C) brukte vi minimalt behandlede T1-vektede �D-volumer, justert
til MNI-rom og renset av tom rom. Alle andre studier brukte prosesserte og regionale
eller globale atlas-gjennomsnitter fra hvit substans (WM) og grå substans (GM; John
Hopkins University WM atlas, og Desikan-Killiany atlas for GM og WM tykkelse,
areal og volum). For å estimere WM-mikrostrukturmålinger brukte vi forskjellige
konvensjonelle og avanserte biofysiske diffusjonsmodeller. Traktbasert spatiell statistikk
(TBSS) ble deretter brukt for å begrense beregningene til det fraksjonell anisotropi
(WM) skjelettet. Kort forklart inneholder de biofysiske tilnærmingene radiell, aksial
og gjennomsnittlig diffusjons, fraksjonell anisotropi og vannfraksjoner, kurtosis og
tilleggsinformasjon for disse metrikkene for intra- og ekstra-aksonal rom for multishell-
tilnærmingene. For å estimere hjernealder brukte vi både en trebasert algoritme
(extreme gradient boosting) på prosesserte og regiongjennomsnittede multimodal
magnetisk resonansavbildning (MRI) beregninger (�D), og et konvolusjonelt nevralt
nettverk (CNN) på minimalt prosesserte strukturelle MR-data (�D).

Statistiske analyser inkluderte assosiering av estimert hjernealder med hverandre
(kryss diffusjonsmodeller) og kronologisk alder. Alle regionale og globale WM- og
GM-metrikker og deres asymmetrier ble assosiert med alder for både tverrsnitts- og
longitudinelle data. Vi assosierte også de resulterende hvite substansens-baserte
hjernealderne med forskjellige bio-psykososiale fenotyper, og vurderte tverrsnitts- og
longitudinelle mål WM-mål med polygene risikoscore.

Til slutt testet vi en eksisterende hjernealdermodells anvendelighet i praktisk,



klinisk kontekst (en forhåndstrent CNN som bruker T1-vektet MR-data) ved å vur-
dere modellenes prediksjonsfeil i gjentatte samplede data fra få individer og i en
kryssseksjonsvalideringsprøve, samt assosiasjoner av hjernealdersprediksjoner med
kvalitetskontrollberegninger og feltstyrke.

Resultater: Vi evaluerte aldersassosiasjoner av forskjellige GM og WM målinger fra
midten av livet til høyere alder, og undersøkte hjernealder estimert fra multimodale
MR-data av forskjellige stikkprøver. Global hjernealdring var kjennetegnet av reduk-
sjoner i GM-volum, overflateareal og tykkelse, og WM-fraksjonell anisotropi, den
intra-aksonale vannfraksjonen og kurtosis-metrikkene. Samtidig øker det aksial, radial
og gjennomsnittlig diffusivitetsmålinger, samt fritt vann og ekstra -aksonale vann-
fraksjoner. Disse trendene var like for regionale aldersforandringer og ble presentert
som aldersdiagrammer for normativ utvikling av hvit og grå substans på tvers av
årene/alder.

WM- og GM-regioner presenterte en viss variasjon for aldersestimater, men multi-
modale modeller presterer mest nøyaktige. Likevel var hjernealder, som ble estimert på
beregninger fra forskjellige biofysiske modeller, assosiert på samme måte med forskjel-
lige bio-psykososiale faktorer. Hjernealdersmodeller som var basert på WM var litt
mer nøyaktige enn modeller som var basert på GM/T1-vektet MR.

På tvers av studier dukket fornix gjentatte ganger opp som den mest alderssensitive
regionen på tvers av WM-målinger i UK biobanken. Men også forceps minor var svært
alderssensitiv i tillegg til den midtre lillehjernens peduncle, som var sterkest relatert til
den polygene risikoen for Alzheimers sykdom. Dessuten var den årlige endringsraten
i WM en størrelsesorden sterkere assosiert med den polygene risikoen for Alzheimers
sykdom og psykiatriske lidelser enn tverrsnittsmål. Effektstørrelsene var imidlertid
små for både globale og regionale hjerne-polygene risikoassosiasjoner.

Vi identifiserte videre en tendens til høyere regional GM og WM asymmetri ved
høyere aldre. Sånn sett, for GM, var amygdala, hippocampus, pallidum, ventrikkel
volumen, thalamus og accumbens sterkest assosiert med alder. For WM var cingulate
tract, unicate fasciculus, og superior longitudinal fasciculus asymmetri sterkest assosiert
med alder. En ny måte å beregne hjernealder på (én prediksjon per hemisfere) ble
introdusert. Målet viste lovende resultater for å undersøke asymmetrisk aldring av
hjernen eller sykdommer som påvirker hjernen asymmetri. Forutsigelser var svært
like på tvers av hemisferer, modaliteter og håndpreferanse, mens det finnes viktige
kjønnsforskjeller i sammenhengen av hjernealder med hemisfere og modalitet.

Når vi testet en forhåndstrent hjernealdermodell i gjentatte/tett samplede data, fant
vi lave korrelasjoner mellom predikert og kronologisk alder i de gjentatte samplede
dataene. I et forsøk på å forklare slik variasjon ved skannekvalitet, identifiserte vi
inkonklusive assosiasjoner til hjernealder med en rekke kvalitetskontrollparametere.
Vi fant også en sterkere assosiasjon av hjerne og kronologiske aldre ved en høyere
feltstyrke for ett gjentatte samplet individ (hvor data var tilgjengelig ved forskjellige
feltstyrker) som ble validert i tverrsnittsprøver.

Konklusjon: Sterke assosiasjoner med alder, aldring og den polygene risikoen for
aldringsrelatert patologi ble observert i corpus callosum, lillehjernen, det limbiske
systemet og ventriklene. Blant disse regionene skilte fornix seg ut som den mest fremtre-



dende regionen. Fornix-karakteristikker har tidligere blitt identifisert som biomarkører
for progresjon av Alzheimers sykdom (AD). Basert på disse funnene har fornix allerede
blitt brukt som en målregion for dyp hjernestimulering for AD-behandling. Vi un-
derstreket disse funnene ved å vise regionens sterke aldersassosiasjon, som kan være
nyttig for å identifisere tidlige stadier av kognitiv svekkelse og nevrodegenerativ syk-
dom. I tillegg viste longitudinelle endringer et unikt mønster av WM-endringer som
ikke bare påvirker det limbiske systemet (inkludert fornix), men presenterer også en an-
teriorposterior gradient av WM-endring som inkluderer WM-tap og de-differensiering
i superiore frontale regioner sammenlignet med differensiering og potensielt plastisitet
i lillehjerne, hjernestamme og occipitale regioner. Vi fant videre et spatielt fordelt
mønster av assosiasjoner mellom polygene risikoskårer og WM. Spesielt lillehjernens
peduncle var assosiert med den poligenetiske risikoen for AD. Disse genetisk informerte
risikoskår-assosiasjonene med hjerne-WM var sterkere for den årlige endringen i WM
enn tidspunktspesifikke/tverrsnittsskårer. Funnet understreket videre viktigheten
av å bruke longitudinelle data. Den nylig testede hemisfæriske hjernealderen kan
være et bidrag til presisjonsmedisin ved å vurdere forskjeller mellom venstre og høyre
hjernealder. Testen av den eksisterende hjernealdersmodellen, indikerer at en del
av prediksjonsfeilen kunne være drevet av forskjeller i feltstyrke. Likevel må det
identifiseres flere confounders og inkorporeres i modellbygging og -bruk for å øke
hjernealderens klinisk nytte.
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The brain is the organ of destiny.
It holds within its humming mechanism secrets
that will determine the future of the human race.

—Wilder Penfield [���]
CHAPTER 1

INTRODUCTION

The search for brain biomarkers is a promising field of research with the goal of
developing feasible diagnostic tools and treatments. Hence, these efforts aim to identify
specific indicators within the brain that can help identify individuals’ health status,
as well as diagnose, track, and treat various neurological and psychiatric conditions
[���, ���, ���, ���]. Definitions for biomarkers vary. Yet, biomarkers can generally be
understood in the context of the field of application such as patient care, therapeutics,
and (clinical) research [��]. Brain biomarkers are measurable characteristics of the brain
serving as reliable indicators of both biological and mental processes, treatment or
intervention responses, and/or behavioural indices [���, ���]. These can be retrieved
from different modalities such as neuroimaging, genetics, or molecular analyses, such
as proteomics and metabolomics, or a combination of modalities.

Neuroimaging techniques, such as magnetic resonance imaging (MRI), provide
detailed images of the brain’s structure and function. The identified spatially specific
anatomic and metabolic characteristics can be linked back to health and disorder
expression to establish brain biomarkers. Several brain imaging derived biomarkers
are commonly used in clinical contexts. For example, differential patterns of atrophy
help tracking and confirming disease progression from mild cognitive impairment
to Alzheimer’s disease [��, ���, ���] or Parkinson’s disease [��, ���], and techniques
such as �-amyloid imaging combine MRI and positron emission tomography (PET)
into diagnostic tools for Alzheimer’s disease [���]. Other examples are the possibility
to identify disease progression in stroke [���] and multiple sclerosis [��], with future
applications potentially allowing to predict recovery outcomes (e.g., in stroke [���, ���]).

While significant progress has been made in the field, the search for reliable and
clinically applicable brain biomarkers is an ongoing endeavour. The development
of robust biomarkers has the potential to revolutionise the prognosis, diagnosis,
treatment, and monitoring of neurological and psychiatric disorders, with the goal of
more personalised and effective approaches. This entails the goal of improving patient
functioning and societal participation by improving health, while maintaining a critical
perspective of the limitations of biomarkers. In the following, we will outline how MRI
biomarkers of health and disease can be understood from a lifespan perspective, which
forms the baseline for this thesis. Thereafter, we provide an overview of brain ageing.
Then, a summary of the project as a whole will be provided, followed by the project
objectives. Finally, a short outline of the thesis will be presented.
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�.� Health and disease from a lifespan perspective

The brain matures and ages together with all other bodily systems as individuals
grow older [��, ���, ���]. The changes which present during this process are complex,
reaching from the molecular level to behavioural expressions [���], and are yet not
fully understood. Focusing on the brain, there are various trends that have been
identified comprising changes in brain structure and function, such as growing and
differentiating grey and white matter, and changing connectivity during childhood
early adulthood development [��, ��, ���, ���], which are then changing during the
process of ageing [��, ��, ���]. While the structural and functional brain differentiation
during childhood and adolescence are reflective of behavioural and cognitive changes
[��, ���], also ageing-related tissue loss and metabolic changes have been associated
with the observed decline in different cognitive abilities at a higher age [��, ��, ��, ��,
��, ���, ���, ���, ���, ���, ���, ���, ���].

While there are various similarities in brain tissue changes associated with ageing
and/or disease [��, ���], there are also considerable differences, for example, in ageing-
related white and grey matter [��, ���] and metabolic [��, ��, ���] changes. Hence,
studies often differentiate brain maturation and ageing in clinical groups from control
groups, where the control groups are usually ought to represent healthy development
and ageing. Yet, the differentiation between healthy and diseased ageing is difficult
due to its multivariate nature. Attempts to define healthy maturation and ageing, for
example, focus on the general level of well-functioning and well-being, as well as the
ability to adapt to environmental bio-psycho-social challenges throughout the ageing
process [���, ���]. This conceptualisation of healthy ageing, being described by the
absence of (major) disease in addition to behavioural aspects, serves to classify people
with differing health status.

Traditionally, neuroscientific investigations on diseases simply assess contrasts in
brain metrics between reference groups (often called healthy controls) and various
diagnostic groups [���]. Extending this conceptualisation by linking pathology to
brain development allows not only to examine neurodegenerative but also various
psychiatric disorders in relationship to brain development [���, ���, ���]. In other
words, developmental and ageing changes in the brain can reflect disease development
and progression [���, ���, ���]. Yet, common group-based statistics comparing clinical
to control groups cannot necessarily account for large biological variability within
clinical (and non-clinical) groups and limitations to diagnostic labels [���]. This calls
for new approaches of analysing data, for example within the normative modelling
framework [���, ���, ���], using connectomics and predictive modelling [���, ���], or
applications such as brain age prediction [���]. Normative models can be compared
to growth charts known from pediatric practice where height is plotted as a function
of age. Deviating from the normative growth by age can be diagnostic of different
underlying conditions. This principal also applies to brain metrics which can be
normatively modelled [���, ���, ���]. Brain age is a different way of conceptualising
the idea of normative trends. Instead of using single metrics as a function of age, a
marker of biological age is being estimated from various brain features [���]. In other
words, brain age refers to the prediction of chronological age from a set of MRI features.
These predictions can then be compared to the chronological age – large deviations
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can inform about poorer general health [���]. Overall, normative models comprise an
understanding of health and disease from a lifespan perspective (see Figure �.�).

Fig. �.�: Re-printed from Cole et al. [��]

Establishing new models based on these approaches (while obtaining sufficient
statistical power) and the models’ validation require the usage of large data-sets
[��, ���, ���, ���], which is made possible by recently established imaging databases
and bio-banks [��, ���, ���] (for an overview see [���]). Leveraging such big data can
now give unique information about the development of the human brain throughout
the lifespan and how such developments related to health and disease. This can
ultimately inform the definition of novel biomarkers.

Hence, understanding the intricacies of brain ageing is crucial to inform clinical
practice with the ultimate goal of improving well-being and quality of life. Establishing
the required knowledge demands observations on various levels. First, a baseline for
healthy ageing needs to be established. This encompasses associations of brain tissue
measures or representations of such with phenotypes. Second, suggestive biomarkers
identified during this process need to be validated, for example across methods and
samples. Third, the biomarkers can then be tested in clinical populations. Fourth,
medications can be developed, tailored to the biomarkers. This thesis focused on the
first two steps of attempting to establish and validate brain biomarkers.

�.� Grey and white matter ageing

In order to better understand the process of biomarker identification as well as its
limitations, it is important to outline expectable trends in brain tissue maturation and
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underlying biological processes. This is particularly relevant when considering the
main assumption in this project of generalisable patterns of normative ageing. Hence,
this section provides a broad overview of the biological processes connected to grey
and white matter ageing.

Ageing refers here to large set of changes in the adult brain reaching from the
molecular over the micro- to the macrostructural level1. Ageing-dependent microstruc-
tural changes involve DNA damages, epigenetic and genomic instability (altered DNA
methylation, acetylation, and increased mutation liability), telomere loss due to a
lack of telomerase, cellular senescence, altered intercellular communication, loss of
proteostasis, stem cell exhaustion, deregulated nutrient sensing, and mitochondrial dys-
function [���]. Microlevel changes include the accumulation of neurofibrillary tangles
and amyloid plaques [��, ���, ���], which interrupt the cellular metabolism leading
to local hypoactivation and atrophy [���]. Another micro- to mesostructural ageing
feature is the shrinkage of blood vessel, which is associated with white matter lesions
which can be observed at a higher rate at older ages [���]. Finally, neurotransmitter
imbalances (see for review [���]) impact both brain plasticity [��] and electrical oscilla-
tions, i.e. neuronal excitability and synchronisation [���]. On the macro scale, both
grey and white matter decrease in volume, whereas the proportion of cerebrospinal
fluid increases [��], and WM microstructure disintegrates (see Studies A, D, and E, or
[��]). Moreover, older adults show lower within but higher between network connec-
tivity (i.e., co-varying functional MRI or blood oxygen level derived signal changes)
[��, ���, ���]. Most importantly, these changes can be grossly summarised as cellular
and tissue degeneration and death, in addition to vascular changes. Such changes can
be captured by neuroimaging techniques such as magnetic resonance imaging (MRI),
which was used in this project. Besides ageing-related grey and white matter changes,
the following sections will also detail some of the pathology which can occur during
tissue maturation and its specificity to these different tissue classes.

�.�.� Grey matter ageing

The brain’s grey matter contains the neuronal cell bodies. At a progressing age, neurons
cease, leading to a thinner grey matter (GM) layer, as well as lower GM volume and
surface area [���]. However, these changes are highly spatially distributed [���], with
certain brain regions’ GM being more affected than the GM in other regions.

At a higher age, the ability of neurons to re-generate is impaired, for example,
examining the molecular level, due to faulty re-starts of the cell-cycle or oxidative stress,
which triggers programmed cell death [���]. Programmed cell death is important for
homeostasis by removing cells which have been damaged, are infected, or not loner in
use [���]. There are moreover multiple possible abnormalities in the signalling cascade
of programmed cell death which are apparent in neurodegenerative disorders such as
apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-associated cell death, and
un-programmed necrosis [���]. The result is the loss of neurons and their function
on a larger scale that what would be programmed in the absence of the particular

1Microstructure refers here to all processes and structures from the cellular level to small, potentially
even visually observable expressions such as lesions or finer, small region-specific tract characteristics.
Macrostructure refers here to larger structures, such as regional or whole-brain morphology.
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disorder. Such age-related changes in the GM can be observed in-vivo in the human
using MRI. However, not all of the GM shrinkage can be explained by neuronal death.
There are multiple other mechanisms involved in observations such as a thinner layer
of GM in older compared to younger adults, for example, on the cellular level: cell
shrinkage and dendrite degeneration [��]. Furthermore, glial (non-neuronal) cells
contribute to multiple crucial functions: the maintenance of homeostasis, the mitigation
of neuroinflammation, preserving the brain’s immunofunction and the blood-brain
barrier [��]. Dysfunction and -regulation of these cells can have systematic neuronal
death as a consequence, for example through toxin-releases by astrocytes [��].

Recent technological and normative advances in the in-vivo neuroimaging commu-
nity allowed to establish large data sets [���, ���, ���, ���, ���] of thousands of brain
scans [���]. Such data sets are now allowing for normative modelling of healthy brain
ageing, or in the general population by adding disease samples proportional to the
expected population stratification, or as a reference sample in comparison to specific
disease samples [���, ���, ���, ���].

To date, several studies have evidenced accelerated GM atrophy at higher ages
[��, ���]. Moreover, multiple studies presented that such accelerated GM ageing is
associated with different psychiatric and neurodegenerative disorders [��, ��, ���, ���],
such as mild cognitive impairment and Alzheimer’s disease [��, ���, ���], major
depression, bipolar disorder, and schizophrenia [��, ��, ��, ���, ���, ���], borderline
personality disorder [���], and sub-types and expressions of disorders such as early
schizophrenia and Parkinson’s disease psychosis [���]. Other conditions which cause
GM death are multiple sclerosis, traumatic brain injury/trauma, and stroke, which
potentially contribute to accelerated ageing processes [��, ��, ��, ���, ���, ���]. A
commonly used approach to compare the age-associations of brain metrics between
different groups utilises brain age predicted from GM as a normative proxy to estimate
morphological deviations from reference samples, generally showing higher deviations
of brain ages from chronological ages in various psychiatric and neurodegenerative
disorders [���, ���, ���].

�.�.� White matter ageing

The described process of neuronal death also influences the neurons’ axons and hence,
the brain’s white matter (WM), which is the axonal network extending between neurons.
In other words, although WM and GM follow different ageing trajectories [��], these
trajectories are intimately connected. For example, WM decline might be detected
earlier than GM decline and provide hence useful ageing marker [���].

Just as GM, WM ageing is characterised by atrophy and multiple microstructural and
vascular changes, fibre tract disruption, demyelination, and an increased occurrence of
inflammation [��] (see Figure �.� for a schematic overview of the most common WM
ageing mechanisms leading to healthy-ageing associated tissue changes). At a higher
age, vascular changes can occur which affect small vessels which can develop to small
vessel disease (SVD) [��]. The different types of SVD are observable using MRI as WM
hyperintensities, widened perivascular spaces, as well as infarcts and bleedings of
different ages [��]. Importantly, SVD contributes to a large proportion of dementias and
strokes [��], due to the multiple manifestations of the diseases, including endothelial
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Fig. �.�: Re-printed from Blinkouskaya et al. [��]

dysfunction (including the dysfunction of the blood–brain barrier), vasodilation
impairment, vessel stiffening, impaired blood flow and perivascular fluid drainage
(and resulting ischaemia), inflammation, myelin damage and loss, and secondary
neurodegeneration [���]. One of the uniting features of WM ageing are cardiometabolic
risk factors, which are both associated with WM integrity [��, ���] as well as myelination
[���]. For an optimal neuron-to-neuron signalling through the axon, the axon is
wrapped in a sheath of myelin, provided by one type of glial cells: oligodendrocytes
[���, ���]. The oligodendric myelination process is furthermore regulated by another
glial cell, microglia [���, ���]. Factors such as chronic hypoperfusion (reduced blood
flow), increased levels of microglial toxic waste products (e.g., due to microglial
dysfunction), iron toxicity as well as toxicity after prolonged excitation periods can
impair oligodendrocytes and hence their ability to provide an optimal level of myelin
[��, ���]. The loss of myelin has been related to systemic neurodegenerative markers
such as amyloid-� depositions [��], and can be a risk factor for axonal degeneration
[���]. The mentioned cerebrovascular changes, such as stiff and more narrow vessels
can lead to blockages, resulting in infarcts and the development of lacunes (�-��
mm cerebrospinal fluid - filled cavities) [��, ���], leukoaraiosis (abnormal change in
appearance of white matter near the lateral ventricles) [���], or tearing of the vessel,
leading to microbleeds [��, ���].

Compared to grey matter investigations, less work has focused on mapping WM
ageing, potentially due to the multiple aspects and details which can be examined
in WM spanning from the micro to macro structural level and the many different
available methods and possibilities of examining WM2. Past the age of �� years, WM
volume decline is accelerated, as presented by a large study [���] combining cross-
sectional and longitudinal data. In addition, as detailed in Study E, additional ageing
processes expressed by WM microstructure changes, which are also accelerate at
higher ages. Unsurprisingly, just as GM, accelerated WM ageing (at younger ages)

2One could also argue that the lack of a unified theory of white matter ageing [���] might contribute to a
compartmentalised research landscape. Moreover, the rapid technological and following methodological
developments (e.g., [��, ���, ���, ���]) exacerbate establishing standards for the investigation of white
matter ageing.
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has been associated with various psychiatric disorders, such as schizophrenia, bipolar
disorder, autism spectrum disorder, and major depressive disorder [��, ��, ���], and
neurodegenerative disorders, such as Alzheimer’s or Parkinson’s diseases [��, ���].

�.�.� Studying brain ageing: A few words of caution
Multiple factors influence both healthy and pathological brain ageing. Hence, lifespan
trajectories as well as ageing processes are highly variable, even in the absence of
pathology. Large variability requires large data sets in order to establish meaningful
models, and potentially new approaches towards understanding the data, for example,
by leveraging longitudinal data [���] or by moving back to designs resembling case-
studies which follow a single or few individuals over time [���, ���]. Furthermore,
biological processes do not have to present themselves as linearly related to age, and
do not have to show linear ageing trajectories. This speaks to the complexity of the
biological system of the brain, and the hard problem of studying it. Brain ageing
can be studied at different levels, while careful consideration has to be maintained
when assessing the strengths and weaknesses of the chosen approach as well as the
inferences drawn from the analyses. In this sense, a normative understanding of brain
tissue and its development will have its limitations while also being a useful tool to
establish fundamental knowledge about what can be expectable in the majority of cases.
Another consideration are the data used to model ageing processes. While most studies
use cross-sectional data, longitudinal studies might be more suitable to examine ageing
processes as they allow to examine the actual changes on individual and group level.

�.� Project summary

This work has resulted in five first-author publications of the PhD candidate, several
conference presentations and popular science communication efforts.

Recent developments in neuroimaging have led to establishing large-scale data
bases (e.g., [���]). While data collection effort are ongoing, the current wealth of
data offers new, unprecedented possibilities of analysing brain data and to identify
biomarkers [��]. As described, a portion of these efforts focuses on brain age estimates
[��, ��, ��], yet mostly derived from grey matter. Studies present findings for grey
matter more frequently than for white matter for both brain age and more generally
speaking. This might be due to the fact that there are several, less streamlined diffusion
approaches which can be used to describe white matter microstructure [���]. These
diffusion approaches describe radial, axial and mean diffusivity, fractional anisotropy
and water fractions, kurtosis metrics, and additional information for these metrics for
intra- and extra-axonal space for multi-shell approaches. Considering this as the outset
position, we started this project with an investigation into age-associations of white
matter microstructure metrics. The goal was to benchmark age associations across
diffusion approaches for the first time in large-scale data and comparing brain age
estimations between the diffusion approaches.

This lead directly to the second article, which set the white matter derived brain
age estimates into the practical context of bio-psycho-social variables. While there
are several articles showing associations between bio-psycho-social variables and

Chapter � �



Introduction

brain age, the majority of these articles used brain age based on T�-weighted MRI
features [��, ��, ��, ���]. To extend previous studies beyond the examination bi-variate
relationships, this second article used groups of variables within the domains of
socio-demographics, cognitive scores, life satisfaction, and health and lifestyle to
establish models explaining brain age. Additionally, not only a single brain age score
was attempted to be explained by the bio-psycho-social variables, but various brain
age scores (eight in total) derived from different white matter microstructure features.

While the first two articles presented brain age prediction feasibility in white matter,
the practical utility of brain age requires further testing. Hence, the third article set out
to test the utility and limitations of T1-weighted brain age in a practical context. This
effort was aided by two unique longitudinal, or deep imaging data sets, [���, ���, ���]
following a total of four individuals over time, with N > 25 scans per individual.
Instead of using few data points of many individuals, we used many data points of
few individuals, for a more accurate understanding of intra-individual variability,
described as highly sampled, densely sampled, precision imaging or deep imaging
[���, ���, ���]. One of the currently best performing convolutional neural network for
brain age predictions from T1-weighted images [���] was used to estimate brain ages.
Beyond practically showing variability in such predictions across participants, we also
aimed to identify acquisition and scan quality parameters which could explain such
variability.

The fourth article, was motivated by an alternative approach of brain age estimations
extending the commonly used single score of global brain age to several regional or
local brain ages [���, ���]. However, instead of using a data-driven approach, we built
upon the large field of brain asymmetry and laterality which shows various differences
between the brain’s hemispheres [�, ���, ���, ���, ���, ���], and estimated brain age for
each hemisphere, both for metrics derived from T�-weighted, diffusion-weighted, and
multimodal MRI. Additionally, the mapping of multimodal brain MRI asymmetries
in larger cohorts requires further attention, as there are various potential clinical
implications of brain asymmetries [���, ���, ���, ���, ���].

As new repeat-scan data was made available from the UK Biobank [���], for the
fifth article (Study E), now, additional longitudinal investigations of white matter
changes were possible. The objective of the study was hence to replicate previous
age-associations of white matter microstructure metrics (Study A). Namely, a recent
study presented evidence that the relationships between age and brain metrics can be
expected to be stronger when investigated in longitudinal data [��]. Furthermore, to
provide biological underpinnings of the observed longitudinal WM changes, we also
assessed the polygenic risk of common psychiatric disorders and Alzheimer’s disease
with the annual rate of white matter microstructure change to provide additional
biological explanations of which metrics in which brain areas (and their change)
associate with genetic risk to develop various disorders.

�.� Objectives and Research Questions

The general objective of the projects was to move closer to identifying bio-markers
of health and ageing. This was planned by examining both diffusion-weighted and
T1-weighted MRI data separately, and in combination, with a particular focus on the
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relationship between brain and age. The major research question was focused on
which patterns could serve as bio-markers of health and disease. The investigations
were of exploratory nature, and hence, confirmatory hypothesis testing was held to
a minimum. Different statistical approaches were applied to a selection of data sets
leading to further specifications of the objectives for the five executed papers:

Paper A. The overall aim of this study was to examine the associations of white matter
and age. Specifically, we tested whether associations between age and white matter
microstructure were concordant across diffusion approaches using direct associations
between age and white matter as well as brain age predictions which were compared
across diffusion approaches. The goal of this was to provide a road-map of expectable
age-associations across diffusion approaches, and whether and how such associations
translate to brain age predictions. A second goal was to assess, chart (age-curves) and
discuss typical white matter development. The research question was hence whether
there are patterns of associations between age and white matter which translate across
diffusion approaches.

Paper B. The overall aim of this study was to further examine white matter derived
brain age estimates. The primary investigation aimed at the proportion of brain
age variance explained by sets of bio-psycho-social variables. Another question was
whether the estimated white matter brain age scores would related concordant to
bio-psycho-social factors or whether there would be differences between brain ages
based on different diffusion approaches. Finally, the specific nature of the associations
was assessed to gain a better understanding between brain age estimated from white
matter micro structure and bio-psycho-social variables. The research question of
this paper was therefore whether semantic phenotype combinations could explain
meaningful proportions of brain age variability, and whether observed associations
would be stable when the underlying data for brain age predictions were changed.

Paper C. The general aim of this study was to test brain age predictions in a stringent
fashion. The first goal was to observe whether repeated brain age predictions for
the same individual but different scans over time would follow the pattern observed
in cross-sectional data, particularly considering the model’s prediction error (i.e.
increasing brain age – with a prediction error somewhat corresponding to root mean
squared or mean adjusted error – with age). The second goal was to estimate to which
degree the field strength and quality of the scan would influence brain age predictions.
Hence, the first research question was whether brain age can be reliably predicted at
multiple time-points following the same individual. The second research question was
which factors would explain variability in these predictions.

Paper D. The goal of the fourth article was twofold. The first goal was to map brain-
wide white and grey matter asymmetries. The second goal was to introduce a new brain
age metric which was estimated only on the features from one hemisphere. We called
this metric hemispheric brain age. To present the feasibility of the hemispheric brain
age metric, we compared this new way of predicting age to common brain age. The
presentation of the new metric’s practicality was supported with phenotype-association
testing in comparison to phenotype associations of regular brain age. The research
questions were hence: �) what are the observable asymmetries in the brain, and �)
is can these be extended by introducing a new brain age marker based on a single
hemisphere?
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Paper E. The fifth paper’s goal was to map short-term longitudinal white matter
changes during midlife and older adulthood as well as white matter age-associations.
To gain a detailed understanding of these changes, different levels of observation
were selected starting with the examination of global/whole-brain average scores, to
regional and tract-level average scores, to voxel-level scores. This detailed mapping
of white matter changes was supposed to provide a better understanding of white
ageing across the brain and within specific regions. Additionally, imaging genetics
were mapped for regional and whole brain white matter metrics. The research question
was: Which are the observable longitudinal white matter changes and how can these
be linked explained by polygenic risk scores of psychiatric disorders and Alzheimer’s
disease?

�.� Thesis outline

The thesis consists of two main parts: an overview of the field (Part I) and the produced
research articles (Part II). The overview follows the structure of a research article
(Introduction, Methods, Results, Discussion).

The introduction section (Chapter �) comprises a short prelude on brain biomarkers,
followed by an account for the conceptualisation of health and disease from a lifespan
perspective (Chapter �.�) and ageing-related tissue changes (Chapter �.�). Then, we
provide a summary of the project as a whole, and, in that context, of the single studies
executed in the project (Chapter �.�). Finally, the project’s research objectives are stated
(Chapter �.�).

The following chapters provide an account of the methodology across the studies
(Chapter �), with a focus on multimodal magnetic resonance imaging (Chapter �.�),
specifying T1-weighted (Chapter �.�.�) and diffusion-weighted MRI (Chapter �.�.�),
brain age predictions (Chapter �.�) including the utilised machine and deep learning
approaches (Chapters �.�.� & �.�.�), the utilised samples (Chapter �.�), and the statistical
modelling (Chapter �.�).

The proceeding chapter (Chapter �) corresponds to a usual "results section" and
will provide brief summaries of each of the presented articles, which will be discussed
in the light of this project and the research field in general.

Finally, the results will be discussed (Chapter �), with a focus on methodological
considerations (Chapter �.�), brain age predictions (Chapter �.�.�), and brain regions,
such as the fornix as potential ageing and disease biomarkers (Chapter �.�.�), and an
outlook for future developments (Chapter �.�).
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CHAPTER 2
METHODOLOGY

�.� Multimodal magnetic resonance imaging

Magnetic Resonance Imaging (MRI) has become one of the primary tools for detailed
spatial and diagnostic examinations of the brain. The main reason is that MRI is a
non-invasive1 medical imaging technique which offers rich, high-resolution data, with
superior contrast to other medical imaging techniques such as computed tomography
(CT) [���]. MRI leverages the magnetic resonance effect requiring a strong magnetic
field, usually �.�-�T in hospitals and, recently, even stronger magnetic fields in research.

The atomic nucleus contains one or several protons which possess an intrinsic
angular momentum also known as spin [���]. Spin has a clear linear relation with the
nuclear magnetic moment and, consequently, it is susceptible to an external magnetic
field. In the presence of an external magnetic field, the energy levels of the nucleus
are split in accordance with a Zeeman effect. Splitting is dependent on the spin value
as the following: (2S + 1), where S is the spin value. For example, the spin of the
hydrogen’s nucleus (or simply proton) is �/� and energy splitting means there are
just two energy levels: a minimum energy level and an excited energy level. The
minimum of energy corresponds to the alignment of spin along the external magnetic
field, and the excited energy level is presented by spin aligned to an opposite direction,
respectively [��, ���, ���].

In the MRI scanner, protons’ spins are axially aligned to the external magnetic
field which creates a magnetic vector with its orientation along the MRI external
magnetic field, while protons still spin at a low-energy state [��]. An external radio
frequency pulse with the help of transmitter coils changes the protons’ energy state by
a transferring spin on the higher energy level. The frequency of absorption energy can
be described by the Larmor frequency allowing to manipulate the nuclear magnetic
moment as well.

The amount of emitted energy and, hence, the signal depend on the imaged tissue.
As the human body consists to ��-��% of water (H2O) [���], hydrogen (most common
isotope: 1H) is the most abounded nucleus in the body, with all tissue containing
hydrogen. However, the hydrogen density depends on the tissue type which, in
turn, influences relaxation times. As already known, T1 relaxation time is defined
by a spin-lattice interaction and T2 relaxation time is a result of spin-spin interaction.
Thus, fluids have usually long, water-based tissue and medium long relaxation times,

1For advantages and safety of MRI see Appendix �.
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whereas fat-based tissue has short T1 relaxation times [���]. The T2 relaxation time
is shorter than T1 relaxation time and follows the same order as T1 relaxation time
in respect to tissue type: fluids longest, fat-based tissue medium, water-based tissue
shortest, respectively [���]. These differences allow one to describe different tissue
types from the recorded signal.

Using multiple RF and magnetic gradient pulses in sequence (i.e., a pulse sequence)
allows one to emphasise or suppress certain aspects of the resulting signal by considering
tissue relaxation times in addition to the proton density (see Appendix � for more
information on pulse sequences) [��, ���]. The contrast of an image generally depends
on either proton density or relaxation time. Considering several pulse sequences
and, hence contrasts is called multimodal MRI. In the following, we will further
describe the two acquisition types utilised in this study for multimodal MRI: T1 and
diffusion-weighted MRI, and how the acquired data was used.

�.�.� T1-weighted MRI
T1-weighted brain imaging is one of the most frequently used acquisition types in
research acquisitions. This is potentially due to T1-weighted MRI being part of the
standard clinical workflow. The advantage of T1-weighted MRI is that it highlights
anatomical structures and provides a clear contrast between grey and white matter.
Additionally, there is a wealth of processing pipelines [��, ��, ��, ���, ���] openly
available, allowing standardised low-code, simplified workflows including quality
assessments, motion correction, skull stripping, normalisation, segmentation, and
the estimation of various statistics, such as grey matter thickness, surface area and
volume (see for an example of such pipeline Figure �.�). Such standardised pipelines
increase comparability across studies, as there are many possible degrees of freedom
in processing images which ultimately lead to variability in study results [��, ��, ���].

Fig. �.�: A simplified depiction of the Freesurfer recon-all pipeline. Re-printed from
Grossner et al. [���]

First, we used the raw voxel-level data as provided from the scanner and processed
it minimally in Study C. A minimal processing approach is useful as it circumvents
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relatively long processing times allowing an easier inclusion into clinical workflows than
processing pipelines which take hours before predictions are even started. Minimally
processing in the case of Study C refers to skull stripping, bringing the brains into the
right coordinate space, and cropping the image (which was done to remove unnecessary
computation of empty space in the brain images).

For Study D we used a more "common" approach of cortical reconstruction and
estimation of grey matter thickness, volume, and surface area using the Freesurfer
[��] recon-all pipeline (see Figure �.�). Outliers were identified by using Euler
numbers, a measure of the topological complexity of reconstructed cortical surfaces
[���]. Deviations from the mean Euler numbers were used to assess the quality of the
reconstruction, leading to exclusions for deviations above three standard deviations
from the mean.
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Fig. �.�: An example of cortical parcellation using the Desikan-Killiany Atlas in
Freesurfer, here applied to average across sessions in the BBSC data set to extract
various gray matter metrics (curvature, folding, volume, surface area, and thickness)
[���, ���]

The next step included a common approach to reduce data complexity and increase
biological meaning: parcellation. As the brain is defined by heterogeneity in structure
and functional networks, defining distinct partitions aids to not only to establish a
logical topography, but also to execute topology-informed research [��]. We used
the Desikan-Killiany Atlas [��] as a parcellation scheme to average over grey matter
features. For an example of a parcellation scheme on three subjects see the average
cortical values of the three BBSC subjects (Study C) across their sessions in Figure �.�.
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�.�.� Diffusion-weighted MRI

Diffusion-weighted MRI is another commonly used MRI technique both in clinical and
research settings. The thermal random motion of some small insoluble particles in
different media can be described by Brownian motion [���]. Importantly, particles are
limited in the distance they are able to travel in a certain time interval which allows to
describes particle diffusivity by a probability density function [��].

Due to the described high prevalence of water molecules across the human body
(Section �.�), diffusion MRI captures the random movement of water molecules through-
out tissue. In order to being able to image diffusion, the magnetic field strength needs
to be varied linearly by a pulsed field gradient. Diffusion contrasts are similar to inverse
T2-weighted contrasts, as watery tissues have more mobile molecules which produces
a lower signal intensity. Opposing, the signal is stronger in tissue characterised by
more solid and static tissue [���].

Most commonly used diffusion sequences are pulsed gradient spin echo (PGSE)
[���]. PGSE consists of a pair of spin-echo RF pulses with large, equal gradients
on either side of the ���� RF pulse (i.e. opposing directions) [���]. Manipulating
the timing between gradient pulses (�), and pulse characteristics (amplitude (G) and
length/duration (�)) allows to control the degree of the b-factor weighting in PGSE
sequences (with b-factor units in s·mm-2):

b = �
2
G

2
�
2(�-

�

3
). (�.�)

Water diffusivity in white matter is restricted by cellular structures such as neuronal
fibres or tracts. These restrictions are reflected in the signal. Using biophysical
models/approaches allows one to identify characteristics of cellular structures making
diffusion MRI extremely useful for white matter examinations. [���]. Hence, the work
within this project focused on white matter when using diffusion MRI (except from
Study C using T1-weighted MRI).

�.�.�.� Biophysical models

Biophysical approaches of diffusion refer to the modelling of diffusion along recalling
fibres mathematically, by making different assumptions about the water diffusion in
the axons and the surrounding space [���]. The resulting metrics allow then for further
inference on the structural integrity and potential health of examined tissue. The most
commonly applied model is diffusion tensor imaging (DTI) [��].

Biophysical models can be grouped into two proposed approaches: signal rep-
resentations and tissue models [���]. Each approach allows to extract differential
information about tissue microstructure from diffusion MRI. Signal representation
(or statistical models) describe the behaviour of the signal in a given voxel without
making assumptions about the underlying tissue. Hence, such models’ estimations
lack specificity, rendering the estimates as indirect measures of microstructure char-
acteristics. This limitation is filled by tissue models, which make assumptions about
tissue geometry. Hence, tissue model parameters might be also be more specific and
biologically-relevant, assuming that the modelled tissue features (e.g., geometry) are
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accurately captured [���].
As the different diffusion approaches highlight different features of the signal or

geometry, and hence underlying biology, it is yet important to gain a better and compar-
ative understanding of such approaches. In this project, we presented comprehensive
comparisons of both signal representation approaches DTI and DKI, as well as biophysi-
cal models: (�) the spherical mean technique (SMT) [���], (�) SMT’s multicompartment
extension SMTmc, (�) the DKI multicompartment extension White Matter Tract In-
tegrity (WMTI) [��] , and (�) the Bayesian Rotationally Invariant Approach (BRIA; see
Appendix � for all included metrics) in the context of age and phenotype relationships.

See Table �.� for an overview of key features of the utilised diffusion approaches, and
Appendix � for the metrics included in each approach. While the observed multi-shell2
diffusion models (BRIA, SMTmc, WMTI) differentiate intra-axonal from extra-axonal
space [��, ���, ���], BRIA delivers the most detailed account by providing metrics on
water and cerobrospinal fluid fractions [���].

Diffusion approach Fundamental assumption
Bayesian Rotationally Invariant Approach (BRIA)[���] Bayesian estimation of diffusion in several

compartments: intra & extra axonal & water
Diffusion Kurtosis Imaging (DKI)[���] DTI & kurtosis tensor (non-Gaussian)
Diffusion Tensor Imaging (DTI) [��] tensor* fitted across each voxel
Spherical Mean Technique (SMT)[���] Spherical mean value of the diffusion

signal over gradient directions
Multi-compartment Spherical Mean Technique (SMTmc)[���] Double b-shell extension of SMT
White Matter Tract Integrity (WMTI)[��] Based on kurtosis model,

modelling axon collections as a Gaussian
compartment in contrast to extra axonal diffusivity
*comprised of vectors describing diffusivity
into each � directions

Table �.�: The utilised diffusion approaches and their fundamental assumptions.

In the following, we will first describe signal representation approaches and
then tissue models, both in general and then briefly describing the utilised diffusion
approaches (BRIA, DKI, DTI, SMT, SMTmc, WMTI).

�.�.�.� Signal representation models

The most common signal representation is the expansion of the logarithm of the signal
in polynomials up to a given order in b (see Eq. �.�) [���]:

ln(
S

S0

) = -bD+
1

6
(bD)2K+ ..., (�.�)

where D is the diffusion coefficient and K indicates the kurtosis (of the diffusion density
probability function), whereas S is the signal at echo time and S0 the signal at zero
echo time.

Diffusion tensor imaging (DTI) entails the expansion of this function up to the
first order of b, valid for b ⌧ 1

DK
. When this assumption is met, DTI assumes tissues’

diffusion to be near-identical to a Gaussian probability function [���]. Diffusion kurtosis
imaging (DKI) [���] can be used to model higher b-values which then allows for a
more accurate tissue characterisation [���].

2The number of shell refers to the number of unique b values which are not b = 0.
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DTI refers to fitting a second order tensor for each voxel of the MRI volume.
These tensors can be described by a �-by-� matrix indicating the � directions of
possible diffusion or eigenvectors and their eigenvalues � (Figure �.�). The tensor
is often described with the analogy of a ball and stick, where the ball describes
isotropic diffusion, and the stick anisotropic diffusion. Isotropic refers to unrestricted
diffusion observable in water (i.e., no cellular boundaries) and anisotropic diffusion
the opposite, i.e., diffusion observed in clearly restricted cellular space, such as white
matter fibres. The code for the DKI estimations can be found at https://github.
com/NYU-DiffusionMRI/DESIGNER, and DTI metrics can be estimated during TBSS
procedure in FSL (see Section �.�.�.�).

  

λ3

λ2

λ3

λ1

λ2

λ1

Isotropic voxel
λ1  λ≃ 2  ≃ λ3

Anisotropic voxel
λ1 > λ2 , λ3

Fig. �.�: Example of an isotropic tensor (left) and an anisotropy tensor (right).

The DTI eigenvalues can be presented in a form of rotational invariants and used
as scalar metrics. For example, the highest eigenvalue describes the axial diffusivity
(AD), the average of the width of the tensor as radial diffusivity (RD), the mean (or
trace of matrix) of all three eigenvalues as mean diffusivity, and the squared eigenvalue
differences by their squared sum as fractional anisotropy, which refers to the level of
(an)isotropy (Figure �.�).

While DTI provides useful metrics of anisotropy (FA) and diffusivity (MD, RD,
AD), DTI assumes that diffusivity is distributed nearly perfectly in accordance with
the Gaussian density function. DKI does not assume near-Gaussian diffusivity as
expressed in axial, radial and mean kurtosis (AK, RK, MK). Both approaches (DTI
and DKI) do not separate intra and extra-axonal spaces. Hence, they rather map
mesostructural features than microstructure. Furthermore, the approaches cannot
account for crossing fibres, which are a commonly occurring phenomenon in the brain’s
white matter [��, ���].

Such shortcomings have been addressed by different more advanced and potentially
biophysically more informative models. These models make different assumptions
about the tissue compartments (hence tissue models) and are dependent on the
underlying data. Diffusion MRI data can be acquired using a single or multiple shells.
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Fig. �.�: Diffusion Tensor Imaging (DTI) metrics. Reprint from DeSouza et al. [��].

Single shell refers to the acquisition with a single unique b-value (see Equation �.�),
whereas multi-shell acquisition refers to the acquisitions with several unique b-values,
for example b0 = 0

ms

µm2 , b1 = 0.5
ms

µm2 , b2 = 1
ms

µm2 , b3 = 2
ms

µm2 . Multi-shell acquisitions
allow for more complex models taking into account multiple compartments (e.g., tissue
and water fractions) and directions of diffusion in a voxel.

�.�.�.� Tissue models

Biophysical models usually make use of three compartments: (�) intra-axonal space
described by infinitely long sticks modelled by the orientation distribution function
(ODF), (�) extra-axonal space modeled as Gaussian anisotropic, and (�) freely diffusing
water modelled as Gaussian isotropic [���].

The spherical mean technique (SMT) and SMTmc (multicompartment SMT)
address model degeneration problems of the standard diffusion model (while using
standard diffusion sequence protocols [���, ���]) by applying a powder averaging
technique [���]. Such technique can be applied to both single and mulicompartment
models [���]. While such averaging technique has been used in Neurite Orientation
Dispersion and Density Imaging (NODDI), compared to SMT and SMTmc, NODDI is
sensitive to noise due to the effects of local minima and limited by poor precision of its
non-linear fitting choices [���], affected by the numeric algorithm used [��, ���], as well
as post-processing [���]. This renders the resulting NODDI metrics as unstable. Hence,
for SMT (�) the assumptions of the tortuosity model about diffusivity were added [���],
as well as the assumption that (�) intra- and extra-axonal axial diffusivity is equal,
and that (�) radial inta-axonal diffusion is equal to zero, representing intra-axonal
diffusivity as a stick. For SMT and SMTmc output metrics see Supplement �.

The original code for the SMT estimations can be found at https://github.com/
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ekaden/smt

White matter tract integrity (WMTI) utilizes the standard diffusion model but dif-
ferentiates intra-axonal from extra-axonal space [��]. As in SMT, the intra-axonal space
is assumed to be isotropic and hence modelled as stick, with a radial diffusivity equal
to zero. The extra-axonal space assumes anisotropic diffusion (ball-shaped diffusion,
equal towards all directions). Moreover, the intra- and extra-axonal compartments
are assumed to be impermeable. Additional biophysical assumptions contained in
the model are that (�) the intra-axonal space consists of myelinated axons, where the
signal is not influenced by this myelin proportion due to the quicker relaxation time in
myelin/fat. (�) As in DTI, Gaussian diffusion tensors are applied, however separating
between intra- and extra-axonal spaces [��, ���]. (�) Diffusivity in the extra-axonal
space (glial cells) is stated to be faster than in the intra-axonal space (neurons) to
avoid statistical degeneracy. While this assumption aids simplicity, it does not corre-
spond to the underlying biology [���]. WMTI estimations allow for dispersion of up
to ���, enabling WMTI estimates to account for coherent or parallel fibres. However,
the approach is not valid for crossing fibres or high orientation dispersion [���], and
differences in diffusivity pace have not been confirmed [��, ���].

The original code for the WMTI estimations can be found at https://github.com/
NYU-DiffusionMRI/DESIGNER. For WMTI output metrics see Supplement �.

The Bayesian rotationally invariant approach (BRIA) assumes different Gaussian
compartments separating intra- and extra-axonal space. Extending the approches
presented above, beyond diffusivity and FA, BRIA allows also to estimate additional
metrics informing about intra-axonal and extra-axonal cerebrospinal fluid and water
fractions [���]. Additionally, BRIA was informed by both scalar and tensor parameters
to identify potential degeneracies in the scalar metrics [���]. An attempt to address
model degeneracies is to not only account for local minima, but to select the non-
degenerated branch of linear estimated moments when model fitting [���]. However,
model degeneracy and hence precision remain challenges [���]. Yet, BRIA is a
step towards better teasing apart meso-structure from micro-structure [���, ���].
Practically, Reisert and collegues [���] used supervised machine learning, informed by
a Bayesian estimator, to estimate microstructural properties. The Bayesian estimator
was established by using uniform distributions as priors which were then updated
in the posterior distribution (according to Bayes’ theorem [��]). From the posterior
distributions, expectation values (not the most probable value) were used, using Monte
Carlo integration [���], resulting in the training data [���].

The original Matlab code for the BRIA estimations can be found at https:
//bitbucket.org/reisert/baydiff/src/master/. For BRIA output metrics see
Supplement �.

Research validating the presented approaches is still limited and requires further
attention. Additionally, the interpretation of diffusion MRI derived metrics is not
necessarily straight forward and limited by modelling assumption [���, ���]. Hence, it
is useful to validate the different approaches against each other and connect them to
biological processes such as ageing [��].
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�.�.�.� Tract-based spatial statistics (TBSS)

After voxel-level scalar metrics are obtained from each diffusion approach, tract-based
spatial statistics (TBSS) were used in order to prepare the data for and conducting
statistical analysis. TBSS are a suite of tools for analysing diffusion data [���] which
can be used following the subsequent steps for data preparation. First, volumes are
being aligned based on a template. Here, we use the FMRI��_FA template from FSL
[���] using non-linear transformation as implement in FNIRT [���]. Second, using
the described tensor-fitting approach from DTI, an FA image is established for each
data set/participant, averaged across subjects, and finally thinned to create a mean
FA skeleton. Third, each participant’s FA values are projected onto the mean skeleton
by filling the skeleton with FA values from the nearest relevant tract centre. This
skeleton-based analysis minimises confounding effects due to partial volume effects and
residual misalignments, originating from non-linear spatial transformations (step two).
Fourth, the skeleton can be used as a mask to average the metrics obtained from the
different biophysical approaches (a) over the entire skeleton, (b) single hemispheres, or
(c) pre-defined regions by parcellation schemes, such as defined by the Johns Hopkins
white matter atlas [���, ���].

Prior to analyses of the obtained voxel-level as well as region-wise and global
averages, we used an optimised quality control pipeline [���], which contains the
following general steps: (�) artefacts, eddy current, and motion corrections, (�) creation
of the fractional anisotropy mean skeleton across subjects (where fractional anisotropy
is a common DTI metric indicative of the isotropy), (�) registration of the subjects to
the FA skeleton, (�) application of biophysical models and statistics on voxel-level or
region-averaged data [���].

�.� Brain age predictions

Brain age refers to the biological age estimated by predicting a person’s chronological
age off a set of brain features. Brain age involves usually a machine learning model
trained on different MRI brain features to determine the biological age [���]. The
set of features can incorporate different levels of analysis (pixel- or voxel-level values
[��, ���, ���, ���] (see also Study C or atlas-defined regional and/or whole-brain
averaged metrics [��]) (see also Studies A and D), and modalities, such as diffusion,
T1-weighted and functional MRI [��, ��, ���]. Models trained on region averaged
diffusion features outperform models trained on T1-weighted region averaged features
in predicting age, which in turn outperform models trained on functional MRI features;
with the yet best predictions obtained from multimodal models [��, ��, ���, ���] (also
shown in Study D).

There are various possibilities of choosing levels of analysis – from raw pixel-
or voxel-level data to values averaged over atlas-defined regions – which also make
different analysis tools more or less appropriate. For example, previous findings
showed promising model performance on raw or minimally processed �D or �D
data are obtained by deep learning methods convolutional neural networks (CNNs)
[��, ���, ���, ���], whereas tabular data is potentially better predicted by linear and
ensemble algorithms [���, ���, ���]. For an example comparison of three commonly
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Fig. �.�: Relationship of T1-weighted MRI brain age and chronological age across
algorithms, including extreme gradient boosting (XGBoost) from region-averaged
data, Gaussian Processes regression (brainageR), and a convolutional neural network
(DeepBrainNet). brainageR and DeepBrainNet utilised �D minimally processed MRI
data. Reprint from Bacas et al. [��].

used algorithms see Figure �.�.

Fig. �.�: Brain age (adjusted for covariates of no interest) across common brain disorders
in comparison to healthy controls. Reprint from Kaufmann et al. [���].

While the choice of algorithms still needs benchmarking, one study [���] lines out
some trade-offs connected to the choice of brain age prediction algorithm: XGBoost’s
predictions were more accurate overall and more reliable predictions when using
lower quality scans, while a �D convolutional neural network’s predicted age was
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more sensitive to associations with cognitive functioning in several samples aged �-��.
Another study [��] presents highly correlated predictions from XGBoost and CNNs
(with XGB predictions being slightly less accurate), but XGBoost brain age being more
sensitive to detecting cognitive impairment in a sample aged ��-���. Hence, further
investigations applying different algorithms is required for a better understanding of
brain age in general and it’s estimation [���].

Furthermore, brain age differences can be expected for various groups, especially
when manifestations within the brain are strong. For example when comparing
dementia patients’ brain age to healthy controls’ brain ages (see Figure �.�).

The following sub-sections will briefly explain the utilised algorithms across the
studies included in this thesis: (a) eXtreme Gradient Boosting (XGBoost; as an example
of ensemble algorithms), and (b) convolutional neural networks (CNNs; as an example
of deep learning techniques), and present previous research on their utilisation for
brain age prediction. Finally, another crucial topic when conducting brain age will be
introduced: (c) age-bias correction procedures.

�.�.� Brain age predictions using eXtreme Gradient Boosting

EXtreme Gradient Boosting (XGBoost) is a machine learning algorithm combining
decision trees with regularisation, and can be used for regression and classification
problems [��]. Focusing on regression problems, such as brain age predictions, different
from other tree-based algorithms, XGBoost uses a special form of regression trees [���].
The tree starts with a regularisation function of the similarity score (SS), calculated
from the sum of the residuals (R), being the difference between observed and predicted
values, and number of the residuals N, in addition to the regularisation parameter �
(intending to reduce the predictions sensitivity to individual observations):

SS =
⌃R

2

N+ �
(�.�)

Based on SS, the sample is then split into different groups (i.e., two leafs per split),
serving to calculate the gain G from each leaf’s similarity score SSL and SSR using Eq.
�.�:

G = SSR + SSL -
2
p
SS (�.�)

The G is then used to decide which further threshold to use to divide the sample, and
hence, which characteristics following leaves should have. G is also used to prune the
tree by subtracting the pruning parameter � from the respective G value. Branches
with negative results are pruned/removed.

The overall equation for numeric Predictions includes the starting or smallest value
A, the Learning Rate (⌘) as another hyperparameter and an outcome value estimated
similar to the SS, but using only the sum of residuals without squaring them:

Prediction = A+ ⌘⇥ ⌃R

N+ �
(�.�)

Predictions can be made for (�) binary nominal outcomes (classifications) by restricting
the values for example to an interval between � and � and rounding up or down to
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obtain classifications, and (�) for continuous values such as brain age, directly using
the obtained Prediciton.

XGBoost has been found to be a highly efficient and precise alternative for brain
age predictions [��, ��, ��, ��] (see also Studies A, B, D). Although predictions depend
rather on the underlying data (e.g., acquisition differences, age-distribution) and
training procedure than the algorithm [��, ���], XGBoost can outperform deep learning
methods on tabular data problems [���], and performs well on brain age predictions
compared to other machine learning algorithms [���]. Yet, the findings of different
studies comparing brain age predictions of various algorithms show variations in
results, which does not allow to answer the question which algorithm could be the "best"
to predict age. For example, one study [��] examined the prediction performance of
different algorithms (support vector regression, relevance vector regression, Gaussian
vector regression) revealing only small differences. This suggests that the training data
have greater impact on model performance than the selected algorithm. Similarly,
when using relative small sets of volumetric and surface area features (N = 152),
the performance of a wide range of algorithms converges [���], and deep neural
networks potentially performing slightly better than random forest, support vector
machine, and least absolute shrinkage and selection operator (LASSO) regression [���].
When increasing the number of features (N = 800), using a large training sample size
(N = 2105), eXtreme Gradient Boosting was among the best performing algorithms for
brain age predictions, in another study [���].

�.�.� Brain age predictions using Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm allowing
to fit complicated curves to complex data [�]. A CNN consists of nodes and connections
between notes, which are analogues to intercept and slope values in simple regression
problems (see Figure �.� for a simple depiction). The type of lines fitted to the data
are dependent of the used activation function(s) producing e.g. curved lines, such as
softplus [���] or ReLu [��]. CNNs usually have several input nodes (in Figure �.� only
a single input node on the left) and output nodes (in Figure �.� only a single output
node to the right) [���]. Additionally, there are several nodes in-between input and
output nodes called hidden layers. CNNs fit curves to the data based on estimated
parameters which are both multiplied (weights) and added to input values (called bias)
across nodes (Figure �.�). New curves are estimated by combining the various curves
across layers to finally solve regression or classification problems [���].

Back-propagation is the central method to estimate weights and biases [���]. In
short, back-propagation uses the chain rule [���] to estimate derivatives (see Eq. �.�
for Leibnitz’ notation), on which gradient descent is applied [��, ���].

The chain rule expresses the derivative of the composition of two differentiable
functions. For example, if a variable z depends on the variable y, it is also dependent
on x, in case y depends on x:

dz

dt
=

dz

dx
⇥ dx

dt
. (�.�)

Gradient descent refers to taking repeated steps in the opposite direction of the gradient
in order to reach a local minimum as fast as possible to minimize the loss function [��].
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Fig. �.�: The architecture of a simple convolutional neural network with two hidden
layers showing the weight and bias of a single connection between nodes.

In other words, backpropagation refers to gradient descent based on the chain rule, by
finding the derivative of the sum of squared residuals (SSR) of n values with an index
of i observations with respect to the bias and weights. SSR is hence a simple function
of the difference of observed (O) and predicted (P) values.

SSR =
nX

i

(Oi - Pi)
2
. (�.�)

This results in the following equation (adding the derivative of the Bias (B)):

dSSR

dB
=

dSSR

dP
⇥ dP

dB
, (�.�)

for which the resulting values can be tuned with the learning rate ⌘:

StepSize =
SSR

d
⇥ ⌘, (�.�)

until the optimal value for the bias (or weight) is identified. A feature which is specific
to CNNs are convolutions, which are filters applied to an input, such as blurring,
sharpening or edge-detection filters. Filters are iteratively applied using different
configurations (e.g., kernel size and position), which results in activation or feature
maps. These maps are indicative of certain features of the input, such as cerebrospinal
fluid in �D MRI data, and can be used to inform weights and biases.

There are several studies showing good performance of CNNs on brain age
predictions, using either �D [���, ���] or �D MRI data [��, ���, ���, ���, ���], with
particularly good performance shown in [���]. This CNN [���] was used for brain
age predictions in Study C, yet using only the regression output (Figure �.�), as
this algorithm was found to perform best across utilised methods (see [���]). As
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Fig. �.�: The architecture of the utilised convolutional neural network for brain age
predictions in Study C. Adapted from Leonardsen et al. [���].

visible in Figure �.�, the model is composed of various compositions of layers with
multiple activation functions. While this model performed well in cross-sectional
cohort data [���], also tested independently and compared to other trained models
[��] there are various steps necessary to improve CNNs (for brain age predictions and
in general) [���]. Potential next steps include setting benchmarks for deep learning
architectures, integrating more multimodal data, transfer learning, and especially
increasing explainability [���].

�.�.� Age-bias corrections
Once the predictions are obtained, usually the difference between the prediction and
age, called the brain age gap or brain age delta is the variable of interest, for example
delineating group differences between clinical and control groups [��, ���]. However,
this metric is dependent on several characteristics of the training data [���], calling
for adjusting brain age models or predictions. The most apparent adjustment is age
adjustment, as the distribution of the used training sample influences the brain age
predictions [��]. This affects particularly predictions made at the extreme ends of the
age distribution, i.e. the youngest and oldest participants in the sample. Yet, there are
several ways to account for such bias [��].

Age bias corrections used in the research within this project (Eq. �.��-�.��) were
only executed when directly relating predicted brain age and chronological age (i.e.,
relationships between the label and different predictions) or the brain age gaps which
were based on different predictions. For the age-bias corrections we followed the
procedure suggested in de Lange et al., [��] which is equivalent to other commonly
used brain age correction methods [��].

The procedure uses the intercept ↵ and slope � when regressing age from brain
age (BA) using a linear model:

B̂A = ↵+ �⇥Age, (�.��)

to correct the brain age estimates (BAc) with the model coefficients and age:

BAc = BA+ (Age- (↵+ �⇥Age)). (�.��)

Otherwise, age could simply be regressed from brain age (Eq. �.��), allowing
more interpretable results of associations when examining un-standardised slopes (�)
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�.� Examined samples and data

compared to using corrected brain age gap values. Equation �.�� shows an example of
examining the association between brain age (BA) and a phenotype of choice (P) while
adjusting for age, sex, the age-sex interaction and using scanner site (Site) as a random
intercept (RI).

B̂A = �0 + �1 ⇥ P + �2 ⇥Age+ �3 ⇥ Sex+ �4 ⇥ Sex⇥Age+ RI(Site). (�.��)

�.� Examined samples and data

We used five different samples in the different studies (Table �.�) containing nearly
N ⇡ 50, 000 MRI acquisitions of diffusion MRI (dMRI) and/or T1-weigthed (T1). Most
of the executed studies contained analyses of UK Biobank (UKB) data only (Studies
A, B, D, E). Study C used a combination of densely sampled / longitudinal data from
the Bergen Breakfast Scanning Club (BBSC) and the Frequently Travelling Human
Phantom (FTHP), and cross-sectional validation data from the Norwegian Cognitive
NeuroGenetics sample (NCNG) and local Oslo sample (TOP).

