
Science of Remote Sensing 8 (2023) 100093

Available online 12 June 2023
2666-0172/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

High-resolution mapping of forest structure from integrated SAR and 
optical images using an enhanced U-net method 

Michele Gazzea *, Adrian Solheim, Reza Arghandeh 
Western Norway University of Applied Sciences, Inndalsveien 28, Bergen, 5063, Norway   

A R T I C L E  I N F O   

Keywords: 
Vegetation monitoring 
Optical 
Sar 
Deep learning 

A B S T R A C T   

Forest structure is an essential part of biodiversity and ecological analysis and provides crucial insights to address 
challenges in these areas. Modern sensor technologies unlock new possibilities for more advanced vegetation 
monitoring. This study examines the potential of single high resolution X-band synthetic aperture radar (SAR) 
and optical images for pixel-wise mapping of four forest structure attributes (height, average height, fractional 
cover, and density) at a striking 0.5 m resolution. The study site is situated in Western Norway, hosting trees from 
flatlands to elevated mountainous areas and in-between. The proposed model architecture, called PSE-UNet, is a 
modified UNet incorporating key components from state-of-the-art deep learning from the field of forest struc-
ture monitoring. A comparative analysis involving state-of-the-art models shows promising results with MAE% 
between 21.5 and 24.7, depending on the variable.   

1. Introduction 

Forests are the most dominant terrestrial ecosystem on Earth and 
support most of the world’s terrestrial species (Arroyo-Rodríguez et al., 
2020). Moreover, forests hold 45% of the world’s active carbon (Fischer 
et al., 2019), (Stovall et al., 2021). Conserving forest structure compo-
nents enhances biodiversity and ecosystem functioning (Casula et al., 
2021), (LaRue et al., 2020), (Camarretta et al., 2020). Forest structure 
attributes are biodiversity indicators and, thus, valuable metrics for 
monitoring biodiversity. These attributes can also aid in tracking the 
effects of management actions towards sustainable use (Oettel and 
Lapin, 2021), (Camarretta et al., 2020). 

Remote sensing has an exceptional ability to monitor forest variables 
over time enabling solutions of unprecedented scale and low cost. As a 
result, local high-resolution surveys covering relatively large swaths are 
becoming possible at lower costs. Remote sensing exploits modern 
sensor technologies to monitor the Earth’s surface from afar, thanks to 
advancements in computer vision. Passive optical sensors capture elec-
tromagnetic waves from visible light to near-infrared invisible light. 
Active SAR sensors transmit radio wave pulses, which make them 
operational without the sun needing to illuminate the surface. SAR 
operates with wavelengths up to 1 m enabling the sensor to work in 
adverse climatic and ground conditions, such as penetrating through 
cloud cover or accessing sub-canopy layers in forests. However, the 

active radar sensor is susceptible to speckles, often called noise. Speckle 
is not noise but a scattering phenomenon that arises because the sensor’s 
resolution is insufficient to resolve individual scatterers. SAR is also a 
side-looking radar that opens it up to unwanted effects such as layover, 
shadowing, and foreshortening. More research on SAR imagery is 
needed to fully exploit its advantages and address some of its challenges. 

The data fusion of SAR and optical sensor technologies improve 
predictions more than any single sensor technology alone, which speaks 
to the complementary information these unique sensor technologies 
have to offer (Ge et al., 2022; Chen et al., 2018; Laurin et al., 2018; Shao 
et al., 2017). SAR imagery is available during all weather conditions and 
can characterize the structural properties of objects. However, it does 
not contain spectral information, has poor interpretability, and is sus-
ceptible to speckle noise. On the other hand, optical images have rich 
spectral information (often composed of several spectral bands), which 
is crucial for many remote sensing applications. Thus, SAR and optical 
imagery offer complementary information about the imaged area. 
Fusing these images helps synthetically generate an image rich in spatial 
and spectral information (Kulkarni and Rege, 2020). Accurately merging 
SAR and optical data is a current research field, and many methods, 
including recently machine learning-based algorithms, have been pro-
posed (Safari and Sohrabi, 2020), (Sommervold et al., 2023). 

Various studies have experimented with optical images and machine 
learning approaches for describing forest structure, such as forest 
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canopy height (Potapov et al., 2021) and carbon stock (Lang et al., 
2107). Fully connected deep neural networks (DNN) have been applied 
to predict forest structure attributes such as growing stock volume (GSV) 
(Astola et al., 2019, 2021; Chrysafis et al., 2017). Forest height is one of 
the most common forest structure attributes estimated using optical data 
(Lang et al., 2107; Potapov et al., 2021; Waldeland et al., 2022; Lang 
et al., 2019). A convolutional neural network (CNN) inspired by the 
Xception architecture achieved low error with an MAE between 1.7 m 
and 4.3 m in Gabon and Switzerland (Lang et al., 2019). UNet is a 
modern deep learning architecture that has recently been proposed to 
estimate forest height (MAE = 4.6 m) over Congolian rainforests and 
forests in Tanzania (Waldeland et al., 2022). Generalized additive 
models were trained in (Korhonen et al., 2017) to estimate canopy cover 
and Leaf Area Index (LAI), resulting in a coefficient of determination R2 

= 0.687 and R2 = 0.74, respectively. In a recent study, (Potapov et al., 
2021), a bagged regression tree ensemble was implemented to predict 
forest height with MAE = 6.36 m using Landsat data. 

