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Abstract
Forests	contribute	to	numerous	ecosystem	functions	and	services	and	contain	a	large	
proportion	of	 terrestrial	biodiversity,	but	 they	are	being	negatively	 impaced	by	an-
thropogenic	activities.	Forests	that	have	never	been	clear-cut	and	have	old	growth	
characteristics,	 termed	“near-natural,”	often	harbor	different	and	 richer	 species	as-
semblages	 than	managed	 forests.	 Alternative	management	 strategies	may	 be	 able	
to	 balance	 the	 needs	 of	 biodiversity	with	 the	 demands	 of	 forestry,	 but	 evaluation	
efforts	 are	 limited	by	 the	 challenges	 of	measuring	 biodiversity.	 Species	 richness	 is	
frequently	used	as	a	simple	measure	of	biodiversity,	but	research	indicates	that	it	may	
not	adequately	capture	community-level	changes.	Alternatively,	trait-based	measures	
of	biodiversity	may	prove	to	be	useful,	but	research	is	lacking.	In	this	paper,	we	use	
a	large	dataset	that	includes	339	obligate	saproxylic	beetle	species	collected	over	a	
decade	in	the	boreal	region	throughout	southern	Norway	to:	(1)	establish	if	there	is	
a	 difference	 in	 beetle	 community	 composition	between	near-natural	 and	managed	
forests;	and	(2)	determine	which	measures	of	beetle	biodiversity	best	indicate	forest	
naturalness.	We	arranged	the	sites	in	an	ordination	space	and	tested	for	differences	in	
community	composition	between	these	forest	types.	We	also	tested	different	meas-
ures	of	biodiversity	to	determine	which	were	the	most	predictive	of	forest	natural-
ness.	We	found	a	clear	difference	in	community	composition	between	near-natural	
and	managed	forests.	Additionally,	three	measures	of	biodiversity	were	most	predic-
tive	of	forest	naturalness:	proportional	abundance	of	predators,	community	weighted	
mean	 (CWM)	of	wing	 length,	and	CWM	of	body	 roundness.	The	probability	 that	a	
forest	was	near-natural	increased	with	the	proportional	abundance	of	predators	but	
decreased	with	CWM	wing	 length	and	body	 roundness.	Although	species	 richness	
was	higher	in	near-natural	forests,	the	effect	was	not	significant.	Overall,	our	findings	
underscore	the	conservation	value	of	near-natural	forests	and	highlight	the	potential	
of	several	measures	of	biodiversity	for	determining	forest	quality.
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1  |  INTRODUC TION

Human	 societies	 are	 deeply	 dependent	 on	 forests,	 both	 for	 eco-
nomic	gains	and	for	our	overall	wellbeing	(IPBES,	2022).	Forests	con-
tribute	to	numerous	critical	ecosystem	functions	and	services,	such	
as	the	regulation	of	the	climate,	the	absorption	of	large	amounts	of	
carbon	from	the	atmosphere,	and	the	provisioning	and	regulation	of	
fresh	water.	Additionally,	forests	contain	a	large	proportion	of	total	
terrestrial	biodiversity	(Oettel	&	Lapin,	2021).	This	is	especially	im-
portant	because	there	has	been	a	dramatic	loss	of	global	biodiversity	
in	the	last	50 years,	and	this	decline	is	predicted	to	continue	or	accel-
erate	unless	there	is	rapid,	transformative	change	(Díaz	et	al.,	2019; 
IPBES,	2018; Reid et al., 2005).	Large-scale	declines	in	forest	biodi-
versity	may	compromise	many	of	the	ecosystem	functions	and	ser-
vices	on	which	humans	rely	(Brockerhoff	et	al.,	2017).

Boreal	forests	represent	the	single	largest	pool	of	living	biomass	
on	Earth	and	span	extensive	areas	across	Earth's	northern	regions	
(DeAngelis,	2008).	These	forests	play	a	crucial	role	as	major	provid-
ers	of	ecosystem	services,	such	as	carbon	storage	and	clean	water,	
and	 serve	 as	 habitats	 for	 globally	 significant	 wildlife	 populations	
(Frelich,	2020).	Although	there	are	large	areas	of	unlogged	primeval	
forests,	boreal	forests	are	nevertheless	threatened	by	unregulated	
logging,	mining,	 oil	 extraction,	 and	 climate	 change	 (Frelich,	2020).	
In	 Northern	 Europe,	 intensive	 forestry	 (especially	 the	 extensive	
use	of	clear	cutting)	has	been	identified	as	a	main	threat	to	boreal	
forest	 biodiversity	 (Kuuluvainen,	 2009).	 Intensive	 forestry	 is	 det-
rimental	 to	 biodiversity,	 primarily	 because	 it	 homogenizes	 forest	
structure	by	reducing	the	number	of	tree	species,	tree	age	classes,	
and	 the	 amount	 and	 diversity	 of	 dead	 wood	 (Bütler	 et	 al.,	 2013; 
McGeoch	 et	 al.,	 2007;	 Oettel	 &	 Lapin,	 2021).	 Forests	 that	 have	
never	been	clear-cut	and	that	have	old	growth	characteristics	such	
as	age	class	heterogeneity	and	a	high	diversity	and	amount	of	dead	
wood	are	often	termed	“near-natural”	(Jacobsen	et	al.,	2020;	Paillet	
et al., 2010).	 Forests	 with	 these	 old	 growth	 characteristics	 have	
been	found	to	harbor	different	and	richer	species	assemblages	than	
managed	 forests	 (Jacobsen	 et	 al.,	2020; Martikainen et al., 2000; 
Similä	et	al.,	2002).	Consequently,	the	presence	of	near-natural	for-
ests	increases	the	regional	species	pool	and	has	a	positive	influence	
on	the	composition	and	richness	of	species	found	in	adjacent,	man-
aged	forests	(Butaye	et	al.,	2002).

