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Abstract

Cyber-physical systems increasingly feature highly-distributed and mobile de-
ployments of devices spread over large physical environments: in these contexts,
it is generally very difficult to engineer trustworthy critical services, mostly
because formal methods generally hardly scale with the number of involved
devices, especially when faults, continuous changes, and dynamic topologies
are the norm. To start addressing this problem, in this paper we devise a
formally correct and self-adaptive implementation of distributed monitors for
spatial properties. We start from the Spatial Logic of Closure Spaces, and pro-
vide a compositional translation that takes a formula and yields a distributed
program that provides runtime verification of its validity. Such programs are
expressed in terms of the field calculus, a recently emerged computational model
that focusses on global-level outcomes instead of single-device behaviour, and
expresses distributed computations by pure functions and the functional compo-
sition mechanism. By reusing previous results and tools of the field calculus, we
prove correctness of the translation, self-stabilisation of the derived monitors,
and empirically evaluate adaptivity of such monitors in a realistic smart city
scenario of safe crowd monitoring and control.

Keywords: Spatial Logics, Runtime verification, Self-adaptive systems, Field
Calculus

1. Introduction

Cyber-physical systems (CPSs) are typically constructed by deploying a va-
riety of computational devices of various sorts (sensors, actuators, computers)
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into the physical environment, e.g., in scenarios like smart cities, intelligent
buildings and factories, transportation, and wide-area monitoring and control.5

Such systems increasingly feature large-scale, intrinsic distribution of compu-
tation, dynamism, mobility, and unpredictability due to faults, adversarial be-
haviour, and unknown patterns of human behaviour and data production. As
such, engineering trustworthy computational services over CPSs is particularly
challenging, especially when there is need of facing critical functional and non-10

functional requirements. In principle, one would seek for formal methods and
tools by which a system design can be verified against the validity of certain
properties, such that these properties can be transferred to system execution:
unfortunately, the complexity of CPSs deployment scenarios typically makes the
problem intractable (Bennaceur et al., 2019).15

As a contribution towards facing this issue in a significant class of cases, in
this paper we focus on the problem of decentralised distributed runtime verifica-
tion of spatial properties. Runtime verification is a computing analysis paradigm
based on observing a system at runtime (to check its expected behaviour) by
means of monitors generated from formal specifications, so as to precisely state20

the properties to check as well as providing formal guarantees about the results
of monitoring (Bauer et al., 2011; Leucker and Schallhart, 2009): distributed
runtime verification is runtime verification in connection with distributed sys-
tems, hence it comprises both monitoring of distributed systems and using dis-
tributed systems for monitoring in an asynchronous setting. Approaches to25

distributed runtime verification typically rely on simplifying assumptions such
as absence of failures and mobility (Francalanza et al., 2018). Here, we specif-
ically aim at open systems of agents, where the number of participants, their
communication topology, and the performance of (broadcast) messages is un-
reliable. According to the above survey, there is no comparative work in this30

regard.
In a further departure from other approaches to runtime verification, we are

specifically not interested in a global verdict (and hence a global monitor), but
rather in each agent’s view, which in a slight departure from the terminology
we call the decentralised setting. In our application area we specifically want to35

avoid a centralised monitor (observer), as nodes e.g. in a wireless sensor network
can only communicate with neighbours, and we see distribution also as a way
to tolerate failures such as network partitioning, in addition to a pragmatic
motivation.

We address this problem of an open system by careful selection of a compu-40

tational model for distributed systems that provides inherent support to large-
scale and open scenarios, scalability with the complexity of the distributed al-
gorithms to implement, and compositionality with respect to spatial logical
connectives. Namely, we adopt the aggregate computing paradigm (Beal et al.,
2015; Viroli et al., 2019), and especially its incarnation into the field calculus45

language (Audrito et al., 2019c), where agents are programmed in an abstract
computational environment and make use also of spatial and temporal data
constructs in their region through proximity-based interactions. Programs ex-
pressed in field calculus focus on global-level outcomes of a computation in-
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stead of single-device behaviour, they express highly-distributed computations50

by pure functions, and finally rely on functional composition as key mechanism
to combine libraries of reusable and correct building blocks into higher-level ap-
plications services Viroli et al. (2018). At the modelling level, the field calculus
expresses computations as transformation of computational fields (or fields for
short), namely, space-time distributed data structures mapping computational55

events (occurring at a given position of space and time) to computational values.
As an example, a set of temperature sensors spread over a building forms a field
of temperature values (a field of reals), and a monitor alerting areas where the
temperature was above a threshold for the last 10 minutes is a function from
the temperature field to a field of Booleans.60

We take as reference the Spatial Logic of Closure Spaces (SLCS) (Ciancia
et al., 2014), a modal logic proposed to describe and verify topological prop-
erties over spatially-situated systems, and formally grounding the concepts of
proximity, propagation and surroundedness. By the field calculus, we are able
to define a translation of formulas of the Spatial Logic of Closure Spaces (SLCS)65

into distributed systems that act as monitors for such formulas, namely, making
all nodes of the system collaborate by local interaction to establish the validity
of the formula at each point of space. By reusing previous results and tools of the
field calculus, then, we prove correctness of the translation, and self-stabilisation
of the derived monitors, hence their robustness to transient changes. Finally,70

we empirically evaluate self-adaptivity of the generated monitors in a realistic
smart city scenario of safe crowd monitoring. In such a case study, we consider a
target SLCS property and compare a corresponding decentralised field calculus
monitor (straightforwardly obtained by applying the formula mappings) with an
ideal, oracle monitor having direct complete knowledge of the entire distributed75

system. We show that the former monitor, despite the adversarial conditions
of nearly-continuous topology change, is able to approximate the ideal moni-
tor with reasonable precision. This demonstrates the practical viability of the
approach (though, of course, its suitability ultimately depends on the relative
reactivity and precision requirements of the application at hand) as well as its80

significance especially in scenarios where centralised services are not practicable
(e.g., because of missing infrastructure) or temporarily unavailable (c.f. graceful
degradation).

The remainder of this paper is organised as follows: Section 2 provides the
necessary background; Section 3 illustrates how the field calculus can be used to85

implement distributed monitors of spatial logic properties; Section 4 presents
the case study; Section 5 discusses some related work; and Section 6 concludes.

2. Background

In this section we provide the necessary background to introduce the key
contribution of the paper in next section. In particular, Section 2.1 describes90

distributed runtime verification and how our approach relates to it, Section 2.2
introduces aggregate computing and the field calculus, and finally Section 2.3
discusses spatial logics and introduces the SLCS logics.
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2.1. Distributed runtime verification

Runtime verification is a lightweight verification technique concerned with95

observing the execution of a system with respect to a specification (Leucker
and Schallhart, 2009). Specifications are generally trace- or stream-based, with
events that are mapped to atomic propositions in the underlying logic of the
specification language. Popular specification languages include variations on
the Linear Time Logic LTL, and regular expressions. Events may be generated100

through state changes or execution flow, such as method calls.
Most specifically, this paper focusses on the sub-case of so-called distributed

runtime verification (Francalanza et al., 2018), aiming at defining logics to
express properties of space and time, and corresponding monitors for such
properties—which may or may not be distributed. In distributed runtime veri-105

fication, agents (representing the system to verify at each device) are generally
considered remote to each other: as constituents of the whole system, they are
assumed to execute independently and occasionally synchronise or communicate
with each other via the underlying communication platform. A local trace of
events corresponds to a sequence of sets of values for observables, as defined110

through the sensors of an agent, or derived values from those. Since agents may
appear or disappear over time from the overall system, traces from different
processes are not aligned in time in the sense that for a particular index/posi-
tion in each trace, these events did not necessarily happen at the same time.
Accordingly, logic formulas cannot state properties over single traces, but one115

should naturally adopt an “event structure” viewpoint (Winskel, 1982), where
a partial order relation between events is introduced to model causality (com-
munication across agents, or agent internal computation steps) (Audrito et al.,
2019c).

Monitoring is performed by computation entities that check properties of the120

system under analysis by analysing traces representing partial system evolutions.
Similar to the agents carrying on system execution, each monitor is hosted at
a given location and may communicate with other monitors, though in general
there is no strict correspondence between locations of agents and monitors.
Additionally, failures, such as lost or corrupt messages, are typically ignored,125

for they would make the overall distributed monitor unable to carry on the
verification process in a meaningful way.

The distributed monitoring approach we shall introduce in this paper is in a
sense a more natural transition from traditional runtime verification. It is based
on the idea of locating monitors on each device and make them execute the same130

local program, which amounts to evaluate single traces that include all local
events as well as events from neighbouring nodes (perceived by communication).
Given that the formula of a spatial logic may have a validity result that varies at
each point of space, the local monitor at a device will naturally give the validity
result of its location: each local result, however, has been derived through the135

collaboration of all local monitors through broadcast communication, hence, in
a distributed way. Accordingly, unexpected changes in the system configuration
(node/device faults, changes in topology, permanent loss of communications),
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affect the executing system in the same way they affect the distributed monitor,
which will then behave accordingly and coherently. Namely, any change will140

be considered as a new network configuration, in which the distributed monitor
will continue its verification process, taking into account the changed set of
neighbours in subsequent communication rounds.

2.2. Aggregate computing

Aggregate computing (Beal et al., 2015; Viroli et al., 2019) aims at support-145

ing reusability and composability of collective adaptive behaviour. Following the
inspiration of “fields” of physics (e.g., gravitational fields), this is achieved by
the notion of computational field (simply called field) (Mamei and Zambonelli,
2009), defined as a global data structure mapping devices of the distributed
system to computational values. Computing with fields means deriving in a150

computable way an output field from a set of input fields. Field computations
can be understood both locally, in terms of interactions with neighbours, or
globally in terms of composition of functions on fields.

2.2.1. Computational model

In aggregate computing, the global evolution of a computing network is155

carried out by periodically and asynchronously executing on every device a
same program P according to a cyclic schedule. Thus, every device δ in the
network independently performs a sequence ε1, ε2, . . . of firings, each of them
consisting of the following actions:

1. the device perceives contextual information formed by data provided by160

sensors, local information stored in the previous firing, and messages re-
cently collected from neighbours1 (discarding older messages after a cer-
tain timeout), the latter in the form of a so-called neighbouring value
φ—essentially a map from neighbours δ′ to values vδ′ ;

2. then, the device evaluates the program P, considering as input the contex-165

tual information gathered as described above;

3. the result of the local computation is a data structure that is stored locally,
broadcast to neighbours, and possibly fed to actuators producing output
values;

4. finally, the device goes to sleep waiting for its next firing, while gathering170

messages from neighbours.

Firings and their mutual relationships are modelled formally through the es-
tablished notion of event structures (Lamport, 1978) and its augmented variant
with device identifiers (Audrito et al., 2018a, 2019c). This representation focuses
on the communication between devices, which is the main aspect distinguishing175

1Typically, the neighbouring relation reflects spatial proximity, but it could also be a logical
relationship, e.g., connecting master devices to slave devices independently of their position.
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Figure 1: Example of an event structure (which is also a LUIC augmented event structure,
c.f. Def.2), comprising events (circles), neighbour relations (arrows), devices (ordinate axis).
Colours indicate causal structure with respect to the doubly-circled event (magenta), splitting
events into causal past (red), causal future (cyan) and concurrent (non-ordered, in black). The
numbers written within events represent a sample space-time value (c.f. Def. 3) associated with
that event structure. Note that the doubly-circled event has three neighbouring events: event
1 at the same device (its previous firing), event 3 at device 4, and event 1 at device 2. Figure
taken from (Audrito et al., 2018a).

a distributed system from a sequential one: the relation of this representation
with the physical neighbour-relationship of devices at each point in time will be
discussed later (cf. Section 2.2.2).

Definition 1 (Event Structure). An event structure 〈E, , <〉 is a countable
set of events E together with a neighbouring relation ⊆ E×E and a causality180

relation <⊆ E × E, such that the transitive closure of  forms the irreflexive
partial order <, and the set Xε = {ε′ ∈ E | ε′ < ε} ∪ {ε′ ∈ E | ε ε′} is finite
for all ε (i.e., < and  are locally finite).

Thus, we say that ε′ is a neighbour of ε iff ε′  ε, and that N (ε) =
{ε′ ∈ E | ε′  ε} is the set of neighbours of ε.185

Figure 1 depicts a sample event structure, showing how the <-relation parti-
tions events into “causal past”, “causal future”, and non-ordered “concurrent”
subspaces with respect to any given event: in principle, an execution at ε can
depend on information from any event in its past and its results can influence
any event in its future. Causality is uniquely induced by neighbouring (the  -190

relation), dictating when an event can directly influence (by message-passing)
another. Intuitively, every  relation correspond to the send and receive of
a message: in order for ε1  ε2 to hold, event ε1 on a device δ1 must result
in a message which reaches a device δ2 before its execution of ε2. The name
neighbouring reflects that message exchanges happen on devices that are close195

to each other (in some physical or logical sense).
Any sequence of computation events and message exchanges between them

6



can be represented as an event structure, however, not all event structures are
physically realisable by a distributed system following the firing model described
at the beginning of this section. The subset of realisable event structures is200

characterised by the following definition.

Definition 2 (LUIC Augmented Event Structure). An augmented event struc-
ture is a tuple E = 〈E, , <, d〉 such that 〈E, , <〉 is an event structure and
d : E → D is a mapping from events to the devices where they happened. We
define:205

• next : E 7→ E as the partial function2 mapping an event ε to the unique
event next(ε) such that ε  next(ε) and d(ε) = d(next(ε)), if such an
event exists and is unique (i.e., next(ε) is the computation performed
immediately after ε on the same device d(ε)); and

• 99K⊆ E × E as the relation such that ε 99K ε′ (ε implicitly precedes ε′) if210

and only if ε′  next(ε) and ε′ 6 ε.

