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Herein, bimetal (Mn, Co) codoping on a CuO host is aimed at enhancing oxygen evolution reaction (OER) and hydrogen evolution
reaction (HER) activity. Codoping ofMn and Co on CuO to enhance bifunctional action in electrochemical water splitting has not yet
been investigated to the best of our knowledge. Literatures are focused on unary Mn-doped CuO or Co-doped CuO nanostructures.
Mn, Co codoped CuO through an easy chemical coprecipitation method has been successfully attempted and is more beneficial which
is the novelty of the present work. Defect-enriched ample active sites (Mn2+/Mn3+ and Co2+/Co3+) along with Cu2+ in the host CuO
achieved high current density (100mA/cm2) in OER and HER with low overpotential such as 468mV and 271mV, respectively.
Faster charge transfer and diffusion ability was stimulated by the bimetal codoping CuO. Reasonable Tafel plot values (OER:
199mV/dec, and HER: 21mV/dec) with improved water-splitting reaction kinetics were achieved for the Mn, Co codoped CuO
nanoflakes. The double-layer capacitance (Cdl) value of 27.5mF/cm2 for Mn, Co codoped CuO nanoflakes was achieved. Similarly,
the increasing order of an electrochemically active surface area (EASA) was exhibited by the consequent addition of bimetal
doping on CuO, denoted as Mn, Co/CuO > Co/CuO >Mn/CuO > CuO. The evidence shows that the codoping strategy could
facilitate rapid reaction kinetics to develop overall water splitting. The charge transfer resistances (Rct) of 3.6Ω and 1.2Ω for the
Mn, Co codoped CuO nanostructure corresponding to the OER and HER, respectively, were reported. The long-term stability over
16 h with negligible loss was reported for both the OER and the HER performance. Thus, this work contributes to better insight
and analysis of the successful codoping of bimetal elements in earth-abundant electrocatalysts to enhance and make practical the
electrocatalytic water-splitting activity.

1. Introduction

The ever-increasing global energy demand caused by the
expenditure of traditional fossil fuels has induced the alter-
native solution for clean and sustainable energy production
[1]. Recently, hydrogen was considered a clean renewable
energy carrier due to its carbon-free emission, high gravi-
metric energy density, and environmental benignity [2].
Electrocatalytic water splitting is a potential approach to
produce hydrogen, which can satisfy upcoming energy
requirements without greenhouse gas emissions [3, 4]. To

the core, water splitting has 2 half-reactions, namely, hydro-
gen evolution reaction (HER) and oxygen evolution reaction
(OER) [5]. HER requires 2 electrons (2H++ 2e−→H2) in the
cathode side and OER requires four electrons (4OH−→O2
+2H2O) in the anode side [6]. However, OER is notably a
sluggish reaction compared to HER, which leads the overall
water splitting to be associated with a high driving force [7].
So far, the noble metals like Pt (for HER) and RuO2/IrO2
(for OER) are reported as benchmark commercial electroca-
talysts for water splitting [8–11]. The high cost and less
accessibility of the above-mentioned potential catalysts
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hinder the economic progress commercially, and the
requirement of the low-cost transition metal-based electro-
catalysts for energy production is raised as a major problem.
In this time, there is need to regenerate the effective electro-
catalysts by using naturally rich elements as the suitable ideal
solution for the imminent energy-related issues [12]. There
are many strategies that manipulate the electrochemical
activity to improve bifunctionality of the working electrode.
Among them, doping is one of the tantalizing yet conven-
tional approaches to influence electrochemical properties
of electrocatalysts. Specifically, transition metal-based ele-
ments get more attention because of flexibility, conductivity,
multiple valence states, and natural abundance [13]. Since
efficient electrocatalysts with a low driving force (overpoten-
tial) and superior chemical and thermal stability are neces-
sary for the continuous research in this field, Lv et al.
explored the synthesis of a nanostructured substrate-
integrated growth CuO@Cu3P on Cu foam for overall water
splitting with low overpotentials (144mV for HER and
267mV for OER at 10mA/cm2) [14]. Yin et al. succeeded
in the in situ growth of CuO@CoZn-LDH nanoarrays for
proficient overall water splitting [15]. Maiti and Srivastava
reported Ru-doped CuO/MoS2 nanostructures for an effi-
cient HER (∼198mV) and OER (201mV) to attain 10mA/
cm2 [16]. Thus, CuO-based electrocatalysts with the imple-
mentation of some attractive approaches like doping, mor-
phology engineering, composite/heterojunction formations,
and layered deposition are gaining more attention due to
their improved electrocatalytic activity [17–21], since it is
one of the cheapest elements on earth. In the doping strat-
egy, codoping is an efficient and promising tactic to encour-
age the electrocatalytic activity of the material [22, 23].