Managing	 forests	 sustainably	 is	 challenging	 for	 many	 reasons	
(Kuuluvainen	et	al.,	2019),	and	good	decision-making	can	only	be	ac-
complished	based	on	sound	science.	Unfortunately,	measuring	and	
monitoring	forest	biodiversity	across	space	and	time	has	proven	to	
be	a	major	challenge	in	and	of	 itself	 (Burrascano	et	al.,	2021).	This	

challenge	 arises	 due	 to	 the	 complex	 nature	 of	 forests,	which	 har-
bor	large	amounts	of	biodiversity	with	taxon-specific	responses	that	
include	seasonal	appearances	and	substantial	 inter-annual	variabil-
ity,	along	with	processes	unfolding	across	large	spatial	and	tempo-
ral	 scales	 (Burrascano	et	al.,	2021;	 Storch	et	al.,	2023).	Therefore,	
trends	in	species	richness	may	be	insufficient	to	capture	more	com-
plex	 changes	 in	 biodiversity	 in	 response	 to	 human	 impacts	 and	 a	
rapidly	 changing	 climate	 (Hillebrand	et	 al.,	 2018).	 It	 has	been	 sug-
gested	that	focusing	on	forest	structure,	rather	than	directly	on	bio-
diversity,	might	be	one	solution	to	this	problem	(Storch	et	al.,	2023).	
However,	it	remains	unclear	to	what	extent	forest	structure	or	other	
simple	metrics	of	biodiversity	can	act	as	a	proxy	for	forest	biodiver-
sity as a whole.

One	way	to	make	monitoring	more	feasible	 is	to	focus	on	spe-
cific	species	or	groups	of	species	that	are	characteristic	of	habitats	
and	which	 indicate	 the	 condition	 of	 the	 community	 at	 large	 (Gao	
et al., 2015).	These	species	or	groups	of	species	are	termed	biodi-
versity	 indicators,	 and	 they	 are	 a	 frequently	 used	 tool	 to	monitor	
the	 status	of	 biodiversity,	 changes	 in	biodiversity,	 and	 the	effects	
of	management	actions	 (Oettel	&	Lapin,	2021).	One	group	of	spe-
cies	that	may	 indicate	forest	conditions	are	saproxylic	 insects	 (i.e.,	
species	that	are	dependent	on	dead	wood	for	all	or	part	of	their	life	
cycle)	 (Stokland	 et	 al.,	2012).	 Saproxylic	 beetles	 are	 a	major	 com-
ponent	 of	 forest	 biodiversity	 and	 play	 important	 roles	 in	 several	
ecosystem	processes	 (Stokland	 et	 al.,	2012;	Ulyshen,	2013, 2016; 
Wetherbee,	Birkemoe,	Skarpaas,	et	al.,	2020;	Wetherbee,	Birkemoe,	
&	 Sverdrup-Thygeson,	2020).	 Also,	 there	 is	 considerable	 evidence	
that	their	communities	respond	to	old-growth	forest	characteristics	
(Dodelin,	2010;	Jacobsen	et	al.,	2020;	McGeoch	et	al.,	2007;	Paillet	
et al., 2010;	Seibold	et	al.,	2019;	Similä	et	al.,	2002).	Thus,	saprox-
ylic	 beetle	 communities	may	 be	 good	 biodiversity	 indicators	 (Gao	
et al., 2015;	Stokland	et	al.,	2012).

Much	 of	 the	 work	 using	 saproxylic	 beetles	 as	 biodiversity	 in-
dicators	 for	 forest	 management	 has	 focused	 on	 species	 richness,	
which	 likely	 overlooks	 other	 impacts	 of	 management	 (Fleishman	
et al., 2006).	 For	 example,	 a	 reduction	 in	 forest	 structure	 due	 to	
intensive	management	 has	 been	 found	 to	 alter	 insect	 community	
composition	(Jacobsen	et	al.,	2020; Leidinger et al., 2019;	McGeoch	
et al., 2007;	Similä	et	al.,	2002),	impact	specialized	species	and	higher	
trophic	levels	(Cagnolo	et	al.,	2009;	Komonen	et	al.,	2000; Laaksonen 
et al., 2020;	Pilskog	et	al.,	2016),	 and	 reduce	 the	 functional	diver-
sity	of	 the	community	 (Drag	et	al.,	2023; Murry et al., 2017;	Neff	
et al., 2022;	Staab	et	al.,	2023).	Few	of	these	responses	would	be	cap-
tured	by	a	simple	measure	of	species	richness.	Yet,	the	results	from	
an	analysis	of	community	composition	do	not	provide	a	generalizable	
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understanding	of	how	the	community	changes	or	the	potential	con-
sequences	of	these	changes	for	ecosystem	functions	and	services,	
and	thus	have	limited	uses	as	biodiversity	indicators.	Trait-based	ap-
proaches,	on	the	other	hand,	may	provide	useful	indicators	of	biodi-
versity,	as	they	can	detect	subtle	shifts	in	communities	in	ways	that	
provide	a	more	generalizable	and	mechanistic	understanding	of	eco-
system	functioning	and	assembly	processes	(Burner	et	al.,	2022; de 
Bello	et	al.,	2021).	Functional	traits,	defined	as	a	phenotypic	aspect	
of	 an	 organism's	 morphology,	 physiology,	 phenology,	 or	 behavior	
that	affects	the	organism's	fitness	or	influences	an	ecosystem	pro-
cess	(de	Bello	et	al.,	2021; Violle et al., 2007),	can	be	especially	useful	
in	this	effort.	But	despite	the	advantages	of	trait-based	approaches,	
there	has	been	a	limited	amount	of	research	relating	trends	in	insect	
functional	traits	to	forest	management	(Murry	et	al.,	2017).

