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Human-robot cooperation (HRC) is becoming increasingly relevant with the
surge in collaborative robots (cobots) for industrial applications. Examples of
humans and robots cooperating actively on the same workpiece can be found
in research labs around the world, but industrial applications are still mostly
limited to robots and humans taking turns. In this paper, we use a cooperative
lifting task (co-lift) as a case study to explore how well this task can be learned
within a limited time, and how background factors of users may impact learning.
The experimental study included 32 healthy adults from 20 to 54 years who
performed a co-lift with a collaborative robot. The physical setup is designed
as a gamified user training system as research has validated that gamification is
an effective methodology for user training. Human motions and gestures were
measured using Inertial Measurement Unit (IMU) sensors and used to interact
with the robot across three role distributions: human as the leader, robot as
the leader, and shared leadership. We find that regardless of age, gender, job
category, gaming background, and familiarity with robots, the learning curve
of all users showed a satisfactory progression and that all users could achieve
successful cooperation with the robot on the co-lift task after seven or fewer
trials. The data indicates that some of the background factors of the users such
as occupation, past gaming habits, etc., may affect learning outcomes, which
will be explored further in future experiments. Overall, the results indicate that
the potential of the adoption of HRC in the industry is promising for a diverse set
of users after a relatively short training process.
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1 Introduction

Robotics has been a game changer in mass manufacturing by allowing various
processes to be automated to produce a large number of items with the same quality,
and often with a significantly shorter production time. For small and mid-size enterprises
(SMEs) with smaller production volumes, the benefits of introducing industrial robots
into production lines have not been as apparent and many have been reluctant to
automate production processes (Fortune Business Insight, 2022). The introduction of
collaborative robots (cobots) that can work next to human workers in the factory without
fences has opened up a new potential in automation. However, robots and humans
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are still only taking turns when working on products, and the
potential for Human-Robot Cooperation (HRC) where humans and
robots can cooperate to work on the same product simultaneously
has not been adopted by the industry (Michaelis et al., 2020).

1.1 Background

A HRC system aims to combine the superior skills of humans
(problem-solving, decision-making etc.) and robots (precision,
accuracy, repeatability, etc.) to accomplish the task more efficiently
and accurately. There are several factors in HRC usability
such as safety, trust, user’s experience, effectiveness, efficiency,
learnability, flexibility, robustness and utility (Lindblom et al.,
2020; Simone et al., 2022). Although safety is the most important
factor, it is not sufficient for achieving optimal usability from an
HRC system. This study focuses on three integral components
of HRC system usability: 1) a robust communication method
characterized by reliability, adequate precision, and accuracy; 2)
dynamic role allocation between the human and robot within
the HRC framework; and 3) human operator proficiency in
utilizing the system.

A human-robot team must have a reliable communication
method to achieve successful HRC. The human input can be via
joystick, voice, haptic and/or motion commands. The robot actions
should be predictable and easily understood by human operators
to ensure safe, intuitive and effective cooperation and build trust
(Lee and See, 2004; Lindblom and Wang, 2018). Moreover, it is
not straightforward to assign a leader to a human-robot team
to achieve the task in the most optimal way. The robot and the
human excel in different skills. Therefore, either their leadership
roles should be allocated in a flexible manner depending on the task
requirement/state, or prescribed optimally beforehand, to maximize
system performance regardless of dynamic or static role assignment
(Mörtl et al., 2012). Lastly, the human operator should have enough
competence and training to understand system capabilities and
usage and to handle system drawbacks and failures. In order for
SMEs to benefit from using cobots for industrial applications, it is
crucial that human operators receive proper training in using HRC
systems (Michaelis et al., 2020).

User training is perhaps not adequately addressed in the context
of HRC although the research has been going on within the HRC
field for a couple of decades (Jost et al., 2020).The implementation of
new technology in the industry has always been challenging for both
employees and employers. Training is important not only to facilitate
learning about how to use new technology but also to manage
employee perceptions and attitudes about the new technology
(Huber and Watson, 2013). Two major reasons for this challenge
addressed in the literature are perceptions of the technology’s ease
of use and perceptions of the technology’s usefulness (Marler et al.,
2006).The importance of user training inHuman-Robot Interaction
(HRI) is addressed in Werner et al. (2020) on 25 elderly people who
get help from a bathing robot. Nonetheless, a systematic approach
and the effect of user training within the HRC field is lacking.

A few studies suggested three methodological approaches for
user training in HRI. One methodology is the development of
adaptive human-machine interfaces (HMIs) for industrial machines
and robots. This approach involves measuring the user’s capabilities,

adapting the information presented in the HMI, and providing
training to the user (Villani et al., 2017). By adapting the interface
to the user’s needs and abilities, the cognitive workload can be
reduced, and the user can interact more effectively with the
robot. The Wizard-of-Oz (WoZ) technique is another methodology
used in human-robot interaction. In this technique, a remote
supervisor drives the robot using a control interface to simulate an
artificially intelligent robot (Tennent et al., 2018). Another approach
is to use virtual/physical simulators mostly due to safety reasons
(Mitchell et al., 2020), yet it increases the overall development cost of
a novelHRC system.The current examples found in the literature are
limited tomostlymedical, surgical andmilitary applications (Prasov,
2012; Dubin et al., 2017; Azadi et al., 2021) and the main training
purpose is to train the user for the specific task rather than the user
learning the HRC system itself.

Serious games (SG), gamification methods and game-based
learning (GBL) can be used to develop supplemental training
materials that are interesting and interactive, making it simpler
for learners to apply their newfound knowledge (Susi et al., 2007;
Kleftodimos and Evangelidis, 2018; Anil Yasin and Abbas, 2021).
Several studies merged gamification and simulation in user training
within various fields (Wang et al., 2016; Checa and Bustillo, 2020).
According to Kapp (2012), “a serious game is an experience created
using game mechanics and game thinking to educate people in
a specific content domain”. In serious games, learning, training,
and other objectives come first rather than pure entertainment.
The effectiveness of the training outcome can be increased by
gamification techniques and game elements (Pesare et al., 2016).
SG and GBL have been popularly used in various training
purposes since 2013 (Checa and Bustillo, 2020) such as in fatigue
assessment (Kanal et al., 2020), rehabilitation (Andrade et al., 2013),
constructing better communication with individuals who has
Autism Spectrum Disorder (Silva et al., 2018) etc. Although it is not
common in user training in HRC applications, one successful study
used a serious virtual reality game that simulated the cooperation
between industrial robotic manipulators (Matsas and Vosniakos,
2017). There is still room for merging SG, GBL and gamification in
user training in HRI and HRC (Jones et al., 2022).

