
Citation: Kristensen, T.S.; Sognefest,

A.H. Can Artificial Neural Networks

Be Used to Predict Bitcoin

Data? Automation 2023, 4, 232–245.

https://doi.org/10.3390/

automation4030014

Academic Editors: Nicola Epicoco,

Raffaele Carli, Graziana Cavone and

Domenico Bianchi

Received: 8 November 2022

Revised: 9 June 2023

Accepted: 16 June 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Can Artificial Neural Networks Be Used to Predict Bitcoin Data?
Terje Solsvik Kristensen 1,* and Asgeir H. Sognefest 2

1 Department of Computing, Western Norway University of Applied Sciences, 5063 Bergen, Norway
2 Cluda AS, Jordeshagen 15, 3540 Nesbyen, Norway
* Correspondence: terje.solsvik.kristensen@hvl.no; Tel.: +47-92494247

Abstract: Financial markets are complex, evolving dynamic systems. Due to their irregularity,
financial time series forecasting is regarded as a rather challenging task. In recent years, artificial
neural network applications in finance for such tasks as pattern recognition, classification, and time
series forecasting have dramatically increased. The objective of this paper is to present this versatile
framework and attempt to use it to predict the stock return series of four public-listed companies
on the New York Stock Exchange. Our findings coincide with those of Burton Malkiel in his book,
A Random Walk Down Wall Street; no conclusive evidence is found that our proposed models can
predict the stock return series better than that of a random walk.

Keywords: trading systems; bitcoin; actor model; ANN; computational intelligence

1. Introduction

Forecasting and detecting trends in financial data are of great interest to the business
world. Stock market prediction [1–3] is an area that attracts a great deal of attention, and
there are many relevant financial instruments that can be used. A financial instrument is
a tradeable asset of any kind. This includes stocks, currencies, and cryptocurrencies. In
this paper, trading is defined as buying and selling financial instruments within a short
time frame. This time frame can vary from minutes to weeks. This is in contrast to classical
investment where it is normal to hold assets over a timespan of several years [4]. Financial
instruments are often listed and traded on exchanges. The exchange tasks are to bring
buyers and sellers of a particular financial instrument together. Examples of exchanges
are as follows: the National Association of Securities Dealers Automated Quotations
(NASDAQ) [5]; a stock exchange; XE [6], a currency exchange; and Bitstamp [7], a bitcoin
exchange. Bitcoin is the most popular cryptocurrency. A cryptocurrency is a digital currency
that is managed through cryptography. When placing orders in an exchange, traders can
place market orders or limit orders.

Market orders are executed immediately on the current market price. This price may
have changed while the trader was placing the order. Limit orders are set to a fixed buy or
sell price. This order is not executed until the market reaches this price. Even though some
financial instruments have been traded for hundreds of years, recent advances in technology
have made trading cheap and easily available to the general public. For instance, a number
of financial instruments are now available through public online exchanges. Today, a long-
term investment may provide good returns on the stock market. The idea with trading is
that by buying and selling at the right time, the returns are even higher. Every day there are
financial instruments that increase or decrease several percentages in price. By exploiting
these movements, a trader tries to earn money over a short time frame. This requires the
trader to know what financial instruments to buy and sell, and when to take action. This
is where trading systems can be used. The main objective of this paper is, therefore, to
develop a platform for testing, comparing, and running trading systems, with a focus on
how artificial neural networks (ANN) can be used to achieve this.

Automation 2023, 4, 232–245. https://doi.org/10.3390/automation4030014 https://www.mdpi.com/journal/automation

https://doi.org/10.3390/automation4030014
https://doi.org/10.3390/automation4030014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/automation
https://www.mdpi.com
https://doi.org/10.3390/automation4030014
https://www.mdpi.com/journal/automation
https://www.mdpi.com/article/10.3390/automation4030014?type=check_update&version=3

Automation 2023, 4 233

2. Problem Formulation

The main problems considered in this paper are:

• How can a platform for running and testing trading systems be implemented?
• How do trading systems, using a standard multilayer perceptron (MLP) ANN, perform

on the bitcoin market?

(a) What training data should be used (input and target output)?
(b) Is this trading system more profitable than classical trading systems on the

bitcoin market?

The reason for using bitcoin data is that the data are freely available online and
do not need comprehensive pre-processing. To answer the first question, a platform for
running, testing, and comparing trading systems is developed, using the actor model [8,9].
It runs the trading systems and gives them access to historical and live data. The platform
also includes backtesting facilities and makes the trading systems available through an
application programming interface (API).

The use of the actor model makes the platform concurrent, fault-tolerant, and scalable,
both horizontally (multiple computers) and vertically (faster computers). These properties
are needed to make the platform extensible with multiple trading systems and multiple
financial instruments.

The second question (a) is answered by developing and implementing trading systems
by using a mixture of previous research and experiments. The reason for focusing on ANNs
is that ANNs have provided good results for financial forecasting and are also the most
popular computational intelligence methods used for financial prediction [10–12]. The
answer to question (b) is that several classical trading systems are implemented, tested,
and compared with trading systems using ANN.

3. Trading the Financial Instruments

People often think that financial instrument prices are determined mainly by psychol-
ogy. A borrower uses historical quantitative data, such as price and volume, and tries to
predict what will happen in the future. In a technical analysis, a trading system essentially
tries to discover generalizations of historical data in the form of patterns and rules [13,14].