Markedly, Mn and Co are the well-known electrocata-
lysts for both OER and HER because of conductivity, multi-
ple valence states, and inherent catalytic activity [24–28].
Owing to the consideration of cost-effectiveness and earthly
abundance, CuO was chosen as the electrocatalyst. Besides,
Mn and Co are utilized as a dopant, and controlling the
active sites via morphology is an additional strategy imple-
mented in this work to enhance the conductivity. The
sharp-edge nanoneedles, nanoflakes, nanoplates, and nano-
rods are the fascinating morphology to create abundant
polarized zones for easy electron transfer in electrocatalytic
reactions [29, 30]. Therefore, no reports are available on
codoping of Mn and Co on CuO with a unique nanoflake
morphology which stimulates to perceive the structural,
morphological, and electrochemical nature of a produced
sample for electrocatalytic water splitting. The modern
researches seek a low-cost alternative to produce clean
energy for advanced hydrogen fuel economy. The present
report examines the codoping strategy on CuO nanoflakes
to improve the bifunctional activity for water splitting; it
achieved a low driving potential for OER and HER at a high
current density. It is an insightful outcome to the high per-
formance of large-scale electrolyzers in the near future.

In this work, the Mn, Co codoped CuO nanoflakes were
synthesized using a facile coprecipitation method followed
by thermal annealing as an excellent bifunctional catalyst
for electrocatalytic water splitting. The successful codoping

and the presence of Mn and Co on the CuO host have been
confirmed via X-ray diffraction (XRD) and energy-dispersive
spectra (EDS), respectively. More valence state numbers pro-
voked bifunctionality which is reported by the lower overpo-
tential requirement for OER (468mV) and HER (271mV) at
a high density of 100mA/cm2. High conductivity, rapid reac-
tion kinetics, and long-term stability over 20h of Mn, Co
codoped CuO nanoflakes are reported for the real-time elec-
trocatalytic water-splitting application.

2. Methods

2.1. Materials Used.Copper chloride dihydrate (CuCl2·2H2O),
manganese chloride tetrahydrate (MnCl2·4H2O), cobalt chlo-
ride hexahydrate (CoCl2·6H2O), sodium hydroxide (NaOH),
ethanol (C2H5OH), and deionized (DI) water were purchased
from Sigma-Aldrich. Ni foam was procured from the Zopin
Group. Pt, graphite rod, and Ag/AgCl were also procured.

2.2. CuO, Mn-doped, Co-doped, and Mn, Co codoped CuO
Nanoflake Preparation. Typically, 0.5M of copper chloride
was dissolved into 50ml deionized water and kept in the
magnetic stirrer for 15min. Consequently, 5M of the NaOH
solution was prepared and named as solution B and drop-
wise added into solution A. Then, the mixed solution was
adjusted at pH11 by adding NaOH. Then, the mixed solu-
tion A was left free for 12 h to form precipitate. The sub-
stance gets filtered by using deionized water, methanol,
and ethanol twice and is further dried at 80°C for 12h. The
final sample was annealed at 400°C, and the powder was con-
sidered as pure CuO nanoflakes. Then, Mn-CuO and Co-CuO
nanoflakes were produced like that of pure CuO, nevertheless
with the molar amount of 0.01M of MnCl2·4H2O and
CoCl2·6H2O, separately added in the 0.49M of the
CuCl2·2H2O (50ml) solution. Finally, Mn, Co codoped CuO
nanoflakes were produced by simultaneously adding 0.01M
of MnCl2·4H2O and CoCl2·6H2O in 0.48M of the
CuCl2·2H2O (50ml) solution. The obtained four powders
were denoted as pure CuO, Mn-CuO, Co-CuO, and Mn,
Co-CuO, respectively, as depicted in Figure 1 [31, 32]. The
physical characterizations of the synthesized nanoflakes were
done by using the same instruments, and measuring condi-
tions are reported in detailed previous works [33, 34].