Table �.�: Overview of the samples used across studies

Study Design Modality Sample
Study A cross-sectional dMRI UKB: N = 35, 749

Study B cross-sectional dMRI UKB: N = 35, 749

Study C longitudinal T1 BBSC & FTHP: Ntotal = 4

Study C cross-sectional T1 NCNG & TOP: Ntotal = 1, 065

Study D cross-sectional dMRI & T1 UKB: N = 48, 040

Study E longitudinal dMRI UKB: N = 2, 944

�.�.� UK Biobank

The UK Biobank is a unique data source comprising the data of over ���,��� people
[���, ���]. This prospective study focuses on midlife to old ages (inclusion age range:
��-�� years) and contains a large range of phenotype and genotype information. Among
the imaging modalities, there are currently brain MRI scans available for around ��%
of the total sample (N ⇡ 50, 000), with the goal of scanning around ��% of the total
sample (N = 100, 000) [�, ���].

Additionally, follow-up scans are already available for around �% of the total
sample (N ⇡ 5, 000) [�, ���, ���, ���]. MRI data were collected at �T Siemens Skyra
machines (software platform VD��, ��-channel head coil) using a standardised protocol
across scanner sites which included T1-weighted, T2-weighted (FLAIR), susceptibility-
weighted T2*, diffusion, resting state, and task-based functional MRI [�, ���, ���]. In the
current project we used T1-weighted and diffusion MRI data. The T1-weighted scans
were acquired using a �D MPRAGE (sagittal) sequence, R=�, TI/TR=���/����ms, with
a �.�x�.�x�.�mm voxel size and ���x���x��� matrix. Diffusion acquisition parameters
were MB=�, R=�, fat sat, b=� (�x + �x phase-encoding-reversed), ���� (��x), ���� (��x),
using a voxel size of �.�x�.�x�.�mm and a ���x���x�� matrix [�, ���].
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�.�.� Bergen Breakfast Scanning Club

The Bergen Breakfast Scanning Club (BBSC) dataset is a deep imaging dataset included
repeatedly acquired MRI scan and phenotype data ofN = 3 individuals over a period of
circa one year with a summer break in the middle of the scanning period [���, ���]. This
resulted in a total number of N = 103 scans, which were relatively equally distributed
across subjects (N1 = 38, N2 = 40, N3 = 25).

T1-weighted volumes of the three BBSC participants were acquired with a spin
echo sequence (TE = �.��ms, TR = �.��ms, FA = ��°, TI = ���, ��� slices, slice thickness
= �mm, in-plane resolution = �mm×�mm, FOV = ���mm, isotropic voxel size = �mm3)
at a �T GE system with ��-channel head coil [���, ���].

�.�.� Frequently Traveling Human Phantom

The frequently traveling human phantom (FTHP) MRI dataset [���] contains the data
of one male subject with N = 157 independent imaging sessions. The sessions were
conducted at N = 116 different locations, totaling N = 557 MRI volumes.

T1-weighted volumes of the FTHP participant were acquired at different scan-
ners with various scanning parameters [���] (see also https://www.kaggle.com/
datasets/ukeppendorf/frequently-traveling-human-phantom-fthp-dataset).

The imaging sites where the FTHP study was executed were informed about the goal
of using the acquired scans for volumetry, and about a standardized protocol agreeing
with the ADNI [���]recommendations for magnetization prepared rapid gradient-echo
(MP-RAGE) MRI for volumetric analyses. While there was some variation in the
acquisition parameters, the acquisitions are representative of clinical routine MRI scans
with the goal of volumetry, yet offering a higher quality based on the low level of
motion artefacts [���].

�.�.� Norwegian Cognitive NeuroGenetics and TOP samples

As validation data to the two densely sampled datasets (BBSC and FTHP), we used
healthy controls from the Norwegian Cognitive NeuroGenetics (NCNG) sample [��]
and the local TOP data [���]. Together these data-sets include a total of N = 209

people’s scans at �.�T, and N = 856 at �T, respectively.
NCNG data [��] were acquired at a �.�T Siemens Avanto scanner using two �D

MP-RAGE T�-weighted sequences (TR = ���� ms, TE = �.�� ms, TI = ���� ms, FA = �°,
with ��� sagittal slices (�.� x �.� x �.� mm)).

TOP data were acquired at �T on a GE �T Signa HDxT (TR = �.�ms, TE = �.���ms,
FA = ��°; one subset with HNS coil, one subset with �HRBRAIN coil), and a GE �T
Discovery GE��� (TR = �.��ms, TE = �.��ms, FA = ��°).

�.� Statistical Modelling

This section describes the statistical modelling done throughout the paper but not the
process of brain age predictions (see sections �.�.� and �.�.� for these details). However,
brain age was used as outcome variable in Study B. Throughout the five papers, linear
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�.� Statistical Modelling

mixed models were used with the random effect(s) being limited to random intercepts.
Where applicable, these random intercepts were the scanner site, field strength, slice
thickness for cross-sectional data, and an additional random intercept on the level of
the participant for longitudinal and repeat-scan data. In case of model convergence
issues when applying random effects, standard linear models (containing only fixed
effects) were chosen. Additionally, outcome measures were adjusted for sex and the
sex-age interaction before being associated with age. In detail, sex, sex-age-interaction,
and site corrections in Study A were conducted using fixed effects only to adjust white
matter metrics (M):

M̂ = �0 + �1 ⇥Age⇥ Sex+ �2 ⇥ Sex+ �3 ⇥ Site. (�.��)

For study B, we used site as a random effect and modelled brain age from the variables
used in Eq. �.��. Yet, we included also age as covariate in order to correct age-bias in
brain age (BA;i.e., the equivalent of the corrected brain age gap, see also section �.�.�),
for an adjusted association with various phenotypes P:

B̂A = �0 + �1 ⇥Age+ �2 ⇥ Sex+ �3 ⇥Age⇥ Sex+ �4 ⇥ P + RI(Site). (�.��)

For study C, longitudinal/densely sampled data (with constant sex, and constant
scanner site for the BBSC sample) were used, and the random intercept at the participant
level (ID) was estimated:

B̂A = �0 + �1 ⇥Age+ RI(ID). (�.��)

However, although data were only available for a single subject, for the FTHP, there
were additional variables available in the data-set, allowing to model also field strength
(FS), and slice thickness (ST ) as random intercepts:

B̂A = �0 + �1 ⇥Age+ RI(ID) + RI(FS) + RI(ST). (�.��)

For study D, the same modelling was applied as in study B or Eq. �.��, but regressing
age and covariates of no interest on white matter metrics M instead of brain age, or the
annual rate of change in white matter metrics �M:

M̂^ ˆ�M = �0 + �1 ⇥Age+ �2 ⇥ Sex+ �3 ⇥Age⇥ Sex+ RI(Site). (�.��)

For the voxel-level analysis in paper E, a random intercept model was deployed with
only one random intercept on the level of the participant, similar to Eq. �.�� but
regressing on white matter metrics M instead of brain age (using randomize with
��,��� permutations in FSL [���], and threshold-free cluster enhancement [���]):

M̂ = �0 + �1 ⇥Age+ RI(ID). (�.��)
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This was extended to account for both random effects at the level of the participant and
scanner sites in the analyses of regional and global white matter metrics in Study E:

M̂ = �0 + �1 ⇥Age+ RI(Site) + RI(ID). (�.��)

Finally, for the modelling of both the effect of PGRS on the annual rate of change in
white matter microstructure as well as cross-sectional white matter microstructure we
used simple linear models accounting for sex, age, site, and the sex-age interaction.
Simple linear models were used instead of mixed effects models for model convergence:

M̂ = �0 + �1 ⇥Age+ �2Sex+ �3Age⇥ Sex+ �4 ⇥⇥Site. (�.��)

Across papers, �-values were standardized to be compared across predictors and
models, and p-values were adjusted conservatively using Bonferroni correction to
correct for multiple comparisons.
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CHAPTER 3
SUMMARY OF ARTICLES

�.� Paper A: Brain-wide associations between white matter and
age highlight the role of fornix microstructure in brain ageing

Background: Unveiling the details of white matter maturation throughout ageing is a
fundamental question for understanding the ageing brain which still requires further
investigation. Particularly for white matter, age-dependencies are still to be investigated
using representative samples. There are various biophysical models / diffusion
approaches which allow for the extraction of detailed information about white matter
microstructure. Neither the correspondence of such models with each other has not
been systematically tested in representative samples nor their age relationships. Beyond
direct age associations of white matter metrics, brain age, a suggested bio-marker
of health, can be utilized to improve our understanding of white matter ageing by
providing information on feature contributions and by providing predictions which can
be compared across diffusion approaches. Benchmarking age-associations in a largely
healthy sample is the first step towards normative models describing associations
between white matter and age. These benchmarks can inform further investigations
into disease by examining deviations from the suggested ageing patterns.
Methods: Tract-based spatial statistics were applied to estimate region and tract level
averages across both the John Hopkins University tract and region atlases of multiple
diffusion approaches. The diffusion approaches included Diffusion Tensor Imaging,
Diffusion Kurtosis Imaging, the Spherical Mean Technique and its multi-compartment
extension the multi-compartment Spherical Mean Technique, the Bayesian Rotationally
Invariant Approach, and White Matter Tract Imaging, an extension of Diffusion Kurtosis
Imaging.

We first probed optional hyperparameter tuning versus train and test sample splits,
and estimated brain ages for several diffusion approaches and their combination in
a cross-sectional sample of N = 35, 749 healthy UK Biobank participants. Brain age
model performance was compared across diffusion approaches, and features ranked by
their contribution to the models. Additionally, raw and adjusted correlations between
white matter and age were presented. We also estimated the correlations between
white matter metrics.
Results: White matter microstructure estimated from conventional and advanced
diffusion MRI approaches’ predicted brain age consistently, yet best when combining
approaches. Similarly, when estimating correlations between the metrics from the
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different diffusion approaches, we find two major association clusters where metrics
were either strongly positively associated with each other or strongly negatively
associated, respectively. Fornix and forceps minor features explained most variance in
age across diffusion approaches in the brain age models. Similarly, these two regions
were strongest associated with age when using crude correlations.

Additionally, we presented general patterns of white matter deterioration for higher
ages in fornix, forceps minor, and across the brain in age charts, which generally showed
a pattern of lower fractional anisotropy, extra axonal water fractions, and kurtosis
metrics at higher ages. Opposing, diffusivity (axial, radial, and mean diffusivity in
intra-axonal and extra-axonal space) showed higher values at higher ages, together
with intra-axonal water fractions.
Conclusions: There are general patterns of age-associations of white matter, indepen-
dent of the assumptions made by the biophysical models the different diffusion metrics
were estimated on. These age-association patterns outline, among others, forceps mi-
nor, which has frequently been highlighted as age-sensitive regions, as well as fornix,
which has even been suggested as a deep brain stimulation target, as most age-sensitive.
We provided validations for the fact that different advanced biophysical models mea-
sure the same underlying concept of white matter degeneration captured by brain age
and age associations. Overall, we encourage the application of multiple diffusion MRI
approaches for detailed insights into white matter, and the further investigation of
fornix and forceps as potential bio-markers of brain age and ageing.

�.� Paper B: Bio-psycho-social factors’ associations with brain age:
a large-scale UK Biobank diffusion study of ��,��� participants

Background: This paper was a direct follow-up of the first paper using the estimated
brain age scores to relate them to bio-psycho-social factors. While different dMRI-
derived parameters provide valuable information about white matter architecture,
which can be associated with macroscopic outcomes, such as bio-psycho-social factors,
investigations into white matter brain age-phenotype associations are still lacking.
It is not only important to close this gap in general, but also to further investigate
whether brain ages estimated from white matter metrics derived from different diffusion
approaches are consistently related to bio-psycho-social variables. Only by relating
brain age to real-world outcomes its general and clinical utility can be assessed.
Methods: Bio-psycho-social factors were used in addition to brain ages based on
cross-sectional dMRI data from N = 35, 749 healthy UK Biobank participants. The
statistical analyses comprised establishing linear mixed models of bio-psycho-social
factors explaining variability in brain age; namely, a baseline model as comparison,
and models of socio-demographics, cognitive scores, life-satisfaction, and health and
lifestyle factors. The outcome variable, brain age was varied, to gain an understanding
of the stability of associations between phenotypes and brain ages estimated from
differently estimated white matter microstructure features. The resulting models were
then compared in their relative contribution to explaining brain age variability, and
their single predictors were examined with the goal of identifying phenotype-brain
age associations which were concordant across diffusion approaches.
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�.� Paper C: Considerations on brain age predictions from repeatedly sampled data
across time

Results: Bio-psycho-social models of cognitive scores, life satisfaction, health and
lifestyle factors explained a small proportion of the brain age variance. Single bio-
psycho-social factors that were significantly associated with brain age across the
different brain age estimates were found for waist-to-hip ratio, diabetes, hypertension,
smoking, matrix puzzles solving, and job and health satisfaction and perception.
Furthermore, we found large variability in brain age differences between sexes and
ethnicity groups.
Conclusions: The observed associations were consistent with previous research
outlining particularly health and lifestyle associations with brain age derived from
T1-weighted MRI. These phenotype-brain age association findings highlighted white
matter-derived brain age as a similar concept to grey matter-derived brain age. Impor-
tantly, independent of the diffusion approach the particular brain age was calculated on,
associations between brain age and bio-psycho-social variables were consistent. This al-
lowed the conclusion that characteristics of both white matter meso and microstructure
reflect brain age similarly, and potentially describe similar underlying white matter de-
generation processes which can be directly linked back to bio-psycho-social variables.
Novel findings included the apparent associations between life satisfaction factors and
brain age. While, overall, only small proportions of brain age could be explained, fu-
ture brain age associations studies should consider sex, ethnicity, cognitive factors, as
well as health and lifestyle factors as well as their interaction as possible confounders.

�.� Paper C: Considerations on brain age predictions from repeat-
edly sampled data across time

Background: Brain age is a promising biomarker of brain or general health. The
metric has been extensively related to different diagnoses but to a lesser extent been
tested and validated in longitudinal data. Hence, to extend the metric’s clinical
applications, the large intra-individual variability in age predictions needs addressing.
Such intra-individual variability becomes particularly important when the aim is
to tailor individual-specific treatments. A step towards validating whether brain
age predictions can be used for such "precision medicine" approach is to validate
group level models on densely sampled individual level data. Densely sampled data
refers to repeated acquisition of data from a single individual or a small group of
individuals over time to reach clearer insights into individual-specific trajectories of
brain development as compared to group average statistics which do not allow for
such detailed individual level investigation. Hence, here, we showed how brain age
predictions perform for the same individual at various time points and validated
our findings with age-matched healthy controls. We used an established brain age
model producing brain age estimates from minimally processed T1-weighted magnetic
resonance imaging data.
Methods: We used the pre-trained deep neural network pyment to predict brain ages
from densely sampled T1-weighted magnetic resonance imaging data from three
individuals (BBSC�-�, N = 3) scanned in total MBBSC = 103 times over a one-year
interval, and an independent data set including one individual (FTHP�, N = 1) scanned
MFTHP = 557 times over a three-year interval. To assess scan quality, we use (a) scanner
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field strength and (b) quality control parameters derived from MRIQC, including (�)
noise measures: contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), coefficient
of joint variation of grey and white matter (CJV), (�) measures based on information
theory entropy-focus criterion (EFC) and foreground-background energy ratio (FBER),
(�) white-matter to maximum intensity (WM�MAX), and (�) other measures: full-width
half-maximum (FWHM). These parameters were then associated with the derived
brain ages to examine potential sources of brain age variability. We validated the
findings of an effect of field strength in FTHP� using locally collected cross-sectional
data of healthy controls from the TOP and the Norwegian Cognitive NeuroGenetics
samples, together N1.5T = 209 and N3T = 856.
Results: We found small within-subject correlations between age and brain age. These
correlations were stronger when more data were sampled over a longer period of time.
However, the magnitude of deviations between chronological ages and brain ages were
relatively stable within subjects, but showed strong discrepancies between individuals.
This was accompanied by different QC metrics being more and less predictive of brain
age, both dependent on the individual and the sample: EFC and FBER were significant
predictors of brain age in the BBSC sample, yet none of the QC metrics predicted
brain age in the FTHP suject. Overall, there were no replicable patterns of QC metrics
associations with brain age, rendering QC effects as inconclusive. However, we found
evidence for the influence of field strength on brain age in FTHP� which replicated
in the cross-sectional validation data. The findings showed lower prediction errors at
�.�T compared to �T, whereas predictions were characterised by generally higher brain
age estimates at �.�T compared to �T.
Conclusions: Brain age estimates are potentially influenced by acquisition parameters
and scan quality. Particularly the field strength was shown to influence brain age
estimates using the �D convolutional neural network pyment. While the influence of
acquisition protocol was presented previously, the identified confounding effects of
field strength were a novel finding. An avenue for future brain age modelling could
be to employ multiple, more specific models, tuned to developmental and individual
differences and acquisition parameters. For example, dependent on the available data,
one could train models for certain age ranges and field strengths.

�.� Paper D: Brain asymmetries from mid- to late life and hemi-
spheric brain age

Background: The brain demonstrates various age-sensitive asymmetries. Addition-
ally, there are several differences in brain asymmetry between healthy controls and
disease groups, including neurodegenerative diseases such as Alzheimer’s disease and
Parkinson’s disease, and psychiatric disease such as obsessive–compulsive disorder.
This outlines the clinical utility of assessments of brain asymmetry. Yet, a systematic
mapping of grey and white matter asymmetries (i.e., across metrics) from midlife to
old adulthood during healthy ageing is still missing. Hence, we set out to map brain
asymmetries throughout midlife to older ages and the relationship of such asymme-
tries with age. Furthermore, we extended the concept of brain age, the estimation of
chronological age from sets of neuroimaging features, by differentiating between left
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�.� Paper D: Brain asymmetries from mid- to late life and hemispheric brain age

and right brain ages estimated from diffusion-weighted, T1-weighted, and multimodal
magnetic resonance imaging (MRI). Such extension was investigated in order to pro-
vide brain age estimates which not only reflect brain asymmetries but also allow for
proxies of these asymmetries by comparing left to right brain ages.
Methods: After quality control (including corrections for noise, Gibbs-ringing,
susceptibility-induced and motion distortions, and eddy current artefacts), and isotopic
smoothing, we estimated conventional and advanced diffusion approaches. The diffu-
sion approaches included Diffusion Tensor Imaging, Diffusion Kurtosis Imaging, the
Spherical Mean Technique and its multi-compartment extension the multi-compartment
Spherical Mean Technique, the Bayesian Rotationally Invariant Approach, and White
Matter Tract Imaging, an extension of Diffusion Kurtosis Imaging. Tract-based spa-
tial statistics were applied to estimate region and tract level averages across both the
John Hopkins University tract and region atlases of multiple diffusion approaches. For
T1-weighted images, we select the Desikan-Killiany atlas as a parcellation scheme after
using the standardized Freesurfer cortical reconstruction (recon-all) pipeline, which
estimates metrics for volume, surface area and cortical thickness. From these esti-
mated regional features, we select regions specific to either left and right hemisphere
(discarding regions and tracts which cross hemispheres).

We presented brain asymmetries from multimodal magnetic resonance imaging
(MRI) UK Biobank (N > 39, 500) data using the laterality index for region-averaged
and global grey and white matter microstructure metrics. We furthermore showed
how to leverage brain asymmetries by estimating hemispheric brain age from the left
and right hemisphere separately instead of from the whole brain. Finally, we assessed
whether the laterality index of hemispheric brain age is similarly age-associated as the
laterality index of brain features.
Results: Left, right, and whole-brain age predictions are strongly correlated across
modalities and show similar prediction errors. We found no significant influence of
hemisphere, modality or handedness on hemispheric brain age, but age-sensitivity of the
hemispheric brain age asymmetry. Moreover, we showed that various cardiometabolic
risk factors concordantly related to hemispheric brain age.

Most grey and white matter features were asymmetric, with these regional asymme-
tries presenting themselves with moderate to high effect sizes. Interestingly, asymme-
tries could even be observed when observing hemisphere-wide averages by comparing
age-curves for the examined multimodal MRI metrics between left and right hemi-
spheres. The presented regional metrics were also age-sensitive, yet only around ��%
of the T1-weighted and ��% of the diffusion-weighted features’ asymmetries were
age-sensitive. The regional asymmetries presented a pattern of larger asymmetry at a
higher age across grey and white matter, but lower brain age asymmetry, whether brain
age was calculated from T1-weighted, diffusion-weighted or multimodal MRI data.
Our findings highlighted several brain regions’ asymmetry as particularly age-sensitive.
These include WM asymmetries in the cingulate which were strongest in their positive
age-associations, and cerebral peduncle and superior longitudinal fasciculus metrics’
asymmetries which were consistently strongly associated with age. For T1-weighted
metrics, largest negative age-associations were observed for asymmetries in the lat-
eral ventricles, putamen, hemispheric white matter, and cerebellum volumes, as well
as rostro-middle thickness. Largest positive associations with asymmetries included
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accumbens volume, WM surface area, amygdala volume, caudal anterior cingulate
thickness, and WM volume.
Conclusions: Our findings emphasise the presence of brain asymmetries in both grey
and white matter. These metrics and their asymmetries are largely age-dependent,
and appearing higher later in life. These benchmarks can inform further research both
investigating fundamental as well as clinical questions. Hemispheric brain age can
be used to assess brain health specific to a single hemisphere, and asymmetries in
hemispheric brain age capture the general trend of decreasing asymmetry in white
matter.

�.� Paper E: Distinct longitudinal brain white matter microstruc-
ture changes and associated polygenic risk of common psychi-
atric disorders and Alzheimer’s disease in the UK Biobank

Background: While there are multiple studies examining white matter microstructure
in cross-sectional data, well-powered studies examining white matter ageing are still
lacking. Additionally, the different studies usually analyse either region-averaged or
voxel-level changes, supplemented by global average scores. Studies giving a systematic
overview across these levels of analysis, or beyond diffusion tensor imaging are still
lacking. Finally, while the field of imaging genetics is experiencing an immense growth,
polygenic risk associations in longitudinal data are also a rarity. Thus, associating the
polygenic risk of a given person with the trajectories of their brain changes is a valuable
step of adding a practical component to identified patterns of changes. Additionally,
at this point there is no studies giving a broad overview of white matter associations
with polygenic risk scores of common brain and psychiatric disorders.
Methods: We use the UK Biobank repeated measures diffusion MRI data of N = 2, 678

participants (��.��% females), which was taken at two time-points with a mean
inter-scan interval of �.��±�.�� years. Additionally, we use the portion of the UK
Biobank cross-sectional sample which was not included in the longitudinal sampling
N = 31, 056 as a validation sample for cross-sectional investigations of polygenic risk
score associations with white matter metrics. After quality control exclusions, tract-
based spatial statistics (TBSS) were estimated for conventional and advanced diffusion
models, and statistics run within the confines of the fractional anisotropy white matter
skeleton. We estimated polygenic risk scores for Alzheimer’s disease and common
psychiatric disorders, including Major Depressive Disorder, Bipolar Disorder, Anxiety
Disorder, Autism Spectrum Disorder, Schizophrenia, Attention Deficit Hyperactivity
Disorder, and Obsessive-Compulsive Disorder. These polygenic scores were informed
by previous large-scale genome-wide association studies.
Results: Our findings demonstrated lower global and regional fractional anisotropy, the
intra-axonal water fraction, and kurtosis metrics at higher ages. In contrast, axial, radial,
and mean diffusivity metrics as well as free water and extra-axonal water fractions
appeared higher at higher age. These findings highlighted fornix and cingulate
which presented strongest age-associations over time. Additionally, the annual rate of
white matter change accelerated at higher ages for most examined diffusion metrics,
indicating naturally occurring accelerated ageing at higher ages. Voxel-level analyses
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�.� Paper E: Distinct longitudinal brain white matter microstructure changes and
associated polygenic risk of common psychiatric disorders and Alzheimer’s disease in

the UK Biobank
showed general trends of decreasing anisotropy, and variable spatial patterns for other
diffusion metrics, indicating differential changes in frontal compared to other brain
regions. By assessing associations of global and regional white matter change with
polygenic risk scores, we provided practical implications of the presented age-related
changes. We identified strongest and most consistently associated with Alzheimer’s
Disease polygenic risk scores with the annual change in inferior cerebral peduncle.
Fornix and cingulate annual change presented some of the strongest polygenic risk
associations with different psychiatric disorders.

Conversely, considering cross-sectional measures of white matter, global averages of
multiple diffusion metrics were particularly associated with Alzheimer’s polygenic risk
in the observed longitudinal sample, which was however not the case in the validation
sample, which showed stronger associations with autism spectrum disorder. Regional
cross-sectional white matter metrics showed spatially distributed associations with
the polygenic risk of several disorders, consistently presenting strongest and most
significant associations in the limbic system and brain stem. Finally and importantly,
polygenic risk scores for Alzheimer’s Disease and psychiatric disorders were stronger
related to the annual rate of change than cross-sectional WM measures.
Conclusions: The presented results indicate that demyelination processes and WM
disintegration are heterogeneously distributed across the brain during midlife and
older ages. Differences in water compartments’ diffusivity suggest weaker plasticity
in the frontal regions during this short time. Importantly, longitudinal changes of
white matter reflected the genetic risk for disorder development better than the utilised
cross-sectional measures. Moreover, the spatial pattern of these brain-gene associations
is distributed, indicating that certain brain regions correspond more to one or a set of
polygenic risk scores than others. For example, such as the Our results underline the
importance of longitudinal data analyses in understanding of the ageing brain and its’
genetic underpinnings.
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CHAPTER 4
DISCUSSION

In this this project we investigated the question: How is the human brain architecture
affected by healthy ageing? The goal was to identify concrete brain tissue biomarkers
of healthy ageing / brain maturation, including white matter microstructure features
as a main feature, brain age as well as grey (thickness, volume, surface area). Such
biomarkers can be potentially explored as clinical markers of different disorders.

The identification of brain biomarkers has been done from a conceptual and
methodological perspectives by validating the various biophysical diffusion approaches
of white matter, and by using brain age models on both grey and white matter features.
From a practical point of view, the white matter age-association and brain age analyses
outlined central and ventricle-near areas, such as the fornix and the forceps minor,
as central age-associated regions. These findings are, hence, not only part of the
biomarker or brain age literature, but also relevant in the broader context of white
matter organisation and brain ageing pathways. Overall, our results contribute to a
better understanding of the ageing brain and white matter mapping.

In the following Discussion section, the revealed findings from the five publications
will be discussed in relation to each other and in the context of the research field.
The focus of the discussion will be methodological choices and considerations before
turning to brain age predictions, the identified brain regions which provide markers
of ageing and potentially of disease development, as might be identified by future
research, and, finally, ethical considerations.

�.� Methodological considerations

In the last decade, problems to replicate MRI findings were increasingly outlined
in a series of publications, underlying the importance of the issue [��, ��, ���, ���].
Limitations to the ability to replicate scientific findings are not unique to the field
of neuroscience, and exhibit varying manifestations through scientific practice [���].
Recent discussions in the human brain mapping community examine the revealed
scientific findings in terms of the statistical power for brain-behaviour associations
[��, ��, ���, ���, ���, ���]. In order to increase the statistical power of brain-wide
associations, one needs to either acquire sufficiently large data (e.g., from many
individuals) to detect small effects [���, ���], or, in the case of smaller samples, simply
observe phenomena which express large effect sizes, make use of within-subject designs
(i.e., repeated or longitudinal measures), or adapt analytical choices towards reducing
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the number of tests, for example, by diverging from voxel-by-voxel analyses [��, ��, ���].
The movement towards large-scale population representative data ("going big"), such
as the UK Biobank [���] allows one to obtain more detailed and generalisable insights
into brain ageing and, thereby to isolate brain biomarkers.

Another trend is the examination of densely sampled data from few subjects
[���, ���, ���]. Instead of sampling one or few data points from many participants,
many data points are being sampled from a reduced number of individuals. Such
"going small" approach allows one to focus on individual differences as well as a better
understanding of factors influencing measurement reliability [���]. Here, we made use
of both trends, by establishing models first using population-level data and attempted
to validate a brain age model in densely sampled data.

�.�.� Samples

Although the UK Biobank contains an enormous imaging sample compared to the
average samples reported in the literature [���], there are various biases which might
limit the generalisability of the obtained findings. First of all, the UK Biobank is
dominated by Caucasian individuals, with individuals holding another ethnicity being
underrepresented. To this end, the UK Biobank could be seen as representative of
parts of the North European and North American population, also known as WEIRD
(Western, Educated, Industrial, Rich, Democratic) population [���]. Yet, a potentially
even larger problem is the bias introduced by the health status of the sampled volunteers
[���]. This volunteer-based sampling strategy seems to have resulted in more healthy
participants compared to the rest of the population, rendering the UK Biobank as
potentially not even representative of the UK population [���, ���, ���].

The sampling bias in densely sampled data sets is even more apparent. Here,
only a very small selection of participants is observed, usually convenience sampled
from the same lab [���, ���, ���]. This comes very clear in Study C, where the
individual differences are highlighted when examining brain age prediction. Here,
particularly one individual shows consistently strong deviations of the prediction
from the chronological age of on average nearly �� years. While it is not possible to
generalise to the broader population from such case-study like "low N investigations",
important lessons can be learnt about the measurements, which can directly inform
clinical use cases. For example, the case of the large brain age gap of the one participant
in Study C illustrates the limitations of brain age models applied on the individual
level compared to group statistics as usually done when validating machine learning
models: group-level statistics of model performance do not necessarily correspond with
longitudinal/repeatedly sampled data from the same individual. Yet, such tests are an
invaluable part of moving potential biomarkers such as brain age towards clinical use.
Finally, and equally valid across the utilised longitudinal data sets, longer inter-scan
intervals would likely be fruitful and a better source of information. However, multi-
wave longitudinal data with population-level samples and long inter-scan intervals are
yet to be established.
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�.�.� Brain Metrics

Across studies we used T1-weighted MRI but mainly diffusion derived images and
presented age associations (using voxel-values, region-averages, and whole brain
averages) as well as brain age predictions based on region- and whole-brain-averaged
metrics. Brain metrics are usually averaged for simplicity, explainability, but at times
also to maximise statistical power by reducing the number of tests run. The reduction
in the number of statistical tests of the same hypothesis increases statistical power
compared to the scenario where a larger number of features is being tested on. Across
studies we noticed, however, an information loss when averaging across the brain.
On the one hand, region-averaged features provided specific and explainable age-
associations. For example, we observed lower fractional anisotropy at higher ages
in most white matter regions, giving an intuition about white matter degeneration
as part of the healthy ageing process. Additionally, averaging over populations of
voxels provides more stable estimates than voxel-level estimates, for example, from
the standard model of white matter diffusion [��]. On the other hand, voxel-based
analyses might be a more sensitive method to detect age-related changes, as they
provide finer-grained spatial details. Averaging across voxels might mask such details.
However, voxel-level analyses require large enough samples to be sufficiently powered,
and might otherwise lack specificity [��] and sensitivity [���]. When using more
recent cluster-based corrections to increase specificity, such as Threshold-Free Cluster
Enhancement (TFCE) [���], sensitivity might still be limited (and lower than for
uncorrected analyses), especially when effect sizes (e.g., of age or time point differences)
are small [���]. However, large samples, as used in this work, provide sufficient power
and hence large enough sensitivity for voxel-level analyses [���].

Furthermore, the selection of parameter settings for voxel-level analysis might
be arbitrary, resulting in low replicability or even reproducibility (e.g., using tract-
based spatial statistics analysing diffusion MRI [��]). After the results are obtained, a
remaining step is the inference from these findings, often involving a subjective level of
highlighting results [���] and a discrepancy between verbal expressions and statistical
observations [���]. This gap between statistical outcomes and their presentation
and interpretation induces bias and limits reproducibility as well as generalisability
[��, ���, ���].

In the hope to reduce the outcomes’ dimensionality and to deliver concrete (and easy-
to-interpret) markers, machine and deep learning models can be employed. Machine
learning models such as tree boosting algorithms show excellent performance on tabular
data [���] and offer explainable outputs, such as feature importance rankings (as an
alternative to scale-less feature gain). Deep learning models show better performance
on more complex data, both in �D [���, ���] and �D data [��, ���, ���, ���, ���] data.
However, to establish explainability of predictions is more difficult than for simpler
models [���]. With other words, certain models of different complexities will fit better
based on the characteristics of the data, which ultimately impacts model performance
(e.g., in case of brain age predictions using �D convolutional neural networks (CNNs)
[��, ���, ���, ���, ���]) . On top of this consideration, the features which are feeding
into a model can also be used to design additional features. This feature design
practice can involve various different methods and steps to ultimately improve the
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model’s performance. For example, engineering features and their dependencies using
patch-wise grading based on image similarity metrics leads to high brain age model
performance [��], which is longitudinally reliable [��]. At the same time, heavily
processed features might decrease the explainability component of a given model,
meaning that even when implementing steps to make model choices transparent, the
design of the features might still not allow for clear conclusions from the model choices
such as weightings of features, for example, due to highly abstract features [���]. Hence,
both data and models are important in any inferential statistical context [��]. Therefore,
we present in the following first different considerations on feature extraction from
T1-weighted and diffusion MRI which (form the data and hence) lay the foundation
for modelling choices. We then discuss the concept of brain age, its potential, its
limitations, both in general and in the light of how the concept is commonly used, and
finally future directions for brain age research.

�.�.�.� Diffusion MRI

Diffusion MRI allows us to reformulate water diffusion, based on the assumptions of
geometrical models, and extract a wide range of tissue parameters. These parameters
could be used as biomarkers, in the framework of this project via age-associations.
There is a standard diffusion model containing a series of white matter metrics [��, ���].
However, the standard diffusion model is ill-posed and possesses degeneracies [���].
While diffusion tensor imaging has been established as the predominant approach for
white matter modelling, due to the relative simplicity of diffusion tensor imaging (DTI),
it is limited in various aspects. A gold standard for which white matter microstructure
approaches to preferably use is still to be established and requires thorough systematic
examinations of the approaches in clinical and non-clinical settings. Hence, while the
white matter metrics extracted by different diffusion approaches are informative for a
better understanding of white matter ageing and a range of diseases, there is also no
unified theory of white matter microstructure ageing [���].

In this project, we performed a comprehensive comparisons of multiple state-of-the-
art diffusion approaches in relationship to age. We have revealed differences in the age-
associations of the single approaches’ metrics in parallel to relatively coherent pattern
of associations outlining the stability of the standard diffusion model independent on
the applied diffusion approach (such as DTI, DKI, BRIA, SMT, SMTmc, WMTI). In that
sense, one could argue that diffusion models such as the Bayesian Rotationally Invariant
Approach (BRIA) might be a preferable choice, as multiple intra and extra-axonal
metrics on both diffusion metrics, fractional anisotropy, and cerebrospinal fluid are
provided. However, due to the different biophysical assumptions of the different
diffusion approaches and the resulting differences in the models sensitivity to different
bio-physical phenomena, multiple models can act as complementary to each other.
Furthermore, different analytic strategies will consequently influence the results, and
limit their comparability. For example, in the presented studies here, we chose to
conduct analyses using the FA skeleton. The FA skeleton-based approach minimises
confounders such as partial volume and normalisation-resulting misalignment effects
[���], leading to exact estimations of voxel-level and whole-brain metrics.

Yet, TBSS and its FA projection procedure have also various shortcoming based
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on the procedures’ underlying assumptions [��]. Only the highest FA values serve to
establish the FA skeleton, as these values are thought to represent the centre of the
tracts. This procedure can result in the loss of information [���] and the introduction
of artefacts [���], usually produced by misalignments [���]. The alignment depends
on how homogeneous the sample is and is influenced by noise [��]. In case of large
between subject differences, the skeleton estimation will show inaccuracies, for example,
when examining disorders affecting the white matter. This is also true for smaller or
thinner tracts, such as the fornix [��]. These issues are not resolved by increasing the
resolution [��]. However, previous studies have shown excellent reproducibility [�] and
test retest reliability [���, ���, ���, ���, ���] of FA skeleton derived values in different
age groups. Furthermore, the utilised sample was relatively homogeneous and large
enough to reliably identify main tracts (see Appendix � for global and Appendix � for
region-averaged test-retest reliability of the utilised metrics in the longitudinal sample).

Moreover, when considering region-averaged metrics, there are several issues with
proposed atlases. On the one hand, there will not be any one atlas which perfectly fits
all brains. On the other hand, the FSL implementation of the most commonly used
(John Hopkins University (JHU)) white matter atlas shows considerable problems.
Namely, the region labelled tapetum in the JHU is a region that does not overlap
with the actual white matter contained in the mean FA skeleton in the UK Biobank
(see Figure �.�). This is consistent with a previous study [���] showing that this is a
persistent problem across FSL versions.

Fig. �.�: The figure presents the tapetum white matter according to the John Hopkins
University white matter atlas label (blue) overlayed by the mean fractional anisotropy
skeleton (grey). The cross is located at the following MNI coordinates: x=��, y=��,
z=��.

Moreover the JHU regions labelled fornix stria terminalis overlap to a minimal
extend with the mean FA skeleton in the UK Biobank (see Figure �.�). Such missing
overlap in a parcellation scheme is problematic as it leads to averaging over voxels not
containing any true signal but only noise. Hence, region-averages for tapetum and
fornix-stria-terminalis can be assumed to be measures of random noise in the mjority
of cases in the FSL releases (up to the end of ����, the date of this work).

Other regions approximate the WM skeleton better. However, research is currently
ongoing examining the implementation of different atlases across commonly software
packages. While such mismatches between atlases (or their software implementations)
and the true skeletal data are limitations, the TBSS WM skeleton approach is otherwise
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Fig. �.�: The figure presents the fornix stria termininalis white matter according to the
John Hopkins University white matter atlas label (blue) overlayed by the mean fractional
anisotropy skeleton (grey). The cross is located at the following MNI coordinates: x=��,
y=��, z=��.

robust to various confounders as introduced for example by partial voluming or
misalignments resulting from spatial transformations [���].

While there are multiple other approaches, for example, using supervised or semi-
supervised tract reconstruction algorithms, such as TRActs Constrained by UnderLying
Anatomy (TRACULA) in Freesurfer [��], such approaches deliver results which are
not directly comparable to the results obtained from TBSS, and cannot account for the
described microstructure modelling. Furthermore, these methodological advances
are an active field of research and their yet low accuracy (as suggested in [���]) is
to be improved. Fixel-based analyses [��], another approach of analysing diffusion
MRI data, might hold promise for further microstructure and especially fibre-specific
explorations. Yet, the framework still requires additional validation and translation, as
well as (and similar to the other approaches of analysing diffusion data) work on the
interpretability of produced metrics [��].

Overall, more work is required to verify the different diffusion approaches and
their practicality against each other. This does not only include working towards a
theory of white matter microstructure ageing, but also a more basic understanding of
the different metrics to allow clearer connections between the metrics and biophysical
processes such as axonal decay.

�.�.�.� T1-weighted MRI

The most commonly used metrics which can be extracted from T1-weighted MRI are
the volume of cerebrospinal fluid, grey and white matter, the surface area of both
grey and white matter, as well as grey matter thickness. These metrics are based on
probability values for the respective tissue classes [��]. Their estimates were found
to be increasingly more reliable at more recent Freesurfer versions [���]. However,
different processing pipelines will influence the estimates [��, ���], just as software
versions [���, ���], and scanner/acquisition site [���].

Hence, standardised protocols, such as the Human Connectome Project proto-
col [���], and analysis pipelines, such as sMRIPrep (https://www.nipreps.org/
smriprep/), might add to standardised protocols and less variability due to design,
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processing, and analysis choices. However, using standardised pipelines also restricts
the flexibility when exploring new methods. While this was not true for T1-weighted
data used here, in the presented studies on white matter microstructure, we used vari-
ous methods which are not implemented in standardised pipelines, requiring in-house
code.

Finally, region averages are dependent on the selected parcellation scheme, which
will consequently also influence the results of analyses on the obtained average scores.
We used a relatively fine-grained parcellation scheme, for a higher number of features
to be fed into brain age models. Other atlas solutions which are even more fine-
grained use post-mortem data [���], allowing for the gene mapping of tissue properties
[���, ���], or offer mappings of brain metabolism, including neurotransmitter as well as
molecular systems [��, ���, ���, ���, ���, ���]. More recent atlases include information
from multiple modalities, for example, using multiple MRI modalities [���]. A new
frontier is to combine atlases to incorporate anatomical, metabolic, and immune system
features applying normative models [���], which can in the future be extended to more
advanced multi-modal atlases.

�.�.� Brain age predictions

What does brain age actually measure? This question seems obvious at the first look.
Nevertheless, the answer to this question is not so straightforward. Instead, additional
details need to be addressed and additional definitions formulated. From the literature
(see review [���], and the executed studies B & D in the present project), brain age
appears as a general marker of health. While pathology and associated tissue changes
lead to higher brain age values, brain age has a low level of specificity to any particular
disorder. There are some examples with extremely clear difference in terms of brain age
such as Alzheimer’s Disease (and neurodegenerative disorders in general) compared
to other brain and psychiatric disorders [���, ���].

Brain age limitations. While such findings are intriguing, there are several deeply
rooted and unanswered questions attached to brain age. The potentially most prominent
problem is the definition of brain age itself. First, while the chronological age provides
a ground truth for predicting brain age, there is no ground truth for the brain age gap
(the difference between brain age prediction and chronological age), which is meant
to describe biological processes connected to age. Other machine learning problems
might have hard ground truths such as disease labels, which is, however, not the
case for brain age prediction models. Hence, the brain age gap on its own is limited
and might rather be supplemental than a stand-alone marker. Second, brain age is
dependent on age, and hence, the brain age gap is not necessarily an objective criterion
for certain biological (e.g., ageing) processes. Instead, as brain age is usually based on
cross-sectional data, both brain age and the brain age gap might simply represent a
sample’s (feature’s) age-dependence, but not be telling for ageing processes [���].

Previously, it has been discussed that the sample-specific bias in brain age can
be corrected after brain age calculations [��], optimally using training data age and
brain age characteristics applied to the test set [��]. However, corrections for age-
dependencies should potentially be executed on each feature before starting the training
process, instead of executing post-hoc corrections on the already executed predictions
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(based on the test set). This might tease apart dependencies between age and brain age
from dependencies between the brain and brain age. Such experiments are currently
ongoing. The reason for this is that brain features are inherently age-dependent and
hence biased [��, ��, ��]. This goes beyond the problems any post-hoc brain age
bias-correction method can address, as the features used to train a model contain
sample-specific age dependencies [��].

Another consideration, besides residualising brain features prior to the model
training, is to treat training features completely differently: Namely, by subjecting
the features to previously established normative models, which results in a set of
expectancy or Z-scores. These new features, which are informed on large population-
level trained models, can establish another training basis than commonly used features
for brain age predictions. Such approach would transfer the age-dependency problem
to another level of consideration, increasing the complexity of the modelling process
and, hence, potentially decreasing the replication of such studies. The reason is that,
now, a previously trained normative model needs to be employed to establish the
brain age model training data. The training data of the normative model must fit the
data which is to be used for the brain age modelling. This entire process increases
researchers’ degrees of freedom [���], characterised by, among others, arbitrary and
subjective decisions. Questions such as which normative model to employ and how to
employ the model must now be addressed, and the complexity of the research process
is generally increased.

Other options are to change the label altogether and rather predict more clinically
relevant scores [���], or their latent classes, allowing the prediction of meaningful units
of multiple labels at the same time. Transfer [���] and composite learning approaches
(i.e., combining algorithms [���, ���]) might help to assemble more complex models,
which better depict the complex reality of the human body. Finally, the potentially most
meaningful approach is to create multimodal data assembles which go beyond imaging-
only data, but rather towards combining multiple data sources to establish integrative
biomarkers, such as health registry data from different assessments, demographics,
and imaging markers [�].

The age dependency of the brain age gap (BAG; the difference between brain
age and chronological age) and how brain age can reflect brain ageing processes are
not straightforward when examining relatively short-term changes in UK Biobank
T1-weighted data [���]. Based on longitudinal evidence from a stroke intervention
[���], BAG shows time-sensitivity. This is contrasted by another study, including
patients before and after stroke, which presented no time dependence of the BAG but
instead an association of BAG with the extend of neurocognitive disorder / cognitive
function [�]. Hence, one could assume that for brain changes to become detectable
with brain age, these changes need to be fairly dramatic (either pathology or atrophy
over a prolonged period of time).

Finally, brain age can be estimated from various modalities, such as different MRI
sequences [��, ��], producing different estimates. Moreover, as we show in Study D,
these brain ages are differently associated with age. Furthermore, various acquisition
parameters influence brain age [���], which was also shown by the influence of field
strength and indications for an influence of scan quality in Study C. Another factor
influencing brain age estimates is the selection of features and their usage [���, ���].
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There is no unique or strict answer on which algorithm to pick, beyond the indication
that deep learning methods are useful for �D and �D data, and assemble algorithms,
such as XGBoost, for tabular data. However, there is some evidence that XGBoost detects
cognitive impairment with higher sensitivity [��]. In the case of brain age predictions
from tabular data, the choice of algorithm remains arbitrary due to many researcher
degrees of freedom, such as parameter and hyperparameter tuning choices, and the
lack of ground truth for the brain age estimates. In other words, the many decisions
about how to train models using very different algorithms can make comparisons (even
using common metrics [��]) arbitrary. Moreover, beyond age distributions, variations
in brain age might be either due to model error or biologically meaningful information.
Hence, one could speculate that predictions with slightly higher error might simply
indicate a higher sensitivity to the underlying biology, which would be in contrast to
the engineering approach of building the best prediction model by reducing prediction
error.

While variability in approaches of brain age model building is not a problem, the lack
of reporting of such variability might give a wrong impression of homogeneity across
brain age models. There are multiple aspects which influence brain age predictions:
the underlying data, data processing and exclusions, feature engineering and selection
procedures [���], algorithms [���], or brain age bias correction strategies [��, ��], just to
mention a few. The result is that brain age studies are difficult to compare [��], and that
brain age associations with phenotypes, estimated on the same sample, depend on the
combination of pipeline and algorithm [���]. Yet, some brain age studies indicate that
the same underlying data subjected to the same feature engineering will produce similar
results when changing algorithms [��, ���] or when keeping the algorithm constant
but changing the feature processing / engineering (Study A & B). Furthermore, the
imaging modality and hence also the tissue influence both brain age predictions and its
associations with different phenotypes [��, ��, ���, ���] (see also Study D). Finally, also
acquisition parameters such as field strength influence brain age predictions [���] (see
also Study C). Therefore, a more realistic depiction of brain age would be to mention the
tissue and potentially the scanner and key acquisition and image processing parameters,
such as "Siemens Skyra �T Stejskal-Tanner pulse sequence FSL-TBSS skeleton average
UK Biobank (WM) brain age", as obtained in multiple studies of this project. Other
suggestions would involve the sharing of materials, code, models, and data as far as
possible, in order to encourage and maximise reproducibility of the results. Only
recently, repeated efforts focused on validating brain age models against each other
[���, ���, ���]. Yet, there many more opportunities in order to improve brain age
predictions and to build better models which reflect biological processes such as
changing features, varying age ranges, or using recent machine learning approaches of
confederate and ensemble learning or re-trainable and transfer-learning models.

Steps ahead for brain age. The outlined limitations of the concept of brain age
do also restrict the process of translating the marker into clinical practice. However,
multiple avenues can be taken to improve brain age models. One approach could be to
move away from a single and general predictive model and rather towards a cluster of
models. More specific models on a more narrow age-range might be more meaningful
considering heterogeneous and non-linear ageing.

A complementary approach would be to establish brain age models based on
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previously available information about certain disease states and their developments.
For instance, if it is clear that only a set of features is relevant in a disorder group, one
could train a model on healthy controls’ data on the relevant features (e.g., metrics
restricted to a set of brain regions). While there were no clinical samples included, an
example of such approach was presented in Study D, where the conventional concept
of brain age was extended by estimating brain age separately for each hemisphere.
Such approaches can also be more specific and estimated on smaller brain regions, as
done by Kaufmann and colleagues [���]. However, approaches such as the examined
hemispheric brain age need to be further validated, tested for different disorders (such
as unilateral stroke or epilepsy), on different datasets, and, potentially, using different
levels of analysis (voxel-based and region averaged).

Bain age predictions have relied heavily on T1-weighted MRI data, with less work
focusing on dMRI. A specific gap to be filled in this context is the focus on voxel-based
brain age predictions utilising dMRI data. One approach could be using CNNs on
FA skeleton data to build brain WM-specific age models. New models should also
include measures of uncertainty such as confidence intervals, as proposed by Hahn and
colleagues [���], and focus on higher levels of model explainability (of the predictions)
instead of only reducing prediction errors.

New models might also allow to better explain and add meaning to brain age
estimates. Brain age seems to be influenced by multiple covariates which require careful
mapping [���, ���]. Hence, brain age might also be considered as a dependent metric
which becomes more meaningful when embedded in a structure of other markers.
Thus, advanced statistical modelling, such as structural equation modelling might
allow to better understand the multifactorial embedding of brain age and thereby its
contributions to certain outcomes (see for an example study on the developmental
trajectory in preterm neonates [���]). Brain age could also be used to improve clinical
predictions, not only of diagnoses, but also prognoses for disease such as Alzheimer’s,
as brain age is associated with various neurodegenerative disorder biomarkers [��, ���].

Finally, more validation and replication work is necessary to establish generalisable
models with the ability to robustly predict clinical outcome. A first step is to transpar-
ently report procedures in the respective studies and to share models, data, and code.
The next step is to critically evaluate predictions both on a group level and on a single
individual level, as done in Study C. Only after appropriate and stringent validation
procedures, brain age models can be moved closer to make a true impact in clinical
settings.

�.�.� Imaging genetics

Imaging genetics comprises tools which allow the exploration and evaluation of genetic
polymorphisms of the brain [��]. Such biological underpinnings of brain morphology
(and its changes) are not apparent when observing associations of morphology and age
or behaviour on their own, and can provide insights about potential mechanisms of the
ageing brain associated with the development of disorders [��, ���, ���]. While there are
multiple methods to assess brain-gene associations, we chose to examine associations
between WM and polygenic risk scores (PGRS) of common psychiatric disorders as
well as Alzheimer’s Disease (Study E). PGRS describe a person’s genetically determined
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propensity to develop a certain brain disorder based on previously conducted genome-
wide association studies (GWAS) [���]. Hence, PGRS leverage already conducted and
well-informed studies to estimate risk scores in independent samples. Thereby, PGRS
allow for direct inference without the necessity of genetic discovery or validation in the
same study as would be necessary in GWAS [���], and without the loss of statistical
power [��] as a result of sample splitting for validation.

We identified small effects, which is consistent with association strengths reported
in the literature, particularly using WM-PGRS associations in the UK Biobank [�, ��, ���,
���, ���]. In the literature, such small effect were also observed when using T1-weighted
MRI [�, ���, ���], and both larger samples with different age distributions, examining,
for example, attention deficit hyperactivity disorder (ADHD) PGRS-WM associations in
adolescents [�], or young adults [���]. We do also not identify significant associations,
which is a function of the observed small effect sizes paired with a conservative approach
of adjusting the ↵-level (Bonferroni correction, Study E). The absence of significant
effects was however also outlined in a previous review of schizophrenia PGRS with
brain structure [���]. These findings show that mere disease PGRS associations with
WM might be limited when examining largely healthy controls. Another argument
might be that other, crucial third variables were not included in these analyses, such
as behavioural measures, which will be subject of future investigations. However, we
revealed an important effect of PGRS being stronger associated with the annual change
in WM than cross-sectional measures. A previous study shows that longitudinal
examinations associated higher PGRS with stronger WM degeneration, parameterised
by DTI, in Parkinson’s disease [���]. We made similar observations across brain regions.
Yet, certain brain regions show stronger associations with PGRS of different disorders
(Study E). Future work might, hence, focus on singular regions, other approaches to
boost statistical power [���], use larger cohorts, and more embedded analysis strategies
such as structural equation modelling.

�.� Brain region-specific biomarkers

In each of the present studies, we presented age associations at different spatial scales.
We benchmark age associations of global or whole-brain WM metrics by using the
largest yet available cross-sectional and longitudinal sample, the UK Biobank. Our
results provide a general idea of expectable trends when examining different samples,
which might be smaller research or clinical samples. The observed trends include lower
multi-compartment fractional anisotropy, intra-axonal water fraction, and kurtosis
values, and higher axial, radial, mean diffusivity metrics, as well as free water at a
higher age. Feasible treatment targets or biomarkers would optimally entail high
spatial specificity. Hence, one possibility to establish biomarkers is to localise different
markers specific to one brain region, to then establish predictive models based off these
localisations [���]. However, several unsuccessful clinical explorations using electric
stimulation of identified target areas [���] suggest that, in addition to appropriate
models, a more nuanced understating of the biological process is necessary before
implementing interventions. Here, we identified various associations of central and
deep brain regions – corpus callosum, brain stem, cerebellum, the limbic system and
the ventricles – with age, ageing and the polygenic risk of Alzheimer’s Disease. In the
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following, we will discuss the findings of the presented studies, outlining repeatedly
central, deep brain areas, close to the ventricles as particularly related to ageing and
polygenicity of psychiatric disorders and Alzheimer’s disease. We will also discuss a
brain region of which different aspects were repeatedly observed as strongly associated
with age: the fornix, and how these regions might potentially become useful clinical
targets.

�.�.� Do central brain regions hold the key to ageing and disease?

Based on the observations of the presented studies and a large body of literature, one
could expect that the presented deep brain regions close to the ventricles are both
involved in ageing-associated processes as well as psychiatric and neurodegenerative
disorders [��, ��, ��, ���, ���, ���, ���, ���].

For example, limbic structures, such as the hippocampus presents relatively high
levels of adult neurogenesis potentially explaining repeated findings of the region’s
associations with psychiatric disorders and disorder states such as depression, anxiety,
schizophrenia, addiction, and psychosis [���, ���], and neurdegenerative disorders,
especially Alzheimer’s disease (AD) [���], but also ageing in general [���]. Extending
this view, AD has been frequently linked to limbic system degeneration [��, ��, ���, ���],
which contains the hippocampus and other observed structures of importance in terms
of age-associations, such as the amygdala and the fornix. Hence, ageing might follow
a trajectory with more and less vulnerable brain regions, for example in accordance
to the "last-in-first-out" hypothesis of retrogenesis, stating that brain areas with more
complex structures and hence longer developmental periods in comparison to other
brain regions are also more vulnerable to negative ageing effects, such as degeneration
[���]. Translating the retrogenesis hypothesis to the presented findings could mean
that central brain regions, which develop first should also be some of the last to be
affected by age-related neurodegeneration. Neurodegenerating central brain areas
might therefore be a sign of advanced ageing. If the last-in-first-out hypothesis is true,
it still remains unclear whether last-in brain regions are also more vulnerable to lesions
and pathology, and whether this vulnerability shows cumulative effects towards a
higher age, and how this connects back to first-in brain areas [���].

Other possible explanations for limbic deterioration in healthy and diseased ageing
can be found when examining ventricular function. Ventricle enlargements have
repeatedly been shown as a general feature of ageing [��, ��, ���]. Importantly,
ventricular function is strongly related to the development of neurodegenerative
disorders and an important feature of this class of disorders [���, ���, ���, ���].
Potential links between ventricular enlargements and limbic structures, or generally
structures near the ventricles, might be impaired glymphatic and vascular functioning
influencing areas near the ventricles. This is also shown by relatively strong associations
of cardiometabolic factors and white matter [��, ��] and with AD biomarkers [��],
which is also reflected by cardiometabolic risk factor associations with WM brain age
(Studies B and D).

The extend to which these degeneration phenomena can be connected with hemo-
dynamics observed in younger samples requires further investigations. However,
there several studies reporting transdiagnostic patterns of up-regulated limbic net-
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works across psychiatric disorders [���] and more specifically hippocampal structure
[��, ���, ���, ���] and limbic and corpus callosum WM [���, ���, ���] as transdiagnos-
tic marker (which can already be observed in children [�]). Finally, also the cerebellum
(in Study E as cerebellar peduncle) has been associated with psychiatric [���, ���]
and brain disorders [���, ���]. This emerging evidence of the involvement of limbic,
cerebellar and corpus callosum structure and function in neurodegeneration and psy-
chopathology suggests the possibility of cortical transdiagnostic co-alterations being
partly dependent on subcortical (including limbic) circuit alterations [���]. Moreover,
there are observable differences between healthy controls and various psychiatric as
well as brain disorder groups when comparing limbic and ventricular volumes [��].
The biological underpinnings and clinical implications of these differences and how
they can be understood, for example, in the context of ageing and disorder-specificity,
require further investigation.

Overall, our findings support previously reported results in outlining the im-
portance of subcortical structures near the ventricles in ageing. AD fits well into a
conceptualisation of accelerated ageing considering the large spatial overlap with the
outlined structures. Psychiatric disorders show, however, larger variability and a more
complex and dynamic pattern of associated brain regions, in terms of their structure
and functions.

�.�.� The fornix – an ageing and disease biomarker?

The fornix is a central, C-shaped structure close to the ventricles, and the inmost, or
most central arch of the three arches of the limbic system [��]. Fornix is additionally a
connecting region between the discussed limbic system and the frontal lobes [���]. The
majority of the research questions of the presented cross-sectional and longitudinal UK
Biobank Studies A and E in the context of this project was addressed by presenting age-
association patterns of brain metrics and specifically white matter. These associations
pointed out the fornix as one of the most age-associated region.

The fornix has also previously been found as highly age sensitive [���], to develop
differently during Alzheimer’s Disease compared to controls [��], and is already used
as a therapeutic target when treating Alzheimer’s Disease with deep brain (electric
current) stimulation [���, ���, ���].

Previous studies have not only shown that white matter microstructural is sensitively
associated with clinical staging in Alzheimer’s disease outlining the importance of the
fornix in these associations [���] but also that fornix degradation occurs earlier during
diseased compared to healthy ageing [��]. Furthermore, white matter glial damage
might precede and potentially cause hippocampal and other limbic GM atrophy [���].
Hence, for example, Alzheimer’s disease related pathology, such as phospho-tau or
microtubule-associated protein tau gene (MAPT) neuropathology in hippocampus is
reflected in the fornix [���], rendering the fornix a potentially interesting treatment
target. Indeed, there is a growing body of literature on deep brain stimulation of the
fornix for Alzheimer’s disease [���, ���, ���] as well as focused ultrasound [���] (see
[���] for the general application of focused ultrasound). However, our findings require
further replication to exclude that the fornix findings are due to misalignment or partial
volume effects. If the presented findings hold, further advances are required in order

Chapter � ��



Discussion

to identify earlier and less invasive treatments or even prognostics, for which the fornix
might lend itself.

�.� Ethical considerations

Several large scale data sets were used in the presented projects. The data collection
procedures followed strict data protection policies and were approved by ethics
committees, such as the Regional Committee for Medical and Health Research Ethics
(REK, Norway), prior to their execution. Data management and privacy issues were
additionally evaluated and approved by the University of Oslo leading to the use of
the safe data environment / research server (TSD).

When doing research with human participants, there are several ethical considera-
tions that should be made. These are especially important when using sensitive data
such as brain images. Hence, we first discuss general ethical considerations concerning
the utilised datasets. Second, we detail ethical considerations on the use of machine
learning on medical data and clinical predictions.

As we used data sets collected in three different countries, also different procedures
were applied to these datasets: Most datasets were only treated within TSD, whereas
the Frequently Travelling Human Phantom (FTHP) dataset is openly available online
[���]. FTHP data were processed locally, whereas all other datasets were processed
within TSD. Only three utilised datasets, all used in Study C, were locally collected
in Norway (Bergen and Oslo). All other data were collected in Germany (FTHP) and
the United Kingdom (UK Biobank). The collections sides for these datasets were
abroad and collections conducted by other researchers. Hence, our control over how
ethical principles, such as data protection or participant information and rights, were
followed during data collection is limited. Nevertheless, based on the ethics statements
documented for each of the datasets [���, ���], it was and is still possible, in case of the
UK Biobank study, for participants to withdraw at any time or to skip certain parts of
the study. In case of the FTHP study, there was only one subject, a researcher himself,
willing to share his data publicly, disallowing the opt-out option. All data handled
with high confidentiality.

While this high level of confidentiality is important, there is also the question
whether it can be evenly unethical to not make data openly available so that other
researchers can use it [��]. The main motivation is to use data optimally in order to
avoid wasting participant time and efforts as well as, usually public, resources. While
MRI is safe, it can cause discomfort to participants: high levels of noise, a narrow
space inside the scanner, and not being able to move for prolonged periods of times are
standard features of the MRI scanning experience. Participants might also accept long
scanning sessions which are actually outside their comfort zone just to complete the
task they have started, also called completion bias [���, ���].

Allowing only a limited pool of researchers to access a dataset limits the extend to
which the data are being used. TSD offers a solution, as researchers can here apply
for access to datasets, following the specific ethical regulations of the datasets (some
requiring multiple ethics admissions). This way, data can be shared with approved
researchers while still being respectful of data protection issues.

Another highly relevant issue is the use of machine learning on health data, as
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it was done here with brain age predictions. Machine learning models and their
predictions depend on the characteristics of the training sample. Hence, imbalances,
expressed in uneven sex, gender or ethnicity ratios can lead to poor representations
of the population [���]. The following predictions might then contain biases, leading
to misrepresentations and discrimination of the underrepresented group [���, ���].
Biased predictions can have multiple direct and indirect downstream consequences.
Direct consequences could be poor or wrong predictions, and indirect consequences
hidden decisions containing discriminatory bias, or systematically suggesting wrong
treatments or disorders based on non-medical factors.

Questions which will become more and more pressing are how individual freedom
will be influenced by commercial AI applications. This entails automatic profiling
and decision making, and manipulation of users, for example by selective content
presentations, as done on social media platforms. Considering that these issues are
problematic in themselves, if they rely on biased assumptions, discrimination can be
aggravated. Discrimination resulting from machine learning models’ predictions can
also be a consequence of the absence or poor model tuning and refining [���, ���]. Cross-
validations (if possible across independent samples) and the monitoring of models and
their performance are hence crucial steps in reducing undesirable consequences of
machine learning applications (in the health sector but also other fields of application)
[���].

Steps which aid monitoring and improving models is reducing black box com-
ponents by making workflows (including models) as transparent and predictions as
explainable as possible [��, ���, ���]. Hence, both components which are most weighted
when making predictions, but also uncertainty around estimates help interpreting
model output. The movement towards explainable AI is ongoing.

�.� Conclusion and Outlook

In this project, we explored markers of ageing, including brain age as well as whole brain
and region-averaged grey and white matter metrics. Particularly, the identification of
multiple limbic and ventricle-near structures entails the potential for further exploration
of biomarkers in clinical contexts. Each study can be extended and inform future
studies in different ways. Moreover, there are multiple possibilities for following up
the presented exploration with the goal of identifying biomarkers. In the following,
we will give a non-comprehensive overview of potential future avenues.