Cooperative lifting (co-lift) scenario is a common example in
HRC where humans and robots lift and carry heavy, flexible, or
long objects together while exploiting human cognitive skills and
robot accuracy in different parts of the task. The co-lift task was
chosen as the experimental study scenario forHRC in this article due
to the fact that material manipulation applications (e.g., handling,
positioning, polishing) have been found to be the most common
tasks in the industry with more than 20% of the total number of
tasks (Parra et al., 2020). There are several studies on co-lift and
manipulation between a human and a robot in the literature. In
Mörtl et al. (2012), the authors used haptic data to dynamically
assign the leader roles between the human and robot in a co-lift
scenario. A recent study presented in Liu et al. (2021) estimated
the external forces applied by the human operator during the
collaborative assembly of a car engine. In Ramasubramanian and
Papakostas (2021), the human operator and a collaborative robot on
a mobile platform carried a long stick between two locations in the
work environment. In Nemec et al. (2017), speed and disturbance
rejection were adjusted for transporting an object through learning
by demonstration. While these studies cover important topics for
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FIGURE 1
The full-cycle of co-lift task and its states (APPROACH, CO-LIFT and RELEASE) and the pick and place locations of the common object. The system
uses IMUs for human motion estimation and an EMG-sensor to open/close the gripper (Ates et al., 2022).

HRC and co-lift tasks, they present solutions only in the active
carrying phase. It is important to address the before (approach) and
after (release) phases of the active co-lift phase as shown in Figure 1
elaborating with the human input method so that the chain or
repeatedHRC tasks can automatically restart without any interrupts.
Overall, co-lift is a relatively common task within HRC and versatile
such that various aspects of user training can be observed in different
phases of co-lift.

1.2 Research questions and outline

TheHRCfield is rapidly growing.We think that human-machine
interaction should be considered as awholewhen a newHRC system
is developed. As a daily life example, driving a car is a relevant
human-machine interaction. Individuals are required to undergo a
comprehensive training process to obtain a driving license, which is
crucial for ensuring the safe and effective operation of vehicles. This
processmight be apprehended as cumbersome formany and driving
a car is perceived as complicated. However, if society had waited for
cars to achieve perfection before embracing their use, disregarding
the potential of user training, our progress as a civilization would
have been severely hindered.

Our motivation in this study is to gauge people’s capability to
cooperate with robots and observe the effect of user training on
various demographics. The objective is to conduct a quantifiable
empirical unbiased observation on the quality of HRC and the
effect of user training. We investigate the importance of user
training in HRC and examine if a particular demographic group
in terms of age, gender, occupation, familiarity with robots, gaming
backgrounds, etc., plays a fundamental role in cooperating with the
robots and/or learning how to cooperate with a robot. It is suggested
in the literature that the performance of HRC could be affected
by the worker’s previous experience with robotics (Simone et al.,

2022), their personality Walters et al. (2005) as well as their gaming
background (Tanaka et al., 2016). Moreover, we aim to provide a
systematic approach to develop a user training procedure for HRC
using gamification. We explore the potential of including game
elements rather than comparing gasified training to other training
approaches.

The outline of this paper is as follows: the methodology of
developing a novel human-motion-based HRC system using IMUs
as themotion capturing system (Ates et al., 2022) in a co-lift scenario
is in section 2.1 and section 2.2, the gamification procedure is
in section 2.3, the setup for user experiments is in section 2.4,
the results are in section 3 and the discussion of findings are in
section 4.

Although the results are solely dependent on the specific type of
application, these findings should be considered for the evaluation
of the effective convenience of the cobots, including an analysis of
the variation in the workers’ performance, and consequently, of the
entire HRC system.

2 Materials and methods

2.1 Cooperative lifting

The operation is divided into different states, and the roles of
the human and robot change throughout the states as shown in
Figure 2. The system starts in the IDLE state, where no motion is
transferred from the human to the robot. The human can then use
a clutching gesture to transit between IDLE and APPROACH states,
where motion control commands are sent to the robot based on the
pose information of the human’s hands. In the CO-LIFT state, the
human and robot share leadership and perform complex motions
specific to the application scenario. The human can then gesture the
robot to enter the RELEASE state, where the robot takes charge of
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FIGURE 2
HRC roles and states in the experimental co-lift scenario. Human Leading role has two states: IDLE: Both chest-to-wrist (hand) motions are actively
calculated yet no motion command is sent to the robot. APPROACH: Combined (merged) pose from two hands is actively calculated to produce soft
real-time end-effector goal pose commands. The robot follows the human actively. Shared Leadership role has one state: CO-LIFT: The robot applies
a directional compliant force and the human decides the direction of this force with elbow gestures. Robot Leading role has one state: RELEASE: The
robot takes the lead in the operation, and moves to a predefined release pose. The human follows the robot’s motions. The steering arm is assigned for
transition gestures and the red arrows show the respective transition gestures between states. Rotating the right palm up/down is assigned as the
de-clutching/clutching gesture, clenching the right fist is the gripper close gesture (not highlighted in the fig.), pushing/pulling the table is the poking
gesture, and releasing the right arm down is the release gesture.

the position and velocity control of the object to place it accurately
in a predefined position.

2.2 Human motions to robot actions

Studies on human motion tracking and estimation can be
categorized based on the type ofmotion tracker devices used: visual-
based (Morato et al., 2014; Sheng et al., 2015), and nonvisual-based
(Roetenberg et al., 2009; Kok et al., 2014), and hybrid solutions
(Sugiyama and Miura, 2009). The visual-based solutions are
widespread in motion tracking since they provide highly accurate
human motion tracking but often fail in industrial usage due to
occlusion, loss in line-of-sight, intolerant to lightning changes,
and lack of mobility (Rodríguez-Guerra et al., 2021). Common
alternatives to non-visual systems are IMU-based solutions which
are stand-alone systems without no permanent installations. They
often cost considerably less than their visual alternatives but are
prone to drift for long-term usage. While several solutions to
eliminate the drift problem have been proposed (El-Gohary and
McNames, 2015; Kok et al., 2017; Ludwig and Burnham, 2018),
there are still a few examples using IMU-based solutions particularly
in real-time in HRC applications. Although IMUs are selected as the
main motion tracking devices, the selected human motion tracking
technology is not the most critical point in this study.

2.2.1 Human motion estimation (HME)
In this study, we used 5 IMUs as the motion-tracking

system. After acquiring the 3D orientations from individual IMUs,
the biomechanical model of the human body is placed in the
calculations. In order to measure the full upper-body motions we
placed the IMUs as shown in Figure 3. Nonetheless, the selected

motion capture technology is not critical and any type of human-
motion estimation method would work as long as the human
input is appropriate to create a real-time goal pose command for
the robot.

With this model, we measure 13 degrees of freedom (DoF)
upper-body motions including the chest, upper and lower arm
motions on both arms but neglected the wrist motions. Our human
model is a collection of estimated individual joint angles, where
a joint angle can be found by calculating the rotation between
two consecutive links with attached IMUs. The kinematic chain for
such a human model from the base (chest) to the tip (left hand)
can be written as:

qc = q
GS
CH qs = q

*
c ⊗ q

GS
LS qe = q

*
c ⊗ q

*
s ⊗ q

GS
LE (1)

where qc, qs and qe are the quaternions representing joint angle
rotations, qGSCH, qGSLS and qGSLE are the IMU orientation from global to
the sensor’s frame which are the raw orientation readings from the
IMUs. The same procedure is applied to the right arm. The lower
body is taken as the fixed reference frame.