In	 this	 paper,	 we	 compare	 saproxylic	 beetle	 assemblages	 col-
lected	in	near-natural	and	managed	forests	within	the	boreal	region	
of	southern	Norway.	We	use	a	large	data	set	that	includes	339	ob-
ligate	saproxylic	beetle	species	collected	over	a	decade	across	270	
sites	throughout	southern	Norway.	The	aims	of	the	study	were	first	
to	establish	if	there	is	a	difference	in	saproxylic	beetle	community	
composition	between	near-natural	and	managed	 forests,	and	 then	
to	determine	which	measures	of	beetle	biodiversity	best	capture	the	
differences	in	forest	naturalness.	We	considered	classical	taxonom-
ic-based	measures	such	as	species	richness	and	Shannon's	diversity	
index,	as	well	as	measures	based	on	species'	functional	traits.	This	
method	enables	a	broader	application	to	other	ecosystems,	where	
comparable	 traits	or	community	structures	could	act	as	 indicators	
of	the	overall	“condition”	of	the	community.	Deciphering	this	infor-
mation	solely	from	the	habitat	can	be	challenging,	especially	when	
the	management	history	is	less	well	known	and	considering	the	slow	
pace	of	habitat	changes.	Thus,	by	identifying	which	aspects	of	sap-
roxylic	beetle	diversity	are	the	most	indicative	of	forest	naturalness,	
we	may	be	able	to	identify	biodiversity	indicators	that	can	be	used	
to	assess	forest	conditions	in	this	and	other	systems.

2  |  MATERIAL S AND METHODS

The	data	were	compiled	from	previous	work	(Birkemoe	&	Sverdrup-
Thygeson, 2015;	 Burner	 et	 al.,	 2020;	 Fossestøl	 &	 Sverdrup-
Thygeson, 2009;	Sverdrup-Thygeson	et	al.,	2017;	Sverdrup-Thygeson	
&	Ims,	2002; Vindstad et al., 2020),	where	beetle	communities	were	
sampled	 at	 270	 sites	 (near-natural = 98,	 managed = 172)	 intermit-
tently	 between	 1997	 and	 2007	 in	 the	 boreal	 region	 in	 southern	
Norway	 (Figure 1)	 as	part	of	 eight	 sampling	projects.	Most	of	 the	
Norwegian	 forest	 in	productive	 areas	has	experienced	 some	 form	
of	management.	However,	the	dominant	forest	management	model	
in	Norway	shifted	 from	selective	harvesting	 to	stand	 replacement	
around	1950	 (Helseth	et	al.,	2022).	Currently,	 the	mean	stand	age	
of	 production	 forest	 in	 Norway	 is	 approximately	 70 years,	 with	
27%	 being	 40 years	 or	 younger,	 41%	 between	 41	 and	 100 years,	
and	32%	being	older	than	100 years	 (Breidenbach	et	al.,	2020).	As	
is	typical	of	boreal	regions,	the	forests	 included	in	our	study	were	

dominated	by	 conifers	 (Pinus sylvestris and Picea abies),	with	 some	
deciduous	tree	species,	and	were	classified	as	being	either	near-nat-
ural	or	managed	based	on	their	management	history,	as	in	previous	
research	 (Burner	 et	 al.,	2021;	 Jacobsen	 et	 al.,	2020).	Near-natural	
forests	were	defined	as	forests	that	have	never	been	clear-cut	and	
contain	older	 trees,	higher	dead	wood	volume,	and	higher	hetero-
geneity	in	forest	structure	compared	to	managed	forests	(Storaunet	
et al., 2005).	Sites	classified	as	near-natural	 forest	were	 located	 in	
nature	reserves,	woodland	key	habitats,	or	in	areas	about	to	receive	
such	status	(Burner	et	al.,	2021;	Jacobsen	et	al.,	2020).	Managed	for-
ests	were	managed	as	production	forests	within	the	regulations	of	
the	PEFC	(the	Program	for	the	Endorsement	of	Forest	Certification	
Schemes,	Norway,	pefc.	org).	Lastly,	only	forests	of	mature	age	were	
included	 in	 the	 dataset,	 and	 all	 clear-cuts	were	 excluded	 because	
research	indicates	that	clear-cut	sites	are	inherently	different	from	
sites	with	mature	trees	(Burner	et	al.,	2021;	Jacobsen	et	al.,	2020).

In	all	projects,	beetles	were	sampled	using	flight	intercept	traps	
that	were	either	hanging	in	a	focal	tree,	Norway	spruce	(P. abies)	or	
Eurasian	aspen	(Populus tremula),	or	were	free	hanging	in	the	forests.	
Trap	substrates	(focal	tree	or	free	hanging)	were	roughly	comparable	
between	forest	management	categories	(Table S1).	The	design	of	the	
flight	intercept	trap	was	generally	the	same,	consisting	of	two	clear,	
intersecting	plastic	barriers	above	a	funnel	that	leads	to	a	collection	
vile.	However,	one	sampling	project	used	Polish	IBL-2	traps,	which	
consist	of	a	triangular	single-plane	mesh	barrier	above	a	funnel	that	
leads	to	a	collection	vial	(n = 38	sites).	We	controlled	for	this	and	other	
sources	of	introduced	variation	by	including	the	sampling	project	as	
a	random	effect	in	our	models	(refer	to	section	on	statistical	analysis	
for	more	details).	Sampling	took	place	from	May	to	August,	and	traps	
were	emptied	once	a	month	during	that	time.	All	beetles	collected	
at	a	single	site	were	pooled	for	each	year	for	the	analysis.	Beetles	
were	identified	to	species	level	based	on	their	morphology,	follow-
ing	the	taxonomy	of	the	Norwegian	Biodiversity	Information	Centre	
(NBIC,	2018),	and	categorized	as	obligative	saproxylic	according	to	
the	Saproxylic	Database	compiled	by	Dahlberg	and	Stokland	(2004).	
Only	obligate	saproxylic	species	were	included	in	our	analyses.	For	
additional	 details	 related	 to	 beetle	 sampling,	 please	 refer	 to	 the	
original	research	(Birkemoe	&	Sverdrup-Thygeson,	2015;	Fossestøl	
&	 Sverdrup-Thygeson,	 2009;	 Sverdrup-Thygeson	 et	 al.,	 2017; 
Sverdrup-Thygeson	&	Ims,	2002; Vindstad et al., 2020).

