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Abstract
Objective.Gradient-based optimization using algorithmic derivatives can be a useful technique to
improve engineering designs with respect to a computer-implemented objective function. Likewise,
uncertainty quantification through computer simulations can be carried out bymeans of derivatives
of the computer simulation.However, the effectiveness of these techniques depends on how ‘well-
linearizable’ the software is. In this study, we assess howpromising derivative information of a typical
proton computed tomography (pCT) scan computer simulation is for the aforementioned
applications.Approach.This study ismainly based on numerical experiments, inwhichwe repeatedly
evaluate three representative computational steps with perturbed input values.We support our
observationswith a review of the algorithmic steps and arithmetic operations performed by the
software, using debugging techniques.Main results.Themodel-based iterative reconstruction (MBIR)
subprocedure (at the end of the software pipeline) and theMonte Carlo (MC) simulation (at the
beginning)were piecewise differentiable. However, the observed high density andmagnitude of jumps
was likely to precludemostmeaningful uses of the derivatives. Jumps in theMBIR function arose from
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the discrete computation of the set of voxels intersected by a proton path, and could be reduced in
magnitude by a ‘fuzzy voxels’ approach. The investigated jumps in theMC function arose from local
changes in the control flow that affected the amount of consumed randomnumbers. The tracking
algorithm solves an inherently non-differentiable problem. Significance.Besides the technical
challenges ofmerely applying AD to existing software projects, theMCandMBIR codesmust be
adapted to compute smoother functions. For theMBIR code, we presented one possible approach for
this while for theMC code, this will be subject to further research. For the tracking subprocedure,
further research on surrogatemodels is necessary.

1. Introduction

The option of treating cancer using beams of high-energy charged particles (mainly protons) is becomingmore
andmore available on aworld-wide scale. Themain advantage over conventional x-ray radiotherapy lies in a
possibly lower dose deposited outside the tumor, as the energy deposition of protons is concentrated around the
so-calledBragg peak. The depth of the Bragg peak depends on the beam energy and the relative stopping power
(RSP) of the tissue it traverses. Thus, treatment planning relies on a three-dimensional RSP image of the patient.
In the state of the art calibration procedure of x-ray CT for proton therapy, scanner-specific look-up tables are
used to convert the information retrieved fromx-ray (single-energy or dual-energy)CT acquisitions into anRSP
image: this approach comeswith an uncertainty of the Bragg peak location of up to 3%of the range
(Paganetti 2012, Yang et al 2012,Wohlfahrt andRichter 2020). On the other hand, the direct reconstruction of a
proton CT image using a high-energy proton beamand a particle detector has been shown to be intrinsically
more accurate (Yang et al 2010,Dedes et al 2019).

To this end, the Bergen proton computed tomography (pCT) collaboration (Alme et al 2020) is designing
and building a high-granularity digital tracking calorimeter (DTC) as a clinical prototype to be used as proton
imaging device in existing treatment facilities for proton therapy. Its sensitive hardware consists of two tracking
and 41 calorimeter layers of 108 ALPIDE (ALICEpixel detector) chips (Aglieri Rinella 2017) each. After
traversing the patient, energetic protonswill activate pixel clusters around their tracks in each layer until they are
stopped, as shown infigure 1. In each read-out cycle, the layer-wise binary activation images fromhundreds of
protons are collected and used to reconstruct the protons’ paths and ranges through the detector and thus their
residual direction and energy after leaving the patient. Based on this data from various beampositions and
directions, amodel-based iterative reconstruction (MBIR) algorithm reconstructs the three-dimensional RSP
image of the patient. The reconstructions of proton histories and of the RSP image are displayed as twomain
subprocedures infigure 2(a), alongwith aMonte Carlo simulation subprocedure to generate the detector output
instead of a real device for testing and optimization purposes.

Algorithmic differentiation (AD) (Griewank andWalther 2008,Naumann 2011) is a set of techniques to
efficiently obtain precise derivatives of amathematical function given by a computer program. Such derivatives
have been successfully used to solve optimization problems in various contexts, such asmachine learning (ML)
(Baydin et al 2017) and computational fluid dynamics (CFD) (Albring et al 2016), andAD is currently also
adopted in the fundamental physics community for detector optimization (Baydin et al 2021, Strong et al
2022a, 2022b, Dorigo et al 2023). In all of these applications, an objective or loss function is formulated,
whichmaps

• a set of n inputs for a design choice: e.g. weights of a neural network inML, an airfoil shape inCFD, or,
prospectively, geometry andmaterial composition parameters of a detector; to

• a single scalar output representing howwell this design performs: e.g. the training error inML, aerodynamic
drag or lift in CFD, or application-specificmeasures of physics performance of a detector.

Derivatives of the objective functionwith respect to its inputs are obtained via reverse-modeAD.A gradient-based
optimization algorithmuses these derivatives tofind sets of input values thatminimize (ormaximize) the
objective function. This way it trains theMLmodel,finds an optimal aerodynamic design choice, or—which is
what this work prepares theway for—finds optimal detector designs.

The advantage of gradient-based optimizationwith reverse-mode algorithmic derivatives, comparedwith
gradient-free optimization algorithms likemanual tuning of individual parameters (in the easiest case), is that a
higher number of design parameters can be jointly optimized, themathematical theory e.g. on convergence
speeds is further developed, and optimality criteria based on the gradient give a less arbitrary criterion onwhen
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Figure 1. Schematic figure of the scanning process.