Taking a long position (also known as longing or going long) is the act of buying a
financial instrument. To make a profit, the financial instrument’s price must increase before
the position is closed. Closing a long position is the act of selling the financial instrument.
Taking a short position (also known as shorting or going short) is the act of borrowing a
financial instrument and selling it. This gives the borrower the obligation in the future to
buy the financial instrument back, and then give it back to the lender. By doing this, the
borrower’s position is closed. To make a profit on a short position, the financial instrument
should decrease in price between the time of taking the short position and closing it.

A trading system is a system or a set of rules that, with no human interaction, generates
trading signals. These trading signals determine when to take a market position and
what position to take. The trading rules have to be absolute to make the trading system
statistically testable. This makes the trading system testable on historical data. In order
to make a profit with a trading system, it needs to perform better than most other traders
since trading is a zero-sum game [15].

4. Automatic Trading

A problem with trading system signals that are not carried out automatically is human
emotions. Emotions of fear and greed could lead a human trader to not carry out the
signaled trades. This can make the trading systems useless. Therefore, a logical approach is
to leave out the human part and let a system automatically carry out the trades, by itself. To
construct such an automatic system, a trading system is not sufficient because systems for
money management, portfolio construction, and risk management are also necessary. This
is because a trading system only provides signals about when to take a market position

Automation 2023, 4 234

and what position to take. Money management is concerned with how much to buy and
sell of a particular financial instrument. Portfolio construction involves finding the right
combination of financial instruments. Risk management is a combination of trading system,
money management, and portfolio construction. This means that the trading systems and
the platform developed in this paper can be part of an automated trading system. However,
money management, portfolio construction, and a trading agent must be added to make a
complete and robust automated trading system.

5. Fees

When developing trading systems, it is important that the calculations involve bro-
kerage fees such as commission and spread. The fees vary between different financial
instruments and different exchanges. Some of the most common fees across financial
instruments are commission and spread. The commission is what a trader has to pay the
broker or the exchange for executing a transaction (buy or sell). When a transaction is
executed, both the buyer and the seller have to pay a commission.

Spread is the difference between the ask and sell price, respectively, for which a
financial instrument is bought and sold at a specific time. The spread goes to the market
maker. A market maker is an individual or company that gives an ask and a sell price to
the market. The sell price is always higher than the ask price. This means they sell and buy
financial instruments to create liquidity in the market. When there is no exact match for
an order, they can sell it. By doing this, they create a market. The market makers hope to
make money by selling the financial instruments at a marginally higher price than the buy
price and repeat this a lot of times [8]. This means that the market maker gets the difference
between the sell and ask price.

6. Backtesting

Backtesting is the process of testing a trading system based on historical data. If
a trading system is tested on live data, it would take a long time to get robust results.
Therefore, trading systems are tested on an earlier time period by simulating the earlier
period as if it was live. In this way, we can simulate a long prior time period in a shorter
time span.

7. Artificial Neural Networks
7.1. Computational Intelligence

Computational Intelligence (CI) may be defined as a sub-branch of artificial intelli-
gence. Andries P. Engelbrecht [10] defines CI as:

. . . the study of adaptive mechanisms to enable or facilitate intelligent behavior in complex
and changing environments. These mechanisms include those AI paradigms that exhibit
an ability to learn or adapt to new situations, to generalize, abstract, discover and associate

CI consists of a set of computational methodologies inspired by other fields, such as
physics, computer science, engineering, mathematics, machine learning, neural science,
and biology [11]. These methodologies try to solve unconventional computer problems,
which are problems that do not have a straightforward procedural solution.

7.2. Artificial Neural Networks

An artificial neural network, or simply neural network or ANN, is a model inspired by
the human nervous system. The human nervous system is a network of billions of neurons
(nerve cells) in the human body. Each neuron is connected to a number of other neurons
forming a very complex parallel system; the neurons interconnect and communicate by
sending chemical signals between each other. Depending on the strength of each signal, a
neuron transmits a signal if the aggregated signal from other neurons is strong enough.

The literature on ANNs is vast and there exists a wide range of different network
structures, each with its own advantages and disadvantages. The most common one is the
multilayer perceptron (MLP). Although an MLP network has a specific functional form, it is

Automation 2023, 4 235

more flexible than traditional linear models. The main advantage is that MLP networks
can approximate any non-linear continuous function [12]. A typical structure of an MLP
network is presented in Figure 1. The network consists of an input layer, a hidden layer,
and an output layer. The input layer consists of input nodes (similar to neurons in the
human nervous system) that feed the network with relevant data. These data form a linear
combination (weighted sum) and are sent to the hidden layer for activation. The weighted
sum in each hidden node is activated using a transfer function that transforms the linear
combination to fit into a pre-determined interval. The transformed sum is then weighted
and sent to output nodes in the output layer.

Automation 2022, 3, FOR PEER REVIEW 4

and biology [11]. These methodologies try to solve unconventional computer problems,
which are problems that do not have a straightforward procedural solution.

7.2. Artificial Neural Networks
An artificial neural network, or simply neural network or 𝐴𝑁𝑁, is a model inspired by

the human nervous system. The human nervous system is a network of billions of neurons
(nerve cells) in the human body. Each neuron is connected to a number of other neurons
forming a very complex parallel system; the neurons interconnect and communicate by
sending chemical signals between each other. Depending on the strength of each signal, a
neuron transmits a signal if the aggregated signal from other neurons is strong enough.