2.2.2 Human biomechanical model
In human motion and gesture estimation, the first step is to

define the humanmodel.Thismodel can be a silhouette as in Bradski
and Davis (2000) or a biomechanical model as in Roetenberg et al.
(2009); Cerveri et al. (2005). Since the human body contains more
complex joints and links than ordinary actuators and link elements,
it is not possible to model the human body with 100% accuracy. As
a result of that, the total degrees of freedom (DoF) of the human
model is not exact. For example, the human arm is modeled as 4
DoF in Theofanidis et al. (2016), 9 DoF in Phan et al. (2017) and 7
DoF in Ghosal (2018).
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FIGURE 3
Human model and IMU placement on right/left elbow (RE/LE), right/left shoulder (RS/LS) and chest (CH) (Ates et al., 2022).

2.2.3 Human to robot motion translation
Human-to-robot motion translation converts estimated human

motions and gestures into the desired goal pose for the robot
manipulator in real-time. The human arm motion is not directly
mimicked by the robot. Depending on the states explained
in more detail in Section 2.1, different human-to-robot motion
mapping methods are applied. This subsection presents how a robot
manipulator goal pose command is created based on given human
arm motions. The human arm is modelled as 5 DoF and the robot
used in this study is a 6DoF (RRRRRR)manipulator with a spherical
wrist configuration.

In the case of active command cooperation, two arm motions of
the human are merged to create one end-effector goal pose. In the
case of passive command cooperation, two elbow poses are used.

2.2.3.1 Active command cooperation scenario
The relative motions of both human arms are merged and

translated into a single goal pose for the robot as introduced in Ateş
and Kyrkjebø (2021). The merged hands pose is calculated based
on the relative motions of each arm. We refer to the arms as the
motion arm and steering arm. The steering arm is also responsible
for clutching and state transitions. In our setup, the steering arm
is the right arm but this can be changed in the merged hand pose
equation (Eq. 2).

P̂−h,t = ̂s ⋅ (P̂
−1
hm,t=0 × P̂hm,t) + k̂ ⋅ (P̂

−1
hs,t=0 × P̂hs,t) (2)

where P̂−h,t is the merged hand pose at t = 0−, P̂hm,t=0 is the motion
hand’s pose, P̂hs,t=0 is the steering hand’s pose. The multiplication
with their inverse at t = 0 simply sets the pose readings to zero for
relative motion mapping.

Also, differentweights for each armmotion can be defined by the
scaling factors ̂s and k̂ in Eq. 2 in the code but for these experiments,
they both set to the same multiplier.

The robot goal pose based on the merged hand pose is

Ĥ (t) = P̂−1h,t=0 × P̂h,t P̂r,t = P̂r,t=0 × Ĥ (t) (3)

where Ĥ(t) is the transformation of the merged hand pose from the
initial to the current pose.

2.2.3.2 Predefined command cooperation scenario
When the human and the robot are both in the leadership

role (i.e., carrying the object together, defined as COLIFT state in
Sect.2.1) the predefined command cooperation method is applied.
There the human uses elbows to show the direction where the robot
should go with a poking gesture (i.e., by pulling/pushing the object).
The motion type is predefined such that the robot goes upwards,
downwards, left and right in the xz-plane. The flowchart of how
the predefined command cooperation in the active lifting phase is
implemented is given in Figure 4.

2.3 Gamification

Gamification methods in HRC user training are explained in
detail in our previous study (Ates and Kyrkjebo, 2022). The time
constraint is directly connected to the score element. The game (i.e.,
each trial) is supposed to be finished in 10 min. The user starts with
600 points and loses 1 point every second.There are 2 buttons within
the common workspace that represent physical waypoints and are
defined as achievement elements. Each successful button press gives
an additional 60 points. The game elements used in this study and
their role is listed below.

• Themes create interest and engagement in educational games. It
could be some sort of introductory backstory or a narrative that
accompanies the entire game. For the proposed HRC scenario,
the background story is presented as the research objectives.
• Achievements are the mechanisms connecting the target

outcomes of the HRC task that the gained user skills.
• The game score is calculated based on the user’s performance,

which only depends on how quickly they complete each
achievement in this study. Additional parameters can be
enabled such as the measurements taken from the IMU on
the carried table regarding the tilting, deviation and trembling
of the table.
• Challenges and conflicts are central elements in any game and

they can be physical obstacles, battles with other players, or
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FIGURE 4
Predefined command cooperation in the active lifting phase (i.e., COLIFT state).

puzzles that need to be solved. In this study, the physical targets
are set to be challenging elements.
• In an entertainment game, feedback is usually immediate and

continuous which can be delivered through, reward points,
additional ‘powers’ within the game or direct messages. In this
study, both immediate and direct message feedback types are
used through three main elements: simulated human model,
game score and HRC state via the visual feedback unit.
No guided feedback is implemented but the procedure was
supervised by a human expert and objective guidance to all
users is provided as needed. The objectivity in guidance is
explained in section 2.4.3.
• Time constraint is a particular type of challenge in serious

games, which is a powerful tool to push user limits. In this study,
the time constraint is directly connected to the score element.
• Self-expressions are the parameters and preferences of the game

which are up to the user. The user could ask to change the speed
and the responsiveness of the robot. Moreover, in the proposed
HRC case, the initial poses of the user’s hands, and the way the
user grabs the table are not restricted but only guided before the
trials. These are open questions in the relevant HRC study and
user self-expressions are believed to be helpful in deciding the
most optimal usage.
• Aesthetics are the game’s visual, aural and artistic elements

in a gasified system. They play an engaging and immersive
role in the game. In an HRC scenario, the real robot
can be perceived as an aesthetic element. Nonetheless, it
is still important to add aesthetic elements to help the
user engage in the task. In this study, the physical buttons
incorporate LEDs that are activated when the button is
pressed. Additionally, a graphical user interface is developed

for the procedures that the user is able to see throughout the
experiment.

2.4 User experiments

This section explains how the cooperative lifting operation is
set up for user experiments using human motion and gesture
information, and gaming elements. The technical setup is explained
in detail, along with the user recruitment and selection procedure,
the experimental procedure that all participants perform in the
experiments, and the learning criteria users are evaluated by. The
experimental procedure was carried out in 4 stages: pre-survey,
video tutorial, physical human-robot experiment, and post-survey.

2.4.1 Technical setup
The majority of the physical experimental part is suggested in

our previous study (Ates and Kyrkjebo, 2022). The human-robot
experimental system was set up in ROS master PC which is a
standard laptop with ROS Noetic installed. The ROS master handles
all communication between the Xsens Awinda wireless IMU system,
physical buttons connected to Arduino Uno microcontrollers
transmitting wirelessly via NRF24L01+ RF transmitters, and the
universal Robot UR5e cobot which is connected to the same local
network as shown Figure 5.