Figure 2.Computational steps in the pCT reconstruction pipeline. (a)Overview of the pCT reconstruction pipeline. (b)
Computational steps of theMonte Carlo Simulation. (c)Computational steps of the proton reconstruction subprocedure. (d)
Computational steps of theMBIR subprocedure.
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to stop searching for even better designs. Aside fromoptimization, particularmethodologies for uncertainty
quantification (UQ) involve derivatives.

Integrating AD into a bundle of big and complex pieces of software is usually amajor technical effort. In
addition to that, (algorithmic) derivatives aremost useful for gradient-based optimization andUQ if the
differentiated function is sufficiently smooth.Non-differentiable operations such as rounding employed tofind
the voxel that contains a given point,floating-point comparisons to determine the physics process happening
next, and stochasticity of aMonte-Carlo simulation in general,may reduce the value of derivative information
depending on howoften they appear.We thus cannot expect the ultimate goal of our research line, an fully
differentiated pipeline allowing for an efficientminimization of the average error of the reconstructed RSP
image, towork out-of-the-box after ADhas been integrated in all parts of the pCTpipeline. In this work, we
study how smooth three representative substeps of the pCT reconstruction process are. To this end, we observe
reactions of specific outputs on changes in a single input parameter keeping the other inputsfixed, explain our
observations, and proposemitigationmeasures for observed non-smooth behaviour.

In section 2.1, we summarize all the computational steps of the software pipeline in greater detail. Section 2.2
is a general introduction into the purpose and calculation of derivatives of computer programs. The numerical
experiments are outlined in section 2.3 and their results are stated in section 3. In section 4, we analyze the
observed discontinuous or non-differentiable behaviour and proposeways tomitigate it, and closewith a
summary and conclusions in section 5.

2.Methods

2.1. Simulation of protonCTdata acquisition and processing
2.1.1. Foundations
When energetic protons pass throughmatter, they slow down in a stochastic way,mainly due to inelastic

interactionswith the bound electrons. The average rate E

s

¶
¶

of kinetic energy E lost per travelled length s is called

stopping power.We denote it by S E x,( ) , indicating its dependency on the current energy E of the proton and the
localmaterial present at location x


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The dependency onE has been dropped in the notation because in the relevant range between 30 and 200MeV,
the RSP is essentially energy independent (Hurley et al 2012).

Separating variables and integrating, one obtains
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This integral value is called thewater-equivalent path length (WEPL).
In list-mode, or single-event, pCT imaging,millions of protons are sent through the patient, and their

positions, directions and energies are recorded separately, both before entering and after leaving the patient. In
the setup conceived by the Bergen pCT collaboration and sketched infigure 1, the exitmeasurements are
performed by the tracking layers of theDTC, through the processing steps outlined in section 2.1.3. The setup at
hand infers the positions and directions of entering protons from the beamdeliverymonitoring system, and
therefore does not require a second pair of tracking layers in front of the patient; this has been shown sufficiently
accurate for dose-planning purposes throughMC simulation studies (Sølie et al 2020). For other pCT (and
proton radiography) projects, see e.g. Pemler et al (1999), Hurley et al (2012), Scaringella et al (2013), Saraya et al
(2014), Naimuddin et al (2016), Esposito et al (2018),Mattiazzo et al (2018),Meyer et al (2020), DeJongh et al
(2021).

2.1.2.Monte Carlo subprocedure
Figure 2(b) displays the intermediate variables and computational steps of theMonte Carlo subprocedure to
simulate the detector. Its central step is the open-source softwareGATE (Jan et al 2004) for simulations in
medical imaging and radiotherapy, based on theGeant4 toolkit (Agostinelli et al 2003, Allison et al 2006, 2016).
Given a description of the relevant properties of the detector-patient setup like detector geometry and physics
parameters and the original RSP distribution inside the patient, GATEproduces stochastically independent
paths of single particles through the setup.Whenever interactions occur, with a certain probability distribution,
the turnout for the proton at hand is decided by a randomnumber from a pseudo-randomnumber generator
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(RNG). Such randomnumbers represent ‘true’ randomness sufficiently well (asmeasured by specific statistical
tests) but are computed deterministically from an initial state called the seed.

The epitaxial layers of theALPIDE chips aremodelled as singlecrystalSD volumes inGATE, so the
positions and energy losses of all charged particles passing these volumes are recorded. Additional code converts
these hits to clusters of pixels activated by electron diffusion around the track, whose size corresponds to the
recorded energy loss (Pettersen et al 2019, Tambave et al 2020). Depending on the exact choice of parameters,
about 100 protons pass through theDTCduring one read-out cycle of the real detector.

2.1.3. Proton track reconstruction
Figure 2(c) displays the computational steps to convert the binary activation images per layer and read-out cycle,
either produced by the real detector or by theMonte Carlo procedure in section 2.1.2, back to continuous
coordinates and energies of protons.

Orthogonally neighbouring activated pixels are grouped into clusters per layer and read-out cycle, as they
likely originate fromone proton. The proton’s coordinate is given by the cluster’s center ofmass and its energy
deposition is related to the size of the cluster (Pettersen et al 2017, Tambave et al 2020).

In the tracking step, a track-following procedure (Strandlie and Frühwirth 2010) attempts tomatch clusters
in bordering layers likely belonging to the same particle trajectory. The angular change between the
extrapolation of a growing track and cluster candidates in a given layer isminimized in a recursive fashion
(Pettersen et al 2019, 2020).

Based on the cluster coordinates in the two tracking layers of theDTC, the position and direction of the
proton exiting the patient can be inferred. A vector x(PD) stores this data together with the position and direction
of the beam source.