The literature on 𝐴𝑁𝑁s is vast and there exists a wide range of different network
structures, each with its own advantages and disadvantages. The most common one is the
multilayer perceptron (𝑀𝐿𝑃). Although an 𝑀𝐿𝑃 network has a specific functional form, it
is more flexible than traditional linear models. The main advantage is that 𝑀𝐿𝑃 networks
can approximate any non-linear continuous function [12]. A typical structure of an 𝑀𝐿𝑃
network is presented in Figure 1. The network consists of an input layer, a hidden layer,
and an output layer. The input layer consists of input nodes (similar to neurons in the
human nervous system) that feed the network with relevant data. These data form a linear
combination (weighted sum) and are sent to the hidden layer for activation. The weighted
sum in each hidden node is activated using a transfer function that transforms the linear
combination to fit into a pre-determined interval. The transformed sum is then weighted
and sent to output nodes in the output layer.

Figure 1. Graphical interpretation of a general three-layer perceptron where the arrows show the
way information flows through the network. The input values are transferred (weighted) through a
function, ƒ, in the hidden layer and subsequently transferred (weighted) to the output layer as the
model output.

Figure 1. Graphical interpretation of a general three-layer perceptron where the arrows show the
way information flows through the network. The input values are transferred (weighted) through a
function, ƒ, in the hidden layer and subsequently transferred (weighted) to the output layer as the
model output.

The input nodes are naturally the part where values are admitted into the model:

A =
[
a1 a2 · · · aI

]
(1)

Connections between nodes are weighted and determine the relevance of the
transfer signal from one node to another. These weights are typically randomized at the
beginning of the training period and then adjusted using appropriate methods during
training. The weights can be presented using matrix terminology. Consider an I × J
matrix for the input/hidden weights and a J × K matrix for the hidden/output weights:

Automation 2023, 4 236

WA =

φA

11 φA
12

φA
21 φA

22

· · · φA
1J

· · · φA
2J

...
...

φA
I1 φA

I2

. . .
...

· · · φA
I J

 and WB =

φB

11 φB
12

φB
21 φB

22

· · · φB
1K

· · · φB
2K

...
...

φB
J1 φB

J2

. . .
...

· · · φB
JK

 (2)

In addition, there is a bias node in the input layer and each hidden layer, which serves
as a constant in the model and its value is equal to 1 at the beginning of the training period.
The bias changes along with the weights throughout the training and corresponds to the
constant coefficient in a standard regression. The bias weights are denoted φA

0j and φB
0k for

the input and hidden layers, respectively.
The transfer function is located in each hidden node (and output node if necessary)

and is normally of sigmoid type. A sigmoid function produces an s-shaped curve and is
real-valued and differentiable, with either a non-negative or non-positive first derivative
and exactly one inflection point. There are also two asymptotes for t→ ±∞ . The logistic
function produces a value inside the interval [0, 1]. If the values used as input or desired
output are in another region, it would be more reasonable to use another transfer function,
such as the hyperbolic tangent, which produces values inside the interval [−1, 1]. The
network’s training algorithm makes use of the first derivative of the transfer function.
Because of the trivial deduction of their first derivative, the two functions mentioned above
are the most commonly used transfer functions in neural network literature [14].

The logistic function and its first derivative:

f (x) =
1

(1 + e−x)
f ′(x) = f (x)(1− f (x)) (3)

The hyperbolic tangent and its first derivative:

f (x) =
e2x − 1
e2x + 1

f ′(x) = 1− (f (x))2 (4)

Many neural network models use hard limit threshold functions that produce two or
more values, depending on the node sum. An example of this is the binary function with a
limit threshold τ. This function would yield 1 for x > τ and 0 for x ≤ τ:

The hidden nodes receive a weighted sum from the different input nodes plus the
input bias, which is put through the transfer function:

B =
[
b1 b2 · · · bJ

]
where bj = f

(
φA

0j +
I

∑
i=1

φA
ij ai

)
j = 1, 2, . . . , J (5)

The output node is the final destination of the transferred data. The output may be
linear in the sense that the weighted sum from all the hidden nodes plus the bias term is
considered the final output. Alternatively, one can use a transfer function in the output
node to produce a value inside a desired interval. The output value for output node k is:

ck = f

(
φB

0k +
J

∑
j=1

φB
jk f

(
φA

0j +
I

∑
i=1

φA
ij ai

))
where k = 1, 2, . . . , K (6)

For time series prediction, using one output node, lagged values of yt and, assuming
residuals are additive white noise, the functional form would be:

yt = f

(
φB

01 +
J

∑
j=1

φB
j1 f

(
φA

0j +
I

∑
i=1

φA
ij yt−i

))
+ εt (7)

ANNs possess strong parallel mapping skills. Acknowledging that, we also take note
of the biggest disadvantage of ANNs: complexity increases exponentially with network

Automation 2023, 4 237

size. One of the most important issues when constructing an ANN is to find a balance
between precision and complexity.

When the architecture is set, the MLP network weights must be estimated. This
process is called training. The most popular learning paradigm is the gradient descent al-
gorithm, which is also called backpropagation [14]. The objective of the training algorithm
is to minimize the mean square error (MSE) of the entire training set of data which is
defined as:

MSE =
1
N

N

∑
n=1

K

∑
k=1

en
k where en

k =
1
2
(c∗k − ck)

2 (8)

where MSE is the total error of all patterns presented to the model and k refers to the
output node. ck is the actual output from the model and c∗k is the desired output (what
the model should have forecasted). en

k is the instantaneous error resulting from the differ-
ence between ck and c∗k in output node k in training pattern n. This error is propagated
backward through the network to allocate it to the right weights and adjust them using the
following equations:

4tφ
B
jk = ηδkbj + γ4t−1 φB

jk where δk =
(
c∗k − bj

)
f ′(sk) (9)

4tφ
A
ij = ηδjai + γ4t−1 φA

ij where δj =

(
K

∑
k=1

δkφB
jk

)
f ′
(
sj
)

(10)

The derivations of Equations (10) and (11) can be found in [9]. The δk and δj terms are
the local gradients for the hidden layer and input layer. Gradients represent a sensitivity
factor, determining the direction of the search in weight space for the optimal weight. η is
called the learning rate and γ is called the momentum; both terms have values between zero
and unity. The smaller we set η, the smaller the weight change is from one iteration to the
next. The momentum term γ is added to increase the learning rate without destabilizing
the network. We divided the data set into three parts, training set, validation set, and
prediction set. One training iteration of the entire training set is called an epoch. Usually,
thousands of epochs are needed to sufficiently modify the network weights.