2.4.2 User recruitment and selection
The user experiments took place at Western Norway University

of Applied Sciences, Campus Førde in autumn 2022. The
announcements for recruitment to the experiment were distributed
through social media, flyers at the University, and through the
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FIGURE 5
Experiment room and the units of the training system.

local newspaper. A total of 40 healthy participants between ages of
20–54 were recruited in total, 8 of which were used as pilot users to
optimize experimental parameters such as the number of trials, the
robot interaction force threshold in the co-lift state, human-robot
directions (mirrored mapping), and some additions to the GUI.
Data from the pilot experiments are not included in the paper. In
total, 32 participants did ten or more trials on the human-robot
colift system, and were assigned a 5-digit random ID and stored
anonymously according to Norwegian Centre for Research Data
standards1. Users with severe physical disabilities were excluded
from participating in the experiments.

2.4.3 Pre- and post-survey
All participants were asked to fill in a pre-survey and a post-

survey form online using Microsoft Forms. In the pre-survey, users
were asked general personal questions, related to interest in robotics
and familiarity with robots. In the post-survey, the users were asked
to asses several elements of the system such as the visual feedback,
leadership roles between them and the robot, difficulty of the task in
the four states, intuitiveness of the system and fatigue. The answers
are collected either as short texts or a selection from a Likert scale
depending on the question.

User’s heights and arm lengths are measured before the
physical experiment. The user was asked to keep the shoes on
during the height measurement since we are interested in the
effective height the user while s/he was performing the task. Arm

1 www.nsd.no/

length measurement was the length between right wrist to right
shoulder origin.

After the pre-survey, a tutorial video2 was made available to
users to show them the task and how the system works. The
video was uploaded on Youtube as Unlisted and the access link
was only shared with the subjects before the physical experiments.
To minimize the bias, users who had completed the experiment
were asked not to discuss the details of the procedure with other
participants. To ensure objective guidance, if during the experiment,
the participant asks a question whose answer is already given in
the video, then the supervisor provides an answer. If the question is
something which is not addressed in the video or consent form, then
the supervisor denies replying to such questions. After the physical
experimental procedure, the post-survey was applied.

To analyse if any background factors played a role in how well
users can learn to cooperate with robots, we divided participants
into two samples based on the survey responses. For the gender and
job category, the samples were Woman - Man and IT/Engineering -
Other. For other categories, samples were divided into Low - High
based on the numerical selection on the scale in the respective survey
question. For the majority of the categories, the integer mid-point
of the Likert scale was selected as the threshold for dividing into
samples. However, for some questions, the participants’ answers
were weighed on only one side of the threshold such as for physical
tiredness andmental tiredness, and we used themean of the answers
instead of dividing participants into two samples.

2 https://youtu.be/_JZ-ENtvB7w
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We applied a two-tailed t-test for each category with respect to
each learning criterion. The null hypothesis was the same for all
categories: “There is no difference between sample-X and sample-Y
in learning criteria L”. We analyzed the samples with respect to the
learning criteria where the null hypothesis was rejected with 10%
significance level.

The t-test formula t for unequal sizes and variances between
samples and the degree of freedom calculation df in Eq. 4 was used.

t =
( ̄x− ̄y) − (μx − μy)

√ s2x
nx
+

s2y
ny
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(4)

where ̄x, ̄y are the calculatedmeans, sx, sy are standard deviations and
nx, ny are the size of the sample-X and sample-Y , respectively. The
term (μx − μy) is the difference of hypotheticalmeans of two samples,
which is zero in our case based on the null hypothesis (H0: μx = μy).
The denominator is the estimated standard deviation (SE ̄x− ̄y) of the
distribution of differences between independent sample means for
unequal variances.

To calculate the effect size, we used both Cohen’s d and Hedge’s
g because of the difference in variance between samples. To decide
which one to use for particular categories, we set a threshold such
that the difference between two standard deviations was less than
the minimum of the two standard deviations. Therefore, the effect
size calculation was

{{{{{{{{{
{{{{{{{{{
{

d =
( ̄x−− ̄y)

√ s2x+s2y
2

if |sx − sy| < |(min(sx, sy) |

g =
( ̄x−− ̄y)

√ ((nx−1)⋅s
2
x+(ny−1)⋅s2y)

nx+ny−2

otherwise.
(5)

2.4.4 Experimental procedure
For the experimental procedure, we designed a co-lift operation

that deliberately challenged participants to cooperate with the robot
to achieve the goal of the operation. In the experiments, the human
and the robot would pick a table whose location was not known
to the robot, move it via two goal posts whose locations were also
unknown to the robot, and place the table on a predefined final
position known to the robot. The participants were scored based on
the elapsed time, if they reached the goal posts, and if the overall co-
lift operation was successful. Every participant started at 600 points,
and lost one point each second. They gained 60 points for each
successful goal post requiring that participant and the robot could
cooperatively lift and move the table to trigger the physical buttons.
When the last goal post was successfully reached, the user could
gesture that the system should enter into the RELEASE state, and the
robot would take the lead in placing the table on the final position
to end the experiment and the score countdown.

All users started with the same robot speed. In the APPROACH
state the servoL parameters for the robot were selected as
acceleration = 0.5 m/s2, velocity = 0.3 m/s, blocking time = 0.002 s,
lookahead time = 0.1 s, and gain = 300. In the COLIFT state, the
forceMode parameters were dependent on the direction, and the
compliant force F upwards was set to 3 ⋅ F, downwards to 0.5 ⋅ F,

and sideways to 1.5 ⋅ F. The maximum allowed end-effector speed
along the compliant axes was 0.8 m/s for horizontal directions
and 0.5 m/s for vertical directions. For non-compliant axes, the
maximumallowed deviation along any axis was 0.3 m/s.The angular
compliance limits along all axes were set to 0.17 rad/s. In the
RELEASE state, the moveL end-effector speed was set to 0.25 m/s
with acceleration = 1.2 m/s2 in asynchronous mode. After the user
felt comfortable in using the system with the current parameters,
s/he could ask to speed up the robot in selected directions.

Experiments took a place in a distraction-free room where only
the experiment conductor (supervisor) and the participant were
present during the experiments. The visual feedback unit and the
robot were visible to the participant from the same perspective as
shown in Figure 5.

2.4.5 Learning evaluation
To evaluate learning, we compared user scores of 10 trials using

6 different criteria.

• Highest: The best score for the participant.
• Average 3 (avg_3): Average of 3 best scores.
• Average of last 5 (avg_last_5): Average of last 5 trials.
• Variation of highest 3 (var_3): Variation of 3 best scores.
• Deviation from baseline (delta_learning): Difference between

average of first two trials (avg_first_2) and last 2 (avg_last_2)
trials.
• Learned trial (trial_no_avg_reached): The trial number for

which the participant reached the avg_3 score.