For	 measures	 of	 saproxylic	 beetle	 biodiversity,	 we	 included	
both	 classical	 taxonomic	 measures	 (e.g.,	 species	 richness)	 as	 well	
as	 trait	measures	 (Table 1).	Choosing	which	 traits	 to	 focus	on	 is	 a	
major	 challenge	 in	 trait-based	 ecology	 (de	 Bello	 et	 al.,	2021).	We	
therefore	 chose	 to	 include	 the	 six	 morphological	 traits	 identified	
by	 Hagge	 et	 al.	 (2021)	 as	 being	 most	 associated	 with	 saproxylic	
beetle	 extinction	 risk:	 body	 length,	 body	 width,	 body	 roundness,	
wing	 length,	wing	 load,	 and	mandibular	 aspect.	 These	 traits	were	
corrected	for	body	size	by	extracting	the	residuals	from	a	phyloge-
netically	corrected	regression	model	 that	predicted	the	respective	
trait	with	body	size	(Hagge	et	al.,	2021).	We	also	included	data	from	
Wetherbee,	Birkemoe,	Skarpaas,	et	al.,	2020;	Wetherbee,	Birkemoe,	
&	 Sverdrup-Thygeson,	2020 regarding whether the species was a 
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predator	 or	 a	 decomposer.	 Species	 were	 assigned	 to	 the	 groups	
based	on	published	literature	regarding	both	adult	and	larval	diets,	
and	therefore	the	groups	were	not	mutually	exclusive	(Wetherbee,	
Birkemoe,	 Skarpaas,	 et	 al.,	 2020;	 Wetherbee,	 Birkemoe,	 &	
Sverdrup-Thygeson,	2020).

2.1  |  Statistical analysis

We	first	calculated	several	measures	of	biodiversity	 (Table 1)	 for	
the	saproxylic	beetles	in	the	dataset	(refer	to	Table S2	for	full	spe-
cies	 list),	 including	 the	 taxonomic	 measures	 of	 species	 richness,	
Shannon	diversity	 index,	 and	 total	 abundance	 for	 each	 sampling	
location.	We	also	calculated	species	richness	and	the	proportional	
abundance	 of	 saproxylic	 beetles	 within	 two	 functional	 groups:	
predators	and	decomposers.	Furthermore,	we	computed	the	com-
munity	weighted	mean	 (CWM)	 for	each	of	 the	six	morphological	

traits.	 CWM	 represents	 the	 average	 trait	 value	 across	 all	 indi-
viduals	 in	 the	community,	weighted	by	 their	 relative	abundances	
(Garnier	et	al.,	2004).	Finally,	 to	account	 for	 the	main	aspects	of	
functional	 diversity,	 we	 calculated	 functional	 dispersion	 (FDis),	
functional	richness	(FRic),	and	functional	evenness	(FEve)	using	a	
combination	of	these	six	morphological	traits.	FDis	is	a	measure	of	
dispersion	in	trait	space	and	is	calculated	as	the	mean	distance	of	
all	species	(weighted	by	abundances)	to	the	centroid	of	the	commu-
nity	 in	multidimensional	trait	space	(Laliberte	&	Legendre,	2010).	
FRic	quantifies	the	total	volume	of	multidimensional	trait	space	(or	
convex	hull)	occupied	by	the	species	in	a	community,	reflecting	the	
extent	of	functional	differentiation	and	diversity	among	coexisting	
species	(Villéger	et	al.,	2008).	FEve	is	a	measure	of	the	regularity	
of	distance	in	trait	space	(distance	to	neighbor)	and	is	connected	to	
niche	differentiation	(Mason	et	al.,	2005),	with	lower	values	indi-
cating	higher	trait	redundancy	among	species.	We	used	the	func-
tion	 “dbFD”	 from	 the	 “FD”	package	 (Laliberte	&	Legendre,	2010)	

F I G U R E  1 Map	of	beetle	sampling	sites	in	southern	Norway.	Sites	were	classified	as	either	near-natural	(green	circles,	N = 97)	or	managed	
forest	(orange	triangles,	N = 172).	Near-natural	forests	were	defined	as	forests	that	have	never	been	clear-cut	and	that	have	older	trees,	
higher	dead	wood	volume,	and	higher	heterogeneity	in	forest	structure	compared	to	managed	forests.	Managed	forests	were	managed	as	
sustainable	production	forests	within	the	guidelines	of	the	Program	for	the	Endorsement	of	Forest	Certification	schemes	(PEFC)	and	were	in	
closed	canopy	forests	that	have	been	intensively	managed	and	clear-cut	in	the	past.
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    |  5 of 12WETHERBEE et al.

to	calculate	these	measures	of	beetle	biodiversity	for	each	site.	All	
analyses	were	completed	in	R	version	4.3.0	(R	Development	Core	
Team,	2023).

In	 order	 to	 establish	 if	 there	 was	 a	 difference	 in	 beetle	 com-
munity	 composition	 between	 near-natural	 and	 managed	 forests,	
we	arranged	 the	 sites	 in	ordination	 space	with	a	nonmetric	multi-
dimensional	 scaling	 (NMDS)	 ordination	 based	 on	 the	 Bray–Curtis	
dissimilarity	matrix	(Legendre	&	Legendre,	2012),	which	was	calcu-
lated	 from	 the	 species	 abundance	matrix.	 The	NMDS	was	 carried	
out	with	 the	 “metaMDS”	 function	 in	 the	vegan	package	 (Oksanen	
et al., 2022).	The	ordination	was	initially	carried	out	with	two	dimen-
sions	and	999	 iterations,	but	due	to	high	stress	 (>2),	we	 increased	
the	number	of	dimensions	to	three	(Figures S2 and S3).	We	subse-
quently	drew	ellipses	around	the	different	forest	types	based	on	the	
standard	 deviation	 of	 points	 (sites)	within	 each	 category	with	 the	
function	 “ordiellipse”	 in	 the	vegan	package	 (Oksanen	et	al.,	2022).	
To	test	for	a	significant	difference	in	species	composition	between	
the	 forest	 types,	 we	 used	 a	 permutational	 analysis	 of	 variance	
(PERMANOVA)	 (Anderson	et	al.,	2017)	with	 forest	 type	as	a	 fixed	
variable	and	the	sampling	project	as	a	random	variable	(strata)	using	
the	function	“adonis2”	in	the	vegan	package	(Oksanen	et	al.,	2022).	
Because	 this	 required	 multiple	 tests,	 we	 applied	 the	 Bonferroni	
correction to the p	value	and	obtained	a	new	critical	 threshold	 (α)	
of	 .003	(Haynes,	2013).