With the use of multi-core processors and the Internet (here under cloud computing),
computing is becoming more and more concurrent. Concurrent computing is computing
where several computations are being executed at the same time. This is in contrast to
sequential computing, where one computation is completed before the next starts.

Examples of concurrent computing are parallel computing (multi-core processors) and
distributed computing (across the Internet). In parallel computing, a task is distributed
over multiple processes that execute concurrently on separate processing cores and interact
with each other to complete the task [15]. Distributed computing is computing where a
task is distributed over multiple processes and the processes run on multiple computers.
This makes communication between processes costly, time-consuming, and a potential
security risk. The actor model is an architectural model for concurrent computation, hereby
unifying parallel computing and distributed computing. The model was proposed by Carl
Hewitt in 1977 [9].

8. The Actor Model

The actor model is a system built up of a collection of concurrent autonomous entities
called actors. An actor is a computational entity that, in response to messages it receives,
can respond concurrently. An actor is a computational entity that, in response to a message
may concurrently send the messages to other actors, create new actors, and designate how
to handle the next message it receives. There are three ways an actor can provide addresses
to other actors: when the actor is created, through messages, and through addresses of the
actors it has created [11].

The addresses of actors should be independent of the physical location of the actors.
This means, there should be no difference in programming the communication with an

Automation 2023, 4 238

actor running on the same processing core or a different computer in a network [12].
All communication is conducted by sending asynchronous and non-blocking messages.
Because the messages are asynchronous, actors do not hold any system resources while
sending or receiving messages. This is in contrast to systems where memory is shared, and
processes are using locks and waiting for locks to be released.

By definition, actors have a mutable internal state that is not shared directly with other
actors. Only the actor itself can update its internal state. The only event in the actor model
is message arrival events. While there are no events, the actors are idle. This means, for the
system to do anything, an external message is needed. This is called an external event [13].
The actor receiving the external message can thereby start a chain of events in the system.

Actors and Agents

Michael Wooldridge distinguishes between two general usages of the term agent: the
weak and the strong agent. The weak notion of an agent is a hardware or software-based
computer system that has the properties listed below:

• Autonomy: agents operate without the direct intervention of humans orothers, and
have some kind of control over their actions and internal state;

• Social ability: agents interact with other agents (and possibly humans) via some kind
of agent-communication language [15];

• Reactivity: agents perceive their environment (which may be the physical world, a user
via a graphical user interface, a collection of other agents, the Internet, or perhaps all
of these combined) and respond in a timely fashion to changes that occur in it;

• Pro-activeness: agents do not simply act in response to their environment. They are
able to exhibit goal-directed behavior by taking initiative.

The strong notion of an agent includes the properties of the weak notion, but in
addition, a strong agent uses concepts such as knowledge, belief, honesty, and commit-
ments [15]. Actors and agents share some similarities with regard to autonomy and their
ability to send messages. However, actors and agents have mostly different properties.
Two of the most significant differences are:

• Actors need to get a message to be able to do any computation, while agents can react
to an environment or take the initiative.

• Actors need the address of another actor in order to communicate (send messages).
The notion of agent does not have this restriction.

The first difference means actors are passive in between processing messages. In
contrast, agents can be continuously active by observing an environment. This environment
can include other agents. The second difference means that communication between actors
is carried out only through message passing, and for an actor to send a message to another
actor the address is needed. While agents A and B may, for instance, communicate by
letting agent A modify something in the environment that agent B is observing, agent B can
then act upon observing certain conditions in the environment. The address of the agent is,
therefore, not needed in this case.

9. Design and Development of the System

The platform consists of four independent parts: a data collector, a trading system
runner, an application programming interface (REST API), and a web application. The
reason for dividing the platform into these separate parts is to make it decoupled, so that
each part can be exchanged without interacting with the other parts, making each part
independently testable [16]. While testing, the other parts do not need to run and only
database entries used by the tested part are needed. These database entries can be added
manually to test certain functions and situations. The platform is not tied to a specific
financial instrument.

Automation 2023, 4 239

The Data Collector

The task of the data collector is to collect historical trading data for a financial instru-
ment, from an external source, and add it to the database. After all the data are collected,
the data collector starts collecting live data. Multiple resulting database tables can be
created of an arbitrary granularity, such as per trade (also called tick), minute, hour, and
day. While the resulting database tables should be equal for all financial instruments, the
interface to the source has to be source-specific. This is because, for the most part, there is
no common way for accessing the data. Instead, each source usually has its own method of
accessing data.

10. Artificial Neural Networks for Trading Systems

The methodology for the design and development of trading systems in this paper is
based on the work of Bruce Vanstone and Gavin Finnie [17]. ANNs use supervised learning,
and while ANNs differ in structure and output from trading system to trading system, the
input variables are taken from a shared set of input variables.