We say that E is a LUIC augmented event structure if the following coherence
constraints are satisfied:

• Linearity: if ε εi for i = 1, 2 and d(ε) = d(ε1) = d(ε2), then ε1 = ε2 =
next(ε) (i.e., every event ε is a neighbour of at most another one on the215

same device);

• Uniqueness: if εi  ε for i = 1, 2 and d(ε1) = d(ε2), then ε1 = ε2 (i.e.,
neighbours of an event all happened on different devices);

• Impersistence: if ε  εi for i = 1, 2 and d(ε1) = d(ε2) = δ, then either
ε2 = nextn(ε1) and ε  nextk(ε1) for all k ≤ n, or the same happens220

swapping ε1 with ε2 (i.e., an event reaches a contiguous set of events on a
same device);

• Computation immediacy: the relation  ∪ 99K is acyclic on E (i.e.,
explicit causal dependencies < are consistent with implicit time depen-
dencies 99K).225

The first two constraints are necessary for defining the semantics of an ag-
gregate program (denotational semantics in Audrito et al. (2019c); Viroli et al.
(2019)). The third reflects that messages are not retrieved after they are first
dropped (and in particular, they are all dropped on device reboots). The last
constraint reflects the assumption that computation and communication are230

modeled as happening instantaneously. In this scenario, the explicit causal de-
pendencies imply additional time dependencies ε 99K ε′: if ε′ was able to reach
next(ε) but not ε, the firing of ε′ must have happened after ε (additional details
on this point may be found in the proof of Theorem 1 in Appendix B.1).

2With A 7→ B we denote the space of partial functions from A into B.

7



Remark 1 (On Augmented Event Structures). Augmented event structures were235

first implicitly used in Audrito et al. (2019c) for defining the denotational se-
mantics (with the linearity and uniqueness constraints only), then formalised
in Audrito et al. (2018a) (without any explicit constraint embedded in the def-
inition). In this paper, we gathered all necessary constraints to capture exactly
which augmented event structures correspond to physically plausible executions240

of an aggregate system (see Theorem 1): this includes both the linearity and
uniqueness from Audrito et al. (2019c), together with the new impersistence
and computation immediacy constraints.

Notice that the event structure in Figure 1 satisfies the LUIC constraints
with the represented device assignment. Interpreting this structure in terms of245

physical devices and message passing, a physical device is instantiated as a chain
of events connected by  relations (representing evolution of state over time
with the device carrying state from one event to the next), and any  relation
between devices represents information exchange from the tail neighbour to the
head neighbour. Notice that this is a very flexible and permissive model: there250

are no assumptions about synchronisation, shared identifiers or clocks, or even
regularity of events (though of course these things are not prohibited either).

Through the repetitive execution of firings (modelled by events), across space
(where devices are located) and time (when devices fire), a global behaviour
emerges. This global behaviour is defined in terms of global data structures255

called space-time values (also depicted in Figure 1) mapping events to values
for each event in an event structure.

Definition 3 (Space-Time Value). Let V be any domain of computational
values and E = 〈E, , <, d〉 be a augmented event structure. A space-time value
Φ = 〈E, f〉 is a pair comprising the event structure and a function f : E → V260

that maps the events ε ∈ E to values v ∈ V.

A space-time value Φ represents a quantity that is distributed across space
end evolving through time, so that its value Φ(ε) may be different on different
events ε. For example, Φ may associate events to the corresponding measure-
ments of a sensor Φ(ε) available in them, or to the current local result Φ(ε) of a265

distributed computation. These quantities can be manipulated by distributed
computations (i.e., consumed as inputs) and can also be created by them (i.e.,
produced as outputs). Thus, an aggregate computer is a “collective” device
manipulating such space-time values, modelled as a space-time function.

Definition 4 (Space-Time Function). Let V(E) = {〈E, f〉 | f : E → V} be the270

set of all possible space-time values in a augmented event structure E. Then,
an n-ary space-time function in E is a partial map f : V(E)n 7→ V(E).

Notice that the definition of a space-time function f requires every input
and output space-time value to exist in the same augmented event structure E.
However, it does not specify how the output space-time values are obtained from275

the inputs, and in fact not all space-time functions f are physically realisable
by a program, as f may violate either causality or Turing-computability (see
Audrito et al. (2018a) for further details).
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The specification of a space-time function can be either done at a low-
level (i.e. through local interactions), in order to define programming language280

constructs and general-purpose building blocks of reusable behaviour (c.f. Sec-
tion 2.2.3 for such a programming language), or at a high-level (i.e. by com-
position of other space-time functions with a global interpretation) in order to
design collective adaptive services and whole distributed applications—which
ultimately work by getting input fields from sensors and process them to pro-285

duce output fields to actuators. However, in aggregate computing a distributed
program P always has both the local and global interpretations, dually linked:
the global interpretation as a space-time function (obtained through a deno-
tational semantics (Audrito et al., 2019c; Viroli et al., 2019)), and the local
interpretation as a procedure performed in a firing (defined by an operational290

semantics, see Appendix A).

2.2.2. Stabilisation and spatial model

Even though the global interpretation of a program has to be given in spatio-
temporal terms in general, for a relevant class of programs a space-only repre-
sentation is also possible. In this representation, event structures, space-time295

values and space-time functions are replaced by network graphs, computational
fields and field functions.

Definition 5 (Network Graph). A network graph G = 〈D,�〉 is a finite set D
of devices δ together with a reflexive neighbouring relation�⊆ D×D, i.e., such
that δ� δ for each δ ∈ D. Thus, we say that δ′ is a neighbour of δ iff δ′ � δ,300

and that N (δ) = {δ′ ∈ D | δ′� δ} is the set of neighbours of δ.

Intuitively, the neighbouring relation δ1 � δ2 on devices (in a certain specific
instant of time) represents the possibility for a device δ1 to successfully send a
message to another device δ2, thus creating corresponding neighbouring relations
ε1  ε2 on events εi on devices δi. Notice that � does not necessarily have to305

be symmetric, since e.g. an high-power device may be able to send messages to
a distance device with not enough power to reply.

Definition 6 (Computational Field). Let V be any domain of computational
values and G = 〈D,�〉 be a network graph. A computational field Ψ = 〈G, g〉
is a pair comprising the network graph and a function g : D → V mapping310

devices δ ∈ D to values v ∈ V.

Definition 7 (Field Function). Let V(G) = {〈G, g〉 | g : D → V} be the set
of all possible computational fields in a network graph G. Then, an n-ary field
function in G is a partial map g : V(G)n 7→ V(G).

These space-only, time-independent representations are to be interpreted as315

“limits for time going to infinity” of their traditional time-dependent counter-
parts, where the limit is defined as in the following.

Definition 8 (Stabilising Augmented Event Structure and Limit). Let E =
〈E, , <, d〉 be an infinite augmented event structure. We say that E is stabil-
ising to its limit G = 〈D,�〉 = lim E iff D = {δ | ∃∞ε ∈ E. d(ε) = δ} is the
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set of devices appearing infinitely often in E, and for all except finitely many
ε ∈ E, the devices of neighbours are the neighbours of the device of ε:

{d(ε′) | ε′  ε} = {δ′ | δ′� d(ε)}
Although the notion of limit of an event structure provided by Definition 8 it

is not identical to the notion of limit in analysis, they are intimately connected,
justifying the usage of the same name. An augmented event structure arises from320

a network graph evolving over time, and its limit is (intuitively) the network
graph that is obtained for the time that goes to infinity. A similar notion of
limit (and stabilisation) can also be applied to space-time values as shown in
the following.

Definition 9 (Stabilising Space-Time Value and Limit). Let Φ = 〈E, f〉 be a325

space-time value on a stabilising augmented event structure E = 〈E, , <, d〉
with limit G = lim E. We say that Φ is stabilising to its limit Ψ = 〈G, g〉 = lim Φ
iff for all except finitely many ε ∈ E, f(ε) = g(d(ε)).

Notice that G is not a parameter of the definition above, by being uniquely
determined by E.330

Definition 10 (Self-Stabilising Space-Time Function and Limit). Let f : V(E)n 7→
V(E) be an n-ary space-time function in a stabilising E with limit G. We say
that f is self-stabilising with limit g : V(G)n 7→ V(G) iff for any 〈Φ1, . . . ,Φn〉
with limit 〈Ψ1, . . . ,Ψn〉, f(Φ1, . . . ,Φn) = Φ with limit Ψ = g(Ψ1, . . . ,Ψn) =
lim Φ.335

Many of the most commonly used routines in aggregate computing are indeed
self-stabilising, and in fact belong to a class of self-stabilising functions identified
in Viroli et al. (2018). In the remainder of this paper, we shall relate aggregate
functions with spatial logical formulas, expressing their relationship in terms of
their self-stabilising limit (see Theorem 3).340

2.2.3. The field calculus

The field calculus (Audrito et al., 2019c) is a minimal functional language
that identifies basic constructs to manipulate aggregate fields, and whose oper-
ational semantics can act as blueprint for developing toolchains to design and
deploy systems of possibly myriad devices interacting via local (e.g., proximity-345

based) broadcasts. The field calculus provides the necessary mechanisms to
express and compose such distributed computations, by a level of abstraction
that intentionally neglects explicit management of synchronisation, message ex-
changes between devices, position and quantity of devices, and so on. Each field
calculus function comes with both a global interpretation (through a denota-350

tional semantics in terms of space-time functions and/or field functions (Audrito
et al., 2019c; Viroli et al., 2019)), and a local interpretation (through an opera-
tional semantics defining the operations performed in a firing, see Appendix A)
which provides a practical and correct implementation of the global interpreta-
tion. These interpretations are so that compositionality holds, that is, function355

composition in the language translate to space-time function composition.
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P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ f(e)

∣∣ v ∣∣ if(e){e}else{e}
∣∣ nbr{e} ∣∣ share(e){(x)=>e} expression

f ::= d
∣∣ b function name

v ::= `
∣∣ φ value

` ::= c(`) local value

φ ::= δ 7→ ` neighbouring value

Figure 2: Syntax of the field calculus language.

The syntax of field calculus is presented in Figure 2, following the presenta-
tion by Audrito et al. (2019b,a), simplified to fit the needs of this paper. The
overbar notation e is a shorthand for sequences of elements, and multiple over-
bars are intended to be expanded together, e.g., e stands for e1, . . . , en and360

δ 7→ ` for δ1 7→ `1, . . . , δn 7→ `n. Operator share and nbr are the main pecu-
liar constructs of the field calculus, the former responsible for both interaction
and field dynamics, the latter for observing neighbouring values; while def and
if correspond to the standard function definition and the branching expression
constructs, properly adapted to fit computational fields.365

A program P consists of a list of function definitions F, each written as
“def d(x1, . . . , xn) {e}”, followed by a main expression e that is the one exe-
cuted at each firing (as well as the one representing the overall field computation,
in the global viewpoint). An expression e can be:

• A variable x, used e.g. as formal parameter of functions.370

• A value v, which can be of the following two kinds:

– A local value `, with structure c(`) or simply c when ` is empty
(defined via data constructor c and arguments `), can be, e.g., a
Boolean (true or false), a number, a string, or a structured value
(e.g., a pair or a list).375

– A neighbouring value φ that associates neighbour devices δ to lo-
cal values `, e.g., it could be the neighbouring value of distances of
neighbours—note that neighbouring values are not part of the sur-
face syntax, they are produced at runtime by evaluating expressions,
as described below.380

• A function call f(e), where f can be of two kinds: a user-declared function
d (declared by the keyword def, as illustrated above) or a built-in function
b, such as a mathematical or logical operator, a data structure operation,
or a function returning the value of a sensor.

• A branching expression if(e1){e2}else{e3}, used to split field computa-385

tion in two isolated sub-networks, where/when e1 evaluates to true or
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false: the result is computation of e2 in the former area, and e3 in the
latter.

• A neighbouring expression nbr{e}, where e evaluates to a local value.
It evaluates to a neighbouring value mapping neighbours to their latest390

available result of evaluating e. Each device δ:

1. shares its value of e with its neighbours, and

2. evaluates the expression into a neighbouring value φ mapping each
neighbour δ′ of δ to the latest value that δ′ has shared for e.

Note that within an if branch, nbr is restricted to work on device events395

within the subspace of the branch. I.e., the evaluation by a device δ of an
nbr-expression within a branch of some if(e1){...}else{...} expression,
is affected only by the neighbours of δ that, during their last computa-
tion cycle, evaluated the same value for the guard e1 (domain restriction,
(Audrito et al., 2016)).400

• A share expression e = share(e1){(x)=>e2}, where e1 and e2 evaluate to
a local values. It incorporates message passing and local state evolution.
The result of such expression is obtained by:

– Gathering the results obtained by neighbours for the whole expression
e in their last firings into a neighbouring field value φ.405

– Such φ may also contain a value for the current device (if it is not
the first firing it executes e). If not, the result of evaluating e1 is
used as value for the current device and incorporated into φ.

– Expression e2 is evaluated by substituting φ to x, obtaining the over-
all value v for e.410

– Value v is broadcast to neighbours, allowing them to use it in con-
structing their following neighbours’ observation φ.

Note that within an if branch, share (like nbr as described above) is
restricted to work on device events within the subspace of the branch.
This construct can be used both for structuring device interaction and for415

evolving a local state, by using the built-in operator locHood(φ) which
extracts the value φ(δ) relative to the current device from a neighbouring
field value φ.

The built-in functions and data constructors used in this paper are listed
in Figure 3 together with their types and formal interpretations—all of these420

operators are natively available in existing implementations of the field calculus,
including Protelis (used in the case study presented in Section 4). In this paper,
we use bool (Boolean values) and num (numbers with infinity) as primitive
types T, together with types field[T] for neighbouring fields built from values
of type T, and types (T)→ T for functions—a detailed presentation of the field425

calculus type system can be found in Audrito et al. (2019c). Notice that δ (the

12



Constructors:
true, false = ()→ bool >, ⊥
0, 1, infinity = ()→ num 0, 1, ∞
Built-ins:
! = (bool)→ bool ¬
||, && = (bool, bool)→ bool ∨, ∧
<=, == = (T,T)→ T for T ∈ bool, num ≤, =
+, - = (num, num)→ num +, −
mux = (bool, num, num)→ num (b, x, y) 7→ x if b else y
minHood = (field[num])→ num φ 7→ min {φ(δ′) | δ′ ∈ dom(φ) \ {δ}}
anyHoodPlusSelf = (field[bool])→ bool φ 7→

∨
{φ(δ′) | δ′ ∈ dom(φ)}

allHoodPlusSelf = (field[bool])→ bool φ 7→
∧
{φ(δ′) | δ′ ∈ dom(φ)}

Figure 3: Types and interpretations of the data constructors and built-in functions used
throughout this paper. We use the notation dom(φ) above to denote the domain δ of a
function φ = δ 7→ `.

current device where the computation takes place) is excluded from minHood but
included in anyHoodPlusSelf and allHoodPlusSelf; and that mux(e, e>, e⊥)
is not equivalent to if(e){e>}else{e⊥} since in the former both expressions
e> and e⊥ are evaluated independently of the value of e (and thus there is no430

splitting into independent sub-networks).
In order to enhance readability, in the remainder of this paper we shall

avoid parentheses for nullary constructors (e.g. write 0 for 0()); follow common
infix notation and operator precedence for operators (e.g. write x && !y for
&&(x, !(y))); write mux(e){e>}else{e⊥} for mux(e, e>, e⊥); and use syntax435

highlighting on snippets of field calculus code.