To eliminate the chance effect, the 3 best scores of the participants
were averaged in avg_3, and to evaluate the level of how well the
participant had learned the cooperation, the average score of the last
5 trials were calculated in avg_last_5. The standard deviation of the
highest 3 scores were calculated in var_3 to analyze if a particular
high scorewas due to luck, or amore consistent learned cooperation.
The average of the first two trials avg_first_2 were compared to the
average of the last two trials avg_last_2 to get a measure in delta_
learning of how much the participants had improved during trials.
How fast the participant gets used to the system was calculated in
(trial_no_avg_reached). We avoided using a single criterion and/or
single trial score to evaluate learning to obtain a broader perspective
on user learning.

3 Results

A total of 32 healthy adults participated in the experimental
study, with 10 female and 22 male participants between 20 and 54
years old (μ = 34.2 and σ = 9.6).The users had different occupational
backgrounds (health, IT, management, craftsmanship, pedagogy,
unemployed, etc.) at different levels (students, employees) and had
different previous experiences from interacting with robots (both
on a technical and a social level). The presentation of the results is
divided into two aspects. First, the measures of the system based
on the motion and gesture data collected during the experiments
is presented in Section 3.1. Second, how the participants were able
to learn to use the system with respect to the various background
factors collected in the pre- and post-survey is presented in
Section 3.2.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1290104
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Venås et al. 10.3389/frobt.2023.1290104

FIGURE 6
The figure shows the experimental measurements of user ID:35,764 during the 10 trials. The largest figure on the top is the first trial, and the rest of the
trials are presented row by row from the top left to the bottom right. The experiments start with the IDLE state highlighted with purple background
colour, followed by the APPROACH, COLIFT, and RELEASE states, which are highlighted with pink, green, and yellow background colours, respectively.
The user’s two hand motions, calculated merged hands motion, and two elbow heights are measured from the participant’s side. The hand motions are
visible shown in the IDLE, APPROACH and RELEASE states, and the elbow motions are shown only in the COLIFT state. The end-effector (TCP) motion
and the exerted force are measured from the robot’s side, and the table acceleration and user score are measured as training parameters.

3.1 HRC system measures

In total nine metrics related to the HRC system are presented
in Figure 6. One participant (User ID:35,764) has been selected to
illustrate the data from the experimental trials. The participant is
a female health worker, more than 30 years old, has no current
or past gaming habits, programming background and education in
robotics, but stated that she has a cleaner robot at home/work in the
user survey. The participant is not selected based on any particular
background factor other than to visualize the data collected during
the experiments.Theuser score data fromall participants is provided
for comparison as open access data for reproducibility (Venås,
2023)3.

From Figure 6, we see that the user score increases from the 1s

to the 10th trial. The duration of the first trial is about 400 s whereas
the last is just over 60 s.There are quite a few transitions between the
IDLE and the APPROACH states in the first trial.

3 The data is currently under review of Open Access Guidelines at Western
Norway University of Applied Sciences as of the date 19th of December,
2023.

Since the participant is not familiar with the system, she has a
difficult time making the robot move in the desired direction and
resets the hand motions several times by going back to the IDLE
state. This type of several hand-reset behaviours is seen in trials 2,
3 and partly 4, but decreases as the participant learns/gets familiar
with the system. From the 6th trial the user reached a consistent level
of performance.

Another point to highlight is the changes in the duration of the
IDLE + APPROACH and COLIFT states. The duration of the IDLE
+APPROACHstate shows how comfortably the participant controls
the robot’s motion using two-arm motions when the participant is
the leader of the system. The first attempt to grab the table took
around 160 s, whereas she managed to reduce it to under 10 s in
later trials. The duration of the COLIFT state shows two things: 1)
how comfortably the user controls the robot’s motion using instant
gestures when the user cooperates with the robot, and 2) how well
the grasping has succeeded. By default, the robot moves upward
when the grasp on the table is complete. If the grasping is too abrupt,
the robot will not automatically start moving upwards (as seen in
trials 1, 2, 5 and 10) because it registers an initial poking gesture.
The user needs to adjust the elbows’ poses adequately and poke the
robot so that the initial upward motion starts again.
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Someminor details to remark are the number of poking attempts
during the COLIFT state, the magnitude of poking force, and the
table acceleration over different trials.The table acceleration is pretty
smooth overall for this user except for trial 5. In the first trials, there
are significantly more poking attempts than in the last trials (except
for trial 10).Thepoking force iswell above the thresholdwhich could
be related to uncertainty about the system responsiveness. After the
6th trial, there is more consistent poking behaviour. Note that the
slight inconsistency in the 10th trial with regards to the upwards
trend in the score and consistent poking behaviour is discussed in
Section 4.1.

3.2 User learning evaluation

We divided the user sample into two groups for 18 different
user parameters such as age, gender, occupation, body size, robot
familiarity, gaming habits, etc., and observed their scores over 10
trials. The data is provided in Figure 7 as learning curve plots.

Thegoal of the analysiswas to identify any differences in learning
curves between the sample groups if any significant difference.
The null hypotheses are the same for all categories: “There is no
difference between sample-X and sample-Y in learning criteria L”:.
We investigate the list of samples with respect to the learning criteria
where the null hypothesis is rejected with 10% significance level.

As seen in Figure 7, all groups in each category have a similar
learning curve which is increasing steep until around trial 3, keeps
increasing with a relatively fixed gradient between trial 3 and trial
7, and reaches a plateau after trial 7. We designate those regions
as 1) steep learning, 2) steady learning and 3) plateau. There is
no user background factor that can be identified as significantly
positive or negative in the progress of learning from this perspective.
This supports a hypothesis of “everyone can cooperate” - or more
precisely “everyone can learn to cooperate” - with robots.

Investigating the results more closely, there seems to be a drop
in the score as the trial number increases in the majority of subplots
in Figure 7 around 8th. This reverse learning effect is discussed in
more detail in Section 4.2. Note also that the physical tiredness
parameter seems to be one where there is more of a difference
between the two sample groups. Although none of the users stated
that they experienced severe physical tiredness or fatigue (see the
mean and standard deviation, and the number of users in the sample
group “low”), those who have lower physical tiredness have more
fluctuating scores in the plateau region.

For most of the background factors, the two sample groups have
relatively similar start levels, whereas, for some background factors,
one sample group has a higher start score ( gender, job category,
height, arm length, programming background, past gaming habits,
proximity to robots, feeling gradual easiness, communication feeling,
beliefs on would do better and physical tiredness). While the higher
start score in gender, height, programming background, past gaming
habits, proximity to robots and communicate feelings is also reflected
in higher end-scores, the higher start score for the job category,
arm length, feeling gradual easiness, beliefs on would do better and
physical tiredness converges to the same end score as the other sample
group. The sample groups divided by age start and end in relatively
similar scores, yet the steep learning region in higher age groups
are even steeper. Lastly, there are no significant differences between

the sample groups of current gaming habits, robot and robot arm
familiarity, visual feedback screen usage and mental tiredness for the
start and the end scores. Further details on the quantitative results
for each background factor towards the learning criteria based on
the results of the t-tests, respective p-values and effect sizes are given
in Section 4.2.

