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Abstract
We study the closed range problem for generalized Volterra-type integral operators on
Fock spaces. We first answer the problem using the notions of sampling sets, reverse
Fock–Carlesonmeasures, Berezin type integral transforms, and essential boundedness
from below of some functions of the symbols of the operators. The answer is further
analyzed to show that the operators have closed ranges only when the derivative of
the composition symbol belongs to the unit circle. It turns out that there exists no
nontrivial closed range integral operator acting between two different Fock spaces.
Themain results equivalently describe when the operators are bounded below. Explicit
expressions for the range of the operators are also provided, namely that the closed
ranges contain only elements of the space which vanish at the origin. We further
describe conditions under which the operators admit order bounded structures.
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1 Introduction and Preliminary Results

We denote by C the complex plane and H(C) the set of entire functions on C. For
1 ≤ p ≤ ∞, consider the Fock spaces Fp consisting of all f inH(C) for which

‖ f ‖p :=
⎧
⎨

⎩

(
p
2π

∫

C
| f (z)|pe− p

2 |z|2d A(z)
) 1

p
< ∞, p < ∞

supz∈C | f (z)|e− 1
2 |z|2 < ∞, p = ∞,

where A denotes the Lebesgue area measure on C.
For f and g in H(C), we define the Volterra-type integral operator Vg and its

companion Jg by

Vg f (z) :=
∫ z

0
f (w)g′(w)dw and Jg f := V f g. (1.1)

The two operators are related to the pointwise multiplication operator, Mg f = g f ,
by f (0)g(0) + Vg f + Jg f = Mg f . The boundedness and compactness properties
of the operators on Fock spaces were characterized in [5, 12, 14]. It was shown that
Vg is bounded on Fp if and only if g is a polynomial of at most degree two while
compactness is characterized by degree of g being at most one. Similarly, Jg or Mg is
bounded if and only if g is a constant function, and compact only when g identically
vanishes. Inspired by all these, the question whether generalizing the operators to
V(g,ψ) and J(g,ψ), where

V(g,ψ) f (z) :=
∫ z

0
f (ψ(w))g′(w)dw and J(g,ψ) f (z) :=

∫ z

0
f ′(ψ(w))g(w)dw,

(1.2)

improve their boundedness and compactness properties were investigated in [12, 13,
15]. Here, we remind that the initial motivation to study V(g,ψ) and J(g,ψ) came from
their applications in the study of isometry; see for example [6]. Setting,

M(g,ψ)(z) = |g′(z)|(1 + |z|)−1e
1
2 (|ψ(z)|2−|z|2) and

M̃(g,ψ)(z) = |g(z)|(1 + |ψ(z)|)(1 + |z|)−1e
1
2 (|ψ(z)|2−|z|2) (1.3)

for all z in C, the following result was proved in [15].

Theorem 1.1 Let 1 ≤ p, q ≤ ∞ and g, ψ ∈ H(C).

(i) If p ≤ q, then

(a) V(g,ψ) : Fp → Fq is bounded if and only if supz∈C M(g,ψ)(z) =: M < ∞,
and compact if and only if M(g,ψ)(z) → 0 as |z| → ∞.

(b) J(g,ψ) : Fp → Fq is bounded if and only if supz∈C M̃(g,ψ)(z) =: M̃ < ∞,
and compact if and only if M̃(g,ψ)(z) → 0 as |z| → ∞.
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(ii) If p > q, then V(g,ψ) : Fp → Fq is bounded (compact) if and only if M(g,ψ) ∈
Lr (C, d A). Similarly, J(g,ψ) : Fp → Fq is bounded (compact) if and only if
M̃(g,ψ) ∈ Lr (C, d A), where r = pq

p−q for p < ∞ and r = q for p = ∞.

The result shows the compactness and boundedness structures of Vg and Jg are indeed
significantly improved under such generalizations. For example, by setting ψ(z) =
z+b and g(z) = e−bz , we observe that the boundedness statements in (i) and (ii) hold
for any b in C while both Vg and Jg fail to be bounded. Similarly, for ψ(z) = 1

2 z + b

and g(z) = e− 1
2 bz , the compactness statements in (i) and (ii) hold for all b in C while

neither Vg nor Jg is compact.
The following two useful lemmas follow from Theorem 1.1. The lemmas provide

some explicit expressions for the function g or its derivative.

Lemma 1.2 Let 1 ≤ p ≤ ∞ and g, ψ ∈ H(C). Then

(i) if V(g,ψ) : Fp → Fq is bounded, then ψ(z) = az + b with 0 ≤ |a| ≤ 1. If
|a| = 1, then

g(z) =
{
K−ab(z)

(
a1z + a2

) + a3, b �= 0

b1z2 + b2z + b3, b = 0,
(1.4)

for some ai , bi ∈ C, i = 1, 2, 3 and all z in C
(ii) if J(g,ψ) : Fp → Fq is bounded, thenψ(z) = az+b with 0 ≤ |a| ≤ 1. If |a| = 1,

then

g = g(0)K−ab. (1.5)

Similarly, for |a| < 1, we get the following representations.

Lemma 1.3 Let 1 ≤ p ≤ ∞ and g, ψ ∈ H(C).