In parallel, other studies have used SAR data for forest structure 
estimation. A Random Forest (RF) regression model used SAR time series 
for predicting stand level (20 m, 40 m, and 100 m) cells of forest height 
and fractional canopy cover with RMSE scores of 4.6 m and 0.08, 
respectively (Bruggisser et al., 2021). In (Ge et al., ), the authors use SAR 
Sentinel-1 time-series data to predict forest growing stock volume using 
support vector and random forests regression. The advantage of feeding 
SAR data to deep learning compared to traditional semi-empirical 
methods was demonstrated in (Ghosh and Behera, 2021) estimating 
above-ground biomass (AGB). A Bayesian ResNeXt model trained and 
examined the contribution of SAR inputs on estimating forest structure 
attributes height, average height, cover, density, and Gini coefficient in 
(Becker et al., 2111). Similarly, deep learning and machine learning 
models were trained on SAR inputs in (Waldeland et al., 2022) for forest 
height estimation. Recent sensor ablation studies generally agree that 
optical imagery contributes more to forest structure estimation than SAR 
(Becker et al., 2111; Waldeland et al., 2022). On the contrary, SAR time 
series has shown to be superior to single optical images (Waldeland 
et al., 2022) for mapping forest height. We see SAR time series superior 
to single SAR images in other forest applications such as mapping of 
forest harvesting (Zhao et al., 2022). 

Very few studies tried to combine the two sensors for better forest 
characterization. Clerici et al. (2017) used a combination of Sentinel-1 
(SAR) and Sentinel-2 (optical) for land cover mapping in Colombia. 
Ge et al. (2022) used the same Sentinel-1 and Sentinel-2 imagery for 
forest height mapping. In (Hirschmugl et al., 2020), authors used SAR 
and optical Sentinel time series data for tropical forest mapping. 

The literature shows that the European Space Agency (ESA)’s 
Sentinel satellites are the most widely used imagery source for this 
application. However, the spatial resolution for both Sentinel-1 (SAR) 
and Sentinel-2 (optical) is 10 m/pixel, which is suitable for large-scale 
applications (forest stands). Still, it is not precise enough to estimate 
forest attributes at a smaller scale (e.g., at the tree or near-tree level). 
Nowadays, commercial operators can provide high-resolution images 
for both optical and SAR. These types of sensors, especially the high- 
resolution SAR, are very recent, and extensive research in this direc-
tion is still lacking. Based on our knowledge, no experiments have been 
performed yet for forest structure retrieval using single, high-resolution 
(50 cm) SAT and optical imagery. 

As such, in this paper, we present a deep learning model to generate 
high-resolution (in this study, 50 cm per pixel) forest structure maps by 
regressing the following variables: forest height, average forest height, 
forest cover, and forest density. Our proposed framework relies on a 
UNet architecture as a baseline model, enhanced with sensor-specific 
entry blocks, Squeeze-and-Excitation blocks, and partial convolutions com-
ponents. The framework is called Partial Convolution and Squeeze-and- 
Excitation-based UNet (PSE-UNet) for mapping forest structure. The 
proposed PSE-UNet-based forest structure modeling framework is 
trained and tested on a dataset consisting of pairs of high-resolution (50 

cm per pixel) satellite images, namely multispectral optical and X-band 
SAR images. To our knowledge, combining X-band and optical images at 
this resolution has not been done before for mapping forest structures. 

To summarize, the main contributions are as follows:  

1. Using a single view and 50 cm per pixel resolution SAR and optical 
image for pixel-wise forest structure mapping.  

2. Developing a deep learning model to simultaneously estimate forest 
height, average height, forest cover, and forest density. We show that 
our model achieves comparable, and for some forest attributes 
improvement, in the estimation predictions while being at the same 
time faster to train. 

2. Data description 

2.1. Study area 

The study area is located in Askvoll, Western Norway, and covers 
roughly 22.5 km2 (see Fig. 1). Norwegian spruce, pine, and deciduous 
trees constitute the majority of trees in the area (Norwegian institute of 
bioeconomy research (nibio), 2022). The terrain ranges from flat to 
mountainous regions of up to 230 m elevation. Trees are distributed 
across both low and high elevations but also reside in more challenging 
areas, such as residential areas and terrain with significant vertical 
elevation changes, such as steep slopes and cliffs. 

2.2. LiDAR data 

Forest structure reference maps are computed from LiDAR point 
clouds originally captured by airborne laser scanning (ALS). ALS data is 
available through a national program that provides nationwide point 
cloud coverage accessible to the public. Point clouds with 25 points/m2 

density from May 2018 was carried out by Terratec AS, covering the 
entire study area (see Fig. 3). Each point in the point cloud is measured 
as a height above sea level. 

2.3. Optical data 

The Pléiades 1A and Pléiades 1B satellites produce very-high- 
resolution 50 cm multispectral imagery products. The multispectral 
image used in this study was captured in July 2021 and includes four 
bands, i.e., RGB and near-infrared (NIR) (see Fig. 3). Optical images are 
prone to obstruction by cloud coverage, and thus the image is selected 
for being cloud-free across the entire area of interest. 