The proton’s residualWEPL before entering the detector can be estimated by afit of the Bragg-Kleeman
equation of Bortfeld (Bortfeld 1997, Pettersen et al 2018) to the energy depositions per layer (Pettersen et al
2019). Its difference to the initial beam’sWEPL is stored in x(W). Failures of the tracking algorithms are usually
due to pair-wise confusion between tracks frommultiple Coulomb scattering (MCS), to themerging of close
clusters, or to high-angle scattering. To this end, tracks with an unexpected distribution of energy depositions
are attributed to secondary particles ormismatches in the tracking algorithm, andfiltered out (Pettersen et al
2021).

2.1.4.MBIR subprocedure
Model-based iterative reconstruction algorithms repeatedly update the RSP image tomake it a better and better
fit to themeasurements of x(PD), x(W), according to themodel equations (2).

The paths of the protons in the air gaps between the beamdelivery system, the patient and theDTC can be
assumed to be straight rays. Inside the patient, they are stochastic and unknowndue to electromagnetic (MCS)
and nuclear interactionswith atomic nuclei. Using themodel ofMCS by Lynch andDahl (1991) andGottschalk
et al (1993), and given projections of the positions and directions x(PD) from section 2.1.3 to the hull of the
scanned object, themost likely path (MLP) can be analytically approximated in amaximum likelihood formalism
(Schulte et al 2008). The extendedMLP formalism (Krah et al 2018) also takes uncertainties of the positions and
directions into account: this is especially important when the front tracker is omitted, since the beam
distribution ismodeled using this formalism. Alternatively, a weighted cubic spline is a good approximation of
theMLP (Collins-Fekete et al 2017). TheWEPLof the proton is the integral of the RSP along the estimated path,
and has also been reconstructed (as described in section 2.1.3) as x(W). This leads to a linear systemof equations
for the list y of all voxels of the RSP image,

A y x . 3x
WPD ( )( )( ) =

The entry (i,j) of thematrix A Ax PD( )= stores howmuch the RSP at voxel j influences theWEPL of proton i; this
value is related to the length of intersection of the proton’s path and the voxel’s volume, and thus depends on
x(PD). As each proton passes through aminor fraction of all voxel volumes,A is typically sparse. Instead of the
approximate length of intersection, a constant chordlength,mean chord length or effectivemean chord length
(Penfold et al 2009) can be used to determine thematrix elements. As an alternative, we also study a ‘thick paths’
or ‘fuzzy voxels’ approachwhere points on the path are assumed to influence awider stencil of surrounding
voxels, with aweight that decreases with distance.

ThematrixA is not a squarematrix as the number of protons is independent of the dimensions of the RSP
image. Therefore ‘solving (3)’ is eithermeant in the least-squares sense, or additional objectives like noise
reduction are taken into account via regularization or superiorization (Penfold et al 2010).

For simplicity, this study is not concernedwith algorithms to determine the hull of the scanned object.
Assuming that the hull is known, the twomain computational steps of theMBIR subprocedure, generating the
matrix Ax PD( ) and solving the system (3), are displayed in figure 2(b). Several implementations of x-rayMBIR
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algorithms (vanAarle et al 2015, Biguri et al 2016) actually do not store thematrix inmemory explicitly, because
even in a sparse format it would be to large (Biguri et al 2016). Rather, they implementmatrix-free solvers like
ART, SIRT, SART,DROP (diagonally relaxed orthogonal projections) (Penfold andCensor 2015) or LSCG (least
squares conjugate gradient). These access thematrix only in specific ways, e.g. via (possibly transposed)matrix-
vector products or calculating norms of all rows. Thematrix elements can thus be regenerated on-the-fly to
perform the specific operation demanded by the solver. In pCT, it is best to structure these operations as policies
to be applied for each rowofA: Due to the bent paths of protons, it ismore efficient tomake steps along a path
and detect all the voxels itmeets, rather than the other way round. Parallel architectures likeGPUs can provide a
significant speedup for operations whose policies can be executed concurrently formany rows.

2.2.Derivatives of algorithms
2.2.1. Differentiability
Any computer program that computes a vector y mÎ of output variables based on a vector x nÎ of input
variables defines a function f : n m  , thatmaps x to y. Typically, f is differentiable for almost all x, because
wemay think of a computer program as a big composition of elementary functions like+, ·, sin, , | · |, and
apply the chain rule. Possible reasonswhy f could not be differentiable at a particular x include the following:

• An elementary function is evaluated at an argumentwhere it is not differentiable, like the abs function | · | at 0.

• An elementary function is evaluated at an argumentwhere it is not even continuous, like rounding at k 1

2
+

for integers k.

• An elementary function is evaluated at an argumentwhere it is not even defined, like division by zero.

• A control flowprimitive such asif orwhilemakes a comparison like a= b, a> b, a< b, a� b or a� b
between two expressions a, b that actually have the same value for the particular input x.

A computer-implemented function f is likely to be non-differentiable (almost) everywhere if it operates directly
on digital floating-point representations of real numbers with, e.g., bitshifts or bitwise logical operations. This
comprises cryptographic and data-compression algorithms, as well as RNGprimitives like taking a sample from
a uniformdistribution between 0 and 1.

2.2.2. Taylor’s theorem
Although differentiability and derivatives are local concepts, they can be used for extrapolation byTaylor’s
theorem. A precise statement (Anderson 2021) infirst order is that if f is twice continuously differentiable, for
each x̂ there are constants C D, Î such that the error of the linearization

f x f x f x x x 4( ) ( ˆ) ( ˆ) · ( ˆ) ( )» + ¢ -

is bounded by C x x 2· ∣ ˆ∣- for all xwith x x D∣ ˆ∣- < . The constantC depends on how steep f ¢ is. Even if the
differentiability requirements are violated, the Taylor expansion (4) is frequently used for the applications
discussed in the next sections 2.2.3 and 2.2.4. Heuristically, the higher the ‘amount’ or ‘density’ of the non-
differentiable points x listed above is, the less well these applications perform. To assess the range inwhich the
linearization (4) is valid, one can plot f x f x( ) ( ˆ)- against x x∣ ˆ∣- and compare to the graph of a proportionality
relation.We call it the linearizability range.