4 Discussion

The learning progress of the different sample groups towards
the different learning criteria, and the main findings regarding
the results of the t-tests, respective p-values and effect sizes, are
given in Table 1.

Note that in Figure 7, we can see subtle decreases in the score
around trial numbers 7,8 and 9. According to our observations
and user feedback, this could come from several reasons. First,
participants were new to the HRC control scheme and how to use
both arms to control the robot. Therefore, the participants focused
in their first trials (on average four trials) to get used how to control
the robot and their own body motions and gestures, rather than
trying to solve the task as quickly as possible. However, as user
confidence increased (particularly in the learned plateau),more risk-
taking behaviour was observed, and users asked for more speed and
tried new approaches to accomplish the task faster. This behaviour
was observed more in users with competitive traits and those who
had acquaintances enrolled in the experiment.

Note also that themajority of the users requested to continue the
experiment after the 10th trial and achieve even better performance.
The data from these trials were not included in the analysis for fair
analysis but can be seen in Figure 8.

4.1 Observed user behaviours

Relevant observations made by the supervisor during
experiments are discussed in this section.

First, the user’s comfort with the experiment and the setting is
important for performance. User comfort most likely differ between
users who work in similar environments to where the experiment
took place and those who had never been at campus. Observations
on how the user felt after the first trial were noted during the
experiments, and any discomfort can also be a compounding factor
in the metrics related to feeling gradual easiness, communication
quality, beliefs that would do better or worse. This will be discussed
more in later sections.

A risk-taking behaviour as the user comfort increases can be
seen in the measurements figure of the example user Figure 6.
The 10th trial ends up with a lower score than 7-8-9th trials. The
reason was that the user learned how to smoothly transit from the
APPROACH state to COLIFT state without any harsh grasping after
trial number 5 (see the robot TCP line). However, in the 10th trial,
the user was too quick lift the table before the robot’s grasp was
completed, which violated the grasp action, and the robot did not
start moving upwards which cost the user a few points. This type of
behaviour was also seen for other participants as well as in different
stages of the task such as elbow height adjustments, releasing before
the goal post buttons were pressed, etc. Another observation linked
to user learning was the change in the poking force magnitude.
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FIGURE 7
Participant background data on learning curves. Each plot shows the score of participants divided into two sample groups for the respective
background variable. The plots show the aggregation of all participant scores in each sample group for each trial; the middle line shows the mean, and
the shadow region shows the standard error.
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TABLE 1 Satistics table across user background and learning criteria. In total 34 background variables gave significant results out of 144 t-tests.

Category Learning criteria ̄x ̄y sx sy nx ny t-score p-value Effect size (d ∧ g)

Programming background highest 674.00 683.43 12.46 9.21 18 14 −2.46 0.02 Large (-0.86)

Programming background avg_3 660.41 674.10 16.76 12.06 18 14 −2.68 0.01 Large (-0.94)

Physical Tiredness avg_first_2 551.08 459.71 54.23 109.76 25 7 2.13 0.07 Large (1.32)

Past Gaming Habits highest 671.25 682.25 12.26 9.96 12 20 −2.63 0.02 Large (-0.99)

Past Gaming Habits avg_3 657.33 671.83 18.49 12.14 12 20 −2.42 0.03 Large (-0.93)

Height avg_first_2 491.38 554.92 99.86 50.55 12 20 −2.05 0.06 Large (-0.8)

Gender var_3 56.22 22.09 50.47 30.89 10 22 1.98 0.07 Large (0.82)

Gender avg_first_2 473.10 557.45 98.81 49.63 10 22 −2.56 0.03 Large (-1.08)

Gender delta_learning 167.55 96.23 89.71 52.90 10 22 2.34 0.04 Large (0.97)

Feeling Gradual Easiness var_3 21.03 58.56 27.38 53.28 22 10 −2.10 0.06 Large (-0.89)

Communication Feeling highest 669.25 683.45 12.45 8.03 12 20 −3.53 0.00 Large (-1.36)

Communication Feeling avg_3 657.89 671.50 16.94 13.76 12 20 −2.36 0.03 Large (-0.88)

Believes that would do better avg_3 674.28 661.67 11.64 16.95 12 20 2.49 0.02 Large (0.87)

Believes that would do better avg_last_5 663.85 639.12 16.42 29.75 12 20 3.03 0.01 Large (1.03)

Believes that would do better avg_last_2 667.62 638.80 21.71 36.73 12 20 2.79 0.01 Large (0.96)

Arm Length avg_first_2 489.67 555.95 97.99 51.27 12 20 −2.17 0.05 Large (-0.85)

Arm Length delta_learning 163.75 91.38 75.35 58.23 12 20 2.86 0.01 Large (1.07)

Age trial_no_avg_reached 7.91 6.57 1.22 2.01 11 21 2.33 0.03 Large (0.8)

Age delta_learning 155.77 99.00 73.64 66.58 11 21 2.14 0.05 Large (0.81)

Programming background avg_last_5 639.51 659.81 29.74 21.65 18 14 −2.23 0.03 Medium (-0.78)

Programming background avg_first_2 506.39 562.86 86.24 53.34 18 14 −2.27 0.03 Medium (-0.79)

Past Gaming Habits avg_last_5 636.20 655.71 33.14 22.29 12 20 −1.81 0.09 Medium (-0.69)

Mental Tiredness trial_no_avg_reached 6.44 7.62 1.67 1.93 16 16 −1.86 0.07 Medium (-0.66)

Job Category highest 682.91 675.62 9.17 12.69 11 21 1.86 0.07 Medium (0.66)

Job Category delta_learning 90.00 133.45 47.20 80.70 11 21 −1.92 0.06 Medium (-0.66)

Height avg_3 659.92 670.28 14.87 16.06 12 20 −1.85 0.08 Medium (-0.67)

Height delta_learning 153.71 97.40 87.68 55.16 12 20 2.00 0.06 Medium (0.77)

Gender avg_3 658.43 670.02 15.42 15.55 10 22 −1.96 0.07 Medium (-0.75)

Communication Feeling trial_no_avg_reached 6.17 7.55 2.21 1.47 12 20 −1.93 0.07 Medium (-0.74)

Believes that would do better var_3 17.63 41.83 24.66 45.82 12 20 −1.94 0.06 Medium (-0.66)

Believes that would do better avg_first_2 564.17 511.25 53.15 84.74 12 20 2.17 0.04 Medium (0.75)

(Continued on the following page)
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TABLE 1 (Continued) Satistics table across user background and learning criteria. In total 34 background variables gave significant results out of 144 t-tests.