2.4. SAR data 

ICEYE-X8 was launched as recently as January 2021 and is the source 
of the SAR image used in this study (see Figs. 2 and 3). The image was 
captured in June 2021 in Spotlight mode and yields an unprecedented 
ground sampling distance (i.e., spatial resolution) of 0.5 m with the 
image already multi-looked (i.e., a preprocessing step to reduce the 
grainy effect of speckle). The X-band satellite image is downloaded as a 
Ground Range Detected (GRD) amplitude image processed from a 
complex image. In other words, in-phase and quadrature complex pixels 
are converted into amplitude-only values. Fig. 2 shows a side-by-side 
comparison of optical and SAR images for a portion of the study area. 

3. Methodology 

Our proposed PSE-UNet-based framework for mapping of forest 
structure has two major blocks: data generation and preprocessing 
(Block 1) and PSE-UNet-based mapping of forest structure (Block 2) (see 
Fig. 4). This section outlines the data generation and preprocessing steps 
of Block 1 3.1: Satellite imagery preprocessing, tree mask generation, 
LiDAR, and constructing the datasets. In Block 2, we closely examine the 
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deep learning model 3.2 by dissecting the fundamental components of 
the model architecture. Finally, also part of Block 2, we explain the 
training process 3.3 for all models in this study. 

3.1. Block 1: data generation 

The major tasks for Block 1 are preprocessing the input SAR and 
optical data and generating ground truth from the LiDAR point cloud 

(see Fig. 3). We explain the major components of Block 1 as follows: 

3.1.1. Satellite imagery preprocessing 
The ICEYE products are amplitude-only and come multi-looked, a 

technique to reduce speckle by processing the image in sections (looks) 
and later combining these sections back together (Vavriv and Bezve-
silniy, 2013). More looks decrease speckle noise but lead to a decrease in 
the resolution and loss of information in the process. The SAR image in 

Fig. 1. The study site is located in Askvoll, Western Norway.  

Fig. 2. Side-by-side comparison of two images up close by (a) Pléiades optical and (b) ICEYE SAR sensors for a portion of the study area.  
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this study is formed from 4 independent looks. Speckle filtering is 
another technique that can be applied in conjunction with 
multi-looking. However, we refrained from denoising the SAR image 
beyond the preprocessing step already performed by ICEYE. Speckle has 
already been decreased, and speckle filtering will reduce resolution and 
lose information even further. 

The downloaded image is already projected to the ground surface 
and has a natural range-azimuth orientation. However, SAR is a side- 
looking radar capturing information in varied, rugged terrain, so 
radiometric terrain correction is needed as a processing step. In rugged 
terrain, the changing local imaging geometry may result in backscatter 
changes up to ±5 dB (Loew and Mauser, 2007). Radiometric terrain 
correction corrects the backscatter intensity of pixels distorted by the 
local incidence angle. Range Doppler terrain correction was performed 
using the SNAP toolbox (Sentinel application platform, 2022) with a 

high-resolution Digital Terrain Model (DTM) provided by the TerraTec 
ALS survey. 

As the last step, both SAR and optical went through a manual affine 
transformation shifting pixel positions for both images to more closely 
overlap the ground truth images. The offset was calculated with respect 
to the ground truth (i.e., LiDAR), and it was 1 m in the north-south di-
rection and 16 m in the west-east direction. In very high-resolution 
imagery, offsets become very noticeable and negatively affect the 
model when training. 

3.1.2. LiDAR preprocessing 
The ALS survey was carried out and processed by TerraTec AS. 

TerraTec classifies points through automatic labeling using their in- 
house software package TerraSolid and manual editing for classes 
such as bridges. Points in the raw point cloud are distinguished by 

Fig. 3. (a) Normalized LiDAR point cloud, (b) Optical image, and (c) SAR image over the study area located in Askvoll, Western Norway.  

Fig. 4. Pipeline of our approach: in the first part (Block 1), we create the dataset from the available input as SAR, optical imagery, and LiDAR point clouds. In the 
second part (Block 2), we train a model to infer the forest structure attributes. 
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ground, noise, and unclassified labels. Using points classified as ground 
points, the entire point cloud is normalized to the height above ground 
by subtracting ground point height values from residual points’ height 
values. Lastly, all ground points are set to zero. 

3.1.3. Forest structure attributes 
Finally, the following forest structure attributes are calculated per 

cell. A cell is a 2D square that groups 3D points from the LiDAR point 
clouds. Each cell matches the dimensions of the satellite spatial resolu-
tion (in our study, 0.5 × 0.5 m) and contains LiDAR 3D points 
measurements.  

● Height (m): calculated from the highest points. In this case, the 95th 
percentile of the highest points is selected to counteract some of the 
inevitable noise captured by the LiDAR sensor, such as birds and 
power lines. Height is one of the most common forest characteristics 
to estimate and is an important component of forest structural 
complexity.  

● Average Height (m): the average height of all vegetation points (i.e., 
points > 1.37 m) within each cell. Average Height gives insight into 
the vertical distribution of vegetation and can be used as a predictor 
of forest biomass (Astrup et al., 2019)  

● Forest Cover (%): the % of first return vegetation points compared to 
all first returns. The fraction of ground covered by vegetation, often 
referred to as fractional cover, corresponds to the fraction of ground 
covered by vegetation and considers only the horizontal distribution 
of vegetation cover (i.e., a 2-D variable).  

● Forest Density (%): the % of vegetation points compared to all points. 
Compared to forest cover, forest density include information about 
the vertical distribution of vegetation points within a cell. 

A more visual representation of how these forest structure variables 
are calculated can be seen in Fig. 5. 