To	assess	which	measures	of	biodiversity	best	capture	 the	dif-
ferences	between	 forest	naturalness,	we	used	 the	envfit	 function	
from	the	vegan	package	(Oksanen	et	al.,	2022).	This	analysis	allowed	
us	to	evaluate	the	alignment	and	correlation	between	the	measures	
of	 biodiversity	 and	 the	 ordination	 axes	 (Table 1).	We	 then	 visual-
ized	these	relationships	by	plotting	the	measures	of	biodiversity	as	
vectors	on	the	ordination	plot	(Figure 2 and Figures S1 and S2).	We	
subsequently	built	a	generalized	linear	mixed	effect	model	(GLMM)	
with	binomial	distribution	that	predicted	forest	naturalness	(where	
near-natural	forests = 1	and	managed	forests = 0),	with	the	biodiver-
sity	measures	(Table 1)	as	fixed	effects.	Since	the	dataset	used	in	the	
study	was	a	combination	of	eight	sampling	projects,	which	included	

TA B L E  1 Measures	of	saproxylic	beetle	biodiversity	and	the	
correlation	between	each	of	these	measures	and	the	ordination	
axes	(R2).

Measure of biodiversity Type NMDS R2

CWM	body	roundness Trait .555

CWM	wing	length Trait .414

Shannon	diversity	index Taxonomic .278

Prop.	abundance	of	predators Trait .271

Species	richness Taxonomic .267

FDis Trait .264

CWM	body	length Trait .253

Predator	species	richness Trait/Taxonomic .236

FEve Trait .208

FRic Trait .203

Decomposer	species	richness Trait/Taxonomic .184

Total	abundance Taxonomic .182

Prop.	abundance	of	
decomposers

Trait .145

CWM	mandibular	aspect Trait .103

CWM	wing	load Trait .039

CWM	body	width Trait .027

Note:	Beetles	were	sampled	with	flight	intercept	traps	in	either	near-
natural	or	managed	forests.	The	R2	value	was	obtained	by	a	multiple	
regression	model	calculated	by	permutation	in	the	vegan	package.	All	
variables	were	related	to	ordination	axes	more	than	by	random	chance	
(α < .003	after	applying	the	Bonferroni	correction	for	multiple	testing).
Abbreviations:	CWM,	community	weighted	mean;	FDis,	functional	
dispersion;	FEve,	functional	evenness;	FRic,	functional	richness.

F I G U R E  2 A	plot	of	the	first	
two	dimensions	of	the	nonmetric	
multidimensional	scaling	ordination	of	
all	study	sites.	Saproxylic	beetles	were	
sampled	with	flight	intercept	traps	in	
either	near-natural	(green	circles)	or	
managed	forests	(orange	triangles).	The	
95%	confidence	ellipse	for	each	forest	
type is shown, and species richness and 
the	three	biodiversity	measures	identified	
with	the	generalized	linear	mixed	effect	
model	(GLMM)	as	being	most	predictive	of	
forest	naturalness	are	plotted	as	vectors.	
All	variables	were	related	to	ordination	
axes	more	than	by	random	chance	
(alpha < .003,	refer	to	Table 2	for	model	
results).
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6 of 12  |     WETHERBEE et al.

different	 years	 and	 slightly	 different	 geographic	 regions	 and	 trap	
types,	we	included	the	sampling	project	as	a	random	effect.	Models	
were	created	with	the	function	“glmmTMB”	from	the	package	glm-
mTMB	(Brooks	et	al.,	2017).	In	addition	to	the	biodiversity	measures,	
we	also	included	latitude	and	longitude	as	predictor	variables	in	the	
model.	All	predictor	variables	were	scaled	by	subtracting	the	mean	
and	dividing	by	the	standard	deviation	of	the	data	matrix	using	the	
scale	base	function	in	R.	To	avoid	multicollinearity,	we	calculated	the	
variance	inflation	factor	(VIF)	for	all	the	predictor	variables	and	sys-
tematically	 dropped	 the	 variables	with	 the	highest	VIF	 (Table S3).	
This	was	done	until	only	variables	with	a	VIF	below	three	remained	
(Zuur	et	al.,	2009),	and	these	variables	were	used	in	our	full	model	
(Table 2).	We	subsequently	made	a	reduced	model	using	backwards	
model	selection	with	the	function	“dropterm”	in	the	MASS	package	
(Venables	&	Ripley,	2002)	based	on	the	Akaike	information	criterion	
(AIC).	 We	 also	 made	 alterative	 single-covariate	 models	 that	 pre-
dicted	forest	naturalness	as	a	function	of	observed	species	richness,	
because	 this	 is	 a	 commonly	used	measure	of	biodiversity	but	was	

removed	during	our	model	selection	process	due	to	collinearity,	and	
as	a	function	of	body	roundness	because	it	explained	the	most	vari-
ation	in	the	ordination	but	was	also	removed	due	to	collinearity	(for	
model	results	from	the	excluded	variables,	refer	to	Table S4).	Finally,	
we	compared	these	two	additional	models	to	the	full	and	reduced	
models	 using	 AIC.	 The	 pseudo-R2	 was	 calculated	 with	 the	 func-
tion	“r.squaredGLMM”	from	the	package	MuMIn	(Lee	et	al.,	2013).	
Models	were	also	checked	for	influential	observations	and	patterns	
between	the	residuals	and	all	potential	predictor	variables,	sampling	
date,	and	geographic	location	(Zuur	et	al.,	2009).