2.2.3. Quantification of uncertainty
If the value of an input x is approximated by x̂ and the resulting uncertainty of f (x) is sought, f x( ˆ)¢ contains the
relevant information tomeasure the amplification of errors: according to the Taylor expansion (4), the deviation
of x from x̂ gives rise to an approximate deviation of f (x) from f x( ˆ) by f x x x( ˆ) · ( ˆ)¢ - .

For small local perturbations, amore specific analysis is possible whenwemodel the uncertainty in the input
xusing aGaussian distributionwithmean x̂ and covariancematrixΣx, and replace fwith its linear
approximation (4). For a linear function f, the output f (x) is a Gaussian distributionwithmean f x( ˆ) and
covariancematrix

f x f x . 5f x x
T( ˆ) · · ( ˆ) ( )( )S = ¢ S ¢

Weare interested in uncertainties of the reconstructed RSP image as a result of theMBIR subprocedure, or
the uncertainties of results of further image processing like contour lines (Aehle and Leonhardt 2021). Possible
input variables of knownuncertainty are the detector output or reconstructed proton paths. All steps in the
pipeline from this input to the outputmust be differentiated in order to apply (5). Since the above input variables
are defined after theMonte Carlo subprocedure (see figure 2(a)), the differentiation of this step is not required.
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Uncertainties in the input should be ‘unlikely’ to go beyond the linearizability range.Otherwise, f is not
approximatedwell by its linearization for a significant amount of possible inputs x and (5) cannot be used, as
illustrated infigure 3.

Nomatter hownon-smooth f is,MonteCarlo simulation can be used alternatively to propagate a random
variable x through a computer program f and estimate the statistical properties of the randomvariable f (x). The
more samples are used, the better theMonte Carlo estimate becomes, but themore run-timemust be spent.

2.2.4. Gradient-based optimization
In the case that f has a single output variable (m= 1), optimization seeks tofind a value for x thatminimizes (or
maximizes) this objective function. Gradient-based optimizationmethods have already been employed for CT
reconstruction, with the voxel values of the CT image as input variables and the distance between the resulting
and the actualmeasurements as an objective function that ought to beminimized (Sidky et al 2012); image
qualitymeasures can also be part of the objective function (Choi et al 2010).

In contrast, ourwork heads towards the long-time goal offinding optimal parameters of a pCT setup,
including geometric parameters,material compositions, and algorithmic parameters of the reconstruction
software. In this context, ameaningful objective function is given by the error of the reconstructed RSP image
comparedwith the original RSP used in theMonte-Carlo simulation (Dorigo et al 2023), averaged over a
collection of such original RSP images.

The idea behind gradient-based optimization is that as the gradient points into the direction of steepest ascent
according to (4), shifting x in the opposite direction shouldmake f (x) smaller.Many training algorithms in
machine learning (ML) also belong to this category, with the training error of theMLmodel as the objective
function. If f is differentiable and its linearizability range is sufficiently large, gradient-based optimization
algorithms can findminima after a reasonable number of descent steps.

For the long-term goal described above, in general, all parts of the objective function (like the pipeline in
figure 2(a))would have to be differentiated, including theMonte Carlo simulation. Strong et al (2022a, 2022b)
have demonstrated gradient-based optimization for amuon tomography setup (e.g. determining the optimal
positions ofmuon tracker planes), avoiding to differentiateMonte Carlo codes by neglecting the effect of the
setup on the particle trajectories.

As an alternative to gradient-based optimization algorithms,many gradient-free optimizationmethods have
been proposed to avoid evaluating the gradient of f (Larson et al 2019). Themost basic instance of such an
algorithmwould be to select afinite set of configurations x (e.g. on a grid or by random), evaluate f on all of them,
and pick theminimizer within this set. Simulated annealing explores the configuration space bymaking steps in
randomdirections. Surrogatemodels can be trained to predict f (or its gradient), and then be used for
optimization.

Inmany application domains such as computational fluid dynamics (Albring et al 2016) andML training
(Baydin et al 2017), gradient-based optimizationmethods are however preferred for several reasons. They
provide criteria to decidewhether an actualminimumhas been reached (e.g. when the gradient becomes
small), and for specific classes of functions,mathematical statements guarantee convergence tomimimawith
certain convergence speeds (Nesterov 2018). Butmainly, they performwell even if the number of design
parameters is high. Only few gradient-free optimization algorithms are able to deal with n� 300 parameters

Figure 3.A function f, shown by the dash-dotted plot in the central box, is applied to aGaussian randomvariable xwhose probability
density function (PDF) is shown in the bottom graph. The orange graph in the left box conveys the true distribution of f (x), whereas
the normal distributionwith variance according to (5) is shown in blue. Cited fromAehle and Leonhardt (2021). (a)Good
approximation, because f is approximatively linear in e.g. aσ-envelope around x̂ . (b)Bad approximation, becausemuch of the input
distribution extends beyond the linearizability range around x̂ . Reproducedwith permission fromAehle and Leonhardt (2021).

7

Phys.Med. Biol. 68 (2023) 244002 MAehle et al



(Rios and Sahinidis 2013), whereas gradient-based optimization based on backpropagation can trainMLmodels
with billions of parameters (Brown et al 2020).