Example 1. As an example illustrating the constructs of field calculus, con-
sider the problem – typical in sensor networks – of locally detecting dangerous
situations in a working area and propagating alarms to all the devices in the
same area. Assume workingArea is a Boolean built-in sensor identifying an440

area to be monitored (i.e., which is true in the devices within that very work-
ing area, and false elsewhere) and danger is a Boolean built-in sensor which
holds true if some threat is detected. The goal is to build a Boolean field of
alarms such that it becomes true in the workingArea whenever any device
located there perceives some danger. The main expression uses construct if445

to limit the computation to the space-time region where workingArea() gives
true (simply returning false elsewhere):

if (workingArea()) { gossipEver(danger()) } else { false }

We have made use of abstraction and specified the logic of alarm propagation
through a function gossipEver, defined as follows:450

def gossipEver(alarm) {
share (false) { (old) => alarm || anyHoodPlusSelf(old) }

}
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This function takes a Boolean field alarm and, whenever it holds a true value
in a device, this gets propagated throughout the network by gossiping. This455

is achieved by using share to handle state and communication: a device is
alarmed if it is currently perceiving some danger (alarm is true) or any of
its neighbours, including itself, have perceived danger in their previous round
(anyHoodPlusSelf(old)). Notice that when a device is alarmed, it continues
to be so indefinitely (unless changes in the working area cause the computation460

to be skipped, hence refreshing the corresponding state).

A formal account of the field calculus operational semantics, formalising the
behaviour of a firing, is given in Appendix A. Essentially, each expression eval-
uation creates a tree of “values” (corresponding to the unfolding of expression
evaluation), containing values to be exported to neighbours (due to operators465

nbr and share): at the end of a firing, the resulting tree is packed and sent to
neighbours, which will use it locally to support the semantics of nbr and share.

The computation within a single device is modeled by judgement “δ; Θ;σ `
emain ⇓ θ”, to be read “expression emain evaluates to θ on device δ with respect
to the value-tree environment Θ”, where θ is the evaluation result of emain as a470

value-tree, and Θ is a map from each neighbour device δi (including δ itself) to
the value-tree θi produced in its last firing.

The overall evolution of the network is then modeled by a transition sys-

tem
act−−→ on network configurations N = 〈Env; Ψ〉. Env = 〈�,Σ〉 models the

environmental conditions, where the device neighbouring relation � (cf. Def-475

inition 5) models network connection topology and the computational field Σ
(cf. Definition 6) models sensor values on each device (see Appendix A.2 for
further details). Ψ models the overall status of the devices in the network at a
given time (as a map from device identifiers to value-tree environments Θ), and
actions act can either be firings of a device (δ) or network configuration changes480

(env).

The system evolution formalised as a sequence of transition S = N0
act1−−→

N1
act2−−→ . . . can then be modeled through the more abstract notion of aug-

mented event structure and space-time value (c.f. Section 2.2.1). In fact, every
system evolution S induces a unique LUIC augmented event structure E (i.e., E485

is completely determined by S), whereas every LUIC augmented event structure
is induced by multiple system evolutions, as shown in the following theorem.

Theorem 1 (Semantic Completeness). Let E be a LUIC augmented event struc-
ture. Then there exist (infinitely many) system evolutions S that induce E.

Proof. See Appendix B.1.490

2.3. Spatial logics and SLCS

In traditional model checking and runtime verification of distributed and
concurrent systems, properties expressed as a temporal logic formula (see for
instance Ben-Ari et al. (1983); Emerson (1990)) are either statically or dynam-
ically checked for satisfaction. Thus, properties of the temporal evolution of495
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Figure 4: Pictorial representation of a closure space X induced by a graph.

a system are considered, but properties of (physical) space typically are not.
Spatial logics (van Benthem and Bezhanishvili, 2007) are topological interpre-
tations of modal logics, whose purpose is to enable reasoning about the spatial
dimension. These logics are based on two main modalities: �φ (holds in the
interior of points where φ holds) and ♦φ (holds in the closure of points where500

φ holds). Other modalities have been considered during the years: of particular
interest to us is a spatial surrounded operator—inspired by the temporal weak
until operator—that first appeared for topological spaces in (Aiello, 2002).

In Ciancia et al. (2014), a Spatial Logic of Closure Spaces (SLCS in short)
based on the above mentioned operators has been formalised for the more gen-505

eral setting of closure spaces, which can be formalised as a set X together with
a closure operator C : 2X → 2X mapping set of points to their closure.3 These
spaces include the category of quasi-discrete closure spaces, which are conve-
niently characterised as the topologies arising from discrete directed graphs
G = (D,�) with �⊆ D2, 〈δ, δ〉 ∈� for all δ ∈ D (c.f. network graphs as in510

Definition 5): in this case, the set of points is X = D and closure is interpreted
as “proximity”: C(A) = {x ∈ D | ∃a ∈ A. x� a}.4

A logic on quasi-discrete closure spaces is thus able to express properties of
discrete networks of devices: a pictorial representation of this concept is given
in Figure 4. In the remainder of this paper, we shall only consider quasi-discrete515

closure spaces, modelled through network graphs, tailoring the presentation of
SLCS itself for the usage on graphs. In Ciancia et al. (2014), an efficient proof-
of-concept model checker for SLCS on quasi-discrete closure spaces has been
implemented.5 In Section 3 we shall investigate how to perform distributed run-
time verification on SLCS properties through aggregate computing techniques520

(in particular, devising a translation of properties into field calculus programs
computing their truth in every node of the network of computing devices).

Figure 5 (top) presents the full syntax of SLCS, comprising five “local”
modalities and five “global” ones. The local modalities are:

3The closure operator has to satisfy C(∅) = ∅, A ⊆ C(A), and C(A ∪B) = C(A) ∪ C(B).
4Notice that C(A) ⊇ A since a� a for each a ∈ A.
5Available at https://github.com/vincenzoml/slcs.
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φ ::= ⊥
∣∣ > ∣∣ q ∣∣ (¬φ)

∣∣ (φ ∧ φ)
∣∣ (φ ∨ φ)

∣∣ (φ⇒ φ)
∣∣ (φ⇔ φ) logical operators∣∣ (�φ)

∣∣ (♦φ)
∣∣ (∂ φ)

∣∣ (∂- φ)
∣∣ (∂+ φ) spatial operators∣∣ (φRφ)

∣∣ (φ T φ)
∣∣ (φU φ)

∣∣ (G φ)
∣∣ (F φ)

M, δ |= > ⇔ true
M, δ |= q ⇔ δ ∈ V(q)
M, δ |= ¬φ ⇔M, δ 6|= φ
M, δ |= φ ∧ ψ ⇔M, δ |= φ andM, δ |= ψ
M, δ |= ♦φ ⇔∃δ′ � δ.M, δ′ |= φ

M, δ |= φRψ⇔∃p ∈ PG(δ).M, p|p| |= ψ and ∀i ≤ |p| .M, pi |= φ
M, δ |= φ T ψ ⇔∃p ∈ PG(δ).M, p|p| |= ψ and ∀i < |p| .M, pi |= φ and |p| ≥ 2
M, δ |= φU ψ ⇔M, δ |= φ and ∀p ∈ PG(δ) ifM, p|p| 6|= φ then ∃i ≤ |p| .M, pi |= ψ
M, δ |= G φ ⇔∀p ∈ PG(δ). ∀i ≤ |p| .M, pi |= φ
M, δ |= F φ ⇔∃p ∈ PG(δ). ∃i ≤ |p| .M, pi |= φ

�φ , ¬(♦(¬φ)) ∂ φ , (♦φ) ∧ ¬(�φ)

∂- φ , φ ∧ ¬(�φ) ∂+ φ , (♦φ) ∧ ¬φ
φ T ψ , φR(♦ψ) φU ψ , φ ∧�¬(¬ψR¬φ)

F φ , >Rφ G φ , ¬F ¬φ

Figure 5: Syntax (top) and semantics (centre) of SLCS; together with a reduction to a minimal
set of modalities {♦,R} (bottom).

• �φ (interior) which is true at points with all neighbours satisfying φ;6525

• ♦φ (closure) which is true at points with some neighbour satisfying φ;

• ∂ φ (boundary) which is true at points with some (but not all) neighbours
satisfying φ;

• ∂- φ (interior boundary) which is true at points satisfying φ with some
neighbour not satisfying it;530

• ∂+ φ (closure boundary) which is true at points not satisfying φ with some
neighbour satisfying it.

The global modalities are:

• φRψ (reaches) which is true at the ending points of paths (i.e., sequences
δ1 � . . .� δn in the directed graph G inducing the quasi-discrete closure535

space) whose starting point satisfy ψ and where φ holds;

• φ T ψ (touches) which is true at the ending points of paths whose starting
point satisfy ψ and where φ holds in the rest of the path;

6Recall that every point is a neighbour of itself, since 〈δ, δ〉 ∈� for all δ ∈ D.
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• φU ψ (surrounded by) which is true at points in an area A satisfying φ,
whose neighbours satisfy ψ;540

• G φ (everywhere) which is true at points where φ holds in every incoming
path;

• F φ (somewhere) which is true at points where φ holds in a point of an
incoming path.

The whole list of modalities is redundant, meaning that they can all be ex-545

pressed through ♦ and R only, by means of the equivalences expressed in Figure
5 (bottom). Figure 5 (centre) presents a semantics for a minimal set of logi-
cal connectives and local modalities, and for every global modality. Semantics
models are of the formM = 〈G,V〉, where G = 〈D,�〉 is a network graph and
V : Q → 2D maps every propositional variable q ∈ Q to the subset of devices550

where q holds. Semantics for global modalities is defined through properties
of paths in graph G towards δ, defined as sequences p = 〈δ1, . . . , δn〉 such that
δn� . . .� δ1 = δ. We use PG(δ) to denote the set of such paths.

SLCS being a spatial logics, it is worth noticing that its formulas generally
have different values in different points of space. A notable exception is the555

case of formulas that are a logical combination (i.e., via non-modal operators)
of formulas that have G or F as top connective, in a strongly connected7 graph:
in these cases they are either true or false in all points of space—so, the specified
monitors emit a global verdict.

Remark 2 (On the Relation with Ciancia et al. (2014)). The presentation of560

SLCS in Ciancia et al. (2014) differs in many relevant though not fundamental
ways.

Firstly, semantics was primitively given for closure spaces, substituting G
with pairs 〈X,C〉 where C : 2X → 2X , and only afterwards a semantic interpre-
tation on graphs through paths was derived (Ciancia et al., 2014, Theorem 3565

and Remark 3). Even though the semantics on closure spaces is more general, it
is not exploited by the model checker in Ciancia et al. (2014), which only applies
to quasi-discrete closure spaces defined in terms of graphs. Since the generality
of closure spaces does not seem to translate into additional applicability, we
opted for a presentation natively rooted on graphs.570

Secondly, the primitive global modality in Ciancia et al. (2014) is U instead
of R, since U has a cleaner definition in terms of closure spaces: φU ψ holds in
x iff ∃A 3 x such that φ holds in A and ψ holds in ∂+A. Conversely, in our
presentation rooted on graphs R has a simpler definition than U (and is more
easily computable), and thus was chosen as a primitive modality.575

Thirdly, and most importantly, the operator R̃ called reach in Ciancia et al.
(2014) is similar but not identical to ours. There, M, δ |= φ R̃ψ if and only if:

∃p ∈ PG(δ).M, p|p| |= ψ and ∀i = 2, . . . , |p| .M, pi |= φ

7A directed graph G is strongly connected iff for every two points δ1, δ2 in G there exists
a path from δ1 to δ2 in G.
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In particular, the difference is in that φ is not required to hold in δ. Although
this choice being counter-intuitive (and inconvenient in practice), this version
of the reachability operator was preferred since it is the dual of the U operator:
φ R̃ψ , ¬(¬ψ U ¬φ). We opted for a presentation tailored for formulas on
graphs, for which operator R is more relevant (and easily computable) than R̃.580

Notice also that the two operators are interchangeable through the equivalences
φRψ = φ ∧ (φ R̃ψ) and φ R̃ψ = ψ ∨ ♦(φRψ).

Finally, the touch operator is not present in Ciancia et al. (2014). However,

it is defined in Ciancia et al. (2018) as φ T ψ , φ ∧
(

(φ ∨ ψ) R̃ψ
)

, which can

be proven equivalent to our definition.585

Remark 3 (On Modality Equivalences). Since we both gave a direct semantic
interpretation of T , U , G, F and a definition of them in terms of R, the two
must be proven equivalent. For G, it boils down to an easy substitution exercise.
For F , substitution gives ∃p ∈ PG(δ). M, p|p| |= φ; and if a path satisfies the
direct interpretation of F , the restricted path p′ = 〈p1, . . . , pi〉 satisfies the
interpretation through R. For T , substitution gives the following:

∃p ∈ PG(δ). ∃δ′� p|p|.M, δ′ |= ψ and ∀i ≤ |p| .M, pi |= φ

which is satisfied whenever the direct interpretation of T is satisfied with the
extended path p′ = 〈p1, . . . , pn, δ

′〉.
For U , we use the result from Ciancia et al. (2014) that φU ψ = ¬(¬ψ R̃ ¬φ)

(with the semantic interpretation of U in Figure 5 (centre) and the semantic
interpretation of R̃ in Remark 2). We can then use the equivalence φ R̃ψ = ψ∨
♦(φRψ) in order to obtain that:

φU ψ = ¬ (¬φ ∨ ♦(¬ψR¬φ)) = φ ∧�¬(¬ψR¬φ).