3  |  RESULTS

Between	1997	and	2007,	we	collected	339	saproxylic	beetle	species	
and	70,695	 individuals	 from	270	 sites	 (near-natural = 98	 and	man-
aged = 172).	The	mean	species	richness	per	year	at	near-natural	sites	
was	44	 (min = 7,	max = 149),	whereas	 the	mean	species	 richness	 in	

Full model Estimate
Std. 
error p Value AIC R2m R2c

Intercept 111.522 77.680 .1511 377 .040 .908

CWM	body	length −0.276 0.216 .202

CWM	wing	length −0.451 0.209 .031*

CWM	mandibular	aspect 0.056 0.186 .762

CWM	body	width 0.041 0.173 .812

FDis 0.254 0.218 .244

Prop.	abundance	of	predators 0.353 0.178 .047*

Shannon	diversity	index −0.089 0.207 .666

FEve −1.225 2.121 .563

Latitude −1.967 1.370 .151

Longitude 0.634 0.629 .313

Reduced	model

Intercept 0.358 2.657 .893 369 .011 .915

CWM	wing	length −0.490 0.193 .011*

Prop.	abundance	of	predators 0.327 0.151 .031*

Alternative	models

Intercept 0.955 3.2946 .772 377 .003 .873

Species	richness 0.411 0.2338 .079

Intercept 0.527 2.877 .855 362 .011 .847

CWM	body	roundness −0.726 0.173 <.001*

Note:	Forest	naturalness	(near-natural = 1,	managed = 0)	was	modeled	with	a	generalized	linear	
mixed	effect	model	(GLMM)	with	binomial	distribution,	measures	of	beetle	biodiversity,	latitude,	
and	longitude	as	fixed	effects,	and	the	sampling	project	as	a	random	effect.	Only	variables	with	a	
variance	inflation	factor	(VIF)	below	three	were	included	in	the	full	model,	and	the	reduced	model	
was	obtained	by	performing	backward	model	selection	using	the	Akaike	information	criterion	
(AIC).	We	also	made	alternative	models	that	predicted	forest	naturalness	based	on	species	richness	
and	body	roundness	because	the	ordination	indicated	that	they	may	be	important	predictors	of	
forest	naturalness,	but	they	could	not	be	included	in	the	full	model	due	to	collinearity.
Abbreviations:	CWM,	community	weighted	mean;	FDis,	functional	dispersion;	FEve,	functional	
evenness.
*	indicates	significance	at	.05	threshold.

TA B L E  2 Results	from	models	that	
predicted	forest	naturalness	using	
measures	of	saproxylic	beetle	biodiversity.
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    |  7 of 12WETHERBEE et al.

managed	forests	was	30	(min = 5,	max = 100).	We	found	a	clear	dif-
ference	 in	beetle	 taxonomic	community	composition	between	 the	
forest	types.	The	results	from	the	PERMANOVA	test	indicated	that	
there	was	a	significant	difference	between	the	forest	types	after	999	
permutations	(R2 = .045,	df = 654,	F = 30.782,	p = .001).	Additionally,	
all	 the	measures	 of	 biodiversity	were	 significantly	 related	 to	 ordi-
nation	axes	 (Table 1).	Furthermore,	 the	NMDS	showed	separation	
in	ordination	 space	between	 forest	 types	 along	both	NMDS1	and	
NMDS2	(stress = 0.198,	Figure 2).

Overall,	our	analysis	pointed	 to	 three	measures	of	biodiversity	
that	 were	 the	most	 predictive	 of	 forest	 naturalness:	 proportional	
abundance	of	predators,	CWM	of	wing	 length,	and	CWM	of	body	
roundness	 (Table 1 and Figures 2 and 3).	After	 the	model	 section	
process,	we	obtained	a	reduced	model	that	included	both	the	pro-
portional	abundance	of	predators	and	the	CWM	of	wing	length	as	
predictors	 (Table 2 and Figure 4).	 The	model	 indicates	 that	 a	 for-
est	is	more	likely	to	be	near-natural	with	an	increasing	proportional	
abundance	of	beetle	predators	(est.	= 1.760,	p = .023)	and	decreasing	
beetle	wing	length	(est. = −4.614,	p = .013).	We	also	made	two	alter-
native	models	 that	 predicted	 forest	 naturalness	with	body	 round-
ness	and	with	species	richness.	These	variables	were	excluded	from	
the	full	model	due	to	collinearity,	but	the	ordination	indicated	that	

they	may	be	important	predictors	of	forest	naturalness.	Results	from	
these	models	indicated	that	a	forest	is	more	likely	to	be	near-natural	
with	decreasing	body	roundness	of	saproxylic	beetles	(est. = −7.386,	
p < .001)	and	that	a	forest	is	more	likely	to	be	near-natural	with	an	in-
creasing	number	of	species,	although	this	effect	was	not	significant	
(est. = 0.018,	p = .079).	When	the	AIC	of	the	full,	 reduced,	and	two	
single-covariate	models	were	 compared,	 the	model	 including	 only	
body	roundness	was	the	lowest	(Table 2).

4  |  DISCUSSION

This	study	had	two	main	aims.	First,	to	establish	if	there	was	a	dif-
ference	 in	 saproxylic	 beetle	 community	 composition	 between	
near-natural	and	managed	forests,	and	second,	to	determine	which	
measures	of	biodiversity	best	capture	the	differences	in	forest	natu-
ralness.	We	found	that	the	species	composition	of	saproxylic	beetles	
differed	between	near-natural	and	managed	forests.	We	also	found	
that	the	proportional	abundance	of	predators,	CWM	of	wing	length,	
and	CWM	of	body	roundness	of	saproxylic	beetles	were	the	most	
predictive	of	 forest	naturalness.	Although	species	richness	tended	
to	be	higher	 in	near-natural	forests,	the	effect	was	not	significant.	

F I G U R E  3 Boxplots	of	the	three	measures	of	saproxylic	beetle	biodiversity	identified	with	the	generalized	linear	mixed	effect	(GLMM)	
model	as	being	most	predictive	of	forest	naturalness	and	species	richness	plotted	for	near-natural	and	managed	forests.	The	boxplots	show	
the	median,	first,	and	third	quartiles,	with	whiskers	that	extend	1.5	times	the	interquartile	range.	The	p	value	in	the	top	right	corner	of	the	
plots	is	for	the	effects	of	each	variable	from	the	models	that	predicted	forest	naturalness	(refer	to	Table 2	for	models	and	results).	CWM,	
community	weighted	mean.
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8 of 12  |     WETHERBEE et al.