2.2.5. Algorithmic differentiation
The classical ways to obtain derivatives of a computer-implemented function f, required for the applications
described in sections 2.2.3 and 2.2.4, are analytical (using differentiation rules, possible only for simple
programs) ornumerical (using difference quotients, inexact). Ideally, algorithmic differentiation combines their
respective advantages being exact and easy applicable;moreover, the reversemode of ADprovides the gradient
of an objective function f in a run-time proportional to the run-time of f, independently of the number of design
parameters (Griewank andWalther 2008).

AD tools facilitate the application of AD to an existing codebase; specifically, operator overloading type AD
tools intercept floating-point arithmetic operators andmath functions, and insert AD logic that keeps track of
derivatives with respect to input variables (in the forwardmode), or records an arithmetic evaluation tree (in the
reversemode). As examples for such tools, wemay cite ADOL-C (Walther andGriewank 2012), CoDiPack
(Sagebaum et al 2019), the autograd tool (Maclaurin et al 2015) used by PyTorch (Paszke et al 2019), and the
internal AD tool of TensorFlow (Abadi et al 2016). Themachine-code based toolDerivgrind (Aehle et al
2022a, 2022b)may offer a chance to integrate AD into cross-language and partially closed-source software
projects. For an overview of tools and applications, visit https://autodiff.org.

While these tools can often be applied ‘blindly’ to any computer program to obtain algorithmic derivatives in
an ‘automatic’ fashion, further program-specific adaptationsmight be necessary. For example, the newdatatype
of an operator overloading toolmight break assumptions on the size or format of the floating-point type that
were hard-coded in the original program. Concerning complex simulations, techniques like checkpointing
(Dauvergne andHascoët 2006, Naumann andToit 2018) or reverse accumulation can reduce thememory
consumption of the tape in reversemode but requiremanualmodifications of the primal program.

Anothermajor reason for revisiting the primal code is given by the fact that it is usually only an
approximation of the real-world process. Good function approximation does not guarantee that the
corresponding derivatives are alsowell-approximated (Sirkes andTziperman 1997). To illustrate this,figure 4
shows three value-wisely good approximations to a smooth function. Infigure 4(b), the derivative of the
approximation is zero everywhere except where the approximation jumps. This kind of behaviour could be the
consequence of intermediate rounding steps. Infigure 4(c), a low-magnitude but high-frequency error adds
high-magnitude noise to the derivative. In both cases, the exact ADderivative of the approximation is entirely
unrelated to the derivative of the real-world function, and therefore cannot be of any use to the propagation of
uncertainties through it, or its optimization. Adaptations of the computer programmight be necessary to ensure
that it also a good approximation derivative-wise, as infigure 4(a).

2.3. Numerical checks of algorithmic differentiability
In thework presented in this article, we determined the potential of employing AD for gradient-based
optimization andUQof the pCTpipeline, by checking the differentiability of three representative
subprocedures in the pipeline.

Ourmainmethodologywas based on plots that show the dependency of a single output variable f (x)with
respect to a single input variable x for each of the three subprocedures, keeping all the other inputsfixed.More
details on the three setups can be found in sections 2.3.1 to 2.3.3.

Figure 4.Three value-wisely good approximations (blue thin line) to a smooth function (black thick line). In (a), the derivative of the
approximation is also a good approximation for the derivative of the smooth function. Such a statement can however bewrong, e.g. if
there are jumps as in (b) or noise as in (c).
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From a plot of f (x)with a linearly scaled abscissa, we identifiedwhether f had isolated discontinuities
(‘jumps’) or noise, to roughly quantify the linearizability ranges. Differentiability (fromone side) at a particular
x̂ could be verifiedwith a log-log plot of f x f x∣ ( ) ( ˆ)∣- with respect to x x̂- . Inside the linearizability range, it
should look like the log-log plot of a proportionality relation, i.e. a straight linewith slope 1. Deviations for very
small x x∣ ˆ∣- can often be attributed tofloating-point imprecisions and have no implications on the
differentiability.

If we choose a collection of points x̂ without special considerations inmind, and f turns out to be
differentiable at all of them,we take this as a heuristic indicator that the function is differentiable ‘almost
everywhere’. Thismeans that the functionmay have e.g. jumps or kinks, but those are unlikely to be encountered
with generic input.

2.3.1. Setup for GATE
WeusedGATE v9.1 to simulate a single proton of initial energy x passing through a head phantom (Giacometti
et al 2017) and several layers of theDTC. Four output variables were extracted from the ROOTfile produced by
GATE: the energy depositions fE,1(x), fE,2(x), and a position coordinate fpos,1(x), fpos,2(x), of the single proton in
thefirst and second tracking layer of theDTC, respectively. To plot these functions, we ranmany individual
GATE simulations, eachwith a different value for the proton energy x between 229.6 and 300.4 MeV; the
remaining parameters, including the beam spot position and the seed of the RNG,were kept fixed.
Differentiability was numerically tested at x 230 MeVˆ = .

As the seed of the RNGhas been kept constant, all runs ofGATE see the same sequence of pseudo-random
numbers and behave deterministically. In particular, we did not attempt to differentiate through the primitive
RNG sampling operation, which is not differentiable (section 2.2.1). As a consequence offixing the seed, the
beginning of the proton path through the front part of the phantomwill lookmore or less similar in all iterations
for different x.Without this correlated sampling trick (Lux andKoblinger 1991), the reaction of theMonte-Carlo
outputs due to perturbed inputs would bemuch smaller inmagnitude than the stochastic variance of the outputs
that results from, e.g. randomproton paths through the phantomwith vastly differentWEPLs. This fact is also
known fromoptimization studies concerning divertors in nuclear fusion reactors (Dekeyser et al 2018).