Clinical advances as a direct outcome of this work are hidden by an attempt to
firstly understand "healthy pathways" of ageing furthering attempts to identify clinical
biomarkers. However, as outlined, our studies suggest that central and ventricle-near
areas such as the fornix might be a useful prognostic and treatment targets for a
range of disorders. In particular, in Alzheimer’s disease different forms of brain
stimulation including deep brain stimulation or focused ultrasound are already applied
to stimulation sites such as the fornix. Moreover, the exploration of the vasculature
of the identified regions close to the ventricles seem to be particularly affected by
vascular disease. Hence, potentially, these regions are more sensitive to age, ageing,
and ageing-related disease. The presented results on brain age offer multiple pathways
to further develop brain age as a clinical marker. Yet, achieving the translation of the
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brain age concept to the clinic and producing meaningful results still requires various
methodological advances.

Methodological advances presented in this project include experiments and validation
of brain age methods as well as suggestions for further study designs considering the
different used spatial levels of analysis.

Brain age can be estimated using different algorithms, and different data. There are
little constraints, and more individual and, for example, disorder-specific prediction
strategies need to be explored, such as utilising regional or hemispheric brain age for
unilateral stroke and tumour or general disorder detection. Furthermore, advanced
models are required, embedding brain age and other markers to merge information for
clinical meaningful predictions. Some suggestions would be to provide uncertainty
estimates and more individual- or group-specific models. Additionally, there are many
possibilities for feature and model architectural design. In the end, the most important
part of the model is its explainability, and to, hence, maximise inference, following the
simplest possible strategy is recommended (Occam’s razor). Brain age models will also
continuously need to be validated in different test and unseen (at best diverse) samples,
not only as presented here with densely sampled data of few individuals, but also
labelled clinical data providing an approximation of a ground truth. This will allow to
better identify the model’s predictive power and specificity across the heterogeneous
phenotypes of patients in real-world clinical situations.

For better reproducibility, voxel-level analyses should be extended in order to not
only create �-weighted maps or other representations of effect sizes, but also to include
additional covariates such as body mass index, which have been repeatedly shown
to influence brain structure. A more nuanced mapping of brain-body interactions
and integrative biomarkers is an ongoing and large field of research. In terms of
fundamental mechanisms, longitudinal changes in white matter asymmetries are
largely unexplored in large samples and require further investigations.

Finally, the presented findings in this project could be strengthened by replication
and validation in other independent samples, not necessarily matching age-range and
health status, but potentially also deviating from such. In the following steps, the
findings can then be examined in non-control or clinical groups and additional densely
sampled individuals to move closer to clinical utility and the potential establishing of
brain biomarkers.
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Abstract

Unveiling the details of white matter (WM) maturation throughout ageing is a funda-

mental question for understanding the ageing brain. In an extensive comparison of

brain age predictions and age-associations of WM features from different diffusion

approaches, we analyzed UK Biobank diffusion magnetic resonance imaging (dMRI)

data across midlife and older age (N = 35,749, 44.6–82.8 years of age). Conventional

and advanced dMRI approaches were consistent in predicting brain age. WM-age

associations indicate a steady microstructure degeneration with increasing age from

midlife to older ages. Brain age was estimated best when combining diffusion

approaches, showing different aspects of WM contributing to brain age. Fornix was

found as the central region for brain age predictions across diffusion approaches in

complement to forceps minor as another important region. These regions exhibited a

general pattern of positive associations with age for intra axonal water fractions, axial,

radial diffusivities, and negative relationships with age for mean diffusivities, frac-

tional anisotropy, kurtosis. We encourage the application of multiple dMRI

approaches for detailed insights into WM, and the further investigation of fornix and

forceps as potential biomarkers of brain age and ageing.
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1 | INTRODUCTION

Along the past decades, neuroscientific research, and particularly mag-

netic resonance imaging (MRI) have increased our understanding of

the biological mechanisms associated with brain tissue maturation and

ageing effects (Grady, 2012; Symms et al., 2004; Wrigglesworth

et al., 2021). A fundamental basis for that are large-scale MRI data-

bases, such as UK Biobank (UKB; Sudlow et al., 2015) or the Human

Connectome Project (Van Essen et al., 2012), allowing one to provide

larger generalizability for revealed effects (Marek et al., 2022). Simulta-

neously, large-scale data provide sufficient power for the application

of advanced multivariate statistical models, and machine learning

(ML) techniques. Brain age prediction is an example of such technique,

translating large amounts of complex multidimensional data into practi-

cally interpretable outputs. Brain age prediction involves training a ML

model to determine trajectories of brain ageing from a series of brain

MRI features. Once the model is trained, it can predict the age of

brains not included in the training data. The disparity between chrono-

logical age and predicted age, the so-called brain age gap (BAG), can be

used as an indicator of various disorders and potentially general health

status (Beck et al., 2022; Cole et al., 2017; Franke & Ten Gaser, 2019;

Kaufmann et al., 2019; Leonardsen et al., 2021). For example, BAG has

been associated with stroke history, diabetes, smoking, alcohol intake,

several cognitive measures (Cole, 2020; Leonardsen et al., 2021), car-

diovascular risk factors (Beck et al., 2022), stroke risk (de Lange

et al., 2020), and loneliness (de Lange et al., 2021), mortality risk, differ-

ent brain and psychiatric disorders, particularly Alzheimer's disease and

schizophrenia (Cole & Franke, 2017; Franke & Ten Gaser, 2019;

Kaufmann et al., 2019; Rokicki et al., 2021). Yet, the effect of brain age

on brain maturation remains unclear (Vidal-Pineiro et al., 2021), indi-

cating the need for further investigation.

BAG and age trajectories offer paths toward a better understand-

ing of the ageing brain. There are various detectable age-related brain

changes, such as GM and white matter (WM) atrophy (Lawrence

et al., 2021), WM de-differentiation (Cox et al., 2016a), and functional

connectivity changes (Wrigglesworth et al., 2021) which have hence

informed the choice of brain-age modeling-parameters (Beck

et al., 2021; Beck et al., 2022; Cole, 2020; de Lange et al., 2020; Le

Chen et al., 2020; Richard et al., 2018; Salih et al., 2021). In that con-

text, many ML approaches have been used to make robust and clini-

cally relevant brain age predictions from different MRI modalities

(Baecker et al., 2021; Dosenbach et al., 2010; Franke et al., 2010;

Kaufmann et al., 2019); yet, particularly the eXtreme Gradient Boost-

ing (Chen & Guestrin, 2016) regressor model, using a decision tree

approach, is increasingly used for brain age predictions from large-

scale data due to its precision and speed (Beck et al., 2021; de Lange

et al., 2019; Kaufmann et al., 2019). Especially diffusion magnetic res-

onance imaging (dMRI) and structural MRI have been shown useful

for brain age predictions (Beck et al., 2021; Beck et al., 2022;

Cole, 2020; de Lange et al., 2020; Le Chen et al., 2020; Richard

et al., 2018; Salih et al., 2021). However, further systematic, suffi-

ciently powered assessments of dMRI-derived brain age and how dif-

fusion metrics map onto age are needed. To this end, there are only a

few publications about the influence of diffusion derived metrics on

brain age predictions. Moreover, studies on the relationships between

age and diffusion metrics usually focus on diffusion tensor imaging

(DTI; Basser et al., 1994). In turn, advanced dMRI approaches

(Fieremans et al., 2011; Jensen et al., 2005; Kaden et al., 2016a;

Kaden et al., 2016b; Novikov et al., 2019; Reisert et al., 2017; Westlye

et al., 2010) which offer additional details on WM microstructure and,

hence, brain maturation processes require further research. In order

to address this shortcoming, this study focusses in dMRI-derived mea-

sures from a large midlife-to-older adult sample and the measures'

associations with age.

DMRI-derived measures consist of unique parameters allowing

both to reveal WM changes at micrometer scale and to provide the

basis for a prediction of macroscopic outcomes, such as age. Conven-

tionally, WM brain architecture is described using DTI (Basser

et al., 1994). However, recent advances offer more biophysically

meaningful approaches (Novikov et al., 2019), and sensible foundation

for cross-validation and better comparability (Beck et al., 2021). DTI-

derived measures, namely fractional anisotropy (FA), and axial (AD),

mean (MD), and radial (RD) diffusivity have all been shown to be

highly age sensitive (Beck et al., 2021; Cox et al., 2016a; Westlye

et al., 2010). Nevertheless, the DTI approach is limited by the Gauss-

ian diffusion assumption and is unable to take into account entangled

WM microstructure features (Beck et al., 2021). In the present work,

we consider (1) the Bayesian rotationally invariant approach (BRIA;

Reisert et al., 2017), (2) diffusion kurtosis imaging (DKI; Jensen

et al., 2005), (3) kurtosis derived supplement, known as white matter

tract integrity (WMTI; Fieremans et al., 2011) (4) spherical mean tech-

nique (SMT; Kaden et al., 2016a), and (5) multi-compartment spherical

mean technique (mcSMT; Kaden et al., 2016b) in addition to DTI. Only

a few studies have compared dMRI models directly as original brain

age predictors (Beck et al., 2021; Maximov et al., 2021; Raghavan

et al., 2021). Yet, brain age and age curve assessments of DTI, BRIA,

DKI, WMTI, SMT, mcSMT (Table S10) in a representative sample pre-

sent a great interest, as well as most influential WM regions for brain

ageing. Our assessments focus on the process of ageing (from midlife

to late adulthood), starting by associating BAG across diffusion

approaches and compare–predicted versus chronological-age correla-

tions in order to assess predictors' consistency. As fornix was identi-

fied as most contributing feature in these predictions, and forceps

minor as another influential region, post-hoc analyses focused on both

fornix, forceps minor, and whole-brain relationships with age. Fornix

was the strongest correlate of age, and fornix and forceps minor fea-

tures were highly correlated across approaches. Finally, we created

fornix, forceps minor, and whole-brain-age curves expecting
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curvilinear relationships reflecting brain-tissue-composition at differ-

ent ageing stages (Beck et al., 2021; Davis et al., 2009; Westlye

et al., 2010).

2 | METHODS

2.1 | Sample characteristics

The original UKB (Sudlow et al., 2015) diffusion MRI data consisted of

N = 42,208 participants. After exclusions, based on later withdrawn

consent and an ICD-10 diagnosis from categories F, G, I, and stroke

(excluded: N = 3521), and data sets not meeting quality control stan-

dards (N = 2938) using the YTTRIUM method (Maximov et al., 2021),

we obtained a final sample consisting of 35,749 healthy adults (age

range 44.57–82.75, Mage = 64.46, SDage = 7.62, Mdage = 64.97;

52.96% females, 47.04% males). In brief, YTTRIUM converts diffusion

scalar metric into 2D format using a structural similarity extension

(Wang et al., 2004) of each scalar map to their mean image in order to

create a 2D distribution of image and diffusion parameters. The qual-

ity check is based on a two-step clustering algorithm applied to iden-

tify subjects located out of the main distribution. We define healthy

here as the absence of mental and behavioral disorder (ICD-10 cate-

gory F), disease of the nervous system (ICD-10 category G), and dis-

ease of the circulatory system (ICD-10 category I). Included

participants showed generally higher cognitive test performance and

took less medication than excluded subjects (Table 1). Participants

were recruited and scanned at four different sites: 57.62% in Cheadle,

26.30% in Newcastle, 15.96% in Reading, and 0.12% in Bristol

(Figure 1). Imbalances in age distributions in the Bristol sample can be

attributed to the small number of participants sampled (N = 43).

2.2 | MRI acquisition, diffusion pipeline, and tract-
based spatial statistic analysis

UKB MRI data acquisition procedures are described elsewhere (Miller

et al., 2016; Sudlow et al., 2015). The brain scan protocol (https://

biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367) was applied at each

scanner site (see also documentation: https://biobank.ctsu.ox.ac.uk/

crystal/refer.cgi?id=1977). Shortly, the diffusion protocol consists of

two b-values (1000 and 2000 s/mm2) with 50 noncoplanar diffusion

weighting gradients per each shell. For a susceptibility artefact correc-

tion, nondiffusion weighted images with an opposite gradient encod-

ing direction were acquitted as well.

Diffusion data preprocessing was conducted as described in

Maximov et al. (2019), using an optimized pipeline which includes

corrections for noise (Veraart et al., 2016), Gibbs ringing (Kellner

et al., 2016), susceptibility-induced and motion distortions, and

eddy current artefacts (Andersson & Sotiropoulos, 2016). Isotropic

Gaussian smoothing was carried out with the FSL (Jenkinson

et al., 2012) function fslmaths with a Gaussian kernel of 1 mm3.

After that DTI, DKI, and WMTI metrics were estimated using Matlab

2017b (Mathworks, 2017). Employing the multishell data, DKI and

WMTI metrics were estimated using Matlab code (https://github.

com/NYU-DiffusionMRI/DESIGNER; Fieremans et al., 2011). SMT,

and mcSMT metrics were estimated using original code (https://

github.com/ekaden/smt; Kaden et al., 2016a), as well as

Bayesian estimates/BRIA were estimated by the original Matlab

code (https://bitbucket.org/reisert/baydiff/src/master/; Reisert

et al., 2017).

In total, we obtained 28 metrics from 6 diffusion approaches

(DTI, DKI, WMTI, SMT, mcSMT, BRIA; Beck et al., 2021; Kaden

et al., 2016b; Maximov et al., 2019; Benitez et al., 2018; Hope

et al., 2019; Pines et al., 2020). In order to normalize all metrics, we

used TBSS (Smith et al., 2006), as part of FSL (Smith et al., 2004). In

brief, initially all BET-extracted (Smith, 2002) FA images were aligned

to MNI space using nonlinear transformation (FNIRT; Jenkinson

et al., 2012). Afterward, the mean FA image and related mean FA

skeleton were derived. Each diffusion scalar map was projected onto

the mean FA skeleton using the TBSS procedure. In order to provide

a quantitative description of diffusion metrics we evaluated aver-

aged values over the skeleton and two white matter atlases, namely

the JHU atlas (Mori & Wakana, 2005) and the JHU tractographic

atlas (Hua et al., 2008). Finally, we obtained 20 WM tracts and

48 regions of interest (ROIs) based on a probabilistic white matter

TABLE 1 Included and excluded sample characteristics.

Variable Excluded (N = 6459) Included (N = 35,749) P-value Cohens d

Number of medications 2.812 (2.782) 1.784 (2.034) <.001 0.474

Self-rated health 2.204 (0.764) 1.965 (0.644) <.001 0.360

Number of correctly solved matrix puzzles 7.671 (2.191) 8.012 (2.126) <.001 !0.159

Number of correctly solved tower puzzles 9.650 (3.318) 9.917 (3.224) <.001 !0.083

Number of correct symbol digit matches 17.808 (5.414) 18.998 (5.246) <.001 !0.226

Number of incorrectly matched pairs 2.239 (1.282) 2.215 (1.274) 0.250 0.019

Matrix puzzle response time in seconds 81.116 (16.605) 83.011 (15.873) <.001 !0.119

Maximum number of remembered digits 6.497 (1.642) 6.678 (1.538) <.001 !0.117

Fluid intelligence 6.429 (2.096) 6.634 (2.054) <.001 !0.099

Prospective memory score 1.069 (0.433) 1.068 (0.397) 0.783 0.004

Note: Mean (SD) for each sample's variables. p-values are indicated for Welch two sample t-tests.
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atlas (JHU; Hua et al., 2008) for each of the 28 metrics, including the

mean skeleton values. Altogether, 1932 features per individual were

derived (28 metrics * [48 ROIs +1 skeleton mean + 20 tracts]; see

number of dMRI features in Table 2)). We included both whole-brain

average metrics in addition to tracts and regional averages, as these

provide spatially differential information (Figure S16), also expressed

the metrics' relationships with age (Barrick et al., 2010; Beck

et al., 2021; Eikenes et al., 2023; Kochunov et al., 2007; Westlye

et al., 2010).

2.3 | Brain age predictions

First, brain age predictions were performed using XGBoost (Chen &

Guestrin, 2016) in Python (v3.7.1). To evaluate how much data was

needed for hyper-parameter tuning while accurately predicting brain

age from all 1932 brain features, we divided the full dataset

(N = 35,749) into two equal parts: one validation set and one hyper-

parameter tuning set for independent parameter-tuning. From the

hyper-parameter tuning set, data was randomly sampled into
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F IGURE 1 Density plots for the sample's age by sex and scanner site. The y-axis indicates the probability of age scaled to 1.
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subsamples consisting of 358, 715, 1073, 1430, 1788, 2145, 2503,

2860, 3218, 3575, 7150, 10,725, 14,300, or 17,875 participants, cor-

responding to 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%,

40%, and 50% of the total subjects, respectively (Figure 2). Hyper-

parameters were tuned on these sub-samples and then tested on the

remaining half, that is, the validation sample, using 10-fold cross vali-

dation showing model performance to not further improve past the

10% (tuning) data mark, informing our tuning-validation-split

(Figure 2, Table S1, trained models in S2).

Second, in order to compare the different diffusion approaches,

based on the previous steps, the training-test split was fixed at previ-

ously used 10% training data (N = 3575) and 90% test data

(N = 32,174) which indicated a best fit at a learning rate = 0.05, max

layers/depth = 3, and number of trees = 750. These tuned parame-

ters were used for 10-fold cross-validations brain age predictions on

the test data of all six individual models, one multimodal model com-

bining all metrics from all diffusion models, and one multimodal model

using only mean values from all diffusion models (Table 2).

Third, uncorrected BAG was calculated as the difference between

chronological age Ω and predicted age P:

BAGu ¼P!Ω ð1Þ

We calculated BAG as it is the commonly used metric indicative

of general health when using brain age predictions (Beck et al., 2022;

Cole, 2020; Cole et al., 2017; Cole & Franke, 2017; de Lange

et al., 2020; de Lange et al., 2021; Franke & Ten Gaser, 2019;

Kaufmann et al., 2019; Leonardsen et al., 2021; Rokicki et al., 2021;

Vidal-Pineiro et al., 2021). BAG is, however, sensitive to the age distri-

bution of the sample (de Lange et al., 2019; de Lange & Cole, 2020).

Hence as a supplement, age-bias-corrected predicted age was calcu-

lated from the intercept and slope of age predictions as previously

described (de Lange et al., 2019; de Lange & Cole, 2020):

P¼ α%Ωþβ ð2Þ
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F IGURE 2 Model performance for different train-test splits.
Model metrics R2, root mean squared error (RMSE), mean absolute
error (MAE) and their standard deviations, as well as the Pearson's
correlations between predicted and chronological age and its 95%
confidence interval are displayed for different training data
percentages of the total data (x-axis). For visualization purposes,
RMSE and MAE were divided by 10. For exact values see Table S1.
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BAGc¼ Pþ Ω! α%Ωþβð Þ½ (ð Þ!Ω ð3Þ

P represents predicted age modelled from chronological age Ω,

with intercept β and slope α. This age-bias correction allowed for a

bias-corrected BAG estimate (BAGc). See Figure 3 for both uncor-

rected and age-bias-corrected brain ages over age.

2.4 | Statistical analyses

All statistical analyses were carried out using R (v3.6.0; www.r-

project.org/). p-values were adjusted for multiple comparison using

Holm correction (Holm, 1979). Model performance for brain ages esti-

mations across different diffusion approaches are presented in addi-

tion to top five features for each brain age model ranked based on

their model contributions (variance explained, as determined by per-

mutation feature importance testing). Then, the correlation structure

of age, brain age, BAG, and brain features (identified as main contribu-

tors in the model and whole-brain-average scores) were examined

across diffusion approaches. In detail: first, brain ages were correlated

across diffusion-approach-specific brain ages. Then, the correlations

between true and estimated age across diffusion approaches were

compared. Second, BAGs were correlated across diffusion

approaches. Third, we present the correlation structure of fornix and

age, and present brain-age crude and adjusted age-relationships for all

included metrics (M).

M¼ β0þβ1Ageþβ2Age2þβ3%Site)Sexþβ4Sex)Ageþβ5Sexþβ6Site

ð4Þ

Fourth, we plot absolute/crude whole-brain and fornix diffusion

metrics by age, and contrast these with diffusion metrics (M) adjusted

for age, sex, and site. To test the age-sensitivity of the metrics, we

removed age from the model and compared the models using Likeli-

hood Ratio tests.

M¼ β0þβ1Site)Sexþβ2Sexþβ3Site ð5Þ

We also assess to which extent the regression lines can be called

linear by comparing model fit of generalized additive models with

simple linear regression models for fornix and whole brain features.

Finally, we associate the first two principal components of all WM

features with the different brain ages to assess the relationship

between BAG and WM. For an overview of the analyses see

Figure 4.

3 | RESULTS

3.1 | Brain age predictions

Table 2 presents a comparison between different diffusion

approaches in predicting brain age for each diffusion approach. The

strongest correlation between uncorrected age predictions and

chronological age was observed for WMTI Pearson's r = 0.765, 95%

CI [0.761, 0.770], p < .001, and the smallest for mcSMT Pearson's

r = 0.721, 95% CI [0.716, 0.726], p < .001.
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F IGURE 3 Corrected and uncorrected brain age by age for each
of the utilized brain age models.
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Hotelling's (Hotelling, 1936) t-tests were used to compare corre-

lations between uncorrected predicted age and chronological age

across diffusion models. Zou's (Zou, 2007) method was used to esti-

mate the confidence intervals around the correlation differences

(Figure 5 and Table S3; Figure S8 and Table S2 for corrected predic-

tion correlation comparisons). These differences were not signifi-

cantly different from each other for model pairs DKI and DTI (p ≈ 1).

All other correlations were different from each other, Pearson's

rsdiff ≤0.15, p < .001, with the biggest difference observed between

mean and full multimodal scores’ correlations (Table S2 for exact

values).

Permutation feature importance estimates across diffusion

models showed that fornix contributed strongest to variance

explained (Table 3), which was in correspondence with feature

F IGURE 4 Overview of the analysis steps.
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rankings by gain score (XBGoost Developers, 2021; Table S15).

Follow-up models which had fornix features removed had lower

model fit, explained less variance in age, and predicted-chronological-

age correlations were smaller than for models containing fornix

(rsdiff < !0.003, ps < .001; Table S16). Another potentially important

region was the forceps minor, also contributing significantly to age

predictions (Table 3).

3.2 | BAG across diffusion approaches and age

In order to compare uncorrected BAG (BAGu) calculations across the

used diffusion approaches, BAGu was correlated from different diffu-

sion approaches and with age. Correlations between the six diffusion

approaches ranged between r = 0.857 and r = 0.966 (Figures 6 and

S1 for corrected BAG correlations). Overall, BAGu scores from the dif-

ferent approaches were strongest related to WMTI BAGc (range:

r = 0.873–0.952), and weakest to mean multimodal BAGu (range:

r = 0.779–0.828), and could be observed in one cluster containing

DKI, DTI, WMTI, and multimodal BAGu and a second cluster contain-

ing BRIA, SMT, and SMTmc. However, DKI, BAGu was more strongly

correlated with full multimodal BAGc than with other well-performing

approaches DTI (Pearson's rdiff = 0.03, p < .001) and WMTI

(rdiff = 0.03, p < .001). Vice versa, DTI BAGc correlated strongest

with WMTI BAGc (r = 0.905, p < .001).

F IGURE 5 Differences between Pearson's correlations of
chronological and uncorrected predicted ages across diffusion
approaches with 95% confidence interval. Differences between
Pearson's correlation coefficients of chronological and uncorrected
predicted age by diffusion approach. See Figure S8 for correlational
differences between approaches for corrected brain age predictions.

TABLE 3 Top five diffusion metrics ranked by their contribution to variance explained (R2) in age.

BRIA DKI DTI SMT mcSMT WMTI Multimodal

Micro FA fornix
0.1954
± 0.0027

AK right anterior
limb of internal
capsule

0.0984 ± 0.0014

MD fornix
0.0712
± 0.0013

MD fornix
0.0795 ± 0.0018

Extratrans fornix
0.0498 ± 0.0013

AWF fornix
0.1699 ± 0.0023

Micro FA fornix
0.0914

± 0.0011

Vextra forceps
minor

0.0278 ± 0.0007

RK fornix 0.0884
± 0.0016

FA forceps minor
0.0533 ± 0.0011

FA right superior
longitudinal
fasciculus

0.0267 ± 0.0007

Intra forceps
minor

0.0444 ± 0.0009

radEAD fornix to
right
striaterminalis

0.0283 ± 0.0007

AK anterior limb
of internal
capsule

0.0055
± 0.0011

Vextra body of
the corpus
callosum

0.0261 ± 0.0007

MK left external
capsule

0.0259 ± 0.0006

RD fornix to
right
Striaterminalis

0.0462 ± 0.0009

Longitudinal
fornix

0.0251 ± 0.0006

Intra fornix
0.0289 ± 0.0009

AWF forceps minor
0.0194 ± 0.0005

FA forceps
minor

0.0219
± 0.0006

Micro FA fornix
to right
Striaterminalis

0.0203 ± 0.0006

MK right superior
longitudinal
fasciculus

0.0214 ± 0.0006

FA right superior
cerebellar
peduncle

0.0221 ± 0.0006

Trans fornix to
right
striaterminalis

0.0204 ± 0.0006

Extratrans fornix
to right
Striaterminalis

0.0201 ± 0.0006

axEAD forceps
minor

0.0193 ± 0.0007

RD right fornix
stria
terminalis

0.0214
± 0.0006

Vintra right
superior
cerebellar
peduncle

0.0194 ± 0.0006

RK forceps minor
0.0208 ± 0.0005

FA body of the
corpus
callosum

0.0218 ± 0.0006

FA fornix
0.0192 ± 0.0006

Extratrans right
external capsule

0.0163 ± 0.0007

axEAD left posterior
limb of internal
capsule

0.0173 ± 0.0006

AK Genu corpus
callosum

0.0095
± 0.0003

Note: Variance explained (R2) by a single feature refers here to the part of the total variance explained by the respective feature in each of the brain age
models presented in Table 2. Multimodal refers to an approach using the diffusion metrics from all diffusion approaches. Cells containing fornix are marked
in green. Cells containing forceps minor are marked in blue. See Table S19 for an overview of all the features and their variance explained.
Abbreviations: BRIA, Bayesian rotationally invariant approach; DKI, diffusion kurtosis imaging; DTI, diffusion tensor imaging; mcSMT, multicompartment
spherical mean technique; SMT, spherical mean technique; WMTI, white matter tract integrity.
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3.3 | Associations between diffusion metrics
and age

A correlational analysis was used to demonstrate associations among

fornix diffusion metrics and age (Figure 7, including QC outliers:

Figure S4). Association strengths ranged from to r = !0.997 (smtTrans

and smtMCintra) to r = 0.999 (smtTrans and smtMD). Correlations

between fornix metrics and age ranged from r = !0.558 (smtMCintra)

to r = 0.570 (microRD), and between forceps minor metrics and age

from r = !0.519 (FA) to r = 0.493 (RD, see Figure S13).

Correlations across all diffusionmetrics and age (1933 % 1933 corre-

lations), age-fornix associations were the strongest (Figure 8, Figure S12).

Overall, the significant N = 1823 correlations (at pHolm < .001) ranged

from jrj = 0.024 to jrj = 0.578 with jrjMean = 0.245, jrjSD = 0.122.

3.4 | Age trajectories of diffusion features

In Figure 9 we present absolute diffusion metrics for the whole brain

(Figure 9a) and fornix (Figure 9b) across ages for the examined six dif-

fusion approaches (for forceps see Figure S14; overview of metrics:

Table S10). Age-metric relationships for fornix were approximating lin-

earity closer than more curvilinear global age-curves.

Several fornix-age relationships for BRIA extra-axonal and

intra-axonal radial and axonal diffusivity opposed age relation-

ships of whole-brain-averages, whereas forceps-age relationships

closely resembled these whole-brain-average metrics' age

relationships.

Whole-brain (Figure 10), fornix (Figure S9), and forceps

(Figure S15) diffusion metrics M were predicted from age, sex and

scanner site to create age curves (Figure 10a,b) which can be com-

pared to crude curves (Figure 10c,d). Highest SE, R2adj, and variability

across metrics was observed when predicting BRIA metrics

(R2adj = 0.21), as well as lowest R2adj ≈ 0 in BRIA Vextra, respec-

tively. While DTI metrics could also be predicted well from the model,

lowest variability in R2adj was found in WMTI and DKI. For fornix

metrics, SE and R2adj was generally higher across diffusion

approaches (Figure S9).

Likelihood Ratio tests indicated age dependence across global

metrics (pHolm < .001), with the exception of WMTI axEAD

(χ2 = 6.66, pHolm = .084; Table S11), whereas all fornix (Table S4)

and forceps (Table S17) features were age sensitive. While the regres-

sion lines show a slight curvature, model fit did not differ between lin-

ear and nonlinear models for whole-brain (Table S12), fornix metrics

(Table S9), and forceps minor metrics (Table S18), indicating steady

WM degeneration in mid-life to older ages.

F IGURE 6 Correlations of
uncorrected BAG and age across
used diffusion approaches. Age-
BAG correlations were significant
at pHolm < .001. For the
corrected BAG correlations
across models see Figure S1.
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3.5 | Associations between BAG and WM

Finally, principal components of regional and whole-brain WM metrics

for each of the eight models (Table 2) were only weakly correlated

with uncorrected BAGu, and similarly related to corrected BAGc,

chronological and predicted ages (Figure S10). Furthermore, when

predicting either WM components which explain most variability

(Figure S10, Table S14) or single regional or whole-brain metrics

(Figure S11) from BAGc and BAGu and covariates, models predicted

relatively small proportions of variance, with small contributions of

BAG to the model (Figures S10, S11).

4 | DISCUSSION

We revealed that both conventional DTI and advanced diffusion

approaches (WMTI, DKI, BRIA, SMT, mcSMT) perform consistently on

brain age predictions, as indicated previously (Beck et al., 2021). As a

novel finding, our results show strong contributions of fornix and

forceps minor microstructures to brain age prediction models. Addi-

tionally, among WM features, fornix shows strongest correlations

with age. This suggest that the fornix and forceps minor are key WM

region of cross-sectional brain age, with fornix and whole-brain dMRI

metrics' age trajectories following similar patterns such as steepening

slopes at later ages. Furthermore, WM microstructure is expected to

steadily degenerate in midlife to older ages, in particular, in extra axo-

nal space.

4.1 | Limitations

There are multiple challenges related to fornix and forceps minor as

drivers of brain age estimates, particularly multicollinearity, which

might bias estimates of the importance of fornix and forceps minor

(gain and permutation feature importance) for brain age predictions,

and second, data processing artefacts. UKB offers diffusion data

acquired with the most typical two-shell-diffusion protocol. Neverthe-

less, the standard diffusion model (Novikov et al., 2018) based on

F IGURE 7 Correlation matrix for fornix diffusion metrics and chronological age. All correlations were significant at Holm-corrected
pHolm < .05.
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differentiation of intra- and extra-axonal water pools could not be

solved using this measurement strategy (Novikov et al., 2018). As a

result, the derived diffusion metrics have both numerical uncertainties

and the variability introduced from nonbiological parameters (Novikov

et al., 2018). Quantitative metrics derived from the different diffusion

approaches allow to investigate such nonbiological variability and to

grade the subject variability in terms of used covariances. Yet, the

aforementioned technical limitation might play a decisive role in a clin-

ical context (Novikov et al., 2018; Thomas et al., 2011).

Besides obstacles resulting from modelling assumptions, our sam-

ple is cross-sectional in design and limited to adults older than

40, which, in turn, influences predictions (de Lange et al., 2022). Addi-

tionally, the UKB imaging subsample shows better health than the

non-imaging UKB subjects (Lyall et al., 2022). Another open question

is the exact interpretation of BAG and its relationship with WM

metrics. This BAG-WM relationship was found to be small for princi-

pal WM components (Figure S10) and single diffusion metrics

(Figure S11). Previous research indicates no relationship between the

rate of change in longitudinal regional and global T1-weighted-fea-

ture-retrieved BAG (Vidal-Pineiro et al., 2021). Yet, further investiga-

tion of longitudinal, in particular voxel-wise WM-derived BAG

provides additional avenues to increase the interpretability of BAG.

Diffusion metrics were highly correlated within fornix (Figure 7)

and forceps (Figure S13) across diffusion approaches, and show simi-

lar age trajectories (fornix: Figure S9, forceps: Figure S15). This pro-

vokes the question of redundancy of some of the metrics. The

identification of redundant metrics and the combination of metrics

across diffusion approaches is a matter of future research comparing

diffusion approaches by probing them in practical settings such as in

clinical samples (Kantarci, 2014).

F IGURE 8 Correlations between diffusion metrics and age. Each point indicates one correlation between a diffusion metric and chronological
age. Names of diffusion metrics are displayed when correlations between the metric and age reached a Pearson correlation of jrj > 0.5. Holm
correction (Holm, 1979) was used for Holm-correction, and all displayed values were significant at p < .001. For the distribution of the
correlations see Figure S12.
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Only few studies (Chen et al., 2015; Christiansen et al., 2016)

address the fornix across ages. A possible reason is fornix’
artefact-susceptibility induced from its proximity to the

cerebrospinal-fluid, while being a small tubular region. Recent pro-

cessing pipelines such as TBSS minimize such artefacts (Smith

et al., 2006). Yet, the influence of cerebrospinal-fluid artefacts in

F IGURE 9 Whole-brain and fornix diffusion metrics across age. The presented plots represent diffusion metrics for each of the six diffusion
models from the full sample N = 35,749 for (a) whole-brain diffusion metrics, (b) fornix diffusion metrics. Brighter colors indicate higher density
and red lines are fitted lines to the relationship between age and diffusion metric. Plots for forceps can be found in Figure S14.
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small tubular structures like the fornix remains unclear (Bach

et al., 2014). Fornix is a relatively small anatomical structure, and,

for example, fornix BRIA cerebrospinal-fluid fraction is higher

(vCSF > 0.5) than global measures (vCSF > 0.075), suggesting a

presence of strong partial volume effect. In order to overcome

such distorting effects, voxel-wise techniques are recommended,

demanding the development of novel approaches incorporating

techniques such as deep learning showing better performance than

traditional ML, especially on large population samples (Popescu

et al., 2021).

F IGURE 10 Raw and predicted whole-brain WM diffusion metrics by chronological age. Figure 10a–d shows age curves for each
standardized (z-score) diffusion metric's mean skeleton value (y-axis) plotted as a function of age (x-axis). Shaded areas represent 95% CI. Curves
fitted to raw values (Figure 10c,d) serve as a comparison to the lm-derived predicted values from Equation (4) (Figure a,b). Figure 10e indicates
the model fit for the linear models from Figure 10a,b, showing R2adj values on top and standard error (SE) on the bottom of the bars which each
represent a Fornix skeleton value for one of the seven models. Lines crossing at age 65 are marked with ovals. Model summaries of all 28 mean
models can be found in Table S5. The same visualization of fornix diffusion values can be found in Figure S9, and for the forceps minor in
Figure S15.
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4.2 | Consistency across diffusion approaches

Overall, the results of brain age predictions are similar across diffusion

approaches, with WMTI, DTI, and DKI predicting age better than

SMT, mcSMT, and BRIA considering model fit and prediction-outcome

correlations (Table 2). This finding could be explained in terms of dif-

fusion approaches, that is, the attempt to introduce more biophysi-

cally accurate parameters into the model might simultaneously reduce

the general sensitivity of the used approaches to tissue changes. Inte-

grative approaches such as DTI or DKI are able to localize brain

changes, however, without providing information about the underly-

ing mechanisms. Our study supports a previous study with a smaller

but more age-differentiated sample (n = 702) of DTI and WMTI being

superior to mcSMT at brain age predictions in terms of model perfor-

mance (Beck et al., 2021). When examining additional diffusion

models on a larger sample, and also including JHU ROIs in addition to

tract and whole-brain average scores, we find DKI metrics to have

higher predictive power than in Beck and colleagues (Beck

et al., 2021). This effect might be partly due to added spatial detail

from the added RIOs and their relationships to the tracts. Simulta-

neously, differences between diffusion approaches, and both variance

explained and prediction error (root mean squared error, mean abso-

lute error) were smaller in this study. These differences are likely due

to the narrower age range in our study (de Lange et al., 2022),

whereas our significantly larger sample emphasizes the reliability of

our findings.

While brain age predictions from single diffusion approaches

were grossly similar, predictions from combined approaches were

most accurate (Table 2). Correlations between predicted and chrono-

logical age were consistent across diffusion approaches, as differences

between correlations were small (Figure 5, Figure S8). This shows that

addressing a wider range of WM characteristics improves predictive

models compared to models with single diffusion approach metrics

(e.g., only DTI), which would be intuitive when considering BAG as a

general indicator of health (Beck et al., 2022; Cole et al., 2017;

Kaufmann et al., 2019; Leonardsen et al., 2021).Vice versa, reducing

spatial specificity by averaging diffusion metrics across all WM

reduced prediction accuracy. Conventionally used DTI on its own is

limited in its ability to present biophysically meaningful measures of

the underlying microstructure. As a result, the advanced modelling is

recalled including intra- and extra-axonal spaces and tissue peculiari-

ties being influenced by individual differences in myelin and fiber

architecture (crossing/bending fibers, and axonal characteristics; Beck

et al., 2021). Hence, adding additional information to DTI better allow

to infer the underlying neurobiology of tissue, for example, expressed

in differential WM-age-dependences (Figures 9, 10, Figures S14, 15)

or brain age predictions (Table 2; Beck et al., 2021).

We observed that BAG exhibits strong correlations across all dif-

fusion approaches (Figure 6, Figure S1). Congruently with the correla-

tional differences (Figure 5, Figure S8), BAG based on averaged

skeleton values was least correlated to all other diffusion approaches

(Figure 6), indicating inferiority of global compared to region-wide

approaches. BAG obtained from WMTI, DTI, and DKI were closest

related to BAG from the multimodal approach (which predicted age

best), both for age-bias corrected and uncorrected BAG (Figure 6,

Figure S1). This is in agreement with the observed age-prediction

model performance (Table 2). BAG correlations were observed in

three clusters: (1) WMTI and DTI, (2) mcSMT, SMT, BRIA, and (3) DKI,

indicative of similar measurements within these clusters (Figure 6,

Figure S1). To a certain extent, these clusters reflect similarities in the

underlying mathematics of the clustering diffusion approaches. For

example, mcSMT and SMT are closely related models (Kaden

et al., 2016a), whereas DKI's non-Gaussianity might reveal another

quality of age-sensitive WM microstructures not captured by the

other approaches (De Santis et al., 2011). Additionally, the cluster dif-

ferences indicate that the observed diffusion approaches measure dif-

ferent age(ing)-sensitive characteristics, supporting the argument for a

combination of diffusion approaches when assessing the ageing brain.

4.3 | Age trajectories and fornix and forceps minor
as a brain age feature

Based on the presented findings on fornix, we further investigate

details of fornix, keeping discussed limitations to the generalizability

of the findings in mind. Diffusion metrics describing fornix microstruc-

ture were consistently related to each other and age across all diffu-

sion approaches in two clusters. Values were positively correlated

within each cluster and negatively between clusters (see Figure 7). In

the first cluster, different approaches' FA, kurtosis metrics (MK, RK,

AK), water fractions (vintra and vextra from BRIA and AWF from

WMTI), and BRIA intra-axonal and extra-axonal radial and AD were

positively correlated. The second cluster, which was negatively related

to the first cluster but positive to age, contained metrics of MD, AD,

and RD, and cerebrospinal-fluid fraction of the different diffusion

approaches, which were positively related to each other. Interestingly,

both clusters consisted of unit-less values, for example, water frac-

tions, and diffusivities, which might have the same meaning as extra-

axonal ADs from different diffusion approaches, for example, BRIA

versus SMTmc. Such consistencies of similar metrics across diffusion

approaches were more apparent for the fornix when QC-identified

outliers were removed (compare Figure 7 and Figure S4), which sup-

ports the reliability of our findings of fornix-age-dependencies. Fur-

thermore, fornix metrics were most strongly related to age across

diffusion approaches (Figure 8, Figure S11), supporting the impor-

tance of fornix in reducing error of brain age predictions (Table 3).

Correlations of diffusion metrics within the forceps minor were not as

strong and consistent as in the fornix, and partly in the opposite direc-

tion as for the fornix (Figure S13). Not surprisingly, all fornix and for-

ceps minor features were age-sensitive (Tables S4, S17), and more age

sensitive than whole-brain metrics (compare: Table S11). Whole-brain

trajectories are in agreement with previous results, showing-age sen-

sitivity of various mean diffusion metrics (Beck et al., 2021), and the

same directionality of age trajectories of metrics for DTI (Cox

et al., 2016a; Westlye et al., 2010), mcSMT, DKI, WMTI (Beck

et al., 2021).
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We displayed differential behaviors of fornix microstructure mea-

sures across diffusion approaches (Figures 9, 10). Focusing on abso-

lute diffusion values (Figure 9), diffusion measures which are

correlated (Figures 6, 7, Figure S13) exhibit similar age dependences.

Additionally, slopes of fornix compared to whole-brain diffusion met-

rics were generally steeper and closer approximating linearity, indicat-

ing stronger changes, such as quicker WM degeneration in the fornix

compared to the whole-brain average (see Figure 9). Particularly BRIA

metrics show visually detectable differences between the fornix and

the whole brain (Figure 9, DAXextra, DAXintra, DRADextra, Vextra);

as opposed to global age trends which are also strongly resembled by

forceps minor (Figure S14), fornix intra and extra-axonal diffusion

decreased, indicating fornix shrinkage with increasing age. Periventri-

cular shrinkage is linked to enlarging ventricles (Kwon et al., 2014),

which has been related to ageing and neurodegenerative disorder pro-

gression (Pinaya et al., 2021). This effect was observed by a positive

relationship between age and cerebrospinal fluid (CSF) fraction in

BRIA. Another metric which revealed larger differences in the fornix

than for the whole-brain average was intra-axonal water fractions,

which can be treated as a proxy for the axonal density, decreased with

increasing age (see Figure 9, BRIA:Vintra; SMTmc:intra; WMTI:AWF)

while the CSF fraction (BRIA) increases. Such WM microstructure

changes are not only directly linked to different neurobiological fea-

tures but can be markers of clinical outcomes, such as dementia

(Meeter et al., 2017; Thomas et al., 2011).

A selection of metrics is comparable across diffusion approaches

when taking DTI as reference point and focusing on similar age trends.

DTI metrics AD, RD, and MD tend to increase over the lifespan and

FA tends to decrease across brain regions (Figures 9, 10; Beck

et al., 2021; Cox et al., 2016b; Davis et al., 2009; Westlye et al., 2010)

as well as in fornix (Figure 9b, Figure S9), implying processes such as

de-myelination, changes in axonal and general WM integrity. Such

DTI-age-dependencies are reflected by according BRIA, SMT, and

WMTI metrics, whereas DKI shows opposite age-relationships, as pre-

sented previously (Beck et al., 2021). Deterioration effects, measured

by the age-dependency of axonal water fractions, were generally

stronger in fornix compared to whole-brain metrics (Figure 9). Inter-

estingly, opposed to global metrics, radial diffusivity measures from

DKI and BRIA (DRADextra) decreased in fornix (Figure 9), suggesting

higher fornix than global plasticity, potentially being an antecedent of

age-related hippocampal changes (Metzler-Baddeley et al., 2019).

Additional, unique information about age dynamics was pre-

sented by standardized scores corrected for age, sex, and scanner site

and crude standardized scores across ages (Figure 10, Figure S9).

After corrections, most fornix metrics follow a tightly resembling

near-linear trend either increasing or decreasing by age (Figure S9a,b),

as opposed to forceps minor (Figure S15) and whole-brain metrics

which follow a rather curvilinear line, as previously shown (Beck

et al., 2021; Davis et al., 2009; Westlye et al., 2010). Diffusion metrics'

variance explained across models indicates fornix metrics to be more

sensitive to a combination of covariates age, sex, and scanner site

than whole-brain metrics (Figure 10, Figure S9). In the fornix, only

BRIA extra-axonal AD (DAX extra) and the SMT longitudinal diffusion

coefficient (SMT long) showed non-linear trajectories, however, both

measures are weakly correlated to other diffusion parameters

(Figure 10). Yet, when comparing model metrics such as variance

explained of linear and nonlinear models predicting fornix, forceps

minor, and whole-brain diffusion metrics from age, sex, and scanner

site and their interactions, there were no apparent differences

between models (Tables S9, S12, S15). This implies that contrary to

previous research observing the entire lifespan presenting curvilinear

DTI age trajectories (Beck et al., 2021; Westlye et al., 2010), or trends

toward curvilinearity (with yet better linear fit for selected regions;

Davis et al., 2009), we found that fornix and whole-brain age trajecto-

ries from age 40 can be described as linear when accounting for cov-

ariates sex, age, and scanner site. While the crossing of the x-axis at

age 65 (Figure 10, Figures S9, S15) is a reflection of the sample's age

distribution (Figure 1), in addition to the shapes of the different age-

trajectories, it reveals that the different diffusion approaches are simi-

larly age-sensitive or measure similar underlying ageing-related

changes. For whole-brain metrics, changes become exacerbated from

65 onward (Figure 1), with reasons potentially laying in an accelerated

neurodegeneration also reflected in the exponentially increasing risk

to develop neurodegenerative disorders from age 65 onward (Nichols

et al., 2022). For example, in the USA, 3% of 65–74 year olds, 17% of

the 75–84 year olds, and 32% of those aged 85+ developed Alzhei-

mer's dementia (Alzheimer's Association, 2020). Subclinical or preclini-

cal states are, however, not captured by these approximations, and

WM changes usually precede clinical detections. This makes WM

monitoring a promising tool for early neurodegenerative disease

detection.

Beyond WM, fornix changes seem to play an important role for

GM changes, particularly in the hippocampus: for example, fornix glia

damages lead to hippocampal GM atrophy (Metzler-Baddeley

et al., 2019). This might be reflected by dis-connectivity of fornix with

other brain regions as described by decreasing extra axonal space

coefficients (Figure 8b), and following changes in fornix function.

Potentially, the consequences of age-related fornix changes thereby

affect functionality of a selection of brain regions, such as the hippo-

campus. While several studies have presented ageing-related fornix

microstructure changes in humans (Chen et al., 2015; Christiansen

et al., 2016) and monkeys (Peters et al., 2010) in small samples, only

one large-scale study revealed findings connected to the fornix,

namely strongest default mode network GM volume covariation with

fornix WM microstructure (Kernbach et al., 2018). This suggests that

fornix, a key connector of the limbic system with the cortex, might

also be critical for default mode network functioning. Moreover,

memory and episodic recall have been related to fornix (Senova

et al., 2020). Hence, fornix changes might play an important role in

known ageing-dependent temporal lobe changes, and specifically hip-

pocampal changes for ageing-related pathological developments

(Cabeza et al., 2018; Burke & Barnes, 2006; Hedden & Gabrieli, 2004;

Pluvinage & Wyss-Coray, 2020). Previous studies presented age-

related fornix DTI metric changes (Chen et al., 2015; Christiansen

et al., 2016; Metzler-Baddeley et al., 2019) which potentially appear

prior to hippocampal volume changes (Chen et al., 2015; Metzler-
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Baddeley et al., 2019), and are related to declining episodic memory

performance (Metzler-Baddeley et al., 2019). Hence, fornix changes

potentially serve to predict future pathological development, suggest-

ing fornix WM microstructure and changes in such as ageing bio-

markers. This supports previous findings showing network re-

activations, metabolic, and GM changes after fornix deep-brain-stimu-

lation, antagonizing the progression of neurodegenerative disorders

(Jakobs et al., 2020).

Different studies showed age-related deterioration effects in the

forceps minor (Bastin et al., 2008; Fan et al., 2019), a subregion of the

corpus callosum. Loss in WM integrity have also been associated with

various phenotypes, for example, behavioral impacts, such as mental

slowing (Jokinen et al., 2007), and various disorders, such as major

depressive disorder (Won et al., 2016), schizophrenia (Kelly

et al., 2018), dependencies on cocaine (Moeller et al., 2005) and alco-

hol (Pfefferbaum & Sullivan, 2005), with WM degeneracy explaining

higher impulsivity in cocaine addiction (Moeller et al., 2005). Overall,

the forceps are assumed to have an important role of connecting both

hemispheres, which might be crucial for interhemispheric signal prop-

agation (Voineskos et al., 2010). Previous research shows also that

WM changes in FA and MD relate to GM thinning with the forceps

being particularly vulnerable to such changes (Storsve et al., 2016).

Moreover, cognitive test scores were related to forceps minor AD and

MD scores in Alzheimer's Disease patients (Tu et al., 2017), and

already at mild cognitive impaired forceps minor FA and MD scores

were different from age-matched participants with subjective cogni-

tive decline (Luo et al., 2020). FA was also shown in this study as

important brain age feature for both multimodal and DTI models

(Table 3). This suggests forceps as an important region for brain age

and ageing.

The current study gives for the first time a detailed account on

region-wise-to-global WM-age relationships for multiple diffusion

approaches in a representative sample, and highlights fornix and for-

ceps minor as an important structures for age predictions across diffu-

sion approaches. Brain age was estimated best when combining

diffusion approaches, showing different aspects of WM to contribute

to brain age with fornix and forceps minor being the central regions

for these predictions. Trained models are made available for further

research to extend the reported brain age predictions to other sam-

ples (e.g., to clinical samples with a similar age structure), in addition

to examining the discussed metrics in fornix and forceps.
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Brain age refers to age predicted by brain features. Brain age has previously been 
associated with various health and disease outcomes and suggested as a potential 
biomarker of general health. Few previous studies have systematically assessed 
brain age variability derived from single and multi-shell diffusion magnetic 
resonance imaging data. Here, we present multivariate models of brain age derived 
from various diffusion approaches and how they relate to bio-psycho-social 
variables within the domains of sociodemographic, cognitive, life-satisfaction, as 
well as health and lifestyle factors in midlife to old age (N#=#35,749, 44.6–82.8#years 
of age). Bio-psycho-social factors could uniquely explain a small proportion of 
the brain age variance, in a similar pattern across diffusion approaches: cognitive 
scores, life satisfaction, health and lifestyle factors adding to the variance 
explained, but not socio-demographics. Consistent brain age associations across 
models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix 
puzzles solving, and job and health satisfaction and perception. Furthermore, 
we found large variability in sex and ethnicity group differences in brain age. Our 
results show that brain age cannot be sufficiently explained by bio-psycho-social 
variables alone. However, the observed associations suggest to adjust for sex, 
ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe 
bio-psycho-social factor interactions’ influence on brain age in future studies.

KEYWORDS

brain age, age prediction, magnetic resonance imaging, diffusion MRI, health, cognition, 
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1. Introduction

Developmental trajectories of brain morphology are informative 
signaling markers of health. For example, significant deviations from 
normative morphology values can signify the presence or development 
of disease (Marquand et al., 2019; Remiszewski et al., 2022). Based on 
the idea that a general normative pattern could describe brain 
trajectories, the concept of brain age has been introduced. Here, 
different brain features are used to predict individuals’ age. The 
difference between such predicted age and chronological age, the brain 
age gap (BAG), has the potential as a general health biomarker, sensitive 
to various neurological, neuropsychiatric, and neurodegenerative 
disorders (Kaufmann et al., 2019; Cole, 2020; Rokicki et al., 2021). Brain 
age can be derived using different imaging modalities. Structural and 
diffusion MRI (dMRI) have shown high prediction accuracy (e.g., Cole, 
2020; Beck et al., 2022b; Chen et al., 2022; Leonardsen et al., 2022; Sone 
et al., 2022). Different dMRI-derived parameters allow one to describe 
multiple changes in WM micro-structure using various diffusion-
weighted approaches. Such dMRI measures provide invaluable 
information about WM architecture at the micrometer scale and can 
be associated with macroscopic outcomes. The most popular dMRI 
approach, diffusion tensor imaging (DTI), is often used to describe WM 
organization (Basser et al., 1994). However, methodological advances 
and newer diffusion approaches may provide more meaningful 
bio-physical information (Novikov et al., 2019), thereby increasing the 
power of cross-validation of findings and their comparability with other 
clinical markers (Billiet et al., 2015; Kamagata et al., 2020; Beck et al., 
2021; Wood et al., 2022).

The bio-psycho-social model (Engel, 1977) strives for a holistic 
perspective on medical research to understand health and disease by 
integrating information on biological, psychological, and social factors 
(e.g., Ghaemi, 2009; Wade and Halligan, 2017). Brain age can 
be utilized in this context as an indicator of general health (Kaufmann 
et al., 2019), using the different levels of observation (bio-psycho-
social) to describe brain age relationships with different phenotypes. 
While there are some studies providing evidence for brain age 
associations with bio-psycho-social factors, including demographic, 
biomedical, lifestyle, cognitive, and behavioral factors (Cole, 2020; de 
Lange et al., 2021; Beck et al., 2022b; Leonardsen et al., 2022; Sone 
et  al., 2022), it remains unclear whether brain age derived from 
different diffusion approaches relates differentially to 
sociodemographic, health, life-satisfaction, and cognitive factors 
(Figure 1), and what the qualities of such relationships are.

While brain age is a proxy for different health-related processes, 
similar to various bio-psycho-social factors, it remains largely unclear 
how brain age and bio-psycho-social factors associate. It is hence 
necessary to increase our understanding and the interpretability of 
brain age by observing the associations of common phenotypes with 
brain age. There are large differences in the usage of underlying data 
and machine learning approaches applied to the data for brain age 
predictions (Franke and Gaser, 2019). Practical effects of such 
differences, for example, on phenotype associations, have yet to 
be systematized to better interpret brain age and BAG. The bio-psycho-
social approach (Engel, 1977) lends itself to categorizing phenotypes 
into concrete groups. Within the groups, phenotype associations with 
brain age in general can be considered in addition to differences in 
underlying data used to calculate brain age. Here, we  limit our 
investigations to dMRI-derived brain age to examine brain age 

relationships with bio-psycho-social factors specific to WM. WM has 
repeatedly been shown to change throughout ageing and to relate to 
different bio-psycho-social variables (Le Bihan and Iima 2015; Beck 
et al., 2021, 2022a,b). Although comparisons of single MRI modality 
predictions from either T1-weighted or dMRI depend on the model 
selection and observed parameter choice (Niu et al., 2019; Rokicki 
et  al., 2021), models using T1-weighted and dMRI features show 
comparable age prediction performance (Cole, 2020; de Lange et al., 
2021). However, phenotype-WM-brain-age relationships require still 
further examination. Using different diffusion approaches in this 
context will not only help extend commonly used diffusion tensor 
imaging by giving reference values to other brain age derived from 
other WM metrics but also provide a clearer understanding of 
WM-phenotype associations.

Diffusion MRI can describe various biological processes by 
providing markers of brain tissue changes across the lifespan (Beck 
et al., 2021). These markers are not only heritable (Elliott et al., 2018) 
but also indicative of health, for example, by being associated with 
psychiatric and neurological disorders, addiction, stroke (Le Bihan 
and Iima 2015), or cardiovascular health (Beck et al., 2022b). Various 
diffusion metrics that have previously been related to cognitive and 
mental health traits have also shared genetic underpinnings with 
cognitive and mental health phenotypes (Zhao et  al., 2021). The 
biological underpinnings of dMRI markers become particularly 
apparent in WM abnormalities observed in severe mental disorders, 
including schizophrenia (Cetin-Karayumak et al., 2020) or bipolar 
disorder (Houenou et al., 2007). Furthermore, dMRI-derived brain 
age is higher in people showing accumulations of cardiometabolic risk 
and markers of adipose tissue distribution (Beck et al., 2022a,b). Such 
associations between phenotypes and brain age can also be observed 
when comparing high to low socioeconomic status (SES) groups, 
where low SES individuals have lower WM integrity (Pavlakis et al., 
2015; Shaked et al., 2019).

Furthermore, dMRI offers both single and multi-shell approaches 
and various meaningful metrics describing white matter 
microstructure (Jensen et al., 2005; Fieremans et al., 2011; Kaden et al., 
2016a,b; Reisert et al., 2017), which serve as a good basis for brain age 
estimations (Beck et al., 2021; Korbmacher et al., 2022) exploiting 
biophysically meaningful parameters of brain tissue in contrast to 
general measures such as grey/white volume or thickness.

While there are various diffusion models offering a plethora of 
metrics, most efforts have focussed on DTI which provides fractional 
anisotropy, which decreases, and radial, axial, and mean diffusivity, 
which increase over the lifetime, respectively, indicating a loss of 
structural integrity (Westlye et al., 2010; Behler et al., 2021). Advanced 
diffusion approaches also examine structural integrity, but adding 
further detail such as the differentiation between intra-and extra-
axonal space, parametrization of extra-axonal diffusivity, and axonal 
bundle distribution (Jensen et al., 2005; Fieremans et al., 2011; Kaden 
et al., 2016a,b; Reisert et al., 2017).

Differences in brain age-phenotype relationships can be expected 
when varying dMRI approaches, as varying underlying dMRI 
approaches will also produce variability in brain age predictions (see 
Beck et  al., 2021; Korbmacher et  al., 2022), potentially due to 
measuring different bio-physical processes (Jensen et  al., 2005; 
Fieremans et al., 2011; Kaden et al., 2016a,b; Reisert et al., 2017). These 
potential differences become important when attempting to generalize 
findings on brain age across the literature and setting standards for 
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brain age predictions. However, to what extent age predictions based 
on single and multi-shell dMRI approaches relate differentially to 
phenotypes requires further investigation. Hence, comparing dMRI-
based brain age predictions can be fruitful, not only when expanding 
current efforts of examining brain age associations with phenotypes 
but also by investigating whether differences in the underlying data 
can influence relationships of brain age with bio-psycho-
social variables.

State-of-the-art conceptualizations of health, such as the 
bio-psycho-social model (Engel, 1977), recommend considering 
various domains or levels of explanation when assessing health 
outcomes, such as brain age. In that sense, brain age can related to 
different biological, psychological and social factors. The extent of the 
relationships are important as they can inform on which bio-psycho-
social factors lead to better compared to worse brain or general health. 
Beyond validating brain age as a concept, this can directly improve our 
understanding of health. To date, brain age is usually calculated from 
a large range of MRI features. The resulting brain age estimate is then 
usually predicted from single variables of interest while controlling for 
sex and age (e.g., Cole, 2020; Leonardsen et  al., 2022). However, 
cumulative and synergy effects can be  expected to partly explain 
health, which has, for example, been shown for cardiometabolic risk 
factors explaining brain age (see Beck et al., 2022a,b). Hence, we group 
available phenotypes that have previously been found influential for 
health (Figure 1) into health and lifestyle factors, representing the 
biological dimension of the bio-psycho-social model, respectively 
(Erhardt, 2009; Ning et al., 2020; Gill et al., 2021; Vidal-Pineiro et al., 
2021; Beck et al., 2022a,b; Pham et al., 2022). Life satisfaction factors 
and cognitive factors represent the psychological dimension, and 
sociodemographic factors the social dimension of the bio-psycho-
social model, respectively.

Generally, explaining brain age variance is required to further our 
understanding of brain age and its multivariate relationship with 

different phenotypes influencing physiology directly or indirectly. We, 
therefore, extend previous work by explaining variance in brain age 
by combining sets of bio-psycho-social variables into domains of 
sociodemographic, health, life satisfaction, and cognitive factors 
(Figure 1) to assess their associations with brain age. In addition to 
exploring associations of bio-psycho-social variables with dMRI-
based brain age, we differentiate between diffusion approaches used 
for brain age predictions and exame the consistency across diffusion 
approaches. Previous findings revealed weak associations of various 
phenotypes with brain age in the UK Biobank (e.g., Smith et al., 2019; 
Cole, 2020). Hence, we expect only small proportions of the variance 
in brain age to be predicted by bio-psycho-social variables. We also 
hypothesize that factors directly representing or impacting physiology 
are more predictive of brain age than those which impact physiology 
only indirectly. Thus, health factors are presumed to be  more 
predictive of brain age than sociodemographic, cognitive, and life 
satisfaction factors. Finally, we  expect some variability in these 
associations to be  due to the underlying diffusion approach, as 
different WM properties are also expected to be differentially related 
to phenotypes. We may move brain age closer to the clinical utility by 
furthering our understanding of brain age.

2. Methods

2.1. Sample characteristics

The sample used has been described elsewhere (Korbmacher 
et al., 2022). In brief, the UK Biobank (UKB) (Sudlow et al., 2015) 
diffusion MRI data consisted of N = 42,208 participants. 
We excluded subjects who withdrew their informed consent (up to 
22nd of February 2022) or with an ICD-10 diagnosis from 
categories F, G, I, or stroke from the general health assessment 

FIGURE 1

Overview of the variables used.
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(Field 42,006; excluded: N = 3,521). We also excluded data that did 
not pass our quality control (N = 2,938) using the YTTRIUM 
method (Maximov et  al., 2021). In brief, YTTRIUM converts 
diffusion scalar metric into 2D format using a structural similarity 
extension (Wang et al., 2004) of each scalar map to their mean 
image to create a 2D distribution of image and diffusion 
parameters. Quality check is based on 2 step clustering algorithm 
in order to identify subjects out of the main distribution. Our final 
sample consisted of 35,749 healthy adults. For an overview of 
demographics and the bio-psycho-social variables included in this 
study and their relationship with brain age see Table 1.

2.2. MRI acquisition, diffusion 
post-processing, and TBSS analysis

UKB MRI data acquisition procedures are described elsewhere 
(Sudlow et al., 2015; Miller et al., 2016; Alfaro-Almagro et al., 2018). 
Briefly, single and multi-shell data were acquired at four different 
locations using identical scanners: 3 T Siemens Skyra, with a standard 
32-channel head coil and key diffusion parameters being MB = 3, 
R = 1, TE/TR = 92/3600 ms, PF 6/8, fat sat, b = 0 s/mm2 (5x + 3× phase-
encoding reversed), b = 1,000 s/mm2 (50×), b = 2,000 s/mm2 (50×) 
(Alfaro-Almagro et al., 2018).