3.1.4. Tree mask generation 
This study is focused on estimating forest structure attributes, and 

hence only forested pixels are of interest. A binary mask denoting 
whether a pixel is forested or not is used to define valid pixels. Image 
patches without valid pixels are discarded. As such, only valid pixels 
count toward the loss during training. 

The first component of the tree mask is the Normalized Difference 
Vegetation Index (NDVI) (Rouse et al., 1973) calculated from 
near-infrared (NIR) and red band (see Eq. (1)). 

NDVI =
NIR − Red
NIR + Red

(1) 

The NDVI is an indicator ranging between − 1 and 1 expressing the 
amount of chlorophyll in objects. Rocks, sand, water, or concrete show 
very low NDVI values (0.1 or less). Sparse vegetation, such as shrubs and 
grasslands or senescing crops results in moderate NDVI values 
(approximately 0.2–0.5). High NDVI values (approximately from 0.5 to 
0.6 to 1) correspond to dense vegetation such as that found in temperate 
forests or crops at their peak growth stage. Therefore, for the NDVI, we 
selected a threshold of 0.55 as a value of “greenness” for the vegetation 
under investigation. 

To exclude non-forested vegetation, such as fields, we set an addi-
tional threshold on the height value for LiDAR point clouds as 1.37 m for 
valid pixels. Such a threshold for trees is justified by the fact that one of 
the most common botanical measurements for trees is the “Diameter at 
breast height” (DBH), which is defined as the diameter of a tree trunk 
when at the height of an adult’s breast, which is set practically at 1.37. 

Fig. 5. Deriving forest metrics from LiDAR point cloud. Note that in the figure, the density and distribution of LiDAR points are used only for visualization purposes.  
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Although we were not interested in estimating the DBH in this study, the 
threshold of 1.37 m is often chosen to distinguish LiDAR points that can 
belong to trees from bushes or not yet developed trees (Tinkham et al., 
2017). 

The last component of the tree mask is, in particular for this use case, 
a consequence of the time discrepancy between the input satellite im-
ages and the LiDAR point cloud acquisition. Between 2018 and 2021, in 
certain areas, trees were cut down. Consequently, a deforestation mask 
is created by visual inspection to address most of these pixels. These 
three binary masks denote whether a pixel is forested, given all condi-
tions are true for that pixel (see Eq. (2)). 

Tree  mask = (NDVI > 0.55) ∧ (Height> 1.37) ∧ ¬(Deforested) (2) 

Morphological image processing is performed on the mask through 
erosion and dilation. This technique removes unwanted artifacts and 
isolated points from an image that may still be present (Fig. 6). 

Erosion is performed using a 2 × 2 structuring element, effectively 
shrinking image pixels. Dilation utilizes the same structuring element to 
restore and retain outlying vegetation pixels. The operation, usually 
referred to as opening, overall removes noise artifacts without changing 
the image boundaries. 

3.1.5. Dataset generation 
A polygon is generated as the intersection of all inputs and the 

LiDAR-derived ground truth (GT) defining the area of interest (AOI) in 
this study (see Eq. (3)). Subsequently, every raster is clipped to this 
polygon. 

AOI = (OPT) ∩ (SAR) ∩ (GT) (3) 

The input and ground truth images have been clipped to the AOI 
polygon (Eq. (3)), creating tensors of matching size (i.e., matching 
height and width H × W). A sliding window is used to generate patches 
from both the input image (i.e., SAR and optical) and the ground truth. 
We generate patches of size 64 × 64 pixels, with a slide of 32 pixels. As 
such, the algorithm extracts patches with some overlap. If the patch does 
not contain any trees or any of the input images (SAR and optical) 
contain pixels with NaN values, the patch is discarded. However, the 
percentage of discarded patches due to NaN values was very low 
(0.01%). The dataset is split as 70/10/20 percent for training, valida-
tion, and testing, respectively. 

3.2. Block 2: PSE-UNet architecture 

The second block in our framework includes our proposed PSE-UNet 
architecture (see Fig. 7). The PSE-UNet architecture is based on the 
following components: 

3.2.1. Partial convolutions layer 
Traditionally, when performing convolutions in CNNs, the input 

tensor is padded to retain the spatial dimensions. Padding extends the 
original input with a border filled with fixed values using different 

padding schemes such as zeros-padding, the most common, reflect, or 
replicate. These methods add data that are either unrelated to input data 
(zero padding) or plausible at best (reflect or replicate). The added or 
repeated pixel values at the borders are considered valid and treated 
equally as the original input, which may confuse the network. The 
proposed network replaces regular convolutional layers with partial 
convolutions, originally proposed to handle images with missing data, 
such as images with holes (Liu et al., 2018). Partial based convolutional 
padding is a new padding scheme introduced in (Liu et al., 2023). The 
padded regions are treated as holes in the input data, and partial 
convolutional-based padding allows performing convolutions at the 
edge of the patch without training the network on unrelated pixels 
introduced by padding. 

3.2.2. Entry blocks 
Early convolutional layers aim to 1) learn basic features on very high 

spatial resolution inputs and 2) potential denoising. Optical inputs go 
through a basic 1 × 1 convolutional layer, batch normalization, and a 
rectified linear unit (ReLU). In contrast, the SAR entry block uses a 5 × 5 
convolutional layer. The reason behind this is a larger filter considers a 
larger input field and can potentially smooth out some of the speckle 
noise inherent in SAR imagery as shown in (Becker et al., 2111). Batch 
normalization and ReLU follows. Entry blocks can be thought of as a 
sensor-specific preprocessing step and have previously been applied to 
deep learning on forest structure in (Becker et al., 2111) with SAR op-
tical data fusion. 