(i) Let V(g,ψ) be bounded on Fp and hence ψ(z) = az + b for some a, b ∈ C, and
0 ≤ |a| < 1. If g′ is non-vanishing, then V(g,ψ) is

(a) compact on Fp if and only if

g′(z) = ea0+a1z+a2z2 (1.6)

for some constants a0, a1, a2 in C such that |a2| <
1−|a|2

2 .

(b) not compact on Fp if and only if g′ has the form in (1.6) with |a2| = 1−|a|2
2

and either a1 + ab = 0 or a1 + ab �= 0 and

a2 = − (1 − |a|2)(a1 + ab)2

2|a1 + ab|2 .

(ii) Let J(g,ψ) be bounded on Fp and hence ψ(z) = az + b for some a, b ∈ C and
0 ≤ |a| < 1. If g is non-vanishing, then J(g,ψ) is
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(a) compact on Fp if and only if

g(z) = eb0+b1z+b2z2 (1.7)

for some constants b0, b1, b2 ∈ C such that |b2| <
1−|a|2

2 .

(b) not compact onFp if and only if g has the form in (1.7) with |b2| = 1−|a|2
2 and

either b1 + ab = 0 or b1 + ab �= 0 and

b2 = − (1 − |a|2)(a1 + ab)2

2|b1 + ab|2 .

The proof of both Lemmas 1.2 and 1.3 will be given later in Sect. 3.

1.1 The Closed Range Problem

The closed range problem has been one of the basic problems in operator theory which
finds lots of connections in various parts of mathematics, especially, in the theory of
Fredholm operators, generalized inverses and dynamical sampling structures [10, 11].
The problem has been studied bymany authors on various spaces of analytic functions;
see for example [7, 16, 19] and the reference therein. Recently, the second author
studied the problem for Vg on Fock spaces, and proved that a bounded Vg has a non-
trivial closed range if and only if g has a non-zero degree two term in its polynomial
expansion [11]. Clearly, Jg has closed range if and only if g is a constant. Similarly, in
[10] it was proved that a bounded composition operator Cψ : f → f ◦ ψ has a non-
trivial closed range on the spaces if and only ifψ is a first degree polynomial. One of the
main goals of this work is to consider the generalized operators V(g,ψ) and J(g,ψ), and
answer the question whether such generalizations improve the closed range structures
of Vg , Jg , and Cψ as it already does for boundedness and compactness. We plan to
answer the question first using various notions including sampling sets, reproducing
kernel thesis, reverse Fock–Carleson measures and essential boundedness from below
of the functionsM(g,ψ) and M̃(g,ψ). Then,we analyze further such notions and describe
the integral operators with closed ranges using simple conditions in Theorem 2.6.

The rest of the paper is organized as follows. In the next section we present the main
results of the paper and answer the closed range problem for the integral operators in
Theorems 2.3, 2.4, 2.5, and 2.6. As a consequence, we characterize conditions under
which theVolterra-type integral operatorVg and composition operatorCψ admit closed
range structures in Corollaries 2.7 and 2.8 respectively. Next, we consider the question
of when the integral operators have order bounded structures and provide a complete
answer in Theorem 2.9. This result is applied in particular for the operators Vg, Jg and
Cψ and obtained interesting results in Corollaries 2.10 and 2.11.
Sect. 3 deals with the proofs of all the results obtained while the last section contains
some further discussions on the main results.

We conclude this section with a word on nations that will be used in the rest of the
manuscript. The notionU (z) � V (z) (or equivalently V (z) � U (z)) means that there
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is a constant C such that U (z) ≤ CV (z) holds for all z in the set of a question. We
write U (z) 
 V (z) if both U (z) � V (z) and V (z) � U (z).

2 Main Results

We may first note that if ψ = b is a constant, then the operators have clearly closed
ranges given by R(V(g,ψ)) = {

f (b)(g − g(0)) : f ∈ Fp
}
and

R(J(g,ψ)) =
{
f ′(b)G : f ∈ Fp, G(z) =

∫ z

0
g(w)dw

}
.

Similarly, if g = c is a constant, then V(g,ψ) reduces to the zero operator which
obviously is closed. The next result shows J(g,ψ) has also closed range as well.

Proposition 2.1 Let g, ψ ∈ H(C) and 1 ≤ p, q ≤ ∞. Let J(g,ψ) : Fp → Fq be
bounded and hence ψ(z) = az + b, 0 ≤ |a| ≤ 1. If g = c is a constant, then J(g,ψ)

has closed range given by

R(J(g,ψ)) = {
c f ◦ ψ − c f (b) : f ∈ Fp

}
. (2.1)

We may assume now that both the symbols ψ and g are nonconstant, and provide the
next key necessary condition.

Theorem 2.2 Let g, ψ ∈ H(C) be nonconstant and 1 ≤ p, q ≤ ∞. Then a bounded

(i) V(g,ψ) : Fp → Fq has closed range only if p = q.
(ii) J(g,ψ) : Fp → Fq has closed range only if p = q.

The result makes it clear that the action of the integral operators between two different
Fock spaces results no non-trivial closed range property. Therefore, we will restrict
ourselves to study their actions only on the space Fp.