Example 2 (Smart Home). As sample application of SLCS in a smart home
scenario, consider the following property to monitor: air conditioning and lights
are on whenever the room is not empty, off otherwise. Consider the atomic590

propositions:

• P is true on points that are sensing the presence of people;

• D is true on points that are the monitored electrical devices (air condi-
tioning, lights);

• O is true on electrical devices that are on.595

If we only want to consider the presence of people in the immediate vicinity, the
considered property can be written as ¬D∨ (O ⇔ ♦P ). When also considering
people farther away, the property can be written as ¬D ∨ (O ⇔ F P ). In the
sample closure space of Figure 4, a possible evaluation of these properties could
be the following, where different colours are used for points where D is false600

(grey), D is true and O is false (black), D and O are true (yellow):
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FP

♦P

P

The green area denotes the nodes for which P is true, i.e., the nodes that do
perceive at least a person in the room. The cyan area (♦P ) is given by the nodes
that have at least a neighbour within the green area. The blue area (F P ) is605

given by the nodes for which there exists a path to a node in P (“somewhere”);
this includes all the nodes of the example.

Example 3 (Sensor Network). As sample application of SLCS in a sensor net-
work scenario, consider the following property to monitor: internet is reachable
through non-busy devices. Consider the atomic propositions:610

• B is true on busy devices;

• I is true on devices that have an internet connection.

The considered property can then be written as ¬BR I. An evaluation of this
formula is represented in the following picture, where the purple area marks
points where the formula is false and different colours are used for points where615

B is true (red), I is true (blue), or none are true (grey).

⊥

In the central part of the network, the property is false because there is no path
from the grey nodes inside it to a blue (Internet) node which does not pass
through a red (busy) node; i.e., the red nodes make up a perimeter which does620

not contain any blue node.

Example 4 (Emergency). As sample application of SLCS in an emergency
scenario, consider the following property to monitor: dangerous areas are sur-
rounded by non-dangerous areas from which it is possible to reach a recovery
point without crossing any other dangerous area. Consider the atomic proposi-625

tions:
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• D is true on devices in dangerous areas;

• R is true on devices in recovery points.

The considered property can then be written as D ⇒ (D U(¬DRR)). An
evaluation of this formula is represented in the following picture, where the630

purple area marks points where the formula is false and different colours are
used for points where D is true (red), R is true (blue), or none are true (grey).

⊥

The property is false for the two red (dangerous area) nodes at the top left of the
network because the grey node above them is unable to reach a blue (recovery635

point) node without passing through a red (dangerous) node.

3. Automatic generation of distributed monitors in field calculus

In this section, we provide a translation of SLCS formulas into field cal-
culus. Namely, thanks to the functional nature of field calculus, the resulting
distributed monitor will provide efficient computation of the truth value of a640

formula at each device by recursion over its syntactic structure, and this will
be achieved assuming that each participant is evaluating the same property
from its perspective with regard to any quantifiers. In particular, we translate
atomic propositions q into built-in function calls getting their value from some
external environment (which we do not detail here, since typically involving645

external sensors), logical connectives into corresponding Boolean built-ins, and
modal spatial operators into field calculus library functions that perform spa-
tial operations (such as propagating values through spanning trees to compute
distances). The functional composition character of field calculus, which works
at the global level, is the distinctive feature by which this model allows to eas-650

ily express the translation, as well as to formally prove self-stabilisation of the
resulting monitors. Section 3.1 introduces a translation of SLCS into field cal-
culus, coherently with the formal interpretation (c.f. Section 2.3). Section 3.2
discusses the correctness and efficiency properties of this translation.

3.1. Automatic translation in field calculus655

Figures 6 and 7 show the translation JφK of an SLCS formula φ into field
calculus, which essentially derives a field function that turns fields of values for
the atomic propositions (q) into fields of Booleans representing the validity of
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J>K = true Jφ1 ∨ φ2K = Jφ1K || Jφ2K
J⊥K = false Jφ1 ∧ φ2K = Jφ1K && Jφ2K
JqK = q() Jφ1 ⇒ φ2K = Jφ1K <= Jφ2K

J¬φK = !JφK Jφ1 ⇔ φ2K = Jφ1K == Jφ2K
J♦φK = anyHoodPlusSelf(nbr{JφK}) Jφ1Rφ2K = reaches(Jφ1K, Jφ2K)
J�φK = allHoodPlusSelf(nbr{JφK}) JF φK = somewhere(JφK)

Figure 6: Translation JφK of an SLCS formula φ into field calculus. Only the logical operators
and the spatial operators �, ♦, F and R are considered—the other spatial operators (∂, ∂-,
∂+, T and U) can be translated by rewriting them through the considered ones according to
Figure 5 (bottom).

def distanceTo(dest) {
share (infinity){ (d) => mux (dest) {0} else {minHood(d)+1} }

}
def somewhere(x) {
distanceTo(x) <= D

}
def reaches(x, y) {
if (x) {somewhere(y)} else {false}

}

Figure 7: Functions somewhere and reaches used in the translation of Figure 6, in turn
using the auxiliary function distanceTo.

the monitored formula over space and time—validity depends on time in the
transient phase, when the validity of atomic propositions symbols change, or660

if network topology changes. This translation uses the data constructors and
built-in functions described in Figure 3, and assumes that:

• false < true, as in common programming languages such as Python;

• distanceTo is a commonly used algorithm (based on Bellman-Ford algo-
rithm, available in the standard libraries of field calculus implementations)665

determining the shortest distance (in network hops) to a destination point
(Viroli et al., 2018);

• somewhere is a field calculus function which is true whenever the shortest
distance to a point where the argument holds is plausible (smaller than
the network diameter D in hops8);670

• reaches(x, y) is a field calculus function which is false in the area where
x is false, and is true in areas where x is true and somewhere in the area
y is also true (since in that case there must be a path staying within x

which reaches y).

8In many cases, the parameter D can be determined at network design time, allowing to
run the translation in Figure 6 as is. When this is not possible, a similar translation can
still be applied, by incorporating strategies for dynamically estimating the diameter (e.g.,
computing distances from a leader, possibly selected through leader election).
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Remark 4 (Translation of Derived Modalities). The translation in Figure 6 is675

defined also for the derived modalities �, F and all derived logical operators.
The translation given is coherent with the definition of those derived operators in
terms of the primitive ones. For logical operators, this equivalence is standard.
For the interior modality, notice that its definition �φ , ¬(♦(¬φ)) in terms of
primitives is translated into the (valid) equivalence:680

allHoodPlusSelf(JφK) ≡ !anyHoodPlusSelf(!JφK).

Similarly, the definition F φ , >Rφ of F in terms of primitives translates to
the valid equivalence:

somewhere(JφK) ≡ if (true) \{somewhere(JφK)\} else \{false\}

≡ reaches(true, JφK)
685

In the next section, the coherence between translation and operator defi-
nitions explained in Remark 4 will be extended by (and be a consequence of)
Theorem 3, which proves that the translation is coherent with the semantics of
all primitive and derived operators (c.f. Figure 5 centre).

It may be tempting to implement somewhere with function gossipEver690

in Example 1, instead of the implementation proposed in Figure 6. However,
this function is not able to adjust its value from true to false in case all the
points satisfying the argument disappear from the network (namely, it is not
self-stabilising c.f. Definition 10): thus, this approach would only work in a fully
static situation and could not be used in a dynamic environment for tracking the695

truth value of the spatial formula over time. Several approaches could be used
for implementing a self-adjusting somewhere routine in field calculus: e.g. with
replicated gossip (Pianini et al., 2016) or by combining several commonly used
building blocks (Beal and Viroli, 2014) (S for leader election, G for distance
estimation and broadcasting, C for data summarisation). The proposed one,700

however, excels by its simplicity and efficiency (see Theorem 2) while providing
optimal reactiveness to input changes (see Theorem 3).

The reader may appreciate the simplicity of the proposed translation, which
is compositional (i.e. defining the translation of an expression by composing
translations of sub-expressions) thanks to the functional paradigm of field com-705

putations, and which hints at the power of field calculus as an implementation
technique for higher-level languages and logic frameworks. Indeed, complex be-
haviours can arise at the level of device interactions, but they are hidden under
the hood of the computational model and the lower-level functions used in the
translation.710

Example 5 (Formula Translation). The translation of the surrounded by op-
erator φ1 U φ2 is surroundedBy(Jφ1K,Jφ2K), where

def surroundedBy(x, y){
x && allHoodPlusSelf(nbr{!reaches(!y,!x)})

}715
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Then, the translation of the formulas in Examples 2, 3, 4 are the following.
¬D ∨ (O ⇔ ♦P ) !D() || (O() == anyHoodPlusSelf(nbr{P()}))
¬D ∨ (O ⇔ F P ) !D() || (O() == somewhere(P()))

¬BR I reaches(!B(), I())

D ⇒ (D U(¬DRR)) D() <= surroundedBy(D(), reaches(!D(), R()))

3.2. Properties of the translation

Firstly, we show that the monitors obtained from the translation of SLCS
formulas are efficient and lightweight, being able to scale to arbitrary network720

sizes and easily runnable on low-end devices.

Theorem 2 (Lightweightness). The translation P of a formula φ according
to Figure 6 computes in each node using message size O(S) and computation
time/space O(L+SN), where N is neighbourhood size and L, S are the numbers
of logical and spatial operators in φ.725

Proof. See Appendix B.2.

Notice that the bounds on message size, computation time and space pro-
vided above are asymptotically optimal, and thus the translated program can
be deemed efficient and lightweight. Furthermore, these bounds do not depend
on the network size, implying that the computation can scale up to arbitrarily730

large networks, as long as the individual degree of nodes stays bounded. In
practice, we can expect a firing to be executed within few microseconds of CPU
time in any realistic scenario.

We are now able to prove that the given translation is correct and optimal.
Correctness will be shown in terms of stabilisation to the correct limit, as for-735

malised in Definition 8 for space-time functions. In fact, this definition can be
translated to field calculus functions and expressions by means of the following
definition:

Definition 11 (Stabilising Expression). A field calculus expression e is stabil-

ising with limit Ψ on G iff for any system evolution S = N0
act1−−→ . . . of program740

e such that for some n0 and each n ≥ n0, the environment Envn in Nn is the
same9 and has topology given by G, and there are infinitely many δ transitions
for each δ in G, then for some n1 and each n ≥ n1 the value produced in each
firing δ is exactly Ψ(δ).

Optimality will then be measured as having the lowest bound on the number745

of full rounds of execution required for stabilisation.

Definition 12 (Full round of execution). Let N0
δ0−→ N1

δ1−→ . . . be a (possibly
infinite) network evolution consisting only of device fires. We say that one full
rounds of execution has passed at step t if t is minimal such that for each device
δ in the network, there exists an i < t such that δi = δ. Similarly, we say that750

9Notice that such a system has no env transitions after n0.
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n full rounds of execution has passed at step t if n− 1 full rounds of execution
has passed at step t′, and one full round of execution has passed at step t − t′

in the reduced network evolution Nt′
δt′−−→ Nt′+1

δt′+1−−−→ . . ..

Self-stabilisation of the monitor comes as a direct consequence of the re-
sults in Viroli et al. (2018), since all expressions in Figure 6 belong to the755

self-stabilising fragment of the field calculus thereby identified. In the following
theorem, however, we shall also prove that its limit is the value of the SLCS
formula (c.f. Figure 5 centre), and that it is obtained with the lowest possible
number of full rounds of execution.

Theorem 3 (Self-Stabilisation, Correctness, Optimality). Let P be the transla-760

tion of φ according to Figure 6. If the network configuration and atomic propo-
sitions stabilise, the result of P also stabilises to the interpretation of φ in that
final configuration (regardless of the evolution history of the network). Further-
more, the time required for stabilisation is as small as possible, meaning that
no correct inductive translation can stabilise with a smaller worst case of full765

rounds of execution.

Proof. See Appendix B.3.

According to the above theorem, and assuming the network is connected,
then:

• When the network configuration and atomic propositions become stable,770

the field calculus monitor P stabilises (as fast as possible), and compute
in each device the correct value of the SLCS formula φ.

• When the network configuration and atomic propositions keep evolving,
the field calculus monitor P keeps bringing about the correct validity of
the formula φ at each device: due to intrinsic delays in communication,775

then, the snapshot of a result at a device may not be correct. However,
given the simple and natural structure of the distanceTo algorithm used
in the translation, one still expects fast reactiveness to changes in a regime
of persistent perturbation without stable points—even though it is harder
to characterise reactiveness formally. This claim will be validated through780

simulation in Section 4.

Note that, if the network is divided in two or more disconnect sub-network, then
the above bullets apply to each sub-network.

4. Case study: crowd safety

The last section proved the correctness and self-stabilising nature of field785

calculus translations of SLCS properties. Though field calculus monitors are
guaranteed to eventually converge to the correct value, it is still open the ques-
tion of whether they are reasonably reactive, i.e., whether the approach can be
useful in application settings characterised by frequent or continuous change.
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Accordingly, in this section, we demonstrate the proposed approach in a large-790

scale computing scenario related to crowd safety (described in Section 4.1), by
means of simulation (as described in Section 4.2). That is, we show a concrete
example of translation from SLCS to field calculus, leading to a distributed
monitor whose reactive behaviour is verified by means of repeated experiments.
Most specifically, we focus on the ability of such a monitor to produce an output795

that eventually converges to that of an ideal monitor, implemented as an ora-
cle that checks the SLCS property exhaustively in every state of the simulated
system and accordingly provides, at each simulation step, the correct value that
should be computed by every device participating in the system. Especially, we
will show the ability of the monitor to keep up with continuous change (change800

in connection topology) in the environment. Indeed, while the oracle has instan-
taneous access to the global state of the distributed system under simulation,
the field calculus monitor runs in a decentralised fashion, where each device can
only directly observe (by exchanging messages with neighbours) a local portion
of the overall system, and therefore it takes some time to converge to the correct805

value. Notice that a single local change in the system – e.g., a single connectiv-
ity link that changes – may potentially cause a SLCS property to globally flip
(as exemplified in Figure 10). In other words, given an execution round of some
device, the oracle provides the correct value that such a device could compute
if it had access to the global state of the evolving distributed system (which is810

clearly an unrealistic assumption). Moreover, though convergence is eventually
guaranteed for constant input (as covered in Section 3), the monitor should also
be “enough reactive” to bring the error (measured by the difference between
the SLCS property field and the field provided by the oracle) at acceptable
levels (which are, still, generally application-specific). Experimental results are815

presented in Section 4.3, whereas further discussion about this latter aspect is
available in Section 4.4.