3.2.3. UNet block 
The baseline model consists of a UNet architecture initially devel-

oped for biomedical image segmentation (Ronneberger et al., 2015). 
UNet has been applied to estimating and mapping forest structural pa-
rameters, such as in (Lang et al., 2019) with forest height. UNet can 
extract deeper features and retain spatial information by introducing 
skip connections to an encoder-decoder network. 

The encoder, also called the contracting path, contains a sequence of 
3 × 3 convolution, batch normalization, and ReLU that is repeated 
twice, followed by a 2 × 2 MaxPool at each level. For each level in the 
encoder, the spatial dimensions are halved while the channel di-
mensions are doubled. 

The bottommost layer, sometimes referred to as the bottleneck, is 
similar to the preceding levels, except the MaxPool layer is replaced with 
Dropout with probability p = 0.3, which is only in effect during training 
in order to reduce overfitting. 

The decoder, also called the expansive path, starts each level with a 
2 × 2 transpose convolution followed by concatenating the feature map 
from the same-level skip-connection and ends with a double sequence of 
3 × 3 convolution, batch normalization, and ReLU. UNet achieves 
feature reusability through concatenation from the skip connections. 
The decoder doubles the spatial dimensions and half the channel di-
mensions for each successive step through the decoder, ultimately 
restoring the feature map to its original size. 

The last layer is a 1 × 1 convolution, reducing the number of chan-
nels down to the number of forest variables. For fractional variable 
outputs (cover & density), a final sigmoid activation function σ = 1

1+e− 1 is 
applied to keep the predictions within the 0 to 1 range. 

3.2.4. Channel attention 
Convolution operations extract information by fusing spatial and 

channel-wise information within local receptive fields. The Squeeze- 
and-Excitation (SE) block is a lightweight gating mechanism intro-
duced in (Hu et al., 2018) to focus on the channel relationship and 
explicitly model interdependencies between channels at a minimal 
additional computational cost. In this context, the model can learn to 
recognize sensor-specific characteristics in the input data sensitive to 
forest structure (i.e., wavelength and polarization). 

Fig. 6. The mask before a) and after b) eroding and dilating. The power lines 
spanning across the right border of the untreated mask a) are removed by 
erosion and dilation in the processed mask b). 
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The squeeze operation flattens the spatial dimensions of a tensor T 
from C × H × W to C × 1 × 1. The squeezing process Fsq is achieved by 
channel-wise global average pooling (GAP) to generate the vector z with 
values zc from each channel tensor tc (see Eq. (4)). The result can be 
interpreted as a vector of local descriptors expressive for the whole 
image. 

zc = Fsq(tc) =
1

H × W
∑H

i=1

∑W

j=1
tc(i, j) (4) 

The excitation operation captures the nonlinear dependencies be-
tween channels through a gating mechanism Fex. The vector after exci-
tation, s, is generated from the squeezed tensor z by two convolutions 
W1 and W2 followed by a ReLU function δ and sigmoid function σ. W1 
reduce the number of channels to C

2 after which ReLU δ is applied. 
Subsequently, W2 restores the number of channels C followed by σ 
finalizing the weights for each channel (see Eq. (5)). 

s = Fex(z) = σ(W2δ(W1z) ) (5) 

Finally, the original tensor is effectively scaled by multiplication 
with the corresponding scalar for each channel from the excitation 
process (see Eq. (6)). The result is a new recalibrated tensor T̃ = [t̃1, t̃2,… 
, t̃C] where (Fig. 8) 

t̃c = Fscale(tc, sc) = sctc (6)  

3.3. Block 2: PSE-UNet model training 

Another major component of Block 2 is training the PSE-UNet model 
for mapping forest structures. The training and test dataset consists of 
64 × 64 patches in batches of B = 64. In total, there are C = 5 input 
channels. Four optical bands (Red, Green, black, and Near-infrared) and 
a single VV SAR polarization form a tensor T = B × C × 64 × 64 at 
runtime. Non-forested pixels and pixels without corresponding obser-
vations (i.e., missing values in the ground truth) are not considered 
when calculating the loss. During training, the dataset is shuffled after 
each epoch. Before jumping to the next epoch, the model is validated 
against the validation dataset. A collection of the best-performing and 
most trained models are stored for further testing and analysis. Model 
parameters θ are saved, given that the model performance on the vali-
dation set has improved since the previous best-performing model. 
Additionally, at the tail end of the training process, the model parame-
ters of the last five models are saved. The model that performs best on 
the test dataset is ultimately selected as the best model θ*. Given the 
regression task, the Mean Squared Error (MSE) is implemented as the 
loss function by calculating the average squared difference between 
predicted ŷ and observed y values. 

MSE =

∑

i
(ŷi − yi)

2

n
(4)  

Fig. 7. Proposed UNet architecture with Squeeze-Excitation blocks and entry blocks for each sensor. Convolutional layers refer to partial convolutions.  

Fig. 8. Channel-wise recalibration of a tensor T through an SE block.  
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4. Results & discussion 

In this section, we go over each model from the comparative analysis 
and how they are evaluated. Then we discuss the height and fractional 
variable results and analyze the sensor ablation study results. 