2.3.2. Setup for tracking
Weanalyzed the percentage of correctly reconstructed tracks of a track-following scheme implemented by
Pettersen et al (2019, 2020). During the reconstruction, a threshold determined themaximal accumulated
angular deflections allowed for continued reconstruction. This thresholdwas then identified as the input
variable to test for differentiability. A batch of 10 000 tracks was used for this purpose, where correctly
reconstructed tracks were identified on the basis of their Bragg peak position relative to theMC truth, which
rarely exceeds±2 cm for correctly reconstructed tracks butmay be larger for incorrectly or incompletely
reconstructed track (Pettersen et al 2021).

2.3.3. Setup forMBIR
Prior to our differentiability analysis for theMBIR step, we produced a set of about 250 000 proton positions and
directions (x(PD)) and energy losses in terms ofWEPLs (x(W)), fromwhichwe reconstruct the RSP image by
solving (3). To this end, we ran one single GATE simulation of theCTP404 phantom (The PhantomLaboratory
Inc., 20062006) (an epoxy cylinder of radius 75 mmand height 25 mm, containing cylindric inserts of various
othermaterials).

We then analyzed the differentiability of our ownprototypical implementations ofDROP and LSCGusingC
++, CUDAand Python, reconstructing RSP images with 5 slices (each 8 mm thick, so the inner three nearly
cover the phantom) of 80× 80 voxels (each 2 mm× 2 mm)within thewell-known cylindrical hull of the
phantom.

The setupwas small enough to allow formany repetitive evaluationswithmodifications in a single input
variable within a reasonable computing time. BothDROP (with a relaxation factor of 0.1) and LSCG converge
for the over-determined linear system (3). The image quality is not good due to the lownumber of proton
histories, which is alsowhy the reconstructed RSP values at the selected pixels differ; this should not affect
statements on differentiability.

We separately considered two input variables: theWEPL (i.e. a component of the right-hand side x(W) of (3))
and a coordinate of the beam spot position of one particular proton history (i.e. a component of x(PD),
influencing thematrix in (3)).

To study the dependency of the reconstructed RSP on theWEPL,we varied theWEPLof a single
reconstructed proton between−10 and 10 mmwhile keeping all tracks fixed; in particular, according to the
MLP formalism as proposed byKrah et al (2018) and Schulte et al (2008), the estimatedMLP for each track, and
hence thematrix in (3), werefixed.While a negativeWEPLwould never bemeasured, it can serve as an input to
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bothMBIR algorithmswithout problems. The linear systemwas solved using theDROP algorithmwith a
relaxation factor of 0.1 as well as the LSCG algorithm, using amean chord length approach to compute the
matrix elements.We observed the reconstructed RSP of a voxel that the selected single proton history passed
through. ForDROP, geometric informationwas additionally used by zeroing voxels outside a cylindrical hull of
radius 75 mmafter each iteration; DROP tolerates perturbations of the solution outside the linear solver
iterations (Penfold et al 2010).

We also analyzed the dependency of theDROP-reconstructed RSP on the beam spot coordinate of a single
proton parallel to the slice plane.We observed the reconstructed RSP of a voxel that the unmodified input
proton history passed through. For this part of the study, theWEPLof the selected single proton historywas set
to 1 mm, and theWEPL of all the other proton histories was set to zero. By the results of the numerical
experiment described in the previous paragraph (shown infigure 8(a)), the RSP solution ofDROPdepends
linearly on the vector ofWEPLs; thus, overwriting theWEPLs in this way just applies a linear transformation to
the RSP solution, isolating the effects of the selected proton historywithout affecting differentiability.We
applied theDROP algorithmwith a relaxation factor of 0.1 using amean chord length approach, as well as a
fuzzy voxels approach to compute thematrix elements. In the fuzzy voxels approach, voxels in a 3× 3
neighbourhood around points on the path received aweight that decreased exponentially with the distance of
the center of the voxel, across all slices.

2.3.4. Recording of RNG calls
Tounderstand the cause of jumps observed in the setup of section 2.3.1, we additionally performed the following
analysis. After identifying the precise location of the jump via bisection, we used a debugger to output the
backtrace of every call to the RNG. Aftermasking floating-point numbers and pointers, we obtained amedium-
granular record of the control flow in the program for the particular input used to run it.We produced four of
these records in close proximity to one particular jump, two on each side.

3. Results

3.1.MonteCarlo subprocedure
In the top rowoffigure 5, the deposited energies fE,1 and fE,2, as well as the hit coordinates fpos,1 and fpos,2,
computed byGATE in the setup of section 2.3.1, appear as piecewise differentiable functionswith around one
jumpper 0.1 MeV.

For low perturbations x x̂- of the beam energy around x 230 MeVˆ = , the log-log plot infigure 6 shows a
straight linewith slope 1, indicating that the four functionswere differentiable at x̂. After some threshold
perturbation given by the distance to the next discontinuity, the approximation error of the energy depositions
fE,1, fE,2 rose suddenly.We repeated the test with another five values for x̂ chosen between 220 and 260MeV,
with analogous observations.

Zooming in around the jump at 230.106 MeV (bottom rowoffigure 5), we observe that it is actually a cluster
ofmany discontinuities.We further investigated two discontinuities usingmasked records of backtraces of RNG
calls (section 2.3.4). For either discontinuity, we chose four input values close to by, two on each side. The
records for inputs on the same side agreed.When inputs fromboth sides were used, the control flows diverged at
some point after a comparison of two nearly equal values turned out differently, leading to a different number of
RNGcalls.