2.1 Sampling Sets, and Closed Range V(g,Ã) and J(g,Ã)

Ghatage et al. [7] introduced the notion of sampling set for a space to study bounded
below composition operators on Block spaces. Since then, the notion has been used
to investigate the closed range problem in various Banach spaces. Now, we generalize
the notion and for 1 ≤ p ≤ ∞, a subset S of C is a (p, n) sampling set (dominating
set) for Fp if there exists an n in N0 := {0, 1, 2, 3, ...} and a positive constant δn such
that for all f in Fp

δn‖ f ‖p ≤

⎧
⎪⎨

⎪⎩

supz∈S
| f (n)(z)|
(1+|z|)n e

− |z|2
2 , p = ∞

( ∫

S
| f (n)(z)|p
(1+|z|)np e

− p
2 |z|2d A(z)

) 1
p
, p < ∞,

where f (n) denotes the nth order derivative of f and f 0 = f . Here, an interesting
question is to ask for examples of sets which satisfy the sampling set condition for
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Fp. Due to the norm estimates in (3.2), the whole complex plane minus any set of
measure zero is a prototype example of a (p, n) sampling set for n = 0 or n = 1. In
fact, applying the nth order derivative Littelwood–Paley type estimates in [8, 17], it is
easy to observe that the prototype example works for all n in N0.

For each ε > 0, we define two associated sets

�ε
(g,ψ) := {z ∈ C : M(g,ψ)(z) ≥ ε} and Gε

(g,ψ) := ψ
(
�ε

(g,ψ)

)
,

where M(g,ψ) is the function as in (1.3). With this, we may now state the next main
result which provides a number of equivalent conditions for V(g,ψ) to have closed
range on Fock spaces.

Theorem 2.3 Let g, ψ ∈ H(C) be nonconstant, 1 ≤ p ≤ ∞, and V(g,ψ) be bounded
on Fp. Then the following statements are equivalent.

(i) V(g,ψ) has closed range on Fp;
(ii) There exists ε > 0 such that Gε

(g,ψ) is a (p, 0) sampling set for Fp;
(iii) For all z in C, there exists a positive constant C such that

‖V(g,ψ)Kz‖p ≥ C‖Kz‖p, (2.2)

where Kz(w) = ezw is the reproducing kernel function in Fp;
(iv) There exist positive numbers ε, r , and σ such that

A(Gε
(g,ψ) ∩ D(z, r)) ≥ σr2

for all z in C and D(z, r) is a disc of radius r and center z in C;
(v) The function M(g,ψ) is essentially bounded away from zero on C. The rang of

V(g,ψ) is given by

R(V(g,ψ)) = {
f ∈ Fp : f (0) = 0

}
. (2.3)

Let us now give some examples that illustrate the improvement of the closedness
property for the integral operatorVg . Setψ(z) = az+b, |a| = 1 and g(z) = zK−ab(z).
Then by Theorem 2.3, the operator V(g,ψ) has closed range for all b in C while Vg
fails to have.

Next, we consider the integral operator J(g,ψ). For ε > 0, we may set again

�ε
(g,ψ) := {z ∈ C : M̃(g,ψ)(z) ≥ ε} and 	ε

(g,ψ) := ψ
(
�ε

(g,ψ)

)
,

where the function M̃(g,ψ) is as in (1.3), and state the next main result.

Theorem 2.4 Let g, ψ ∈ H(C) be nonconstant, 1 ≤ p ≤ ∞, and J(g,ψ) be bounded
on Fp. Then the following statements are equivalent.

(i) J(g,ψ) has closed range on Fp;
(ii) There exists ε > 0 such that 	ε

(g,ψ) is a (p, 1) sampling set for Fp;
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(iii) For all z in C, there exists a positive constant C such that

‖J(g,ψ)Kz‖p ≥ C‖Kz‖p;

(iv) There exist positive numbers ε, r , and σ such that

A(	ε
(g,ψ) ∩ D(z, r)) ≥ σr2

for all z in C;
(v) The function M̃(g,ψ) is essentially bounded away from zero on C. The range of

J(g,ψ) is given by

R(J(g,ψ)) = {
f ∈ Fp : f (0) = 0

}
. (2.4)

The operator Jg is bounded if and only if g is a constant [12]. A nonzero constant
g obviously generates a closed range operator Jg but the property gets improved
significantly under J(g,ψ). For example, set ψ(z) = az + b, |a| = 1 and g(z) =
K−ab(z). Then J(g,ψ) has closed range for all b in C while Jg is not even bounded.

2.2 Reverse Fock–CarlesonMeasures, and Closed Range V(g,Ã) and J(g,Ã)

The notion of Carleson measure has been well studied and used in various contexts
since its introduction by Carleson [2] as a tool to solve the corona problem. In this
section, we generalize the notion and for each 1 ≤ p < ∞ and n ∈ N0, define a
(p, n) Fock–Carleson measure on Fock spaces. We call a positive Borel measure μ is
a (p, n) Fock–Carleson measure forFp if there exists a positive constant Cn such that

∫

C

| f (n)(z)|pdμ(z) ≤ Cn‖ f ‖p
p (2.5)

for all f in Fp, where as before f (n) is the nth order derivative of f and f (0) = f .
The measure μ is called a (p, n) reverse Fock–Carleson measure if the inequality in
(2.5) is reversed. When n = 0, the definition reduces to the classical version.