4.1. Experimental setup 

The training was performed on Linux with a single NVIDIA GeForce 
RTX 3060 and 32 GB RAM. The codebase was implemented in Python 
3.10.4 using PyTorch 1.11.0. Adam was selected as the optimization 
method with learning rate γ = 5 × 10− 4, weight decay λ = 10− 4, betas β1 
= 0.9, β2 = 0.999 and ε = 1e − 08. Additionally, the MultiStepLR 
scheduling technique was used to reduce the decay of the learning rate 
at fixed milestones. GradScaler was used to prevent gradient values from 
flushing to zero. 

A test dataset consisting of unseen forested areas. Only the innermost 
32 × 32 predicted pixels of the patch are preserved, resulting in no 
overlapping predictions. This mean ignoring a border ofPatch Size

4 pixels. 
Discarding the predictions residing at the edge of the patch allows more 
spatial context for each patch prediction (Huang et al., 1805). 

To evaluate the performance of the proposed network architecture, a 
set of state-of-the-art deep learning models is trained on the same data 
for comparison. These architectures have previously been tested on at 
least one forest structure attribute.  

● UNet: The first model is a UNet proposed in (Waldeland et al., 2022) 
fitted to Sentinel-2 optical data in order to produce forest height 
maps with per-pixel forest height estimates. A few modifications are 
made to the original model such that it accepts SAR inputs as well. 

● SeUNet: The second model is a UNet extended with SqueezeExcita-
tion blocks proposed in (Ge et al., 2022) estimating forest height. The 
original paper implements a semi-supervised training strategy. In 
this study, SeUNet is trained on the entire dataset in a supervised 
manner.  

● UNet3+: A new modified version of the UNet architecture improving 
on the also recent UNet++ architecture. UNet3+, with and without 
deep supervision, has shown great promise surpassing previous state- 
of-the-art approaches in segmentation (Huang et al., 2020). A 
simpler UNet3+ without deep supervision is implemented here and 
tested in forest structure estimation. 

● ResNeXt: Lastly, a large ResNeXt architecture retaining spatial di-
mensions of feature maps throughout the entire network is imple-
mented. The ResNeXt model was proposed in (Becker et al., 2111) 
with Bayesian deep learning predicting forest structure attributes 
along with their associated uncertainties. In this study, the ResNeXt 
model is trained using the MSE loss function instead of the negative 
log-likelihood of the original paper. 

Given the size of the ResNeXt architecture, the spatial dimensions of 
the input are halved to address limited GPU memory. This yields input 
tensors T = B × C × 32 × 32 with stride = 16 and retaining only the 
innermost 16 × 16 pixels accordingly. 

The experimentation phase found most of the convergence to happen 
early, before or around 30 epochs for most of the models. 30 epochs 
were selected as the best middle ground between convergence and 
training time. Training time differed significantly between the fastest 
and slowest models. The number of trainable parameters also highlights 
differences between the models. Table 1 illustrates the disparity in 
training time for the same amount of epochs. 

4.2. Performance metrics 

Metrics for evaluating the performance of each model are Root Mean 
Squared Error (RMSE) (see Eq. (7)), MAE (see Eq. (9)), and their 

normalized counterparts (see Eq. (8) & Eq. (10)). Reiterating from 
previously, y and ŷ denote predicted and observed values while y de-
notes the mean of observed values. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i
(ŷi − yi)

2

n

√
√
√
√

(7)  

RMSE% =
RMSE

y
⋅100% (8)  

MAE =

∑

i
|ŷi − yi|

n
(9)  

MAE% =
MAE

y
⋅100% (10)  

4.3. PSE-UNet performance evaluation 

To evaluate the performance of the proposed PSE-UNet we first 
compare its performance in estimating all forest structure variables to 
the other models. 

The results showcase the proposed model’s ability to outperform 
several state-of-the-art DL models on forest height metrics (see Table 2) 
and perform similarly to other models on fractional variables (see 
Table 3). Forest height estimation performance is particularly inter-
esting, considering most of these models were originally trained for 
estimating forest height. Here we achieve low mean absolute errors of 
2.23 m and 1.99 m for forest height and forest average height, respec-
tively (see Table 2). On forest height, our proposed PSE-UNet model 
performed 17.4%, 15.2%, 6.3% and 3.9% better than UNet3+, ResNeXt, 
SeUNet and UNet, respectively, in terms of RMSE. There are no partic-
ular stand-out performers in regard to the fractional variables (see 
Table 3). Most models achieve a mean absolute error of 0.18. Density 
mapping slightly favors the SeUNet architecture. UNet3+ edged out the 
other models on forest cover. 

The scatter matrix, however, paints a slightly different picture (see 
Fig. 9). The proposed PSE-UNet model shows that the height predictions 
correlate well with the ground truth. There is observable uncertainty, 
and predictions skew slightly towards underestimating both height and 
average height. By contrast, the model seems to struggle with predicting 
fractional variables. While the model has been able to reduce prediction 
errors, it has not adequately established the relationship between input 
features and the fractional output variables. This is more true for forest 
cover than forest density. Density predictions show a stronger correla-
tion with ground truth than the cover attribute. The cover and density 
ground truth pixels are mostly clustered at the higher value range. As a 
result, the model sees mostly high cover and high density during 
training. The inability of any model to adequately recognize the frac-
tional features leaves more to be desired and motivates similar efforts on 
larger datasets. Looking more closely at the forest cover and forest 
density scatter plots, it is noticeable that there are gaps in the plots. 
Forest cover and forest density are continuous variables, but due to how 
these variables are calculated 5, they can practically become discrete 
variables when the LiDAR point density is low. This is a side-effect of 
deriving forest metrics from sub-meter cells isolating LiDAR points into 
smaller groups for each calculation. Since forest cover is calculated from 
first returns only, this effect is more prominent for forest cover as a 

Table 1 
Training time.   