10.1. Technical Indicators

The methodology for the design and development of trading systems in this paper is
based on the work of Bruce Vanstone and Gavin Finnie, where ratio structure and oscillator
indicators built from price and volume are used. This is because we want the ANN to handle
the relative behavior of price and volume, not the exact value. A set of technical initiators
is selected as possible input variables to ANNs. The indicators selected are indicators that
are popular and have shown promising results regarding predictions of financial markets.
The selected technical indicators are shown in Table 1. The indicators are computed from
granulated data, not from tick data. In Table 1, n is an indicator of the number of prior time
periods to consider in the calculation, k is some constant step size, Ct is the closing price at
time t, Lt is the low price at time t, Ht is the high price at time t, LLn is the lowest low in
the past n time periods, HHn is the highest high in the last n time periods, and MACn and
MAVn are the price- and volume-moving averages for the last n time periods.

Table 1. Technical indicators used as input to the ANN.

Indicator Name Formula

Stochastic %K (%K) %Kt =
Ct−LLn

HHn−LLn
× 100

Stochastic %D (%D) %Dt =
∑n−1

i=0 %Kt−1
n

Stochastic slow %D (slow %D) Slow%Dt =
∑n−1

i=0 %Dt−1
n

Momentum (MO) MOt = Ct − C(t−k)

Rate of Change (ROC) ROCt =
Ct−C(t−k)

C(t−k)

Willlama’s %R (%R) %Rt =
HHn−Ct

HHn−LLn
× 100

Accumulation/Distribution Oscillator (ADO) ADt =
Ht−C(t−1)

Ht−Lt

Disparity Index (DI) DIt =
Ct−MACn

MACn
× 100

Price Oscillator (PO) POt =
MACn f ast−MACnslow

MACn f ast

Volume Oscillator (VO) VOt =
MAVnsmall−MAVnbig

MAVnsmall

Aroon Oscillator (AO) AOt = (((n− DShn/n)× 100)− (((n− DSln/n)× 100)
Relative Strength Index (RSI) RSIt = 100− 100

1+(∑n−1
i=0 Upt−i /n)/(∑n−1

i=0 Dwt−i /n)

Moving Average Convergence/Divergence (MACD) MACDt = MACn f ast −MACnslow

The different indicators are defined mathematically in Table 1. The stochastic %K
measures if a financial instrument is overbought or oversold. If a financial instrument is
overbought, it could indicate that the price is about to change. Momentum measures the
momentum on the price change in an interval of fixed size. The Rate of Change measures

Automation 2023, 4 240

the speed of the price change in the interval. William’s %R measures whether a financial
instrument is overbought. The Accumulation/Distribution Oscillator is another indicator
for price change. The Disparity Index measures the current price of a moving price average.
The Price Oscillator and Volume Oscillator are used to compare a short-term average
towards a long-term average, for the price and volume. The Aroon Oscillator is used to
identify trends and trend strengths based on time periods since the highest high (DShn) and
lowest low (DSln) are defined in a time window of n periods. The Relative Strength Index
measures whether the stock is overshot or overbought based on the magnitude (Upt−1)
versus the magnitude of losses (Dwt−1) over a specified time.

The Moving Average Convergence/Divergence is an indicator used to identify trends
based on the difference between a fast- and slow-moving average.

10.2. Architecture

A Multilayer Perceptron Network (MLP) is used. The input layer has one neuron
for each input variable, and the output layer has one neuron for each output variable.
There are no standard rules for selecting the number of hidden layers and the number
of neurons in each layer. The most common method for determining the appropriate
architecture is experimentation with “trial-and-error”. A combination of literature review
and experimentation are used to determine the number of hidden layers and the number
of neurons in each layer.

10.3. Training

The ANNs are trained using a supervised backpropagation [12] training algorithm.
The objective of the training is to change the weights so that the overall error in the mapping
input of the training set to the corresponding target output is as small as possible. The
overall error that we used is the root mean square (RMS) error function. This function
maps the ANN’s current state into a point in the error space. The backpropagation consists
of a feed-forward and a backward propagation phase. All the technical indicators used as
input are scaled into the range [−1, 1]. The network goes through the two phases for every
input/target pair in the training set. Going through the whole training set at one time is
called an epoch.

An ANN is first initialized with random weights. All technical indicators are computed
for each new data point and fed as input to the ANN. Trading is carried out according
to the trading logic given in a NewTimePeriod function. After a number of data points
are received, the ANN is trained on these new data points, thus defining the new market
conditions [18].

10.4. Prediction of Trading Variables

Predicting the price of a financial instrument may seem to be an easy task to perform,
but this has been shown to be difficult. The main reason is the amount of noise present
in financial markets. This makes it hard for ANNs to find general patterns in price data.
To reduce the noise in the data presented to ANNs, it has been proposed to use forward-
looking technical indicators as output. Such technical indicators can be smoother and less
exposed to noise, which can make them easier to predict. However, while the technical
indicators might be predicted, this does not necessarily translate into a good trading system.
This is because different technical indicators work on different markets and/or different
market conditions.

ANN is used to predict technical indicators that are profitable on historical data.
The training set consists of the 13 technical indicators from Table 1 computed for time
t − 1 and t as input, where t is the time of the last data point. The corresponding output
consists of the selected indicator computed for time t + 1. This means that there are
13 × 2 neurons in the input layer and only one neuron in the output layer. This means that
input (t − 1, t) is mapped to output t + 1. The reason for only looking one period forward
for the technical indicators is that the output indicator communicates nothing about the

Automation 2023, 4 241

price change from the input time (t) to the output time (t + 1). Therefore, the selected output
indicator is computed for time t and traded with precedence to the ANN output. In Table 1,
the variables are computed for time t − 1 and t as input, where t is the time of the last data
point. The corresponding output consists of the selected indicator computed for time t + 1,
which is the indicator of one data point forward in the future. This means that there are
13 × 2 neurons in the input layer and one neuron in the output layer and input (t − 1, t) is
mapped to output t + 1.