Wemay now state the following result, which gives twomore equivalent conditions
to the lists in Theorems 2.3 and 2.4 whenever p < ∞.

Theorem 2.5 Let g, ψ ∈ H(C) be nonconstant and 1 ≤ p < ∞.

(i) Let V(g,ψ) be bounded on Fp. Then the following statements are equivalent.

(a) V(g,ψ) has closed range on Fp;
(b) There exists ε > 0 such thatμε

(g,ψ) is a (p, 0) reverse Fock–Carleson measure,
where

dμε
(g,ψ)(z) = χGε

(g,ψ)
(z)e− p

2 |z|2d A(z);
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(c) μ(g,ψ,p) is a (p, 0) reverse Fock–Carleson measure, where

dμ(g,ψ,p)(z) = |g′(ψ−1(z))|p(1 + |ψ−1(z)|)−pe− p|ψ−1(z)|2
2 d A(z).

(ii) Let J(g,ψ) be bounded on Fp. Then the following statements are equivalent.

(a) J(g,ψ) has closed range on Fp;
(b) There exists ε > 0 such that θε

(g,ψ) is a (p, 1) reverse Fock–Carleson measure,
where

dθε
(g,ψ)(z) = χ	ε

(g,ψ)
(z)(1 + |z|)−pe− p

2 |z|2d A(z);

(c) θ(g,ψ,p) is a (p, 1) reverse Fock–Carleson measure, where

dθ(g,ψ,p)(z) = |g(ψ−1(z))|p(1 + |ψ−1(z)|)−pe− p|ψ−1(z)|2
2 d A(z).

2.3 Some Consequences of the Results above

Nowwe consider some concrete cases and simplify some of the main results obtained.
More specifically, an application of Lemmas 1.2, 1.3, Theorems 2.3, and 2.4 provides
the following interesting and easy to apply condition.

Theorem 2.6 Let 1 ≤ p ≤ ∞ and g, ψ ∈ H(C) be nonconstant.

(i) If V(g,ψ) is bounded on Fp and hence ψ(z) = az + b, |a| ≤ 1, then its range
is closed if and only if |a| = 1 and g′(z) = (cz + d)K−ab(z) for some c, d ∈ C

and c �= 0.
(ii) If J(g,ψ) is bounded on Fp and hence ψ(z) = az + b, |a| ≤ 1, then its range is

closed if and only if |a| = 1.

Note that while the closed range properties for both V(g,ψ) and J(g,ψ) require that
|a| = 1, the operator V(g,ψ) requires in addition a non zero c in the explicit expression
of the function g′.

An immediate consequence of Theorems 2.3 and 2.6 is the following.

Corollary 2.7 Let 1 ≤ p ≤ ∞ and g ∈ H(C) be nonconstant. Let Vg be bounded
on Fp, and hence g(z) = az2 + bz + c for some a, b, c ∈ C. Then, the following
statements are equivalent.

(i) Vg has a closed range on Fp;
(ii) a �= 0;
(iii) C is a (p, 0) sampling set for Fp.

The composition operator is related to the integral operators in (1.2) by Cψ f =
J(1,ψ) f + f (ψ(0)). Then an application of Theorems 2.4 and 2.6 gives the following
equivalent conditions.

Corollary 2.8 Let ψ ∈ H(C) be nonconstant and 1 ≤ p ≤ ∞. Let Cψ be bounded
on Fp and hence ψ(z) = az + b where |a| ≤ 1 and b = 0 when |a| = 1. Then the
following statements are equivalent.
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(i) Cψ has closed range on Fp;
(ii) |a| = 1;
(iii) C is a (p, 1) sampling set for Fp;
(iv) ‖CψKz‖p = ‖Kz‖p for all z in C;
(v) Cψ is surjective on Fp.

2.4 Order Bounded Integral Operators

Another important question is as to when the generalized operators admit ordered
bounded structures in their actions between Fock spaces. Recall that an operator T :
Fp → Fq is order bounded if there exists a positive function h in Lq

(
C, d Aq

)
such

that for all f in Fp with ‖ f ‖p ≤ 1,

|T ( f (z))| ≤ h(z)

almost everywhere with respect to the measure A, where d Aq(z) = e− q
2 |z|2d A(z) for

q < ∞ and for q = ∞ we take the supremum of the function against the weight
e−|z|2/2. For the integral operators, we prove that such property holds if and only if
the respective functions in (1.3) are in Lq . We state the result below.

Theorem 2.9 Let 1 ≤ p, q ≤ ∞ and g, ψ ∈ H(C). Then the operator

(i) V(g,ψ) : Fp → Fq is order bounded if and only if M(g,ψ) ∈ Lq(C, d A).
(ii) J(g,ψ) : Fp → Fq is order bounded if and only if M̃(g,ψ) ∈ Lq(C, d A).

In particular for the operators Vg and Jg , we get the following more simplified and
interesting versions.

Corollary 2.10 Let 1 ≤ p, q ≤ ∞ and g ∈ H(C). Then

(i) Vg : Fp → Fq is order bounded if and only if g is a complex polynomial of at
most degree one and q > 2.