The source code, build infrastructure, and instructions for running and re-
producing the experiments are publicly available online10.

4.1. Simulation scenario820

The scenario leverages real-world data of a recent mass event (Anzengruber
et al., 2013), consisting of anonymised GPS traces recorded from a subset of the
visitors. This is an example where very large numbers of people move around
the city, possibly leading to bloats or situations of danger. In this setting,
scalable crowd analysis and management algorithms can help to provide safety825

and services for a better experience, e.g., by estimating the density of the crowd,
propagating information about the crowd to the surroundings, and supporting
crowd-aware dispersal and navigation.

Aggregate programming techniques have proven to be effective in express-
ing such crowd management algorithms by a global perspective, and to make830

them execute in an adaptive, resilient and decentralised fashion (Beal et al.,

10https://github.com/metaphori/experiments-2019-ac-slcs-monitor-vienna
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2015; Casadei et al., 2019a). With this approach, each participant has a smart-
phone or another wearable device that provides sensor data (e.g., presence of
people nearby) and outputs local information (e.g., the suggested direction of
movement to avoid overcrowded areas) for the person as computed by the col-835

lectively executed aggregate program. In practice, multiple concrete deploy-
ments are possible, ranging from fully peer-to-peer to cloud-based architectural
styles (Viroli et al., 2016). Given the costs of testing new services for the pro-
posed real-world scenario, we proceed empirically by simulation, considering a
reasonable aggregate system deployment where nodes perform their firing in a840

non-synchronous fashion and interact with all the devices closer to them with
respect to a certain, configurable threshold. More details are provided in the
next section and are available at the attached repository. Finally, it is key to
consider that this approach does not require either global knowledge (e.g., the
GPS positions of devices and locations) or global connectivity to the Internet845

(which may be limited in mass events), therefore providing a viable solution for
guaranteeing (continuity of) services in situations where only minimal assump-
tions hold, through graceful degradation (if any).

For the purpose of this paper, we focus on monitoring the safety property
represented by the SLCS formula in Example 4:

D =⇒ (D U(¬DRB))

where D denotes a “dangerous area” (i.e., an area which is overcrowded or in
the very proximity of one) and B denotes a “base” or “safe area” (e.g., an exit850

for dispersal or an area with medical facilities). The above property can be
read as “dangerous areas are surrounded by devices which can safely reach a
base”; in other words, this is to guarantee that large groups of people do not
hinder the way to exits or other important locations to other people. A visual
representation of the scenario is provided in Figure 8 (full-size, colour pictures855

are included in the provided repository).
Note that the reachability of safe points is based on connectivity paths across

the system of devices; in other words, each neighbouring link between two nodes
should represent a valid hint for an accessible, walkable path. Therefore, in
this simulated scenario it is assumed that links can actually be followed on860

foot, and that there is a sufficiently dense (but still quite sparse) network in
place—otherwise, the system would consist of multiple isolated sub-networks
with trivial results. To improve realism, for the simulations, the GPS traces
are interpolated to place nodes on actual streets. Moreover, the system neglects
other potential paths passing through streets which are not “sampled” by any865

device; nevertheless, the presented solution also shall work when devices do not
have maps (which, anyway, should be augmented with crowding data), since a
“map” is implicitly constructed (though, of course, actual accessibility should
be fostered with proper design decisions).

4.2. Simulation framework and setup870

For these experiments, we leverage the meta-simulator Alchemist (Pianini
et al., 2013) which provides an event-driven simulation engine for scheduling
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Figure 8: Representation of a snapshot of the simulated scenario, as a network of devices in the
city: black dots denote (the smartphones of) people corresponding to the GPS traces of the
reference mass event; grey links represent connectivity (i.e., the neighbouring relationships);
yellow, orange, and red overlays represent increasing levels of crowding; blue squares denote
safe places (these are real locations of hospital facilities); small, light blue squares represent
access points.
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/* CROWD DETECTION FUNCTIONS */

def countNearby(range) {
let human = rep(h <- env.get("role")==0) { h };
sumHood(mux(human && nbrRange() < range) { 1 } else { 0 })

}

def densityEstimation(p, range, w) {
countNearby(range) / (p * PI * range ˆ 2 * w)

}

def dangerousDensity(p, range, densityTh, groupSize, w) {
let partition = S(range, nbrRange);
let localDensity = densityEstimation(p, range, w);
let avg = summarize(partition, sum, localDensity, 0) /

summarize(partition, sum, 1, 0);
let count = summarize(partition, sum, 1 / p, 0);
avg > densityTh && count > groupSize

}

def crowdTracking(p, range, w, density,
dangerousTh, groupSize, timeFrame) {

if (isRecentEvent(densityEstimation(p, range, w) > density,
timeFrame)) {

if (dangerousDensity(p, range, dangerousTh, groupSize, w)){
OVERCROWDED

} else { AT_RISK }
} else { NONE }

}

/* SLCS FUNCTIONS */

def interior(f){ allHoodPlusSelf(nbr(f)) }
def closure(f){ anyHoodPlusSelf(nbr(f)) }
def somewhere(f){ hopDistanceTo(f) < DIAMETER }
def reaches(f1,f2) { if(f1){ somewhere(f2) } else { false } }
def surroundedBy(f1,f2){ f1 && interior(!reaches(!f2,!f1)) }
def implies(f1,f2) { f1 <= f2 }

/* PROGRAM: CROWD ESTIMATION */

let p = 0.005; let w = 0.25; let crowdRange = 30;
let crowdedDensity = 1.08; let dangerousThreshold = 2.17;
let groupSize = 300; let timeFrame = 60;
let crowding = crowdTracking(p, crowdRange, w, crowdedDensity,

dangerousThreshold, groupSize, timeFrame)

/* PROGRAM: PROPERTY TO BE MONITORED */

let D = crowding == OVERCROWDED || crowding == AT_RISK;
let B = env.get("isSafePlace");
implies(D, surroundedBy(D, reaches(!D, B)))

Figure 9: Protelis implementation of the aggregate specification executed for the case study.
Bold red symbols denote language keywords; bold blue symbols denote standard library func-
tions; bold purple symbols denote application-related functions; bold black symbols denote
SLCS functions; and bold orange symbols denote parameters, constants, or built-ins whose
declaration is not reported.
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(a) The red-circled node has every path to a
safe node hindered by a dangerous, crowded
area—which is red-coloured to denote its col-
lective failure in satisfying the property. The
cyan circles denote nodes able to reach safety.

(b) The red-circled node walks away, detach-
ing from the network. All the remaining nodes
can reach a safe area (not shown) by passing
across the bridge: therefore, the crowded area
satisfies the property.

Figure 10: These zoomed snapshots of the scenario are meant to illustrate the property
checking. We assume safe areas are only south of the river, and there are no paths that
circumvent the Reichsbrücke bridge shown in the picture.

events and actions upon modelled entities as well as features for configuration
of scenarios, visualisation and data extraction. The translated monitors are
written in Protelis (Pianini et al., 2015), an implementation of the field calculus875

as a standalone domain-specific language that also provides a library of reusable
aggregate building blocks and interoperability with the Java ecosystem.

The scenario is configured as follows: a total of 1497 nodes are loaded at
the starting positions of the corresponding available GPS traces and configured
to move according to their traces as well as to execute the aggregate program880

and broadcast data to neighbours once about every TR = 1 second(s). Since
the network inferred by the data traces is quite sparse relatively to the physical
region of the city, a mesh of access points is put in place to provide a reasonable
level of connectivity for the system. While normal devices are assumed to have
a connectivity range of 100m (i.e., around the maximum Wi-Fi range), access885

points connect to each other within a 500m range; these choices have been made
as a compromise between simplicity and realism—more deployment-related con-
siderations will follow.

An excerpt of the aggregate program implementation is provided in Fig-
ure 9. Dangerous areas (i.e., nodes where field D is true) are those which are890

either OVERCROWDED or AT_RISK (i.e., nearby overcrowded areas by a certain
threshold), as computed by aggregate function crowdTracking, whereas safe
areas are given by predefined nodes having a corresponding property as true.
The crowd detection functionality and its parameterisation are taken from Beal
et al. (2015). The last expression of the listing is the property to be monitored,895

expressed straightforwardly through the SLCS functions: it yields a Boolean
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field that is true in the nodes in which the property is satisfied, and false where
this is not the case.

The code of Figure 9 is then extended with simulation-specific code for the
parameterised configuration of the scenario, for the oracle, and for data extrac-900

tion. The oracle, whose goal is to objectively check the property by inspect-
ing the state of the system, is executed by-need when a device in D fires; its
implementation leverages JGraphT (Michail et al., 2019) for representing the
partitioned network of non/dangerous devices and calculating connected sets in
order to check graph reachability of safe nodes. Moreover, in order to stress the905

monitor, there is additional aggregate code to activate, from t = 250 to t = 500,
a simple crowd dispersal algorithm that changes network topology: nodes close
to risk are suggested to move in the direction opposite to the nearest danger-
ous node (which performs a spatial broadcast of its GPS position). Nodes are
configured with a certain, individual probability to follow the dispersal advice;910

so, when the advice is given, and they “choose” to follow it, they move in the
suggested dispersal direction, hence departing from the recorded GPS trace.

4.3. Simulation results

The scenario described above is run 100 times, each with a different random
seed, yielding 100 different simulation instances. The random seed is given as915

input to the pseudo-random generator of the Alchemist simulator, which affects
(i) the displacement of access points into random mesh-like arrangements (i.e.,
whereas the smartphones are positioned according to the GPS traces, which are
always the same, and hospitals have precise fixed locations, the access points
are positioned along a grid with random shifts along the ideal latitude and920

longitude positions in each different instance), (ii) the tendency of people to
follow the dispersal advice, and (iii) the relative ordering of the computation
rounds scheduled at the devices. These aspects may affect the dynamics of the
system as well as the trajectory of the SLCS property in non-trivial ways, since
the appearance or the vanishing of few connectivity links could make a huge925

difference. Each simulation instance is executed for 1000 seconds of simulated
time. For each run, on every second of simulated time, the following data is
exported: the number of devices which are overcrowded, at risk, and monitored
(the monitor needs to run on all the devices, but the property is relevant only
on devices in D, so, as an optimisation, only for these the oracle is executed);930

the number of devices for which the monitor and the oracle yield a positive
response, as well as the number of devices for which the monitor and the oracle
provide a different response (i.e., this is a measure of the error), detailed with
the count of false positives (i.e., erroneous monitor evaluations suggesting the
property is satisfied when it is not the case) and false negatives (i.e., erroneous935

unsatisfiability claims).
The results are shown in Figure 11. In particular, Figure 11a shows how

the level of crowding varies over time, also by the effect of the crowd dispersal
process, which makes nodes in danger and those close to risky areas disperse. It
is possible to appreciate a reduction of the dangerous areas, as well as a reduction940

of devices at risk (after an initial increase due to the dispersal dynamics).
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(a) Number of devices that perceive a danger-
ous (red line) or moderate (orange line) over-
crowding, monitored (black line), and follow-
ing dispersal advices (green line).

(b) Number of monitored devices (black line)
that satisfy the property according to the or-
acle (red line) and the monitor (blue line).

(c) Number of monitored devices (black line)
for which the oracle and the monitor provide
a different response (red line).

(d) Detail of the error in terms of the number
of devices providing false positives (magenta
line) and false negatives (orange line).

Figure 11: Simulation results.
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In Figure 11b, we have a view of how the property evolves in the system
and, more interestingly, we can observe how the response of the distributed,
field calculus monitor “follows” the response of the oracle, with a certain delay
and with a varying error that can be more precisely observed in Figure 11c (by945

counting the number of different individual responses) and in Figure 11d (by
counting the number of false positives and false negatives). Moreover, after the
crowd dispersal, the number of devices for which the property is true is larger
relative to the number of monitored devices. The error for this scenario is, on
average, around 10-20%; though not bad, this figure could easily improve by950

increasing system stability (the sparseness of the used dataset produces high
variability due to network fragmentation). Also, interestingly, note that the
monitor tends to provide more false negatives than false positives (i.e., it finds
harder to claim the property is satisfied when it is actually not the case), which
may be important for safety properties.955

So, in summary, the field calculus monitor provides a reasonable approxi-
mation of an ideal monitor, but works in a decentralised, self-healing fashion,
with devices providing an evaluation of the property by their local perspec-
tive, but still achieving (eventual) collective coherence through the continuous
coordination with neighbours as regulated by the aggregate specification.960

4.4. Discussion

The experiments demonstrate the technical validity of the field calculus so-
lution for the monitoring of SLCS properties. While “eventual” stabilisation of
the monitor outcome to the expected correct values is guaranteed by the theo-
rems in previous section, this empirical evaluation actually shows that even in965

systems with quite dynamic topology, the inherent error in prediction remains
to an acceptable bound. Indeed, Theorem 3 shows that a field calculus monitor
obtained by translation of a SLCS formula stabilises to the truth value of that
logical formula, after a sufficient number of rounds with no changes. However,
in many practical application scenarios, small changes may happen almost con-970

tinuously; in such circumstances, Theorem 3 does not help, since its premises
may get invalidated very soon. The experimental evaluation shows that also
in a scenario characterised by mobility and therefore continuous perturbations
(as induced by changes in topology), the truth values computed by the monitor
are sufficiently close to the ideal truth values at each instant (where the level975

of “sufficiency” depends on the particular application). In other words, the
experimental results outlined in Section 4.3 show that the approach can cover
practical cases that go beyond the hypothesis of formal theorems.