2.3. Electrode Preparation. The electrochemical studies of
synthesized nanoflakes were done in a 3-electrode half-cell
setup, where Pt and a graphite rod were employed as the
counter for OER and HER, Ag/AgCl was employed as a ref-
erence, and the active materials (CuO, Mn-CuO, Co-CuO,
and Mn, Co-CuO) on the Ni foam were used as working
electrodes. The working electrode fabrication was the same
as that of a previous work [35]. The active material loaded
on the Ni foam was ~2.5mg/cm2, and the geometrical
dimension of the working electrode area was 1 cm × 1 cm.

3. Results and Discussion

3.1. Structural Characterizations of Pure, Mn-doped, Co-
doped, and Mn, Co codoped CuO Nanoflakes. The coprecipi-
tation technique was employed for the successful production
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of pure, Mn-doped, Co-doped, and Mn, Co codoped CuO
nanoflakes as competent bifunctional electrocatalysts. The
well-off doping on the monoclinic crystal structure of CuO
was confirmed via XRD spectra as shown in Figure 2(a).
Well-defined diffraction peaks observed for the crystal
planes such as (110), (-111), (111), (202), (020), (-202),
(-113), (-311), (220), (311), and (-222) are matched very well
with the JCPDS #48-1548 of the monoclinic CuO [36, 37].
No other anonymous peaks are observed for the synthesized
pure and doped samples, which revealed the optimal incorpora-
tion of Mn and Co in the Cu position of CuO. The monoclinic
crystal structure of the host frame is illustrated in Figure 2(b).
Besides, the codoping certainly affected the crystal nature,
which caused the formation of ample defects. The calculated
crystallite sizes (using the Debye-Scherer formula [38]) of
CuO, Mn-doped, Co-doped, and Mn, Co codoped CuO are
around 32 ± 3 nm (32, 31, 35, and 29nm, respectively).

Raman spectra of produced products shown in
Figure 2(c) represent phonon vibration modes around
~299 and ~634 cm-1, with an inhomogeneous hump
throughout the range (caused by surface defects) [39]. The
Raman bands ~299 and ~634 cm-1 explored the Ag and Bg
modes of monoclinic CuO, respectively [40]. The shifts in
Ag mode corresponding to the Mn-doped, Co-doped and
Mn, Co codoped CuO further confirm the doping, where
the Ag mode is more sensitive to the dopants [41]. The
surface intrinsic emission regions and oxygen vacancies/
defects were examined via photoluminescence (PL) spectra
(Figure 2(d)). The PL spectra were obtained at 320nm exci-
tation. The observed peaks at 361, 377, 411, 495, 506, and
520nm were observed in photoluminescence spectra of
Mn, Co codoped CuO nanoflakes as shown in Figure 2(d).
The peak at 361 and 377nm was attributed to the near band
edge (NBE) emission of CuO [42]. 411 and 495nm were
obviously ascribed to the blue shift performance where the
violet-to-blue emission gets shifted which corresponds to
the transition of oxygen vacancies and interstitial oxygen
defects present in the sample. The recombination of holes
and electrons occupies the ionized oxygen vacancies in the
green emission regions which are allocated to the wave-
length at 506 and 520nm [43]. The PL emission peaks with
different intensities were aroused due to the surface struc-
tural behavior of the prepared samples.

An FTIR study of pure and doped CuO nanoflakes is
demonstrated in Figure 2(e). The stretching and bending

vibration modes of the metal-oxygen bond with functional
groups adsorbed at the surface of the material have been char-
acterized at 4000-400 cm-1. The vibration bands observed at
607 and 874 cm-1 in the fingerprint region of FTIR explored
the stretching of Cu and O [44]. The other vibration bands
observed at 1098, 1458, 1640, 2358, 2923, and 3466 cm-1 were
attributed to C-O stretching, CH2, OH bending, CO2, C-H,
and OH stretching of the adsorbed radicals, respectively
[45]. Moreover, the steep OH stretching band observed for
Mn, Co codoped CuO suggests more hydrophilic groups pres-
ent at the surface [46]. Notably, the XRD pattern (Figure 2(a))
shows that the high intensity of undoped CuO authenticates
the phase confirmation and purity of CuO formation, and
the peak shift appeared in the Mn, Co codoped CuO at lower
angles due to the constant lattice variations. The bimetal Mn
and Co has a nearly similar range of ionic radius ranges
(0.06 to 0.08A0) which is incorporated into the CuO lattice
which does not affect the monoclinic phase; nevertheless, it
slightly gets shifted due to the intercalation which occurred
in the lattice cell arrangements which make considerable
change in the intensification of the crystal size which is noticed
in Figure 2(f). The peak shift at the lattice planes of (-111) and
(111) slightly corresponds with the 2θ values of 35.4° for pure
CuO shifted into 35.2° for the doped CuO (Mn and Co) and
38.5° to 38.6° for pure and doped CuO, respectively [47].