We obtained access to the raw diffusion data and pre-processed 
the data using an optimized pipeline as described by Maximov et al. 
(2019). The pipeline includes corrections for noise (Veraart et al., 
2016), Gibbs ringing (Kellner et al., 2016), susceptibility-induced and 
motion distortions, and eddy current artifacts (Andersson and 
Sotiropoulos, 2016). Isotropic 1 mm3 Gaussian smoothing was carried 
out using FSL’s (Smith et al., 2004; Jenkinson et al., 2012) fslmaths. 
Employing the multi-shell data, Diffusion Tensor Imaging (DTI), 
Diffusion Kurtosis Imaging (DKI) (Jensen et al., 2005) and White 
Matter Tract Integrity (WMTI) (Fieremans et al., 2011) metrics were 
estimated using Matlab 2017b code.1 Spherical mean technique SMT 
(Kaden et  al., 2016b), and multi-compartment spherical mean 
technique (mcSMT) (Kaden et al., 2016a) metrics were estimated 
using original code2 (Kaden et  al., 2016a,b). Estimates from the 
Bayesian Rotational Invariant Approach (BRIA) were evaluated by the 
original Matlab code3 (Reisert et al., 2017).

Previous advances observing age-dependent WM changes have 
largely focused on single-shell diffusion, such as DTI with DTI-derived 
metrics being fractional anisotropy (FA), and axial (AD), mean (MD), 
and radial (RD) diffusivity, all being highly sensitive to age (Westlye 
et al., 2010; Cox et al., 2016; Beck et al., 2021). More recently developed 
multi-shell diffusion approaches which extend the space of derivable 
diffusion metrics appear more sensitive to brain changes and sex 
differences (Lawrence et al., 2021), and at the same time less sensitive 
to motion artefacts than single-shell models (Pines et al., 2020). Newer 
approaches are (1) BRIA, as an alternative to not rely on fiber 
orientation but rotation invariant feature (Reisert et al., 2017), (2) 
DKI, a method tackling the problem of non-Gaussian diffusion 
(Jensen et al., 2005); (3) WMTI, which extends DKI by calculating 

1 https://github.com/NYU-DiffusionMRI/DESIGNER

2 https://github.com/ekaden/smt

3 https://bitbucket.org/reisert/baydiff/src/master/

inter and extra-axonal features (Fieremans et al., 2011); and (4) SMT 
(Kaden et  al., 2016b) and (5) mcSMT, which factor out neurite 
orientation to give a better estimate of microscopic diffusion 
anisotropy (Kaden et al., 2016a). The selection of diffusion models was 
dictated by a few practical reasons. There are two conventional 
approaches (DTI and DKI) describing the general WM changes. As a 
result, these approaches are expected to be sensitive to a broad range 
of aging-related effects associated with WM maturation (Westlye et al., 
2010; Yap et  al., 2013). Advanced dMRI approaches enable more 
detailed quantification associated with age in a different manner (Cox 
et  al., 2016; Beck et  al., 2021). Diffusion modelling relies on 

TABLE 1 Overview of the predictors used in the bio-psycho-social 
models.

Model Predictors

Model 1. Baseline

Age
Sex
Scanner site*

Model 2. Socio-demographics

Age
Sex
Scanner site*
Ethnicity
Income
Education
Nb of social visits

Model 3. Cognitive Scores

Age
Sex
Scanner site*
Prospective memory
Fluid intelligence
Symbol digit substitution
Pair matches
Matrix puzzles
Tower arranging
Digit memorization

Model 4. Life satisfaction

Age
Sex
Scanner site*
Financial and job satisfaction
Friend and family relation satisfaction
Happiness

Model 5. Health and lifestyle

Age
Sex
Scanner site*
BMI
WHR
Pulse pressure
Diabetes
Smoking
High cholesterol
Diagnosed vascular disorder
Birth weight
Sleeping hours
Daily coffee intake
Alcohol drinker

*Random effect.
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biophysically motivated assumptions such as the axon bundle 
distribution (WMTI) or attempts to suppress such kind of parameters 
(SMT and SMT mc). Another modelling option are Bayesian rotation 
invariants (BRIA), providing multiple measures of WM but depending 
on efficacy of initial Bayesian simulations. All together, these 
approaches allow us to indirectly verify the stability and reliability of 
diffusion assumptions in brain-age prediction on their own and in 
comparison to each other, or to determine similarity among scalar 
metrics appearing in several diffusion approaches.

In total, we obtained 28 metrics (Supplementary Table S1) from 
six diffusion modeling approaches (DTI, DKI, WMTI, SMT, mcSMT, 
and BRIA). To normalize all metrics, we  used tract-based spatial 
statistics (TBSS) (Smith et al., 2006) as part of FSL (Smith et al., 2004; 
Jenkinson et al., 2012). In brief, initially, all FSL BET-extracted (Smith, 
2002) FA images were aligned to MNI space using non-linear 
transformation (FNIRT) (Jenkinson et  al., 2012). Subsequently, 
we derived the mean FA image and the related mean FA skeleton. 
Each diffusion scalar map was projected onto the mean FA skeleton 
using the standard TBSS procedure. To provide a quantitative 
description of diffusion metrics we evaluated averaged values over the 
skeleton and two WM atlases, namely the Johns Hopkins University 
(JHU) atlas (Mori et al., 2005) and the JHU tractography atlas (Hua 
et al., 2008; see Supplementary Table S2 for an overview). Finally, 
we obtained 20 WM tracts and 48 regions of interest (ROIs) based on 
a probabilistic WM atlas (JHU) (Hua et al., 2008) for each of the 28 
metrics, including the mean skeleton values. Altogether, we derived 
1,932 features per individual [28 metrics * (48 ROIs +1 skeleton 
mean + 20 tracts)]; see Supplementary Table S1 for metrics and 
Supplementary Table S2 for regions and tracts.

2.3. Brain age predictions

We computed brain age predictions derived from 8 different 
models including the six diffusion approaches, their whole-brain 
average scores (mean multimodal), and a model combining the six 
diffusion approaches and their whole-Brian average scores (full 
multimodal). Each of the six diffusion approaches details WM features 
based on differing modelling assumptions and were assumed to 
provide unique brain age scores. Whole-brain average scores for each 
of the six diffusion approaches’ metrics were investigated on their own 
to further our understanding of spacial specificity. Finally, previous 
results (de Lange et al., 2020b; Beck et al., 2021, 2022b) provide clear 
evidence of strong age prediction performance when combining 
diffusion metrics. We hence included a model combining all diffusion 
approaches’ metrics and their whole-brain average scores to compare 
whether there are differences in multimodal to single diffusion 
approaches’ brain-age-phenotype associations.

Brain age was predicted using the XGBoost tree-boosting 
algorithm (gradient boosting tree) implemented in Python (v3.7.1), 
being a highly effective algorithm for tabular data (Chen and Guestrin, 
2016). From the total included sample (N = 35,749), we used 10% 
(N = 3,575) for hyperparameter tuning on a data set containing data 
from all diffusion approaches (i.e., full multimodal data with 1,932 
features/parameters) using 5-fold cross-validation (after estimating an 
optimal hyperparameter tuning set size; Korbmacher et al., 2022). The 
considered hyperparameters for the randomized grid search were (1) 
learning rate with a range of 0.01–0.3 and steps of 0.05, (2) maximum 

layers/depth with a range of 3–6 and steps of 1, and (3) number of 
trees with a range of 100–1,000 and steps of 50. The resulting 
hyperparameters (learning rate = 0.05, max layers/depth = 3, and the 
number of trees = 750) were then used in a 10-fold cross-validation 
applied to the test set (N = 32,174). Cross-validation was used to 
leverage the full sample size and to calculate the uncertainty around 
the estimates (for such see Korbmacher et  al., 2022). The cross-
validation procedure was executed using each of the six diffusion 
approaches’ metrics, whole-brain averaged metrics for all approaches 
(mean multimodal model), and finally a combination of all approaches 
and the whole-brain average scores (full multimodal model), resulting 
in eight brain age models (see Supplementary Table S1 for dMRI 
approach-specific metrics). Each of these brain ages were used in the 
analyses. See Supplementary Figure S1 for an overview of the brain 
age models and the following modelling of these predictions from the 
bio-psycho-social models.

2.4. Statistical analyses

All statistical analyses were carried out using Python, version 3.7.1 
and R, version 4.2.04 using test data set (N = 32,174). These analyses 
focused on the associations between brain age and (1) demographics, 
(2) social factors, (3) cognitive test scores, (4) life satisfaction, and (5) 
health and lifestyle factors (with weight on cardiometabolic factors). 
For detailed information on how variables were extracted and coded 
see Supplementary Table S3. First, we calculated the first principal 
component of bio-psycho-social factors’ by grouping numeric 
variables of each of the 5 domains (demographics, social factors, 
cognitive tests scores, life satisfaction, and health and lifestyle factors), 
using scaling and the number of allowed components equal to the 
number of variables included. We then examined the first components’ 
associations with brain age. Second, we examined to which extend 
multivariate models (as specified in 2.4.1) explain brain age from the 
factors of the five bio-psycho-social domains. Finally, we  tested 
whether our findings would be influenced by analyzing data separately 
for males and females, and present bi-variate relationships between 
multimodal brain age and single bio-psycho-social variables.

For bi-variate relationships between bio-psycho-social factors and 
full multimodal brain age, we  adjusted p-values for multiple 
comparison using Bonferroni correction, dividing the alpha-level by 
twenty-five (�/25), the number of bi-variate associations observed. For 
multivariate relationships we divided alpha by eight (�/8), the number 
of brain age models used. Furthermore, the coefficient of 
determination describing the proportion of variance explained (R2) 
will be presented as marginal R2, referring to variance explained by 
fixed effects, and conditional R2, referring to both fixed and random 
effects variance explained.

2.4.1. Bio-psycho-social models explaining brain 
age

We used linear mixed effects models with the random intercepts at 
the level of scanner site to explain changes in brain age from socio-
demographics, cognitive test scores, life satisfaction (self-assessment), and 

4 www.r-project.org/
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health and lifestyle factors. The presented models were used in two 
different ways: first, with the principal component of the model-specific 
bio-psycho-social factors replacing the respective bio-psycho-social 
factors, and second using all eight brain ages from the different diffusion 
approaches on with the models. For an overview of the predictors in the 
multivariate bio-psycho-social models used see Table 1.

We established the following models to compare:
(1) A baseline model capturing the relationship of age, sex, the 

age-sex interaction, and scanner site with brain age. This baseline 
model was selected as predicted age is expected to be largely reflected 
by chronological age. However, also sex (e.g., Rokicki et al., 2021), and 
scanner site (here, Bristol, Cheadle, Newcastle, Reading) and 
prediction bias (e.g., Jirsaraie et  al., 2022) have been shown to 
be influential for brain age. Using a baseline model and additional 
models for comparison had the goal to estimate added variance 
explained by the bio-psycho-social models above and beyond the 
baseline mode (Bollen, 1989). Additionally, predictors within these 
bio-psycho-social models were observed individually (bivariate 
compared to multivariate relationships with brain age). Model 
comparison to a baseline model (instead of a null model) is important 
in this context as brain age is sensitive to age, sex and scanner site (de 
Lange and Cole, 2020; Rokicki et  al., 2021; Jirsaraie et  al., 2022). 
Hence, instead of using a null model which does not contain much 
information, we used the following model as a reference point for 
further model comparison:

 brainage sex age sex age site= + + ∗ +

(2) A sociodemographic model additionally included ethnic ancestry 
(binary yes/no self-reported white European; for additional information 
sample groupings by ethnicity see Supplementary Table S4), average 
annual total household income before tax (coded as continuous variable 
1–5, with low <£18,000 to high income >£100,000), and higher education 
(binary yes/no self-report of having obtained higher education) relative 
to the baseline model.

 
brainage sex age sex age ethnicity

income education site
= + + ∗ +
+ + +

(3) A cognitive model testing how non-verbal cognitive abilities 
add to the baseline model (overview: Fawns-Ritchie and Deary, 2020). 
We  limited the selection of cognitive variables to non-verbal 
assessment measures to reduce the parameter space of cognitive 
variables and as non-verbal assessment scores have been found to 
associated with dMRI metrics throughout the lifespan (e.g., Sullivan 
and Pfefferbaum, 2006; Sasson et al., 2010; McPhee et al., 2019; Parikh 
et al., 2021). Namely, the number of matrix puzzles solved (matrixS) 
testing non-verbal reasoning using COGNITO Matrices, tower 
arranging correctly solved (towerS) testing executive function using 
the Delis-Kaplan Executive Function System Tower Test, prospective 
memory (memory) assessed with the Rivermead Behavioural Memory 
Test, fluid intelligence (intel) from the UKB own Fluid IQ test, digits 
remembered (digits) from the Symbol Digit Modalities Tests, and the 
mean number of incorrect pair matches (IPM) across trail A and B 
assessing visual declarative memory using the Wechsler Memory Scale 
IV Designs I and Designs II. Correlations were small to moderate 
(rmax = 0.41) with the variance inflation factor (VIF) indicating low 
levels of multicollinearity (Supplementary Figure S2).

 
brainage sex age sex age matrixS towerS

memory intel digit
= + + ∗ + +
+ + + ss IPM site+ +

(4) A life satisfaction model that additionally included job 
satisfaction (jobS), financial satisfaction (financeS), overall health 
rating (healthR), health satisfaction (healthS), family relation 
satisfaction (famS), happiness, friend relationship satisfaction 
(friendS) relative to the baseline model. Some of the model features 
were highly correlated (rmax = 0.65), yet VIF values indicated low levels 
of multicollinearity (Supplementary Figure S3).

 

brainage sex age sex age jobS
financeS healthR healthS
fam

= + + ∗ +
+ + +
+ SS friendS happiness site+ + +

(5) A health and lifestyle model testing how body mass index 
(BMI), pulse pressure (Ppressure: the difference between systolic and 
diastolic blood pressure), waist-to-hip-ratio (WHR), binary smoking 
status, binary diabetes diagnosis (both type I and II), binary high 
cholesterol (chol), binary diagnosed vascular problem (DVP), birth 
weight (Bweight), sleeping hours, and daily coffee intake (coffee) add 
to the baseline model, with only BMI and WHR showing a moderate 
correlation r = 0.42, but all other correlations being small rs < 0.16, 
with VIF values indicating only low levels of multicollinearity 
(Supplementary Figure S4).

 

brainage sex age sex age BMI WHR Ppressure
diabetes smokin

= + + ∗ + + +
+ + gg chol DVP
Bweight coffee site

+ +
+ + +

2.4.2. Follow-up and quality control analyses and 
single bio-psycho-social factor associations with 
multimodal brain age

Previous research showed sex differences in brain age, suggesting 
sex separate analyses (Rokicki et al., 2021). Hence, we conducted the 
analyses described in 2.4.1 separately for males and females.

 brainage age site biopsychosocialfactors= + +

To examine the contributions of single bio-psycho-social variables to 
explaining WM brain age, linear mixed models were used to observe 
bio-psycho-social variable associations with brain age when controlling 
for age and sex with scanner site as a random factor. In other words, 
different from 2.4.1, we applied one model per bio-psycho-social factor. 
For simplicity, this analysis step only considered the best brain age 
predictions from the multimodal model including the metrics of all 
diffusion approaches (Korbmacher et al., 2022).

 
brainage sex age sex age site

singlebiopsychosocialfactor
= + + ∗ +
+

Each model was then compared to a model not including the 
respective bio psycho social variable:
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 brainage sex age sex age site= + + ∗ +

3. Results

3.1. Linear mixed effect models explaining 
brain age gap from bio-psycho-social 
factors

We ran the proposed five baseline and bio-psycho-social models 
with the first principal component (PC) of the numeric predictors 
from each of the models showing a small proportion of the variance 
in brain age uniquely explained by the principal components (R2 < 1%; 
Supplementary Table S5), with differences between these models and 
respective baseline models yet being highly significant 
(Supplementary Table S6).

When including bio-psycho-social factors instead of their PCs 
and comparing baseline to models 2–5, a larger proportion of both 
marginal or conditional variance in brain age could be  uniquely 
explained by bio-psycho-social variables (marginal and conditional 
R2 < 0.03; Figure 2 and Supplementary Table S7). Model comparisons 
showed that, with the exception of socio-demographic factors, 
bio-psycho-social models explained significantly more variance in 
brain age than the baseline model (with age, sex, and age-by-sex 
interaction as fixed and scanner site as random effect), irrespective of 
the diffusion approach used to calculate brain age (ps < 0.01; Figure 3). 
Differences between this uniquely explained marginal variance were 
small across diffusion approaches (Figure 2).

Across statistical and diffusion models, age was used as a control 
variable to correct for the mere reflection of age by brain age producing 
stable associations across models (1–5) for multimodal brain age 
(Figures  4–7). However, except for the life-satisfaction model, in 
contrast to the full multimodal model, the other diffusion approaches’ 

brain ages were negatively associated with age, giving another 
indication of overall poor model fit. Even more so, the effect of sex was 
dependent on the model, producing mixed effects with large 
uncertainty surrounding �-values, also in the age-by-sex interactions’ 
associations with brain age. Overall, bio-psycho-social factors were 
consistently associated with brain ages from different diffusion 
approaches, with the exception for sex (Figures 4–7).

3.1.1. Sociodemographic factors’ associations 
with brain age

In the model including sociodemographic factors explaining 
brain age (see Figure 4 for the predictors), results were mixed for the 
significant predictors. Sex was a significant predictor for mean DKI, 
DTI, and WMTI (ps < 0.05), the age-by-sex interaction only for BRIA 
(p = 0.045), and ethnicity only for DKI (p = 0.012; Figure 4). Overall, 
only 95% confidence intervals of �-values for age and ethnicity were 
not consistently overlapping, indicating differential effects of these 
variables on brain age based on the underlying data. All other 95% 
confidence intervals surrounding coefficients’ �-values were 
overlapping across diffusion approaches, with expected strong age 
contributions predicting brain age.

3.1.2. Health and lifestyle factors’ associations 
with brain age

Similarly, in the model including health and lifestyle factors 
explaining brain age (see Figure  5 for the predictors), significant 
health factors leading to higher brain age were WHR (ps < 0.001), 
pulse pressure (ps < 0.001), and hypertension (ps < 0.001). Evidence 
across diffusion approaches was mixed for the other predictors with 
smoking predicting brain age derived from BRIA, DTI, mean scores, 
SNT, and WMTI (ps < 0.05), diabetes diagnosis for all models except 
DKI and DTI (ps < 0.05), the diagnosis of at least one vascular disease 
for BRIA, mean scores, and mcSMT (ps < 0.02), and average daily cups 
of coffee for brain age estimates except the one based on BRIA 

FIGURE 2

Marginal R2 values for statistical models across diffusion approaches.
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(ps < 0.01), and the age-by-sex interaction for BRIA and mcSMT 
(ps < 0.04).

Interestingly, WHR was a stronger predictor of brain age in males 
than in females (Supplementary Figure S5). Practically, a WHR �unstd-
value of, for example � = 4 would mean that for every 0.1 step change 
in WHR, the brain age can be expected to increase by 0.4 years (see 
Supplementary Figures S6–S9 for �unstd). Importantly, this association 
was controlled for age, as age is correlated with WHR at r = 0.14 and 
brain age at r = 0.80. Mean population values for WHR were found to 
be WHR < 1 (Molarius et al., 1999), with our sample corresponding 
with these estimates (MWHR = 0.871 ± 0.088, min = 0.534, max = 1.472) 
with males having a higher WHR (MWHR = 0.923 ± 0.064) than females 
(MWHR = 0.817 ± 0.069).

BMI was potentially non-significant due to the model construction 
as the highly correlated WHR (Supplementary Figure S4) was a 
significant predictor of brain age, and BMI alone being a significant 
predictor of brain age (Table  2). Finally, higher birth weight was 
associated with lower brain age estimated from full and mean models, 
as well as BRIA and WMTI (ps < 0.02).

Generally, 95% confidence intervals around coefficients’ �-values 
were overlapping across models indicating no significant differences in 

�-values across diffusion approaches. As a control, we ran the same model 
without WHR as predictor, due to its high correlation with BMI, 
rendering BMI as significant predictor across diffusion approaches’ brain 
ages except the mean model (�s > 0.01, ps < 0.004), also showing now 
clearer evidence for higher brain age when smoking (ps < 0.05), with other 
predictors unchanged (Supplementary Figure S11). Furthermore, leaving 
out hypertension, being a substrate of blood pressure, did not lead to 
changes in the model (Supplementary Figure S12). For both models, 
variance explained is slightly reduced compared to the models including 
the respective variables, making the reduced models significantly different 
(ps < 0.001) from the full health models (Supplementary Tables S8, S9).

3.1.3. Life satisfaction factors’ associations with 
brain age

When modeling brain age from life satisfaction (see Figure 6 for 
the predictors), self-rated health was a significant predictor of all brain 
age estimates except for DKI brain age (ps < 0.05) and health 
satisfaction for all brain age estimates except the mean model’s brain 
age (ps < 0.02). Only the 95% confidence intervals of �-values for age 
do not overlap across models (with the mean model having the largest 
� and full model the smallest �-value for age). All other 95% 

FIGURE 3

Overview of comparison of bio-psycho-social statistical models with baseline models. The figure presents �2 values for each of the bio-psycho-social 
statistical models for each diffusion approach tested against the baseline model. Note that only values of �2#>#11 were significant (p#<#0.05).
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confidence intervals around coefficients’ �-values overlap across 
models indicating no significant differences in �-values across 
diffusion approaches.

Perceived health is moderately correlated with health satisfaction and 
was left out in a control model resulting in a slightly stronger effect of 

health satisfaction and significantly worse performing model (ps < 0.001; 
Supplementary Figure S12 and Supplementary Tables S8, S9). Differently, 
when leaving out happiness as being correlated with several variables the 
model remains unaffected (ps > 0.23; Supplementary Figure S13 and 
Supplementary Tables S8, S9).

FIGURE 4

Sociodemographic model predictors’ standardized beta-values with standard error. *Indicates Bonferroni-corrected p#<#0.05.

FIGURE 5

Health model predictors’ standardized beta-values with standard error. *Indicates Bonferroni-corrected p#<#0.05.
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3.1.4. Cognitive factors’ associations with brain 
age

The only cognitive factor explaining brain age across all models 
was symbol digit substitution (ps < 0.001; Figure 7). Matrix puzzles 
solved was only a significant predictor for the full multimodal brain 
age (p = 0.014), and sex only for DTI and WMTI (ps < 0.02). 

Confidence intervals around coefficients’ �-values are overlapping 
across models indicating no significant differences in �-values across 
diffusion approaches. Fluid intelligence and matrix puzzles are highly 
correlated and hence, matrix puzzles were left out in a quality control 
model, not significantly affecting the structure of most models 
(Supplementary Figure S14 and Supplementary Tables S8, S9).

FIGURE 7

Cognition model predictors’ standardized beta-values with standard error. *Indicates Bonferroni-corrected p#<#0.05.

FIGURE 6

Well-being model predictors’ standardized beta-values with standard error. *Indicates Bonferroni-corrected p#<#0.05.
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TABLE 2 Linear models relating multimodal brain age to bio-psycho-social factors.

Variable Level or 
metric

Variable 
value

Brain 
age1/
Age1

N2 Marginal 
R2 diff

Log 
Likelihooddiff

�2 pdiff
4 �raw/�std

3 ppred
4

Brain age Mean ± SD 64.470 ± 5.946 32,174

Demographics

Scanner site % Cheadle 57.559 63.6/63.6 18,519

% Newcastle 26.403 65.3/65.2 8,495

% Reading 15.913 66.1/66.2 5,120

% Bristol 0.124 67.0/67.2 40

Sex % Male 47.122 65.4/65.1 17,013 �1.07/0.09 0.025

% Female 52.878 63.7/63.9 15,161

Age Mean ± SD 64.473 ± 7.614 64.5/64.5 32,174 0.62/0.79 <0.001

Socio-demographics

Ethnicity European 96.800 64.5/64.6 31,160 �1.8 × 10−5

Non-European 2.970 62.3/61.2 956 �1.8 × 10−5 4 0.007 �0.31/–0.01 185

Prefer not to say (0.180) 65.6/65.6 58

Income5 % less £18 k 10.363 65.6/66.1 3,310 1.4 × 10−4

% £18 k-£30 24.253 65.6/66.5 7,747 1.4 × 10−4 11 <0.001 �0.28/–0.02 0.003

% £30 k-£52 k 27.713 64.6/64.7 8,852 1.4 × 10−4 11 <0.001 �0.29/–0.02 <0.001

% £52 k-100 k 21.586 62.9/61.7 6,895 1.4 × 10−4 11 <0.001 �0.18/–0.01 0.4

% > £100 k 6.956 61.5/59.4 2,222 1.4 × 10−4 11 <0.001 �0.30/–0.01 0.075

Do not know 3.040 67.2/68.0 972

Prefer not to say 6.086 65.6/66.8 1944

Higher education % Yes 49.326 64.2/63.9 15,870 5.2 × 10−5 1 0.177
5.3 × 10−2/–

0.004 1

% No 50.674 64.8/65.0 16,304 5.2 × 10−5 1 0.177

Cognitive test scores

Matrix puzzles solved Mean ± SD 8.011 ± 0.500 64.8/64.7 21,755 6.8 × 10−4 27 <0.001 �0.08/–0.03 <0.001

Tower rearranging correct 
attempts Mean ± SD 9.920 ± 2.123 64.8/64.7 21,587 5.0 × 10−4 17 <0.001 �0.04/–0.02 <0.001

Prospective memory Mean ± SD 1.067 ± 0.397 64.3/64.3 30,300 �1.7 × 10−6 0 0.312
�0.05/–

0.003 1

Fluid intelligence Mean ± SD 6.631 ± 0.397 64.3/64.2 29,786 7.3 × 10−4 23 <0.001 �0.07/–0.02 <0.001

Digits remembered Mean ± SD 6.675 ± 1.540 64.9/64.8 23,070 1.6 × 10−4 15 <0.001 �0.06/–0.02 0.002

Mean number of incorrect 
pair matches across trials

Mean ± SD 2.214 ± 1.279 63.9/63.8 20,770 2.9 × 10−4 3 0.014 �0.05/0.01 0.375

Life satisfaction6

Job satisfaction Mean ± SD 4.511 ± 0.863 62.7/61.6 18,399 �5.5 × 10−6 1 0.494 0.02/0.003 1

Financial satisfaction Mean ± SD 4.714 ± 0.828 64.4/64.5 31,909 2.6 × 10−4 10 <0.001 �0.10/0.003 <0.001

Health satisfaction Mean ± SD 4.470 ± 0.766 64.5/64.5 31,911 0.001 52 <0.001 �0.26/0.003 <0.001

Overall health rating Mean ± SD 3.030 ± 0.630 64.5/64.5 31,934 0.001 66 <0.001 �0.36/–0.04 <0.001

Family relation satisfaction Mean ± SD 4.814 ± 0.846 64.4/64.4 31,737 2.7 × 10−4 17 <0.001 �0.10/0.003 <0.001

Friend relationship 
satisfaction

Mean ± SD 4.784 ± 0.846 64.4/64.4 31,640 2.0 × 10−6 0 0.485 �0.02/0.003 1

Happiness Mean ± SD 4.542 ± 0.686 64.5/64.5 31,884 1.2 × 10−4 3 0.011 �0.07/–
0.008

0.275

(Continued)
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3.1.5. Follow-up: quality control and bivariate 
relationships of multimodal brain age and 
bio-psycho-social factors

Due to the strong variability in sex �-values across models 
(Figures 2, 4–6), we also ran the described analyses separately for 
males and females showing some differences in model performance. 
For example, bio-psycho-social models explained a differential of 
between 1 and 4% of conditional variance for males 
(Supplementary Table S10) and differences in contributions of the 
different models’ predictors, predictors’ �-values being generally 
higher for males (Supplementary Figure S2). Overall, quality checks 
show small levels of multicollinearity, and that each predictor 
contributes individual to the models (Supplementary Figures S2–S10 
and Supplementary Tables S8, S9), supporting assumptions about the 
robustness of the utilized models, as well as that simply adding all 
variables together saturates the model leading to lower model 
performance than at baseline across brain ages based on different 
diffusion approaches with a differential in marginal R2 = 3.38%.

Finally, for a better understanding of bivariate relationships, 
Table 2 gives an overview of brain age calculated from combined 
single and multi-shell diffusion data in relation to the observed 
bio-psycho-social factors. Strongest standardized associations when 
adding single factors to a model explaining brain age from age were 
found for WHR (�std = 0.07, p < 0.001), PP (�std = 05, p < 0.001), and 
overall health rating (�std = �0.04, p < 0.001), and health satisfaction 
(�std = �0.03, p < 0.001). Strongest brain age group differences were 

found for sex (�std = �0.09, p = 0.001), diabetes (�std = 0.02, p < 0.001), 
and hypertension (�std = 0.06, p < 0.001).

4. Discussion

We assessed the influence of various bio-psycho-social variables 
on brain age estimated from different diffusion approaches (and their 
combinations). As predicted, linear mixed effects models showed that 
bio-psycho-social variables uniquely explain a small proportion of 
brain age variability consistently across models, and estimates overlap 
for most predictors. Health and lifestyle factors were most indicative 
of brain age. However, differences in brain age variance explained 
between bio-psycho-social models and diffusion approaches were 
small. Significant predictors of brain age were job satisfaction, health 
satisfaction, WHR (and to a lesser extent BMI when excluding WHR 
as a predictor), diabetes, hypertension, any vascular diagnosis, daily 
coffee consumption, smoking, birth weight, matrix puzzles, and 
symbol digit substitution performance. Our findings indicate that 
brain age estimates derived from different diffusion approaches relate 
similarly to the examined bio-psycho-social factors. This is an 
important finding as it reveals that different WM characteristics share 
common aging associations, which are detailed by bio-psycho-social 
factor associations. The presented diffusion approaches are based on 
different theoretical assumptions for deriving a set of WM features. 
For example, DTI and DKI metrics are usually quite sensitive to a 

TABLE 2 (Continued)

Variable Level or 
metric

Variable 
value

Brain 
age1/
Age1

N2 Marginal 
R2 diff

Log 
Likelihooddiff

�2 pdiff
4 �raw/�std

3 ppred
4

Health and lifestyle factors

BMI Mean ± SD 26.319 ± 4.269 64.4/64.4 31,052 5.9 × 10−4 41 <0.001 0.04/0.03 <0.001

Pulse pressure Mean ± SD 60.027 ± 14.540 64.3/64.3 28,184 0.002 66 <0.001 0.02/0.05 <0.001

WHR Mean ± SD 0.872  ± 0.088 64.4/64.4 31,138 0.004 129 <0.001 4.86/0.07 <0.001

Smoking % Yes 2.629 63.0/61.4 838 7.5 × 10−5 4 0.005 0.34/0.01 0.15

% No 97.374 64.5/64.5 31,033 7.5 × 10−5 4 0.005

Diabetes % Yes 1.688 66.6/66.1 543 5.1 × 10−4 22 <0.001 0.99/0.02 <0.001

% No 98.312 64.4/64.4 31,631 5.1 × 10−4 22 <0.001

Hypertension % Yes 19.680 66.7/66.9 6,332 0.002 151 <0.001 0.86/0.06 <0.001

% No 80.320 63.9/63.9 25,842 0.002 151 <0.001

High cholesterol % Yes 12.202 66.9/68.0 3,926 �7.4 × 10−5 18 <0.001 0.26/0.01 <0.001

% No 83.798 64.1/64 28,248 �7.4 × 10−5 18 <0.001

Vascular diagnosis % Yes 22.726 66.7/67.1 7,312 0.002 136 <0.001 0.78/0.06 <0.001

% No 87.274 63.8/63.7 24,862 0.002 136 <0.001

Birth weight (kg) Mean ± SD 3.358 ± 0.619 63.7/63.3 19,409 3.0 × 10−4 10 <0.001 �0.18/–0.02 <0.001

Daily coffee intake (cups) Mean ± SD 2.065 ± 1.815 64.5/64.5 31,973 3.0 × 10−4 20 <0.001 0.06/0.02 <0.001

Linear models were used to observe each of the bio-psycho-social variables of interest in a model of [brain age ~ age + sex + age*sex + bio-psycho-social variable] with scanner site as a random 
factor. The model was then compared to a baseline model of [brain age ~ age + sex + age*sex] with scanner site as a random factor, and hence, R2 values refer to variance uniquely contributed by 
the single bio-psycho-social variable when added to the baseline model, referring to the marginal R2. For sex and age, fixed effects, and site, the random effect are being presented from the 
baseline model. 1These values differ because of missing data in the associated bio-psycho-social factors and will be influenced by the model’s age bias. 2Sample sizes differ due to missing data in 
the bio-psycho-social variables. 3�raw/�std are the raw and standardized � values of the bio-psycho-social variables of interest. 4ppred refers to the Bonferroni-corrected (multiplied by the number 
of bi-variate tests = 25) p-values of the predictors/bio-psycho-social variables’ �, pdiff refers to the differences between baseline model and the respective model including the bio-psycho-social 
variable of interest using �2 test. 5Likert-type scales were applied for self-rating scales ranging from 1 “extremely unhappy” to 6 “extremely happy” with the exception of overall health ranging 
from 1 “poor” to 4 “excellent.”
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broad range of WM changes due to their integrative nature of the 
scalar metrics (Basser et al., 1994; Jensen et al., 2005), i.e., DTI’s FA or 
DKI’s MK allow one to detect and localize the WM changes but not to 
explain their origins. In turn, dMRI approaches such as SMTmc or 
BRIA offer several metrics potentially allowing us to bind WM 
architecture with their predictive power (Kaden et al., 2016a,b; Reisert 
et al., 2017). For example, the intra-axonal water fraction appearing in 
both models might correlate with axonal density and axon diameter 
(Jelescu et al., 2020). Consequently, the metric provides information 
about WM maturation associated with aging leading to similar 
associations with age, aging and aging-related variables as DTI/DKI 
models. This encourages the usage of both conventional and advanced 
diffusion approaches when examining the relationship of bio-psycho-
social factors and WM. Particularly, the application of dMRI 
approaches with more accurate assumptions around biophysical 
processes such as a ratio between intra-and extra-axonal diffusivities, 
permeability and other features offers various opportunities to 
investigate aging and associated diseases.

4.1. Explaining brain age from 
bio-psycho-social factors

Recent research has made a strong case for the conjunction effects 
of various bio-psycho-social factors in explaining general health 
(Lehman et  al., 2017). Applied to brain age, for example, 
cardiometabolic effects have been shown to influence brain age (Beck 
et al., 2022a,b). However, assessments of how much of the variance 
explained in brain age above and beyond age, sex, age-by-sex 
interaction, and scanner site have not been described in the literature. 
We find close-to-zero added brain age variance explained by models 
including single bio-psycho-social variables (Table  2). Principal 
components of the health and lifestyle, life satisfaction, socio-
demographics, and cognitive ability variables also added only small 
levels of brain age variance explained to the baseline model. A 
comparably larger proportion of brain age variance (R2 < 4%) is 
uniquely explained by health and lifestyle, life satisfaction, socio-
demographics, and cognitive ability variables underlying the principal 
components (Figure 2 and Supplementary Table S7). These results 
suggest to include the different bio-psycho-social variables as 
predictors in order to explain brain age and the full covariance 
structure rather than using components which reduces the 
covariance matrix.

Health and lifestyle factors explained most brain age variance 
when added to the baseline model, followed by life satisfaction, and 
sociodemographic factors. Adding cognitive scores to the baseline 
model decreased brain age variance explained by the model (Figure 2). 
This suggests that biological and psychological factors are more 
influential than demographic factors. In turn, the observed 
bio-psycho-social factors are not independent of each other. Thus, 
we assume that bio-psycho-social factors contribute to explainations 
of brain age conjunctively. Additionally, we revealed that the added 
variance explained was small across models. A potential reason for 
small added R2 values might lay in multiple confounder effects and 
heterogeneity in effects across covariate levels (Table  2 fallacy, 
Westreich and Greenland, 2013). Importantly, the added brain age 
variance explained is not just an effect of adding predictors randomly 
to the model, which rather decreases the variance explained, as shown 

when adding all bio-psycho-social variables to the model. Hence, it 
seems more sensible to employ models incorporating several 
compared to single domain-specific variables to explain brain age. 
However, our results also indicate that a large part of the variance in 
brain age cannot be explained by our proposed bio-psycho-social 
models. Whether this unexplained variance is due to actual 
biologically founded individual differences, or the characteristics of 
brain age, for example, how the metric is being estimated (de Lange 
et al., 2022), remains unclear. BAG might also be rather static and 
indicated by constants such as genetic architecture and birth weight 
(Vidal-Pineiro et al., 2021). This would explain the smaller influence 
of more variable bio-psycho-social variables. Strong deviations from 
the norm, for example, due to atrophy will also have a strong influence 
on brain age (Kaufmann et al., 2019). Hence, for diseases impacting 
brain structure, brain age can be a useful indicator of health status 
(Kaufmann et al., 2019). Potentially, the health and lifestyle factors 
which are most likely to impact brain structure are therefore also more 
predictive of brain age than other bio-psycho-social variables 
(Figures 4–7). While our models failed to explain larger proportions 
of the variance of brain age, there are various interesting phenotype 
associations within these models which will be  discussed in 
the following.

4.1.1. The importance of age, sex, and ethnicity
Usually, age, sex, and at times, scanner site, are used as covariates 

for brain age-phenotype associations as they are expected to influence 
various phenotypes (Jirsaraie et  al., 2022). As brain age reflects 
chronological age, age also explains most of the brain age variance 
(Figures 4–7). We also find that the effects of sex and the sex-age 
interaction were highly variable across diffusion models predicting 
brain age with sex and the sex-age interaction being mostly 
non-significant predictors across diffusion models (Figures  4–7). 
Nevertheless, brain age does significantly differ between sexes 
(Sanford et al., 2022; Subramaniapillai et al., 2022), and we cannot 
exclude sex difference in WM microstructure. These relationships 
might also lead to differences in WM brain ages between sexes. 
Furthermore, models were more predictive of bio-psycho-social 
factors in males than females (Supplementary Table S2 and 
Supplementary Figure S2). Where the influence of sex changes based 
on the model construction, while potentially also influencing the 
model (Figures 4–7 and Supplementary Figures S5–S8). Some of the 
observed sex differences might be based on anatomical features, such 
as higher intracranial volume in males and different sex-specific aging 
(Eikenes et al., 2022). Brain age was differentially sensitive to ethnicity 
dependent on the approach it was calculated on (Figures 4–7), with 
these differences being influenced by sex (Supplementary Figure S2). 
A previous study showed that being a UK immigrant might influence 
brain age estimates (Leonardsen et  al., 2022). Potentially, genetic 
contributions to brain age both estimated from T1-weighted (Ning 
et al., 2020; Vidal-Pineiro et al., 2021) and dMRI data (Salih et al., 
2021) also have a connection with the mentioned brain age differences 
by sex and ethnicity. However, the causal structure of sex and ethnicity 
differences in brain age estimates requires further investigation.

Previous research has shown the effects of sex on metrics derived 
from conventional and advanced diffusion approaches, such as BRIA, 
DKI, DTI, NODDI, RSI, SMT, SMT mc, and WMTI (Beck et al., 2021; 
Eikenes et al., 2022). While a systematic assessment of sex-related 
effects on diffusion metrics from both conventional and advanced 
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dMRI approaches from voxel-to-whole-brain averages over the 
lifespan is yet to be established, different studies presented sex-related 
developmental trajectories in the structural connectome in children 
(Ingalhalikar et al., 2014), and sex related WM changes during aging 
(Hsu et al., 2008). Furthermore, sex differences in aging reflected in 
WM microstructure can be expected due to menopause and cascading 
biological processes, affecting both brain and body systems in various 
ways (Barth and de Lange, 2020; Mosconi et al., 2021; Lohner et al., 
2022). Hence, developmental trajectories differing between males and 
females can be expected which makes sex-separated analyses useful 
to providing important additional information (e.g., as in 
Subramaniapillai et al., 2022). To which extend this applies to ethnicity 
requires further research. Hence, further research is required to 
delineate the underlying causal structure of sex and ethnicity to 
explain their highly variable associations with brain age.

4.1.2. Health and lifestyle factors
Interestingly, while the health and lifestyle factors models 

explained only a small proportion of the brain age variance, most of 
its predictors were significant. Furthermore, these predictors are 
generally only weakly correlated (Supplementary Figure S5), but when 
added in conjunction explaining more variability in brain age than on 
their own (compare Table 2 and Figure 5). To a certain degree, this is 
not surprising, due to dependencies between these predictors. For 
example, WHR, being the strongest predictor of brain age (see 
Figure  5), shows a clear relationship with pulse pressure 
(Supplementary Figure S5). For the extreme cases, this is expressed in 
a well-established relationship between obesity and hypertension 
(Kotsis et al., 2010) or any vascular diagnosis (Mathew et al., 2008). 
This is reflected in brain age, where minimum and maximum values 
show that there is an expected difference of up to 4 years in brain age 
between those with lowest compared to highest WHR, or a 2.4-years 
brain age difference between mean and maximum WHR. Interestingly, 
blood pressure is expected to increase with age, and higher blood 
pressure is positively associated with BAG (Cherbuin et al., 2021). 
However, these effects were not exclusively driven by hypertension but 
across the spectrum of measured blood pressure values (Cherbuin 
et al., 2021). This was supported by our findings showing both an 
effect of pulse pressure and hypertension on brain age. These effects 
are not surprising, as hypertension has been suggested as one of the 
most important risk factors for various cerebrovascular complications 
such as cerebral small vessel disease and resulting cognitive 
impairments (Meissner, 2016; Forte et al., 2019).

Another aspect of high WHR and BMI is obesity increasing diabetes 
risk (Kahn et al., 2006). While the evidence for the direction of the effect 
of diabetes is mixed (Franke et al., 2013; Cole et al., 2018; Sone et al., 
2022), we find participants with diabetes to show higher brain age than 
those without diabetes (Table 1 and Figure 5). Several complications 
within the central nervous system have been associated with diabetes, 
including morphological, electrophysiological, and cognitive changes, 
often in the hippocampus (Wrighten et al., 2009), just as WM lesions and 
altered metabolite ratios (van der Harten et al., 2006; Biessels and Reijmer, 
2014), supporting the idea of higher brain age among those with diabetes. 
But also generally, the increase in risk of cardiovascular disease by WHR 
is mediated by BMI, systolic blood pressure, diabetes, lipids, and smoking 
(Gill et al., 2021). In relation to the brain, higher WHR has been generally 
associated with lower gray matter volume (Hamer and Batty, 2019; 

Gurholt et al., 2021), and higher WM brain age (Beck et al., 2022a,b; 
Subramaniapillai et  al., 2022). Hence, to which extent high WHR 
accelerates brain aging requires further investigation, which might 
be particularly informative when observed in combination with other 
health and lifestyle variables (Hamer and Batty, 2019) and sex 
(Subramaniapillai et al., 2022).

Negative health consequences of smoking (Erhardt, 2009) are 
reflected in smoker’s cortex being thinner (Gurholt et al., 2021), and 
smokers’ brains being 1.5 years older on average than non-smokers’ 
brains (Table 2). Smoking is a known risk factor for cardiovascular 
health significantly increasing its mortality and inducing various 
negative downstream effects on health (Erhardt, 2009), with negative 
impacts on the reward system (Le Foll et al., 2022), repeatedly shown 
in rats (e.g., Gozzi et al., 2006; Kenny and Markou, 2006; Cao et al., 
2013). It can hence be expected that both general and brain health are 
influenced by smoking, making it an important control variable in 
assessing brain age.

The findings for coffee on the other hand are mixed, suggesting 
coffee consumption to be generally positive for cardiovascular health 
and decreasing the risk of Parkinson’s disease, stroke, and Alzheimer’s 
(Nehlig, 2016). The consumption of higher doses of caffeine is, 
however, associated with smaller brain volume and an increased risk 
of dementia (Pham et al., 2022). Practically, the direct effect of the 
number of daily cups of coffee consumed is small in our study. It 
would require on average 10 cups of coffee daily for an increase of 
0.6 years of brain age, fitting the observations made by Pham et al. 
(2022). It also remains unclear whether the effect of coffee 
consumption on brain age is rather mediated by third variables such 
as poor sleep and mental health downstream effects which show 
direct negative effects on health (Distelberg et al., 2017). Additionally, 
there are vulnerable groups in which caffeine can cause adverse 
effects such as people with hypertension (Higdon and Frei, 2006). 
We conclude that health and lifestyle factors function in synergy in 
influencing brain age.

4.1.3. Health perception and satisfaction, and job 
satisfaction

We find significant assignations of self-rated health, friendship/
relationship satisfaction, and job satisfaction with brain age. Self-
assessments and self-rated scores are some of the fastest and easiest 
assessments. Yet, their reliability is under constant scrutiny, particularly 
when assessing health outcomes (e.g., Crossley and Kennedy, 2002; 
Reychav et  al., 2019). In our study, self-rated overall health was a 
significant predictor of brain age, suggesting that asking participants 
about their health can be a useful preliminary assessment of different 
aspects of health. Self-rated health was additionally moderately 
correlated with health perception (Supplementary Figure S4), 
indicating both variables measure, to a certain degree, the same 
underlying phenomenon. However, self-rated health brain age 
associations were stronger and more variable across diffusion 
approaches’ brain ages (Figure 6). These associations support the idea 
of brain age is not only indicative of brain health, but also overall health 
(Kaufmann et al., 2019).

Lastly, there was a trend of individuals’ job satisfaction being 
associated with brain age (Figure 6). Conceptually, this would not 
be surprising as associations between wealth and health (e.g., Adler 
and Ostrove, 1999) as well as job (e.g., Faragher et al., 2013) and 
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financial satisfaction and health (e.g., Hsieh, 2001) have already 
been investigated. However, in the case of our study, higher job 
satisfaction was also indicative of higher brain age. Potential reasons 
are speculative but might reflect the tendency of people engaged in 
their jobs to work long hours which has previously been related 
with various negative mental and physical health outcomes (Lim 
et  al., 2010; Bannai and Tamakoshi, 2014). Nevertheless, the 
underlying mechanisms of the associations between these single 
items in their relationship with brain age require 
further investigation.

4.1.4. Cognitive scores
Cognitive scores’ impact on brain age might be small in the current 

study, yet still important in general (Table 2). This might be due to the 
selection of the observed cognitive test scores, with many more possible 
tests to be included which are potentially more indicative of brain age, 
such as IQ (Elliott et al., 2021). Another opportunity lies in assessing 
associations of cognitive performance and brain age in clinical groups. For 
example, brain age has been found to be explanatory of symbol digit 
modality test scores in multiple sclerosis suggesting brain age as a 
biomarker for cognitive dysfunction (Denissen et al., 2022). Similar to 
such findings, we find a similarly sized effect of symbol digit substitution 
test scores in our healthy aging data (Figure 7). Associations of cognitive 
performance and brain age are also sensitive to sex. For example, the 
number of solved matrix puzzles showing an effect when analyzing males 
and females data together seemed to be a predictor of brain age only in 
females when analyzing females from males data separately 
(Supplementary Figure S2). The quality of these differences requires 
further investigation.

4.2. Variability in brain age-phenotype 
relationships

Imaging phenotypes derived from diffusion UKB data contribute to 
a small additional proportion of the variability in the obtained results. 
However, the presented comparison of R2 differences (Figure  3) 
underestimates the effects of single bio-psycho-social factors, and has to 
be interpreted with care, with cognitive function, life satisfaction, and 
health and lifestyle factors significantly adding to the baseline model 
(Figure 3). Yet, the used brain age estimation model might also introduce 
variability in brain age phenotype associations. Problematically, model 
evaluation metrics such as R2, MAE, or RMSE depend additionally on 
cohort-and study-specific data characteristics making brain age model 
comparison across the literature not straightforward (de Lange et al., 
2022). Additionally, there are differences between models trained on 
voxel-level compared to region-averaged data. Deep learning models 
using voxel-level data reach age predictions errors as low as 
MAE = 2.14 years in midlife to late adulthood (Peng et  al., 2021) or 
MAE = 3.90 years across the lifespan (Leonardsen et al., 2022) while 
explaining large proportions of variance in age (R2 > 0.90), whereas 
models trained on regional and global average measures predict age 
usually with larger error, MAE > 3.6 years, and/or lower variances 
explained R2 < 0.75 (de Lange et al., 2020a,b; Beck et al., 2021, 2022b; 
Rokicki et al., 2021; Korbmacher et al., 2022). However, Niu et al. (2019) 
showed that with different shallow and deep machine learning 
algorithms (ridge regression, support vector regressor, Gaussian process 

regressor, deep neural networks) high prediction accuracies (R2 > 0.75, 
MAE < 1.43) could be reached when using multimodal regional average 
data using a young sample with narrow age range. Nonetheless, the same 
database (UKB) is able to provide similar patterns of detected 
associations between brain age and used phenotypes by applying 
different samples, modalities, and methods to calculate brain age. For 
example, diabetes diagnosis, diagnosed vascular problems or place of 
birth (see Figure 4 in Leonardsen et al., 2022), hip circumference, trail-
making tasks, and matrix pattern completion were significantly 
associated with brain age (see Table 5 in Cole, 2020). However, it remains 
unclear whether the differences in the findings are due to analysis degree 
of freedom, sample characteristics, or actual bio-physical manifestations. 
For instance, the underlying data used for brain age estimation can 
be based on different modalities, e.g., dMRI metrics, as in the present 
work, versus T1-weighted images in Cole (2020) and Leonardsen et al. 
(2022). We can assume that WM-derived brain age associations with 
bio-psycho-social factors are relatively stable across diffusion approaches 
(see Figures  2, 4–6). We  used four mixed models grouping (a) 
demographics, (b) cognitive, (c) life satisfaction, and (d) health and 
lifestyle variables to predict brain age. In contrast, Cole (2020) predicted 
bias-adjusted brain age from simple linear models with sex, age, and age2 
as covariates, and Leonardsen et al. (2022) observed similar associations 
for uncorrected brain age predicted from the respective phenotype and 
age and sex as covariates. However, bio-psycho-social variables are likely 
to interact in a complex pattern when explaining variables such as brain 
age. If we add only single bio-psycho-social variables, such as waist-to-
hip-ratio, to a baseline model and then compare the two models, the 
differences in variance explained are small. Adding blocks of 
meaningfully related variables leads to stronger increases in Brian age 
variance explained (compare Table 2 and Supplementary Table S7). In 
summary, there are various sources of variability in brain age prediction. 
Phenotype associations could encompass not only the underlying data 
but also researchers’ degree of freedom such as data selection, processing, 
and analysis.

5. Conclusion and future directions

Bio-psycho-social factors contribute similarly to explaining WM 
brain age across conventional and advanced diffusion MRI approaches 
when arranged as cognitive scores, life satisfaction, health and lifestyle 
factors, but not socio-demographics. Focusing on single predictors, health 
and lifestyle factors, WHR, birth weight, diabetes, hypertension, and 
related diagnoses, as well as smoking status and coffee consumption, were 
more predictive of brain age than cognitive and life satisfaction measures. 
Apart from health satisfaction and self-ratings, we found relationships of 
life satisfaction variables with brain age to be non-significant. Of the 
cognitive scores, only the digit substitution task performance was a 
significant predictor, which might be relevant in samples from midlife to 
old age. Furthermore, the influence of sex and ethnicity is largely variable 
suggesting the usage of sensible control mechanisms, such as separate 
analyses or exclusions in case of strongly imbalanced samples. 
We  recommend future study designs taking observable interactions 
between the different bio-psycho-social effects into account. A potentially 
helpful guiding principle in the search for bio-psycho-social variables 
affecting brain age could be to focus on measures which are directly or 
indirectly related to or reflect pathology.
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Abstract
Introduction: Brain age, the estimation of a person’s age from magnetic resonance
imaging (MRI) parameters, has been used as a general indicator of health. The marker
requires however further validation for application in clinical contexts. Here, we show
how brain age predictions perform for the same individual at various time points and
validate our findings with age-matched healthy controls.
Methods: We used densely sampled T1-weighted MRI data from four individuals
(from two densely sampled datasets) to observe how brain age corresponds to age
and is influenced by acquisition and quality parameters. For validation, we used two
cross-sectional datasets. Brain agewas predicted by a pretrained deep learningmodel.
Results: We found small within-subject correlations between age and brain age. We
also found evidence for the influence of field strength on brain age which replicated in
the cross-sectional validation data and inconclusive effects of scan quality.
Conclusion: The absence ofmaturation effects for the age range in the presented sam-
ple, brain age model bias (including training age distribution and field strength), and
model error are potential reasons for small relationships between age and brain age
in densely sampled longitudinal data. Clinical applications of brain age models should
consider of thepossibility of apparent biases causedbyvariation in thedata acquisition
process.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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1 BACKGROUND: WHAT IS BRAIN AGE AND
WHAT IS IT GOOD FOR?

Brain age refers to the estimation of a person’s age from magnetic
resonance imaging (MRI) parameters (Franke & Gaser, 2019). This
has been done using either neural networks on 3D data (Leonardsen
et al., 2022) or tabular data containing region-averaged metrics (Korb-
macher et al., 2023; Vidal-Pineiro et al., 2021). Brain age becomes
particularly interesting when assuming that lifespan changes in the
brain follow normative patterns and that deviations from such pat-
ternsmight be indicativeofdiseaseor diseasedevelopment (Marquand
et al., 2019; Kaufmann et al., 2019). An elevated predicted compared
with chronological age in adults may be indicative of psychiatric, neu-
rodegenerative, andneurological disorders (Kaufmannet al., 2019) and
poorer health, for example measured by various cardiometabolic risk
factors (Beck et al., 2022; Korbmacher et al., 2022). Hence, brain age
is a promising developing biomarker of general brain health (Franke &
Gaser, 2019).

However, revealing connections between brain age and structural
and functional brain architecture is needed to fully understand the bio-
logical underpinnings of brain age and its potential clinical implications
(Vidal-Pineiro et al., 2021). Furthermore, large cross-sectional samples
are often used, which could obscure effects of predictive power of
brain age by confounders, in particular, differences in MRI acquisition
(Jirsaraie et al., 2022). Hence, contributions of individual differences
to brain age estimates require a closer examination. With the aim of
assessing the effects of automatedMRI scan quality control (QC) met-
rics onbrain agepredictions,weuseda pretraineddeepneural network
model (Leonardsenet al., 2022) topredict brain ages fromdensely sam-
pled T1-weightedMRI data from three individuals (BBSC1–3) scanned
in total NBBSC = 103 times over a 1-year interval (Wang et al., 2022),
and an independent data set including one individual (FTHP1) scanned
NFTHP = 557 times over a 3-year interval. We first observed within-
subject prediction error and correlations between chronological and
predicted age, revealing small, nonsignificant correlations and larger
prediction errors than previously shown in between-subjects analyses.
We then tested associations of QC metrics on brain age using lin-
ear random intercept models showing potential associations between
QC parameters and brain age as well as associations between acqui-
sition parameters and brain age. Finally, we validate the findings in
cross-sectional data and investigate differences in the variability in
predictions between longitudinal and cross-sectional datasets.

2 RESULTS AND DISCUSSION

2.1 Weak correlation between brain age and age

Crudewithin-subject correlations between age and brain age revealed
differing directionalities of slopes across subjects,with only the FTHP1
correlation being statistically significant (r = 0.38, 95% CI [0.24; 0.51],
p< .001; Figure 1).

This is likely due to the small age range and short interscan inter-
vals, as illustratedbydifferences inmodel-innate error for thedifferent
subjects (Table 1) compared with error statistics across age groups
(MAEtest = 2.47, MAEexternal = 3.90, as presented in Leonardsen et al.,
2022).

Additionally, the ages of BBSC1–3 fall into some of the least rep-
resented parts of the training data age distribution in the underlying
model for the brain age predictions (see Leonardsen et al., 2022) which
might contribute to explaining some of the prediction differences
beyond model error and intraindividual age range across scanning
sessions.

Yet, when using age-matched healthy controls from the cross-
sectional TOP and NCNG samples (seeMaterials and Methods section)
using BBSC and FTHP longitudinal participants’ mean ages ± 5 years
(presented in Table 1), correlations between age and brain age esti-
mates were significant for age matches (representing subsamples of
TOP andNCNG samples; Table 2).

Interestingly, we also find systematically underestimated brain ages
across subjects (Figure 1) with the underestimations being stronger
for a field strength of 3T than 1.5T for FTHP1 (Table 1), and as
compared with age-matched cross-sectional data (Table 2). While lon-
gitudinal brain age predictions were more closely related to age at 3T
MRI (rpartial = 0.38, 95% CI [0.24, 0.51], p < .001) than at 1.5T MRI
(rpartial = 0.06, 95% CI [�0.04, 0.16], p= .239; Figure 2), the prediction
error was smaller at 1.5T (Table 1), with these findings being robust
to exclusions of back-to-back repeat scans acquired in the same ses-
sionwithout repositioning of the head (Supplement 1).When using the
out-of-sample test sets TOP and NCNG cross-sectional data, we find
highly corresponding relationships between age and brain age at 1.5T
(r= 0.98, 95% CI [0.97, 0.98], p < .001) and 3T (r= 0.92, 95% CI [0.91,
0.93], p < .001), but higher prediction error at 3T for age-matched
subjects (Table 2) and overall (Supplement 3).
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F IGURE 1 Intraindividual correlations between brain age and chronological age at 3T for BBSC1–3 and FTHP1.Dot color was gray, with
overlapping dots presented as darker.

TABLE 1 Age, predicted age, brain age gap (BAG), and prediction error by subject and field strength.

Subject Field strength Nobservations Mean age SD age Mean prediction SDprediction Mean BAG SDBAG MAE RMSE

BBSC1 3T 38 30.66 0.38 28.13 1.25 �2.52 1.20 2.55 2.79

BBSC2 3T 40 28.09 0.38 24.37 0.95 �3.72 1.03 3.72 3.85

BBSC3 3T 25 40.66 0.28 30.87 1.37 �9.79 1.46 9.79 9.89

FTHP1 3T 153 49.86 0.54 45.71 3.70 �4.15 3.52 4.31 5.44

FTHP1 1.5T 394 49.64 0.46 48.39 2.52 �1.25 2.54 2.15 2.83

The presented data refer to the longitudinal, densely sampled data of few individuals.
BAG, brain age gap;MAE,mean absolute error; RMSE, root mean squared error. BAG is calculated as the difference between predicted age and age.

TABLE 2 Correlations between age-matching cross-sectional subsamples’ ages and brain age estimates.

Matched
subject

Field
strength Nsubjects

Pearson’s r
[95%CI]* Mean age

SD
age

Mean
prediction

SD
prediction

Mean
BAG SDBAG MAE RMSE

BBSC1 3T 279 0.56 [0.47, 0.64] 30.64 2.74 28.34 4.10 �2.30 3.42 3.33 4.12

BBSC2 3T 269 0.62 [0.54, 0.69] 28.81 2.83 26.75 3.96 �2.05 3.13 3.02 3.74

BBSC3 3T 248 0.44 [0.34, 0.54] 40.71 2.95 37.86 5.21 �2.85 4.71 4.52 5.50

FTHP1 3T 113 0.71 [0.60, 0.79] 48.60 3.04 44.68 5.93 �3.91 4.34 4.59 5.84

FTHP1 1.5T 49 0.79 [0.65, 0.88] 49.61 3.22 51.98 4.40 2.38 2.71 2.91 3.58

Matched subject refers to the longitudinally sample subjects presented in Table 1. Mean ages for the respective subjects with an interval of five years were
used to sample from the cross-sectional validation set consisting of 3T and 1.5T data from TOP andNCNG samples. BAG, brain age gap;MAE,mean absolute
error; RMSE, root mean squared error. BAG is calculated as the difference between predicted age and age.
*All p< .001.

This emphasizes the importance of treating predictions for age
groups which are underrepresented in the training sample and dif-
ferences in field strength with care. In that sense, the observed
within-subjects variability associated with acquisition- or scanner-
specific effects might be used to estimate the minimum size of true
within-subject changes (e.g., due to disease) to be detected with

a given power. Previous findings outlined the influence of scanner
site on brain age predictions and scan quality (Jirsaraie et al., 2022;
Leonardsen et al., 2022) indicated by the Euler number (Rosen et al.,
2018). Lower quality scans lead to lower prediction errors. We hence
hypothesize that there might be additional reasons for inaccuracies
in brain age predictions caused by factors beyond the characteris-
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F IGURE 2 Intraindividual correlations between brain age and chronological age at 1.5T and 3T for FTHP1.Dot color was gray, with
overlapping dots presented darker.

tics of the brain age model, in particular scan quality and acquisition
parameters.

2.2 Scan quality and acquisition: possible reasons
for inaccurate brain age predictions?

We used linear random intercept models at the participant level
to examine associations of individual QC metrics (see Figure 3;
Materials and Methods) and brain age, while controlling for age in
BBSC1–3. Entropy-focus criterion (EFC, �std = �0.489, pHolm < .001)
and the foreground–background energy ratio (FBER, �std = 0.456,
pHolm < .001) were significant predictors of brain age. In a separate
analysis of FTHP1, scanned at different sites using different scanning
parameters,we included scanner site, field strength, and slice thickness
as random factors, rendering none of the QC metrics significant after
correcting for multiple testing (pHolm = 1).

Follow-up analyses in FTHP1 focused on examining acquisition
parameters. We observed individual fixed effects of field strength,
manufacturer, and slice thickness in one model each, while keeping
scanner site and the other acquisition parameters as random effects at
the level of the intercept, revealing only significant associations of field
strength (�=�1.141, pHolm < .001) with brain age.

For validation, we replicate this finding in healthy controls from the
TOP and NCNG (see Materials and Methods section). We found dif-
ferences in BAG at different field strengths (� = �3.547, p < .001),
with MeanBAG-1.5T = 1.357 ± 3.285 and MeanBAG-3T = �2.19 ± 4.06
using the entire out-of-sample test data, with this difference being
attenuated when regressing out age (� = �5.318, p < .001). When
age-matching FTHP1 and including only the N = 162 partici-
pants aged 50 ± 5 years (N = 49 scanned at 1.5T), the effect
of field strength appears stronger (� = �6.294, p < .001), with
MeanBAG-1.5T = 2.38 ± 2.71 and MeanBAG-3T = �3.92 ± 4.35, yet

smaller when regressingout theage-effect (�=�1.942,p< .001). In the
case of age-matching, also correlations between age and brain age are
stronger at 1.5T compared with 3T (Table 2). This was also true when
using the entire cross-sectional data (combining TOP andNCNG data),
yet correlations between age and brain age were more similar at 1.5T
(r= 0.98, 95% CI [0.97, 0.98], p < .001) and 3T (r= 0.92, 95% CI [0.91,
0.93], p= .004).