UNet ( 
Waldeland 
et al., 2022) 

SeUNet ( 
Ge et al., 
2022) 

UNet3þ ( 
Huang 
et al., 2020) 

ResNeXt ( 
Becker 
et al., 2111) 

Proposed 

Time 26 min 51 min 4 h 10 min 16 h 48 min 49 min 
Params 7.2 M 7.8 M 27 M 27.4 M 32.5 M  
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consequence of further limiting the number of LiDAR points. 
To better visualize the output of our PSE-UNet-based forest structure 

map, we create 80 × 400 m stripes of prediction value, ground truth 
(reference), and error (MAE) for the selected forest structure parameters 
under the study (see Fig. 10. These output stripes are selected to show an 

uninterrupted contiguous community of trees and simultaneously 
illustrate the level of prediction detail achievable from high-resolution 
forest structure modeling. The predictions appear more smoothed out 
compared to the reference maps indicating that the model is unable to 
estimate the fine-grained texture of the canopy. Instead, the predictions 
are more continuous as of a more smooth canopy surface. 

Forest cover is subject to gaps in the canopy layer where LiDAR 
pulses penetrate straight through to the ground layer. When looking at 
very high-resolution forest cover maps, these gaps appear as holes 
scattered across entire forest stands. Normally these gaps are averaged 
out when working with high to low-resolution mapping rendering them 
effectively nonexistent. In this case, however, these gaps become more 
prominent. The forest cover MAE error map 10 illustrates this with high 
error pixels (dark red spots) scattered across as a grainy effect 
throughout the entire MAE stripe. The forest cover scatter plot 9 high-
lights this at the bottom, where a cluster of forest pixels with 0 cover has 
not been identified by the model. The model is unable to resolve this 
level of detail within the canopy using SAR and optical. Furthermore, 
the time discrepancy between SAR and optical images and the derived 
maps from LiDAR make fine details like this nearly impossible to esti-
mate regardless of the model. 

4.4. SAR-optical ablation study 

A SAR-optical ablation study is performed to analyze the contribu-
tion of each sensor technology to the model performance in estimating 
all forest structure variables. The results are summarized in Table 4. 

Some studies suggest that optical imagery has better performance 
than SAR imagery for mapping forest structure [26, 20, 13]. Our SAR- 
optical ablation study confirms this statement. However, there is a 
notable improvement in height and average height predictions when we 
combine SAR and optical images. For Cover and Density parameters, 
combining SAR and optical does not lead to a noticeable improvement in 

Table 2 
Forest height characterization error.    

MAE (m) MAE% RMSE (m) RMSE% 

Height UNet 2.32 22.31 3.23 31.08 
SeUNet 2.38 22.86 3.37 32.44 
UNet3+ 2.70 26.02 3.62 34.87 
ResNeXt 2.63 25.31 3.70 35.61 
Proposed 2.23 21.49 3.11 29.96 

Avg. Height UNet 2.06 23.08 2.89 32.46 
SeUNet 2.11 23.62 3.03 33.97 
UNet3+ 2.37 26.61 3.17 35.55 
ResNeXt 2.31 25.96 3.29 36.98 
Proposed 1.99 22.32 2.79 31.33  

Table 3 
Cover & density characterization error.    

MAE MAE% RMSE RMSE% 

Cover UNet 0.18 20.93 0.24 27.13 
SeUNet 0.18 20.82 0.24 27.02 
UNet3+ 0.17 19.46 0.24 27.54 
ResNeXt 0.18 21.02 0.24 27.61 
Proposed 0.18 20.78 0.24 27.14 

Density UNet 0.18 24.71 0.22 30.94 
SeUNet 0.17 24.12 0.21 30.18 
UNet3+ 0.18 24.79 0.22 31.19 
ResNeXt 0.18 25.12 0.22 31.32 
Proposed 0.18 24.68 0.22 30.98  

Fig. 9. Scatter plots from the proposed model predictions of all forest structure variables on the test dataset.  
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comparison to the optical-only case. The lack of penetration capability 
of the X-band SAR sensor is likely a limiting factor for forest structure 
modeling. SAR sensors of longer wavelengths are able to penetrate 
deeper into the canopy and reveal more structural information. It should 
be noted that for cover and density, SAR-only performed relatively close 
to the opt-only case. Overall, combining SAR and optical still has ad-
vantages compared to SAR-only or optical-only cases. 

4.5. Practical challenges and lessons learned 

Considering the increase in high-resolution SAR data availability 
through commercial providers, it is crucial to study the unique advan-
tages of SAR in different applications, including forest structure 

modeling. However, at 0.5 m resolution, there are some challenges that 
become more prominent than those with lower resolution. 