Scanning electron microscope (SEM) images of pure and
doped CuO (Figure 3) revealed the nanostructured mor-
phology of all four products. Figure 3(a) shows the aggre-
gated nanoflake morphology of bare CuO, which acted as a
frame for the sharp-edge nanoflake formation of the other
doped samples. Figures 3(b) and 3(c) represent the same
kind of nanoflake morphology of Mn- and Co-doped CuO
with less aggregation. Figure 3(d) confirms the sharp-edge-
rich triangular nanoflakes of Mn, Co codoped CuO [48].
The particle size of all four samples also could be estimated
from Figures 3(a)–3(d), which reveal the nanoflake length
to be around 110 ± 15, 100 ± 20, 95 ± 15, and 85 ± 10 nm,
respectively, for CuO, Mn-CuO, Co-CuO, and Mn, Co
codoped CuO nanoflakes. Hence, SEM studies of Mn, Co
codoped CuO nanostructures reveal that the unique sharp-
edged nanoflake-like structure covered with a rough surface
exhibited a tiny particle size which indicates that the capabil-
ity of the porous nature consists of numerous active sites on
the electrode surface for electron hole transportation, and
sharp edges were helpful for the bubble formation which is

CuCl
2
+MnCl

4
+CoCl

2
+NaOH

Pure CuO

CuCl
2
+NaOH

Coprecipitation
method

at pH 11

Mn, Co codoped CuO Sharp edged Nanoflake 
Mn, Co codoped 
CuO

Figure 1: Production methodology of Mn, Co codoped CuO.
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the strong beneficial behavior for oxygen and hydrogen evo-
lution in an effective way. Hence, the nanoflake morphology
structure of Mn, Co codoped CuO affirms a strong electro-
lyte ion transport and performs as a more superficial electro-
active species for the electrocatalytic performances [49, 50].
In addition, it provided a high electrochemically active

surface area (discussed in the latter part) which undeniably
supports the overall reaction kinetics of water splitting.
Moreover, Mn and Co codoping on the CuO host is further
evidently confirmed from the energy-dispersive spectra
(EDS) shown in Figure 3(e), and the uniform allotments of
Mn, Co, Cu, and O were demonstrated from EDS mapping

10 20 30 40 50
2𝜃 (deg)

60 70 80

(–
22

2)
(3

11
)

(2
20

)
(–

31
1)

(–
11

3)
(–

20
2)

(0
20

)
(2

02
)

(1
10

)

(1
11

)
(–

11
1)

(1
10

)
JCPDS Card # 48-1548

In
te

ns
ity

 (a
.u

.)

CuO
Mn-CuO

Co-CuO
Mn, Co-CuO

(a)

a

b

c

(b)

200 300 400 500 600 700

63
4

29
9

In
te

ns
ity

 (a
.u

.)

CuO
Mn-CuO

Co-CuO
Mn, Co-CuO

Wavenumber (cm–1)

(c)

350 400 450 500 550

52
0

50
6

49
541
137

7
36

1

In
te

ns
ity

 (a
.u

.)

Wavelength (nm)

CuO
Mn-CuO

Co-CuO
Mn, Co-CuO

(d)

3500 3000 2500 2000 1500 1000 500

Tr
an

sm
itt

an
ce

 (a
.u

.)