While our findings indicate an association between QC parameters
EFC and FBER and brain age in all BBSC subjects when controlling for
age and constant scanning parameters and scanner site, noQC param-
eters were significantly associated with brain age after adjustments
for multiple comparisons in FTHP1. Based on that, one could specu-
late that scan quality impacts brain age predictions when participant
ages are sampled from under-represented age groups within the pre-
diction model. For example, Jirsaraie et al. (2022) showed that neural
networks’ reliability of brain age predictions was lowest at the ends
of the age distributions across scanning sites, and predictions were
less consistent when image quality was low. Furthermore, QC metrics
might be sensitive to individual differences, and vary across scanner
sites. FTHP1 results also suggest a strong effect of field strength on
brain age. This indicates overall that brain age estimates are poten-
tially dependent on intraindividual variables in addition to acquisition
parameters and other scanner site-specific covariates. While we can-
not generalize from the obtained single-subject results (FTHP1) on
field strength, the additional analyses on external datasets support the
effect of field strength congruent with Jirsaraie et al.’s (2022) find-
ings of lower prediction errors at 1.5T compared with 3T. This was
expressed in our analyses as generally higher brain age estimates at
1.5T compared with 3T, and higher prediction errors at 3T in both
cross-sectional and longitudinal data. Finally, we show that prediction
error in longitudinal data can be much higher than anticipated from
cross-sectional estimates, without the presence of mental or physical
disorder (see BBSC3 in Table 1; compare Tables 2 and Supplement 3).
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F IGURE 3 Standardized quality control metrics at 3T per subject. For an overviewof scan quality control metrics at 1.5T (only applicable for
FTHP1), see Supplement 2.

A potential approach for future brain age modelling could be to
employ multiple, more specific models which are better tuned to indi-
vidual differences, developmental trajectories, and scan quality. Such
models could for example be trained on data with a smaller age range
and a single field strength. Dependent on these parameters, brain
age predictions can then be made by a model selected based on the
available scan and group the individual belongs to.

3 CONCLUSION

Variability in brain age predictions complicate the metric’s clinical
usage, for example, as a (pre-) diagnostic tool. We presented small
correlations between age and brain age when repeatedly sampling T1-
weighted MRI data from the same individual in a short period of time
(1–3 years). Reasons might lay in the absence ofmaturation effects for
the age range in the presented sample, brain age model bias (includ-
ing a bimodal or trimodal age training distribution) and model error.
While limited, our results suggest an influence of field strength and
mixed evidence for scan quality onbrain age. Individual differences and
the processing of such in the brain age model, might lead to variabil-
ity in associations between brain age and QC metrics. The presented
testing of an established brain age model on multiple single-subject
short-timespan retesting data is a stricter test than the usual use-case
and does not invalidate MRI group differences. However, intraindivid-

ual differences contributing to brain age require further attention in
order to advance brain age as a clinical tool.

4 MATERIALS AND METHODS

4.1 Participants

We used two datasets for the analyses which had received ethics
approval with all participants consenting formally previously (Opfer
et al., 2022; Wang et al., 2022, 2023). The first dataset was the
Bergen Breakfast Scanning Club (BBSC) dataset (Wang et al., 2022,
2023), including three male subjects (BBSC2:start-ageBBSC2 = 27,
BBSC1:start-ageBBSC1 = 30, and BBSC3:start-ageBBSC3 = 40) who
were scanned over the period of circa 1 year with a summer break in
the middle of the scanning period (Wang et al., 2022). This resulted
in a total number of NBBSC = 103 scans, relatively equally distributed
across subjects (NBBSC1 = 38, NBBSC2 = 40, NBBSC3 = 25). The sec-
ond dataset was the frequently travelling human phantom (FTHP) MRI
dataset (Opfer et al., 2022), including one male subject (FTHP1:start-
ageFTHP =48) with 157 imaging sessions at 116 locations, resulting in a
total ofNFTHP =557MRI volumes.Of these,weexcludedN=6volumes
basedonerrors in theprocessingpipeline, resulting in a final sample for
themain analyses ofNFTHP = 551. For QC (Supplement 1),we removed
another NFTHP = 25 volumes which were repeat-sequences run at the
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same scanner and time without changing head position or acquisition
parameters, resulting in a final sample for the supplemental analyses of
NFTHP = 526.

Finally, as additional validation data, we selected healthy controls
from two of the cross-sectional out-of-sample test datasets described
in Leonardsen et al. (2022): locally collected data (TOP; Tønnesen et al.,
2018) and the Norwegian Cognitive NeuroGenetics sample (NCNG;
Espeseth et al., 2012), as these provided most MRI scans on healthy
controls. Together these datasets include a total of N = 209 scans of
healthy controls at 1.5T (Meanage = 54.66± 15.51), andN= 856 scans
of healthy controls at 3T (Meanage = 32.93± 10.55).

4.2 Image acquisition and preprocessing

T1-weighted volumes of BBSC1–3 were acquired with a spin echo
sequence (TE = 2.95 ms, TR = 6.88 ms, FA = 12�, TI = 450, 188
slices, slice thickness = 1mm, in-plane resolution = 1 mm ◊ 1 mm,
FOV = 256mm, isotropic voxel size = 1 mm3) at a 3T GE sys-
tem with 32-channel head coil (see Wang et al., 2022, 2023).
T1-weighted volumes of FTHP1 were acquired at different scan-
ners with various different scanning parameters (see Opfer et al.,
2022 or https://www.kaggle.com/datasets/ukeppendorf/frequently-
traveling-human-phantom-fthp-dataset). All imaging sites involved in
the scanning of FTHP1 were informed that the scan was acquired
for the purpose of MRI-based volumetry. Furthermore, all FTHP sites
were asked to use acquisition parameters in accordance with the
ADNI recommendations for magnetization prepared rapid gradient-
echo (MP-RAGE) MRI for volumetric analyses. Thus, the range of FTHP
acquisition parameters is representative of MRI-based volumetry in
everyday clinical routine at nonacademic sites.However, the scan qual-
ity might be higher than during average clinical assessments, as only
few scans were affected by motion artifacts (relatively young healthy
subject). TOP data (Tønnesen et al., 2018) including only healthy con-
trols were acquired at 3T on a GE 3T Signa HDxT (TR = 7.8 ms,
TE = 2.956 ms, FA = 12�; one subset with HNS coil, one subset
with 8HRBRAIN coil), and a GE 3T Discovery GE750 (TR = 8.16 ms,
TE = 3.18 ms, FA = 12�). NCNG data (Espeseth et al., 2012) were
acquired at a 1.5T Siemens Avanto scanner using two 3D MP-RAGE
T1-weighted sequences (TR = 2400 ms, TE = 3.61 ms, TI = 1000 ms,
FA= 8�, with 160 sagittal slices (1.3◊ 1.3◊ 1.2mm)).

Before prediction, the volumes were automatically processed using
Freesurfer version 5.3 (Fischl, 2012) and FSL version 6.0 (Jenkinson
et al., 2012; Smith et al., 2004), both being widely used open-source
software packages (see for overview of advantages and disadvantages
compared with other packages: Man et al., 2015) which were vali-
dated in clinical andnonclinical samples (Clerx et al., 2015;Fischl, 2012;
Jenkinson et al., 2012; Smith et al., 2004). The processing procedure
included skull-stripping as part of Freesurfer’s recon-all pipeline, lin-
early orienting to MNI152 space (6 degrees of freedom) using FSL’s
linear registration, and excess border removal. While linear registra-
tion in FSL is sensitive to atrophy and high levels of noise (Dadar
et al., 2018), this does not apply for the current quality controlled

data including only healthy controls. As Freesurfer’s skull stripping
algorithm can include errors (Falkovskiy et al., 2016; Waters et al.,
2019), the images were manually checked for accuracy. A step-by-step
processing tutorial including necessary code can be found at https://
github.com/estenhl/pyment-public.

4.3 Brain age estimation

We applied a fully convolutional neural network (Gong et al., 2021;
Peng et al., 2021) trained on 53,542 minimally processed MRI T1-
weighted whole-brain images from individuals aged 3–95 years col-
lected at a variety of scanning sites (both 1.5 and 3T field strength)
(SFCN-reg detailed in Leonardsen et al., 2022) to estimate partici-
pants’ ages directly from theMRI using Python v3.9.13. Themodel was
tested in both clinical and nonclinical samples (Leonardsen et al., 2022)
and presented high accuracy and test–retest reliability compared with
other brain agemodels (Dörfel et al., 2023).

4.4 QC metrics

QC metrics were extracted for each T1-weighted volume by using
the automated MRIQC tool version 22.0.6 (Esteban et al., 2017). Of
these metrics, we used those which are calculated for the whole brain
or volume, being (1) noise measures: contrast-to-noise ratio, signal-
to-noise ratio, coefficient of joint variation of gray and white matter,
(2) measures based on information theory EFC and foreground–
background energy ratio (FBER), (3) white-matter to maximum inten-
sity (WM2MAX), and (4) other measures: full-width half-maximum
(FWHM).

4.5 Statistical analyses

All statistical analyses were conducted using R (v4.1.2). First, correla-
tions of brain age with chronological age and additionally commonly
used error metrics for brain age predictions (mean absolute error and
root mean squared error) were assessed on a participant level.We fur-
ther investigated associations between brain age and age in FTHP1
(from the Frequently Travelling Human Phantom dataset) when par-
tialling out scanner site and field strength, as these were expected to
influence prediction accuracy.

Further analyses focused on associations between QC metrics and
brain age as well as acquisition parameters and brain age.We decided
to observe each single independent variable of interest in a dedi-
catedmodel, as model diagnostics indicated potential multicollinearity
in models including multiple QC metrics. Furthermore, random effect
models were chosen due to the possibility to account for variances
being dependent on different grouping variables, such as ID, scanner
site, field strength, and slice thickness.

Hence, linear random intercept models at the participant level were
used to examine associations of individual QC metrics and brain age,
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while controlling for age in the BBSC dataset, by running onemodel for
each QC metric. Similarly, for dataset 2, we predicted each QC metric
as a fixed effect in addition to the fixed effect of age in a single model.
However, we used different random effects, namely, scanner site, field
strength, and slice thickness, as dataset 2 contained only FTHP1.

We also examined single individual acquisition parameters in the
FTHP dataset (including only one subject FTHP1) as fixed effects in
addition to the fixed age effect. The acquisition parameters of inter-
est were field strength, manufacturer, and slice thickness. Acquisition
parameters not used as fixed effects were used as random effect at
the level of the intercept in addition to scanner site. All p-values were
adjusted for multiple testingusingHolmcorrection,markedwith pHolm.
Standardized �-values (�std) for predictorswere used for comparability
across �-weights by scalingQCmetrics for each subject individually.

Finally, as a validation step,we estimated brain ages for healthy con-
trols in NCNG and TOP datasets and correlated the estimateswith age
for the entire sample, subjects whichwere age-matched to the longitu-
dinal, densely sampled individuals mean age± 5 years. This provided a
baseline understanding for differences in inter and intra subject brain
age variability. In a second step, brain age gap (BAG) was examined by
field strength and scanner site in the validation sample.
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ABSTRACT

The human brain demonstrates structural and functional asymmetries which have

implications for ageing and mental and neurological disease development. We used

a set of magnetic resonance imaging (MRI) metrics derived from structural and

di↵usion MRI data in N=48,040 UK Biobank participants to evaluate age-related

di↵erences in brain asymmetry. Most regional grey and white matter metrics pre-

sented asymmetry, appearing higher at a higher age. Informed by these results,

we conducted hemispheric brain age (HBA) predictions from left/right multi-

modal MRI metrics. HBA was concordant to conventional brain age predictions,

using metrics from both hemispheres, but o↵ers a supplemental general marker of

brain asymmetry when setting left/right HBA into relationship with each other.

In contrast to WM brain asymmetries, left/right discrepancies in HBA are lower

at higher ages. The findings emphasise the value of further investigating the role

of brain asymmetries in brain ageing and disease development.

INTRODUCTION1

There are various structural and functional di↵erences in brain architecture between2

the left and right hemispheres1–6. Microstructural brain characteristics, such as white3

matter (WM) pathways or intra- and extra-neurite water organisation, might underlie4

the brain’s functional lateralisation7. Functional network di↵erence has been asso-5

ciated with handedness8. Both structural and functional brain asymmetry exhibit6

clinical importance as there are di↵erences in brain asymmetry between healthy7

controls and various disease groups, including neurodegenerative diseases such as8

Alzheimer’s disease9, 10, Parkinson’s disease11, and psychiatric disease such as obses-9

sive–compulsive disorder4, 12, 13 and schizophrenia14. In that context and particularly10

relevant from a lifespan-perspective, cortical thickness asymmetry decreases through-11

out ageing, with this alteration being potentially accelerated in the development of12

neurodegenerative disorders such as Alzheimer’s Disease9. Similarly, some studies sug-13

gest lower WM microstructure asymmetry at higher ages, indicated by intra-axonal14

water fraction15, fractional anisotropy, or the apparent di↵usion coe�cient16. Addi-15

tional investigations into brain asymmetries’ age-dependencies can provide a more16

comprehensive understanding of the influence of asymmetries on ageing and disease17

development.18

Brain age is a developing integrative marker of brain health, particularly sensitive19

to neurodegenerative diseases17, 18. Brain age refers to the predicted age in contrast to20

chronological age and is based on a set of scalar metrics derived from brain scans such21

as MR. To date, brain age has often been estimated using a global brain parametri-22

sation such as the averaged scalar measures over particular anatomical regions or23

the whole brain17–21. Hence, we refer to these whole-brain age predictions as global24

brain age (GBA). However, while brain age has been calculated for di↵erent brain25

regions18, 22–24, the use of hemisphere-specific data is usually not being considered as a26

potential source of additional information. Yet, one study presents hemisphere-specific27

2
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and region-specific brain ages containing useful clinical information about post-stroke28

cognitive improvement22.29

Previous results show that brain age prediction depends on the specific fea-30

tures used25–27, rendering for example modality as important. Yet, the influence of31

hemispheric di↵erences or brain asymmetry on the age predictions remains unclear.32

However, previously outlined brain asymmetries1–6 might be informative for age pre-33

dictions. One way of leveraging brain asymmetries into simple metrics is to estimate34

separate brain ages for each hemisphere (HBA) and to then compare the estimates.35

It remains unclear whether predictions from a single hemisphere lead to less accu-36

rate predictions due to the inclusion of less data and a potential attenuation of noise.37

At the same time, in the case of di↵usion MRI (dMRI), di↵erent model-based dif-38

fusion features yield highly concordant brain age predictions, also when varying the39

number of included features21. Finally, although the evidence is mixed on the influ-40

ence of handedness on brain asymmetry28–31, di↵erences in handedness are potentially41

reflected in brain structure, which would in turn influence age predictions di↵erently42

when obtained from the left or right hemisphere only. Hence, handedness requires43

further examination as potential confounding e↵ect when assessing asymmetry.44

HBA, a new brain age measure, may propose more sensitive brain health mark-45

ers than GBA, as age predictions can be compared between hemispheres to infer the46

integrity of each hemisphere and give a general estimate of brain asymmetry. Brain47

asymmetries are commonly observed using the Laterality Index (LI)32. However, dif-48

ferent ways of estimating asymmetry can introduce variability in its dependency with49

age33, and covariates of brain age require further investigation34, 35. To extend the50

existing brain age conceptualisation of using features across the whole brain and to51

maximise interpretability, we restrict brain age predictions to region-averaged and52

global features and not asymmetries of these features. Additionally, di↵erences in the53

models’ abilities to predict age from WM microstructure features derived from dMRI54

compared to T1-weighted features (volume, surface area, thickness) need to be ruled55

out in order to validate both GBA and HBA.56

Hence, in the present work, we tested first the preregistered hypotheses (writ-57

ten study and analysis plan prior data inspection and analyses36, 37) that the GBA58

and HBA depend on the used MRI modality (Hypothesis 1), disentangling whether59

the di↵erent grey matter (GM) and WM metrics and the degree of their asymme-60

try influences brain age predictions. We furthermore tested whether there was an61

e↵ect of hemisphere (Hypothesis 2) and handedness (Hypothesis 3) on brain age pre-62

dictions. Exploratory analyses included (a) revealing hemispheric di↵erences between63

GM and WM features, (b) examining LI associations with age, including the LI of the64

brain features as well as left and right brain ages, and (c) testing the consistency of65

brain age-covariate associations (specifically, health-and-lifestyle factors, as these were66

previously associated with brain age20, 26, 38–41).67
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RESULTS68

Hemispheric di↵erences and age sensitivity for GM and WM69

features70

Two-tailed paired samples t-tests showed that a significant proportion of the GM71

and WM features di↵ered between hemispheres with medium e↵ect sizes. Among the72

significant 793 of 840 dMRI feature asymmetries (94.4%, p<.05, with Cohen’s |d̄dMRI |73

= 0.57±0.44). The largest di↵erences were found for DTI FA in the inferior longitudinal74

fasciculus (d = 3.64), and cingulum (d = 1.95), and for AD in superior longitudinal75

fasciculus.76

E↵ects sizes of the significant hemispheric di↵erences of the 115 of 117 T1-weighted77

features (98.3%), were similar: mean |d̄T1 | = 0.53±0.41, and the largest asymmetries78

were found for the surface area of the transverse-temporal region (d = 1.81), frontal79

pole (d = 1.76), and pars orbitalis (d = 1.74; see Supplementary Table 10 for T1-80

weighted and dMRI features with strongest hemispheric di↵erences).81

LRTs comparing a baseline model predicting age from sex and scanner site com-82

pared to a model where the respective smooth of the metric was added (Eq. 3 and 4)83

indicated most features as age-sensitive (231 of the 234 (98.72%) of the T1-weighted84

features; 1601 of the 1680 (95.53%) dMRI features). Age-sensitivity was strongly85

expressed in both significant T1-weighted features (F̄T1 = 1,168.90±993.59), as well as86

significant dMRI metrics (F̄dMRI = 1,208.97±943.52) with strongest age-sensitivity87

observed for left superior temporal thickness, left/right overall thickness, left/right88

hippocampus volume, and right inferior parietal thickness and multiple WMM metrics89

in the right anterior limb of the internal capsule, the left/right fornix-striaterminalis90

pathway, left/right anterior corona radiata and inferior fronto-occipital fasciculus91

(F > 3, 000; for top features see Supplementary Table 2).92

Results were similar when comparing linear models to the baseline model (Eq. 293

and 4): 1448 of the 1680 (86.19%) dMRI metrics, and 228 of the 234 (97.44%)94

of the T1-weighted features were age-sensitive (F̄T1 = 3,426.89±2,947.11, F̄dMRI =95

2,378.46±2,357.80), with the features with the strongest age-sensitivity resembling96

LRT results of non-linear models (for top features see Supplementary Table 3).97

Considering only left/right averages identified only DTI-AD, and WMTI axial98

and radial extra-axonal di↵usivity to not di↵er between hemispheres (p > .05). Fur-99

thermore, all features were age-sensitive when GAMs (p < 3.4 ⇥ 10�64; yet for100

linear models, BRIA-vCSF and WMTI-axEAD, as well as right DTI-AD and left101

WMTI-radEAD were not age sensitive (Supplementary Tables 4, 5). Furthermore, the102

age-relationships for most of the left/right averages were similar across hemispheres103

(Figure 1, both for crude and adjusted values: Supplementary Figure 1, and for linear104

and non-linear models: Supplementary Figure 4). However, di↵erences in dMRI met-105

rics were observed for the ends of the distribution including individuals aged younger106

than 55 (N = 5, 307) and older than 75 (N = 3, 480).107
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GM and WM feature asymmetry108

Using LRTs comparing GAMs to a baseline model 53 (45.30%) of the 117 T1-weighted109

and 733 of the 840 (87.26%) dMRI |LI| features as age sensitive (p<.05). Using LRTs110

on linear e↵ects identified 53 (45.30%) of the 117 T1-weighted and 678 of the 840111

(80.71%) dMRI |LI| features as age sensitive (p<.05).112

In the following we constrain analyses to linear models and present partial deriva-113

tives / slopes as a measure of e↵ect size, allowing for simple comparisons across114

age-relationships as model fit indices AIC and BIC of linear models and GAMs sug-115

gested on average no di↵erences across both T1-weighted (padj AIC = .759; padj BIC =116

1) and di↵usion-weighted features (dAIC = 0.510, padj AIC = .020; padj BIC = .126).117

The absolute feature asymmetries were higher later in life (�̄dMRI = 0.05 ± 0.07;118

�̄T1 = 0.03 ± 0.06, |�̄multimodal| = 0.05 ± 0.07, here only padj < .05 selected;119

Supplementary Figure 2)-3).120

The strongest adjusted relationships between the respective features’ asymme-121

tries and age were found for dMRI metrics (|�̄dMRI | = 0.08 ± 0.05, |�̄T1 | =122

0.05 ± 0.03; Figure 2), particularly outlining asymmetry increases in the cingu-123

late gyrus (�BRIA�microRD = 0.25, �BRIA�microFA = 0.22, �DTI�MD = 0.20,124

�BRIA�microADC = 0.19), and decrease in the cerebral peduncle (�SMTmc�extratrans125

= -0.20, �SMT�trans = -0.19, �BRIA�V extra = -0.14) and superior longitudinal tem-126

poral fasciculus (�BRIA�microAX = -0.17, �SMT�long = -0.17, �BRIA�DAXextra =127

-0.16).128

For T1-weighted metrics, larger structures’ |LI| were most sensitive to age, with129

the strongest negative associations including the inferior lateral (� = -0.16) and lateral130

ventricles (� = -0.09), pallidum (� = -0.11) volumes, rostro-middle thickness (� = -131

0.11), thalamus volume (� = -0.07) and enthorinal area (� = -0.05). Largest positive132

age-associations were were shown for accumbens area (� = 0.13), WM surface area (�133

= 0.13) and volume (� = 0.11), amygdala (� = 0.11), caudal anterior cingulate thicknes134

(� = 0.11), cortex volume (� = 0.10), caudate volume (� = 0.10), and cerebellar WM135

volume (� = 0.09), in addition to several temporal and limbic areas (Figure 2).136

No influences of handedness, but sex-specific di↵erences in the137

influence of hemisphere and modality on brain age estimates138

Model performance metrics indicated that most accurately age predictions were139

accomplished using multimodal MRI data based on left, right, and both hemispheres140

(Table 1), with obtained HBA and GBA being strongly correlated with each other for141

similar models (Figure 3).142

LMERs did not indicate a di↵erence between modalities (Hypothesis 1) when com-143

paring brain ages estimated from dMRI to multimodal MRI (p = .623), and dMRI144

to T1-weighted MRI (p = .452). There were also no di↵erences in brain age esti-145

mates between hemispheres (p = .413, Hypothesis 2). Moreover, LRTs indicated no146

significant di↵erence between models when adding handedness (�2 = 4.19, p = .123,147

df = 2) or handedness-hemisphere interaction and handedness (�2 = 7.32, p = .120,148

df = 4; see Eqs. 5-6). Notably, a follow-up analysis adding the sex-hemisphere and149

sex-modality interaction terms indicates higher right than left brain age in females150
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compared to male higher left than right brain age (� = 0.22 years, p < .001), as151

well as sex di↵erences in brain age estimates comparing di↵usion to T1-weighted152

(� = �0.89years, p < .001) or multimodal MRI (� = �0.54 years, p < .001).153

However, sex-based stratification for males showed lower multimodal (� = 0.23154

years, p < .001), and T1-weighted (� = 0.41 years, p < .001) than di↵usion MRI155

derived brain age, and higher right than left brain age (� = �0.09 years, p < .001).156

Females showed opposite e↵ects of higher multimodal (� = �0.28 years, p < .001),157

and T1-weighted (� = �0.49 years, p < .001) than di↵usion MRI derived brain age,158

and lower right than left brain age (� = 0.13 years, p < .001). Neither handedness nor159

the handedness-hemisphere interactions were significant for either sex in LMERs and160

LRTs (p > .05).161

Lower brain age asymmetry at higher ages162

To test whether asymmetries between hemisphere-specific brain age predictions are163

lower at higher age, |LIHBA|, was associated with age. |LIHBA| showed negative164

unadjusted associations with age for T1-weighted (r = �0.069, p < .001), dMRI165

(r = �0.121, p < .001), and multimodal models (r = �0.121, p < .001). The166

associations were similar when using LMEs adjusting for sex and the random inter-167

cept site (T1-weighted: � = �0.069, p < .001, dMRI: � = �0.115, p < .001,168

multimodal: � = �0.117, p < .001). LRTs indicate the age-sensitivity of LIHBA169

(T1-weighted: �2 = 173.42, p < .001, dMRI: �2 = 488.74, p < .001, multimodal:170

�
2 = 506.08, p < .001).171

These results held also true when stratifying by sex, for unadjusted (rdMRI males =172

�0.134, rdMRI females = �0.104,rT1 males = �0.134, rT1 females = �0.048,173

rmultimodal males = �0.134, rmultimodal females = �0.111), and adjusted associations174

(�dMRI males = �0.134, �dMRI females = �0.099, �T1 males = �0.134, �T1 females =175

�0.045, �multimodal males = �0.134, �multimodal females = �0.106), with �
2 tests176

suggesting age sensitivity (all p < .001).177

HBA and GBA and health-and-lifestyle factors178

We further investigated the pattern of relationships with general health-and-lifestyle179

phenotypes across HBAs (Figure 4). Relationships between brain ages from single180

and both hemispheres were similar within modalities, but varied slightly between181

modalities (Figure 4). These results were robust to sex stratifications. Yet, while males’182

brain age was sensitive to high cholesterol, hip circumference, smoking and weight,183

this was not the case for females’ brain age (Supplementary Figure 7).184

Sex stratified hemispheric di↵erences and age sensitivity for185

GM and WM features186

For further insights into sex di↵erences, we repeated the presented analyses on hemi-187

spheric di↵erences and features’ age-sensitivity stratifying by sex. Two-tailed paired188

samples t-tests assessing regional di↵erences between hemispheres showed similar189

results between sexes, which are also comparable to cross-sex results. Most features190

di↵ered between hemispheres for both males and females (T1-weighted: 98.3% for both191
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sexes, dMRImales: 96%, dMRIfemales: 95%), and e↵ect sizes were similar (|d̄T1males| =192

0.54 ± 0.42, |d̄T1females| = 0.53 ± 0.42, |d̄dMRI males| = 0.57 ± 0.41, |d̄dMRI females|193

= 0.60 ± 0.47).194

Also the strongest e↵ects were similar across sexes: strongest di↵erences in T1-weighted195

features in males were observed for frontal pole (dT1males = 1.82) and pars orbitalis196

(dT1males = 1.78) surface area, and for females in the area of the transverse temporal197

area (dT1females = 1.89) and the frontal pole (dT1females = 1.73). Strongest WM dif-198

ferences were observed for both sexes in inferior longitudinal fasciculus (ddMRI males =199

3.44, ddMRI females = 3.91), and superior lonitudinal temporal fasciculus (ddMRI males200

= 2.09, ddMRI females = 2.40; Supplementary Table 6).201

LRTs comparing a baseline model predicting age from sex and scanner site com-202

pared to a model where the respective smooth of the metric was added (Eq. 3 and 4)203

indicated most features as age-sensitive (230 of the 234 (98.29%) of the T1-weighted204

features (both sexes); 1,557 and 1564 of the 1,680 (92.68% and 93.10%) dMRI fea-205

tures for males and females, respective). Age-sensitivity was strongly expressed in both206

significant T1-weighted features (F̄T1males = 640.80 ± 521.33; F̄T1females = 578.61207

± 500.79), as well as significant dMRI metrics (F̄dMRI males = 586.38 ± 450.68,208

F̄dMRI females = 674.61 ± 499.58).209

Similar to the results including both sexes, the strongest T1-weighted feature age-210

sensitivity was observed for left superior temporal thickness, left/right hippocampus211

volume for both sexes, and right inferior parietal thickness only for females. Concern-212

ing dMRI features, sex stratification reflects the findings accounting for sex, outlining213

the fornix-striaterminalis pathway, anterior corona radiata and inferior fronto-occipital214

fasciculus, yet adding the anterior limb of the internal capsule and the anterior thala-215

mic radiation. Unique to non-linear models, also the lateral ventricle volume was lined216

out as highly age sensitive (all F > 1, 666; for top features see Supplementary Table 7.217

Results were similar when comparing linear models to the baseline model (Eq. 2218

and 4): 1,557 and 1,564 of the 1680 (92.68%, 93.01%) dMRI metrics, and 226 and 224219

of the 234 (96.58%, 95.73%) of the T1-weighted features were age-sensitive for males220

and females, respectively (F̄T1males = 1,767.60 ± 1,474.69; F̄T1females = 1,712.73 ±221

1,488.97; F̄dMRI males = 1,198.85 ± 1,135.84, F̄dMRI females = 1,297.51 ± 1,257.02),222

with the features with the strongest age-sensitivity resembling LRT results of non-223

linear models (for top features see Supplementary Table 8). Considering only left224

and right hemispheric averages, t-tests indicated that all features di↵ered between225

hemispheres for males (p < 3.1 ⇥ 10�9). In females, WMTI radEAD and axEAD as226

well as DTI AD did not di↵er between hemispheres (p > 0.05), but all other metrics227

di↵ering between hemispheres (p < 1.5⇥ 10�36).228

Considering all regional features, LRTs on GAMs (Eq. 4, 3) indicated that all229

features were age-sensitive (p < 5.1 ⇥ 10�71). LRTs on linear models (Eq. 2, 4)230

indicated that right hemisphere BRIA-vCSF and left microRD were not age sensi-231

tive (padj > 0.05) in males. In females, additionally, left DTI-RD and GM thickness232

as well as left and right WMTI-axEAD were not age-sensitive. All other metrics233

were age sensitive (p < 2.7 ⇥ 10�11). Hemispheric features’ age-relationships showed234

similar intercepts and slopes across sexes, except DTI-AD, WMTI-radEAD and235

WMTI-axEAD (Supplementary Figure 4-5).236
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Sex di↵erences in GM and WM feature asymmetry237

Sex-stratified analyses indicate most dMRI |LI| features to be age sensitive238

(dMRImales = 64.29%, dMRIfemales = 69.52%), but less T1-weighted features239

(T1 males = 47.86%, T1 females = 38.46%) when using non-linear models. Linear mod-240

els showed similar results (dMRImales = 60.95%, dMRIfemales = 64.05%; T1 males =241

44.44%, T1 females = 37.61%). Comparing linear to non-linear models using paired242

samples t-tests suggests no di↵erences model fit indicated in AIC or BIC scores for243

both males and females in T1-weighted and di↵usion features’ asymmetry (p > 0.05).244

Hence, linear model outcomes are presented below. Similar to models including both245

sexes, when stratifying for sex, |LI| for di↵usion and T1-weighted feature were pos-246

itively associated with age (�̄dMRI male = 0.05 ± 0.08, �̄dMRI female = 0.05 ± 0.08,247

�̄T1 male = 0.03± 0.06, �̄T1 female = 0.03± 0.06).248

The strongest adjusted relationships for di↵usion features were found in the249

cingulate gyrus tract (�males BRIA�microRD = 0.25, �males BRIA�microFA =250

0.22, �females BRIA�microRD = 0.25, �males BRIA�microFA = 0.21) and in251

the cerebral peduncle (�males SMTmc�extratrans = �0.19, �males SMT�trans =252

�0.18, �females SMTmc�extratrans = �0.21, �females SMT�trans = �0.20,253

�females BRIA�V extra = �0.18). Strongest age associations with T1-weighted asym-254

metries were found for the area of the accumbens (�males = 0.14,�females = 0.12)255

and WM surface (�males = 0.13,�females = 0.12), with strongest inverse relation-256

ships observed for inferior lateral ventricles (�males = �0.17, �females = �0.14) and257

pallidum (�males = �0.11, �females = �0.12).258

DISCUSSION259

In the present work we investigated a new way of utilizing brain age to di↵erenti-260

ate between hemispheres, and performed a detailed assessment of brain asymmetry261

associations with age. As a baseline, we showed that most grey and white matter fea-262

tures were age-sensitive and di↵ered between hemispheres with relatively large e↵ect263

sizes. Brain asymmetry was age-sensitive, and overall higher at higher ages. In con-264

trast, asymmetry in hemispheric brain age was lower at higher ages. The strongest265

relationship of age and absolute brain asymmetry was identified in larger GM and266

WM regions, as well subcortical structures, including the limbic system, the ventricles,267

cingulate and cerebral peduncle WM.268

Brain age predictions exhibited concordant accuracy within modalities for left,269

right, and both hemispheres, and concordant associations with health-and-lifestyle270

factors also when sex-stratifying. The predictions did not di↵er statistically between271

hemispheres, modalities, or handedness groups when considering both sexes together.272

However, sex-stratified analyses revealed significant opposing e↵ects between sexes273

for hemisphere and modality but not handedness. There are multiple reasons for the274

observed higher brain age in females’ right hemisphere compared to males’ higher275

brain age of the left hemisphere, in addition to modality-specific di↵erences. First,276

male and female brain structure di↵ers, resulting in sex-specific regional variations277

in brain age estimates42. Second, body and brain ageing trajectories di↵er between278

sexes, for example, outlined by sex-dependent importance of cardiometabolic risk279

8

��� Paper D



factors43.Hence, the tendency of males’ predicted brain age being lower using T1-280

weighted and multimodal in contrast to di↵usion-derived brain ages, with these281

trends reversed in females, might also reflect stronger brain age associations with282

cardiometabolic risk factors in males (Supplementary Figure 7), which have been283

demonstrated earlier for WM features and WM brain age 38, 39. In that sense, HBA284

allows to assess the structural integrity of each hemisphere individually, and to set285

brain ages from the two hemispheres in relationship to each other providing a general286

marker of asymmetry. Despite brain asymmetries overall increasing, the asymmetries287

between left/right HBA were smaller at a higher age. At higher ages, both hemi-288

spheres might hence become overall more comparable, despite ageing-related changes.289

290

We found that the majority of regional and hemisphere-averaged MRI features291

di↵ered between hemispheres. Both features and asymmetries were age-sensitive292

indicating that the investigation of asymmetries are useful across ages and MRI293

modalities.294

Interestingly, hemisphere-averaged features’ age-associations and HBA of the same295

modality were similar between hemispheres (Figure 1), and the hemisphere was not296

a significant predictor of brain age estimated from a particular hemisphere, when297

analysing data from both sexes together. However, when sex-stratifying, modality298

and hemisphere were significant predictors, suggesting that HBA captures both brain299

asymmetries as well as biological sex-di↵erences which become apparent when using300

multimodal MRI. These results outline the importance of considering sex-di↵erences301

in brain age analyses.302

Several studies present evidence for asymmetries in WM6, 44–47 and GM4, 9, 48–50.303

In contrast to these previous studies, for the first time, we examine various metrics304

supplying information on both WM and GM in a large sample. While we find various305

di↵erences between hemispheres, age relationships of T1-weighted and dMRI features306

were similar between hemispheres using hemispheric averages, also when stratifying307

by sex. Spatially finer-grained examinations revealed more specific patterns of asym-308

metry in T1-weighted features, such as GM thickness9, and dMRI features44. This is309

also shown in the present study by stronger age-e↵ects for specific regional asymme-310

tries compared to asymmetries in hemispheric averages. Age-MRI metric relationships311

depend, however, on the selected metric, the sample, and the sampling (cross-sectional312

or longitudinal)51, 52. For example, previous evidence from T1-weighted MRI indicates313

no di↵erences in GM volume between hemispheres53, but hemispheric di↵erences of314

cortical thickness and surface area across ageing4, 9.315

The presented age charts of MRI metrics in the current work (Figure 1, Supplemen-316

tary Figure 1) provide similar trends to those reported in previous studies observing317

global age dependencies19, 21, 54–56. Yet, the stratification between hemispheres when318

presenting brain features’ age dependence is a novel way of presenting brain charts.319

320

We found asymmetries based on GM and WM brain scalar measures. Unimodal321

studies with smaller, younger samples presented age-dependence of the brain asymme-322

try during early WM development47 and adult cortical thickness9, other T1-derived323

metrics33, and functional network development5, showed lower asymmetry at higher324
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ages. In contrast to HBA asymmetries, brain asymmetries do generally not support325

the notion of lower but instead of higher brain asymmetry later in life. Di↵erent326

study design choices, such as temporal and spatial levels might provide supplemental327

information into the age-dependence of brain asymmetries, for example, by further328

investigating longitudinal and voxel-level asymmetries.329

We extended previous findings by providing a comprehensive overview of brain330

asymmetry associations throughout mid- to late life including both GM and WM. Our331

findings indicate that when considering various metrics, older brains generally appear332

less symmetric than younger brains in the current sample mid- to late life sample,333

whereas brain age appears more symmetric in older brains.334

Notably, we identified strong associations between specific brain regions’ asymme-335

try and age. The strongest age-associations of asymmetries were observed for subcor-336

tical, ventricle-near structures. The general age-sensitivity of such structures21, 57, 58337

might be a reason for the observed age-associations in asymmetries, and hence338

pointing towards one hemisphere being stronger a↵ected by degradation e↵ects,339

or even the involvement of such regions in psychiatric and neurodegenerative340

disorders40, 54, 57, 59–64. For example, the hippocampus, a prominent limbic structure,341

presents relatively high levels of adult neurogenesis, which might potentially explain342

repeated findings of the region’s associations with psychiatric disorders and disor-343

der states such as depression, anxiety, schizophrenia, addiction, and psychosis65, 66,344

and neurdegenerative disorders, especially Alzheimer’s Disease67, but also ageing in345

general68. Some of the strongest age-relationship for T1-derived asymmetries were346

observed in accumbens, ventricles and pallidum. In turn, a series of dMRI approaches347

was sensitive to asymmetry in the cingulum tract, which is higher in late-life and348

peduncle asymmetry which appears lower in late-life. In particular radial di↵usiv-349

ity metrics, such SMT-trans, SMTmc-extratrans, and BRIA-microRd, and fractional350

anisotropy indicated by BRIA-microFA were sensitive to age-dependencies of these351

asymmetries. Although speculative, this observation could indicate a relationship352

between asymmetry and axonal properties during ageing, such as myelination, den-353

sity, or diameter, in the cingulum, with yet a more general marker (BRIA-microFA)354

of anisotropy asymmetry increasing at advanced age. However, limitations of the dif-355

ferent di↵usion metrics, such as the inability to account for axonal swelling, infection,356

or crossing fibres69, aggravates the interpretation of such asymmetry changes. Over-357

all, asymmetries’ age-dependencies in subcortical, limbic and ventricle-near areas are358

not surprising, considering that the cingulum and cerebral peduncle WM, and mid-359

dle temporal GM area also presented some of the strongest asymmetries across the360

sample (Supplementary Table 10).361

Both GM volume, surface, and thickness show asymmetries across362

studies1, 3, 4, 9, 53. We identified the lowest degree of asymmetry linked to higher ages363

in the ventricular and pallidum volumes. The strongest positive age-relationships for364

T1-weighted features were observed for accumbens and WM surface area, as well as365

limbic structures such as amygdala, hippocampus, and cingulate. Limbic structures366

have previously been outlined as highly age-sensitive21, 57, 58, 68. Higher asymmetry-367

levels might speak to asymmetric atrophy in these limbic regions, potentially368

explaining several ageing-related e↵ects 9. However, lifespan changes in ventricular369
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volume asymmetry in relation to symptom and disorder expression requires additional370

investigations.371

Cingulum WM microstructure has been reported to di↵er between372

hemispheres70–72. Abnormalities in cingulum asymmetry have been linked to373

schizophrenia73–75 and epilepsy76, 77, and Alzheimer’s disease58. Additionally, the cin-374

gulum tract was associated with the anti-depressant e↵ects of deep brain stimulation375

in treatment-resistant depression78. Recent evidence points out strongest polygenic376

risk associations for several psychiatric disorders in addition to Alzheimer’s Disease377

with longitudinal WM in the cerebral peduncle 57. Future research could assess378

regional asymmetries to evaluate such metrics’ value for diagnostics and treatment in379

a range of brain disorders.380

Overall, most absolute MRI feature asymmetries were positively related to age,381

with brain age asymmetries showing inverse age-relationships. However, for both WM382

and GM this process was observed to be spatially distributed. Metric-specific changes383

might indicate accelerated and pathological ageing 9, which urges to examine di↵erent384

WM and GM metrics across temporal and spatial resolutions and in clinical samples.385

Informed by the presented brain asymmetries and their age-dependence, we sug-386

gest HBA, indicating the structural integrity of each hemisphere when compared to387

the chronological age. Moreover, HBA provides a general marker of asymmetry, when388

setting left/right HBA in relationship to each other. While this added information to389

conventional GBA is promising, first, the degree to which HBA captures GBA pre-390

dictions, had to be assessed. This investigation included (1) direct comparisons of391

HBA and GBA models and their predictions, (2) the influence of covariates of brain392

age including MRI modality, hemisphere, handedness, and the hemisphere-handedness393

interaction e↵ect, and (3) a comparison of health-and-lifestyle phenotype-associations394

with HBA and GBA. Overall, HBA and GBA were highly similar across these dimen-395

sions, yet di↵erent between hemispheres and modalities within males and females,396

with these di↵erences contrasting each other. This renders HBA sensitive to potential397

underlying biological processes which only become apparent when assessing males and398

females separately. Additionally, di↵erent modalities might be sensitive to a range of399

biological phenomena in terms of brain age, such as dMRI brain age which is corre-400

lated with diabetes only in males. In that sense, a further route of investigation could401

be to establish sex-specific uni- and multimodal brain age models (which account for402

sex di↵erences in brain morphology and its developmental trajectories). The influence403

of hemisphere and sex on how these models relate to biological phenomena can then404

be assessed.405

Congruently with previous research which combined MRI modalities27, we found406

higher prediction accuracy for multimodal compared to unimodal predictions for both407

HBA and GBA. Our results extend previous findings on conventional brain age by408

not only estimating brain age from di↵erent MRI modalities, but also for each hemi-409

sphere separately. HBA could hold potential in clinical samples by informing about the410

consistency between the two hemispheres’ brain age predictions. Particularly diseases411

or conditions which a↵ect a single hemisphere, such as unilateral stroke or trauma,412

might then be sensitively detected, and the integrity of the una↵ected hemisphere413

can be assessed by observing the congruence of HBA22. Larger discrepancies between414

11

Paper D ���



HBAs of the same individual might act as a marker of hemisphere-specific brain health415

imbalance, which may indicate potential pathology.416

While this study provides initial explorations of asymmetries and HBA, our find-417

ings remain limited to the examined sample (imaging subset of the UKB), and limited418

by generational e↵ects within the sample. The UKB contains individuals born in419

di↵erent decades, which influences individual predispositions for brain health through420

various factors such as the living environment79 or education80, representing various421

potential confounding e↵ects. Additional bias might have been introduced by the sam-422

ple characteristics and sampling procedure. The UKB consists of nearly exclusively423

white UK citizens, limiting the generalisability beyond white Northern Europeans424

and US Americans in their midlife to late life. The volunteer-based sampling proce-425

dure might additionally have introduced bias, reducing generalisability to the UK426

population81, with the imaging sample of the UKB showing an additional positive427

health bias (better physical and mental health) over the rest of the UKB sample82,428

rendering this sub-sample as even less representative of the total UK population.429

430

In conclusion, we identified asymmetries throughout the brain from midlife to431

late-life. These asymmetries appear higher later in life across GM and WM. The432

inverse age-relationships of brain asymmetry are reflected by the di↵erence in left/right433

hemispheric brain age, which is smaller at higher ages. We furthermore identify various434

regional asymmetries which do not only show age-dependence but which have also been435

related to various clinical diagnoses. The identified age-relationships of asymmetries436

provide future opportunities to better understand ageing and disease development.437

METHODS438

Sample characteristics439

We obtained UK Biobank (UKB) data83, including N = 48, 040 T1-weighted datasets,440

N = 39, 637 dMRI datasets, resulting in N = 39, 507 joined/multimodal datasets after441

exclusions were applied. Participant data were excluded when consent had been with-442

drawn, an ICD-10 diagnosis from categories F (presence of mental and behavioural443

disorder), G (disease of the nervous system), I (disease of the circulatory system),444

or stroke was present, and when datasets were not meeting quality control standards445

using the YTTRIUM method84 for dMRI datasets and Euler numbers were larger than446

3 standard deviations below the mean for T1-weighted data85. In brief, YTTRIUM84
447

converts the dMRI scalar metric into 2D format using a structural similarity86, 87448

extension of each scalar map to their mean image in order to create a 2D distribu-449

tion of image and di↵usion parameters. These quality assessments are based on a450

2-step clustering algorithm applied to identify subjects located outside of the main451

distribution.452

Data were collected at four sites, with the T1-weighted data collected in Cheadle453

(58.41%), Newcastle (25.97%), Reading (15.48%), and Bristol (0.14%). Of these data,454

52.00% were females, and the participants age range was from 44.57 to 83.71, mean455

= 64.86 ± 7.77, median = 65.38 ± 8.79. DMRI data were available from four sites:456

Cheadle (57.76%), Newcastle (26.12%), Reading (15.98%), and Bristol (0.14), with457
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52.19% female, and an age range of 44.57 to 82.75, mean = 64.63 ± 7.70, median =458

65.16 ± 8.73. The multimodal sample (N = 39, 507) was 52.22% female, with an age459

range of 44.57 to 82.75, mean = 64.62 ± 7.70, median = 65.15 ± 8.73. Information460

on sex was acquired from the UK central registry at recruitment, but in some cases461

updated by the participant. Hence the sex variable may contain a mixture of the sex462

the UK National Health Service (NHS) had recorded for the participant as well as463

self-reported sex.464

MRI acquisition and post-processing465

UKB MRI data acquisition procedures are described elsewhere83, 88, 89. The raw466

T1-weighted and dMRI data were processed accordingly. Namely, the dMRI data467

passed through an optimised pipeline84. The pipeline includes corrections for noise90,468

Gibbs ringing91, susceptibility-induced and motion distortions, and eddy current469

artifacts92. Isotropic 1 mm3 Gaussian smoothing was carried out using FSL’s93, 94470

fslmaths. Employing the multi-shell data, Di↵usion Tensor Imaging (DTI)95, Di↵u-471

sion Kurtosis Imaging (DKI)96 and White Matter Tract Integrity (WMTI)97 metrics472

were estimated using Matlab 2017b code (https://github.com/NYU-Di↵usionMRI/473

DESIGNER). Spherical mean technique (SMT)98, and multi-compartment spheri-474

cal mean technique (SMTmc)99 metrics were estimated using original code (https:475

//github.com/ekaden/smt)98, 99. Estimates from the Bayesian Rotational Invariant476

Approach (BRIA) were evaluated by the original Matlab code (https://bitbucket.org/477

reisert/baydi↵/src/master/)100.478

T1-weighted images were processed using Freesurfer (version 5.3) 101 automatic479

recon-all pipeline for cortical reconstruction and subcortical segmentation of the T1-480

weighted images (http://surfer.nmr.mgh.harvard.edu/fswiki)102.481

In total, we obtained 28 WM metrics from six di↵usion approaches (DTI, DKI,482

WMTI, SMT, SMTmc, BRIA; see for overview in Supplement 9). In order to normalise483

all metrics, we used Tract-based Spatial Statistics (TBSS)103, as part of FSL93, 94. In484

brief, initially all brain-extracted104 fractional anisotropy (FA) images were aligned485

to MNI space using non-linear transformation (FNIRT)94. Following, the mean FA486

image and related mean FA skeleton were derived. Each di↵usion scalar map was487

projected onto the mean FA skeleton using the TBSS procedure. In order to provide488

a quantitative description of di↵usion metrics we used the John Hopkins University489

(JHU) atlas105, and obtained 30 hemisphere-specific WM regions of interest (ROIs)490

based on a probabilistic WM atlas (JHU)106 for each of the 28 metrics. For T1-weighted491

data, we applied the Desikan-Killiany Atlas107. Altogether, 840 dMRI features were492

derived per individual [28 metrics ⇥ (24 ROIs + 6 tracts)] for each hemisphere, and493

117 T1-weighted features (surface area, volume, thickness for each of the 34 regions;494

3 whole-brain gray matter averages, and 2 averages of white matter surface area and495

volume) for each hemisphere.496

Brain Age Predictions497

Brain age was predicted using the XGBoost algorithm108 implemented in Python498

(v3.7.1). We used six data subsets to predict brain age split in the following manner:499
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1) right hemisphere T1-weighted, 2) left hemisphere T1-weighted, 3) left hemisphere500

di↵usion, 4) right hemisphere di↵usion, 5) left hemisphere multimodal, 6) right hemi-501

sphere multimodal. We applied nested k-fold cross-validation with 5 outer and 10502

inner folds (see Supplement 1 for tuned hyperparameters). We corrected for age-bias503

and mere age-e↵ects109, 110 by including age in the regression equations (Eq. 5) when504

assessing e↵ects of modality, hemisphere, and handedness on brain age, as well as505

phenotype associations with brain ages (Eq. 9).506

Statistical Analyses507

All statistical analyses were carried out using Python (v3.7.1) and R (v4.2.0).508

Hemispheric di↵erences and age sensitivity509

To give an overview of the extent of brain asymmetry, we assessed the significance of
T1-weighted and dMRI features’ asymmetry using two-sided t-tests. The lateralisation
or asymmetry of the brain features was estimated as the following: we applied the LI32

to both regional features and features averaged over each hemisphere (see also33).

LI =
L�R

L+R
, (1)

where L and R belongs to any left and right scalar metric, respectively. Furthermore,510

when associating LI with age, we used absolute LI values (|LI|) allowing to estimate511

age-e↵ects on asymmetry irrespective of the direction of the asymmetry (leftwards or512

rightwards).513

We then used linear regression models correcting for sex and scanning site to
predict age from all regular and LI features:

Âge = F + Sex+ Site, (2)

where F is a scalar metric such as, for example, hippocampus volume (derived from
T1-weighted image) or tapetum fractional anisotropy (derived from DTI). The same
model setup was used applying generalised additive models (GAM) to model non-
linear relationships between F and Age using a smooth s of linked quadratic functions
with k = 4 knots and restricted maximum likelihood :

Âge = s(F ) + Sex+ Site. (3)

Likelihood ratio tests (LRTs)111 were used to assess the age sensitivity of all T1-
weighted and dMRI features and their asymmetry/LI features by comparing the above
models with baseline models not including the respective feature:

Âge = Sex+ Site. (4)

We used the same procedure for region-averaged and hemispheric average metrics for514

regular and LI features. Hemispheric averages of regular features were then visualised515
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by age, including surface area, volume, thickness for T1-weighted data, and intra- and516

extra-axonal water di↵usivities as well as for DTI and DKI metrics.517

To compare the model fit of non-linear and linear models we used the Akaike518

information criterion (AIC)112 and Bayesian information criterion (BIC)113.519

Brain age assessment520

We estimated correlations across HBA and GBA to assess their similarities in addition521

to the model output provided from the prediction procedure. We also correlated age522

with the LI (see Eq. (1)) for the three modalities (dMRI, T1-weighted, multimodal523

MRI), and estimated the age sensitivity of the LI as described in Eqs. (2-4).524

As preregistered (https://aspredicted.org/if5yr.pdf), to test the relationships
between hemisphere (H), modality (M), and HBA while controlling for age, sex
and scanner site, we employed linear mixed e↵ects regression (LMER) models of the
following form:

ˆHBA = H +M +H ⇥M + Sex+Age+ Sex⇥Age+ (1|Site) + (1|I), (5)

where I refers to the random intercept at the level of the individual. Post-hoc group525

di↵erences were observed for hemisphere, modality and their interaction.526

Next, handedness (Ha) was added to the model to observe whether there are model
di↵erences between the resulting LMER:

ˆHBA = Ha+H⇥Ha+H+M+H⇥M+Sex+Age+Sex⇥Age+(1|Site)+(1|I), (6)

and the previous model. Models were statistically compared using LRTs111.527

Finally, the LIs (Eq. 1 of left and right brain age predictions for T1-weighted,
di↵usion and multimodal MRI (LIHBA, i.e. the asymmetry in brain age predictions)
were associated with age, controlling for sex and scanner site as random e↵ect:

Âge = LIHBA + Sex+ (1|Site). (7)

The LIHBAs’ age-sensitivity was then assessed (as for brain features, see Eqs. 2-4),
using LRTs comparing the above model with a baseline model excluding LIHBA (Eq.
4):

Âge = Sex+ (1|Site). (8)

Phenotype associations of brain age528

In an exploratory analysis step, we assessed association patterns between brain ages
and health-and-lifestyle factors which have previously demonstrated an association
with brain age20, 26, 38–41. This analysis step served to compare phenotype associations
across estimated brain ages. The health-and-lifestyle factors included alcohol drinking
(binary), height and weight supplementing body mass index (BMI), diabetes diagnosis
(binary), diastolic blood pressure, systolic blood pressure, pulse pressure, hypertension
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(binary), cholesterol level (binary), and smoking (binary describing current smokers).
For this last analysis step, LMERs were used with the following structure:

P̂ = BA+ Sex+Age+ Sex⇥Age+ (1|Site), (9)

where BA refers brain age incorporating both GBA and HBA, P is the phenotype.529

Furthermore, where applicable, we corrected p-values for multiple testing using530

Bonferroni correction and an ↵-level of p < .05. We used a high-precision approach531

to calculate exact p-values utilizing the Multiple Precision Floating-Point Reliable R532

package114, and report standardized �-values. Sex and site were entered as indepen-533

dent nominal variables in the applicable regression models, with sex being a binary (0534

= female, 1 = male) and scanner site a multinominal (0 = Cheadle, 1 = Newcastle,535

2 = Reading, 3 = Bristol). Finally, we repeated the presented statistical analyses536

stratifying for sex.537

538

DATA AVAILABILITY539

All raw data are available from the UKB (www.ukbiobank.ac.uk).540

CODE AVAILABILITY541

Analysis code is available at https://github.com/MaxKorbmacher/Hemispheric542

Brain Age.543
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Fig. 1 Age curves of standardized and zero-centered mean values of GM and WM features per
hemisphere. A cubic smooth function (s) with k = 4 knots was applied to plot the relationship
between age and brain features correcting for sex and scanner site (F ): ˆage = s(F ) + sex + site
using restricted maximum likelihood (REML). The grey shaded area indicates the 95% CI. All age-
relationships were significant (padj < .05).
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Fig. 2 T1-weighted and dMRI features linear asymmetry-age-associations. The plot presents the
standardized (sex- and site-corrected) regression slopes versus Bonferroni-adjusted -log10 p-values.
Modelling was done using Eq. 2: ˆage = �0 + �1 ⇥ F + �2 ⇥ Sex + �3 ⇥ Site, where F is the
respective brain feature. Labelling was done separately for T1-weighted and dMRI indicating the
10 most significantly associated features (five for � > 0 and five for � < 0). ILF = inferior
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stria terminalis tract, Caud. ant. cingulate = caudal anterior cingulate. Full tables are available at
https://github.com/MaxKorbmacher/Hemispheric Brain Age/.
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TABLES843

Table 1 Hemispheric brain age prediction outcomes.

Model Features R
2

MAE RMSE Correlation*
Left T1w 117 0.504 (0.010) 4.389 (0.054) 5.472 (0.061) 0.708 [0.703, 0.712]
Right T1w 117 0.492 (0.008) 4.439 (0.049) 5.529 (0.051) 0.705 [0.700, 0.709]
T1w 234 0.526 (0.011) 4.294 (0.050) 5.356 (0.062) 0.725 [0.721, 0.730]
Left dMRI 840 0.568 (0.014) 4.000 (0.047) 4.990 (0.067) 0.757 [0.753, 0.762]
Right dMRI 840 0.582 (0.013) 3.960 (0.052) 4.967 (0.079) 0.766 [0.762, 0.771]
dMRI 1680 0.605 (0.010) 3.867 (0.059) 4.821 (0.094) 0.781 [0.777, 0.785]
Left multimodal 957 0.630 (0.009) 3.757 (0.046) 4.673 (0.047) 0.794 [0.790, 0.797]
Right multimodal 957 0.634 (0.014) 3.723 (0.073) 4.673 (0.092) 0.794 [0.791, 0.798]
Multimodal 1914 0.628 (0.017) 3.663 (0.055) 4.563 (0.077) 0.793 [0.789, 0.797]

R2 = Variance explained, MAE = Mean Absolute Error, RMSE = Root Mean Squared Error, Corr. =
Correlation, Values in round parentheses () refer to standard deviations and square brackets [] to 95%
confidence interval around correlations (Pearson’s r) of uncorrected brain age estimates and chronological
age.
* The correlation between raw brain age and chronological age.
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SUPPLEMENTARY844

INFORMATION845

Supplementary information to the article ”Brain asymmetries from mid- to late-life846

and hemispheric brain age”, Korbmacher et al., 2023847

SUPPLEMENTARY TABLES848

1 Tuned Hyperparameters849

Overview of the tuned hyperparameters for each of the used brain age models.

Modality Hemisphere Learning Rate Maximum Depth Number of Trees

Multimodal Both 0.1 8 140
Multimodal Left 0.05 7 180
Multimodal Right 0.1 8 140

dMRI Both 0.1 6 100
dMRI Left 0.1 4 180
dMRI Right 0.1 5 180
T1w Both 0.1 5 140
T1w Left 0.1 6 140
T1w Right 0.1 6 180

850
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2 Most age-sensitive regional features using non-linear models851

T1 Metric Deviance F dMRI Metric Deviance F

superior temporal thickness (lh) 587304.16 4188.91 DKI - AK anterior limb of the internal capsule (rh) 644106.76 5170.95
hippocampus volume (rh) 576250.86 4101.39 DTI - RD fornix striaterminalis (rh) 627313.71 4981.99
thickness (lh) 576355.10 4082.87 DTI - FA anterior corona radiata (lh) 571637.61 4390.91
inferiorparietal thickness (lh) 569468.00 4041.74 DTI - FA inferior fronto-occipital fasciculus (lh) 568799.27 4366.64
hippocampus volume (lh) 565456.80 4006.59 BRIA - microRD anterior thalamic radiation (rh) 561902.12 4295.66
thickness (rh) 562548.97 3965.59 WMTI - radEAD anterior coronaradiata (rh) 433925.45 4281.90
inferior lateral ventricle volume (lh) 544864.71 3836.12 BRIA - microFA fornix striaterminalis (rh) 557084.22 4247.55
inferior lateral ventricle volume (rh) 539066.94 3786.01 DTI - FA fornix striaterminalis (rh) 545272.55 4125.27
superior temporal thickness (rh) 522564.64 3603.62 BRIA - microRD fornix striaterminalis (rh) 539180.21 4070.72
lateral ventricle volume (lh) 513713.08 3567.34 BRIA - microADC anterior thalamic radiation (rh) 536979.62 4050.30

33

Paper D ���



3 Most age-sensitive regional features using linear models852

T1 Metric Sum of Squares F dMRI Metric Sum of Squares F

superior temporal thickness (lh) 582215.80 12516.42 DTI - RD fornix striaterminalis (rh) 568838.72 13114.24
thickness (lh) 571936.88 12239.14 DTI - FA anterior coronaradiata (lh) 554045.66 12664.20
hippocampus volume (rh) 564806.62 12048.28 DTI - FA inferior fronto-occipital fasciculus (lh) 527205.85 11866.98
inferiorparietal thickness (rh) 559834.17 11915.90 DTI - FA fornix striaterminalis (rh) 526713.03 11852.57
thickness (rh) 557696.94 11859.18 DTI - RD anterior coronaradiata (lh) 504149.35 11201.30
hippocampus volume (lh) 554478.02 11773.95 DTI - RD anterior coronaradiata (rh) 500047.51 11084.67
superior temporal thickness (rh) 519361.12 10859.68 DTI - FA anterior coronaradiata (rh) 481860.37 10573.93
thalamus volume (rh) 470220.77 9626.25 BRIA - microRD anterior thalamic radiation (rh) 480010.76 10522.57
cortex volume (lh) 455643.18 9270.23 DTI - RD inferior fronto-occipital fasciculus (lh) 471710.65 10293.35
amygdala (lh) 454268.29 9236.88 DTI - FA inferior fronto-occipital fasciculus (rh) 470227.52 10252.62
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4 Global metrics’ age sensitivity using linear models853

LRTs outcomes testing global metrics’ age sensitivity using linear models (Eqs. 2 & 4), with p-values being Bonferroni-corrected854

for multiple comparison. Acronyms lh and rh refer to mean left and right hemisphere, respectively.

Metric Sum of Squares F p Metric Sum of Squares F p

BRIA vintra (lh) -14143.51 256.78 <.001 DTI MD (rh) -294821.39 6256.88 <.001
BRIA vintra (rh) -13492.91 244.88 <.001 DTI FA (lh) -294054.08 6237.71 <.001
BRIA vextra (lh) -8868.68 160.58 <.001 DTI FA (rh) -290846.08 6157.77 <.001
BRIA vextra (rh) -8247.91 149.29 <.001 SMT FA (lh) -96237.02 1824.32 <.001
BRIA vcsf (lh) -12339.56 223.82 <.001 SMT FA (rh) -88924.97 1679.10 <.001
BRIA vcsf (rh) -11691.20 211.99 <.001 SMT MD (lh) -145717.99 2837.80 <.001
BRIA micrord (lh) -110749.44 2115.93 <.001 SMT MD (rh) -138236.90 2681.03 <.001
BRIA micrord (rh) -112757.19 2156.64 <.001 SMT trans (lh) -236947.06 4859.34 <.001
BRIA microfa (lh) -7389.49 133.69 <.001 SMT trans (rh) -230976.33 4720.50 <.001
BRIA microfa (rh) -7660.08 138.61 <.001 SMT long (lh) -233251.22 4773.28 <.001
BRIA microax (lh) -20330.95 370.29 <.001 SMT long (rh) -221802.60 4509.03 <.001
BRIA microax (rh) -19217.81 349.82 <.001 SMTmc d (lh) -12811.82 232.44 <.001
BRIA microadc (lh) -244852.70 5044.67 <.001 SMTmc d (rh) -15325.44 278.40 <.001
BRIA microadc (rh) -242965.40 5000.27 <.001 SMTmc extramd (lh) -234164.26 4794.51 <.001
BRIA dradextra (lh) -0.87 0.02 1.00 SMTmc extramd (rh) -221755.78 4507.96 <.001
BRIA dradextra (rh) -0.56 0.01 1.00 SMTmc extratrans (lh) -269921.51 5643.84 <.001
BRIA daxintra (lh) -45776.98 844.85 <.001 SMTmc extratrans (rh) -251971.27 5213.02 <.001
BRIA daxintra (rh) -32572.59 597.02 <.001 SMTmc intra (lh) -162286.59 3189.66 <.001
BRIA daxextra (lh) -33941.70 622.56 <.001 SMTmc intra (rh) -138122.05 2678.64 <.001
BRIA daxextra (rh) -29058.51 531.64 <.001 WMTI awf (lh) -216212.24 4381.26 <.001
DKI AK (lh) -98394.96 1867.39 <.001 WMTI awf (rh) -198966.98 3992.24 <.001
DKI AK (rh) -107687.41 2054.02 <.001 WMTI radead (lh) -538.93 9.72 0.11
DKI RK (lh) -134762.36 2608.66 <.001 WMTI radead (rh) -1786.25 32.22 <.001
DKI RK (rh) -117109.00 2245.17 <.001 WMTI axead (lh) -15537.30 282.28 <.001
DKI MK (lh) -166559.26 3281.46 <.001 WMTI axead (rh) -140593.59 2730.28 <.001
DKI MK (rh) -146629.45 2856.99 <.001 T1 (lh) thickness -361976.02 7460.14 <.001
DTI AD (lh) -6414.25 115.99 <.001 T1 (rh) thickness -337720.79 6873.27 <.001
DTI AD (rh) -32682.00 599.06 <.001 T1 (lh) area -131984.99 2428.71 <.001
DTI RD (lh) -103169.79 1963.06 <.001 T1 (rh) area -115500.16 2109.17 <.001
DTI RD (rh) -98654.94 1872.59 <.001 T1 (lh) volume -366138.06 7562.34 <.001
DTI MD (lh) -296264.43 6292.97 <.001 T1 (rh) volume -351072.41 7194.50 <.001
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5 Global metrics’ age sensitivity using non-linear models855

LRTs outcomes testing global metrics’ age sensitivity using generalized additive models (Eqs. (3,4)), with p-values being856

Bonferroni-corrected for multiple comparison. Acronyms lh and rh refer to mean left and right hemisphere, respectively.