10.5. ANN Output

The different indicators tested as output for the ANN are ROC, %R, DI, and AO.
The reason for selecting these indicators is that they have been shown to be profitable
in all periods. The output is scaled to the same range as the input indicator of the same
type. A modification of the first system may be conducted by the first trading system
output variable proposed by Vanstone and Finnie in. The output variable measures the
expected price movement. In [18], the authors suggest building a variable by measuring
the maximum price change over a time interval after the input time. The size of the time
period should be selected relative to the desired frequency of trades. This is in contrast to
the prediction of technical indicators where prediction is always one period ahead:

OutUp(t) = (max(Ct +1, . . ., C t+n)−Ct)/Ct (11)

where C is the vector of close prices, t is the index of the inputs that should result in
OutUp(t), and n is the number of future time periods to be included in the calculations.
This variable should, according to Bruce Vanstone and Gavin Finnie [17], result in a highly
tradeable indicator on all market conditions. We may also suggest measuring the strength
of a downward position as:

Outdown(t) = (min(Ct +1, . . ., Ct+n) − Ct)/Ct (12)

Two separate ANNs were used for trading: one predicting OutUp(t) and one for
Outdown(t). Both ANNs use the same input and architecture. In addition, a trading system is
used for price direction by classifying the input into one of four classes. The input consists
of all the technical indicators shown in Table 1, calculating for time t (13 inputs). The output
of the ANNs is a vector of 4 elements corresponding to the following classes:

• Two percent or more price increase, [2, ∞].
• Zero to two percent price increase, (0, 2).
• Zero to minus two percent price decrease, [−2, 0].
• Two percent or more price decrease, (−∞, −2).

The numbering indicates their place in the output vector. All intervals are given in
percent. The class with the highest degree of membership is declared as the winner. It is
possible to have multiple winners. The ANN has four output neurons and each neuron
represents a class. The output is a vector of four dimensions, indicating the membership
input degree. The target output may be defined as a vector (1 0 0 0). This vector indicates
that the target is increasing by two percent or more. The membership value is a real number
and the class with the highest degree of membership is declared as the winner.

An alternative predictive output is the direction of the price. While this seems easier,
research shows us that it is not easy to determine the strength of the change. For instance, a
high degree of predicted price change does not necessarily indicate a large price change.
An ANN will predict the direction of the price change from the current time (t) until the
next time (t + 1). See Figure 2. The output consists of a value within the interval [−1,1]. The
target output is:

Automation 2023, 4 242
Automation 2022, 3, FOR PEER REVIEW 12

Figure 2. A trading system with two hours of data granularity. The graph of the trading system
stops at the last trade.

• 1 if the price change is positive, more than 2%;
• 0 if the price change is less than 2% and positive;
• −1 if the price change is negative, more than 2%.

11. Experiments and Results
In order to backtest the proposed trading systems, some simple strategies were se-

lected for money management and portfolio construction. For money management, an all-
in approach was used. By this, we mean that when a position is signaled the position is
taken with all available assets. Moreover, there is no need for portfolio construction be-
cause all trading systems are tested on only one financial instrument, bitcoin. Bitcoin data
are taken from the Bitstamp exchange [7]. The trading systems are tested on two granu-
larities, 2 hours of data and one day of data. A separate test is carried out for each granu-
larity. All trading is simulated by the use of market orders on the price used at last order
before the time of input (t). This means that the spread is not included in the calculations
and the real price could have varied a little. However, the trading systems proposed in
this paper do not trade so frequently that the spread would have much impact on the
results. The reason for not including the spread is because the data sets do not include
information about the spread. However, the trading commission has a much greater im-
pact on the results and is included.

Testing on the Bitcoin Market

Figure 2. A trading system with two hours of data granularity. The graph of the trading system stops
at the last trade.

• 1 if the price change is positive, more than 2%;
• 0 if the price change is less than 2% and positive;
• −1 if the price change is negative, more than 2%.

11. Experiments and Results

In order to backtest the proposed trading systems, some simple strategies were
selected for money management and portfolio construction. For money management,
an all-in approach was used. By this, we mean that when a position is signaled the
position is taken with all available assets. Moreover, there is no need for portfolio
construction because all trading systems are tested on only one financial instrument,
bitcoin. Bitcoin data are taken from the Bitstamp exchange [7]. The trading systems are
tested on two granularities, 2 h of data and one day of data. A separate test is carried out
for each granularity. All trading is simulated by the use of market orders on the price
used at last order before the time of input (t). This means that the spread is not included
in the calculations and the real price could have varied a little. However, the trading
systems proposed in this paper do not trade so frequently that the spread would have
much impact on the results. The reason for not including the spread is because the data
sets do not include information about the spread. However, the trading commission
has a much greater impact on the results and is included.

Testing on the Bitcoin Market

The indicators were tested on data from the period from 30 July 2013 to 1 October
2014. The results of the whole period, 30 July 2013 to 1 January 2014 and 1 January 2014

Automation 2023, 4 243

to 1 October 2014, are reported. The bitcoin price in these periods went up 335%, up
682%, and down 44%, respectively. The reason for testing on these specific periods is
to test the indicators on different market conditions. For every indicator, before a new
position is taken, any old position is closed. The values of the indicator variables are
set experimentally.