It	should	also	be	noted	that	these	models	had	low	predictive	power,	
and	this	underscores	the	notable	variation	within	saproxylic	beetle	
communities.	 However,	 the	 ordination	 revealed	 similar	 patterns,	
with	 the	 highest	 correlation	 being	 between	 these	 same	measures	
of	 biodiversity	 and	 the	 ordination	 axes.	 Thus,	 our	work	 highlights	
several	aspects	of	saproxylic	beetle	communities	that	are	most	sen-
sitive	to	 intensive	forest	management	and	contributes	to	the	 large	
body	of	knowledge	indicating	that	anthropogenic	activities	alter	the	
community	composition	and	traits	of	forest-dwelling	insects	(Habel	
et al., 2019).

The	 differences	 between	 near-natural	 and	 managed	 forests	
were	best	captured	by	differences	 in	community	composition	and	
trait	metrics	rather	than	species	richness.	Species	richness	is	the	pri-
mary	measure	of	biodiversity,	and	previous	research	has	found	that	
it	is	influenced	by	forest	management	intensity	(Habel	et	al.,	2019; 
Jacobsen	et	al.,	2020; Martikainen et al., 2000;	Müller	et	al.,	2008).	
However,	other	research	indicates	that	the	species	richness	of	sap-
roxylic	 beetles	 or	 forest	 beetles	 more	 broadly	 is	 not	 necessarily	
higher	in	natural	versus	managed	forests,	while	simultaneously	find-
ing	large	differences	in	other	measures	of	biodiversity,	such	as	com-
munity	 composition	 (Martikainen	et	 al.,	2000;	 Similä	et	 al.,	2003).	
Therefore,	 a	 focus	 on	 species	 richness	 as	 the	 primary	 (or	 only)	
measure	 of	 biodiversity	 may	 lead	 to	 confusion	 about	 anthropo-
genic	impacts	on	nature	(Hillebrand	et	al.,	2018).	For	example,	some	

researchers	have	concluded	that	the	literature	remains	equivocal	in	
regards	to	the	impacts	of	intensive	forest	management	on	biodiver-
sity	(as	measured	by	species	richness)	and	suggests	that	increases	in	
management	intensity	may	not	be	detrimental	to	forest	biodiversity	
(Asbeck	et	al.,	2021),	despite	considerable	evidence	to	the	contrary	
(Jacobsen	et	al.,	2020;	Kuuluvainen,	2009;	Kuuluvainen	et	al.,	2019; 
Martikainen et al., 2000;	McGeoch	et	al.,	2007; Miller et al., 2009; 
Paillet	et	al.,	2010;	Savilaakso	et	al.,	2021).	Furthermore,	reductions	
in	environmental	quality	can	result	in	temporary,	localized	increases	
in	species	richness	or	abundance	due	to	the	temporal	dynamics	of	
emigration	and	extinction	(Hillebrand	et	al.,	2018).	Thus,	measure-
ments	beyond	species	 richness	are	needed	to	better	measure	and	
monitor	the	effects	of	forest	management.

Our	results	indicate	that	some	traits	of	saproxylic	beetles	may	be	
more	indicative	of	the	effects	of	intensive	forestry	and	may	be	more	
useful	as	biodiversity	indicators.	We	found	that	the	proportional	abun-
dance	of	predators,	the	CWM	of	wing	length,	and	the	CWM	of	body	
roundness	 of	 saproxylic	 beetles	 were	 the	 best	 predictors	 of	 forest	
naturalness.	Specifically,	the	probability	that	the	forest	was	near-nat-
ural	increased	with	the	proportional	abundance	of	predators	and	with	
decreasing	 CWM	 of	 wing	 length	 and	 body	 roundness.	 Specialized	
predators	on	the	top	of	food	chains	are	especially	vulnerable	to	habitat	
loss	and	fragmentation	(With,	2019),	and	research	focused	on	boreal	
forests	 has	 also	 found	 that	 habitat	 loss	 and	 fragmentation	 truncate	

F I G U R E  4 Plots	of	the	marginal	effects	of	each	variable	from	the	models	that	best	predicted	forest	naturalness	(near-natural = 1	(green),	
managed = 0	(orange))	with	measures	of	saproxylic	beetle	biodiversity.	A	model	including	only	the	community	weighted	mean	(CWM)	of	
body	roundness	community	ranked	highest	using	the	Akaike	information	criterion	(AIC),	followed	by	a	model	that	included	the	community	
weighted	mean	(CWM)	of	wing	length	and	the	proportional	abundance	of	predators.	The	probability	of	the	forest	being	near-natural	
decreased	with	increasing	body	roundness	(left)	and	wing	length	(middle)	but	increased	as	the	proportional	abundance	of	predators	
increased	(refer	to	Table 2	for	model	results).	Other	model	covariates	were	held	at	their	mean	across	the	gradients.
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    |  9 of 12WETHERBEE et al.

the	food	chains	of	saproxylic	species	(Cagnolo	et	al.,	2009;	Komonen	
et al., 2000).	This	clearly	indicates	that	insect	predators	are	vulnerable	
to	 intensive	forest	management,	a	point	that	has	been	corroborated	
by	recent	research	(Staab	et	al.,	2023).	Insect	predation	is	an	import-
ant	 ecosystem	 function	 that	 is	 sensitive	 to	 landscape	 simplification	
(Dainese	et	al.,	2019),	and	greater	diversity	of	beetle	predators	is	re-
lated	to	higher	insect	predation	rates	in	forests	(Wetherbee,	Birkemoe,	
&	Sverdrup-Thygeson,	2020).	Also,	 research	on	 the	natural	 enemies	
of	bark	beetles	indicates	that	invertebrate	predators	play	a	major	role	
in	 regulating	 their	 populations	 (Khanday	 et	 al.,	 2018;	Wegensteiner	
et al., 2015).	Therefore,	our	results	highlight	the	potential	cost	of	in-
tensive	forest	management	in	that	it	may	degrade	forest	resilience	by	
diminishing	predatory	communities,	potentially	increasing	the	chances	
of	insect	pest	outbreaks	(Snyder,	2019).