Category Learning criteria ̄x ̄y sx sy nx ny t-score p-value Effect size (d ∧ g)

Familiarity with Robots highest 674.76 681.93 12.13 10.95 17 15 −1.76 0.09 Medium (-0.62)

Familiarity with Robots avg_3 661.57 671.87 17.94 12.38 17 15 −1.91 0.07 Medium (-0.67)

Familiarity with Robots avg_first_2 510.03 554.97 92.21 50.98 17 15 −1.73 0.10 Medium (-0.6)

FIGURE 8
User score data on each trial. The results are colour-coded from red to green to visualize the training results from low to high.

Two distinct behaviour was observed between users: 1) they would
interact with higher forces because they thought of the robot as a
sturdymachine, and 2) theywould interactwith lower forces because
of fearing to damage the robot. As seen in the force (scale 0.005) line
of Figure 6, this particular user started with a relatively high poking
force (trials 1 and 2) but lowered it in the later trials (6,7,8 and 9).
Even though the user experienced a problem in trial 10, she did not
increase the magnitude of the interaction force–she had learned the
necessary level of force required to transition into the next state.

Participants also implemented instructions differently. For
instance, some users preferred using both hands equally in the
APPROACH state, whereas some chose one hand (unintentionally,
regardless of which was their dominant hand) and kept the other
hand stationary.

In terms of requesting a speed change for the robot compared to
the initial parameters as the trials went on, almost all users requested
the robot move faster within the first 10 trials. In total, 3 people on
APPROACH (all are after the 10th trial), 28 people on COLIFT (all
are before the 10th trial) 28 people on RELEASE (all are before the
10th trial). Among those 3 states, the users preferred a faster speed as
the robot leadership increased in the task. In the APPROACH state,

where the human is the sole leader of the task, the users did not tend
to request to go faster but they apparently were satisfied such that
they did not want to reduce it either.

4.2 Background factors vs. learning criteria

Regardless of age, gender, job category, gaming background,
and robot familiarity, the learning curves of all users are positively
inclined in Figure 7. The user scores were evaluated in for 6 different
learning criteria, and the significant participant background factors
were calculated with a two-sample t-test as shown in Section 2.4. In
total 34 [background parameter, learning criteria] pairs were found
to be significant with a p-value less than 0.1 and effect size bigger
than 0.5 as shown in Table 1.

We have avoided using a single learning criteria or single trial
score to evaluate learning. Based on our observations during the
experiments, some users changed behaviour after some trials which
caused deviations and glitches in their score curves. The most
common deviation was because of the “reverse learning” effect.
Some users who experienced that they learned to use the system
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FIGURE 9
Body measures effect on learning. The pink group bar represents the lower measures and the blue group bar represents the higher measures of the
respective numeric user factor (for this and the upcoming similar barplots).

well in early trials pushed their limits to achieve a better high-score.
Although participants were informed that there was no competition
between users, some users with highly competitive traits prioritized
a higher score over a consistent learning curve. On the other hand,
other participants aimed to achieve the task with as little risk for
failure as possible, and declined increasing the speed even though
observations indicated that they could have managed this change
well. Therefore, we have analyzed data using all 6 learning criteria
towards the all background factors for the participants.

4.2.1 User body size
The system is designed such that it does not require to be tuned

between users to be easily integrated into industrial applications at
a later stage. Since the human-to-robot motion mapping is a relative
mapping, users with different body sizes should be equally able to
use the system. From Figure 7, we see that the body size parameters
height and arm length give similar progression of learning. However,
according to Table 1 body size makes a difference in some learning
criteria. Participants who are taller and have longer arms started
with a better score (avg_first_2), while shorter participants showed
a faster learning behaviour (delta_learning) as shown in Figure 9. In
the end, there were no significant differences in the learning criteria
except for the average of the best 3 scores avg_3. Note the effect of
this user parameter is highly related to the model of the human and
human-to-robot motion mapping method used in Section 2, and
thus we cannot generalize that larger body sizes performs better.The
takeaway from this experiment is that taller participants with longer
arms performed better in this experiment, and that body size could
play a role in HRC learning performance.

4.2.2 Robot familiarity and anticipation
According to the t-test results in Table 1, users who had

commercial robots at home or at work performed slightly better on
some learning criteria than those who were not that familiar with
robots. However, having a theoretical background in robotics does
not seem to be significant for learning.The participants’ anticipation
of the task had a bigger effect than assumed before the experiments.
In total, 30 users out of 32 thought the first trials were hard, but that
it got easier in later trials. Therefore, we took the mean of the given
answers and applied this threshold to divide the participants into
two sample groups.Those participants who felt continuous difficulty
achieved more consistent scores than those who felt the operation
became gradually easier. This could be related to higher risk-taking
from users that felt the operation became gradually easier. Another
explanation could be that participants who felt a gradual easiness
performed worse in the start trials, and then performed much better
in later trials. However, the t-test does not return any significant
results either for avg_first_2 or avg_3, which suggests that the risk-
taking factor could play the bigger role.

Similarly, the experience of having established a good
communication with the robot is relativeley high among all users;
only one user partly disagrees with this. Therefore, we took the
mean of the given answers and applied this threshold to divide the
users into two sample gropus with different levels of communication
with the robot. The feeling of good communication with the robot
seems to have a positive impact in reaching higher scores (highest
and avg_3), but it takes longer to reach the plateau of learning
according to the trial_no_avg_reached learning criteria. Those who
stated that they experienced a very good communication reached
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FIGURE 10
Robot familiarity and proximity effect on learning.

their consistent level of learning on average at the 8th trial, whereas
those who agreed or partly agreed with having established a good
communication reached their level of learning on average at the 6th

trial. A possible reason for reaching the learning plateau slower could
be that participants who commented positively towards having a
good communication during the tests are observed to be more
experimental and taking higher risks when they were about to reach
the learning plateau.

In all (13/32) people expected to perform better, (14/32) people
expected to perform worse (2/32) did not give any opinions, and

(3/32) provided conflicting opinions (i.e., agreeing or disagreeing
to both questions). There seems to be an ambiguity in the self-
reported success/failure beliefs due to conflicting answers. However,
it is observed in the results of the t-test that those who believed
they could have done better get significantly lower scores in 3 out
of 6 learning criteria. Although delta_learning was not found to be
significantly different for this background factor, both the avg_first_
2 and avg_last_2 were significantly different. This is an indication
that users learned what could be objectively characterized as a good
performance during the training. The results show that people who
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FIGURE 11
Job category and gender effect on learning. The blue group bar represents IT/Engineering related occupations in Job Category metric and male users
in Gender metric. The pink and blue group bars represent other occupations registered such as teacher, craftsperson, nurse, consultant, unemployed,
etc., in Job Category metric and female users in Gender metric.

need more training could identify themselves based only on their
own performance.