Metric Deviance F p Metric Deviance F p

BRIA vintra (lh) 298222.11 1980.42 <.001 DTI MD (rh) 420292.82 2975.29 <.001
BRIA vintra (rh) 263814.46 1721.75 <.001 DTI FA (lh) 454980.03 3284.21 <.001
BRIA vextra (lh) 99954.26 601.06 <.001 DTI FA (rh) 437831.65 3130.91 <.001
BRIA vextra (rh) 68415.48 404.41 <.001 SMT FA (lh) 231126.97 1481.17 <.001
BRIA vcsf (lh) 389707.46 2715.85 <.001 SMT FA (rh) 212502.18 1350 <.001
BRIA vcsf (rh) 395906.41 2768.18 <.001 SMT MD (lh) 338666.06 2295.03 <.001
BRIA micrord (lh) 489922 3605.08 <.001 SMT MD (rh) 329913.59 2225.14 <.001
BRIA micrord (rh) 482669.31 3537.29 <.001 SMT trans (lh) 325557.05 2188.8 <.001
BRIA microfa (lh) 468131.01 3399.04 <.001 SMT trans (rh) 309770.56 2066.61 <.001
BRIA microfa (rh) 441798.75 3161.43 <.001 SMT long (lh) 239399.25 1543.22 <.001
BRIA microax (lh) 123284.12 747.18 <.001 SMT long (rh) 220310.81 1406.65 <.001
BRIA microax (rh) 122353.86 741.87 <.001 SMTmc d (lh) 17581.83 100.96 <.001
BRIA microadc (lh) 442217.61 3169.41 <.001 SMTmc d (rh) 18705.17 107 <.001
BRIA microadc (rh) 433573.24 3092.76 <.001 SMTmc extramd (lh) 375805.34 2598.83 <.001
BRIA dradextra (lh) 265199.9 1732.72 <.001 SMTmc extramd (rh) 350591.17 2392.53 <.001
BRIA dradextra (rh) 259410.42 1690.27 1.00 SMTmc extratrans (lh) 381698.57 2646.36 <.001
BRIA daxintra (lh) 227477.58 1459.06 <.001 SMTmc extratrans (rh) 357451.71 2446.62 <.001
BRIA daxintra (rh) 221619.72 1417.52 <.001 SMTmc intra (lh) 230534.22 1477.89 <.001
BRIA daxextra (lh) 269452.37 1764.08 <.001 SMTmc intra (rh) 196608 1238.41 <.001
BRIA daxextra (rh) 265820.53 1737.25 <.001 WMTI awf (lh) 294396.47 1946.39 <.001
DKI AK (lh) 248201.74 1607.19 <.001 WMTI awf (rh) 271308.81 1773.47 <.001
DKI AK (rh) 277452.37 1822.07 <.001 WMTI radead (lh) 356837.69 2444 <.001
DKI RK (lh) 248246.37 1606.74 <.001 WMTI radead (rh) 347896.75 2371.95 <.001
DKI RK (rh) 214591.89 1365.38 <.001 WMTI axead (lh) 22893.57 133.33 <.001
DKI MK (lh) 225899.98 1446.06 <.001 WMTI axead (rh) 30036.73 175.61 <.001
DKI MK (rh) 190685.71 1195.84 <.001 T1 (lh) thickness 363679.29 2447.65 <.001
DTI AD (lh) 91486.87 545.48 <.001 T1 (rh) thickness 339637.31 2256.41 <.001
DTI AD (rh) 63150.51 374.43 <.001 T1 (lh) area 132330.67 818.92 <.001
DTI RD (lh) 492407 3628.18 <.001 T1 (rh) area 115697.02 777.46 <.001
DTI RD (rh) 481438.43 3525.6 <.001 T1 (lh) volume 366575.45 2414.26 <.001
DTI MD (lh) 425442.7 3020.18 <.001 T1 (rh) volume 351519.39 2312.27 <.001
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6 Di↵erences of T1-weighted and dMRI features between hemispheres by sex857

The table shows the ten largest regional di↵erences between left and right hemispheres’ T1-weighted and dMRI data indicated858

by e↵ect size (Cohen’s d) indicated by paired samples t-tests (two-sided) and presented separately for males and females. All859

Bonferroni corrected p < .05. SLFT = Superior longitudinal fasciculus (temporal part), ILF = Inferior longitudinal fasciculus.860

For full tables see the files Hemi NEW sex dMRI features di↵.csv and Hemi NEW sex T1w features di↵.csv at https://github.861

com/MaxKorbmacher/Hemispheric Brain Age.862

di↵usion MRI

Feature Cohen’s dmales Feature Cohen’s dfemales

DTI - FA ILF 3.44 DTI - FA ILF 3.91
DTI - AD SLFT 2.09 DTI - AD SLFT 2.40
WMTI - axEAD SLFT 2.01 SMTmc - di↵ SLFT 2.06
DTI - FA cingulate gyrus 1.93 SMT - long SLFT 2.04
DKI - RK cingulate gyrus 1.90 DTI - FA cingulate gyrus 1.98
WMTI - AWF cingulate gyrus 1.83 SMTmc - extratrans cerebral peduncle 1.96
DTI - AD ILF 1.81 SMTmc - extraMD SLFT 1.93
DTI - FA superior frontooccipital fasciculus 1.77 BRIA - microAX SLFT 1.92
DKI - RK SLFT 1.75 DKI - RK SLFT 1.91
SMTmc - extratrans cerebral peduncle 1.74 SMTmc - intra cingulate gyrus 1.89

T1-weighted MRI

Feature Cohen’s dmales Feature Cohen’s dfemales

frontal pole area 1.82 transverse temporal area 1.89
pars orbitalis area 1.78 frontal pole area 1.73
transverse temporal area 1.77 pars orbitalis area 1.72
inferior parietal area 1.71 inferior parietal area 1.72
inferior parietal volume 1.62 inferior parietal volume 1.64
frontal pole volume 1.58 frontal pole volume 1.54
thalamus volume 1.40 middle temporal area 1.42
middle temporal area 1.31 transverse temporal volume 1.38
transverse temporal volume 1.29 thalamus volume 1.34
pars orbitalis volume 1.27 pars orbitalis volume 1.29
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7 Most age-sensitive regional T1- and di↵usion-weighted features using863

non-linear models by sex864

The table shows the ten largest regional di↵erences between left and right hemispheres’ T1-weighted and dMRI data indicated by F from LRTs comparing865

a baseline model (Eq. 4) to the GAM (Eq. 3) presented separately for males and females. All Bonferroni corrected p < .05. ATR = Anterior thala-866

mic radiation, IFOF = inferior fronto-occipital fasciculus. For full tables see the files Hemi NEW REGIONAL dMRI non linear hemi e↵ects MALES.csv,867

Hemi NEW REGIONAL dMRI non linear hemi e↵ects FEMALES.csv, Hemi NEW REGIONAL T1 non linear hemi e↵ects MALES.csv, and868

Hemi NEW REGIONAL T1 non linear hemi e↵ects FEMALES.csv at https://github.com/MaxKorbmacher/Hemispheric Brain Age.869

Males

T1 Metric Deviance F dMRI Metric Deviance F

Hippocampus volume (rh) 325396.71 2327.14 DTI - RD fornix striaterminalis (rh) 321483.12 2474.87
Inferior lateral ventricle volume (lh) 315630.20 2242.52 DKI - AK Anteriorlimbofinternalcapsule (rh) 315123.70 2406.94
Hippocampus volume (lh) 314178.29 2222.80 DTI - FA fornix striaterminalis (rh) 287920.97 2127.34
Lateral ventricle volume (rh) 294791.55 2055.25 DTI - FA IFOF (lh) 286229.79 2114.11
Superior temporal thickness (lh) 288883.19 1973.34 BRIA - micro Rd ATR (rh) 285675.67 2109.47
Thickness (lh) 286653.65 1944.76 DTI - FA Anteriorcoronaradiata (lh) 285098.32 2099.07
Thickness (rh) 285659.63 1943.02 BRIA - micro FA Fornix Striaterminalis (rh) 280978.76 2062.43
Lateral ventricle volume (lh) 280759.99 1932.22 BRIA - micro Rd ATR (lh) 268901.80 1946.45
Bankssts thickness (lh) 111534.08 1927.07 DTI - RD ATR (rh) 268857.43 1944.99
Rostral middle frontal volume (rh) 112544.65 1887.40 DTI - RD ATR (lh) 268408.62 1942.57

Females

T1 Metric Deviance F dMRI Metric Deviance F

Superior temporal thickness (lh) 298436.46 2186.28 DKI - AK Anteriorlimbofinternalcapsule (rh) 328299.92 2756.78
Inferior parietal thickness (rh) 294083.30 2157.56 DTI - RD Fornix Striaterminalis (rh) 309568.49 2539.12
Thickness (lh) 289859.17 2098.94 DTI - FA Anteriorcoronaradiata (lh) 287115.30 2288.94
Thickness (rh) 277328.73 1988.89 DTI - FA IFOF (lh) 282230.37 2243.21
Superiortemporal thickness (rh) 268345.92 1902.38 BRIA - micro FA Fornix Striaterminalis (rh) 279454.04 2213.63
Hippocampus volume (lh) 256888.62 1827.15 BRIA - micro Rd Fornix Striaterminalis (rh) 279158.45 2213.20
Hippocampus volume (rh) 256386.19 1820.25 BRIA - micro Rd ATR (rh) 279221.52 2209.87
Lateral ventricle volume (rh) 247973.59 1755.77 DTI - RD ATR (lh) 278213.99 2202.86
Lateral ventricle volume (lh) 237509.49 1666.32 DTI - RD Anteriorcoronaradiata (lh) 277873.07 2197.90
Supramarginal thickness (rh) 235411.09 1632.94 BRIA - micro Rd ATR (lh) 274318.30 2160.44
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8 Most age-sensitive regional T1- and di↵usion-weighted features using870

linear models by sex871

The table shows the ten largest regional di↵erences between left and right hemispheres’ T1-weighted and dMRI data indicated by F from LRTs872

comparing a baseline model (Eq. 4) to the linear model (Eq. 2) presented separately for males and females. All Bonferroni corrected p <873

.05. ATR = Anterior thalamic radiation, SLFT = superior longitudinal fasciculus (temporal part), IFOF = inferior fronto-occipital fasciculus. For874

full tables see the files Hemi NEW REGIONAL dMRI linear hemi e↵ects MALES.csv, Hemi NEW REGIONAL dMRI linear hemi e↵ects FEMALES.csv,875

Hemi NEW REGIONAL T1 linear hemi e↵ects MALES.csv, and Hemi NEW REGIONAL T1 linear hemi e↵ects FEMALES.csv at https://github.com/876

MaxKorbmacher/Hemispheric Brain Age.877

Males

T1 Metric SS F dMRI Metric SS F

Hippocampus volume (rh) 316544.24 6766.75 DTI - RD fornix striaterminalis (rh) 286594.17 6364.49
Hippocampus volume (lh) 306351.25 6487.54 DTI - FA fornix striaterminalis (rh) 276467.17 6067.57
Superior temporal thickness (lh) 286384.87 5955.49 DTI - FA anterior corona radiata (lh) 274955.01 6023.83
Thickness (lh) 284626.62 5909.55 DTI - FA IFOF (lh) 263814.28 5706.24
Thickness (rh) 283428.75 5878.34 DTI - RD anterior corona radiata (lh) 246467.64 5227.51
Inferior parietal thickness (rh) 271677.80 5575.68 DTI - RD anterior corona radiata (rh) 242227.42 5113.30
Inferior lateral ventricle volume (lh) 254969.32 5156.08 DTI - FA anterior corona radiata (rh) 238605.78 5016.60
Superior temporal thickness (rh) 252923.59 5105.55 DTI - FA IFOF (rh) 233533.32 4882.47
Thalamus volume (rh) 247813.43 4980.11 BRIA - microRD ATR (rh) 232131.22 4845.66
Amygdala volume (lh) 243131.64 4866.16 DTI - RD IFOF (lh) 230505.57 4803.12

T1 Metric SS F dMRI Metric SS F

Superior temporal thickness (lh) 295682.20 6561.30 DTI - RD fornix striaterminalis (rh) 282234.33 6743.14
Inferior parietal thickness (rh) 288649.89 6365.48 DTI - FA anterior corona radiata (lh) 279013.72 6641.48
Thickness (lh) 287657.68 6338.05 DTI - FA IFOF (lh) 263549.29 6163.65
Thickness (rh) 274795.27 5986.72 DTI - RD anterior corona radiata (rh) 258369.12 6007.30
Superior temporal thickness (rh) 266558.45 5765.84 DTI - RD anterior corona radiata (lh) 257953.77 5994.85
Hippocampus volume (rh) 248481.56 5291.98 DTI - FA fornix striaterminalis (rh) 251128.24 5791.79
Hippocampus volume (lh) 248438.59 5290.87 BRIA - microRD ATR (rh) 249535.85 5744.86
Supramarginal thickness (rh) 232265.05 4879.14 BRIA - microRD ATR (lh) 243660.64 5573.15
Supramarginal thickness (lh) 225512.01 4710.53 DTI - FA anterior corona radiata (rh) 243324.99 5563.40
Precuneus thickness (rh) 223530.22 4661.41 DTI - RD IFOF (lh) 241625.80 5514.19
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9 Description of white matter features by di↵usion approaches.878

Di↵usion Approach Metrics

Bayesian Rotationally Invariant Approach (BRIA) [100] intra-axonal axial di↵usivity (DAX intra)
extra-axonal radial di↵usivity (DRAD extra)
microscopic fractional anisotropy (micro FA)
extra-axonal axial di↵usivity (DAX extra)
intra-axonal water fraction (V intra)
extra-axonal water fraction (V extra)
cerebrospinal fluid fraction (vCSF)
microscopical axial di↵usivity (micro AX)
microscopic radial di↵usivity (micro RD)
microscopical apparent di↵usion coe�cient (micro ADC)

Di↵usion Kurtosis Imaging (DKI) [96, 97] mean kurtosis (MK)
radial kurtosis (RK)
axial kurtosis (AK)

Di↵usion Tensor Imaging (DTI) [95] fractional anisotropy (FA)
axial di↵usivity (AD)
mean di↵usivity (MD)
radial di↵usivity (RD)

Spherical Mean Technique (SMT) [98] fractional anisotropy (SMT FA)
mean di↵usivity (SMT md)
transverse di↵usion coe�cient (SMT trans)
longitudinal di↵usion coe�cient (SMT long)

Multi-compartment Spherical Mean Technique (SMTmc) [99] extra-neurite microscopic mean di↵usivity (SMTmc extra md)
extra-neurite transverse microscopic di↵usivity (SMTmc extra trans)
mc SMTdi↵usion coe�cient (SMT mcd)
intra-neurite volume fraction (SMTmc intra)

White Matter Tract Integrity (WMTI) [97] axonal water fraction (AWF)
radial extra-axonal di↵usivity (radEAD)
axial extra-axonal di↵usivity (axEAD)
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10 Di↵erences of T1w and dMRI features between hemispheres879

The table shows the ten largest regional di↵erences between left and right hemispheres’ T1w and dMRI data indicated by880

e↵ect size (Cohen’s d) indicated by paired samples t-tests (two-sided). SLFT = Superior longitudinal fasciculus (temporal881

part), ILF = Inferior longitudinal fasciculus. Bonferroni-adjusted p-values were p < 2 ⇥ 10�308. For full tables see the files882

Hemi dMRI features di↵.csv and Hemi T1w features di↵.csv at https://github.com/MaxKorbmacher/Hemispheric Brain Age.883

T1-weighted MRI di↵usion MRI

Feature T -value Cohen’s d Feature T -value Cohen’s d
Transverse temporal area 397.45 1.81 DTI - FA ILF 725.48 3.64
Frontal pole area -386.34 1.76 DTI - AD SLFT -444.89 2.23
Pars orbitalis area -380.71 1.74 DTI - FA cingulate gyrus 388.09 1.95
Inferior parietal area -368.85 1.68 DKI - RK cingulate gyrus 375.36 1.89
Inferior parietal volume -352.95 1.61 SMTmc - di↵ SLFT -369.19 1.85
Frontal pole volume -340.08 1.55 SMTmc - extratrans cerebral peduncle -367.31 1.84
Middletemporal area -297.79 1.36 DKI - RK SLFT -364.52 1.83
Thalamus Proper 296.93 1.35 WMTI - AWF cingulate gyrus 364.46 1.83
Transverse temporal volume 292.04 1.33 SMT - long SLFT -359.08 1.80
Pars orbitalis volume -280.74 1.28 DTI - AD ILF 353.43 1.78
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SUPPLEMENTARY FIGURES884

11 Uncorrected mean values’ age curves885

Uncorrected standardized and zero-centered age curves and lines for mean values of grey and white and886

grey matter features by age per hemisphere. For line fitting, first, a cubic smooth function (s) with k = 4887

knots was applied to plot the relationship between age and brain features (F ): ˆage = s(F ). Second, a linear888

model was applied of the following form: ˆage = �0 + �1 ⇥ F . Models used restricted maximum likelihood889

(REML). Extreme outliers defined by Mean±9SD were removed for visualisation purposes.890
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12 Distribution of the significant and893

non-significant slopes of age-related laterality894

indexed grey and white matter features895

We estimated the absolute laterality index (|LI|) for each regional feature to assess the overall directional-896

ity of asymmetry-age associations. The distrubutions of age-relationship of |LI| are displayed with the six897

panels showing the distributions for the modality-specific features (T1-weighted and di↵usion-weighted)898

for both sexes, males and females.899
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13 Distribution of the significant slopes of902

age-related laterality indexed grey and white903

matter features904

We estimated the absolute laterality index (|LI|) for each regional feature to assess the overall directional-905

ity of asymmetry-age associations. The distrubutions of age-relationship of |LI| are displayed with the six906

panels showing the distributions for the modality-specific features (T1-weighted and di↵usion-weighted)907

for both sexes, males and females.908
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14 Linear, adjusted hemispheric mean values’ age911

associations912

Corrected standardized and zero-centered linear age relationships for mean hemispheric val-913

ues of grey and white matter features by age per hemisphere. Modelling was done using Eq. 2:914

ˆage = �0 + �1 ⇥ F + �2 ⇥ Sex + �3 ⇥ Site, where F is the respective brain feature.915
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15 Adjusted mean values’ hemisphere-specific age918

associations by sex919

Age curves of standardized and zero-centered mean values of GM and WM features per hemisphere and by920

sex. A cubic smooth function (s) with k = 4 knots was applied to plot the relationship between age and921

brain features correcting for sex and scanner site (F ): ˆage = s(F ) + sex + site using restricted maximum922

likelihood (REML). The grey shaded area indicates the 95% CI. All age-relationships were significant923

(padj < .05).924
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16 Adjusted mean values’ sex-specific age927

associations by hemisphere928

Age curves of standardized and zero-centered mean values of GM and WM features per hemisphere and by929

sex. A cubic smooth function (s) with k = 4 knots was applied to plot the relationship between age and930

brain features correcting for sex and scanner site (F ): ˆage = s(F ) + sex + site using restricted maximum931

likelihood (REML). The grey shaded area indicates the 95% CI. All age-relationships were significant932

(padj < .05).933
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17 Association between general936

health-and-lifestyle phenotypes and brain age937

estimated from di↵erent modalities, left, right938

and both hemispheres by sex939

Eq. 9 was used (yet stratifying by sex) and standardized slopes are presented. For simplicity, standardized940

slopes with |�| < 0.005 were rounded down to � = 0. Panel a) males, panel b) females. L: left hemisphere,941

R: right hemisphere, LR: both hemispheres, BMI: body mass index, WHR: waist-to-hip ratio. Bonferroni-942

adjusted p < .05 is marked by a black frame.943
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18 Males’ T1-weighted and dMRI features946

asymmetry-age-associations947

T1-weighted and dMRI features linear asymmetry-age-associations. The plot presents the standard-948

ized, site-corrected regression slopes versus Bonferroni-adjusted -log10 p-values for males. Modelling949

was done using a sex-stratified version of Eq. 2: ˆage = �0 + �1 ⇥ F + �2 ⇥ Site, where F is the950

respective brain feature. Labelling was done separately for T1-weighted and dMRI indicating the 10951

most significantly associated features (five for � > 0 and five for � < 0). Cereb.Peduncle = cerebral952

peduncle, Rostro-mid. thicknes = rostro-middle thickness, SLFT = superior longitudinal fasciculus953

(temporal part), Fornix-Str.Term. = fornix-stria terminalis tract, Rost. ant. cingulate = rostral anterior954

cingulate. Full tables are available at https://github.com/MaxKorbmacher/Hemispheric Brain Age/.955
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19 Females’ T1-weighted and dMRI features958

asymmetry-age-associations959

T1-weighted and dMRI features linear asymmetry-age-associations. The plot presents the stan-960

dardized, site-corrected regression slopes versus Bonferroni-adjusted -log10 p-values for females.961

Modelling was done using a sex-stratified version of Eq. 2: ˆage = �0 + �1 ⇥ F + �2 ⇥ Site,962

where F is the respective brain feature. Labelling was done separately for T1-weighted and963

dMRI indicating the 10 most significantly associated features (five for � > 0 and five for964

� < 0). Cereb.Peduncle = cerebral peduncle, Rostro-mid. thicknes = rostro-middle thickness,965

SLFL = superior longitudinal fasciculus, Sup.front.occ.Fasc. = superior fronto-occipital fasci-966

culus. Full tables are available at https://github.com/MaxKorbmacher/Hemispheric Brain Age/.967
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Distinct longitudinal brain white matter

microstructure changes and associated

polygenic risk of common psychiatric disorders

and Alzheimer’s disease in the UK Biobank
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During the course of adulthood and ageing, white matter (WM) struc-

ture and organisation are characterised by slow degradation processes

such as demyelination and shrinkage. An acceleration of such age-

ing process has been linked to the development of a range of diseases.

Thus, an accurate description of healthy brain maturation, in par-

ticular, in terms of WM features, provides a cornerstone in the un-

derstanding of ageing. We use longitudinal diffusion magnetic res-

onance imaging to provide an overview of WM changes at differ-

ent spatial and temporal scales in the UK Biobank (UKB) (N=2,678;

agescan1=62.38±7.23 years; agescan2=64.81±7.1 years). To examine

the genetic overlap between WM structure and common clinical con-

ditions, we tested the associations between WM structure and poly-

genic risk scores (PGRS) for the most common neurodegenerative dis-

order, Alzheimer’s disease, and common psychiatric disorders (uni- and

bipolar depression, anxiety, obsessive-compulsive, autism, schizophre-

nia, attention-deficit-hyperactivity) in longitudinal (N=2,329) and cross-

sectional UKB validation data (N=31,056). Global and regional sin-

gle and multi-compartment fractional anisotropy, intra-axonal water

fraction, and kurtosis metrics decreased (—̄=-0.04),whereas diffusivity

metrics, and free water increased with age (—̄=0.05), with the annual

rate of WM change (ARoC) accelerating at higher ages for both global

(—̄=0.01) and regional WM metrics (—̄=0.01). Voxel-level trends indi-

cated decreasing anisotropy, and variable spatial patterns for other dif-

fusion metrics, suggesting differential changes in frontal compared to

other brain regions. Although effect sizes were small (|—̄all| = 0.01),

ARoC in middle cerebral peduncle WM had the strongest association

with PGRS, especially for Alzheimer’s: |—̄| = 0.01. PGRS were more

strongly related to ARoC than cross-sectional measures (dscan1=0.03,

dscan2=0.03, dvalidation=0.03). Our findings indicate spatially dis-

tributed WM changes across the brain, as well as distributed associa-

tions of PGRS with WM. Importantly, brain longitudinal changes re-

flected the genetic risk for disorder development better than the utilised

cross-sectional measures, with regional differences giving more specific

insights into gene-brain change associations than global averages.

Ageing | White Matter | Microstructure | Brain Ageing | Polygenic Risk | Mag-
netic Resonance Imaging | Diffusion MRI
Correspondence: max.korbmacher@hvl.no, ivan.maximov@hvl.no

Introduction
White matter microstructure (WMM) changes significantly
throughout the lifespan. Recent large-scale studies suggest
a strong association between WMM and age during both
healthy and diseased ageing (1–7). Previous findings demon-

strated general trends of tissue anisotropy increases and wa-
ter diffusivity decreases throughout childhood (8–10), and,
as reversal dynamics of these trends, throughout adulthood
(3, 11). Importantly, abnormal white matter (WM) develop-
ment has been associated with the development of neurocog-
nitive skills and mental health symptoms in childhood and
adolescence (12) and brain disorders later in life (13, 14).
A person’s genetically determined propensity to develop a
certain disorder can also be summarised by polygenic risk
scores (PGRS) (15–23). Combining brain imaging and ge-
netics opens the opportunity to associate the elevated genetic
risk for disorders with specific brain features (24) in terms
of scalar imaging metrics (25, 26). This allows to identify
which brain regions might be more prone to disease develop-
ments based on the genetic makeup, and provide additional
biological detail to the observed WM changes. An advantage
of using WMM for such associations is the level of detail pro-
vided by biophysical models, such as intra- and extra axonal
diffusion processes (27–31). WM-specific changes are asso-
ciated with various common psychiatric disorders (13, 14),
and precede, for example, the symptom onset in Alzheimer’s
Disease (AD) (32). This outlines WMM as an important as-
pect for further investigation in disease formation and out-
comes.

As the temporal aspect matters when investigating tissue
changes, longitudinal designs are required (6). Hence, lon-
gitudinal changes in WM are informative when examining
PGRS-tissue associations as they allow to connect PGRS
with actual WM change and not only cross-sectional "snap-
shots" of brain structure at a given moment of an individual’s
life.

In order to estimate ageing effects on WM alterations, stud-
ies commonly focus on diffusion tensor imaging (DTI) (33).
While DTI is useful for mesostructural characterisations, DTI
is also limited in addressing certain common phenomena
in WM such as crossing fibre bundles, non-Gaussian diffu-
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sion, and differences between intra- and extra-axonal water
compartments (34). Recent achievements in advanced diffu-
sion magnetic resonance imaging (dMRI) techniques offer a
spectrum of biophysical models (27–31) addressing these is-
sues, for example, by differentiating between intra and extra-
axonal space (27, 29, 31), or by capturing non-Gaussian dif-
fusion (27, 28). In turn, there are few longitudinal studies
observing WMM changes (10, 35, 36), and even fewer also
utilising advanced diffusion approaches beyond DTI (6, 10).
In order to fill this gap, we assess the metrics of a series
of dMRI approaches in a large longitudinal mid-to-late life
adult sample provided by the UKB (37) and identify the
spatio-temporal patterns of ageing-related WMM changes on
a global, regional, and voxel-level scale. To further investi-
gate potential genetic underpinnings of these WMM changes,
we estimate PGRS informed by previous genome-wide as-
sociation studies for AD, the most common neurodegenera-
tive disorder, and common psychiatric disorders, including
Major Depressive Disorder (MDD), Bipolar Disorder (BIP),
Anxiety Disorder (ANX), Autism Spectrum Disorder (ASD),
Schizophrenia (SCZ), Attention Deficit Hyperactivity Disor-
der (ADHD), and Obsessive-Compulsive Disorder (OCD).
PGRS capture an individual’s genetic propensity for a trait
by aggregating the estimated effects of risk variants across
the entire genome. Together with brain structure and brain
structural changes, PGRS may be informative for the devel-
opment of disease. For example, these gene-brain associa-
tions can help identify concrete spatial patterns for different
diseases (38, 39). For further inference on the generalisabil-
ity of the associations between PGRS and WM in the longi-
tudinal sample with available PGRS (after exclusions: N =
2,329), we estimated the same associations for independent
participants from the cross-sectional portion of the UKB (af-
ter exclusions: N = 31,056) (37). Based on previous findings
(3, 40), we expected near-linear age associations of diffu-
sion metrics, generally outlining lower fractional anisotropy,
intra-axonal water fraction, and kurtosis at higher ages, but
higher diffusivity, extra-axonal free water fraction. More-
over, we expected to observe PGRS-WMM associations for
AD globally and in most age-sensitive regions.

Methods
A. Sample characteristics. We obtained UKB data (37),
including the longitudinal dMRI data of N = 4,871 partic-
ipants at two time points. Participant data were excluded
when consent had been withdrawn, and when dMRI data
were not meeting quality control (QC) standards using the
YTTRIUM method (41) (see also Supplement 1). Addition-
ally, we excluded participants which were diagnosed with
any mental and behavioural disorder (ICD-10 category F),
disease of the nervous system (ICD-10 category G), and dis-
ease of the circulatory system (ICD-10 category I). Remain-
ing data sets after exclusions were applied were N = 2,678
participants (52.99% females). At baseline, participants were
on average 62.26±7.19 years old (range: 46.12-80.30 years)
and at time point two, mean age was 64.70±7.07 years (range:
49.33-82.59 years), indicating an average age difference as

�age =2.44±0.73 years (range: 1.12-6.90 years). The data
were collected at three sites: (1) in Cheadle (57.36%), (2)
Newcastle (37.04%), and (3) Reading (5.60%). PGRS data
were available for N = 2,329 of these longitudinal data sets
and for N = 31,056 cross-sectional validation data sets (after
exclusions).

B. MRI acquisition and post-processing. UKB MRI
data acquisition procedures are described elsewhere (37, 42,
43).
After obtaining access to the raw dMRI data, we pre-
processed it using an optimised pipeline (41). The pipeline
includes corrections for noise (44), Gibbs ringing (45),
susceptibility-induced and motion distortions, and eddy cur-
rents artefacts (46). Isotropic 1 mm3 Gaussian smoothing
was carried out using FSL’s (47, 48) fslmaths. Employ-
ing the multi-shell data, Diffusion Tensor Imaging (DTI),
Diffusion Kurtosis Imaging (DKI) (28) and White Mat-
ter Tract Integrity (WMTI) (27) metrics were estimated
using Matlab 2017b code (https://github.com/
NYU-DiffusionMRI/DESIGNER). Spherical mean tech-
nique SMT (30), and multi-compartment spherical mean
technique (mcSMT) (29) metrics were estimated using
original code (https://github.com/ekaden/smt)
(29, 30). Estimates from the Bayesian Rotational In-
variant Approach (BRIA) were evaluated by the original
Matlab code (https://bitbucket.org/reisert/
baydiff/src/master/) (31).
In total, we obtained 26 WM metrics from six diffusion ap-
proaches (DTI, DKI, WMTI, SMT, mcSMT, BRIA; see for
overview in Supplement 2). In order to normalise all met-
rics, we used Tract-based Spatial Statistics (TBSS) (49), as
part of FSL (47, 48). In brief, initially all brain-extracted
(50) fractional anisotropy (FA) images were aligned to MNI
space using non-linear transformation (FNIRT) (48). Follow-
ing, the mean FA image and related mean FA skeleton were
derived. Each diffusion scalar map was projected onto the
mean FA skeleton using TBSS. To provide a quantitative de-
scription of diffusion metrics at a region level, we used the
John Hopkins University (JHU) atlas (51), and obtained 30
hemisphere-specific white matter (WM) regions of interest
(ROIs) based on a probabilistic WM atlas (JHU) (52) for each
of the 26 metrics. Altogether, 1,794 diffusion features were
derived per individual [26 metrics ◊ (48 ROIs + 20 tracts +
1 global mean value)].

C. Polygenic Risk Scores. We estimated PGRS for each
participant with available genomic data, using PRSice2 (53)
with default settings. As input for the PGRS, we used sum-
mary statistics from recent genome-wide association studies
of ASD (15), MDD (19), SCZ (22), ADHD (16), BIP (21),
OCD (17), ANX (18), and AD (20). We used a minor allele
frequency of 0.05, as most commonly used threshold across
PRS studies of psychiatric disorders.
While psychiatric disorders were p-values thresholded at –
= 0.05 (15–23), recommendations for AD (– = 1.07≠4 (54))
lead to the application of a lower threshold of – = 0.0001,
with the goal of optimising signal to noise in comparison to
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previously used – = 0.001 (55). The goal with the estimation
of the PGRS was to relate cross-sectional WMM metrics and
WMM changes to disease-related genetic profiles to examine
to which degree these genetic risk profiles can explain WMM
changes in midlife to senescence.

Statistical Analyses. All statistical analyses were carried
out using R version 4.2.0 (www.r-project.org), and
FSL version 6.0.1 (48).
First, we assessed unadjusted time point differences by using
paired samples t-tests on a set of cognitive measures, and
each of the global and regional scalar diffusion metrics F
(such as FA from DTI) and present Cohen’s d indicating the
effect size:

d = x̄1 ≠ x̄2
‡̂

, (1)

describing the difference between means (x̄1, x̄2) over an es-
timate of the sample standard deviation of the data (‡̂).
We then used linear mixed effects regression models (LMER)
adjusting F for age, sex, the sex-age interaction (sex◊age),
time point (TP ) and scanner site (Site). ID was treated as
random intercept (RRI), and y the y-intercept:

F̂ = y +—0 ◊Age+—1 ◊Sex+
—2 ◊Age◊Sex+—3 ◊TP +—4 ◊Site+RI(ID)

(2)

For comparison of age-relationships between time points,
we utilised simple linear and generalised additive models
(GAMs) on each single time point (treating the data as cross-
sectional), with the linear models taking the following form:

F̂ = y +—0 ◊Age+—1 ◊Sex+
—2 ◊AgeúSex+—3 ◊Site,

(3)

and the GAMs this form (including a spline function of age
S(Age) to model non-linear associations):

F̂ = y +S(Age)+—1 ◊Sex+
—2 ◊AgeúSex+—3 ◊Site.

(4)

We also estimated the annual rate of change (ARoC) of each
global feature by taking the difference in WMM features F
between time points over the time passed between time points
(scan1&2) indicated by the �age = agescan2 ≠agescan1:

ARoC = Fscan2 ≠Fscan1
�age

. (5)

Global ARoC was corrected for sex, sex◊age, and scanner
site (as RI):

ˆARoCglobal = y +—0 ◊AgeúSex+—1 ◊Sex+RI(Site),
(6)

for which then age-correlations were estimated. For regional
features, we used simple linear models to support model con-
vergence:

ˆARoCregional = y +—0 ◊AgeúSex+—1 ◊Sex+
—2 ◊Age+—3 ◊Site.

(7)

For the voxel-level analysis, we estimated one-sample t-tests
on the contrast between each time point’s maps within the FA
skeleton accounting for age, �age, scanner site and sex using
FSL randomise with 10,000 permutations (H0: Difference =
0).
Finally, we assess the associations between ARoC and
PGRS for global and regional WMM metrics adjusting for
age, age◊sex, and site using simple linear models:

ˆARoC = y +—0 ◊AgeúSex+—1 ◊Age+
—2 ◊Sex+—3 ◊Site+—4 ◊PGRS.

(8)

For voxel-level analyses, we used TBSS randomise with
permutation-based statistics (running 10,000 permutations)
(? ). Mean maps and between-time-point contrast maps
served for the computation of one-sample t-tests for each of
the observed metric, while accounting for age, sex and site
(i.e., random intercept models):

F̂ = y +—0 ◊Age+—1 ◊Sex+
—2 ◊Site+—3 ◊TP +RI(ID).

(9)

P -values were adjusted for multiple comparison using
Bonferroni-correction(56) for global and region-averaged
metrics, and family-wise error (FWE)-corrections were used
for voxelwise inferential statistics (using Threshold-Free
Cluster Enhancement(57)). We report conditional variance
explained in the main text (R2

c ), which refers to variance ex-
plained by fixed factors.

Results
Cognitive changes. Our analysis suggested no significant
time point differences in cognitive measures for the inter-scan
interval of � =2.44±0.73 (Supplement 16).

Global WMM changes. The globally averaged WMM met-
rics differed between time points (Cohen’s |d̄| = 0.073 ±
0.055,dmin = ≠0.248,dmax = 0.159), with the exception of
BRIA - micro ADC, all SMT metrics, and SMTmc - diffusion
coefficient (Supplement 3-4).
Congruently, LMER (Eq. 2) outline the effect of
time point, in addition to age and sex (Supplement 5a-
b). While the effects of time point (|—̄| = 0.078 ±
0.024,—min = ≠0.107,—max = 0.113), age (|—̄| = 0.047 ±
0.014,—min = ≠0.063,—max = 0.067), and sex◊age (|—̄| =
0.26 ± 0.182,—min = ≠0.619,—max = 0.197) were signif-
icant (p < .001; Supplement 6-7), and modelling diffusion
metrics well R̄2

c = 88.40% ± 7.33% (Supplement 8), only
two diffusion metrics showed significant sensitivity to sex
(BRIA micro FA: — = ≠0.642,p = 0.034, DKI radial kur-
tosis: — = ≠0.785,p = 0.022, both lower in males)), and pre-
sented large variability (Supplement 5c-d, Supplement 9-10).
Moreover, WMM metrics’ age-associations were better mod-
elled as non-linear (R̄2 = 15.81%±6.88%) than linear asso-
ciations (R̄2 = 14.69% ± 6.84%), considering variance ex-
plained (Fig. 1). Yet, this difference in model fit was
non-significant (p = 0.557). We show decreases in FA,
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and kurtosis (|—̄| = ≠0.043±0.009,—min = ≠0.063,—max =
≠0.035). At the same time, water diffusivity and
extra-axonal water fraction, including free water (mainly
cerebro-spinal fluid) increase (|—̄| = 0.052 ± 0.013,—min =
0.025,—max = 0.067). Notably, the intra-axonal water frac-
tion, estimated by different diffusion approaches, exhibit
the same behaviour independent of the diffusion approach
(lower at higher ages). Finally, we present accelerations of
the annual rate of change (ARoC) at higher ages for most
global WMM metrics (Fig. 2). Large age-group differences
were observed at Cohen’s |d̄sign| = 0.802 ± 0.453, |dmin| =
0.015, |dmax| = 1.920 (when including also non-significant
findings: |d̄all| = 0.732 ± 0.477, |dmin| = 0.010, |dmax| =
1.92 (see Supplement 18 for details on test statistics, includ-
ing effect size estimates). Decelerating ARoC were observed
for BRIA-DAX intra and extra, and DKI-AK, and relatively
stable ARoC for SMT - longitudinal coefficient. See also
Supplement 19 for ARoC-age-trends indicating accelerated
ageing at —̄sig = 0.012, Supplement 20 for uncorrected age-
stratification, Supplement 21 for corrected sex-stratification,
respectively.

Regional white matter microstructure changes.
Estimating paired-samples tests indicate that 47.57%
of white matter features decreased (|d̄sign| =
≠0.191 ± 0.122, |dmin| = ≠0.825, |dmax| = ≠0.030),
32.30% increased (|d̄sign| = 0.159 ± 0.091, |dmin| =
0.283, |dmax| = 0.516) and 20.13% did not change
between time points. Most extreme p-values among
these unadjusted time-point differences were observed in
Fornix (DTI-RD: dpmin = 0.262,95%CI[0.252,0.271])
and the body of the corpus callosum (DTI-FA:
dpmin = ≠0.270,95%CI[≠0.281,≠0.259]), and
largest effect sizes of Cohen’s |d| > 0.5 found in
the middle cerebellar peduncle (BRIA microAX:
dmax = ≠0.825,95%CI[≠0.875,≠0.775]; Fig. 3a).

LMER (Eq. 2), outlined strongest age-associations in fornix
WMM (|d| > 0.5; Fig. 3b, see Supplement 13 for distribu-
tion of —-values). We also identify various regions sensitive
to sex differences and smaller sex◊age-interaction effects,
with repeated occurrence of significant fornix, cerebral pe-
duncle, corticospinal tract, and medial lemniscus differences
(Supplement 11,12). Across regions, time point was a non-
significant fixed effect (— < 1.5◊10≠5,p > .05). For compa-
rability across regions, we used |ARoCs| in association with
age, adjusting for age ◊ sex, sex, and site effects, showing
accelerated ageing (—̄sig = 0.013±0.005; Supplement 17).

Voxelwise white matter microstructure changes. When
investigating voxelwise changes of WMM between time
points (adjusted for age, sex, and scanner site), we find two
major patterns examining both increases and decreases in
WMM: 1) a global decrease in fractional anisotropy metrics
(with the exception of SMT-FA showing distributed changes,
including frontal increase and posterior decrease), and 2) an
overall decrease in radial, axial and mean diffusivity metrics
in orbitofrontal, occipital and brain-stem and cerebellum and

increase in superior frontal areas (Table 1). For an overview
of the voxelwise WMM maps at corrected – = 0.05 see Sup-
plement 25.
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Fig. 1. Global WMM ageing trajectories. WMM values were standardised, mean-centred, and adjusted for covariates of no interest using LMERs. Second, age-WMM
relationships were described by linear and non-linear functions.
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Fig. 2. Age-stratified annual WMM change. WMM were corrected for age, sex, age◊sex and site, and standardized for comparability (without mean-centering). We present
p-values for Wilcoxon tests, which were significant at the Bonferroni-corrected * – < 0.05/(26*6) = 3.21 ◊10≠4, ** – < 0.01/(26*6) = 6.41◊10≠5, *** – < 0.001/(26*6) =
6.41◊10≠6, NS = non-significant. The red lines were added as a visual help to identify trends of accelerated or decelerated annual change.
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Fig. 3. Regional white matter microstructure changes between time points and age-associations. Panel (a) presents unadjusted effect sizes (Cohen’s d) versus Bonferroni-
adjusted -log10 p-values. Labelling was done using a medium effect size threshold of Cohen’s |d| > 0.5 (also marked with vertical lines) as well as extreme Bonferroni-
adjusted p-values of ≠10log(p) > 500. Panel (b) presents adjusted WMM associations with age. Age-WMM were adjusted for sex, sex◊age, scanner site and time point
(Eq. 2). The plot presents standardised slopes (—) versus Bonferroni-adjusted -log10 p-values. Labelling was done using a large association of |—| > 0.5 (also marked with
vertical lines). BodyCC = body of the corpus callosum, SCP(R) = right superior cerebellar peduncle. MCP = middle cerebellar peduncle, ICP = inferior cerebellar peduncle.
SLTF(R) = right superior longitudinal temporal fasciculus. StTer(R) = right stria terminalis. Dotted lines were inserted as visual aid: the lower horizontal dotted line represent the
significance level of p = .05 and the upper horizontal line ≠10log(p) = 500. The vertical lines represented labelling borders based on a medium effect size of Cohen’s |d| >
0.5 (panel a) and large associations of |—| > 0.5 (panel b). Tables with test statistics are available at https://github.com/MaxKorbmacher/Long_Diffusion/.

PGRS Associations. Although annual change in the cere-
bral peduncle showed the strongest associations with PGRS
of AD and global WMM with ADHD, both global (—̄ =
0.015 ± 0.012) and regional (—̄ = 0.011 ± 0.009) WMM-
PGRS associations were non-significant after adjusting the
–-level for multiple comparisons (Fig. 4a-b). Nevertheless,
a highly brain-region-specific pattern of associations between
WMM ARoC and PGRS was observed (Fig. 4b) with the me-
dial cerebral peduncle (Fig. 4c) showing the strongest con-
sistent associations with PGRS and specifically associations
with AD (|—max| = 0.053, |—̄| = 0.014 ± 0.013), and MDD
(|—max| = 0.051, |—̄| = 0.014 ± 0.013; Fig. 4b-c, see for
all peduncle-PGRS associations Supplement 22, indicating
strongest ARoC-PGRS (|—̄| = 0.015) associations but weaker
non-replicating associations for cross-sectional assessments
(|—̄scan1| = 0.001, |—̄scan2| = 0.001, |—̄validation| = 0.001)).
Fornix, the most age-sensitive region related strongest to
ANX (|—max| = 0.011, |—̄| = 0.006 ± 0.003), and OCD
PGRS (|—max| = 0.008, |—̄| = 0.005 ± 0.001; Supplement
23).

Similarly, observing each time point separately, both global
and regional WMM were non-significant after adjusting for
multiple comparisons. However, WMM-PGRS associations
were highly similar at the two time points in the longi-

tudinal sample, yet highlighted BIP and SCZ associations
(considering puncorrected < 0.05, Fig. 5a-b), did how-
ever not replicate in an independent cross-sectional valida-
tion sample of N = 31,056 UKB participants (Fig. 5c).
Noteworthy, WMM-PGRS associations were strongest for
AD (|—̄scan1| = 0.0013, |—̄scan2| = 0.0012, |—̄validation| =
0.0005) and ANX (|—̄scan1| = 0.0010, |—̄scan2| = 0.0012,
|—̄validation| = 0.0004) in the longitudinal sample, but
strongest for ADHD (|—̄scan1| = 0.0008, |—̄scan2| = 0.0010,
|—̄validation| = 0.0010), and ASD in the cross-sectional
validation sample (|—̄scan1| = 0.0011, |—̄scan2| = 0.0008,
|—̄validation| = 0.0010, Fig. 5d-f).
Overall, ARoC-PGRS associations (—̄long =
0.011 ± 0.009) were significantly stronger than
cross-sectional effects —̄scan1 = 0.001 ± 0.001,d =
0.028,95%CI[0.004,0.051],p < .001, —̄scan2 =
0.001 ± 0.001,d = 0.026,95%CI[0.003,0.049],p <
.001, —̄validation = 0.0007 ± 0.001,d =
0.031,95%CI[0.008,0.054],p < .001 (see Supplement
24 for distribution of effects).
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Table 1. Trends in WMM changes.

Model Metric Superior Frontal Orbito-Frontal Posterior Cerb.-Brainst.
1

BRIA Dax extra ↑ ↑↓ ↓ ↓
Dax intra ↑ ↑↓ ↓ ↓
DRAD extra* ↑ ↑↓ ↓ ↓
micro ADC ↑ ↑↓ ↓ ↓
micro AX ↑ ↑↓ ↓ ↑↓
micro FA ↓ ↑↓ ↑↓ ↑↓
micro RD ↑ ↑↓ ↓ ↑↓
Vcsf ↑ ↑↓ ↓ ↑↓
Vextra ↓ ↑↓ ↑ ↑↓
Vintra ↑↓ ↑↓ ↓ ↑↓

DKI AK ↓ ↑ ↑↓ ↑↓
MK ↑↓ ↑↓ ↓ ↑↓
RK ↑↓ ↑↓ ↓ ↓

DTI AD ↑ ↓ ↓ ↑↓
FA ↓ ↓ ↓ ↑↓
MD ↑ ↑ ↓ ↓
RD ↑ ↑ ↑↓ ↓

SMT FA ↑ ↑↓ ↓ ↑↓
MD ↑ ↑↓ ↓ ↓
long ↑ ↑↓ ↓ ↓
trans ↑↓ ↑↓ ↑↓ ↑↓

SMTmc diffusion ↑ ↑↓ ↓ ↑↓
Extra MD ↑ ↑↓ ↓ ↑↓
Extra trans ↑ ↑↓ ↑↓ ↑↓
intra ↑↓ ↑↓ ↓ ↑↓

WMTI AWF ↑↓ ↑↓ ↓ ↑↓
axEAD* ↑ ↑↓ ↓ ↑↓
radEAD ↑ ↑↓ ↑↓ ↑↓

↑ indicates a general trend of increases, and ↓ of decreases. ↑↓ indicates trends of both increases and decreases.
*Note that Drad extra and axEAD were excluded from the analyses as a significant portion of the produced metrics did not pass
our quality control procedure(41).
1 Subcortical refers to the cerebellum and the brain stem.
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Fig. 4. Associations of PGRS with the rate of white matter change. Panel (a) presents the global associations between PGRS and WMM change. Colours indicate
the strength of association (standardised —-coefficients). Panel (b) presents the regional associations between PGRS and WMM change. The dotted line indicates an
uncorrected – < 0.001. Labels presenting the respective regions and metrics are supplied above this –-threshold, as well as at |—| > 0.05. Panel (c) presents the regional
associations exclusively for the medial cerebral peduncle, the region where the strongest ARoC-PGRS associations were observed. Boxes in panels (a) and (c) indicate the
statistical significance at an uncorrected – < 0.05. Note: All associations were adjusted for age, sex, the age◊sex interaction, and site. None of the presented associations
survived the adjustment of the –-level for multiple comparisons.
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Fig. 5. Cross-sectional associations between PGRS and WMM in longitudinal and cross-sectional validation data. Panel (a) shows PGRS-associations of globally averaged
WMM for time point one in the longitudinal sample N = 2,329, and panel (b) for time point two, respectively. Panel (c) shows the global WMM-PGRS associations for the
cross-sectional validation sample N = 31,056. Boxes indicate significance at an uncorrected – < 0.05. For simplicity, standardised regression coefficients with |—| < 0.005
were rounded down to — = 0. Panel (d) shows PGRS-associations of regionally averaged WMM for time point one in the longitudinal sample, and panel (e) for time point two.
Panel (f) presents the regional associations for the cross-sectional validation sample. The dotted line in panels (d-f) indicates an uncorrected – < 0.001. Labels presenting
the respective regions and metrics are supplied above this – threshold, and |—| > 0.001. Note: All associations were adjusted for age, sex, age ◊ sex as fixed effects, and
site as random effect, and none of the associations survived the adjustment of the –-level for multiple comparisons.
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Discussion
We investigated WMM changes using longitudinal UKB
diffusion data using a series of diffusion approaches and
their associations with PGRS. The comparison between two
time points, with an average inter-scan interval of �̄=2.44
years, was performed at different spatial scales in order
to localise the strongest ageing effect and its correlations
with other covariates. Unadjusted time point differences in
global WMM metrics (Supplement 3) resembled closely the
covariate-adjusted time point differences, as well as age ef-
fects (Supplement 5a-b). These ageing effects largely con-
firmed previous findings showing a global decrease of frac-
tional anisotropy and the increase in axial, radial and mean
diffusivity for both intra- and extra-axonal space(3, 6, 40, 58–
60), whereas kurtosis metrics decrease with age(3, 6). Note-
worthy, we provided evidence for the intra-axonal water frac-
tion estimated by different diffusion approaches demonstrat-
ing age-related decrease, accompanied by opposite trends for
the extra-axonal water fraction and the CSF water fraction
(also known as free water in other diffusion approaches).
We observed accelerated change in global and regional
WMM at higher ages. Observed inconsistencies in age de-
pendencies of the annual change in axonal diffusivity stand
in contrast to a previous longitudinal study analysing DTI
data on the voxel-level(36). Such difference in the locali-
sation of the increased acceleration and in findings on ax-
ial diffusivity might be driven by methodological variations:
here, we focused on global and regional averages of annual
WMM change. Yet, in contrast to the mentioned study(36),
another longitudinal investigation did also not detect acceler-
ated axial diffusivity changes(61). However, our study pro-
vides larger statistical power than previous longitudinal in-
vestigations on the rate of change in WMM (e.g.,(36, 61)),
and is hence bench-marking global and regional increases in
the rate of WM change at a higher age.
Region-wise investigations allowed for more differentiated
results and presented larger ageing effects compared to global
WMM metrics (Fig. 3, Supplement 13). Region-level as-
sessments further underlined the strong effect of age on
WMM(3, 6, 40, 60, 61). Differences between unadjusted and
adjusted associations gave more detail to dependencies of re-
gional WMM age associations on sex and scanner site. Un-
adjusted associations outlined the cerebellar peduncle, and
the superior longitudinal temporal fasciculus as regions with
largest age-association, and corpus callosum and fornix as
statistically most significantly age-associated regions. Af-
ter corrections, the fornix was identified as the most signifi-
cant and strongest age-associated region, which is congruent
with previous cross-sectional findings on limbic WMM age
associations(3, 4, 40, 62). These WMM age associations also
followed the described global pattern of fractional anisotropy
metrics decreasing at higher ages, and axial, radial, and mean
diffusivity metrics increasing during ageing.
The observed regional fornix changes were moreover clearly
delineated in the voxel-level analysis. Additionally, a more
general pattern was observed: radial, axial and mean diffusiv-
ity metrics increased in superior frontal areas but decreased in

more posterior and inferior areas (Table 1, Supplement 25).
While previous findings show consistent DTI AD, RD and
MD increases and FA decreases across the brain for global
and tract measures throughout ageing(60, 63), or particularly
in the brain stem(36), no study has yet outlined such differ-
ential, non-homogeneous spatial patterns of WMM changes
across the brain. Only one other study(64) revealed a simi-
lar pattern for DTI when examining cross-sectional AD, RD,
and MD tract-age-associations in the UKB, and recent re-
views which highlight the frontal lobes as most susceptible
to white matter deterioration(65, 66). Potentially, our find-
ings provide additional evidence for the "last-in-first-out" ret-
rogenesis hypothesis, which states that brain areas that de-
velop slowest (such as the prefrontal cortex) are more vul-
nerable to negative ageing effects, such as degeneration(67).
On the other hand, the observed WMM changes might sim-
ply map onto frontal GM areas which are most affected by
normal ageing processes instead of areas with higher evolu-
tionary expansion(67). Yet, as the age-dependence of frontal
WM seems to be partly explained by cognitive ability(68),
and cerebrovascular factors(69), frontal WM might be par-
ticularly interesting for further clinical dMRI examinations.

In accordance with our previous findings(3, 40), we found
that the fornix is highly sensitive to ageing-related changes.
The fornix – a C-shaped bundle of nerve-fibres that acts as
a major output tract of the hippocampus – is a brain re-
gion implicated in various neurological and psychiatric dis-
orders, such as, mild cognitive decline(70), impairment(71,
72), Parkinson’s disease(73), arguably Alzheimer’s disease
(compare(74–78), and bipolar disorder(79). Moreover, the
genetic architecture of fornix WMM is related to various neu-
rological and psychiatric disorders(80). Bridging such genet-
ics and imaging findings indicates that there are genetic un-
derpinnings for the accelerated ageing of the fornix and other
regions, which might explain pathology development. While
our findings render the fornix as a promising marker of age-
ing, future studies need to explore this region as potential
therapeutic target.

We identified general patterns of WM changes when applying
diffusion approaches at voxelwise scale; namely, 1) global
fractional anisotropy metric decreases, and 2) superior ax-
ial, radial and mean diffusivity metric increases in superior
frontal brain regions, but 3) decreases in posterior regions,
the brain stem and the cerebellum. Fractional anisotropy
(DTI-FA and BRIA-microFA) decreases suggest different
potential biological processes such as a seizing myelination
or cell death across the brain (with microFA adding infor-
mation on the fibre orientation coherence(81), Table 1, Sup-
plement 25) or axonal degradation(82, 83) in combination
with intra-axonal water fraction metric. The other diffusion
metrics contain information on axial, radial and mean dif-
fusivity and coherently suggested WMM degeneration with
increasing age in superior frontal lobes and potential cell-
swelling in posterior and subcortical regions where diffu-
sivity decreases. This is congruent with multi-compartment
metrics from BRIA, SMT, and WMTI (see Supplement 25).
Potentially, the decreases in diffusivity metrics in posterior
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and subcortical regions depict compensatory mechanisms,
accounting for the frontal lobe deterioration. Additional ex-
amination of diffusion properties (e.g., using tractography)
leveraging both single and multi-shell dMRI might provide
further insight into the differential developments of white
matter across the adult lifespan.
Finally, this study presents a comprehensive overview of WM
association with PGRS of common psychiatric disorders and
Alzheimer’s Disease. Moreover, we differentiated between
global and regional WM metrics at each time point and the
annual rate of change, which led to different association pat-
terns. However, the associations of both WM and annual
WM-change with PGRS were non-significant when correct-
ing for multiple comparisons. Previous results demonstrate
small associations between WM and PGRS in the UKB for
MDD(39), SCZ, BIP(84), and AD(38), as well as in the Ado-
lescent Brain and Cognitive Development Study(24). For the
further highlighting of key associations, we considered un-
corrected p-values, examining the PGRS-WM associations
as suggestive for potential associations of WM and genetic
risk.
Surprisingly, the global annual rate of WMM change as-
sociated only with ADHD PGRS. WMM at each time
point provided a more nuanced association pattern includ-
ing ANX, OCD, and AD, similar to previous findings on
AD PGRS-WM associations(38). Additionally, similarities
between ANX and OCD PGRS associations with WMM
might originate from large symptom overlap between these
diagnoses(85). This association pattern was however not
replicated in an independent cross-sectional portion of the
UKB which instead outlined associations with ASD and BIP.
Hence, whether these differential association patterns speak
to sample-specific gene-brain relationships, or are simply
noise due to a lack of statistical power (as a function of small
effect sizes) requires follow-up with larger samples, more
time points, and larger inter-scan-intervals.
Observing relationships of PGRS with both WMM and its
annual rate of change in single regions highlight the brain
stem, cerebral peduncle, and the limbic system as potential
PGRS-association targets. Importantly, PGRS associations
were orders of magnitude stronger for WMM rate of change
than for cross-sectional metrics, which underlines the impor-
tance of examining the genetic underpinnings of WM in lon-
gitudinal data. Notably, areas outlined as most age-sensitive
(the fornix and cerebral peduncle) were also the strongest
related in their annual change to ANX, ADHD, OCD, and
SCZ PGRS. Yet, more longitudinal research is needed to val-
idate the presented findings. Genetic overlaps between fornix
WMM and the listed disorders(80), as well as the involve-
ment of the cerebellum, which is connected with the cortex
via the cerebral peduncles, in various psychiatric disorders,
gives additional insight into the role of genetic makeup for
WMM development(86). Furthermore, the cerebral pedun-
cles were particularly associated with AD, ADHD, and OCD
PGRS, but also with ANX, BIP, MDD, and SCZ PGRS. This
spatially specific pattern of PGRS associations emphasises
the usefulness of regional investigations, due to highly spa-

tially distributed influence of genetics. While the small effect
sizes limit inferences on WMM-PGRS associations, the high-
lighted associations of PGRS and WMM change are worth
further investigation.

There are several limitations to be mentioned in the context
of this study. First, the age range was limited to individuals
older than 40 years, allowing only for generalisations across
mid-to-late adulthood. Future studies should consider large
samples to cover the whole lifespan, particularly when the
objective is to investigate WM ageing or to investigate gener-
alisable associations of WM with genotypes and phenotypes.
Second, the inter-scan interval was relatively short (�̄=2.44
years). Longer inter-scan intervals might reveal clearer infor-
mation on accelerated WMM ageing processes at different
ages and their genetic underpinnings. Longer intervals are
also useful to examine the relationship of cognitive decline
and WMM. Third, we used a relatively homogeneous, non-
diverse sample including nearly exclusively white UK citi-
zens, which limits the generalisability beyond white North-
ern Europeans and US Americans in their midlife to older
age. Additionally, although the sample size was larger than in
previous longitudinal WMM investigations, power was still
limited to find PGRS associations (presenting small effects).
The volunteer-based sampling of the UKB participants might
additionally have introduced bias, reducing generalisability
to the UK population(87). Yet, the imaging sample of the
UKB shows an additional positive health bias (better physi-
cal and mental health) over the rest of the UKB sample(88),
rendering this sub-sample as even less representative of the
UK population. However, this might not necessarily be a
disadvantage considering the objective of this study, which
was to map WM change in healthy mid-to-late life adults
and associate polygenic risk with the observed WM changes.
Fourth, conservative corrections of the –-level using Bonfer-
roni corrections might have led to false negatives, especially
for the small observed effects of PGRS on the annual change
in regional WMM where many associations were explored.
Finally, the fornix, the key region of the presented regional
WMM changes, is a region susceptible of free water contam-
ination due to its closeness to the cerebrospinal fluid(2) and
has previously been suspected of partial volume effects(62).
Hence, findings on this region need to be interpreted care-
fully.

To conclude, our findings provide insight about short-term
WM changes indicating degradation processes indicated by
lower FA, kurtosis, intra-axonal water fraction, and higher
diffusivity, free water, and extra axonal water fraction. These
changes are associated with the de-myelination and struc-
tural disintegration across the adult brain as a consequence
of ageing without strong or detectable cognitive decline. De-
myelination and WM features degradation primarily affect
frontal brain regions, whereas posterior regions as well as
brain stem and cerebellum show opposing trends. Further in-
vestigations should focus on fornix WMM changes through-
out the lifespan to investigate health and disease outcomes,
and the role in such of the genetic architecture of the cerebel-
lar peduncle in such white matter changes and disease devel-
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Supplementary Note 1: The utilized white matter quality control pipeline.

In brief, YTTRIUM (41) converts dMRI scalar metrics into 2D format, using a structural similarity (89, 90) extension of each
scalar map to their mean image in order to create a 2D distribution of image and diffusion parameters. These quality assessments
are based on a 2-step clustering algorithm applied to identify subjects located out of the main distribution. Additionally, rows
including impossible values, such as diffusion coefficients d: 0 < d < 4 µm2·ms, kurtosis values K 0 < K < 3, and FA values
0 < FA < 1 were excluded. QC of the mean skeleton values rendered N = 622 datasets of the BRIA metric extra-axonal radial
diffusivity (DRADextra) as such impossible values, and examining regional and tract averages N = 643 of the WMTI metric
axial extra-axonal diffusivity (axEAD). Due to the relatively large share of these outliers on the total sample, we excluded these
metrics from the analyses.