3.2. Track reconstruction
The global behaviour infigure 7(a) shows that the investigated input parameter x has amajor effect on the
tracking accuracy (see section 2.3.2), which ismaximized by choosing x sufficiently large. Figure 7(b) deals with
medium-sizedmodifications. The high number of steps and the noisy behaviour of the plot infigure 7(b)
indicate that the code uses non-differentiable operations very frequently, so probably linearizability ranges of
other output variables are very small as well. Thismakes it difficult to run gradient-based optimization schemes
on objective functions that involve this kind of track-finding algorithm. Figure 7(c) displays the effect of very
smallmodifications of the input parameter. As the percentage of correctly reconstructed tracks is an inherently
discrete quantity, we expect to see steps here, instead of a gradual transition.

3.3. RSP reconstruction
As shown infigure 8(a), the RSP computed by theDROP algorithmdepended linearly on theWEPL in the setup
of section 2.3.3. This statement is accurate up tofloating-point accuracy. The non-linear LSCG algorithm
introduced noise, as reported infigure 8(b). Figure 9(a) shows that when a beam spot coordinate of the first track
wasmodified, changes in the set of voxels traversed by theMLP (indicated by vertical lines) lead to jumps in the
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DROP-reconstructed RSP. The RSP of the voxel selected for observation is affected non-continuously even if
different voxels start or stop being intersected by theMLP, as the linear solver implicitly relates all RSP values to
another; but themagnitude of the jumps is largest when the selected voxel itself starts or stops being intersected
by theMLP (indicated by thick vertical lines).

Between the discontinuities, the graph is almost linear (figure 9(b)), and the log-log plot infigure 9(c)
numerically verifies that it was differentiable at x 63.55ˆ = - . Tangents at this point were almost horizontal in
figure 9(a), so the reconstructed RSP changedmuchmore via jumps than it did in a differentiablemanner.
Figure 10 corresponds tofigure 9, but used a fuzzy voxels approach to compute thematrix elements. The graph is
still discontinuouswherever the set of voxels traversed by theMLP changes. However, the jumpsweremuch
smaller and in between, the functions changed significantly in an almost linear (figure 10(b)) and differentiable
(figure 10(c))manner.

Figure 6.These are the same plots as infigure 5, with a different axis range and scale. As f x f x∣ ( ) ( ˆ)∣· ·- is about proportional to x x̂-
if x is close enough to x 230 MeVˆ = , the four functions are differentiable at this point.

Figure 5.Numerical checkwhetherGATE iswell-linearizable: The energy deposition fE, j(x) (left) and a position coordinate fpos,j(x)
(right) in thefirst ( j = 1, black) and second ( j = 2, gray) tracking layer are plotted against the beam energy x in awide (top) and
narrow (bottom) interval.
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4.Discussion: challenges for differentiating the pipeline

As detailed in the end of section 2.2.5 based onfigure 4, algorithms designedwithout anADoption inmind
might needmanual adaptations tomake sure that their derivatives approximate the ‘true’ function’s derivatives.
Besides, the linearization (4) is only helpful for the quantification of uncertainties and for optimization if the true
function is ‘sufficiently smooth’, as discussed in sections 2.2.3 and 2.2.4.

In this section, we discuss these aspects for the software pipeline outlined in section 2.1.

4.1.Differentiation of randomized code
Nomeaningful information could be gained by differentiatingGATEwith respect to its random input, i.e. the
seed of the RNG. Regarding the other partial derivatives (w.r.t. detector parameters etc), the RNG seedwas kept
constant in this study.

In section 3.1we found that four particular outputs of GATEwere piecewise differentiable with respect to
the beam energy, but also involved a large number of jumps.We should recall here that frequent discontinuities
do not deteriorate the accuracy of AD for computing derivatives if the derivatives exist for the respective input.
However, they diminish the range inwhich the linearization formula (4) is valid, and therefore the value of the
derivatives for applications in sections 2.2.3 and 2.2.4 regarding stand-aloneGATE. Infigure 6, the
linearizability range spans only about 0.1 MeV,which is a small part of the range of possible values for the beam
energy; and as figure 5 shows, the jumps aremuch larger inmagnitude than the differentiable evolution in
between. Thus, alongside the technical efforts of integrating AD intoGATE/Geant4, it is necessary to touch the
mathematical structure of theMonte-Carlo simulation in order tomake it smoother.

Thus, two of the jumpswere further investigated and it was found that the control flowof the program
changed at this point because a floating-point comparison flipped, changing the number of calls to the RNG.
Such a change severely affects the subsequent computations because the program then receives a shifted
sequence of randomnumbers.We therefore hypothesize that the observed discontinuities are (partially) an
artifact of how theRNG is used, and not necessarily of physical significance. Some of this ‘numerical chaos’
might be removed by restarting the RNGwith precomputed random seeds at strategic locations in the code, in a

Figure 7.Dependency of the tracking accuracy in%on the vertical axis w.r.t. a threshold x used by the track-following scheme.
Figures 7(a)–(c) show the same function, over different ranges on the horizontal axis.

Figure 8.Dependency of the reconstructed RSP at a particular voxel on theWEPL of a particular track.
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way that does not affect the statistical properties of the randomnumbers delivered to theMonte-Carlo
simulation.

For the pipeline as a whole, the issuemight be less pronounced, as subsequent computational steps combine
simulations ofmany independent protons, possibly averaging out the chaotic behaviourwhile keeping
systematic dependencies. Further research in this directionmay perturb inputs of a GATE simulation as part of a
complete pCT software pipelinewith a higher number of protons, and observe the reaction of, e.g. the
reconstruction error of the RSP image.