(ii) Jg : Fp → Fq is order bounded if and only if g is identically zero.

The generalized operators in (1.2) improved again the order bounded structures of Vg
and Jg . Indeed, setting ψ(z) = 1

2 z + b and g(z) = e−bz , we observe that both V(g,ψ)

and J(g,ψ) are order bounded while neither Vg nor Jg is.
From Cψ f = J(1,ψ) f + f (ψ(0)) and Theorem 2.9, we record the following

characterization of composition operators on Fock spaces.

Corollary 2.11 Let ψ ∈ H(C) and 1 ≤ p, q ≤ ∞. Then Cψ : Fp → Fq is order
bounded if and only if ψ(z) = az + b for some a, b ∈ C and |a| < 1.

3 Proofs of the Results

In this section we present the proofs of the results. We may begin with Lemmas 1.2
and 1.3.
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Proof of Lemma 1.2 The proof of the linear form for ψ under a bounded V(g,ψ) or
J(g,ψ) is given in [15]. Thus, we proceed to show the representations in (1.4) and (1.5)
whenever |a| = 1.
(i) Since the operator is bounded, using the notations in Theorem 1.1,

M(g,ψ)(z) = |g′(z)|(1 + |z|)−1e
1
2 (|az+b|2−|z|2)

= e
|b|2
2 |g′(z)Kab(z)|(1 + |z|)−1 ≤ M

for all z in C and hence

|g′(z)Kab(z)| ≤ Me− |b|2
2 (1 + |z|). (3.1)

For simplicity, let h = g′Kab. Since h is an entire function, we may consider its
Laurent series expansion and write

h(z) =
∞∑

j=0

α j z
j ,

where the α′
j s are constants in C. Setting z = reiθ , an integration gives

∫ π

−π

|h(reiθ )|2 dθ

2π
= |α0|2 +

∑

j≥1

|α j |2r2 j

from which and (3.1)

|α0|2 +
∞∑

j=1

|α j |2r2 j ≤ M2e−|b|2(1 + r)2.

This holds for sufficiently large r only when α j = 0 for all j ≥ 2. Therefore,

g′(z) = h(z)

Kab(z)
= (α0 + α1z)e

−ab(z) = (α0 + α1z)K−ab(z).

We arrive at the form of g after integration by parts.
(ii) For this part, we use Theorem 1.1 again and argue as in the preceding one,

M̃(g,ψ)(z) = |g(z)|(1 + |ψ(z)|)(1 + |z|)−1e
1
2 (|ψ(z)|2−|z|2)

= |g(z)Kab(z)|(1 + |az + b|)(1 + |z|)−1 ≤ M̃

for all z in C. This shows the function gKab is bounded and hence a constant C by
Liouville’s theorem. Therefore,

g = CK−ab = g(0)K−ab. �



Closed Range Integral Operators on Fock Spaces Page 11 of 31 107

Proof of Lemma 1.3 (i) By Theorem 1.1, the function M(g,ψ) is bounded

|g′(z)| ≤ M(1 + |z|)e 1
2 (|z|2−|az+b|2)

for all z in C. It follows that g′ has order at most 2. The rest of the proof and part (ii)
follow from a simple variant of the proof of [3, Theorem 3.2].

Before proceeding to the proofs of the main results, we recall the following
Littelwood–Paley type estimate on Fock spaces. For each f in Fp, it holds that

‖ f ‖p 

⎧
⎨

⎩

(
| f (0)|p + ∫

C
| f ′(z)|p(1 + |z|)−pe− p

2 |z|2d A(z)
) 1

p
, p < ∞

| f (0)| + supz∈C | f ′(z)|(1 + |z|)−1e− 1
2 |z|2 , p = ∞.

(3.2)

The estimates are proved in [5, 14], and we will appeal to them several times in the
sequel. �
Proof of Proposition 2.1 For each f in Fp,

J(g,ψ) f (z) = c
∫ z

0
f ′(ψ(w))dw = c f (ψ(z)) − c f (b),

and hence equality of the sets in (2.1) holds. We proceed to show that the range set is
closed. Let c( fn(ψ) − fn(b)) be a sequence in R(J(g,ψ)) which converges to c f in
the space Fq . We need to show that c f belongs to R(J(g,ψ)). If c = 0, the assertion
obviously follows. Thus, assuming c �= 0 and applying (3.2)

∥
∥c( fn(ψ) − fn(b) − f )

∥
∥q
q 
 ∣

∣c f (0)
∣
∣q + |c|q

∫

C

∣
∣( fn(ψ(z)) − f (z))′

∣
∣q

(1 + |z|)q e−
q
2 |z|2d A(z) → 0

then the result follows from the previous lemma. Thus, assume ψ is nonconstant and
consider the function

h f = c−1 f ◦ ψ−1 ∈ Fp.

It follows that for all z in C

J(g,ψ)h f (z) =
∫ z

0
f ′(w)dw = f (z) − f (0) = f (z),

and hence f belongs toR(J(g,ψ)).
Our next lemma identifies conditions under which V(g,ψ) and J(g,ψ) become injec-

tive maps. �
Lemma 3.1 Let g, ψ ∈ H(C) and 1 ≤ p, q ≤ ∞. Then a bounded

(i) V(g,ψ) : Fp → Fq is injective if and only if both g and ψ are nonconstant.
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(ii) J(g,ψ) : Fp → Fq cannot be injective. On the other hand, J(g,ψ) restricted to
the subspace F0

p = { f ∈ Fp : f (0) = 0} is injective if and only if both g and ψ

are nonconstant.