We stress that the monitor exercised in this section is distributed (actually,
decentralised) and self-adaptive. Notice that distribution is simulated: we did980

not perform an actual large-scale deployment but rather simulated a network of
smartphones and access points communicating based on spatial proximity (ac-
cording to a typical Wi-Fi range). The logical computational model of the field
calculus is intrinsically decentralised in control: it assumes each node repeatedly
runs the program and shares coordination messages with neighbours—there is985

no centralised entity orchestrating the system. Adaptiveness is driven by the
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field calculus program and stems from the specifics of the execution model (as
it may affect the relative order of operations), the environmental dynamics, and
the evolution of the state of the system. In a computational round, a device
executes the field calculus program against an up-to-date context that consid-990

ers sensor data and recent messages received from neighbours. A change in the
context will probably cause the device to also change its state, its outputs, and
the messages it will send to neighbours—which in turn will adapt to their new
context. In this way, local changes propagate through neighbourhoods to affect
increasingly non-local portions of the network, ultimately affecting other local-995

ities. Essentially, the field calculus program is responsible for organising local
adaptations such that they bring to the desired globally distributed state. In
the case study, a portion of the program is responsible for computing and eval-
uating the level of density; as the people with the smartphones move in the city,
the system topology changes, and such a density level (a distributed field, which1000

has potentially different values for different nodes of the network) changes as
well. The SLCS property under evaluation also adapts as the estimated density
level and the topology of the system changes.

Concerning performance, most specifically, the field calculus monitor neces-
sarily “follows” the oracle with some delay. The reactivity of the system can be1005

regulated through proper parameterisation and algorithmic optimisations. For
instance, components affecting how fast the system can respond to perturba-
tions include, e.g., the frequency of firings and communications, the time for
which neighbour data is considered valid, the estimation of the network diame-
ter, and the particular gradient algorithm (Audrito et al., 2017) adopted (which1010

is used to set up the distributed structure for information propagation and
collection). Of course, any application scenario is potentially different, and the
above parameters should be tuned accordingly to the expected levels of variabil-
ity. Additionally, there is a sort of algorithmic inertia that should be taken into
account: for instance, non-reachability takes a number of diameter rounds to be1015

proved; so, countermeasures could be taken to “delay” invalidation of results.
Also, network partitioning may be particularly problematic: consider an unsafe
partition whose connected set does not include a safe node. A node moving from
such an unsafe partition to a safe partition while touching, at the same time, a
non-dangerous, safe cluster and a dangerous cluster, can compromise the latter1020

if stale data is not removed and is immediately used to contribute to a property
evaluation decision (c.f. interior). In this case, delaying contributions and
short retention windows for neighbour data could help to mitigate disruptions.

Regarding the deployment and operational execution of aggregate systems,
various options are available (Viroli et al., 2016). Devices may locally run the1025

field calculus program and directly communicate with neighbours or delegate
these tasks to other (e.g., more powerful) devices—in that case, however, they
must, at a minimum, provide sensor data and receive output/actuation data.
So, in this latter view, access points may be useful to provide neighbourhood
connectivity extending normal Wi-Fi range of smartphones as well as fog-level1030

computing support.
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4.5. Further considerations on applicability

In light of the above considerations, we can finally discuss the suitability of
the approach for various systems and scenarios. First of all, due to the delays
involved, the approach may not be adequate for applications where real-time1035

exact responses are expected (although preliminary results on the applicability
of aggregate computing techniques to real-time scenarios have already been in-
vestigated in Audrito et al. (2018b)). However, this limitation holds in general
for decentralised solutions where global knowledge has to incrementally build
up from local knowledge. Instead, the approach can be particularly useful when1040

some delay or error can be tolerated. Typically, such a tolerance depends on ap-
plication requirements and is related to constraints and situations to withstand.
For instance, scenarios characterised by adversarial conditions such as frequent
changes able to potentially affect global properties (i.e., like the one considered
in this section) require certain levels of reactivity for the monitoring system to1045

be usable and useful at all. In these kinds of systems, decentralised monitoring
approaches should be evaluated on a case-by-case basis.

On the other hand, the proposed approach nicely fits scenarios characterised
by moderate change and where approximated responses are acceptable during
transient phases. Decentralised approaches are also favourable in very large-1050

scale settings, to avoid single-points-of-failures, when there is no infrastructure
in place, and as fallback solutions where centralised servers become unavailable
(cf. graceful degradation).

Additionally, recall that reactivity and precision of field calculus SLCS mon-
itors are related to a few network characteristics. For instance, the larger the1055

network diameter (i.e., number of hops of the longest shortest path), the longer
it takes for information to reach the whole network, hence directly affecting the
timing of somewhere and reaches. This problem could be mitigated, e.g., by
applying the divide-et-impera principle and organising the system into bounded
working areas (Casadei et al., 2019b), possibly overlapping as per (Casadei et al.,1060

2019c), to enable multiple monitoring slices, and constructed by leveraging gra-
dients originating from a selection of the safe places. The hop-by-hop propaga-
tion time is also affected by the frequency with which computational rounds are
executed by the devices—which, in general, may depend on device energy lev-
els, technical requirements and limitations (cf. LoRaWAN systems (Adelantado1065

et al., 2017)), or design choices. The relative frequency of round executions and
environment dynamics also determines the reactivity with which inputs are con-
sidered. Last but not least, higher density (i.e., average number of neighbours)
levels can provide higher stability, as changes are less likely to be disruptive.

5. Related work1070

As discussed in Section 2, our idea of specifying a property in a modal logic
and then evaluating it step-wise is most closely related with the field of runtime
verification (Leucker and Schallhart, 2009): while in runtime verification prop-
erties are usually specified in a temporal logic with operators such as always and
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eventually, here the modalities are spatial like or everywhere and somewhere.1075

Nonetheless, the core aspect of runtime verification, the evaluation of proper-
ties as the system runs, is preserved in our setting: from the perspective of each
device, the property is evaluated to a truth value every step, where a step here
corresponds to a firing on each device.

While traditionally runtime verification considers evaluating a property on1080

a single trace, the extension to distributed runtime verification makes the par-
ticipation of multiple entities explicit.We discuss this sub-field in the following.

5.1. Distributed runtime verification and spatial logics

Distributed runtime verification lifts the concept of runtime verification to
distributed systems (see (Francalanza et al., 2018) for a survey), finding ap-1085

plications in the following areas: (i) observing distributed computations & ex-
pressiveness (specifications over the distributed systems), (ii) analysis decom-
position (coupled composition of system- and monitoring components), (iii)
exploiting parallellism (in the evaluation of monitors), (iv) fault tolerance and
(v) efficiency gains (by optimising communication). In the following, we discuss1090

some works in this area are related to our aim, though none of them address
the dynamisms at the same level; most assume a fixed number of participants
and fixed communication topology.

Bauer and Falcone (2016) show a decentralised monitoring approach where
disjoint atomic propositions in a global LTL property are monitored without1095

a central observer in their respective components: communication overhead is
shown to be lower than the number of messages that would need to be sent to
a central observer. Sen et al. (2004) introduce PT-DTL to specify distributed
properties in a past time temporal logic, where subformulas in a specification are
explicitly annotated with the node (or process) where the subformula should be1100

evaluated: communication of results of subcomputation is handled by message
passing. Both approaches assume a total communication topology, i.e., each
node can send messages to everyone in the system, although causally unrelated
messages may arrive in arbitrary order.

Our work is more closely related to those that have grown out of the spatial1105

logics community, and moved into the area of runtime verification. In Nenzi et al.
(2018), Signal Temporal Logic (STL) for real-valued signals takes inspiration
from SLCS and is extended with the spatial modalities somewhere and bounded
surround into Spatio-STL (SSTL). A monitoring algorithm is presented and its
implementation evaluated, though, in contrast to our work, the topology of the1110

system is considered fixed. This is addressed by Bartocci et al. (2017) with
the Spatio-Temporal Reach and Escape Logic (STREL), which in turn extends
the above SSTL logic with two further modalities, reach and escape, which are
designed as local properties, only taking into account neighbours. A monitoring
algorithm is presented. To the best of our knowledge, no distributed algorithm1115

has been presented yet to monitor distributed properties in large-scale dynamic
networks.

35



5.2. Runtime verification of self-adaptive systems

Techniques for runtime verification have also been investigated in the con-
text of self-adaptive systems, where the related problem of monitoring is partic-1120

ularly crucial to drive proper adaptation. In Borda et al. (2018), specifications
expressed in a higher-order process language for adaptive CPSs are translated
to FDR (Failures-Divergences Refinement) to refinement-check requirement sat-
isfaction. Another approach, Lotus@Runtime (Barbosa et al., 2017) addresses
verification of self-adaptive systems, modelled as (probabilistic) labelled tran-1125

sition systems, by checking reachability properties on execution traces—which
must be generated, e.g., through instrumentation or aspect-oriented techniques.
In Tahara et al. (2017), CAMPer is proposed, a property verifier for Component
Aspect Models (CAM) UML profile that uses Maude for expressing behaviours
and verifying dynamic evolution processes; however, unlike our approach, this1130

is not applied to large-scale scenarios, and does not deal with decentralised
control. Calinescu et al. (2017) provide a survey of quantitative model checking
approaches for the (re-)verification of QoS properties after system, environment,
or requirements change. Our field-based approach to coordination, in particu-
lar, naturally addresses the challenges of “continual re-assessment” which are1135

stressed in the above work. Moreover, our approach captures properties to be
verified as executable specifications, and the decentralised, self-healing monitor
is directly “implied” from these, since their continuous, distributed interpreta-
tion yields the needed computation and communication activities for their local
evaluation.1140

5.3. Ensembles of devices and aggregate computing

Several foundational calculi for describing interaction of devices in distributed
systems have been proposed, mostly rooted on the archetype process algebra for
mobility, the π-calculus (Milner et al., 1992a,b). Approaches like ambient cal-
culus (Cardelli and Gordon, 2000), Bigraphs (Milner, 2006), 3π Cardelli and1145

Gardner (2010), SCEL De Nicola et al. (2013), and many others, provide mathe-
matically concise foundations for capturing the interaction of groups in complex
environments, featuring a shared-space abstraction by which multiple processes
can interact in a decoupled way. However, they do not feature mechanisms for
capturing the overall behaviour of an ensemble by abstracting over the single1150

devices as with the field calculus, and for making such a behaviour composi-
tional as required by the formulation of spatial properties. This makes them
quite low level for the purpose of expressing distribute monitors automatically
generated from SLCS specifications.

The problem of finding suitable programming models for ensemble of devices1155

has been the subject of intensive research—see e.g. the surveys (Beal et al.,
2013; Viroli et al., 2019)): works as TOTA (Mamei and Zambonelli, 2009) and
Hood (Whitehouse et al., 2004) provide abstractions over the single device to
facilitate construction of macro-level systems; GPL (Coore, 1999) and others are
used to express spatial and geometric patterns; Regiment (Newton and Welsh,1160

2004) and TinyLime (Curino et al., 2005) are information systems used to stream
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and summarise information over space-time regions; while MGS (Giavitto et al.,
2004) and the fixpoint approach in (Lluch-Lafuente et al., 2017) provide general
purpose space-time computing models.

Aggregate computing and the field calculus have then be developed as a1165

generalisation of the above approaches, with the goal of defining a programming
model with sufficient expressiveness to describe complex distributed processes
by a functional-oriented compositional model, whose semantics is defined in
terms of gossip-like computational processes. Recent works have also adopted
this field calculus as a lingua franca to investigate formal properties of resiliency1170

to environment changes (Audrito et al., 2018b; Nishiwaki, 2016; Viroli et al.,
2018), and to device distribution (Beal et al., 2017).

6. Conclusion and future work

In this paper we provided a natural translation of properties expressed in
SLCS logic, a spatial logics with topological modal operators, into distributed1175

programs for monitoring such properties. Such programs define a repetitive task
to be executed by local monitors hosted in each device of the network, resulting
in a coordinated behaviour that altogether computes local validity of the SLCS
formula, and self-adapt optimally after changes in network topology or of truth
values of the atomic propositions in the formula. This adaptation process is1180

modelled through self-stabilisation and proved correct in Theorem 3. Addition-
ally, local monitors run using local memory, message size and computation time
that are all linear in the size of the formula (c.f. Theorem 2). Critical to achieve
these results is the usage of aggregate computing (Beal et al., 2015) and the
field calculus model (Audrito et al., 2019c), which provided: (i) a functional1185

programming model easily expressing the translation in a syntax-directed way,
(ii) operators and libraries to easily capture the ability to monitor SLCS spatial
operators, (iii) a programming language (Protelis (Pianini et al., 2015)) and
simulator (Alchemist (Pianini et al., 2013)) to perform empirical evaluation in
realistic scenarios, and finally (iv) a characterisation of self-stabilising field cal-1190

culus programs as of (Viroli et al., 2018), by which we could state resiliency of
the runtime verification process. In particular, we also evaluated the approach
in a large-scale crowd safety scenario, and showed that, even in environments
characterised by nearly continuous and possibly disruptive change, essentially
undermining the self-stabilisation requirements, the decentralised monitor still1195

nicely approximates an oracle monitor.
Future works will be mainly devoted to capture more powerful monitoring

processes, by considering more expressive spatial logics, as well as logics address-
ing spatio-temporal aspects. Additionally, we will seek for platform support for
field calculus programs, encompassing the opportunistic usage of cloud as well1200

as edge resources, along the line of (Viroli et al., 2016).
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Appendix A. Operational semantics of the field calculus

To simplify the notation, in the presentation we assume a fixed program
P. We say that “device δ fires” to mean that the main expression emain of P

is evaluated on δ at a particular firing. The computation that takes place on
a single device is formalised by a big-step semantics (given in Appendix A.1),1390

while the overall network computation is formalised by a small-step semantics
(given in Appendix A.2).
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Appendix A.1. Device semantics

The result of a device firing is an ordered tree of values θ, called a value-tree.
It tracks the results of all evaluated subexpressions of emain. Such a value-1395

tree is made available to δ’s neighbours for their subsequent firing (including δ
itself, so as to support a form of state across firings). Each device collects the
recently-received value-trees of neighbours into a map Θ from device identifiers
to value-trees (written δ 7→ θ as short for δ1 7→ θ1, . . . , δn 7→ θn), called a
value-tree environment. The outcome of the evaluation will depend on those1400

value-trees. The syntax of value-trees and value-tree environments is given in
Figure A.12 (top).