Instead of applying AD to the particle physics simulator itself, simulation data can be used tofit a surrogate
model, which is then differentiated instead of the simulator (Dorigo et al 2023). In general, we expect such an
approach to reduce chaotic behaviour, evaluate faster, and reduce theworkload needed to apply the AD tool, but
it can be less accurate. Surrogatemodels for calorimeter showers are a very active field of research, see e.g. Dorigo
et al (2023).

4.2.Discrete variables related to detector output
The detector output consists of pixel activations that are either 0 or 1, i.e. take a discrete value, as opposed to
continuous coordinates, energies etc. The continuous output of GATE ismapped into discrete values by the
charge diffusionmodel’s choice of which pixels to activate. The calculation of cluster centers preceding the track
reconstructionsmaps the discrete pixel data back into a continuous range.

As the local behaviour of any function into a discrete set is either ‘constant’ (not interesting) or ‘having a step’
(not differentiable), we cannotmake any use of derivative information here. Expressed differently, any discrete
intermediate result comes from rounding of continuous coordinates, which erases all derivative information

Figure 9.Effect of a particular track’s beam spot coordinate on a particular voxel’s RSP. Elements of the systemmatrixAwere
calculated using themean chord length. TheWEPL of the selected proton historywas set to 1 mm, and the otherWEPLswere set to
0 mm. (a)Global perspective for various numbers ofDROP steps. Vertical lines indicate changes in the set of traversed voxels. Thick
vertical linesmark the interval of values of x forwhich the selected track traverses the selected voxel. At x 63.55ˆ = - , f (x) is
differentiable as verified infigure 9(c) (in the case of 400 iterations), and the almost horizontal tangents are indicated by dashed lines.
(b)Zoom into on of the steps of figure 9(a), with 400 iterations. (c) Logarithmic plot of the numerator and denominator of the
difference quotient in the same range asfigure 9(b).
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and is sometimes discontinuous. This is whatwe observed in section 3.2. Figure 7(c) shows the jumps of
figures 4(b) and 7(b) shows the noise offigure 4(c).

One idea tofix this is to replace the continuous-to-discrete-to-continuous conversion by a surrogatemodel.
In the easiest case, onemight just carry over the ‘ground truth’hit positions and energy depositions from the
Monte Carlo subprocedure to the RSP reconstruction, bypassing the charge diffusionmodel, clustering and
tracking subprocedures.

4.3. Numerical noise of theMBIR solver
Even if the error of a least-squares solution provided by an approximative numerical solver is small, a noisy error
as illustrated infigure 4(c), and observed for LSCG infigure 8(b) in section 3.3, has large derivatives. The noise
probably results from stopping the iterative solver before it reaches full convergence. DROPperforms only linear
operations on the right hand side and hence the reconstructed RSP depends on theWEPL in a linearway,
making it a better choice for further investigations.

4.4.Discrete variables related to thematrix generation inMBIR algorithms
While stepping along a path and determining the current voxel, an affine-linear function is applied to the current
coordinates and the result is rounded; in the end, a certain path either intersects, or does not intersect, a certain
voxel. This discrete choice introduces discontinuities w.r.t. track coordinates, as can be seen infigure 9(a) in
section 3.3, where thematrix element of an intersected voxel was set to amean chord length. If a perturbation of
a track coordinate does not change the set of voxels intersected by the path, this value only changes very little, due
to its dependency on the tangent vector of the path. Therefore the reconstructed RSP is nearly a ‘step function’
whose gradients exist by figures 9(b), (c), but are useless for optimization andUQ.

Figure 10.Effect of a particular track’s beam spot coordinate on a particular voxel’s RSP. As opposed tofigure 9, elements of the
systemmatrixAwere calculated using the a ‘fuzzy voxels’ approach. TheWEPLof the selected proton history was set to 1 mm, and the
otherWEPLswere set to 0 mm. (a)Global perspective for various numbers ofDROP steps. At x 63.55ˆ = - , f (x) is differentiable as
verified in figure 10(c) (in the case of 400 iterations), and the dashed tangent lines at x̂ reflect the global behaviour very well. (b)Zoom
into one of the steps offigure 10(a), with 400 iterations. (c) Logarithmic plot of the numerator and denominator of the difference
quotient in the same range asfigure 10(b).
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Infigure 10, a fuzzy voxels approachwas used, which leaves some discontinuities butmakes the gradients
represent the overall behaviour verywell. This however comes at the price of a longer run-time and a blurrier
result. The fuzzy voxels approach can be employed only for the design optimization of the pCT setup, and
replaced by a classicalMBIR algorithm employed during operation of the optimized pCT setup, in the style of a
surrogatemodel.

Either way, output variables of the full pipelinemight be smoother because they combine the RSP values of
many voxels.

5. Conclusions

Wepresented the algorithmic substeps of the Bergen pCT collaboration’s incipient software pipeline, with
special focus on linearizability as a prerequisite for gradient-based optimization andUQ.

Both theMonte Carlo andMBIR subprocedure’s central steps compute piecewise differentiable functions
with discontinuities. For theMBIR subprocedure, we identified the cause of discontinuities and proposed away
tomitigate it.

The proton history reconstruction subprocedure involvesmany discrete variables, which present a huge
obstacle to (algorithmic) differentiability.We investigated the tracking step as an example and found a very noisy
behaviour. It is probably the best approach to ‘bridge’ this subprocedure, carrying over the ground truth.
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