34
66

29
23 14

58 60
7

87
4

16
40

23
58 10

98

CuO
Mn-CuO

Co-CuO
Mn, Co-CuO

Wavenumber (cm–1)

(e)

35 36 37 38 39

In
te

ns
ity

 (a
.u

.) (–
11

1)

(1
11

)

JCPDS Card # 48-1548

CuO
Mn-CuO

Co-CuO
Mn, Co-CuO

2𝜃 (deg)

(f)

Figure 2: Structural characterizations of Mn, Co, and codoped CuO nanoflakes: (a) X-ray diffraction (XRD); (b) crystal structure; (c) Raman
spectra; (d) photoluminescence; (e) Fourier transform infrared (FTIR); (f) peak shift pattern of Mn, Co codoped CuO.
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(Figure 3(f)) [51]. Moreover, the significant insight of the
morphology information was explored via transmission elec-
tron microscopy (TEM) (Figures 4(a)–4(f)). Figures 4(a)–
4(c) explore TEM images of the prepared Mn, Co codoped
CuO nanoflakes at different magnifications. The observed
results clearly resemble nanoflake morphology which is con-
sistent with the primary SEM images of the Mn, Co codoped
CuO electrode. Figures 4(d) and 4(e) representing high-
resolution transmission electron microscopy (HR-TEM)
studies of the electrode reveal the clear lattice fringes with
polycrystalline structure which is well in accordance with the
XRD analysis. Also, the d-spacing values were calculated from
the selected area electron diffraction (SAED) pattern which
exposed few bright diffraction spots, confirmed the crystalline
nature of the sample, and were well consistent with the
observed XRD lattice planes (110), (-111), (111), (202), (020),
(-113), (220), and (-222) which is shown in Figure 4(f). The
interlayer structure of the achieved sharp-edge morphology

will increase the rate of electron transportation to enhance
the electrocatalytic activities [52, 53].

The composition, electronic structures, and oxidation
states of prepared Mn, Co codoped CuO nanoflakes were
explored by employing X-ray photoelectron spectroscopy
(XPS) as presented in Figures 5(a)–5(e). Figure 5(a) explores
the overall survey spectra of the Mn, Co codoped CuO
which confirms the Mn, Co, Cu, and O elements. The
Mn2p spectrum is revealed in Figure 5(b)with peaks at
641.2 eV and 648.38 eV for the Mn2p3/2 and Mn2p1/2,
respectively. It denotes Mn2+ oxidation states and a shakeup
peak which occurred at 648.38 eV, which are well related to
the previous literature. The deconvoluted Co2p spectra were
observed in the peak values at 782.59 eV corresponding to
the binding energy state of Co2p3/2 (Figure 5(c)), yet low
intense peaks have occurred due to the low content of cobalt,
and it is also the evidence for the existence of Co2+/3+ ions.
The high intense Cu2p core level spectra split into 2 peaks
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Figure 3: Morphological and elemental analyses: (a–d) scanning electron microscopy (SEM) of pure, Mn-doped, Co-doped, and Mn, Co
codoped CuO, respectively; (e, f) energy-dispersive spectrum (EDS) results and mapping of Mn, Co codoped CuO nanoflakes.
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Figure 4: (a–c) TEM analysis; (d, e) HR-TEM; (f) SAED pattern of Mn, Co codoped CuO nanoflakes.
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at 932.71 eV and 952.67 eV indexed to Cu2p3/2 and Cu2p1/2,
respectively, which are represented in Figure 5(d). In addi-
tion, 941.81 eV and 960.24 eV are attributed to 3d9 states of

partially filled d block Cu2+ ions. Figure 5(e) shows the
O1s spectra of the prepared Mn, Co codoped CuO electrode.
The peaks at 531.10 eV O1s core level spectra are allocated to
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Figure 6: Electrocatalytic activity of Mn-, Co-, and codoped CuO nanoflakes in 1M KOH: (a) OER-linear sweep voltammograms (LSVs);
(b) Nyquist plot at 1.68V vs. RHE potential; (c) OER-Tafel plot; (d) HER-linear sweep voltammograms (LSVs); (e) Nyquist plot at -0.2 V vs.
RHE potential; (f) HER-Tafel plot.
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metal-oxygen bonding and adsorbed oxygen on CuO
surface [54–56].