Example 6. The graphical representation of the value trees 1〈3〈〉, 2〈〉〉 and
1〈3〈〉, 2〈7〈〉, 2〈〉, 5〈〉〉〉 is as follows:

1 11405

/ \ / \
3 2 3 2

/|\
7 2 5

For sake of readability, we sometimes write the value v as short for the1410

value-tree v〈〉. Following this convention, the value-tree 1〈3〈〉, 2〈〉〉 is shortened
to 1〈3, 2〉, and the value-tree 1〈3〈〉, 2〈7〈〉, 2〈〉, 5〈〉〉〉 is shortened to 1〈3, 2〈7, 2, 5〉〉.

The judgement that describes the firing of a device, defined in Figure A.12
(bottom), is δ; Θ;σ ` e ⇓ θ, where: (i) δ is the identifier of the device that
fires; (ii) Θ is the environment collecting the value-trees produced by the most1415

recent evaluation of (an expression corresponding to) e on δ’s neighbours; (iii)
e is a closed run-time expression (i.e., a closed expression that may contain
neighbouring values); (iv) θ is the value-tree representing the values computed
for all the expressions encountered during the evaluation of e—the root of the
value tree θ is the value computed for expression e. It is denoted by ρ(θ), where1420

ρ is the auxiliary function defined in Figure A.12 (second frame).
The operational semantics rules resemble standard rules for functional lan-

guages, however they are extended to ensure that each subexpression e′ of e

is evaluated with respect to the value-tree environment Θ′ obtained from Θ by
extracting (when present) the corresponding subtree in the value-trees in the1425

range of Θ. This process, called alignment, is modelled by the auxiliary func-
tion π defined in Figure A.12 (second frame). This function has two different
behaviours (specified by its subscript or superscript): πi(θ) extracts the i-th
subtree of θ; while π`(θ) extracts the last subtree of θ, if the root of the first
subtree of θ is equal to the local (Boolean) value ` (thus implementing a filter1430

specifically designed for the if construct). Auxiliary functions ρ and π apply
pointwise on value-tree environments, as defined in Figure A.12 (second frame).

Rules [E-LOC] and [E-FLD] model the evaluation of expressions that are either
a local value or a neighbouring value, respectively. In particular, rule [E-FLD]

restricts the domain of a neighbouring value to the only set of neighbour devices1435

as reported in Θ.
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Value-trees and value-tree environments:

θ ::= v〈θ〉 value-tree

Θ ::= δ 7→ θ value-tree environment

Auxiliary functions:

ρ(v〈θ〉) = v

πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n π`(v〈θ1, θ2〉) = θ2 if ρ(θ1) = `
πi(θ) = • otherwise π`(θ) = • otherwise

For aux ∈ ρ, πi, π` :

 aux(δ 7→ θ) = δ 7→ aux(θ) if aux(θ) 6= •
aux(δ 7→ θ) = • if aux(θ) = •
aux(Θ,Θ′) = aux(Θ), aux(Θ′)

args(d) = x if def d(x) {e} body(d) = e if def d(x) {e}
φ0[φ1] = φ2 where φ2(δ) =

{
φ1(δ) if δ ∈ dom(φ1)
φ0(δ) otherwise

Syntactic shorthands:

δ;π(Θ);σ ` e ⇓ θ where |e| = n for δ;π1(Θ);σ ` e1 ⇓ θ1· · ·δ;πn(Θ);σ ` en ⇓ θn
ρ(θ) where |θ| = n for ρ(θ1), . . . , ρ(θn)

x := ρ(θ) where |x| = n for x1 := ρ(θ1) . . . xn := ρ(θn)

Rules for expression evaluation: δ; Θ;σ ` e ⇓ θ

[E-LOC]

δ; Θ;σ ` ` ⇓ `〈〉
[E-FLD] φ′ = φ|dom(Θ)∪{δ}

δ; Θ;σ ` φ ⇓ φ′〈〉

[E-B-APP] δ;π(Θ);σ ` e ⇓ θ v = LbMδ,Θσ (ρ(θ))

δ; Θ;σ ` b(e) ⇓ v〈θ〉

[E-D-APP] δ;π(Θ);σ ` e ⇓ θ δ; Θ;σ ` body(d)[args(d) := ρ(θ)] ⇓ θ′
δ; Θ;σ ` d(e) ⇓ ρ(θ′)〈θ, θ′〉

[E-NBR] δ;π1(Θ);σ ` e ⇓ θ φ = ρ(π1(Θ))[δ 7→ ρ(θ)]
δ; Θ;σ ` nbr{e} ⇓ φ〈θ〉

[E-SHARE]
δ;π1(Θ);σ ` e1 ⇓ θ1 φ′ = ρ(π2(Θ)) φ = (δ 7→ ρ(θ1))[φ′]
δ;π2(Θ);σ ` e2[x := φ] ⇓ θ2

δ; Θ;σ ` share(e1){(x) => e2} ⇓ ρ(θ2)〈θ1, θ2〉

[E-IF] δ;π1(Θ);σ ` e ⇓ θ1 ρ(θ1)∈{true, false} δ;πρ(θ1)(Θ);σ ` eρ(θ1) ⇓ θ
δ; Θ;σ ` if(e){etrue} else {efalse} ⇓ ρ(θ)〈θ1, θ〉

Figure A.12: Big-step operational semantics for expression evaluation.

Rule [E-B-APP] models the application of built-in functions (including mea-
surement variables and interactions with the external world via sensors and
actuators), that is, of expressions of the form b(e1 · · · en), where n ≥ 0. The pro-
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duced value-tree is v〈θ1, . . . , θn〉, where θ1, . . . , θn are the value-trees produced1440

by the evaluation of the actual parameters e1, . . . , en and v is the value returned
by the function. The rule exploits the special auxiliary function LbMδ,Θσ (whose
actual definition is abstracted away) which ensures that LbMδ,Θσ (v) computes the
result of applying built-in function b to values v in the current environment of
the device δ. The built-in 0-ary function self gets evaluated to the current1445

device identifier (i.e., LselfMδ,Θσ () = δ), and mathematical operators have their
standard meaning, which is independent from δ and Θ (e.g., L−Mδ,Θσ (3, 2) = 1).

Example 7. Evaluating the expression −(3, 2) produces the value-tree 1〈3, 2〉.
The value of the whole expression, 1, has been computed by using rule [E-B-APP]

to evaluate the application of the multiplication operator − to the values 3 (the1450

root of the first subtree of the value-tree) and 2 (the root of the second subtree
of the value-tree).

Rule [E-D-APP] models the application of a user-defined function, that is,
of expressions of the form d(e1 . . . en), where n ≥ 0. It resembles rule [E-B-

APP] while producing a value-tree with one more subtree θ′, which is produced1455

by evaluating the body of the function d (denoted by body(d)) substituting the
formal parameters of the function (denoted by args(d)) with the values obtained
evaluating e1, . . . en.

Rule [E-NBR] first collects neighbours’ values for expressions e as φ = ρ(π1(Θ)),
then evaluates e in δ and updates the corresponding entry in φ to produce its1460

overall value.
Rule [E-SHARE] uses the notation φ0[φ1], defined in Figure A.12 (second

frame), to express “neighbouring value update”: the updated neighbouring value
φ2 = φ0[φ1] has dom(φ2) = dom(φ0) ∪ dom(φ1) and coincides with φ1 on its
domain, or with φ0 otherwise. The evaluation rule [E-SHARE] produces a value-1465

tree with two branches (for e1 and e2 respectively). First, it evaluates e1 with
respect to the corresponding branches of neighbours π1(Θ) obtaining θ1. Then,
it collects the results for the construct from neighbours into the neighbouring
value φ′ = ρ(π2(Θ)). In case φ′ does not have an entry for δ, ρ(θ1) is used ob-
taining φ = (δ 7→ ρ(θ1))[φ′]. Finally, φ is substituted for x in the evaluation of1470

e2 (with respect to the corresponding branches of neighbours π2(Θ)) obtaining
θ2, setting ρ(θ2) to be the overall value.

Example 8. Consider a program consisting of the body of function gossipEver
(introduced Example 1) where the occurrence of the parameter alarm has been
replaced by the call to a built-in sense that returns the value of a Boolean1475

sensor:

share (false) { (old) => anyHoodPlusSelf(old) || sense() }

Suppose that the program runs on a network of two mutually interconnect
devices δ0 and δ1, and that device δ0 first executes a firing with an empty
environment Θ and with sense() returning false. The evaluation of the share1480

construct proceeds by evaluating false into θ1 = false〈〉, gathering neighbour
values into φ′ = • (no values are present), and adding the value for the current
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device obtaining φ = (δ0 7→ false)[•] = δ0 7→ false. Finally, the evaluation
completes with the result of anyHoodPlusSelf(δ0 7→ false)||false (which is
false〈false〈δ0 7→ false〉, false〉) corresponding to θ2 in rule [E-SHARE]. At1485

the end of the firing, device δ0 sends a broadcast message containing the result
of its overall evaluation, and thus including θ0 = false〈false, θ2〉.

Suppose now that device δ1 receives the broadcast message and then ex-
ecutes a firing with Θ = (δ0 7→ θ0) and sense() returning true. The eval-
uation of the share constructs starts similarly as before with θ1 = false〈〉,1490

φ′ = δ0 7→ false, φ = δ0 7→ false, δ1 7→ false. Then the body of the
share is evaluated as anyHoodPlusSelf(δ0 7→ false, δ1 7→ false)||true into
θ2 = true〈false〈δ0 7→ false, δ1 7→ false〉, true〉. At the end of the fir-
ing, device δ1 broadcasts the result of its overall evaluation, including θ1 =
true〈false, true〈θ2〉〉.1495

Then, suppose that device δ0 receives the broadcast from device δ1 and then
performs another firing with Θ = (δ0 7→ θ0, δ1 7→ θ1) and sense() returning
false. As before, θ1 = false〈〉, φ = φ′ = δ0 7→ false, δ1 7→ true and the
body is evaluated as anyHoodPlusSelf(δ0 7→ false, δ1 7→ true)||false into
θ2 = true〈false〈δ0 7→ false, δ1 7→ true〉, false〉. Then device δ0 broadcasts1500

the overall result θ2 = true〈false, true〈θ〉〉.
Finally, suppose that (because op a change of network topology that took

place before the last firing of device δ0) device δ1 does not receive that broadcast
and filters out δ0 from its list of neighbour before performing another firing
with sense() returning false (which is different from the value returned while1505

performing the previous fire of device δ1) . Then, θ1 = false〈〉, φ′ = δ1 7→ true,
φ = (δ1 7→ false)[δ1 7→ true] = δ1 7→ true, and the body is evaluated as
anyHoodPlusSelf(δ1 7→ true)||false which produces θ2 = true〈true〈δ1 7→
true〉, false〉 and leads to the overall result θ3 = true〈false, true〈θ2〉〉.

Rule [E-IF] is almost standard, except that it performs domain restriction1510

πtrue(Θ) (resp. πfalse(Θ)) in order to guarantee that subexpression etrue is not
matched against value-trees obtained from efalse (and vice-versa).

Appendix A.2. Network semantics

The overall network evolution is formalised by the small-step operational
semantics given in Figure A.13 as a transition system on network configurations1515

N . Figure A.13 (top) defines key syntactic elements to this end. Ψ models the
overall status of the devices in the network at a given time, as a map from device
identifiers to value-tree environments. � models network topology (a directed
neighbouring graph), as in Definition 5. Σ models sensor (distributed) state,
as a computational field δ 7→ σ (cf. Definition 6) mapping device identifiers1520

to (local) sensors (i.e., sensor name/value maps denoted as σ). Then, Env (a
couple of topology and sensor state) models the system’s environment. Finally,
a whole network configuration N is a couple of a status field and environment.

We use the following notation for status fields. Let δ 7→ Θ denote a map from
device identifiers δ to the same value-tree environment Θ. Let Θ0[Θ1] denote1525

the value-tree environment with domain dom(Θ0) ∪ dom(Θ1) coinciding with
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System configurations and action labels:

Ψ ::= δ 7→ Θ status field

Env ::= 〈�,Σ〉 environment

N ::= 〈Env; Ψ〉 network configuration

act ::= δ
∣∣ env action label

Environment well-formedness:
WFE(〈�,Σ〉) holds iff �⊆ D ×D where D = dom(Σ)

Transition rules for network evolution: N
act−−→ N

[N-FIR]
Env = 〈�,Σ〉 δ = {δ′ | δ� δ′}
δ;F (Ψ)(δ); Σ(δ) ` emain ⇓ θ Ψ1 = δ 7→ {δ 7→ θ}

〈Env; Ψ〉 δ−→ 〈Env;F (Ψ)[Ψ1]〉

[N-ENV] WFE(Env′) Env′ = 〈�, δ 7→ σ〉 Ψ0 = δ 7→ ∅
〈Env; Ψ〉 env−−→ 〈Env′; Ψ0[Ψ]〉

Figure A.13: Small-step operational semantics for network evolution.

Θ1 in the domain of Θ1 and with Θ0 otherwise. Let Ψ0[Ψ1] denote the status
field with the same domain as Ψ0 made of δ 7→ Ψ0(δ)[Ψ1(δ)] for all δ in the
domain of Ψ1, δ 7→ Ψ0(δ) otherwise.