Proof Suppose V(g,ψ) is injective. Then g is obviously not a constant, if not V(g,ψ)

reduces to the zero operator. On the other hand, by Lemma 1.2, ψ(z) = az + b, 0 ≤
|a| ≤ 1. If a = 0, we consider the functions f1(z) = z − b and f2(z) = 2(z − b),
and observe that V(g,ψ) f1 = V(g,ψ) f2 while f1 �= f2. Therefore, ψ is not a constant
either.

Conversely, assume both g and ψ are not constants and V(g,ψ) f1(z) = V(g,ψ) f2(z)
for some f1, f2 ∈ Fp. Then taking derivatives on both sides,

g′(z)( f1(az + b) − f2(az + b)) = 0

for all z in C. This shows that f1 = f2 at all points z except possibly on the zero set
of g′. Since both functions are entire, by uniqueness we deduce f1 = f2.

(ii) We observe that J(g,ψ) maps all constant functions to the zero function and fails
to be injective. The proof for J(g,ψ) restricted to F0

p or the space modulo C follows as
in part (i).

Next, we recall the connection between the closed range problem and bounded
below of linear operators on Banach spaces. An operator T is said to be bounded
below if there exits a positive constant c such that ‖T f ‖ ≥ c‖ f ‖ for every f in the
underlying space. As known from an application of the Open Mapping Theorem, an
injective bounded linear operator on Banach spaces has a closed range if and only if
it is bounded below; see for example [1, Theorem 2.5].

By Lemma 3.1 and the discussion preceding it, if both g and ψ are nonconstant,
then V(g,ψ) : Fp → Fq , 1 ≤ p ≤ q has a closed range if and only if it is bounded
below. Note that if either ψ or g is not a constant, then boundedness from below
fails. For example for ψ = b, the estimate ‖V(g,ψ) f ‖q 
 ‖g‖q ≥ δ‖ f ‖p does not
necessarily hold for each f . Consider the sequence fn = zn and observe that when
n → ∞, ‖ fn‖p → ∞ and cannot be bounded by ‖g‖q for all n ∈ N.

On the other hand, since J(g,ψ) is not injective, we consider its restriction on the
space F0

p. Note also that since for each f in Fp, the function f − f (0) belongs to
F0

p and J(g,ψ) f = J(g,ψ)( f − f (0)), using the equivalent norm in (3.2), the range
of J(g,ψ) coincides with its range when it acts from F0

p. We may now record the
following. �
Lemma 3.2 Let g, ψ ∈ H(C) and 1 ≤ p, q ≤ ∞. Suppose both g and ψ are noncon-
stant. Then a bounded

(i) V(g,ψ) : Fp → Fq has a closed range if and only if it is bounded below.
(ii) J(g,ψ) : F0

p → Fq has a closed range if and only if it is bounded below.

Because of this lemma, the closed range problem for the integral operators reduces
now to finding conditions under which the operators are bounded from below. Thus,
in the rest of the manuscript we focus on such conditions.
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3.1 Proof of Theorem 2.2

(i) Let us consider the case p < q < ∞ first and assume V(g,ψ) : Fp → Fq has closed
range. By Lemma 3.1, the operator is bounded below. We consider the sequence of
the monomials fn(z) = zn, n = 1, 2, ... in Fp and by [18, p. 40],

‖ fn‖p
p 


(n

e

) np
2 √

n. (3.3)

Applying (3.2), Lemma 1.2, and Theorem 1.1

‖V(g,ψ) fn‖qq 

∫

C

|g′(z)(1 + |z|)−1|q | fn(ψ(z))|qe− q
2 |z|2d A(z)

=
∫

C

Mq
(g,ψ)(z)| fn(ψ(z))|qe− q

2 |ψ(z)|2d A(z)

≤ Mq
∫

C

| fn(ψ(z))|qe− q
2 |ψ(z)|2d A(z) � ‖ fn‖qq .

This and boundedness below imply

‖ fn‖q ≥ ε‖ fn‖p (3.4)

for some ε > 0. By (3.3), the estimate in (3.4) holds only if

n
1
2q − 1

2p � ε

for all n in N, which gives a contradiction when n → ∞.
Similarly, for p < q = ∞, we have

‖ fn‖∞ = (
n/e

)n/2
, (3.5)

and by (3.2), Lemma 1.2, and Theorem 1.1 again

‖V(g,ψ) fn‖∞ 
 sup
z∈C

M(g,ψ)(z)| fn(ψ(z))|e− |ψ(z)|2
2

≤ M sup
z∈C

| fn(ψ(z))|e− |ψ(z)|2
2 � ‖ fn‖∞.

Therefore, with (3.5) and bounded below

(
n/e

)n/2 = ‖ fn‖∞ ≥ ε‖ fn‖p = ε
(n

e

) n
2
n

1
2p

for some ε > 0. This gives a contradiction when n → ∞ again.
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If p > q, then by Theorem 1.1, V(g,ψ) : Fp → Fq is compact. It is known that a
compact operator has a closed range if and only if the range is finite dimensional. On
the other hand, by Lemma 3.1, the linear operator is injective on Fp and hence its
range is infinite dimensional.