When the Rate Of Change (ROF) indicator rises above zero, a long position is taken,
and when it falls below zero, a short position is taken. The William’s %R indicator has a
range from 0 to 100 and is normally traded by taking a long position when the indicator
is below 20 and taking a short position when the indicator is above 80. For the Disparity
Index, a rise above zero is taken as a long position, and when it falls below zero, a short
position is taken [8]. The Relative Strength Index indicator has a range from 0 to 100 and
is normally traded by taking a long position when the indicator is below 30 and taking a
short position when the indicator is above 70. When the Aroon Oscillator rises above zero,
a long position is taken, and when it falls below zero, a short position is taken. The Moving
Average Convergence/Divergence indicator consists of two moving averages, one slow
and one quick. When the quick one crosses above the slow, a long position is taken, and
when the quick one crosses below the slow, a long position is taken.

A trade is defined as the process of taking a position on the market and closing the
position. This means that, for each trade, there are two transactions executed on the
market. For each simulated transaction in the backtest a broker commission of 2% is
used. Each trading system section consists of tables displaying the best-found trading
system variable values and the corresponding results. The results focus on profits in
some specific time periods, but other statistics are included in the discussion when
appropriate. The backtest is conducted on the period from 30 July 2013 to 1 October
2014. The results of the whole period, 30 July 2013 to 1 January 2014 and 1 January 2014
to 1 October 2014, are reported. The bitcoin price in these periods went up 335%, up
682%, and down 44%, respectively. The reason for testing on these specific periods is to
test the indicators on different market conditions.

12. Conclusions and Further Work

A platform for running, testing, and comparing trading systems was developed based
on the actor model. Such a model uses small computer resources while waiting for new
data points. The actor model makes it easy to conduct concurrent computations. For
instance, if a trading system uses an ANN and the ANN needs to be retrained, the actual
trading system does not need to be stopped in order to train the new ANN. The new ANN
may be trained while using the old ANN. As soon as the new ANN is finished, the new
ANN may replace the old ANN.

The framework Akka [19,20] was used to make it possible for the trading system
runner to deploy new trading systems on separate JVMs, and also on other computers. This
makes the platform very scalable. The design of the platform makes it decoupled and fault
tolerant. The different parts of the platform only communicate through database entries by
posting completed work to a database that is watched by another part of the system. If one
part of the platform encounters an exception, that part is restarted and continues working it
left off. No other part of the platform needs to take into account that an exception occurred.
The platform also makes it possible to run and backtest all the trading systems at the same
time. In the trading systems developed, both short and long positions are used.

Further Work

The trading systems presented in this paper should be tested on a larger amount
of bitcoin data. This could be solved by using finer granularity data, but the volume of
bitcoin is not very high compared with other financial instruments. Therefore, the best
way to benchmark the trading systems is to wait for more data to be accumulated and
run the trading systems on the new data. Another way for potential improvement is by
selecting other values of the different variables. The variables of the trading systems could

Automation 2023, 4 244

be optimized by using evolutionary computation methods [21–23]. However, to evaluate
the fitness function of the trading system, the system has to be executed on historical data
and, therefore, may vary for a very long time.

It could be interesting to test the trading systems on data of other financial instru-
ments. This would only require the implementation of a new data collector. The system
already has support for running multiple data collectors at the same time [24–26]. The
system can also run trading systems using data from different financial instruments
concurrently. This means that the system could be extended with parts for portfolio
optimization and money management.

Author Contributions: Conceptualization, T.S.K.; Formal analysis, A.H.S.; Writing—original draft,
T.S.K. and A.H.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bianchi, D.; Born, A.; Di Benedetto, M.D.; Di Gennaro, S. Active Attitude Control of Ground Vehicles with Partially Unknown

Model. IFAC PapersOnLine 2020, 53, 14420–14425. Available online: www.sciencedirect.com (accessed on 15 June 2023). [CrossRef]
2. Box, G.; Jenkins, G. Time Series Analysis: Forecasting and Control; Holden-Day: Oakland, CA, USA, 1970.
3. Bøvre, J.O.; Viervoll, P.K.; Kristensen, T. An Artificial Walk Down Wall Street: Can Intra-Day Stock Returns Be Predicted Using

Artificial Neural Networks? In Proceedings of Eight International Conference on Perspectives in Business Informatics Research (BIR2009);
Kristiansand Academic Press: Kristiansand, Sweden, 2009; ISBN 978-91-633-5509-7.

4. Clinger, W.D. Foundations of Actor Semantics. 1981. Available online: http://dspace.mit.edu/handle/1721.1/6935 (accessed on
15 June 2023).

5. NASDAQ. Nasdaq. February 2014. Available online: http://www.nasdaq.com/ (accessed on 15 June 2023).
6. XE. August 2014. Available online: http://www.xe.com (accessed on 15 June 2023).
7. Bitstamp. August 2014. Available online: http://www.bitstamp.com/ (accessed on 15 June 2023).
8. Hewitt, C. Actor Model of Computation: Scalable Robust Information Systems. 2013. Available online: https://docs.google.com/

open?id=0Bykigp0x1j92M0p6b0ZWWE9SS3Frb3loV3NKX2sxdw (accessed on 15 June 2023).
9. Hewitt, C. What Is Computation? Actor Model versus Turing’s Model. In Understanding and Exploring Nature as Computation;