The fabricated electrodes were subjected to an electro-
chemical water-splitting application in the 1M KOH alka-
line electrolyte. Figure 6(a) demonstrates the linear sweep
voltammogram (LSV) profile for OER activity (without ir
correction). The lower overpotential and higher current den-
sity are achieved for Mn, Co codoped CuO nanoflakes. It
requires the 468mV overpotential to reach 100mA/cm2,
where pure CuO (707mV), Mn-doped CuO (648mV), and
Co-doped CuO (590mV) require more overpotential than
the codoped CuO electrode. The Nyquist plots at the OER
potential of 1.68V vs. RHE at 100 kHz to 100MHz are pre-
sented in Figure 6(b), and the appropriate equivalent circuit
was fitted as an inset. The solution resistance (Rs) of all four
electrodes is similar. The charge transfer resistance (Rct) of
the Mn, Co codoped CuO electrode (3.6Ω) is smaller than
those of the pure CuO (7.1Ω), Mn-doped (6.5Ω), and Co-
doped (6.0Ω) CuO electrodes. Hence, faster electron trans-
fer and active diffusion of the codoped electrode are further
revealed from electrochemical impedance spectra (EIS)
(matched with OER studies). The corresponding Tafel slope
values for OER kinetics of all the four electrodes are illus-
trated in Figure 6(c). The lower Tafel slope value (199mV/
dec) of Mn, Co codoped CuO nanoflakes exposed their rapid
OER kinetics compared to those of pure CuO (258mV/dec),
Mn-doped CuO (251mV/dec), and Co-doped CuO
(234mV/dec) nanoflakes.

To examine the bifunctionality of the fabricated elec-
trodes, the HER activity is also explored in 1M KOH.
Figure 6(d) shows the linear sweep voltammogram at the
HER potential from 0 to -0.6V vs. RHE (without ir correc-
tion). The Mn, Co codoped CuO revealed a lower HER over-
potential (271mV) to achieve 100mA/cm2 than other pure
(426mV), Mn-doped (347mV), and Co-doped (328mV)
CuO electrodes. The EIS spectra at -0.2V vs. RHE of all four
electrodes from 100 kHz to 100MHz are presented in
Figure 6(e), and the appropriate circuits are shown as a fitted
inset. Like OER kinetics, nearly similar Rs values for all the
electrodes are observed. The lower Rct of the Mn, Co
codoped CuO (1.2Ω) electrode represents the faster electron
transfer than those of the pure (4.7Ω), Mn-doped (3.7Ω),
and Co-doped CuO (1.5Ω) electrodes. Thus, the Mn, Co
codoped electrode also showed a faster electron transfer in
the HER reaction, thus performing well as a bifunctional elec-

trode. The corresponding HER Tafel slopes (Figure 6(f)) fur-
ther support the results of HER activity from the lower Tafel
slope value afforded by the Mn, Co codoped CuO electrode
(21mV/dec) compared to others, which confirm the rapid
reaction rate of the HER activity [57]. Thus, the bimetal
(Mn, Co) codoped CuO nanoflake electrode exhibited the
improved OER and HER kinetics compared to other undoped
(CuO) and unary metal- (Mn- and Co-) doped CuO elec-
trodes, which is due to the defect-enriched crystal structure
(confirmed from XRD and Raman), optical property with
respective emission regions and oxygen vacancies (confirmed
from PL), and surface hydrophilicity (confirmed from FT-
IR). In addition, the multiple valence states of Mn2+/Mn3+

and Co2+/Co3+ along with Cu2+ may facilitate a greater num-
ber of active centers to enrich the rapid reaction kinetics for
overall water splitting. The bifunctional behavior of some pre-
vious literature reports are listed (Table 1). Overpotential is
considered as one of the important parameters of electro-
chemical activity which has been compared with some other
works in Table 1.

The cyclic voltammograms (CVs) of the fabricated elec-
trodes at 1.30 to 1.40V vs. RHE at 10 to 100mV/s scan rates
are shown in Figures 7(a)–7(d), to expose nonfaradaic
capacitive behavior. From CVs, the electrochemical active
surface area (ECSA) of electrodes is estimated and plotted
in Figure 7(e), which strongly confirms that the Mn, Co
codoped CuO electrode exhibited the higher double-layer
capacitance (Cdl) as 27.5mF/cm2, and so possessed a higher
ECSA. It is noticeably higher than those of the pure
(13.8mF/cm2), Mn-doped (22.2mF/cm2), and Co-doped
(24.8mF/cm2) CuO electrodes, possibly be due to the
sharp-edge-exposed nanoflake morphology of Mn, Co
codoped CuO with a smaller particle size, evidently increas-
ing the faster electron transfer due to the presence of highly
polarized edges to increase the ECSA and to enhance the
overall water splitting [64].