The proof of part (ii) goes by following similar arguments as in part (i).

3.2 Proofs of Theorem 2.3 and Theorem 2.4

The proofs of Theorem 2.3 and Theorem 2.4 will be rather long. Thus, we will split
them and reformulate various statements to make them more accessible. To this plan,
the equivalencies of the statements in (i) and (ii) are proved in Proposition 3.3. The
assertion (i) implies (iii) is simply a special case. Thus, we prove (iii) implies (iv)
in Proposition 3.4 and (iv) implies (v) in Lemma 3.5. We conclude the proofs of the
theorems after showing (iv) implies (i) in Lemma 3.6.

Proposition 3.3 Let g, ψ ∈ H(C) be nonconstant and 1 ≤ p ≤ ∞.

(i) Let V(g,ψ) be bounded on Fp. Then V(g,ψ) is bounded below if and only if there
exists ε > 0 such that Gε

(g,ψ) is a (p, 0) sampling set for Fp.

(ii) Let J(g,ψ) be bounded on Fp. Then J(g,ψ) is bounded below on F0
p if and only if

there exists ε > 0 such that 	ε
(g,ψ) is a (p, 1) sampling set for F0

p.

(i) Assume p < ∞ and suppose that Gε
(g,ψ) is a (p, 0) sampling set. Then there exists

a δ > 0 such that for each f in Fp

δ‖ f ‖p
p ≤

∫

Gε
(g,ψ)

| f (z)|pe− p
2 |z|2d A(z).

Applying (3.2),

‖V(g,ψ) f ‖p
p 


∫

C

|g′(z)(1 + |z|)−1|p| f (ψ(z))|pe− p
2 |z|2d A(z)

≥
∫

�ε
(g,ψ)

Mp
(g,ψ)(z)| f (ψ(z))|pe− p

2 |ψ(z)|2d A(z)

≥ ε p
∫

Gε
(g,ψ)

| f (z)|pe− p
2 |z|2d A(z) ≥ ε pδ‖ f ‖p

p

from which boundedness from below follows.
Conversely, we argue towards contradiction and assume Gε

(g,ψ) is not a (p, 0)
sampling set for each ε > 0. Then, there exists a unit norm sequence ( fk)k∈N in Fp

such that

∫

G1/k
(g,ψ)

| fk(z)|pe− p
2 |z|2d A(z) → 0 as k → ∞. (3.6)
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We may apply (3.2) again and write

‖V(g,ψ) fk‖p
p 


(∫

�
1/k
(g,ψ)

+
∫

C\�1/k
(g,ψ)

) |g′(z)|p
(1 + |z|)p | fk(ψ(z))|pe− p

2 |z|2d A(z),

and proceed to estimate the two pieces of integrals separately. For the first,

∫

�
1/k
(g,ψ)

|g′(z)(1 + |z|)−1|p| fk(ψ(z))|pe− p
2 |z|2d A(z)

=
∫

�
1/k
(g,ψ)

Mp
(g,ψ)(z)| fk(ψ(z))|pe− p

2 |ψ(z)|2d A(z)

≤ Mp
∫

�
1/k
(g,ψ)

| fk(ψ(z))|pe− p
2 |ψ(z)|2d A(z)



∫

G1/k
(g,ψ)

| fk(z)|pe− p
2 |z|2d A(z) → 0, as k → ∞

which follows by (3.6). We estimate the remaining integral as

∫

C\�1/k
(g,ψ)

|g′(z)(1 + |z|)−1|p| fk(ψ(z))|pe− p
2 |z|2d A(z)

=
∫

C\�1/k
(g,ψ)

Mp
(g,ψ)(z)| fk(ψ(z))|pe− p

2 |ψ(z)|2d A(z)

≤ 1

k p

∫

C\�1/k
(g,ψ)

| fk(ψ(z))|pe− p
2 |ψ(z)|2d A(z) ≤ 2π

pk p
→ 0

as k → ∞. Now, both integral converge to zero when k → ∞ and contradicts
boundedness from below.

Next, we show for p = ∞ and consider first the sufficiency. For f in F∞,

δ‖ f ‖∞ ≤ sup
z∈Gε

(g,ψ)

| f (z)|e− |z|2
2 = sup

z∈�ε
(g,ψ)

| f (ψ(z))|e− |ψ(z)|2
2 . (3.7)

Applying eventually the estimate in (3.2), we have

sup
z∈�ε

(g,ψ)

| f (ψ(z))|e− |ψ(z)|2
2 = sup

z∈�ε
(g,ψ)

|g′(z)|
M(g,ψ)(z)(1 + |z|) | f (ψ(z))|e− |z|2

2

≤ 1

ε
sup

z∈�ε
(g,ψ)

|g′(z)|
1 + |z| | f (ψ(z))|e− |z|2

2 
 1

ε
‖V(g,ψ) f ‖∞

from which and (3.7), V(g,ψ) is bounded below.
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Conversely, suppose V(g,ψ) is bounded below. Then there exists a positive constant α
such that for each f in F∞,

‖V(g,ψ) f ‖∞ 
 sup
z∈C

|g′(z)|
1 + |z| | f (ψ(z))|e− |z|2

2 ≥ α‖ f ‖∞.