Thee are transitions N
act−−→ N ′ of two kinds: firings, where act is the cor-1530

responding device identifier, and environment changes, where act is the special
label env. This is formalised in Figure A.13 (bottom). Rule [N-FIR] models a
firing at device δ: it takes the local value-tree environment filtered out of old
values F (Ψ)(δ);11 then by the single device semantics it obtains the device’s
value-tree θ,12 which is used to update the system configuration of δ and of δ’s1535

neighbours.
Rule [N-ENV] takes into account the change of the environment to a new

well-formed environment Env′—environment well-formedness is specified by the
predicate WFE(Env) in Figure A.13 (middle). Let δ be the domain of Env′.
First, a status field Ψ0 is constructed by associating to all the devices of Env′1540

the empty context ∅. Then, the existing status field Ψ is adapted to the new set
of devices: Ψ0[Ψ] automatically handles removal of devices, map of new devices
to the empty context, and retention of existing contexts in the other devices.

Example 9. Consider a network of devices running the program

share (false) { (old) => anyHoodPlusSelf(old) || sense() }1545

11Function F (Ψ) in rule [N-FIR] models a filtering operation that clears out old stored values
from the value-tree environments in Ψ, implicitly based on space/time tags.

12Termination of a device firing is clearly not decidable. However, without loss of generality
for the results of this paper, we assume that any device firing is guaranteed to terminate in
any environmental condition.
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as introduced in Example 8. The network configuration illustrated at the be-
ginning of Example 8 can be generated by applying rule [N-ENV] to the empty
network configuration. I.e., we have 〈〈∅, ∅〉; ∅〉 env−−→ 〈Env0; Ψ0〉 where

Env0 = 〈�0,Σ0〉,

�0= (δ0 7→ δ1, δ1 7→ δ0),1550

Σ0 = (δ0 7→ (sense 7→ false), δ1 7→ (sense 7→ true)), and

Ψ0 = (δ0 7→ ∅, δ1 7→ ∅).

Then, the four firings of devices δ0, δ1, δ0, δ1 and the change of communication
topology and sensor value (that took place between the second and the third
firing) illustrated in Example 8 are modelled by the following transitions.1555

1. 〈Env0; Ψ0〉 δ0−→ 〈Env0; Ψ′〉, where

Ψ′ = (δ0 7→ (δ0 7→ θ0), δ1 7→ (δ0 7→ θ0)).

2. 〈Env0; Ψ′〉 δ1−→ 〈Env0; Ψ′′〉, where

Ψ′′ = (δ0 7→ (δ0 7→ θ0, δ1 7→ θ1), δ1 7→ (δ0 7→ θ0, δ1 7→ θ1)).

3. 〈Env0; Ψ′′〉 env−−→ 〈Env1; Ψ′′〉, where

Env1 = 〈∅,Σ1〉,
Σ1 = (δ0 7→ (sense 7→ false), δ1 7→ (sense 7→ false)).

4. 〈Env1; Ψ′′〉 δ0−→ 〈Env1; Ψ′′′〉, where

Ψ′′′ = (δ0 7→ (δ0 7→ θ2, δ1 7→ θ1), δ1 7→ (δ0 7→ θ0, δ1 7→ θ1)).

5. 〈Env1; Ψ′′′〉 δ1−→ 〈Env1; Ψ′′′′〉, where

Ψ′′′′ = (δ0 7→ (δ0 7→ θ2, δ1 7→ θ1), δ1 7→ (δ1 7→ θ3)).

Appendix B. Proofs

Appendix B.1. Proof of Theorem 11560

In this section, we prove that the operational semantics in Appendix A
mirrors the message passing details of any LUIC augmented event structure
(c.f. Definition 2). Namely, every system evolution S induces a Space-Time
Value Φ = 〈E, f〉 (c.f. Definition 3). Therefore, S induces a LUIC augmented
event structure E (c.f. Definition 2) describing its message passing details, as1565

per the following definition.
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Definition 13 (Space-Time Value Induced by a System Evolution). Let S =

N0
act1−−→ . . .

actn−−−→ Nn with N0 = 〈∅, ∅; ∅〉 be any system evolution. We say that:

• D = {δ | ∃i. acti = δ} are the device identifiers appearing in S;

• F δ = 〈i ≤ n | acti = δ〉 are the indexes of transitions applying rule [N-FIR];1570

• E =
{
〈δ, i〉 | δ ∈ D ∧ 1 ≤ i ≤

∣∣F δ∣∣} is the set of events in S;

• d : E → D maps each event ε = 〈δ, i〉 to the device δ where it is happening;

• ε1  ε2 where εk = 〈δk, ik〉 and j1 = F δ1i1 , j2 = F δ2i2 if and only if:

– Nj1 has topology� such that δ1 � δ2 (the message from ε1 reaches
δ2),1575

– there is no j′ ∈ (j1; j2) with j′ ∈ F δ1 and Nj′ with topology � such
that δ1 � δ2 (there are no more recent messages from δ1 to ε2),

– for every j′ ∈ (j1; j2] with j′ ∈ F δ2 and Nj′ with status field Ψ, then
δ1 ∈ dom(Ψ(δ2)) (the message from ε1 to δ2 is not filtered out as
obsolete before ε2);1580

• < is the transitive closure of  ;

• f : E → V is such that f(〈δ, i〉) = ρ(Ψ(δ)(δ)) where NF δi = 〈Env; Ψ〉.

Then we say that the system evolution S induces the space-time value Φ =
〈E, f〉, where E is the LUIC augmented event structure 〈E, , <, d〉.

Notice that the E and Φ defined above are unique given S. Furthermore,1585

as stated by the following theorem, the operational semantics is sufficiently
expressive to model every possible message interaction describable by a LUIC
augmented event structure.

Restatement of Theorem 1 (Semantic Completeness). Let E = 〈E, , <, d〉
be a LUIC augmented event structure. Then there exist (infinitely many) system1590

evolutions S that induce E.

Proof. By the computation immediacy, the relation  ∪ 99K is acyclic on E.
Thus, there exists at least one ordering of E = 〈ε1, . . . , ε`〉 compatible with  
and 99K, i.e. such that εi  εj or εi 99K εj implies i < j. Define by induction a
system evolution Si for i ≤ ` translating the elements of E (in order), starting1595

from the empty system evolution without transitions S0 = 〈∅, ∅; ∅〉.
Consider a step i ≤ `, let δi = d(εi), and add the following three transitions

to the system Si = Si−1
env−−→ N ′

δi−−−→ N ′′
env−−→ N ′′′:

• first, an env transition changing the topology to any neighbouring relation
� such that {δ′ | δi� δ′} = {d(ε′) | εi  ε′};1600
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• secondly, a δi transition representing the computation, where the filter F
clears out from the value-tree environment Ψ(δi) the value trees corre-
sponding to devices not in X = {d(ε′) | ε′  εi};

• finally, another env transition, which removes δi from the domain of the
system configuration if next(εi) does not exist, or it does nothing if next(εi)1605

exists.

Then, the system evolution S` induces E (c.f. Definition 13). Notice that many
system evolutions may induce E: besides the existence of many different lin-
earisations of E according to  and 99K, env transitions can be added in an
unbounded number of ways.1610

Appendix B.2. Proof of Theorem 2

In Appendix A.2 we modelled the message passing resulting from a fire (rule
[N-FIR]) as a broadcast of whole value-trees θ. However, only part of that data
is actually used in computation, and practical implementations of the calculus
(Protelis (Pianini et al., 2015) and ScaFi (Casadei and Viroli, 2016)) take profit1615

of that for greatly reducing the amount of data exchanged. In particular, an
optimised implementation may:

• store only values of nodes corresponding to [E-NBR] and [E-SHARE] state-
ments;

• label each of them with the sequence of Boolean results of if guards1620

encompassed to reach them (as these are the only values needed to perform
alignment).

In measuring the message size required for computations, we consider the above
optimised implementation as reference.

1625

Restatement of Theorem 2 (Lightweightness). The translation P of a for-
mula φ according to Figure 6 computes in each node using message size O(S)
and computation time/space O(L + SN), where N is neighbourhood size and
L, S are the numbers of logical and spatial operators in φ.

Proof. We proceed by syntactic induction on φ. Logical operators are translated1630

into Boolean operations that perform in constant time locally without message
exchanges. Thus we only need to prove that spatial operators are translated
into programs using O(1) message size and O(N) computation time/space.

Each spatial operator is expanded into a formula with at most four logical
operators, at most two occurrences of local operators � and ♦, and at most1635

one occurrence of global operators F or R. Each occurrence of � and ♦ is
translated in a program sending one bit with nbr{F} which scans the data of
the N neighbours checking if some (all) is true (thus in O(N) time/space).

Occurrences of F are translated into a call to somewhere, triggering an
execution of the distanceTo building block, which exchanges with neighbours1640
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a single positive integer (with value up to D, which we consider to fit within one
word), and selects the minimum from the received values in O(N) time/space.

Finally, occurrences of R are translated as an if statement (creating a new
non-trivial node in the value-trees, for additional O(1) message size for align-
ment purposes), together with a call to somewhere (previously discussed).1645

Appendix B.3. Proof of Theorem 3

In this section, we prove that the translation of an SLCS formula into a field
calculus monitor is correct and optimal. In order to prove that the translated
program is correct and optimal in stabilisation speed, we first need to inspect the
convergence properties of the distanceTo algorithm (Lemma 4, an extended1650

version of results in (Viroli et al., 2018)).

Lemma 4 (Distance-To Stabilisation). Assume that distanceTo(dest) is
computed in a stable and connected network, and let d(δ) be the hop-count dis-
tance of a device δ in the network to the closest device where dest holds (∞ if
no such device exists).1655

Then after n full rounds of execution, devices such that d(δ) < n stabilise to
d(δ), while devices such that d(δ) ≥ n satisfy distanceTo(dest) >= n.

Proof. Let N0
δ0−→ N1

δ1−→ . . . be a (possibly infinite) network evolution where
the topology and atomic proposition source are stable. Assume that N0 is a
configuration attainable from the execution of distanceTo, in particular, that1660

the values for d shared between neighbours are non-negative integers. Let tn be
such that n full rounds of execution has passed at step tn since start (so that
t0 = 0), and proceed by induction on n.

From the first full round of execution on, each destination device will cor-
rectly compute 0 as result of distanceTo(dest), while non-destination devices1665

will compute minHood(d)+1. Since values d shared between neighbours are
always non-negative, the result has to be ≥ 1, completing the proof for n = 1.

Assume now that the thesis holds for n − 1. Consider a device δ with
d(δ) = n− 1, which then has (at least) one neighbour with distance n− 2, and
no neighbour with distance < n− 2 (by definition of hop-count distance). From1670

tn−1 on, neighbours with distance n − 2 will have already stabilised to n − 2,
while neighbours with distance ≥ n− 1 will have computed results ≥ n− 1 (by
inductive hypothesis). It follows that minHood(d)+1 has to be n− 1 for δ from
its first fire after tn−1 on, concluding this part of the proof.

Consider now a device δ with d(δ) ≥ n, which then has no neighbour with1675

distance < n− 1 (by definition of hop-count distance).
From tn−1 on, all those neighbours will have computed results ≥ n− 1 (by

inductive hypothesis). It follows that minHood(d)+1 has to be at least n for δ
from its first fire after tn−1 on, concluding the proof.

Restatement of Theorem 3 (Self-Stabilisation, Correctness, Optimality). Let1680

P be the translation of φ according to Figure 6. If the network configuration and
atomic propositions stabilise, the result of P also stabilises to the interpretation of
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φ in that final configuration (regardless of the evolution history of the network).
Furthermore, the time required for stabilisation is as small as possible, meaning
that no correct inductive translation can stabilise with a smaller worst case of1685

full rounds of execution).

Proof. We proceed by syntactic induction on formulas, assuming derived opera-

tors to be already expanded into the basic ones. As before, let N0
δ0−→ N1

δ1−→ . . .
be a (possibly infinite) network evolution where the topology and atomic propo-
sitions are stable, assuming that N0 is attainable from the execution of P. Let1690

t0 be minimum such that results of sub-formula have necessarily stabilised after
t0, and let tn be such that n full rounds of execution has passed at step tn since
t0. A formula φ can be:

• An atomic formula (>, ⊥, q), which is stable from t = 0 since atomic
propositions are stable (inductive base case).1695

• A logical operator, whose translation is easily checked to be correct and
stable since t0 when the sub-formulas are stable.

• A local operator (�φ1 or ♦φ1), whose overall translation will stabilise
at t1 after each device performed an additional firing to share the stabilised
argument result with neighbours through the nbr{F1} construct. The cor-1700

rectness of the result can then be easily checked: e.g., �φ1 holds on points
where all neighbours satisfy φ1, as the translation allHoodPlusSelf(nbr
{F1}) which holds on devices where all the values received from neigh-
bours for F1 are true. Furthermore, the one-round delay is necessary,
as the sub-formula values from neighbours are needed for computing the1705

overall result, and are not available before t1.

• A reaches operator φ1Rφ2. In the area where φ1 stabilises to false,
the overall result simultaneously stabilises to false which is the correct
result (achieved at t0 with minimal, zero delay). Due to the properties
of the if construct, the area where φ1 is true computes its result in1710

isolation, as if the devices in the complementary area where not present.
In particular, each connected component of the true area performs its
computation independently from the others.

Consider a connected component where at least one device satisfies φ2

(since stabilisation at t0), in which the correct result of φ1Rφ2 would then1715

be true. Let d(δ) be the hop-count distance of a device δ in the area to the
closest device where φ2 holds. By Lemma 4, the result of distanceTo(F2)
on each device δ stabilises to d(δ) after td(δ), and the result of somewhere
(F2) (hence reaches(F1, F2)) on each device δ stabilises to true after
td(δ) as well. Furthermore, no correct program could stabilise before td(δ),1720

since the information that a device area is a source travels one hop at a
time, thus is not available in δ before td(δ).

Finally, consider a connected component where no device satisfies φ2 (since
stabilisation at t0), in which the correct result of φ1Rφ2 would then be
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false. By Lemma 4, the result of distanceTo(F2) on each device is1725

≥ n after tn. In particular, after tD+1 we will have distanceTo(F2) >

D so that somewhere(F2) and reaches(F1, F2) stabilise to false. In
fact, no correct program could stabilise before tD+1 in all cases, since the
information of a (plausible) point satisfying φ2 at distance D would not be
available before that moment.1730

• A somewhere operator F φ1. In that case, correctness and optimality
follow by the same reasoning as R, through the equivalent formula >Rφ1.
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