The long-term chronoamperometry (CA) test over 16h
for both OER and HER actions of the Mn, Co codoped
CuO at 1.67 and 0.186V vs. RHE is shown in Figures 7(f)
and 7(g). The image insets show the LSV graphs before
and after stability. The OER CA test shows an excellent
stability with almost no loss in the current density
(Figure 7(g)), which confirms the sturdy nature of the elec-
trode without any decay/corrosion of the surface reactivity.
The LSV graph before and after the OER test (Figure 7(f)

Table 1: Comparison of overpotential with previous literature.

Electrode Electrolyte OER/HER Overpotential Ref.

CuO/Co3O₄ 1M KOH OER 450mV @ 50mA/cm-2 [58]

NiOOH@CuO–Cu2O 1M KOH OER 262mV @ 20mA/cm-2 [59]

Cu2Se@CoSe 1M KOH OER 320mV @ 100mA/cm-2 [60]

Co-CuO nanoarray 1M KOH OER 330mV @ 100mA/cm2 [61]

Cu@CoFe (LDH) 1M KOH HER&OER 171mV for HER and 240mV for OER @ 10mA/cm2 [62]

CuO@Ni/NiFe hydroxides 1M KOH HER&OER 230mV for OER and 125mV for HER @ 10mA/cm2 [63]

Mn, Co codoped CuO 1M KOH OER&HER 468mV for OER and 271mV for HER @ 100mA/cm-2 Present work
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inset) supports the CA test that no overpotential change is
observed after 16 h of continuous OER test in the alkaline
electrolyte. The HER CA test shows 15% loss in the current
density over time. Further, the LSV graph before and after
the CA test (Figure 7(g), inset) shows the increase in overpo-
tential observed after 16 h of continuous HER test, which
might be because of the block of surface-active sites [65].
Hence, the Mn, Co codoped CuO electrode shows outstand-
ing OER stability and good HER stability over 16h of con-
tinuous water electrolysis. Moreover, the present study
reports the exceptional performance of Mn, Co codoped
CuO nanoflakes for achieving the higher 100mA/cm2 in
both HER and OER activities compared to fabricated elec-
trodes. Most studies focused only on the overpotential at
low current densities like 10 or 20mA/cm2, which is insuffi-
cient for practical applications. This is because a typical
water electrolyzer is operated at 300-400mA/cm2, and the
cell voltage required is between 1.7 and 2.4V [66]. Hence,
it is possible to subject the Mn, Co codoped electrode to
practical energy production systems without any issues in
the near future.

The postcatalytic performance of the Mn, Co codoped
CuO nanoflakes was investigated via scanning electron
microscopy (SEM), to verify the morphological stability of
the prepared sample which is shown in Figure S1(a–d).
Figure S1(a, b) represents the post-SEM analysis of OER,
and Figure S1(c, d) corresponds to the HER. It should be
noted that the nanoflake morphology slightly decomposes
into agglomerated tiny nanoparticles after the long cycling
test over 20h which possibly occurs due to the excessive
bubble formation generated during the electrolysis reaction
[67]. Moreover, compared with the pre- and post-SEM
results in Figures 3(a)–3(d) and Figure S1(a–d), the attained
nanoparticle morphology for OER and HER, that is, the
structural stability, was moderately sustained after the long-
term chronoamperometry activity. In order to confirm the
structural and phase transformation of the Mn, Co codoped
CuO electrode, the post-XRD study was done after
electrochemical performances of OER and HER which is