The overall comparison of the robot familiarity and anticipation
with respect to different learning criteria is given in Figure 10.

4.2.3 Age, gender and job category
The age parameter was significant for 2 different learning

criteria, trial_no_avg_reached and delta_learning. Although the
difference is not large, the higher age group seem to converge on
a learning state faster than the younger age group. However, when
it comes to the plateau of learning, younger participants achieved a
higher plateau of learning compared to older participants. In all, age
seems not to be a significant factor if enough training is provided.

Job category and gender should be looked at together
because these two parameters are highly dependent on our group
of participants. We registered people from 5 job categories;
IT/engineering, health, craft, non-technical office job and

unemployed. We analyzed data to see if IT/engineering-related jobs
outperformed other jobs grouped together. Unfortunately, there
were no women participants enrolled in IT/engineering jobs in
the participant group, and thus the job category and the gender
factor became indistinguishable in the learning criteria. From
the analysis, we see that participants from IT/engineering jobs
achieved significantly higher scores than other jobs. The amount
of learning (delta_learning) among men was also lower compared
to the amount of learning among women. Although the baseline
(avg_first_3) of men were higher than women, and women learned
more delta_learning, men seem to learn enough from their baseline
so that the difference in the average of highest 3 scores avg_3 is also
significant in favour of men. Except for 3 outliers, men performed
more consistently than women (See (var_3)).

The overall comparison of the age, gender and job
category with respect to different learning criteria is given in
Figure 11.
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FIGURE 12
Programming skills and gaming habits effect on learning.

FIGURE 13
Mental and Physical tiredness effect on learning.

4.2.4 Gaming habits
The programming background seems to be advantageous both

for the baseline (avg_first_2) and for getting higher scores (highest,
avg_last_5 and avg_3) as shown in Figure 12. The current gaming
habits do not seem to be a significant factor, which aligns with
another relevant study in the literature (Tanaka et al., 2016), whereas
past gaming habits seem to be advantageous in the same 3 learning
criteria as for the programming background. We can note that
the 3 users who were actively playing video games reported some
confusion about the motion directions of the robot during the
experiments. They reported that the mirrored motion of the robot
was confusing since they were more used to a third-person or first-
person view of controlling avatars. On the other hand, several users
who did not have a lot of gaming experience reported the mirrored

motion of the robot was intuitive, as the robot mimicked his/her
motions. This should be taken into account when designing HRC
systems that will be used by operators with different backgrounds in
gaming.

4.2.5 Physical and mental fatigue
Neither mental nor physical tiredness was reported to be a

challenging factor during the physical tasks as shown in Figure 7.
Therefore, we took the mean of the given answers to the respective
question and applied this threshold to divide the participants into
two sample groups. The participants who experienced relatively
low physical tiredness had a better start to the trials as shown in
Figure 13, and the users who experienced relatively high mental
tiredness seemed to reach the learning plateau slower.
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TABLE 2 Chi-Square of independence: list of dependent parameters.

Category-1 Category-2 X 2 p

Gender Job Category 5.56 0.02

Gender Height 20.52 0.00

Gender Arm Length 8.73 0.00

Height Arm Length 14.22 0.00

Programming background Gender 4.89 0.03

Programming background Job Category 7.65 0.01

Programming background Past Gaming Habits 7.62 0.01

Past Gaming Habits Gender 4.69 0.03

Past Gaming Habits Job Category 4.07 0.04

Familiarity with Robots Gender 5.93 0.01

Familiarity with Robots Job Category 6.22 0.01

Familiarity with Robots Height 5.23 0.02

Familiarity with Robots Programming background 12.43 0.00

Familiarity with Robots Past Gaming Habits 9.11 0.00

Familiarity with Robots Current Gaming Habits 4.07 0.04

Believes that would do
worse

Mental Tiredness 4.66 0.03

4.3 Independence of user parameters and
family-wise errors

As seen in the detailed comparisons, some parameters related
to user background are not independent. For example, gender and
job category. To analyse which parameters were dependent for our
participant group, we ran the Chi-Square test and the resultant
dependent parameters list is given in Table 2. This suggests that
we should be very careful to draw any individual conclusions on
the link between learning criteria and the background factors in
Table 2 without acknowledging the possible dependency on other
background factors.

In this study, we did not apply a family-wise error correction
algorithm such as Bonferroni correction.There are twomain reasons
for that. First, there are debates on using Bonferroni correction
Armstrong (2014) particularly when it is applied to the small sample
sizes. Second,The family-wise error correction algorithms adjust the
significance level to control the overall probability of a Type I error
(false positive) for multiple hypothesis tests. Our null hypothesis
is two groups are equal (H0: μ1 = μ2) and it is rejected when a
significant difference is found between μ1 and μ2). Among 144
tests, we found only 34 that have an effect on learning considering
the Type-I error is in this number. If a corrector was applied, this
number would have been smaller yet the Type-II error would have
been higher such that some background parameters which had
an effect on learning would have been undetected. Our aim is to

provide a suggestion list of user demographics that are more likely
to have an effect on learning and they are better to be taken into
account in further studies. At this point, it is more important to
have more rejected H0s than it should be rather than accepting
them wrongfully and missing some important background
parameters that might have an effect on learning to cooperate with
robots.

5 Conclusion and future work

This study investigates if anyone can learn to cooperate
with robots through an experimental study with 32 participants
performing a co-lift task, and which background factors such as
age, gender, job, gaming habits, programming skills, familiarity
with robots, etc., impact learning. The co-lift experimental
setup used IMUs for upper-body motion estimation and gesture
recognition, and a gamified experimental setup to increase user
motivation.

The results show that all users achieved a satisfactory level of
cooperation with robots for the co-lift task regardless of background
factors within seven or fewer trials. The rate of learning progression,
level of achievement and how consistent the cooperation could
be repeated for subsequent trials varied between different user
groups, but the main conclusion is that all groups benefited from
training irrespective of background factors and that all participants
could achieve a satisfactory level of cooperation through
training.

We believe that the results show that the focus for HRC systems
developers should not only be on optimizing the technical setup for
human-robot cooperation but also focus on better user training to
increase HRC uptake in the industry. The results presented in this
paper show that all users benefit from training to better cooperate
with a robot and that achieving a satisfactory level of cooperation
for any user irrespective of background can be done within a fairly
short time and a limited number of training runs. This suggests that
the user’s background is not the hindering factor when it comes to
the adoption of HRC in the industry.

Finally, our study is limited to the co-lift task for HRC. Note that
while the implementation of this task in this study was designed
to be as generic and representative as possible for HRC tasks, we
recognize that other HRC tasks that require other specific skills may
give different results. However, we believe that the conclusions from
this study apply to a wide range of HRC applications. Note also
that the purpose of this study was not to reach a strict conclusion
between user background factors and specific learning criteria, but
rather to observe the learning process of the individuals and to
investigate which background factors play a role in learning to
better accommodate future implementation of HRC in industrial
applications.
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