World Scientific: Singapore, 2012.
10. Engelbrecht, A.P. Computational Intelligence: An Introduction; John Wiley and Sons: Hoboken, UK, 2007; ISBN 0470035617.
11. Gul, A.A.; Wooyoung, K. A unifying model for parallel and distributed computing. J. Syst. Archit. 1999, 45, 1263–1277. Available

online: http://www.sciencedirect.com/science/artickle/pii/S1383762198000678 (accessed on 15 June 2023).
12. Chen, S.H.; Wang, P.P. Computational Intelligence in Economics and Finance; Springer: Berlin/Heidelberg, Germany, 2004;

ISBN 978-3-642-07902-3.
13. Grøtte, O. Original Norwegian Title: Aksjekjøp og Datatrading: Metode, Psykologi, Risiko og Strategier. English Title: Stock Purchases and

Daytrading: Methodology, Psychology, Risk and Strategies; Hegnar Media: Oslo, Norway, 2006; ISBN 9788271460310.
14. Kristensen, T. Original Norwegian Title: Nevrale Nettverk, Fuzzy Logikk og Genetiske Algoritmer. English Title: Neural Networks, Fuzzy

Logic and Genetic Algorithms; Cappelen Akademic Publisher: Oslo, Norway, 1997; ISBN 82-456-0203-5.
15. Wooldridge, M.; Jennings, N.R. Intelligent Agents: Theory and practice. Knowl. Eng. Rev. 1995, 10, 115–152. [CrossRef]
16. Tomasini, E.; Jaekle, U. Trading Systems: A New Approach to System Development and Portfolio Optimization; Harriman House Series;

Harriman House: Harriman House, UK, 2009; ISBN 9780857191496.
17. Vanstone, B.; Finnie, G. An empirical methodology for developing stockmarket traiding systems using artificial neural networks.

Expert Syst. Appl. 2009, 36 Pt 2, 6668–6680. Available online: http://www.scienencedirect.com/science/article/pii/SO957417408
005836 (accessed on 15 June 2023). [CrossRef]

18. Heaton Research Inc. Encog Machine Learning Framework. September 2014. Available online: http://www.heatonresearch.com/
encog (accessed on 15 June 2023).

19. Karmani, R.K.; Shali, A.; Agha, G. Actor Frameworks for the JVM Platform: A Comparative Analysis. In Proceedings of the 7th
International Conference on Principles and Practice of Programming in Java, Calgary, AB, Canada, 27 August 2009; pp. 11–20.

20. ypesafe Inc. Akka. February 2014. Available online: http://ww.akka.io (accessed on 15 June 2023).
21. Mcadam, P.; McNelis, P. Forecasting Inflation with Thick Models and Neural Networks; Economic Modeling; Elsevier: Amsterdam,

The Netherlands, 2005; Volume 22, pp. 848–867.
22. Mills, T.C.; Markellos, R.N. Nonlinear Times Series in Financial Economics; Encyclopedia of Complexity and Systems Science;

Springer: Berlin/Heidelberg, Germany, 2008.

www.sciencedirect.com
https://doi.org/10.1016/j.ifacol.2020.12.1440
http://dspace.mit.edu/handle/1721.1/6935
http://www.nasdaq.com/
http://www.xe.com
http://www.bitstamp.com/
https://docs.google.com/open?id=0Bykigp0x1j92M0p6b0ZWWE9SS3Frb3loV3NKX2sxdw
https://docs.google.com/open?id=0Bykigp0x1j92M0p6b0ZWWE9SS3Frb3loV3NKX2sxdw
http://www.sciencedirect.com/science/artickle/pii/S1383762198000678
https://doi.org/10.1017/S0269888900008122
http://www.scienencedirect.com/science/article/pii/SO957417408005836
http://www.scienencedirect.com/science/article/pii/SO957417408005836
https://doi.org/10.1016/j.eswa.2008.08.019
http://www.heatonresearch.com/encog
http://www.heatonresearch.com/encog
http://ww.akka.io

Automation 2023, 4 245

23. Nourani, E.; Rahmani, A.; Mand Navin, A.H. Forcasting stock prices using a hybride Artificial Bee Colony based neural network.
In Proceedings of the 2012 International Conference on Innovation Management and Technology Research, Malacca, Malaysia,
21–22 May 2012; pp. 486–490. Available online: http:////ieexplore.ieee.org&lpdocs/epic03/wrapper.htm?arnumber=6236444
(accessed on 15 June 2023).

24. Rumelhart, D.E.; McClelland, J.L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition; MIT Press:
Cambridge, MA, USA, 1986.

25. Shoham, Y. Agent-oriented programming. Artif. Intell. 1993, 60, 51–92. [CrossRef]
26. Zhai, Y.; Hsu, A.; Halgmuge, S. Combining news and technical indicators in daily stock price trends prediction. In Proceedings

of the 4th International Symposium on Neural Networks: Advances in Neural Networks, Part III, ISNN 07, Nanjing, China,
3–7 June 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1087–1096, ISBN 978-3-540-72394-3.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http:////ieexplore.ieee.org&lpdocs/epic03/wrapper.htm?arnumber=6236444
https://doi.org/10.1016/0004-3702(93)90034-9

	Introduction
	Problem Formulation
	Trading the Financial Instruments
	Automatic Trading
	Fees
	Backtesting
	Artificial Neural Networks
	Computational Intelligence
	Artificial Neural Networks

	The Actor Model
	Design and Development of the System
	Artificial Neural Networks for Trading Systems
	Technical Indicators
	Architecture
	Training
	Prediction of Trading Variables
	ANN Output

	Experiments and Results
	Conclusions and Further Work
	References