presented in Figure S2(a). From Figure S2(b), the post-XRD
pattern clearly revealed the existence of the main element Cu
in the small intensity range at the lattice plane (110), (002),
and (111) with respect to the 2θ degree values of 32.7°, 35.9°,
and 38.7° which is well matched with the earlier reported
JCPDS number #80-1268. Other than that, the high-intensity
peaks denote the presence of the Ni element; this may
happen due to the predominant influence of the Ni foam
conductive substrate [68]. The chemical stability of the
prepared electrode underwent the chronoamperometry test
using the 1M KOH electrolyte solution. The obtained results
are presented in Figure S3(a, b) which reveal that the Mn,
Co codoped CuO electrode withstands a long duration of up
to 20h with the least amount of loss corresponding to the
postactivity of OER and HER. The chronoamperometry
performance of OER at a low 10mA/cm2 (j10) is initially
reduced to 6.8mA/cm2 and is continuously sustained up to
20h with 32% loss. Furthermore, at 10mA/cm2 (j10), the
HER electrode inclined slightly at 7.7mA/cm2 and remained
stable for a prolonged duration of 20h with 23% loss which
is highly reliable for the bifunctional electrocatalytic
performances. The electrocatalytic activities of both half-
reactions attain stabilization after 5000 cycles. It denotes that
the prepared Mn, Co codoped CuO electrode has exhibited
great stability for a long duration after many CV cycles [69].
To further understand, the intrinsic active sites of the
prepared sample were evaluated via turnover frequency
(TOF) using the formula ðI ×NAÞ/4Fn for OER and ðI ×NAÞ
/2Fn for HER, where I denotes the current in ampere (from
LSV), NA is the Avogadro number (6:022 × 1023), 4 and 2
indicate the required number of electrons to form one oxygen
and hydrogen molecule, F is the faradaic constant (96,485C/
mol), and n denotes the number of active sites. The
overpotential value of ɳ10 = 468mV exhibits the TOF value
of 0.36 s-1 and ɳ10 = 271mV attains the TOF value of 1.1 s-1

for OER and HER, respectively, which is clearly presented in
Figure S4 and Table S1. These calculated values indicate that
the Mn, Co codoped CuO achieves high TOF values
compared to unary- (Mn- and Co-) doped CuO. Also, higher
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Figure 7: Electrochemical active surface area (ECSA) and long-term stability in 1M KOH: (a–d) cyclic voltammograms (CVs); (e) linear
plots of ECSA; (f) OER-chronoamperometry (CA); (g) HER-chronoamperometry (CA). (Image insets are corresponding LSVs before
and after CA test).
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TOF values assure the high intrinsic activity per catalytic site
which is greatly beneficial for the outstanding electrocatalytic
performance (detailed in supporting information) [70, 71].

4. Conclusions

In summary, Mn and Co codoping on CuO nanoflakes is
produced via the coprecipitation method. Herein, we intro-
duce the Mn, Co codoped CuO electrode as a competent
bifunctional electrode for water splitting. Concentrated sur-
face defects and oxygen vacancies and sharp-polarized-edge-
centered nanoflakes of Mn, Co codoped CuO were reported
for enhanced electrocatalytic activity. The abundant active
sites (Mn2+/Mn3+, Co2+/Co3+, and Cu2+) enhanced OER
and HER activities at a high 100mA/cm2 with less overpo-
tential values such as 468mV and 271mV, respectively,
and the high double-layer capacitance value of 27.5mF/
cm2 has also been achieved to attain a large surface area
for the proficient OER and HER performance. Robust OER
and good HER stability performance over 16 h was achieved
before the electrochemical analysis, and the 20 h stability
performance after the electrochemical studies was taken
and verified, exhibiting faster reaction kinetics and rapid
charge transportation. The high intrinsic catalytic activity
of Mn, Co codoped CuO nanoflakes was evaluated via the
turnover frequency with the values of 0.34 s-1 and 1.1 s-1

for OER and HER, respectively. The excellent stability of
the prepared electrode for prolonged duration in OER and
HER at an elevated current density which is favorable and
is suggested for a large-scale marketable application and a
high surface area with high current density proves that the
Mn, Co codoped CuO nanostructure is able to act as a suc-
cessful anode and cathode material to avoid energy loss dur-
ing the energy conversion progress. In the future, we will
plan to incorporate the carbon-based composites like gra-
phene, graphitic carbon nitride, and carbon nanotubes to
develop the catalytic activity and durability which has also
become one of the sustainable alternatives for the growing
energy demand. Hence, achieving high current density
(100mA/cm2) with low driving force and striking stability
for overall water splitting using an earth-abundant electroca-
talyst was reported in this work, which would serve greater
contribution to the real-time pragmatism in electrocatalytic
water splitting. Hopefully, it may become a problem-
solving electrocatalyst in the field of energy shortage envi-
ronmental problems.
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Postcatalytic performance of Mn, Co codoped CuO nano-
flakes investigated by scanning electron microscopy (SEM).
Figure S1: post-SEM analysis of Mn, Co codoped CuO after
the OER and HER electrochemical studies. Figure S2: post-
XRD analysis of Mn, Co codoped CuO nanoflakes. Figure
S3: chronoamperometry test for prepared electrode after
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