Supplementary Note 2: Description of white matter features by diffusion approaches.

Diffusion Approach Metrics

Bayesian Rotationally Invariant Approach (BRIA) (31) intra-axonal axial diffusivity (DAX intra)
extra-axonal radial diffusivity (DRAD extra)*
microscopic fractional anisotropy (micro FA)
extra-axonal axial diffusivity (DAX extra)
intra-axonal water fraction (V intra)
extra-axonal water fraction (V extra)
cerebrospinal fluid fraction (vCSF)
microscopical axial diffusivity (micro AX)
microscopic radial diffusivity (micro RD)
microscopical apparent diffusion coefficient (micro ADC)

Diffusion Kurtosis Imaging (DKI) (27, 28) mean kurtosis (MK)
radial kurtosis (RK)
axial kurtosis (AK)

Diffusion Tensor Imaging (DTI) (33) fractional anisotropy (FA)
axial diffusivity (AD)
mean diffusivity (MD)
radial diffusivity (RD)

Spherical Mean Technique (SMT) (30) fractional anisotropy (SMT FA)
mean diffusivity (SMT md)
transverse diffusion coefficient (SMT trans)
longitudinal diffusion coefficient (SMT long)

Multi-compartment Spherical Mean Technique (SMTmc) (29) extra-neurite microscopic mean diffusivity (SMTmc extra md)
extra-neurite transverse microscopic diffusivity (SMTmc extra trans)
mc SMTdiffusion coefficient (SMT mcd)
intra-neurite volume fraction (SMTmc intra)

White Matter Tract Integrity (WMTI) (27) axonal water fraction (AWF)
radial extra-axonal diffusivity (radEAD)
axial extra-axonal diffusivity (axEAD)*

*Note that Drad extra and axEAD were excluded from the analyses as a significant portion of the produced metrics did not pass
our quality control procedure (41).
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Supplementary Note 3: Effect sizes for unadjusted microstructure changes between time
points
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<0.001

Supplementary Note 4: Test statistics for time point differences for global diffusion metrics.

The table presents mean (M), standard deviation (SD) for each time point (TP), T-statistic (T), uncorrected p-value (p),
Bonferroni-corrected p-value pBonf , and Cohen’s d with 95% CI as effect size.

Metric MT P 1 SDT P 1 MT P 2 SDT P 2 T p padj Cohens’s d L 95% CI U 95% CI

BRIA - V intra 0.499 0.027 0.497 0.028 16.051 <0.001 <0.001 -0.078 -0.088 -0.068
BRIA - V extra 0.414 0.025 0.416 0.026 -10.937 <0.001 <0.001 0.077 0.063 0.091
BRIA - V csf 0.087 0.008 0.087 0.009 -2.254 0.024 0.631 0.025 0.003 0.046
BRIA - micro RD 0.524 0.038 0.526 0.039 -6.166 <0.001 <0.001 0.044 0.03 0.058
BRIA - micro FA 0.64 0.019 0.638 0.02 13.977 <0.001 <0.001 -0.07 -0.079 -0.06
BRIA - micro AX 1.899 0.032 1.896 0.032 7.132 <0.001 <0.001 -0.106 -0.136 -0.077
BRIA - micro ADC 0.982 0.032 0.982 0.033 -0.082 0.935 1 0.001 -0.019 0.02
BRIA - DAX intra 2.196 0.035 2.194 0.036 4.825 <0.001 <0.001 -0.048 -0.067 -0.028
BRIA - DAX extra 1.199 0.024 1.198 0.025 4.747 <0.001 <0.001 -0.054 -0.076 -0.031
DKI - RK 1.467 0.072 1.458 0.074 19.808 <0.001 <0.001 -0.132 -0.145 -0.119
DKI - AK 0.777 0.021 0.778 0.022 -7.124 <0.001 <0.001 0.067 0.049 0.086
DKI -MK 1.058 0.038 1.056 0.039 11.5 <0.001 <0.001 -0.063 -0.073 -0.052
DTI - FA 0.463 0.018 0.458 0.019 40.372 <0.001 <0.001 -0.248 -0.261 -0.236
DTI - MD 0.886 0.028 0.888 0.029 -8.679 <0.001 <0.001 0.079 0.061 0.097
DTI - RD 0.64 0.031 0.645 0.033 -20.295 <0.001 <0.001 0.153 0.138 0.167
DTI - AD 1.377 0.028 1.374 0.028 8.761 <0.001 <0.001 -0.106 -0.13 -0.082
SMT - FA 0.935 0.007 0.935 0.007 -0.844 0.399 1 0.008 -0.01 0.025
SMT - long 0.003 0 0.003 0 -1.652 0.099 1 0.022 -0.004 0.048
SMT - MD 0.001 0 0.001 0 -1.787 0.074 1 0.019 -0.002 0.039
SMT - trans 0 0 0 0 -0.778 0.436 1 0.005 -0.007 0.017
SMTmc - intra 0.592 0.03 0.59 0.031 11.449 <0.001 <0.001 -0.069 -0.08 -0.057
SMTmc - extra MD 0.001 0 0.001 0 -4.781 <0.001 <0.001 0.054 0.032 0.076
SMTmc - extra trans 0.001 0 0.001 0 -12.994 <0.001 <0.001 0.078 0.066 0.089
SMTmc - diff 0.002 0 0.002 0 2.6 0.009 0.244 -0.035 -0.062 -0.009
WMTI - AWF 0.39 0.014 0.388 0.014 18.187 <0.001 <0.001 -0.079 -0.088 -0.071
WMTI - radEAD 0.973 0.034 0.978 0.036 -14.445 <0.001 <0.001 0.156 0.134 0.177
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Supplementary Note 5: Effects of age, time point, sex and the age-sex interaction on global
diffusion metrics in LMER.

Standardized — values ± Standard Error indicating the fixed effects of (a) age, (b) time point, (c) sex, and (d)
sex◊age on global diffusion metrics. The colour indicates the metric’s corresponding diffusion approach.
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Supplementary Note 6: Test statistics for the effect of age on global diffusion metrics in LMER.

—std refers to the standardized slopes and SE to the standard error.

Metric —std SE p pBonferroni

BRIA - V intra -0.037 0.003 <.001 <.001
BRIA - V extra 0.025 0.003 <.001 <.001
BRIA - V csf 0.066 0.003 <.001 <.001

BRIA - micro RD 0.063 0.003 <.001 <.001
BRIA - micro FA -0.053 0.003 <.001 <.001
BRIA - micro AX 0.033 0.003 <.001 <.001

BRIA - micro ADC 0.061 0.003 <.001 <.001
BRIA - DAX intra 0.043 0.003 <.001 <.001
BRIA - DAX extra 0.047 0.003 <.001 <.001

DKI - RK -0.042 0.003 <.001 <.001
DKI - AK -0.04 0.003 <.001 <.001
DKI -MK -0.035 0.003 <.001 <.001
DTI - FA -0.063 0.003 <.001 <.001
DTI - MD 0.062 0.003 <.001 <.001
DTI - RD 0.066 0.003 <.001 <.001
DTI - AD 0.038 0.003 <.001 <.001
SMT - FA -0.04 0.003 <.001 <.001

SMT - long 0.048 0.003 <.001 <.001
SMT - MD 0.056 0.003 <.001 <.001
SMT - trans 0.045 0.003 <.001 <.001

SMTmc - intra -0.035 0.003 <.001 <.001
SMTmc - extra MD 0.058 0.003 <.001 <.001
SMTmc - extra trans 0.05 0.003 <.001 <.001

SMTmc - diff 0.008 0.003 0.01 0.269
WMTI - AWF -0.042 0.003 <.001 <.001

WMTI - radEAD 0.067 0.003 <.001 <.001
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Supplementary Note 7: The effect of time point on global diffusion metrics in mixed linear
models.

Metric —std SE p pBonferroni

BRIA - V intra -0.06 0.005 <.001 <.001
BRIA - V extra 0.039 0.007 <.001 <.001
BRIA - V csf 0.11 0.009 <.001 <.001

BRIA - micro RD 0.102 0.006 <.001 <.001
BRIA - micro FA -0.084 0.005 <.001 <.001
BRIA - micro AX 0.06 0.011 <.001 <.001

BRIA - micro ADC 0.102 0.008 <.001 <.001
BRIA - DAX intra 0.073 0.008 <.001 <.001
BRIA - DAX extra 0.079 0.009 <.001 <.001

DKI - RK -0.064 0.006 <.001 <.001
DKI - AK -0.065 0.008 <.001 <.001
DKI -MK -0.054 0.006 <.001 <.001
DTI - FA -0.107 0.006 <.001 <.001
DTI - MD 0.103 0.008 <.001 <.001
DTI - RD 0.111 0.007 <.001 <.001
DTI - AD 0.064 0.009 <.001 <.001
SMT - FA -0.063 0.008 <.001 <.001

SMT - long 0.08 0.01 <.001 <.001
SMT - MD 0.093 0.008 <.001 <.001
SMT - trans 0.074 0.006 <.001 <.001

SMTmc - intra -0.058 0.006 <.001 <.001
SMTmc - extra MD 0.097 0.009 <.001 <.001
SMTmc - extra trans 0.084 0.006 <.001 <.001

SMTmc - diff 0.018 0.01 0.082 1
WMTI - AWF -0.067 0.005 <.001 <.001

WMTI - radEAD 0.113 0.009 <.001 <.001
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Supplementary Note 8: Mixed linear model diagnostics

The following table shows the model diagnostics when predicting diffusion metrics from age, sex, age◊sex, and time point,
while accounting for the participants nested in scanner site as random intercept.

Metric AIC BIC Conditional R2 Marginal R2

BRIA - V intra 7618.31 7677.58 0.97 0.07
BRIA - V extra 9655.94 9715.21 0.93 0.03
BRIA - V csf 11005.42 11064.69 0.84 0.28
BRIA - micro RD 9178.08 9237.35 0.93 0.21
BRIA - micro FA 7516.52 7575.80 0.96 0.14
BRIA - micro AX 13016.03 13075.30 0.70 0.13
BRIA - micro ADC 10798.61 10857.88 0.86 0.22
BRIA - DAX intra 11163.76 11223.03 0.87 0.11
BRIA - DAX extra 11683.87 11743.15 0.83 0.14
DKI - RK 9232.04 9291.32 0.94 0.09
DKI - AK 11036.27 11095.54 0.88 0.08
DKI -MK 8242.74 8302.02 0.96 0.06
DTI - FA 8388.40 8447.67 0.95 0.20
DTI - MD 10352.80 10412.07 0.89 0.22
DTI - RD 9350.35 9409.62 0.92 0.23
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Supplementary Note 9: The effect of sex on global diffusion metrics in LMER.

Metric —std SE p pBonferroni

BRIA - V intra -0.363 0.2 0.069 1
BRIA - V extra 0.299 0.245 0.222 1
BRIA - V csf 0.47 0.248 0.059 1

BRIA - micro RD 0.564 0.232 0.015 0.386
BRIA - micro FA -0.642 0.199 0.001 0.034
BRIA - micro AX -0.072 0.276 0.793 1

BRIA - micro ADC 0.425 0.253 0.093 1
BRIA - DAX intra 0.155 0.267 0.561 1
BRIA - DAX extra 0.135 0.269 0.616 1

DKI - RK -0.785 0.235 0.001 0.022
DKI - AK -0.323 0.267 0.227 1
DKI -MK -0.558 0.214 0.009 0.237
DTI - FA -0.106 0.218 0.626 1
DTI - MD 0.386 0.249 0.121 1
DTI - RD 0.282 0.234 0.229 1
DTI - AD 0.293 0.268 0.274 1
SMT - FA -0.611 0.264 0.021 0.538

SMT - long 0.206 0.271 0.446 1
SMT - MD 0.326 0.261 0.211 1
SMT - trans 0.335 0.226 0.138 1

SMTmc - intra -0.262 0.225 0.245 1
SMTmc - extra MD 0.292 0.262 0.265 1
SMTmc - extra trans 0.202 0.22 0.359 1

SMTmc - diff -0.267 0.288 0.353 1
WMTI - AWF -0.511 0.185 0.006 0.149

WMTI - radEAD 0.121 0.255 0.635 1
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Supplementary Note 10: The effect of the sex-age interaction on global diffusion metrics in
LMER.

Metric —std SE p pBonferroni

BRIA - V intra 0.014 0.038 0.708 1
BRIA - V extra 0.152 0.039 <0.001 0.003
BRIA - V csf -0.512 0.033 <0.001 <0.001

BRIA - micro RD -0.328 0.035 <0.001 <0.001
BRIA - micro FA 0.197 0.037 <0.001 <0.001
BRIA - micro AX -0.531 0.035 <0.001 <0.001

BRIA - micro ADC -0.429 0.034 <0.001 <0.001
BRIA - DAX intra -0.282 0.037 <0.001 <0.001
BRIA - DAX extra -0.378 0.036 <0.001 <0.001

DKI - RK 0.193 0.038 <0.001 <0.001
DKI - AK -0.133 0.038 <0.001 0.012
DKI -MK 0.085 0.039 0.028 0.737
DTI - FA -0.025 0.036 0.491 1
DTI - MD -0.383 0.035 <0.001 <0.001
DTI - RD -0.241 0.035 <0.001 <0.001
DTI - AD -0.619 0.035 <0.001 <0.001
SMT - FA -0.038 0.038 0.314 1

SMT - long -0.465 0.035 <0.001 <0.001
SMT - MD -0.39 0.035 <0.001 <0.001
SMT - trans -0.062 0.037 0.1 1

SMTmc - intra -0.038 0.039 0.327 1
SMTmc - extra MD -0.404 0.034 <0.001 <0.001
SMTmc - extra trans -0.143 0.037 <0.001 0.003

SMTmc - diff -0.443 0.037 <0.001 <0.001
WMTI - AWF 0.039 0.038 0.302 1

WMTI - radEAD -0.278 0.034 <0.001 <0.001
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Supplementary Note 11: The effect of the sex on regional WMM metrics.

Increases refer to higher WMM values for males compared to females and decrease to lower WMM values, respectively.
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Supplementary Note 12: The effect of the sex-age interaction on regional WMM metrics.
Increases refer for higher WMM values for males at higher ages compared to females and decrease to lower WMM values,
respectively.
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Supplementary Note 13: Distribution of the effect of age on regional WMM metrics.
Estimating average slopes from all —-values results in the following meta-statistics for negative —-values (left side of 0): Mean
= -0.21±0.13, Median = -0.23± 0.12. For positive —-values (right side of 0) the following averages were estimated: Mean =
0.25±0.13, Median = 0.27± 0.14.
Estimating average slopes from significant effects only (right panel) results in similar meta-
statistics for negative —-values (left side of 0): Mean = -0.21±0.13, Median = -0.24± 0.12,
as well as for positive —-values (right side of 0): Mean = 0.25±0.13, Median = 0.27± 0.15.
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Supplementary Note 14: Adjusted cross-sectional associations between global WMM and
age at time point 1.
Age-WMM relationships were adjusted for sex, the sex-age interaction, and site with the fit indicated for each time point.
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Supplementary Note 15: Adjusted cross-sectional associations between global WMM and
age at time point 1.
Age-WMM relationships were adjusted for sex, the sex-age interaction, and site with the fit indicated for each time point.
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C Polygenic Risk Scores

Supplementary Note 16: Cognitive test differences between time points.

Pair matches refers to incorrectly solved pair matches (executed in 3 rounds). Digits refers to the maximum number of digits
remembered; intelligence to fluid intelligence; memory to prospective memory; health to a rating of the own overall health;
matrix RTs refer to matrix puzzle completion times; matrix correct to the number of correctly solved matrix puzzles; matrix
viewed to the number of viewed matrix puzzles; tower correct to the number of correctly solved tower puzzles; and Sym/Dig
matches to the number of correct symbol-digit matches.

Metric MT P 1 SDT P 1 MT P 2 SDT P 2 df p padj d L95%CI U95%CI

Inc. pair matches R1 0.297 0.758 0.289 0.716 2282 0.359 1 -0.026 -0.08 0.029
Inc. pair matches R2 3.344 2.52 3.225 2.586 2282 0.011 0.292 -0.067 -0.119 -0.015
Inc. pair matches R3 3.742 4.077 3.664 3.815 1037 0.049 1 -0.087 -0.174 0

Max. digits rem. 6.844 1.39 6.656 1.79 2184 <0.001 <0.001 -0.103 -0.149 -0.056
Fluid intel. 6.854 2.018 6.796 2.026 2219 0.9 1 0.002 -0.033 0.037

Prosp. mem. 1.045 0.363 1.048 0.354 2282 0.411 1 0.023 -0.031 0.077
Health self-rating 1.896 0.622 1.915 0.654 2654 0.123 1 0.027 -0.007 0.06

Matrix RT1 29.95 9.828 30.627 10.277 1488 0.02 0.526 0.07 0.011 0.129
Matrix RT2 32.601 12.741 33.117 24.712 1488 0.691 1 0.014 -0.053 0.08
Matrix RT3 58.936 26.351 61.716 30.574 1488 0.008 0.201 0.082 0.022 0.142
Matrix RT4 67.765 35.483 68.263 35.013 1488 0.778 1 0.009 -0.053 0.07
Matrix RT5 43.224 20.951 42.608 19.722 1488 0.124 1 -0.044 -0.1 0.012
Matrix RT6 96.575 53.267 95.419 52.752 1488 0.053 1 -0.058 -0.118 0.001
Matrix RT7 136.815 66.333 137.116 67.855 1488 0.987 1 0 -0.058 0.059
Matrix RT8 93.788 43.243 97.961 48.273 1487 0 0.011 0.097 0.043 0.151
Matrix RT9 173.672 102.302 173.778 98.117 1475 0.802 1 0.008 -0.053 0.068

Matrix RT10 92.188 46.633 92.784 48.648 1456 0.42 1 0.025 -0.036 0.086
Matrix RT11 203.247 108.918 192.572 106.136 1329 0.007 0.179 -0.087 -0.15 -0.024
Matrix RT12 189.715 90.756 178.99 87.538 1077 0 0.007 -0.131 -0.201 -0.06
Matrix RT13 127.154 72.968 122.417 72.97 865 0.112 1 -0.066 -0.147 0.015
Matrix RT14 164.675 75.616 155.445 73.219 576 0.204 1 -0.064 -0.164 0.035
Matrix RT15 134.735 70.439 128.53 66.241 350 0.278 1 -0.065 -0.182 0.052

Correct matrix puzzles 8.355 2.015 8.338 2.046 1488 0.618 1 0.012 -0.036 0.061
Viewed matrix puzzles 13.911 1.359 13.967 1.361 1488 0.151 1 0.036 -0.013 0.085
Correct tower puzzles 10.38 3.118 10.522 3.156 1473 0 0.002 0.105 0.053 0.156

Correct sym.-dig. matches 20.099 4.964 19.938 5.256 1472 0.764 1 0.007 -0.038 0.052
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Supplementary Note 17: Distribution of the relationship between age and the absolute annual
rate of white matter microstructure change

The Figure shows the distribution of adjusted |ARoC|-age associations across brain regions (—̄padj<0.05 = 0.013 ± 0.005).
Mean associations were smaller when including non-significant associations (—̄all = 0.007±0.005).
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Supplementary Note 18: Age-stratified annual rate of WMM change group-comparisons

Table 2: Age-stratified annual rate of WMM change group-comparisons

Diffusion Metric Group 2 Group 2 Cohen’s d n1 n2 CIlow CIhigh Magnitude padj

BRIA - v intra 46-55 55-65 0.65 525 1157 0.54 0.78 moderate <.001

BRIA - v intra 46-55 65-75 1.31 525 905 1.18 1.43 large <.001

BRIA - v intra 46-55 75-81 1.78 525 91 1.54 2.06 large <.001

BRIA - v intra 55-65 65-75 0.80 1157 905 0.71 0.9 large <.001

BRIA - v intra 55-65 75-81 1.41 1157 91 1.14 1.73 large <.001

BRIA - v intra 65-75 75-81 0.78 905 91 0.52 1.05 moderate <.001

BRIA – v extra 46-55 55-65 -0.73 525 1157 -0.86 -0.6 moderate <.001

BRIA – v extra 46-55 65-75 -1.44 525 905 -1.57 -1.31 large <.001

BRIA – v extra 46-55 75-81 -1.88 525 91 -2.2 -1.62 large <.001

BRIA – v extra 55-65 65-75 -0.94 1157 905 -1.04 -0.85 large <.001

BRIA – v extra 55-65 75-81 -1.53 1157 91 -1.88 -1.26 large <.001

BRIA – v extra 65-75 75-81 -0.83 905 91 -1.12 -0.58 large <.001

BRIA – v CSF 46-55 55-65 -0.30 525 1157 -0.41 -0.19 small <.001

BRIA – v CSF 46-55 65-75 -0.51 525 905 -0.62 -0.39 moderate <.001

BRIA – v CSF 46-55 75-81 -0.71 525 91 -0.92 -0.5 moderate <.001

BRIA – v CSF 55-65 65-75 -0.20 1157 905 -0.29 -0.12 small <.001

BRIA – v CSF 55-65 75-81 -0.41 1157 91 -0.61 -0.2 small 0.001

BRIA – v CSF 65-75 75-81 -0.21 905 91 -0.43 0.01 small 0.064

BRIA – micro RD 46-55 55-65 -0.45 525 1157 -0.55 -0.35 small <.001

BRIA – micro RD 46-55 65-75 -0.85 525 905 -0.98 -0.74 large <.001

BRIA – micro RD 46-55 75-81 -1.25 525 91 -1.5 -1.02 large <.001

BRIA – micro RD 55-65 65-75 -0.42 1157 905 -0.51 -0.33 small <.001

BRIA – micro RD 55-65 75-81 -0.87 1157 91 -1.13 -0.66 large <.001

BRIA – micro RD 65-75 75-81 -0.48 905 91 -0.72 -0.26 small <.001

BRIA – micro FA 46-55 55-65 0.56 525 1157 0.45 0.67 moderate <.001

BRIA – micro FA 46-55 65-75 1.11 525 905 0.99 1.24 large <.001

BRIA – micro FA 46-55 75-81 1.58 525 91 1.35 1.84 large <.001

BRIA – micro FA 55-65 65-75 0.63 1157 905 0.55 0.72 moderate <.001

BRIA – micro FA 55-65 75-81 1.21 1157 91 0.96 1.49 large <.001

BRIA – micro FA 65-75 75-81 0.68 905 91 0.44 0.92 moderate <.001

BRIA – micro AX 46-55 55-65 -0.06 525 1157 -0.16 0.04 negligible 0.478

BRIA – micro AX 46-55 65-75 0.04 525 905 -0.07 0.14 negligible 0.519

BRIA – micro AX 46-55 75-81 0.20 525 91 -0.05 0.43 small 0.332

BRIA – micro AX 55-65 65-75 0.09 1157 905 0.01 0.19 negligible 0.170

BRIA – micro AX 55-65 75-81 0.26 1157 91 0.04 0.48 small 0.121

BRIA – micro AX 65-75 75-81 0.16 905 91 -0.04 0.39 negligible 0.426

BRIA – micro ADC 46-55 55-65 -0.32 525 1157 -0.44 -0.22 small <.001

Continued on next page
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Table 2: Age-stratified annual rate of WMM change group-comparisons (Continued)

BRIA – micro ADC 46-55 65-75 -0.55 525 905 -0.66 -0.43 moderate <.001

BRIA – micro ADC 46-55 75-81 -0.80 525 91 -1.03 -0.58 moderate <.001

BRIA – micro ADC 55-65 65-75 -0.23 1157 905 -0.32 -0.14 small <.001

BRIA – micro ADC 55-65 75-81 -0.48 1157 91 -0.7 -0.28 small <.001

BRIA – micro ADC 65-75 75-81 -0.26 905 91 -0.48 -0.04 small 0.023

BRIA – DAX intra 46-55 55-65 -0.30 525 1157 -0.41 -0.2 small <.001

BRIA – DAX intra 46-55 65-75 -0.51 525 905 -0.62 -0.4 moderate <.001

BRIA – DAX intra 46-55 75-81 -0.74 525 91 -0.96 -0.52 moderate <.001

BRIA – DAX intra 55-65 65-75 -0.20 1157 905 -0.29 -0.11 small <.001

BRIA – DAX intra 55-65 75-81 -0.44 1157 91 -0.67 -0.23 small <.001

BRIA – DAX intra 65-75 75-81 -0.24 905 91 -0.47 -0.02 small 0.033

BRIA – DAX extra 46-55 55-65 -0.26 525 1157 -0.36 -0.15 small <.001

BRIA – DAX extra 46-55 65-75 -0.40 525 905 -0.51 -0.29 small <.001

BRIA – DAX extra 46-55 75-81 -0.56 525 91 -0.78 -0.33 moderate <.001

BRIA – DAX extra 55-65 65-75 -0.15 1157 905 -0.24 -0.05 negligible 0.003

BRIA – DAX extra 55-65 75-81 -0.31 1157 91 -0.53 -0.09 small 0.012

BRIA – DAX extra 65-75 75-81 -0.16 905 91 -0.39 0.06 negligible 0.145

DKI – RK 46-55 55-65 0.59 525 1157 0.48 0.7 moderate <.001

DKI – RK 46-55 65-75 1.34 525 905 1.24 1.45 large <.001

DKI – RK 46-55 75-81 1.90 525 91 1.69 2.17 large <.001

DKI – RK 55-65 65-75 1.05 1157 905 0.98 1.14 large <.001

DKI – RK 55-65 75-81 1.73 1157 91 1.44 2.05 large <.001

DKI – RK 65-75 75-81 0.98 905 91 0.71 1.29 large <.001

DKI – AK 46-55 55-65 0.41 525 1157 0.31 0.51 small <.001

DKI – AK 46-55 65-75 0.75 525 905 0.64 0.87 moderate <.001

DKI – AK 46-55 75-81 1.12 525 91 0.88 1.36 large <.001

DKI – AK 55-65 65-75 0.35 1157 905 0.27 0.44 small <.001

DKI – AK 55-65 75-81 0.76 1157 91 0.54 0.99 moderate <.001

DKI – AK 65-75 75-81 0.44 905 91 0.23 0.67 small <.001

DKI – MK 46-55 55-65 0.61 525 1157 0.5 0.72 moderate <.001

DKI – MK 46-55 65-75 1.22 525 905 1.09 1.34 large <.001

DKI – MK 46-55 75-81 1.69 525 91 1.45 1.97 large <.001

DKI – MK 55-65 65-75 0.72 1157 905 0.64 0.81 moderate <.001

DKI – MK 55-65 75-81 1.32 1157 91 1.07 1.6 large <.001

DKI – MK 65-75 75-81 0.74 905 91 0.51 0.99 moderate <.001

DTI – FA 46-55 55-65 0.23 525 1157 0.11 0.34 small <.001

DTI – FA 46-55 65-75 0.66 525 905 0.56 0.77 moderate <.001

DTI – FA 46-55 75-81 1.00 525 91 0.74 1.29 large <.001

DTI – FA 55-65 65-75 0.46 1157 905 0.36 0.55 small <.001

DTI – FA 55-65 75-81 0.82 1157 91 0.58 1.1 large <.001

DTI – FA 65-75 75-81 0.40 905 91 0.17 0.66 small 0.001

Continued on next page
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Table 2: Age-stratified annual rate of WMM change group-comparisons (Continued)

DTI – MD 46-55 55-65 -0.43 525 1157 -0.54 -0.33 small <.001

DTI – MD 46-55 65-75 -0.79 525 905 -0.91 -0.67 moderate <.001

DTI – MD 46-55 75-81 -1.15 525 91 -1.41 -0.94 large <.001

DTI – MD 55-65 65-75 -0.38 1157 905 -0.46 -0.29 small <.001

DTI – MD 55-65 75-81 -0.77 1157 91 -1 -0.56 moderate <.001

DTI – MD 65-75 75-81 -0.40 905 91 -0.62 -0.17 small 0.001

DTI – RD 46-55 55-65 -0.74 525 1157 -0.85 -0.63 moderate <.001

DTI – RD 46-55 65-75 -1.47 525 905 -1.59 -1.36 large <.001

DTI – RD 46-55 75-81 -1.92 525 91 -2.27 -1.63 large <.001

DTI – RD 55-65 65-75 -0.93 1157 905 -1.04 -0.85 large <.001

DTI – RD 55-65 75-81 -1.53 1157 91 -1.88 -1.24 large <.001

DTI – RD 65-75 75-81 -0.76 905 91 -1.04 -0.52 moderate <.001

DTI – AD 46-55 55-65 -0.22 525 1157 -0.33 -0.11 small <.001

DTI – AD 46-55 65-75 -0.32 525 905 -0.43 -0.2 small <.001

DTI – AD 46-55 75-81 -0.43 525 91 -0.67 -0.2 small 0.001

DTI – AD 55-65 65-75 -0.09 1157 905 -0.19 -0.0066 negligible 0.109

DTI – AD 55-65 75-81 -0.21 1157 91 -0.42 0.007 small 0.114

DTI – AD 65-75 75-81 -0.12 905 91 -0.35 0.08 negligible 0.289

SMT – FA 46-55 55-65 0.53 525 1157 0.43 0.64 moderate <.001

SMT – FA 46-55 65-75 1.06 525 905 0.94 1.19 large <.001

SMT – FA 46-55 75-81 1.51 525 91 1.28 1.77 large <.001

SMT – FA 55-65 65-75 0.59 1157 905 0.5 0.68 moderate <.001

SMT – FA 55-65 75-81 1.15 1157 91 0.93 1.41 large <.001

SMT – FA 65-75 75-81 0.66 905 91 0.43 0.91 moderate <.001

SMT – long 46-55 55-65 -0.15 525 1157 -0.26 -0.04 negligible 0.021

SMT – long 46-55 65-75 -0.16 525 905 -0.27 -0.05 negligible 0.018

SMT – long 46-55 75-81 -0.11 525 91 -0.35 0.1 negligible 1.000

SMT – long 55-65 65-75 -0.01 1157 905 -0.11 0.07 negligible 1.000

SMT – long 55-65 75-81 0.04 1157 91 -0.19 0.25 negligible 1.000

SMT – long 65-75 75-81 0.05 905 91 -0.18 0.3 negligible 1.000

SMT – MD 46-55 55-65 -0.28 525 1157 -0.39 -0.18 small <.001

SMT – MD 46-55 65-75 -0.46 525 905 -0.57 -0.35 small <.001

SMT – MD 46-55 75-81 -0.64 525 91 -0.87 -0.42 moderate <.001

SMT – MD 55-65 65-75 -0.18 1157 905 -0.26 -0.09 negligible <.001

SMT – MD 55-65 75-81 -0.36 1157 91 -0.58 -0.15 small 0.003

SMT – MD 65-75 75-81 -0.19 905 91 -0.42 0.02 negligible 0.096

SMT – trans 46-55 55-65 -0.49 525 1157 -0.6 -0.38 small <.001

SMT – trans 46-55 65-75 -0.93 525 905 -1.06 -0.82 large <.001

SMT – trans 46-55 75-81 -1.36 525 91 -1.61 -1.14 large <.001

SMT – trans 55-65 65-75 -0.47 1157 905 -0.56 -0.39 small <.001

SMT – trans 55-65 75-81 -0.97 1157 91 -1.23 -0.74 large <.001

Continued on next page
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Table 2: Age-stratified annual rate of WMM change group-comparisons (Continued)

SMT – trans 65-75 75-81 -0.55 905 91 -0.8 -0.32 moderate <.001

SMTmc – intra 46-55 55-65 0.70 525 1157 0.6 0.81 moderate <.001

SMTmc – intra 46-55 65-75 1.36 525 905 1.23 1.49 large <.001

SMTmc – intra 46-55 75-81 1.82 525 91 1.56 2.14 large <.001

SMTmc – intra 55-65 65-75 0.82 1157 905 0.73 0.9 large <.001

SMTmc – intra 55-65 75-81 1.42 1157 91 1.15 1.75 large <.001

SMTmc – intra 65-75 75-81 0.76 905 91 0.5 1.03 moderate <.001

SMTmc – extra MD 46-55 55-65 -0.32 525 1157 -0.43 -0.21 small <.001

SMTmc – extra MD 46-55 65-75 -0.55 525 905 -0.67 -0.44 moderate <.001

SMTmc – extra MD 46-55 75-81 -0.77 525 91 -1 -0.55 moderate <.001

SMTmc – extra MD 55-65 65-75 -0.23 1157 905 -0.32 -0.14 small <.001

SMTmc – extra MD 55-65 75-81 -0.46 1157 91 -0.67 -0.24 small <.001

SMTmc – extra MD 65-75 75-81 -0.23 905 91 -0.45 -0.01 small 0.041

SMTmc – extra trans 46-55 55-65 -0.61 525 1157 -0.72 -0.49 moderate <.001

SMTmc – extra trans 46-55 65-75 -1.16 525 905 -1.28 -1.05 large <.001

SMTmc – extra trans 46-55 75-81 -1.63 525 91 -1.92 -1.36 large <.001

SMTmc – extra trans 55-65 65-75 -0.64 1157 905 -0.73 -0.55 moderate <.001

SMTmc – extra trans 55-65 75-81 -1.20 1157 91 -1.49 -0.95 large <.001

SMTmc – extra trans 65-75 75-81 -0.64 905 91 -0.9 -0.4 moderate <.001

SMTmc – diff 46-55 55-65 0.61 525 1157 0.51 0.72 moderate <.001

SMTmc – diff 46-55 65-75 1.23 525 905 1.12 1.34 large <.001

SMTmc – diff 46-55 75-81 1.73 525 91 1.44 2.06 large <.001

SMTmc – diff 55-65 65-75 0.78 1157 905 0.68 0.87 moderate <.001

SMTmc – diff 55-65 75-81 1.40 1157 91 1.1 1.79 large <.001

SMTmc – diff 65-75 75-81 0.73 905 91 0.47 1.01 moderate <.001

WMTI – AWF 46-55 55-65 0.55 525 1157 0.43 0.66 moderate <.001

WMTI – AWF 46-55 65-75 1.11 525 905 0.99 1.24 large <.001

WMTI – AWF 46-55 75-81 1.58 525 91 1.38 1.84 large <.001

WMTI – AWF 55-65 65-75 0.65 1157 905 0.56 0.74 moderate <.001

WMTI – AWF 55-65 75-81 1.24 1157 91 1.02 1.49 large <.001

WMTI – AWF 65-75 75-81 0.72 905 91 0.51 0.97 moderate <.001

WMTI – radEAD 46-55 55-65 -0.58 525 1157 -0.7 -0.47 moderate <.001

WMTI – radEAD 46-55 65-75 -1.16 525 905 -1.28 -1.04 large <.001

WMTI – radEAD 46-55 75-81 -1.52 525 91 -1.79 -1.27 large <.001

WMTI – radEAD 55-65 65-75 -0.64 1157 905 -0.73 -0.56 moderate <.001

WMTI – radEAD 55-65 75-81 -1.09 1157 91 -1.38 -0.87 large <.001

WMTI – radEAD 65-75 75-81 -0.52 905 91 -0.77 -0.28 moderate <.001
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C Polygenic Risk Scores

Supplementary Note 19: Adjusted annual rate of WMM change throughout ages

WMM are standardised for comparability without mean centering for a better understanding of onset values. Non-linear
curves were fitted, using splines of generalized additive models, and Pearson’s correlation coefficients were estimated (top
left in each plot). We present uncorrected p-values, which were significant at the Bonferroni-corrected – < 0.05/26 = 0.0019.
Additionally, we estimated associations between |ARoC| and age (to meaningfully estimate meta-statistics), showing a higher
|ARoC| at higher ages (—̄sig = 0.012 ± 0.003), with a slightly lower average slopes when considering non-significant age-
|ARoC| associations (—̄all = 0.008±0.004)
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Supplementary Note 20: Unadjusted annual rate of WMM change throughout ages

WMM are standardised for comparability without mean centering for a better understanding of onset values. Red lines were
implemented as visual aid.
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Supplementary Note 21: Corrected sex- and age-stratified annual rate of WMM change
WMM are standardised for comparability (including mean centering). Red colours indicate females and blue colours males.
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Supplementary Note 22: Regional associations between WMM change in the Cerebral Peduncle and PGRS
Panel (a) presents the associations between PGRS and WMM change. Panel (b) presents the regional associations between PGRS and cross-sectional regional WMM at time point one. Panel (c) presents the cross-
sectional regional WMM associations with PGRS at time point two. Panel (d) presents cross-sectional regional associations between WMM and PGRS for the validation sample. Boxes the statistical significance at an
uncorrected – < 0.05. Colours indicate the association strength (standardised —-coefficients). Note: All associations were adjusted for age, sex, the age ◊ sex interaction, and site. None of the presented associations
survived the adjustment of the –-level for multiple comparisons.

Association Strength −0.050 −0.025 0.000 0.025 0.050

0.005
−0.001
−0.022

−0.01
0.019

−0.005
−0.001

−0.007
0.002
0.01

−0.001
−0.024

0.04
−0.006

0.024
−0.002
0.009

0.008
0.012

−0.023
0.018

0.002
0.002
0.015

0.011
0.008

−0.017
0.02

0.002
0.006
−0.025

−0.015
−0.003

0.011
−0.015

0.022
0.015

0

0.003
0.017

−0.042
0.018

0.007
0.007
0.01

0.008
0.011

−0.024
0.021

0.003
0.03

0.001

0.003
0.006

−0.027
0.012

0.005
0.024
0.001

0.001
0.013

−0.037
0.016

0
0.004
0.009

−0.003
0.046

−0.017
0.001

0.007
−0.022
−0.02

−0.002
0

0.01
−0.001

0.005
−0.002
−0.007

−0.013
0.028

−0.012
0

−0.007
0.001
0.006

−0.008
0.004

0.018
−0.034

0.004
0.01

0.009

0.006
0.007

−0.024
0.012

0.005
0.008
0.005

0.017
0.002

−0.023
0.025

0.002
0.005
0.012

−0.001
0.01

−0.023
−0.001

0.009
0.009
−0.014

−0.007
0.007

−0.013
0.008

0.01
0.015
0.004

−0.001
0.015

−0.042
0.02

0.005
0.016
0.008

0.004
0.01

−0.028
0.02

−0.006
0.01

0.015

0.016
−0.005

0.003
−0.002

0.006
−0.005
−0.017

−0.007
0.028

−0.012
0.005

0.006
0.007
0.002

0.013
−0.001

−0.017
0.016

−0.002
0.012
0.011

0.026
−0.017

−0.003
0.002

0.026
0.003
−0.005

0.002
0.016

−0.047
0.021

0.005
−0.005
0.036

−0.002
0.045

−0.008
0.009

0.012
0.007
0.011

0.02
0.01

−0.039
0.021

−0.003
0.016
−0.006

−0.001
0.002

0.005
−0.019

0.005
0.004
0.009

0.013
0.01

−0.014
0.026

−0.023
−0.023
−0.004

−0.02
−0.012

0.004
−0.029

−0.002
−0.025
−0.001

−0.021
−0.013

0.001
−0.02

0
0.03

0

0.022
0.012

0.001
0.001

−0.013
−0.015
−0.002

−0.014
−0.026

0.002
−0.04

−0.005
−0.022
−0.001

−0.019
−0.018

0.001
−0.031

0
−0.01
0.008

0.006
−0.042

−0.01
−0.018

0.002
−0.011
0.006

−0.008
−0.031

−0.004
−0.031

−0.013
−0.012
−0.003

−0.007
−0.01

0.024
−0.024

−0.006
0.013
−0.008

0.002
−0.017

−0.015
−0.001

−0.007
−0.005
−0.01

−0.009
−0.022

0.006
−0.025

0.008
0.017
0.03

−0.008
0.031

0.023
0.023

−0.003
−0.022
0.006

−0.021
−0.02

0.003
−0.018

−0.004
−0.03
−0.005

−0.01
−0.023

−0.008
−0.022

−0.001
−0.003
0.019

−0.015
−0.014

0.016
−0.011

−0.005
0.009
−0.012

0.005
−0.01

−0.002
−0.033

−0.004
−0.016
0.004

−0.008
−0.037

−0.003
−0.041

−0.001
−0.018
0.007

−0.012
−0.028

−0.002
−0.032

0.005
−0.017
0.012

−0.013
0.004

0.001
0.025

−0.005
0.006
−0.013

−0.006
−0.025

0.002
−0.024

−0.004
−0.017
0.004

−0.02
−0.015

0.001
−0.013

0.003
−0.016
0.014

−0.016
0.009

0
0.012

−0.023
−0.014
−0.005

−0.013
−0.033

0.004
−0.043

−0.002
−0.005

0.03

−0.012
0.028

0.005
−0.017

−0.008
−0.03
−0.002

−0.021
−0.024

−0.008
−0.036

−0.007
−0.001
0.011

0.015
−0.049

0.006
−0.018

0.008
−0.016
−0.006

−0.001
0.033

−0.011
0.024

−0.014
0.022
−0.004

−0.009
0.002

0.001
−0.029

0.001
0.02
−0.007

−0.014
0.01

0
−0.019

−0.004
−0.015
0.006

0.024
−0.019

0.002
0.009

−0.011
0.021
−0.003

−0.005
−0.016

0.004
−0.019

−0.001
0.021
−0.006

−0.011
0.001

0.001
−0.02

0.002
0.015
−0.008

−0.01
−0.007

−0.002
0.011

−0.002
0.02
−0.008

−0.008
−0.01

0.003
−0.004

0.002
0.024
0.023

0.002
−0.013

0.032
−0.036

−0.006
−0.02
−0.033

−0.001
−0.042

−0.018
−0.011

−0.005
0.008
0.013

0.018
−0.032

0.012
−0.033

0.004
0.003
0.026

−0.001
0.014

0.023
−0.01

0.001
0.025
−0.008

−0.012
0.009

0.002
−0.014

−0.001
0.013
−0.014

−0.01
0.001

−0.009
−0.007

0.005
0.017
0.004

−0.007
0.015

0.017
−0.018

−0.006
−0.009
0.008

0.006
−0.02

0.007
−0.011

−0.003
0.02
−0.004

−0.008
−0.02

0
−0.014

0
0.022
−0.009

−0.012
−0.01

−0.002
−0.01

0.005
0.016
−0.017

−0.01
0.016

−0.004
0.011

−0.007
0.008
0.009

0.005
−0.052

0.005
−0.015

0.002
0.03
−0.005

−0.012
0.009

0.001
0

0.006
0.023
−0.01

−0.018
0.037

−0.001
0.011

−0.016
0.029

0

−0.005
−0.022

0.005
−0.018

0.001
−0.015
0.007

0.003
−0.005

0.004
−0.037

0.002
0.015
−0.008

−0.009
−0.001

−0.006
−0.017

0.003
0.035
0.003

−0.004
0.03

0.015
0.03

−0.004
0.003
−0.01

−0.008
−0.017

0.005
−0.032

0.014
−0.042
0.012

0.015
−0.004

−0.023
0.024

0.002
−0.045
0.009

0.017
−0.009

−0.022
0.005

0.001
0.05
−0.01

−0.02
0.011

0.022
0.007

0.011
−0.021
0.003

0.01
0.009

−0.023
0.021

0.004
−0.037
0.007

0.015
−0.003

−0.023
0.013

0.001
−0.014
−0.007

−0.001
0.004

−0.015
−0.016

0.004
−0.019
−0.007

0.008
0.005

−0.02
0

0.007
0.005
0.012

−0.005
0.012

0.01
0.046

−0.005
0.01
−0.005

−0.003
0.008

0.016
0.025

0.004
0.006
0.009

−0.008
0.029

0.009
0.036

0.007
0.016
0.011

0.002
−0.021

0.007
0.023

0.003
−0.042
0.007

0.015
−0.008

−0.024
−0.005

−0.001
−0.042
0.001

0.011
0

−0.018
−0.014

0.011
−0.014
0.014

0.009
−0.015

−0.028
0.005

0.003
0.028

0

0.002
0.031

0.019
0.024

0.005
−0.026
−0.002

0.005
0.02

−0.028
0.01

0.003
−0.032
−0.002

0.006
0.003

−0.029
0.001

−0.002
−0.044

0

−0.002
−0.031

−0.02
−0.026

0.003
0.015
0.005

−0.002
0.044

0.011
0.031

0.002
−0.041
−0.002

0.011
−0.016

−0.02
−0.016

−0.001
−0.045
−0.007

0.015
−0.041

−0.015
−0.029

0.011
−0.029
0.001

0.005
0.016

−0.024
0.021

0.004
0.021
−0.002

−0.002
0.029

0.017
0.06

0.002
−0.036
0.002

0.015
0.008

−0.02
0.005

0.001
0.017
−0.008

−0.009
−0.014

0.006
−0.002

−0.005
0.002
0.005

0.001
0.008

−0.018
−0.005

0.051
−0.02
0.001

0.004
0.002

0.007
0.016

0.014
−0.021
0.005

0.007
0.003

0.005
0.02

−0.006
0.023
−0.01

−0.009
−0.008

−0.002
−0.02

0.041
−0.006
0.005

0.002
−0.007

0.025
0.017

0.021
−0.016
0.005

0.005
0

0.01
0.02

0.011
−0.001
0.014

0.009
−0.011

0.022
0.011

0.021
−0.003
0.011

0.007
−0.007

0.025
0.015

−0.001
0.032
0.018

−0.002
−0.019

0.024
0.015

−0.008
0

−0.023

−0.008
−0.034

0.018
0.006

0
0.013
0.006

0.002
−0.02

0.011
0.011

−0.001
0.006
−0.001

−0.001
0.018

−0.014
0.003

0.016
−0.019
0.007

0.007
0

0.008
0.014

0.012
−0.02
0.003

0.011
−0.006

0.009
0.007

0.026
−0.005
0.011

0.002
0.007

0.005
0.02

0.007
0.011
0.001

−0.013
−0.024

0.004
0.007

0.024
−0.007

0.01

−0.003
−0.011

0.032
0.024

0.016
−0.01
0.009

0.001
−0.001

0.021
0.023

0
−0.023
−0.006

0.018
0.021

−0.001
−0.001

0.003
0.01
−0.001

−0.007
−0.02

0.011
0.009

0.012
−0.017
0.005

0
0.001

0.006
0.007

0.003
−0.023
0.002

0.009
0.013

−0.004
−0.005

0.03
−0.009
0.006

−0.004
−0.011

0.028
0.02

−0.004
0.012
0.008

−0.003
−0.016

−0.007
0.007

0.021
−0.012
0.012

0.013
−0.008

0.015
0.009

0.001
0.024
0.002

−0.003
0.014

0.014
−0.009

−0.001
−0.048
−0.017

−0.004
0.008

−0.006
0.011

0.009
0.036
0.024

0.009
−0.018

−0.015
−0.013

0.001
0.026
0.02

0.009
−0.02

−0.015
−0.011

−0.001
−0.01
−0.017

−0.014
0.02

0.014
−0.004

−0.003
0.038
0.016

−0.001
−0.014

−0.009
−0.028

0
0.032
0.02

0.005
−0.018

−0.014
−0.02

−0.003
0.017
−0.001

−0.039
−0.011

−0.011
−0.024

−0.003
0.027
0.008

−0.015
−0.015

−0.014
−0.033

0.003
−0.008
−0.006

0.004
−0.002

0.009
−0.019

−0.009
0.003
0.008

−0.01
0.002

0.017
0.008

0
0.006
−0.004

−0.016
0.001

0.015
−0.02

0.014
−0.008

0

0.013
0.025

−0.013
−0.002

0.001
0.027
0.019

0.006
−0.016

−0.018
−0.013

−0.004
0.031
0.02

−0.016
−0.023

−0.007
−0.005

0.012
0.006
0.013

0.012
−0.006

−0.029
−0.018

−0.002
0.03

0.015

−0.004
0.02

0.021
−0.01

−0.003
0.026
0.013

−0.009
−0.011

−0.003
−0.025

−0.002
0.022
0.009

−0.01
−0.018

−0.011
−0.025

−0.001
−0.01
−0.013

−0.001
−0.023

−0.021
−0.002

0.001
0.035
0.011

0
0.011

0.015
−0.004

−0.002
0.028
0.018

0.003
−0.014

−0.012
−0.023

−0.001
0.007
0.006

0.005
−0.017

−0.015
−0.009

−0.002
0.037
0.02

0.001
−0.006

0.001
−0.023

0.005
0.005
0.003

0.011
0.038

0.007
0

−0.008
0.028
0.019

−0.019
−0.019

−0.003
−0.011

−0.002
0.008
−0.009

0.005
0.002

0.015
−0.023

0.003
−0.003
0.001

−0.008
−0.004

−0.03
0.011

−0.019
−0.005
0.008

0.009
0.002

0.004
0.021

−0.003
−0.005
0.011

0.008
0.002

−0.001
0.033

0.001
0.009
−0.016

−0.009
−0.004

0.005
−0.047

−0.006
0.004
0.007

0.003
0.008

0.014
−0.001

−0.004
−0.002

0.01

0.006
0.004

0.003
0.018

0.001
0.007
0.01

−0.029
0.011

−0.001
−0.001

−0.001
0.005
0.007

−0.011
0.009

0.008
−0.005

0.002
0.009
0.01

−0.001
0

0.019
−0.019

0
−0.01
−0.01

−0.001
−0.008

−0.001
−0.006

−0.003
0.002
−0.001

0.006
0.008

0.013
−0.031

0.004
0.005
0.019

−0.002
−0.01

0.019
−0.005

−0.004
−0.004
0.013

0.002
0.003

0.003
0.016

−0.006
−0.009
−0.002

0.005
0.004

−0.006
0.014

0
0.002
0.03

0
0.002

0.014
0.016

−0.003
0.011
−0.011

−0.009
−0.003

0.005
−0.026

−0.006
0.001
0.007

−0.006
0.009

0.009
0.008

−0.004
−0.001
0.009

−0.004
0.009

0.006
0.014

0.001
−0.009
0.009

0.006
0.004

−0.001
0.018

−0.002
0.004
−0.006

0.004
0.014

0.015
−0.012

−0.006
0

0.001

−0.002
−0.003

−0.002
0.011

−0.002
−0.002
−0.001

−0.008
−0.013

−0.009
0.009

−0.011
0.001
0.001

0.001
0.007

0.015
0.003

−0.003
0.004
−0.009

0.007
0.009

0.011
−0.025

−0.009
−0.005
−0.001

0.009
0.009

−0.001
−0.001

−0.003
0.013
0.002

0.004
−0.014

0.008
−0.001

−0.002
−0.027
0.003

−0.01
0.007

−0.039
−0.006

0.053
0.021
−0.006

0.013
0.004

0.021
0.017

0.017
0.016
−0.004

0.014
0.009

0.014
0.022

−0.009
−0.007
0.013

−0.016
−0.008

−0.011
−0.015

0.041
0.024
0.008

0.013
0.013

0.029
0.02

0.024
0.02

0.001

0.014
0.011

0.018
0.023

0.013
0.013
0.022

0.011
0.04

0
0.016

0.022
0.018
0.016

0.013
0.029

0.017
0.023

0
0.029
0.024

0.017
0.032

0.028
0.01

−0.006
−0.015
−0.047

−0.008
−0.027

−0.015
−0.019

−0.003
0.018
0.01

0.025
0.017

0.016
0.006

−0.007
0

0.022

−0.002
−0.034

−0.004
−0.005

0.018
0.018
0.005

0.013
0.01

0.015
0.018

0.014
0.013
−0.008

0.018
0.02

0.011
0.02

0.026
0.01

0.023

0.005
−0.002

0.019
0.015

0.004
0.016
−0.008

0.009
−0.019

0.001
0.001

0.025
0.018
0.007

0.018
0.018

0.027
0.019

0.018
0.016
0.011

0.018
0.024

0.021
0.022

0.004
−0.005
0.014

−0.005
0.024

0.003
0.01

−0.001
0.024
−0.005

0.01
−0.014

0.015
0.001

0.014
0.018
0.004

0.015
0.02

0.006
0.021

0.006
0.002
0.008

0.003
0.023

−0.005
0.01

0.022
0.025

0

0.014
0.008

0.033
0.017

−0.005
0.003
−0.013

0.003
−0.008

0.006
−0.01

0.017
0.019
−0.005

0.035
0.025

0.022
0.015

AD_CerebralpeduncleL
AD_CerebralpeduncleR

AD_InferiorcerebellarpeduncleL
AD_InferiorcerebellarpeduncleR

AD_Middlecerebellarpeduncle
AD_SuperiorcerebellarpeduncleL
AD_SuperiorcerebellarpeduncleR

ak_CerebralpeduncleL
ak_CerebralpeduncleR

ak_InferiorcerebellarpeduncleL
ak_InferiorcerebellarpeduncleR

ak_Middlecerebellarpeduncle
ak_SuperiorcerebellarpeduncleL
ak_SuperiorcerebellarpeduncleR

awf_CerebralpeduncleL
awf_CerebralpeduncleR

awf_InferiorcerebellarpeduncleL
awf_InferiorcerebellarpeduncleR

awf_Middlecerebellarpeduncle
awf_SuperiorcerebellarpeduncleL
awf_SuperiorcerebellarpeduncleR

Dax_extra_CerebralpeduncleL
Dax_extra_CerebralpeduncleR

Dax_extra_InferiorcerebellarpeduncleL
Dax_extra_InferiorcerebellarpeduncleR

Dax_extra_Middlecerebellarpeduncle
Dax_extra_SuperiorcerebellarpeduncleL
Dax_extra_SuperiorcerebellarpeduncleR

Dax_intra_CerebralpeduncleL
Dax_intra_CerebralpeduncleR

Dax_intra_InferiorcerebellarpeduncleL
Dax_intra_InferiorcerebellarpeduncleR

Dax_intra_Middlecerebellarpeduncle
Dax_intra_SuperiorcerebellarpeduncleL
Dax_intra_SuperiorcerebellarpeduncleR

FA_CerebralpeduncleL
FA_CerebralpeduncleR

FA_InferiorcerebellarpeduncleL
FA_InferiorcerebellarpeduncleR

FA_Middlecerebellarpeduncle
FA_SuperiorcerebellarpeduncleL
FA_SuperiorcerebellarpeduncleR

MD_CerebralpeduncleL
MD_CerebralpeduncleR

MD_InferiorcerebellarpeduncleL
MD_InferiorcerebellarpeduncleR

MD_Middlecerebellarpeduncle
MD_SuperiorcerebellarpeduncleL
MD_SuperiorcerebellarpeduncleR

micro_ADC_CerebralpeduncleL
micro_ADC_CerebralpeduncleR

micro_ADC_InferiorcerebellarpeduncleL
micro_ADC_InferiorcerebellarpeduncleR

micro_ADC_Middlecerebellarpeduncle
micro_ADC_SuperiorcerebellarpeduncleL
micro_ADC_SuperiorcerebellarpeduncleR

micro_Ax_CerebralpeduncleL
micro_Ax_CerebralpeduncleR

micro_Ax_InferiorcerebellarpeduncleL
micro_Ax_InferiorcerebellarpeduncleR

micro_Ax_Middlecerebellarpeduncle
micro_Ax_SuperiorcerebellarpeduncleL
micro_Ax_SuperiorcerebellarpeduncleR

micro_FA_CerebralpeduncleL
micro_FA_CerebralpeduncleR

micro_FA_InferiorcerebellarpeduncleL
micro_FA_InferiorcerebellarpeduncleR

micro_FA_Middlecerebellarpeduncle
micro_FA_SuperiorcerebellarpeduncleL
micro_FA_SuperiorcerebellarpeduncleR

micro_Rd_CerebralpeduncleL
micro_Rd_CerebralpeduncleR

micro_Rd_InferiorcerebellarpeduncleL
micro_Rd_InferiorcerebellarpeduncleR

micro_Rd_Middlecerebellarpeduncle
micro_Rd_SuperiorcerebellarpeduncleL
micro_Rd_SuperiorcerebellarpeduncleR

mk_CerebralpeduncleL
mk_CerebralpeduncleR

mk_InferiorcerebellarpeduncleL
mk_InferiorcerebellarpeduncleR

mk_Middlecerebellarpeduncle
mk_SuperiorcerebellarpeduncleL
mk_SuperiorcerebellarpeduncleR

radEAD_CerebralpeduncleL
radEAD_CerebralpeduncleR

radEAD_InferiorcerebellarpeduncleL
radEAD_InferiorcerebellarpeduncleR

radEAD_Middlecerebellarpeduncle
radEAD_SuperiorcerebellarpeduncleL
radEAD_SuperiorcerebellarpeduncleR

RD_CerebralpeduncleL
RD_CerebralpeduncleR

RD_InferiorcerebellarpeduncleL
RD_InferiorcerebellarpeduncleR

RD_Middlecerebellarpeduncle
RD_SuperiorcerebellarpeduncleL
RD_SuperiorcerebellarpeduncleR

rk_CerebralpeduncleL
rk_CerebralpeduncleR

rk_InferiorcerebellarpeduncleL
rk_InferiorcerebellarpeduncleR

rk_Middlecerebellarpeduncle
rk_SuperiorcerebellarpeduncleL
rk_SuperiorcerebellarpeduncleR

smt_fa_CerebralpeduncleL
smt_fa_CerebralpeduncleR

smt_fa_InferiorcerebellarpeduncleL
smt_fa_InferiorcerebellarpeduncleR

smt_fa_Middlecerebellarpeduncle
smt_fa_SuperiorcerebellarpeduncleL
smt_fa_SuperiorcerebellarpeduncleR

smt_long_CerebralpeduncleL
smt_long_CerebralpeduncleR

smt_long_InferiorcerebellarpeduncleL
smt_long_InferiorcerebellarpeduncleR

smt_long_Middlecerebellarpeduncle
smt_long_SuperiorcerebellarpeduncleL
smt_long_SuperiorcerebellarpeduncleR

smt_mc_diff_CerebralpeduncleL
smt_mc_diff_CerebralpeduncleR

smt_mc_diff_InferiorcerebellarpeduncleL
smt_mc_diff_InferiorcerebellarpeduncleR

smt_mc_diff_Middlecerebellarpeduncle
smt_mc_diff_SuperiorcerebellarpeduncleL
smt_mc_diff_SuperiorcerebellarpeduncleR

smt_mc_extramd_CerebralpeduncleL
smt_mc_extramd_CerebralpeduncleR

smt_mc_extramd_InferiorcerebellarpeduncleL
smt_mc_extramd_InferiorcerebellarpeduncleR

smt_mc_extramd_Middlecerebellarpeduncle
smt_mc_extramd_SuperiorcerebellarpeduncleL
smt_mc_extramd_SuperiorcerebellarpeduncleR

smt_mc_extratrans_CerebralpeduncleL
smt_mc_extratrans_CerebralpeduncleR

smt_mc_extratrans_InferiorcerebellarpeduncleL
smt_mc_extratrans_InferiorcerebellarpeduncleR

smt_mc_extratrans_Middlecerebellarpeduncle
smt_mc_extratrans_SuperiorcerebellarpeduncleL
smt_mc_extratrans_SuperiorcerebellarpeduncleR

smt_mc_intra_CerebralpeduncleL
smt_mc_intra_CerebralpeduncleR

smt_mc_intra_InferiorcerebellarpeduncleL
smt_mc_intra_InferiorcerebellarpeduncleR

smt_mc_intra_Middlecerebellarpeduncle
smt_mc_intra_SuperiorcerebellarpeduncleL
smt_mc_intra_SuperiorcerebellarpeduncleR

smt_md_CerebralpeduncleL
smt_md_CerebralpeduncleR

smt_md_InferiorcerebellarpeduncleL
smt_md_InferiorcerebellarpeduncleR

smt_md_Middlecerebellarpeduncle
smt_md_SuperiorcerebellarpeduncleL
smt_md_SuperiorcerebellarpeduncleR

smt_trans_CerebralpeduncleL
smt_trans_CerebralpeduncleR

smt_trans_InferiorcerebellarpeduncleL
smt_trans_InferiorcerebellarpeduncleR

smt_trans_Middlecerebellarpeduncle
smt_trans_SuperiorcerebellarpeduncleL
smt_trans_SuperiorcerebellarpeduncleR

v_csf_CerebralpeduncleL
v_csf_CerebralpeduncleR

v_csf_InferiorcerebellarpeduncleL
v_csf_InferiorcerebellarpeduncleR

v_csf_Middlecerebellarpeduncle
v_csf_SuperiorcerebellarpeduncleL
v_csf_SuperiorcerebellarpeduncleR

v_extra_CerebralpeduncleL
v_extra_CerebralpeduncleR

v_extra_InferiorcerebellarpeduncleL
v_extra_InferiorcerebellarpeduncleR

v_extra_Middlecerebellarpeduncle
v_extra_SuperiorcerebellarpeduncleL
v_extra_SuperiorcerebellarpeduncleR

v_intra_CerebralpeduncleL
v_intra_CerebralpeduncleR

v_intra_InferiorcerebellarpeduncleL
v_intra_InferiorcerebellarpeduncleR

v_intra_Middlecerebellarpeduncle
v_intra_SuperiorcerebellarpeduncleL
v_intra_SuperiorcerebellarpeduncleR