4.5.1. Challenges with SAR and opt data 
With only a single SAR image, the model is more exposed to un-

wanted effects such as layover, foreshortening, and shadow. A SAR 
image in ascending orbit can be unable to capture accurate information 
behind a mountain ridge due to SAR being a side-looking radar system. A 
corresponding image from the descending orbit will provide comple-
mentary information filling much of what is missed in the original 
image. Most studies utilize multiple SAR images in deep learning, either 
as time series or ascending/descending pairs. SAR time series can exploit 
methods to reduce speckle. However, very high-resolution SAR imagery 
is scarce compared to open datasets such as Sentinel. Multiple SAR 
images should be explored for high-resolution forest structure moni-
toring with deep learning. 

A considerable portion of sections with high elevation in the SAR 
image was negatively affected by the terrain correction such that the 
SAR pixels were unable to correctly overlap the corresponding ground 
truth pixels. In other words, there was a slight offset that could resolve to 
meters in ground distance. Thus, high-resolution DEM data is needed for 
localization registration. Furthermore, optical and SAR automatic co- 
registration could help in solving the possible mismatch issues (Som-
mervold et al., 2023). Longer wavelengths may be better suited for 
mapping forest structures due to increased penetration capabilities 
(Omar et al., 2017). However, they can generate also more complex 
signals from sub-canopy, trunks, and even ground coupling as shown in 
Fig. 11. 

Fig. 10. 400 m stripes of predictions, reference and error of all forest variables.  

Table 4 
Opt & SAR sensitivity results of proposed model.   

Input MAE (m) MAE% RMSE (m) RMSE% 

Height Opt 2.32 22.30 3.23 31.10 
SAR 3.19 30.65 4.25 40.93 
Opt + SAR 2.23 21.49 3.11 29.96 

Avg. Height Opt 2.05 23.01 2.89 32.42 
SAR 2.77 31.14 3.78 42.37 
Opt + SAR 1.99 22.32 2.79 31.33 

Cover Opt 0.18 20.88 0.24 27.11 
SAR 0.19 21.50 0.24 27.57 
Opt + SAR 0.18 20.78 0.24 27.14 

Density Opt 0.17 24.76 0.22 30.96 
SAR 0.19 25.90 0.23 31.99 
Opt + SAR 0.18 24.68 0.22 30.98  
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Optical is an excellent technology for capturing information about 
the surface and can be further complemented with sub-canopy infor-
mation from penetrating deeper into the canopy with SAR. 

4.5.2. Challenges with LiDAR data 
When deriving forest metrics from LiDAR at the sub-meter resolu-

tion, the number of points used for each calculation is significantly 
reduced. As mentioned in the evaluation section 4.3, the LiDAR-derived 
forest metrics become extremely sensitive to each LiDAR pulse when the 
point density is low. The forest cover low points are distributed across 
the forest canopies, and the model is unable to identify them. The sig-
moid σ activation function was applied to the fractional variables to 
ensure the prediction were distributed within the appropriate range. 
Testing other activation functions, such as tanh did not improve the 
results. Future works should encourage more training on forest cover 
and forest density by ensuring a large enough dataset. 

Normalizing a point cloud for the purpose of mapping tree height 
presents a few challenges. The method of using ground points to 
normalize non-ground points (e.g., vegetation points) to the height 
above ground is subject to extreme outliers in terrain with steep inclines 
creating towering high points (see Fig. 12a). 

Norway is one of Europe’s most mountainous countries, which 
makes creating accurate ground truth challenging in some areas. 
Extreme cases of erroneous height values are easily detectable due to 
their striking height and, in this case, appear mostly around mountains 
at the very edges of the point cloud. A more subtle case of erroneous 
terrain-induced high points happens in forested terrain with steep slopes 
or cliffs. The effect of sloped terrain on deriving forest metrics from 
LiDAR is known (Khosravipour et al., 2015). Vegetation points of trees 
can reside far enough out horizontally from the tree stem such that the 
ground point selected for normalizing is substantially lower compared to 
the true ground level of the tree. This can inflate the height value of the 
given vegetation point (see Fig. 12b). The more subtle case of artificial 
high points can occur inside a contiguous community of trees and be 
very hard to detect within a dense cloud of points. Thus, it is hard to 
estimate the scale of the issue at first glance. 

5. Conclusions 

The results showed that the proposed PSE-UNet model can perform 
very high-resolution mapping of forest structures using a single SAR and 
optical image. The proposed model performs well on mapping height, as 

Fig. 11. Short wavelength (for example the X-band) signal reflects from canopy surface while long wavelength (for example the P-band) signal penetrates through 
canopy and reflects from stems and terrain surface. 

Fig. 12. (a): Showcasing terrain-induced false tree height after normalization. (b): LiDAR points at >100 m above sea level (m.a.s.l) showcasing terrain-induced tree 
height anomaly after normalization. 
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supported by the literature. Overall, the results were satisfactory, 
considering the challenges discussed. In particular, we got higher per-
formances on forest height estimation compared to other state-of-the-art 
models. Longer wavelength SAR bands such as L- and P-band should be 
explored for this use case. Challenges related to very-high-resolution 
mapping of forest structure were highlighted, such as gaps in the 
LiDAR-derived ground truth due to low point density and the effect of 
rugged terrain in normalizing the point cloud. In regard to future works, 
we focus on other forest metrics to improve forest structure high- 
resolution mapping.URL https://doi.org/10.3390/rs15030850. 
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