Our	findings	also	 indicate	that	species	with	reduced	dispersal	
ability	are	sensitive	to	intensive	forest	management.	Research	has	
also	 found	 that	 traits	 related	 to	 dispersal	 ability,	 including	 wing	
length,	 decreased	 with	 the	 proportion	 of	 broadleaf	 trees	 (Neff	
et al., 2022).	Neff	et	al.	(2022)	suggest	that	the	mechanism	behind	
this	result	is	that	conifers	have	been	relatively	recently	introduced	
into	Central	Europe	for	 forestry	purposes,	and	conifer	specialists	
with	 low	dispersal	abilities	have	not	been	able	to	establish	them-
selves	yet.	However,	this	interpretation	does	not	fit	well	with	our	
results	since	we	found	similar	effects	 in	Northern	Europe,	where	
conifers	 have	 long	 been	 part	 of	 forests	 (Binney	 et	 al.,	2017).	 An	
alternative	 explanation	 is	 related	 to	 the	 stability–dispersal	 hy-
pothesis,	which	states	that	species	using	more	stable	habitat	have	
lower	dispersal	ability	than	species	using	more	ephemeral	habitat	
(Southwood,	1977).	Research	 related	 to	 forest	beetles	has	 found	
support	 for	 this	 hypothesis,	 in	 that	 guilds	 associated	with	 stable	
habitat	were	affected	by	landscape	structures	at	smaller	geograph-
ical	 scales	 than	guilds	of	 less	stable	habitats	 (Percel	et	al.,	2019).	
Unfortunately,	 stable	 microhabitats,	 such	 as	 tree	 hollows	 and	
large-diameter	dead	wood,	are	rare	or	entirely	absent	in	managed	
forests	(Bütler	et	al.,	2013).	Thus,	the	loss	of	stable	microhabitats	
due	to	intensive	forest	management	presents	a	major	conservation	
challenge.

Additionally,	we	found	that	the	roundness	of	the	saproxylic	bee-
tle's	body	was	predictive	of	forest	naturalness.	Other	research	has	
found	 some	 indication	 that	 beetle	 body	 shape	 responds	 to	 forest	
structure	(Barton	et	al.,	2011; Micó et al., 2020; Hagge et al., 2021; 
Neff	 et	 al.,	2022; Traylor et al., 2023),	 and	 this	 is	 enough	 to	 indi-
cate	that	there	may	be	an	important	mechanism	at	work.	However,	
which	mechanisms	underlie	this	trait	in	relation	to	forest	structure	
remain	an	open	question.	Some	research	indicates	that	body	round-
ness	increases	with	microhabitat	openness	(Barton	et	al.,	2011;	Neff	
et al., 2022),	whereas	other	research	indicates	that	it	may	be	associ-
ated	with	tree	hollows	(Micó	et	al.,	2020).	Hagge	et	al.	(2021)	suggest	
that	body	flatness	(being	the	opposite	of	roundness)	may	be	associ-
ated	with	phylum	feeders.	None	of	these	explanations	fit	well	with	
our	results	since	body	roundness	was	a	negative	predictor	of	forest	
naturalness,	 and	 near-natural	 forests	 are	 typically	more	 open	 and	
more	 likely	 to	 have	 hollow	 trees	 than	managed	 forests.	However,	

recent	research	indicates	that	body	roundness	is	negatively	associ-
ated	with	forest	age	(Traylor	et	al.,	2023),	and	this	corresponds	with	
our results.

Interestingly,	 CWM	 of	 body	 roundness	 was	 negatively	 cor-
related	with	the	proportional	abundance	of	predators	and	positively	
correlated	with	CWM	wing	length	in	our	data	set.	Thus,	it	is	difficult	
to	know	which	(if	any)	trait	is	directly	related	to	forest	naturalness.	
It	 is	 important	 to	 point	 out	 that	 these	 are	 site-level	 measures	 of	
functional	diversity,	and	this	does	not	mean	that	these	traits	are	cor-
related	for	any	single	species.	Instead,	it	indicates	that	e.g.	sites	with	
a	high	proportional	abundance	of	predators	or	sites	with	a	low	mean	
value	for	wing	length	also	tend	to	have	species	that	are	less	round.	
Systematic	differences	in	this	body	shape	at	the	site	level	could	have	
implications	 for	 how	 the	 community	 responds	 to	 environmental	
change	since	body	shape	influences	species'	cold	and	water	loss	tol-
erance	(de	Bello	et	al.,	2021;	Porter	&	Kearney,	2009).	Despite	the	
lack	of	a	clear	mechanism,	body	roundness	was	predictive	of	forest	
naturalness,	is	a	simple	trait	to	measure,	and	thus	may	have	utility	for	
research	and	monitoring	programs.

5  |  CONCLUSION

In	conclusion,	this	study	provides	evidence	of	a	clear	difference	in	
saproxylic	 beetle	 community	 composition	 between	 near-natural	
and	managed	 boreal	 forests,	 with	 near-natural	 forests	 supporting	
beetle	assemblages	with	distinct	trait	compositions.	Our	results	in-
dicated	that	although	species	richness	may	be	influenced	by	forest	
management,	it	is	not	necessarily	a	good	predictor	of	forest	natural-
ness.	 In	contrast,	the	functional	traits	of	wing	length,	proportional	
abundance	of	predators,	and	body	roundness	were	identified	as	the	
best	predictors	of	forest	type.	These	results	indicate	that	species	at	
higher	trophic	levels	and	with	reduced	dispersal	ability	are	sensitive	
to	intensive	forest	management.	Systemic	changes	in	a	community's	
trait	 composition	 and	 changes	 to	 higher	 trophic	 levels	 may	 have	
consequences	 for	 ecosystem	 functioning	 and	biological	 responses	
to	 environmental	 changes.	 Overall,	 our	 findings	 underscore	 the	
importance	of	preserving	near-natural	boreal	forests	for	their	con-
servation	value	 and	highlight	 the	potential	 of	 several	measures	of	
biodiversity	for	determining	forest	quality	for	future	monitoring	and	
management	efforts.
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