AD ADHD ANX ASD BIP MDD OCD SCZ

a
−0.001

0
0

−0.001
−0.002

−0.001
−0.001

0.001
0
0

0.001
0.002

0
0.003

−0.002
0.001

0

0.001
0.003

0.004
−0.002

0
0.001

0

0.001
0.003

0.003
0

0
0
0

−0.001
−0.001

−0.001
0

0
0

0.001

0
0

0.001
0

0
0

0.001

0.001
0.001

0.002
0

0
0

0.001

0
0

0.001
0

0
0

0.001

0.001
0

0.001
0

0.001
0
0

0
−0.002

0
−0.002

−0.001
0

−0.002

−0.001
−0.002

−0.001
0

0
0
0

−0.001
−0.001

0
−0.001

0.001
0

0.001

0.002
−0.001

−0.001
0

0
0

0.001

0.001
0.001

0.002
0

−0.001
0
0

0
0.002

0.003
0

0.001
0

0.001

0.002
0

0.001
0

0
0
0

0
0

0
0

0
0

0.001

0.001
0

0.001
−0.001

0
0

0.001

0.001
0

0.001
0

0.002
0.001
0.001

0.001
0.004

0.003
0.003

−0.001
0
0

−0.001
−0.002

−0.001
−0.001

0
0

0.001

0.001
0.002

0.002
0

0
0.001
0.002

0.002
0.005

0.003
0.002

−0.001
0

0.001

0
0

0.001
−0.001

0
0

−0.001

0
−0.001

0
−0.002

−0.001
0
0

0
0.002

0.003
−0.001

0.001
−0.001

0

0.001
0

−0.001
0.001

−0.002
0
0

−0.001
0.004

0.004
−0.003

0.001
0.002
−0.002

0.002
−0.004

−0.003
0.002

−0.001
0.002
−0.001

0
−0.002

−0.001
0.001

0
−0.001
0.001

0
0.001

0
0

0
0
0

0
0

−0.001
0.001

0
0.001
−0.001

0
−0.001

−0.001
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0

−0.001

0.001
−0.001

−0.002
0.001

0.002
0.001
0.002

0.001
0.002

0.001
0.001

0.001
0
0

0
0

−0.001
0.001

−0.001
−0.001

0

0.001
−0.001

−0.001
0

0
0.001
−0.001

0
−0.001

−0.001
0

0
0.002
−0.001

0
0

0
0.001

−0.001
0

−0.001

0
−0.001

−0.001
0

0
0
0

0
0

0
0

0
0

−0.001

0
0

−0.001
0.001

−0.001
0

−0.001

0
0

0
0.001

−0.003
0.003

0

0.001
0

0.001
−0.003

0.001
−0.001

0

0.001
0

−0.001
0.001

0
0

−0.001

0
−0.001

−0.001
0.001

−0.002
0.001
−0.001

0
0

0
−0.002

0.001
0

−0.001

0
−0.001

−0.001
0.002

0
0
0

0.001
−0.001

−0.001
0

0
0.002
−0.001

0
0

−0.001
0.001

−0.002
−0.001
−0.001

−0.001
0.001

0
0.001

0.001
0.003

0

0.001
−0.005

−0.001
−0.005

0.002
−0.005
0.005

0.001
0.001

0.002
0.006

0.002
−0.002
0.003

0.002
0

0.001
0.003

−0.001
0

−0.001

−0.001
0

0
0

0
−0.001

0

0
0.001

0
0.001

0.001
−0.002
0.001

0
0

0.001
0.002

0
−0.001

0

0
0

0
0

0
−0.001

0

0
0

0
0

−0.002
−0.002
−0.002

−0.001
0.001

−0.002
0.003

0
0

0.001

0
0.001

0.001
0.001

−0.001
−0.002
−0.001

−0.001
0.001

−0.001
0.001

−0.002
0.001
−0.001

0
0

−0.001
0

0.001
−0.001
0.001

0.001
0

0
0.001

0.001
−0.002
0.002

0.001
0

0.001
0.001

0
−0.001
0.001

0
0

0
0.001

0
0
0

0
0

0
0

0
−0.002
0.001

0
0.001

0
0.001

0.001
−0.002
0.001

0
0

0
0.001

0.003
0.001
0.003

0.003
−0.002

0.002
−0.002

−0.001
−0.002
−0.001

−0.001
0.002

0
0.001

0
−0.002
0.001

0
0

0
0.001

0.001
−0.001
0.002

0.001
−0.003

0
−0.002

0
−0.003
0.001

0
0.001

0
0.002

−0.001
0

−0.001

0
0.001

0
0.001

0.001
−0.002
0.001

0
0.001

0.001
0.001

0.001
−0.001

0

0
−0.001

−0.001
−0.001

−0.001
−0.002
0.001

0
0

−0.001
0.005

−0.003
0.009
−0.002

0.003
0.005

0.006
−0.004

−0.002
0.005
−0.001

0.002
0.004

0.004
−0.001

0.001
−0.002

0

−0.001
−0.002

−0.002
0

0
0.001

0

0
0.001

0.001
−0.001

−0.001
0.003

0

0.001
0.002

0.002
−0.001

0
0.001

0

0
0

0
0

−0.001
0.001

0

0
0

0
0

0.001
0

−0.001

0
−0.002

−0.002
−0.003

0.001
−0.001

0

−0.001
−0.001

−0.001
−0.001

0.001
0

−0.001

0
−0.001

−0.001
−0.002

0.001
−0.002

0

0
0

−0.001
0

−0.001
0.003

0

0.001
0.002

0.002
0

−0.002
0.004

0

0.001
0.002

0.003
0

0
0.001

0

0
0.002

0.001
0

0
0
0

0
0

0
0

−0.001
0.002
0.001

0.001
0

0.001
−0.001

−0.001
0.002
0.001

0.001
0.001

0.002
−0.001

−0.003
0.003

0

0.003
0.008

0.007
0.005

0.001
0
0

0
−0.001

−0.001
−0.002

−0.001
0.003

0

0.001
0.002

0.002
0

−0.002
0.003

0

0.001
0.005

0.004
0.005

0
0.003

0

0.001
0.001

0.001
−0.002

0.001
0
0

0
−0.001

−0.001
−0.001

−0.001
0.004

0

0.001
0.001

0.002
−0.001

0.001
0

0.001

0.001
0.001

0
0.001

0
−0.001

0

−0.001
−0.002

0
−0.002

−0.007
0.005
−0.003

−0.001
0.001

0
0

−0.004
0.002
−0.002

−0.001
0

0
−0.001

0.001
−0.001
0.001

0
0

0
0

−0.001
0.001

0

0
0

0
0

−0.002
0.001
−0.001

−0.001
0

0
0

−0.001
0
0

0
0

−0.001
0

−0.002
0
0

0
0

−0.001
0

0.002
−0.002
−0.001

−0.001
0.001

−0.001
0.001

0.002
0.001
0.002

0.002
0.001

−0.001
0.001

0.001
0
0

0
0.001

0
0.001

0.002
0
0

0
−0.001

0
0

−0.002
0.001
−0.001

−0.001
0

0
0

−0.003
0.002
−0.001

−0.001
0

0
0

−0.001
0.001
−0.001

−0.001
0

0
0

0
0
0

0
0

0
0

−0.002
0.001

0

0
0

−0.001
0

−0.002
0.001
−0.001

0
0

−0.001
0

−0.002
0.001
−0.002

−0.004
−0.006

−0.002
−0.004

0.001
0
0

0.001
0.001

0
0.001

−0.002
0.001
−0.001

0
−0.001

−0.001
−0.001

−0.003
0.001
−0.001

−0.002
−0.002

−0.001
−0.002

−0.001
0.001

0

0.001
0

0
0

0.001
0
0

0
0.001

0.001
0.001

−0.002
0.001
−0.001

−0.001
0.001

0
0.001

0.001
−0.002
−0.001

−0.001
−0.001

−0.001
0.001

−0.001
0.005
0.001

0
−0.003

−0.002
−0.006

0.001
−0.007
0.004

0.007
0.007

0.007
0.006

0
−0.002
0.003

0.005
0.005

0.005
0.003

0
0

−0.001

−0.001
−0.002

−0.002
0

0
−0.002

0

0.001
0.001

0.001
0.002

0
−0.002
0.001

0.002
0.003

0.003
0.002

0
0
0

0.001
0

0
0.001

0
−0.001

0

0.001
0.001

0.001
0.001

0
0

−0.002

−0.001
0.002

0.002
0.003

0.001
−0.001

0

−0.001
−0.003

−0.003
−0.001

0
−0.001
−0.001

−0.001
0

0
0.001

−0.001
0.001

0

0
0.001

0.001
0

0
−0.001
0.001

0.002
0.002

0.002
0.001

0.001
−0.002
0.002

0.002
0.001

0.001
0.001

−0.001
0

0.001

0.002
0.003

0.003
0.002

0
0
0

0
0

0
0

0
−0.001

0

0.001
0.001

0.001
0.002

0
−0.001
0.001

0.002
0.001

0.001
0.002

−0.001
0.004
0.006

0.006
0.007

0.006
−0.002

0.001
−0.002
−0.001

−0.001
−0.001

0
0.001

0
−0.001
0.001

0.002
0.002

0.002
0.002

−0.001
0.001
0.003

0.003
0.002

0.002
0

0.001
−0.003

0

0.001
0.001

0.001
0.003

0
0
0

0
0

0.001
0.001

0
−0.002
0.001

0.002
0.001

0.001
0.001

0.002
0.001

0

0
0

0.001
0.002

−0.002
−0.001

0

0
−0.001

−0.001
−0.007

0.003
−0.002
−0.003

−0.001
0

−0.001
0.002

0
−0.001
−0.001

0
0

−0.001
0

0
0.001
0.001

0
0

0
0.001

0.001
0
0

0
0

0
0.001

0
0
0

0
0

0
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0.001

0.002
−0.001
−0.001

−0.001
−0.001

0
0.003

0.001
0.001

0

−0.001
0.001

0.001
0.001

0.001
0.001

0

0
0

0.001
0.002

0
0
0

0.001
−0.001

−0.001
0

0
0
0

0
0

−0.001
0.001

0
0
0

−0.001
0

0
0

0
0
0

0.001
−0.001

−0.001
0.001

0
0
0

0
0

0
0

0.001
0.001

0

0.001
0

0
0.001

0.001
0
0

0
0

0
0.001

−0.003
−0.003
−0.002

−0.003
−0.004

−0.006
−0.01

0.002
0.001

0

0
0

0.001
0.002

0.001
0
0

0
0

−0.001
0

−0.001
−0.001

0

0
0

−0.003
−0.005

0.002
0
0

0
0

0
0.002

0.001
0.001
0.001

0
0

0
0.001

0.001
0
0

−0.001
0

0
0.001

0.002
0

0.001

0
0.001

0.001
0.001

−0.001
0.001
−0.001

0.002
−0.002

0.001
−0.002

−0.006
−0.003

0

−0.006
−0.001

−0.004
−0.002

−0.004
−0.002

0

−0.003
−0.001

−0.003
−0.002

0.001
0
0

0.001
0.001

0.001
0.001

−0.001
−0.001

0

−0.001
0

−0.001
0

−0.002
−0.001

0

−0.002
−0.001

−0.001
−0.001

−0.001
0
0

0
−0.001

0
−0.001

−0.002
0
0

0
−0.001

0
−0.001

0
−0.002
−0.001

−0.002
0

0
0.001

0.001
0.002
0.002

0.002
0.001

0.002
0.002

0.001
−0.001

0

−0.001
0

0
0.001

0.001
0
0

0
0.001

0
0

−0.002
−0.001

0

−0.001
−0.001

−0.001
−0.001

−0.002
−0.001

0

−0.002
−0.001

−0.001
−0.002

−0.002
0
0

−0.001
0

−0.001
−0.001

0
0
0

0
0

0
0

−0.002
0
0

−0.001
−0.001

−0.001
−0.001

−0.002
0
0

−0.001
−0.001

−0.001
−0.001

−0.003
0

−0.001

0
−0.006

−0.005
−0.007

0.001
−0.001
0.001

0
0.001

0
0.001

−0.002
−0.001

0

−0.002
−0.001

−0.001
−0.002

−0.003
0

−0.001

−0.002
−0.003

−0.001
−0.005

−0.001
−0.001

0

−0.002
0

−0.001
−0.001

0.001
0
0

0
0.001

0
0.001

−0.002
−0.002

0

−0.002
−0.001

−0.001
−0.001

AD_CerebralpeduncleL
AD_CerebralpeduncleR

AD_InferiorcerebellarpeduncleL
AD_InferiorcerebellarpeduncleR

AD_Middlecerebellarpeduncle
AD_SuperiorcerebellarpeduncleL
AD_SuperiorcerebellarpeduncleR

ak_CerebralpeduncleL
ak_CerebralpeduncleR

ak_InferiorcerebellarpeduncleL
ak_InferiorcerebellarpeduncleR

ak_Middlecerebellarpeduncle
ak_SuperiorcerebellarpeduncleL
ak_SuperiorcerebellarpeduncleR

awf_CerebralpeduncleL
awf_CerebralpeduncleR

awf_InferiorcerebellarpeduncleL
awf_InferiorcerebellarpeduncleR

awf_Middlecerebellarpeduncle
awf_SuperiorcerebellarpeduncleL
awf_SuperiorcerebellarpeduncleR

Dax_extra_CerebralpeduncleL
Dax_extra_CerebralpeduncleR

Dax_extra_InferiorcerebellarpeduncleL
Dax_extra_InferiorcerebellarpeduncleR

Dax_extra_Middlecerebellarpeduncle
Dax_extra_SuperiorcerebellarpeduncleL
Dax_extra_SuperiorcerebellarpeduncleR

Dax_intra_CerebralpeduncleL
Dax_intra_CerebralpeduncleR

Dax_intra_InferiorcerebellarpeduncleL
Dax_intra_InferiorcerebellarpeduncleR

Dax_intra_Middlecerebellarpeduncle
Dax_intra_SuperiorcerebellarpeduncleL
Dax_intra_SuperiorcerebellarpeduncleR

FA_CerebralpeduncleL
FA_CerebralpeduncleR

FA_InferiorcerebellarpeduncleL
FA_InferiorcerebellarpeduncleR

FA_Middlecerebellarpeduncle
FA_SuperiorcerebellarpeduncleL
FA_SuperiorcerebellarpeduncleR

MD_CerebralpeduncleL
MD_CerebralpeduncleR

MD_InferiorcerebellarpeduncleL
MD_InferiorcerebellarpeduncleR

MD_Middlecerebellarpeduncle
MD_SuperiorcerebellarpeduncleL
MD_SuperiorcerebellarpeduncleR

micro_ADC_CerebralpeduncleL
micro_ADC_CerebralpeduncleR

micro_ADC_InferiorcerebellarpeduncleL
micro_ADC_InferiorcerebellarpeduncleR

micro_ADC_Middlecerebellarpeduncle
micro_ADC_SuperiorcerebellarpeduncleL
micro_ADC_SuperiorcerebellarpeduncleR

micro_Ax_CerebralpeduncleL
micro_Ax_CerebralpeduncleR

micro_Ax_InferiorcerebellarpeduncleL
micro_Ax_InferiorcerebellarpeduncleR

micro_Ax_Middlecerebellarpeduncle
micro_Ax_SuperiorcerebellarpeduncleL
micro_Ax_SuperiorcerebellarpeduncleR

micro_FA_CerebralpeduncleL
micro_FA_CerebralpeduncleR

micro_FA_InferiorcerebellarpeduncleL
micro_FA_InferiorcerebellarpeduncleR

micro_FA_Middlecerebellarpeduncle
micro_FA_SuperiorcerebellarpeduncleL
micro_FA_SuperiorcerebellarpeduncleR

micro_Rd_CerebralpeduncleL
micro_Rd_CerebralpeduncleR

micro_Rd_InferiorcerebellarpeduncleL
micro_Rd_InferiorcerebellarpeduncleR

micro_Rd_Middlecerebellarpeduncle
micro_Rd_SuperiorcerebellarpeduncleL
micro_Rd_SuperiorcerebellarpeduncleR

mk_CerebralpeduncleL
mk_CerebralpeduncleR

mk_InferiorcerebellarpeduncleL
mk_InferiorcerebellarpeduncleR

mk_Middlecerebellarpeduncle
mk_SuperiorcerebellarpeduncleL
mk_SuperiorcerebellarpeduncleR

radEAD_CerebralpeduncleL
radEAD_CerebralpeduncleR

radEAD_InferiorcerebellarpeduncleL
radEAD_InferiorcerebellarpeduncleR

radEAD_Middlecerebellarpeduncle
radEAD_SuperiorcerebellarpeduncleL
radEAD_SuperiorcerebellarpeduncleR

RD_CerebralpeduncleL
RD_CerebralpeduncleR

RD_InferiorcerebellarpeduncleL
RD_InferiorcerebellarpeduncleR

RD_Middlecerebellarpeduncle
RD_SuperiorcerebellarpeduncleL
RD_SuperiorcerebellarpeduncleR

rk_CerebralpeduncleL
rk_CerebralpeduncleR

rk_InferiorcerebellarpeduncleL
rk_InferiorcerebellarpeduncleR

rk_Middlecerebellarpeduncle
rk_SuperiorcerebellarpeduncleL
rk_SuperiorcerebellarpeduncleR

smt_fa_CerebralpeduncleL
smt_fa_CerebralpeduncleR

smt_fa_InferiorcerebellarpeduncleL
smt_fa_InferiorcerebellarpeduncleR

smt_fa_Middlecerebellarpeduncle
smt_fa_SuperiorcerebellarpeduncleL
smt_fa_SuperiorcerebellarpeduncleR

smt_long_CerebralpeduncleL
smt_long_CerebralpeduncleR

smt_long_InferiorcerebellarpeduncleL
smt_long_InferiorcerebellarpeduncleR

smt_long_Middlecerebellarpeduncle
smt_long_SuperiorcerebellarpeduncleL
smt_long_SuperiorcerebellarpeduncleR

smt_mc_diff_CerebralpeduncleL
smt_mc_diff_CerebralpeduncleR

smt_mc_diff_InferiorcerebellarpeduncleL
smt_mc_diff_InferiorcerebellarpeduncleR

smt_mc_diff_Middlecerebellarpeduncle
smt_mc_diff_SuperiorcerebellarpeduncleL
smt_mc_diff_SuperiorcerebellarpeduncleR

smt_mc_extramd_CerebralpeduncleL
smt_mc_extramd_CerebralpeduncleR

smt_mc_extramd_InferiorcerebellarpeduncleL
smt_mc_extramd_InferiorcerebellarpeduncleR

smt_mc_extramd_Middlecerebellarpeduncle
smt_mc_extramd_SuperiorcerebellarpeduncleL
smt_mc_extramd_SuperiorcerebellarpeduncleR

smt_mc_extratrans_CerebralpeduncleL
smt_mc_extratrans_CerebralpeduncleR

smt_mc_extratrans_InferiorcerebellarpeduncleL
smt_mc_extratrans_InferiorcerebellarpeduncleR

smt_mc_extratrans_Middlecerebellarpeduncle
smt_mc_extratrans_SuperiorcerebellarpeduncleL
smt_mc_extratrans_SuperiorcerebellarpeduncleR

smt_mc_intra_CerebralpeduncleL
smt_mc_intra_CerebralpeduncleR

smt_mc_intra_InferiorcerebellarpeduncleL
smt_mc_intra_InferiorcerebellarpeduncleR

smt_mc_intra_Middlecerebellarpeduncle
smt_mc_intra_SuperiorcerebellarpeduncleL
smt_mc_intra_SuperiorcerebellarpeduncleR

smt_md_CerebralpeduncleL
smt_md_CerebralpeduncleR

smt_md_InferiorcerebellarpeduncleL
smt_md_InferiorcerebellarpeduncleR

smt_md_Middlecerebellarpeduncle
smt_md_SuperiorcerebellarpeduncleL
smt_md_SuperiorcerebellarpeduncleR

smt_trans_CerebralpeduncleL
smt_trans_CerebralpeduncleR

smt_trans_InferiorcerebellarpeduncleL
smt_trans_InferiorcerebellarpeduncleR

smt_trans_Middlecerebellarpeduncle
smt_trans_SuperiorcerebellarpeduncleL
smt_trans_SuperiorcerebellarpeduncleR

v_csf_CerebralpeduncleL
v_csf_CerebralpeduncleR

v_csf_InferiorcerebellarpeduncleL
v_csf_InferiorcerebellarpeduncleR

v_csf_Middlecerebellarpeduncle
v_csf_SuperiorcerebellarpeduncleL
v_csf_SuperiorcerebellarpeduncleR

v_extra_CerebralpeduncleL
v_extra_CerebralpeduncleR

v_extra_InferiorcerebellarpeduncleL
v_extra_InferiorcerebellarpeduncleR

v_extra_Middlecerebellarpeduncle
v_extra_SuperiorcerebellarpeduncleL
v_extra_SuperiorcerebellarpeduncleR

v_intra_CerebralpeduncleL
v_intra_CerebralpeduncleR

v_intra_InferiorcerebellarpeduncleL
v_intra_InferiorcerebellarpeduncleR

v_intra_Middlecerebellarpeduncle
v_intra_SuperiorcerebellarpeduncleL
v_intra_SuperiorcerebellarpeduncleR

AD ADHD ANX ASD BIP MDD OCD SCZ

b
0

−0.001
−0.001

−0.002
−0.001

−0.002
−0.001

0
0

0.001

0.004
0

0.007
0.004

0.003
0.002
0.002

0.002
0.006

−0.004
0.001

0.002
0.002
0.002

0.003
0.004

−0.001
0.002

0
0

−0.001

−0.001
−0.002

0
−0.001

0.001
0.001
0.001

0
0.001

−0.001
0

0.001
0.001
0.001

0.001
0.002

−0.001
0.001

0.001
0.001
0.001

0.001
0

0
0.001

0.001
0.001
0.001

0
0

−0.001
0

0
0

0.001

−0.002
0.001

−0.002
−0.002

0
−0.003
−0.003

−0.001
−0.002

−0.001
0

0
−0.001
−0.001

−0.002
−0.001

−0.002
−0.001

−0.001
0.001
0.001

−0.001
−0.001

0
−0.001

0.001
0.001
0.001

0.001
0.002

−0.001
0.001

0.002
0.001
0.001

0.003
0.003

0
0.002

0.001
0.002
0.002

0
0.001

−0.001
0

0
0
0

0
0

0
0

0.001
0.001
0.001

0
0.001

−0.001
0

0.001
0.001
0.001

0.001
0.001

−0.001
0.001

0
0.003
0.004

0.008
0.006

0.009
0.006

0
−0.001
−0.001

−0.002
−0.001

−0.002
−0.001

0.002
0.002
0.001

0.002
0.002

0
0.002

0.002
0.003
0.003

0.006
0.004

0.005
0.006

0.001
0.001

0

0
0

−0.002
0

0
0

0.001

−0.001
0

−0.001
−0.001

0.002
0.001
0.001

0.002
0.003

−0.001
0.001

0.001
0.001

0

0.001
0

0
0

−0.001
0.001
0.001

0.004
0.005

0.002
0.003

−0.005
−0.008
−0.004

−0.007
−0.006

−0.004
−0.003

−0.004
−0.004
−0.002

−0.005
−0.004

−0.002
−0.002

0.001
0.001
0.001

0.002
0.001

0.001
0

−0.001
−0.001

0

−0.001
−0.001

−0.001
−0.001

−0.002
−0.002
−0.001

−0.003
−0.002

−0.001
−0.001

−0.001
0
0

0
0

0
0

−0.001
−0.001

0

−0.001
−0.001

0
0

−0.001
−0.001
−0.001

−0.001
−0.002

0
−0.001

0.001
0.002
0.001

0.002
0.001

0
0.001

0
0

−0.001

0
−0.001

0
0

0.001
0.002
0.001

−0.001
0

0
0

−0.002
−0.002
−0.001

−0.002
−0.002

−0.001
−0.001

−0.002
−0.003
−0.001

−0.002
−0.002

−0.002
−0.001

−0.001
−0.001

0

−0.003
−0.002

0
0

0
0
0

0
0

0
0

−0.001
−0.002
−0.001

−0.001
−0.002

−0.001
−0.001

−0.002
−0.002
−0.001

−0.001
−0.002

−0.001
−0.001

−0.003
−0.001
0.001

−0.003
0

0.001
0.004

0
0
0

0
−0.001

0
−0.001

−0.001
−0.002
−0.001

−0.002
−0.002

−0.001
−0.001

−0.002
−0.002

0

−0.002
0

0
0.001

−0.001
−0.002
−0.001

−0.002
−0.003

−0.001
−0.001

0
0

0.001

0
0

0
0

−0.002
−0.003
−0.001

−0.002
−0.002

−0.002
−0.002

−0.001
−0.001
−0.001

0.001
0

0.001
0

0.003
0.001

0

0
0

−0.003
0.001

−0.001
0.002
0.003

−0.001
0.001

0.002
0

0.001
0.002
0.002

−0.001
0.001

0
0

−0.001
−0.001
−0.001

0.001
0

0
0

−0.001
0
0

0
0

0
0

0
0.001
0.001

−0.001
0

0
0

0
0
0

0
0

−0.001
0

−0.001
0
0

0
0

0
0

0
0.001

0

0
0

0.002
−0.001

0
−0.001
−0.001

−0.001
−0.001

0
0.001

−0.001
0
0

0
0

0.001
−0.001

−0.001
0.001

0

0
0

0.001
0

0
0.001
0.001

−0.001
0

0
0

0
0

0.001

−0.001
0

−0.001
0

0
0.001
0.001

0
0

0.001
0

0
0
0

0
0

0
0

−0.001
0
0

−0.001
0

0
0

0
0

0.001

−0.001
0

−0.001
0

0.005
0.003
0.001

−0.001
0.001

−0.004
0.001

−0.001
−0.001

0

0
0

0.001
0

0
0.001
0.001

−0.001
0

−0.001
0

0.002
0.001
0.001

−0.001
0

−0.003
0

−0.001
0

0.001

0
0

0
0

0
0

−0.001

0
0.001

0.001
−0.001

0.001
0
0

−0.001
0

−0.001
−0.001

0.001
0.001

0

−0.001
−0.001

0
0

−0.002
−0.001

0

−0.004
−0.002

0
−0.002

0.001
−0.003
0.002

0.007
0.006

0
0.001

0
−0.002
0.001

0.004
0.004

0
0

0
0.001

0

−0.002
−0.001

0
0

0
0
0

0.001
0.001

0
0

0
0

0.001

0.002
0.002

0
0

0
0
0

0
0

0
0

0
0
0

0
0.001

0
0

0.001
0
0

−0.001
−0.001

−0.001
0.002

−0.001
0
0

−0.001
−0.001

0
0

0.001
0
0

0
0

0
0

0.001
0.001
0.001

−0.001
−0.001

−0.001
0

0
0

0.001

0.002
0.002

0
0

−0.001
−0.001

0

0.003
0.003

0.001
−0.001

0.001
0

0.001

0.002
0.001

−0.001
0

0
0
0

0
0

0
0

0.001
0

0.001

0.001
0.001

0
−0.001

0
0

0.001

0.001
0.002

0
−0.001

−0.003
−0.003
0.001

0.003
0.002

0
−0.002

0.001
0.001

0

0
0

0
0

0
0
0

0.002
0.002

0
−0.001

−0.001
−0.002

0

0.002
0.002

0
−0.003

0.001
0.001
0.001

0.001
0.002

0
0

0.001
0
0

0
0

0
0.002

0
0
0

0.002
0.003

0
0

0.001
0.001

0

0
0

0
0

−0.002
−0.001
0.001

−0.001
0

−0.002
−0.002

0.002
−0.002
−0.003

0
0.001

0.004
0.001

0
−0.002
−0.001

0
0

0.002
0

0
0.001

0

0
0

0
0

0.001
0
0

0
0

0.001
0.001

0
−0.001
−0.001

0
0

0.001
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0.001
0

0.001
0.002
0.001

−0.001
−0.001

0.002
0.002

0
0
0

0
−0.001

0
0.001

0
0.001

0

0
0

0.001
0.001

0.001
0.001

0

0
0

−0.001
0

0
−0.001
−0.001

0
0

0.001
0

0
−0.001
−0.001

0
0

0.002
0

0.001
0
0

0
0

0
0

0
0
0

0
0

0
0

0.001
0
0

0
0

0.001
0.001

0
0
0

0
0

0.001
0.001

−0.003
−0.003
−0.002

0
0

−0.002
−0.004

0.001
0.001

0

0
0

0.001
0.001

0
0

−0.001

−0.001
0

0.001
0

−0.002
−0.001
−0.001

−0.001
0

−0.001
−0.003

0.001
0
0

0
0

0.002
0.001

0
0.001

0

0
0

0
0.001

0.001
0

−0.001

0
0

0.002
0.001

0
0

−0.001

−0.002
−0.001

0
0

0
−0.001

0

0
−0.002

−0.003
−0.002

0.003
0.007
0.008

0.006
0.005

0.005
0.002

0.002
0.004
0.005

0.005
0.003

0.003
0.001

0
−0.001
−0.001

−0.002
−0.001

−0.001
0

0
0.001
0.001

0
0.001

0.001
0

0.001
0.002
0.002

0.002
0.001

0.002
0.001

0
0.001

0

0
0

0
0

0
0.001
0.001

0
0

0
0

0
−0.001
−0.003

−0.001
0.002

0.003
0.001

−0.001
−0.001

0

−0.003
−0.003

−0.001
0

0
−0.001
−0.001

−0.002
−0.001

0.001
0

0
0

−0.001

0.001
0.002

0
0

0.001
0.002
0.002

0.002
0.001

0.001
0.001

0
0.002
0.003

0.001
0

0.001
0

0.001
0.001
0.001

0.003
0.002

0.001
0.001

0
0
0

0
0

0
0

0.001
0.001
0.001

0
0

0.001
0.001

0.001
0.001
0.001

0
0.001

0.001
0

0.002
0.002
0.005

0.007
0.003

−0.003
−0.001

0
0

−0.001

−0.001
0

0.001
0

0
0.002
0.002

0.001
0.001

0.001
0

0.001
0.002
0.003

0.004
0.001

−0.002
−0.001

0
0.001
0.001

0
0.001

0.001
0.001

0
0
0

0
0.001

0.001
0

0
0.002
0.002

0.001
0

0.001
0

0
0.001

0

0
0

0.002
0

0
0

0.001

−0.001
0

−0.006
−0.004

0
−0.004
−0.002

0.001
0

0.002
0.005

0.001
−0.002

0

0
0

0
0.003

0
0.001

0

0
0

0.001
0

0.001
0
0

0
0

0.001
0.001

0.001
0
0

0
0

0.001
0.002

0.001
0

0.001

0
0

0
0

0.001
0

0.001

0
0

0
0.001

0.001
0
0

−0.001
−0.001

0.002
0.001

0
0

−0.001

0
0.001

0.001
0.001

0
0
0

0
0

0.002
0

0
0.001
0.002

0
−0.001

0
0

0.001
0
0

0
0

0
0.001

0
−0.001
−0.001

0
0.001

0
0.001

0.001
0

0.001

−0.001
−0.001

0
0.002

0
0
0

0
0

0
0

0.001
0

0.001

0
0

0.001
0.001

0.001
0

0.001

0
0

0.001
0.001

0
−0.002

0

−0.001
−0.001

−0.009
−0.004

0
0
0

0
0

0.002
0.001

0.001
0
0

0
0

−0.001
0.001

0.001
−0.001

0

−0.001
−0.001

−0.006
−0.002

0.001
0
0

0
0

0.002
0.002

0
0
0

0
0

0.001
0

0.001
−0.001
−0.001

0
0

0.001
0.001

0.001
0.001
0.001

0.001
0.001

0.002
0.001

−0.003
−0.002
−0.001

−0.002
−0.001

−0.006
−0.004

0.004
0.003
−0.001

0.001
−0.001

0.004
0.001

0.001
0.001
−0.001

0
−0.001

0.001
0

0
0

0.001

0
0

0
0

0.001
0.001

0

0
0

0.001
0

0.001
0.001

0

0
0

0.001
0

0
0
0

0
0

0
0

0.001
0.001
0.001

0
0

0
0

0.001
0.001
0.001

0.002
0.002

0.003
0.002

0
0

−0.001

−0.001
−0.001

0
0.001

0
0.001

0

0.001
0.001

0.002
0.001

0
0

0.001

0
0

0
0

0.001
0.001

0

0
0

0
0

0
0.001
−0.001

0
0

0
0

0.001
0.001
0.001

0
0

0
0

0
0
0

0
0

0
0

0.001
0.001

0

0
0

0.001
0

0.001
0.001

0

0
0

0
0

−0.003
−0.002

0

−0.001
−0.001

−0.007
−0.005

0.001
0.001

0

0.001
0

0.002
0.001

0.001
0.001

0

0
0

−0.001
−0.001

−0.001
0
0

−0.001
0

−0.005
−0.004

0.001
0.002

0

0
0

0.001
0

0.001
0
0

0
0

0.001
0.001

0.001
0.001

0

0.001
0

0.001
0

AD_CerebralpeduncleL
AD_CerebralpeduncleR

AD_InferiorcerebellarpeduncleL
AD_InferiorcerebellarpeduncleR

AD_Middlecerebellarpeduncle
AD_SuperiorcerebellarpeduncleL
AD_SuperiorcerebellarpeduncleR

ak_CerebralpeduncleL
ak_CerebralpeduncleR

ak_InferiorcerebellarpeduncleL
ak_InferiorcerebellarpeduncleR

ak_Middlecerebellarpeduncle
ak_SuperiorcerebellarpeduncleL
ak_SuperiorcerebellarpeduncleR

awf_CerebralpeduncleL
awf_CerebralpeduncleR

awf_InferiorcerebellarpeduncleL
awf_InferiorcerebellarpeduncleR

awf_Middlecerebellarpeduncle
awf_SuperiorcerebellarpeduncleL
awf_SuperiorcerebellarpeduncleR

Dax_extra_CerebralpeduncleL
Dax_extra_CerebralpeduncleR

Dax_extra_InferiorcerebellarpeduncleL
Dax_extra_InferiorcerebellarpeduncleR

Dax_extra_Middlecerebellarpeduncle
Dax_extra_SuperiorcerebellarpeduncleL
Dax_extra_SuperiorcerebellarpeduncleR

Dax_intra_CerebralpeduncleL
Dax_intra_CerebralpeduncleR

Dax_intra_InferiorcerebellarpeduncleL
Dax_intra_InferiorcerebellarpeduncleR

Dax_intra_Middlecerebellarpeduncle
Dax_intra_SuperiorcerebellarpeduncleL
Dax_intra_SuperiorcerebellarpeduncleR

FA_CerebralpeduncleL
FA_CerebralpeduncleR

FA_InferiorcerebellarpeduncleL
FA_InferiorcerebellarpeduncleR

FA_Middlecerebellarpeduncle
FA_SuperiorcerebellarpeduncleL
FA_SuperiorcerebellarpeduncleR

MD_CerebralpeduncleL
MD_CerebralpeduncleR

MD_InferiorcerebellarpeduncleL
MD_InferiorcerebellarpeduncleR

MD_Middlecerebellarpeduncle
MD_SuperiorcerebellarpeduncleL
MD_SuperiorcerebellarpeduncleR

micro_ADC_CerebralpeduncleL
micro_ADC_CerebralpeduncleR

micro_ADC_InferiorcerebellarpeduncleL
micro_ADC_InferiorcerebellarpeduncleR

micro_ADC_Middlecerebellarpeduncle
micro_ADC_SuperiorcerebellarpeduncleL
micro_ADC_SuperiorcerebellarpeduncleR

micro_Ax_CerebralpeduncleL
micro_Ax_CerebralpeduncleR

micro_Ax_InferiorcerebellarpeduncleL
micro_Ax_InferiorcerebellarpeduncleR

micro_Ax_Middlecerebellarpeduncle
micro_Ax_SuperiorcerebellarpeduncleL
micro_Ax_SuperiorcerebellarpeduncleR

micro_FA_CerebralpeduncleL
micro_FA_CerebralpeduncleR

micro_FA_InferiorcerebellarpeduncleL
micro_FA_InferiorcerebellarpeduncleR

micro_FA_Middlecerebellarpeduncle
micro_FA_SuperiorcerebellarpeduncleL
micro_FA_SuperiorcerebellarpeduncleR

micro_Rd_CerebralpeduncleL
micro_Rd_CerebralpeduncleR

micro_Rd_InferiorcerebellarpeduncleL
micro_Rd_InferiorcerebellarpeduncleR

micro_Rd_Middlecerebellarpeduncle
micro_Rd_SuperiorcerebellarpeduncleL
micro_Rd_SuperiorcerebellarpeduncleR

mk_CerebralpeduncleL
mk_CerebralpeduncleR

mk_InferiorcerebellarpeduncleL
mk_InferiorcerebellarpeduncleR

mk_Middlecerebellarpeduncle
mk_SuperiorcerebellarpeduncleL
mk_SuperiorcerebellarpeduncleR

radEAD_CerebralpeduncleL
radEAD_CerebralpeduncleR

radEAD_InferiorcerebellarpeduncleL
radEAD_InferiorcerebellarpeduncleR

radEAD_Middlecerebellarpeduncle
radEAD_SuperiorcerebellarpeduncleL
radEAD_SuperiorcerebellarpeduncleR

RD_CerebralpeduncleL
RD_CerebralpeduncleR

RD_InferiorcerebellarpeduncleL
RD_InferiorcerebellarpeduncleR

RD_Middlecerebellarpeduncle
RD_SuperiorcerebellarpeduncleL
RD_SuperiorcerebellarpeduncleR

rk_CerebralpeduncleL
rk_CerebralpeduncleR

rk_InferiorcerebellarpeduncleL
rk_InferiorcerebellarpeduncleR

rk_Middlecerebellarpeduncle
rk_SuperiorcerebellarpeduncleL
rk_SuperiorcerebellarpeduncleR

smt_fa_CerebralpeduncleL
smt_fa_CerebralpeduncleR

smt_fa_InferiorcerebellarpeduncleL
smt_fa_InferiorcerebellarpeduncleR

smt_fa_Middlecerebellarpeduncle
smt_fa_SuperiorcerebellarpeduncleL
smt_fa_SuperiorcerebellarpeduncleR

smt_long_CerebralpeduncleL
smt_long_CerebralpeduncleR

smt_long_InferiorcerebellarpeduncleL
smt_long_InferiorcerebellarpeduncleR

smt_long_Middlecerebellarpeduncle
smt_long_SuperiorcerebellarpeduncleL
smt_long_SuperiorcerebellarpeduncleR

smt_mc_diff_CerebralpeduncleL
smt_mc_diff_CerebralpeduncleR

smt_mc_diff_InferiorcerebellarpeduncleL
smt_mc_diff_InferiorcerebellarpeduncleR

smt_mc_diff_Middlecerebellarpeduncle
smt_mc_diff_SuperiorcerebellarpeduncleL
smt_mc_diff_SuperiorcerebellarpeduncleR

smt_mc_extramd_CerebralpeduncleL
smt_mc_extramd_CerebralpeduncleR

smt_mc_extramd_InferiorcerebellarpeduncleL
smt_mc_extramd_InferiorcerebellarpeduncleR

smt_mc_extramd_Middlecerebellarpeduncle
smt_mc_extramd_SuperiorcerebellarpeduncleL
smt_mc_extramd_SuperiorcerebellarpeduncleR

smt_mc_extratrans_CerebralpeduncleL
smt_mc_extratrans_CerebralpeduncleR

smt_mc_extratrans_InferiorcerebellarpeduncleL
smt_mc_extratrans_InferiorcerebellarpeduncleR

smt_mc_extratrans_Middlecerebellarpeduncle
smt_mc_extratrans_SuperiorcerebellarpeduncleL
smt_mc_extratrans_SuperiorcerebellarpeduncleR

smt_mc_intra_CerebralpeduncleL
smt_mc_intra_CerebralpeduncleR

smt_mc_intra_InferiorcerebellarpeduncleL
smt_mc_intra_InferiorcerebellarpeduncleR

smt_mc_intra_Middlecerebellarpeduncle
smt_mc_intra_SuperiorcerebellarpeduncleL
smt_mc_intra_SuperiorcerebellarpeduncleR

smt_md_CerebralpeduncleL
smt_md_CerebralpeduncleR

smt_md_InferiorcerebellarpeduncleL
smt_md_InferiorcerebellarpeduncleR

smt_md_Middlecerebellarpeduncle
smt_md_SuperiorcerebellarpeduncleL
smt_md_SuperiorcerebellarpeduncleR

smt_trans_CerebralpeduncleL
smt_trans_CerebralpeduncleR

smt_trans_InferiorcerebellarpeduncleL
smt_trans_InferiorcerebellarpeduncleR

smt_trans_Middlecerebellarpeduncle
smt_trans_SuperiorcerebellarpeduncleL
smt_trans_SuperiorcerebellarpeduncleR

v_csf_CerebralpeduncleL
v_csf_CerebralpeduncleR

v_csf_InferiorcerebellarpeduncleL
v_csf_InferiorcerebellarpeduncleR

v_csf_Middlecerebellarpeduncle
v_csf_SuperiorcerebellarpeduncleL
v_csf_SuperiorcerebellarpeduncleR

v_extra_CerebralpeduncleL
v_extra_CerebralpeduncleR

v_extra_InferiorcerebellarpeduncleL
v_extra_InferiorcerebellarpeduncleR

v_extra_Middlecerebellarpeduncle
v_extra_SuperiorcerebellarpeduncleL
v_extra_SuperiorcerebellarpeduncleR

v_intra_CerebralpeduncleL
v_intra_CerebralpeduncleR

v_intra_InferiorcerebellarpeduncleL
v_intra_InferiorcerebellarpeduncleR

v_intra_Middlecerebellarpeduncle
v_intra_SuperiorcerebellarpeduncleL
v_intra_SuperiorcerebellarpeduncleR

AD ADHD ANX ASD BIP MDD OCD SCZ

c
0
0
0

0
0

0.001
0.001

0
0
0

0.001
0.001

0
0.001

−0.002
−0.002
−0.002

−0.002
−0.002

−0.002
−0.002

0
0

0.001

−0.001
−0.001

0
−0.001

0
0
0

0.001
0.001

0
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0.001
0

0
−0.001

0

0
0

0.001
0

0.001
0
0

0
0

0.001
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
−0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0

0.001

−0.002
−0.002

−0.002
−0.002

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

−0.001
0

−0.001
−0.001

0
0
0

0
0

0
0

−0.002
−0.001

0

−0.001
0

0.001
0.003

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0
0.001
0.001

−0.001
0

0
0

−0.01
−0.009
−0.01

−0.006
−0.008

−0.007
−0.008

0.001
0.001
0.001

0
0

0.001
0.001

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0.001
0.001
0.001

0
0

0.001
0.001

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0
0
0

0
0

0
0

0
−0.001
−0.001

0
0

0
−0.001

0
0
0

0
0

0
0

−0.001
−0.001
−0.001

0
0

0
0

0
0
0

0
0

0.001
0.001

0.001
0.001

0

0
0

0.001
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0.001

0
0
0

0
0

0
0

−0.001
0

0.001

−0.001
−0.001

−0.001
−0.001

0
0

−0.001

0
0

0
0

0
0
0

0
0

0
0.001

0
0.001
0.001

0
0

0
0

0
0
0

0
0

0.001
0.001

0.002
0

−0.001

0.001
0

0.001
0.001

−0.001
0
0

−0.001
−0.001

0
−0.001

−0.001
−0.001

0

0.001
0

−0.002
0

0.008
0.007
0.005

0.004
0.005

0.006
0.006

−0.001
−0.002
−0.002

−0.001
−0.001

−0.001
−0.001

−0.001
−0.001
−0.001

−0.001
−0.001

−0.001
−0.001

−0.001
−0.001
−0.001

−0.001
−0.001

−0.001
−0.001

−0.001
−0.001
−0.001

−0.001
−0.001

−0.001
−0.001

−0.001
−0.001
−0.001

−0.001
−0.001

−0.001
−0.001

−0.001
−0.001
−0.001

−0.001
−0.001

−0.001
−0.001

−0.001
−0.001
−0.001

−0.001
−0.001

−0.001
−0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
−0.001

0.001
0
0

0.001
0

0
0.001

0
0.001
0.001

0
0

0
0

−0.001
−0.001
−0.001

0
0

0
0

−0.001
−0.001
−0.001

−0.001
−0.001

−0.001
−0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

−0.001
0
0

0
0

0
−0.001

−0.001
−0.001
−0.001

0
0

0
−0.001

−0.001
−0.002
−0.002

−0.002
−0.002

−0.002
0.001

0
0
0

0
0

0
0

−0.001
−0.001
−0.001

−0.001
−0.001

0
0

−0.001
−0.001
−0.001

−0.001
−0.001

−0.001
0.001

−0.001
0

−0.001

0
0

0
−0.001

−0.002
0
0

0
0

0
−0.001

0.001
0

0.001

0.001
0.001

0.001
0.001

0.001
0.002
0.001

0
0

0
0.002

−0.008
−0.009
−0.008

−0.005
−0.006

−0.007
−0.007

−0.001
−0.001
−0.001

0
0

−0.001
0

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0.001
0
0

0.001
0.001

0.001
0.001

0
0
0

0
0

0
0

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0
0
0

0
0

0
0

0
−0.001
−0.001

0
0

0.001
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0

−0.001

−0.001
−0.001

−0.002
0.001

0
−0.001

0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

−0.001
0.001

0
−0.001
−0.001

0
0

0
0

−0.002
−0.001

0

0
0

−0.001
0

0
0
0

0
0

0
0

0.001
0.001
0.001

0.001
0.002

0.001
0.003

−0.003
−0.003
−0.002

−0.001
−0.003

−0.002
−0.003

0.001
0.001
0.001

0.001
0.001

0
0

0
0
0

0
0

0
0

0.001
0.001
0.001

0
0

0
0

0
0.001
0.001

0.001
0

0
0

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0.001
0.001
0.001

0.001
0.001

0.001
0.001

0.001
0.001
0.001

0.001
0

0
0.001

0
0
0

−0.001
−0.001

−0.001
−0.001

0
−0.001

0

−0.001
−0.001

−0.001
−0.001

0
0
0

0
0

0
0

0
0
0

−0.001
−0.001

0
0

0
0.001
0.001

0
0

0
0

0
0.001
0.001

0.001
0.001

0.001
0.001

0
0

0.001

0
0

0
0

0
0
0

0
0

0
0

0
0.001
0.001

0
0

0
0

0
0.001
0.001

0
0

0
0

0
0.002
0.001

0.003
0.002

0.002
0.003

0
0
0

−0.001
−0.001

0
−0.001

0
0.001
0.001

0.001
0

0
0.001

0.001
0.001
0.001

0.002
0.002

0.001
0.003

0
0
0

0
0

0
0

−0.002
0

0.001

−0.001
0

0
0.003

0
0

−0.001

0
0

0
0

0
0.001
0.001

−0.001
0

0.001
0.001

−0.001
−0.001
−0.001

0
0

−0.001
−0.002

0
0.001
0.001

0
0

0.001
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0

−0.001

0
0

0
0

0
−0.001
−0.001

0
0

0
0

0
0
0

0
0

0
0

0
0

−0.001

−0.001
−0.001

0
0

0
0
0

0
0

0
0

0
0

0.001

0
0

0.001
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0.001
0.001
0.002

−0.001
−0.001

0
0.001

0
−0.001
−0.001

0
0

0
0

0
0
0

0
0

0
0

0.001
0.001
0.001

0
0

0.001
0.001

0
0
0

0
0

0
0

0.002
0
0

0
0

−0.001
−0.002

0.001
0
0

0.001
0.001

0.001
0

0
0
0

−0.001
0

0
0.001

−0.004
−0.004
−0.004

−0.003
−0.004

−0.004
−0.004

0
0
0

0
−0.001

0.001
0.001

0.001
0
0

0.001
0.001

0
0

0
0
0

0
0

0.001
0

0
0
0

0
0

0.001
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

−0.001
0

−0.001

−0.002
−0.002

−0.001
0.001

0
0
0

0
0

0
0

0
0
0

0
0

0
0

−0.001
0
0

−0.001
−0.001

−0.001
0

0
0
0

0
0

0
0

0.003
0
0

−0.001
0

0
0.003

−0.001
0
0

0
0

0
0

0
0
0

0
0

0
−0.001

0.003
0.004
0.005

0.003
0.004

0.003
0.003

0
0.001
0.002

−0.001
0

−0.001
−0.001

0
−0.001
−0.001

0
0

0
0

0
0
0

0
0

−0.001
−0.001

0
0
0

0
0

−0.001
0

0
0
0

0
0

0
−0.001

0
0
0

0
0

0
−0.001

0
0
0

0
0

−0.001
−0.001

0
0
0

0
0

0
0

0
0
0

−0.001
0

0
0

0
−0.001
−0.001

−0.001
−0.001

0
0

0
0
0

0
0

0
0

0
0

0.001

0
0

0
0

0
0

0.001

0
0

−0.001
0

0
0

0.001

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0

0
0

0.001
0

0.001

−0.001
−0.001

−0.002
−0.002

0
0
0

0
0

0
0

0
0

0.001

0
0

0
−0.001

0
0

0.001

0
0

−0.001
−0.002

0
0

0.001

0
0

0
0

−0.001
0
0

0
0

−0.001
0

AD_CerebralpeduncleL
AD_CerebralpeduncleR

AD_InferiorcerebellarpeduncleL
AD_InferiorcerebellarpeduncleR

AD_Middlecerebellarpeduncle
AD_SuperiorcerebellarpeduncleL
AD_SuperiorcerebellarpeduncleR

AK_CerebralpeduncleL
AK_CerebralpeduncleR

AK_InferiorcerebellarpeduncleL
AK_InferiorcerebellarpeduncleR

AK_Middlecerebellarpeduncle
AK_SuperiorcerebellarpeduncleL
AK_SuperiorcerebellarpeduncleR

axEAD_CerebralpeduncleL
axEAD_CerebralpeduncleR

axEAD_InferiorcerebellarpeduncleL
axEAD_InferiorcerebellarpeduncleR

axEAD_Middlecerebellarpeduncle
axEAD_SuperiorcerebellarpeduncleL
axEAD_SuperiorcerebellarpeduncleR

Dax_extra_CerebralpeduncleL
Dax_extra_CerebralpeduncleR

Dax_extra_InferiorcerebellarpeduncleL
Dax_extra_InferiorcerebellarpeduncleR

Dax_extra_Middlecerebellarpeduncle
Dax_extra_SuperiorcerebellarpeduncleL
Dax_extra_SuperiorcerebellarpeduncleR

Dax_intra_CerebralpeduncleL
Dax_intra_CerebralpeduncleR

Dax_intra_InferiorcerebellarpeduncleL
Dax_intra_InferiorcerebellarpeduncleR

Dax_intra_Middlecerebellarpeduncle
Dax_intra_SuperiorcerebellarpeduncleL
Dax_intra_SuperiorcerebellarpeduncleR

Drad_extra_CerebralpeduncleL
Drad_extra_CerebralpeduncleR

Drad_extra_InferiorcerebellarpeduncleL
Drad_extra_InferiorcerebellarpeduncleR

Drad_extra_Middlecerebellarpeduncle
Drad_extra_SuperiorcerebellarpeduncleL
Drad_extra_SuperiorcerebellarpeduncleR

FA_CerebralpeduncleL
FA_CerebralpeduncleR

FA_InferiorcerebellarpeduncleL
FA_InferiorcerebellarpeduncleR

FA_Middlecerebellarpeduncle
FA_SuperiorcerebellarpeduncleL
FA_SuperiorcerebellarpeduncleR

MD_CerebralpeduncleL
MD_CerebralpeduncleR

MD_InferiorcerebellarpeduncleL
MD_InferiorcerebellarpeduncleR

MD_Middlecerebellarpeduncle
MD_SuperiorcerebellarpeduncleL
MD_SuperiorcerebellarpeduncleR

micro_ADC_CerebralpeduncleL
micro_ADC_CerebralpeduncleR

micro_ADC_InferiorcerebellarpeduncleL
micro_ADC_InferiorcerebellarpeduncleR

micro_ADC_Middlecerebellarpeduncle
micro_ADC_SuperiorcerebellarpeduncleL
micro_ADC_SuperiorcerebellarpeduncleR

micro_Ax_CerebralpeduncleL
micro_Ax_CerebralpeduncleR

micro_Ax_InferiorcerebellarpeduncleL
micro_Ax_InferiorcerebellarpeduncleR

micro_Ax_Middlecerebellarpeduncle
micro_Ax_SuperiorcerebellarpeduncleL
micro_Ax_SuperiorcerebellarpeduncleR

micro_FA_CerebralpeduncleL
micro_FA_CerebralpeduncleR

micro_FA_InferiorcerebellarpeduncleL
micro_FA_InferiorcerebellarpeduncleR

micro_FA_Middlecerebellarpeduncle
micro_FA_SuperiorcerebellarpeduncleL
micro_FA_SuperiorcerebellarpeduncleR

micro_Rd_CerebralpeduncleL
micro_Rd_CerebralpeduncleR

micro_Rd_InferiorcerebellarpeduncleL
micro_Rd_InferiorcerebellarpeduncleR

micro_Rd_Middlecerebellarpeduncle
micro_Rd_SuperiorcerebellarpeduncleL
micro_Rd_SuperiorcerebellarpeduncleR

MK_CerebralpeduncleL
MK_CerebralpeduncleR

MK_InferiorcerebellarpeduncleL
MK_InferiorcerebellarpeduncleR

MK_Middlecerebellarpeduncle
MK_SuperiorcerebellarpeduncleL
MK_SuperiorcerebellarpeduncleR

RD_CerebralpeduncleL
RD_CerebralpeduncleR

RD_InferiorcerebellarpeduncleL
RD_InferiorcerebellarpeduncleR

RD_Middlecerebellarpeduncle
RD_SuperiorcerebellarpeduncleL
RD_SuperiorcerebellarpeduncleR

RK_CerebralpeduncleL
RK_CerebralpeduncleR

RK_InferiorcerebellarpeduncleL
RK_InferiorcerebellarpeduncleR

RK_Middlecerebellarpeduncle
RK_SuperiorcerebellarpeduncleL
RK_SuperiorcerebellarpeduncleR

smt_fa_CerebralpeduncleL
smt_fa_CerebralpeduncleR

smt_fa_InferiorcerebellarpeduncleL
smt_fa_InferiorcerebellarpeduncleR

smt_fa_Middlecerebellarpeduncle
smt_fa_SuperiorcerebellarpeduncleL
smt_fa_SuperiorcerebellarpeduncleR

smt_long_CerebralpeduncleL
smt_long_CerebralpeduncleR

smt_long_InferiorcerebellarpeduncleL
smt_long_InferiorcerebellarpeduncleR

smt_long_Middlecerebellarpeduncle
smt_long_SuperiorcerebellarpeduncleL
smt_long_SuperiorcerebellarpeduncleR

smt_mc_diff_CerebralpeduncleL
smt_mc_diff_CerebralpeduncleR

smt_mc_diff_InferiorcerebellarpeduncleL
smt_mc_diff_InferiorcerebellarpeduncleR

smt_mc_diff_Middlecerebellarpeduncle
smt_mc_diff_SuperiorcerebellarpeduncleL
smt_mc_diff_SuperiorcerebellarpeduncleR

smt_mc_extramd_CerebralpeduncleL
smt_mc_extramd_CerebralpeduncleR

smt_mc_extramd_InferiorcerebellarpeduncleL
smt_mc_extramd_InferiorcerebellarpeduncleR

smt_mc_extramd_Middlecerebellarpeduncle
smt_mc_extramd_SuperiorcerebellarpeduncleL
smt_mc_extramd_SuperiorcerebellarpeduncleR

smt_mc_extratrans_CerebralpeduncleL
smt_mc_extratrans_CerebralpeduncleR

smt_mc_extratrans_InferiorcerebellarpeduncleL
smt_mc_extratrans_InferiorcerebellarpeduncleR

smt_mc_extratrans_Middlecerebellarpeduncle
smt_mc_extratrans_SuperiorcerebellarpeduncleL
smt_mc_extratrans_SuperiorcerebellarpeduncleR

smt_mc_intra_CerebralpeduncleL
smt_mc_intra_CerebralpeduncleR

smt_mc_intra_InferiorcerebellarpeduncleL
smt_mc_intra_InferiorcerebellarpeduncleR

smt_mc_intra_Middlecerebellarpeduncle
smt_mc_intra_SuperiorcerebellarpeduncleL
smt_mc_intra_SuperiorcerebellarpeduncleR

smt_md_CerebralpeduncleL
smt_md_CerebralpeduncleR

smt_md_InferiorcerebellarpeduncleL
smt_md_InferiorcerebellarpeduncleR

smt_md_Middlecerebellarpeduncle
smt_md_SuperiorcerebellarpeduncleL
smt_md_SuperiorcerebellarpeduncleR

smt_trans_CerebralpeduncleL
smt_trans_CerebralpeduncleR

smt_trans_InferiorcerebellarpeduncleL
smt_trans_InferiorcerebellarpeduncleR

smt_trans_Middlecerebellarpeduncle
smt_trans_SuperiorcerebellarpeduncleL
smt_trans_SuperiorcerebellarpeduncleR

v_csf_CerebralpeduncleL
v_csf_CerebralpeduncleR

v_csf_InferiorcerebellarpeduncleL
v_csf_InferiorcerebellarpeduncleR

v_csf_Middlecerebellarpeduncle
v_csf_SuperiorcerebellarpeduncleL
v_csf_SuperiorcerebellarpeduncleR

v_extra_CerebralpeduncleL
v_extra_CerebralpeduncleR

v_extra_InferiorcerebellarpeduncleL
v_extra_InferiorcerebellarpeduncleR

v_extra_Middlecerebellarpeduncle
v_extra_SuperiorcerebellarpeduncleL
v_extra_SuperiorcerebellarpeduncleR

v_intra_CerebralpeduncleL
v_intra_CerebralpeduncleR

v_intra_InferiorcerebellarpeduncleL
v_intra_InferiorcerebellarpeduncleR

v_intra_Middlecerebellarpeduncle
v_intra_SuperiorcerebellarpeduncleL
v_intra_SuperiorcerebellarpeduncleR

AD ADHD ANX ASD BIP MDD OCD SCZ

d

38
|

bioR
‰

iv
Korbm

acheretal.
|

W
hite

m
atterageing

 . 
C

C
-BY 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

hich w
as not certified by peer review

)
The copyright holder for this preprint 

this version posted O
ctober 20, 2023. 

; 
https://doi.org/10.1101/2023.10.19.23297257

doi: 
m

edR
xiv preprint 

��� Paper E



C
Polygenic

R
isk

Scores

Supplementary Note 23: Regional associations between WMM change in the Fornix and PGRS
Panel (a) presents the associations between PGRS and WMM change. Panel (b) presents the regional associations between PGRS and cross-sectional regional WMM at
time point one. Panel (c) presents the cross-sectional regional WMM associations with PGRS at time point two. Panel (d) presents cross-sectional regional associations be-
tween WMM and PGRS for the validation sample. Boxes the statistical significance at an uncorrected – < 0.05. Colours indicate the association strength (standardised —-
coefficients). Note: All associations were adjusted for age, sex, the age ◊ sex interaction, and site. None of the presented associations survived the adjustment of the –-level
for multiple comparisons.
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Supplementary Note 24: Distribution of the relationship between PGRS and both the annual
rate of WMM change as well as cross-sectional WMM
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APPENDIX

� MRI pulse sequences

Pulse sequences can be categorised into two principle types: spin echo and gradient
echo, which both utilize two RF pulses to create the echo to measure signal intensity.
Spin echo sequences can produce all three mentioned contrasts (T1, T2, proton density)
at a high quality but longer acquisition times. The resulting contrasts depend on the
choice of TE and TR (short TR & TE = T1-weighted, long TR & short TE = proton
density-weighted, long TR & TE = T2-weighted, long TE & short TR do not produce
useful contrasts). Also gradient echo sequences can produce all three contrasts at
shorter times but is more susceptible to inhomogeneities in the magnetic field (in
combination with T1&T2 = T1*&T2*), and affected by TE and TR. For gradient echo
sequences TR is always short compared to spin echo sequences, and the flip angle ↵

plays a role. Lower flip angles (↵ < 40
� short) produce proton density-weighted images

when combined with a short TE and T2-weighted contrasts when combined with long
TE. Higher flip angles (↵ > 50

�) produce T1-weighted contrasts when combined with
short TE, but no useful contrast when combined with long TE [���].

� MRI advantages and safety

The possibility of fine-tuning sequences to provide detailed soft tissue contrast, makes
MRI extremely useful for detailed imaging of the brain in the clinic and research.
Moreover, no injections of contrast agents are strictly required in contrast to other
imaging techniques such as positron emission tomography, and no exposure to ionizing
radiation (as in CT) is necessary. This makes MRI a safe imaging option independent
of the target group (e.g., children, elderly, fragile health states). However, it is possible
to utilize contrast agents for MRI, mainly to emphasise or increase certain details in the
diagnostic images [���]. These contrast agents are gadolinium-based considering the
currently Food and Drug Administration (FDA) approved MRI contrast agents [���].
The only known safety restrictions to routine clinical acquisition procedures are metal
objects inside the body, such as implants, pacemakers, tattoos (less than six weeks old),
and claustrophobic anxiety [���]. Yet, there are possibilities to also facilitate scanning
when there is metal in the body [���] or even electrical devices such as pacemakers or
defilibrators [��, ���, ���].



� Utilized diffusion approaches and their scalar metrics

Diffusion Approach Metrics
Bayesian Rotationally Invariant Approach (BRIA) [���] intra-axonal axial diffusivity (DAX intra)

extra-axonal radial diffusivity (DRAD extra)
microscopic fractional anisotropy (micro FA)
extra-axonal axial diffusivity (DAX extra)
intra-axonal water fraction (V intra)
extra-axonal water fraction (V extra)
cerebrospinal fluid fraction (vCSF)
microscopical axial diffusivity (micro AX)
microscopic radial diffusivity (micro RD)
microscopical apparent diffusion coefficient (micro ADC)

Diffusion Kurtosis Imaging (DKI) [���] mean kurtosis (MK)
radial kurtosis (RK)
axial kurtosis (AK)

Diffusion Tensor Imaging (DTI) [��] fractional anisotropy (FA)
axial diffusivity (AD)
mean diffusivity (MD)
radial diffusivity (RD)

Spherical Mean Technique (SMT) [���] fractional anisotropy (SMT FA)
mean diffusivity (SMT md)
transverse diffusion coefficient (SMT trans)
longitudinal diffusion coefficient (SMT long)

Multi-compartment Spherical Mean Technique (SMTmc) [���] extra-neurite microscopic mean diffusivity (SMTmc extra md)
extra-neurite transverse microscopic diffusivity (SMTmc extra trans)
mc SMTdiffusion coefficient (SMT mcd)
intra-neurite volume fraction (SMTmc intra)

White Matter Tract Integrity (WMTI) [��] axonal water fraction (AWF)
radial extra-axonal diffusivity (radEAD)
axial extra-axonal diffusivity (axEAD)

��� Appendix



� Global TBSS test-retest reliability
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Fig. �: Global white matter metrics’ test-retest correlation with standard error. White
matter metrics were derived from different diffusion approaches in N = �,��� UK
Biobank participants which were scanned twice (including patients) with the average
inter-scan interval of �=�.�� years. Test-retest correlations were corrected for scanner
site, age, and sex.
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� Regional TBSS test-retest reliability
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Fig. �: Regional white matter metrics’ test-retest correlation with standard error. White
matter metrics were derived from different diffusion approaches in N = �,��� UK
Biobank participants which were scanned twice (including patients) with the average
inter-scan interval of �=�.�� years. Test-retest correlations were corrected for scanner
site, age, and sex.
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