It follows that for each f , there exists w f in C such that

|g′(w f )|
1 + |w f | | f (ψ(w f ))|e− |w f |2

2 ≥ α

2
‖ f ‖∞.

On the other hand,

|g′(w f )|
1 + |w f | | f (ψ(w f ))|e− |w f |2

2 = M(g,ψ)(w f )| f (ψ(w f ))|e− |ψ(w f )|2
2

≤ M(g,ψ)(w f )‖ f ‖∞

and hence M(g,ψ)(w f ) ≥ α/2. Setting ε = α/2, we observe that w f ∈ �ε
(g,ψ).

Furthermore,

M
|g′(w f )|
1 + |w f | | f (ψ(w f ))|e− |w f |2

2 ≥ (
M(g,ψ)(w f )

)2 | f (ψ(w f ))|e− |ψ(w f )|2
2

≥ (α/2)2 ‖ f ‖∞

and from which

‖ f ‖∞ ≤ 4

α2

M |g′(w f )|
1 + |w f | | f (ψ(w f ))|e− |w f |2

2

= 4

α2 MM(g,ψ)(w f )| f (ψ(w f ))|e− |ψ(w f )|2
2

≤ 4M2

α2 | f (ψ(w f ))|e− |ψ(w f )|2
2

≤ 4M2

α2 sup
z∈Gε

(g,ψ)

| f (z)|e− |z|2
2 .

Hence, Gε
(g,ψ) is a (p, 0) sampling set.
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(ii) We argue as in the proof of part (i). If 	ε
(g,ψ) is a (p, 1) sampling set for F0

p for

some ε > 0, then for each f in F0
p

∫

C

|g(z)|p
(1 + |z|)p | f ′(ψ(z))|pe− p

2 |z|2d A(z) ≥
∫

�ε
(g,ψ)

M̃ p
(g,ψ)

(z)
| f ′(ψ(z))|p

(1 + |ψ(z)|)p e
− p

2 |ψ(z)|2d A(z)

≥ ε p

|a|2
∫

	ε
(g,ψ)

| f ′(z)|p
(1 + |z|)p e

− p
2 |z|2d A(z)

≥ δε p

|a|2
∫

C

| f ′(z)|p
(1 + |z|)p e

− p
2 |z|2d A(z) � δε p

|a|2 ‖ f ‖pp,

where the last estimate follows by (3.2). This proves the sufficiency.
Conversely, suppose on the contrary that 	ε

(g,ψ) is not a (p, 1) sampling set for Fp

for any ε > 0. Then there exists a unit norm sequence fk, k ∈ N in Fp such that

∫

	
1/k
(g,ψ)

| f ′
k(z)|pe− p

2 |z|2d A(z) → 0 as k → ∞.

We now proceed to estimate ‖J(g,ψ) fk‖p
p as

‖J(g,ψ) fk‖p
p 


∫

C

|g(z)|p
(1 + |z|)p | f ′

k(ψ(z))|pe− p
2 |z|2d A(z)

=
( ∫

�
1/k
(g,ψ)

+
∫

C\�1/k
(g,ψ)

) |g(z)|p
(1 + |z|)p | f ′

k(ψ(z))|pe− p
2 |z|2d A(z),

where we denote the two integrals by I1 and I2. To estimate I1, we observe

I1 ≤ M̃ p
∫

�
1/k
(g,ψ)

| f ′
k(ψ(z))|p

(1 + |ψ(z)|)p e
− p

2 |ψ(z)|2d A(z)



∫

	
1/k
(g,ψ)

| f ′
k(z)|p

(1 + |z|)P e
− p

2 |z|2d A(z) → 0,

as k → ∞. Similarly, we estimate I2 as

I2 =
∫

C\�1/k
(g,ψ)

|g(z)|P
(1 + |z|)p | f ′

k(ψ(z))|pe− p
2 |z|2d A(z)

≤ 1

k p

∫

C\�1/k
(g,ψ)

| f ′
k(ψ(z))|p

(1 + |ψ(z)|)p e
− p

2 |ψ(z)|2d A(z)

� 1

k p
‖ fk‖p

p 
 1

k p
→ 0, k → ∞,

which contradicts the assumption that the operator is bounded below.
The case p = ∞ follows in a similar way.
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The following local estimate from [18, p. 37] may be needed in our consideration
further. For each entire function f and p �= ∞, there exists a positive constant C such
that

| f (z)|pe− p|z|2
2 ≤ C

r2

∫

D(z,r)
| f (w)|pe− p|w|2

2 d A(w), (3.8)

where D(z, r) is a disc in C with center z and radius r .

Proposition 3.4 Let g, ψ ∈ H(C) be nonconstant and 1 ≤ p ≤ ∞.

(i) Let V(g,ψ) be bounded onFp. If V(g,ψ) is bounded below on the kernel functions,
then there exist positive numbers ε, r , and σ such that

A
(
Gε

(g,ψ) ∩ D(z, r)) � A(D(z, r)
) ≥ σr2 (3.9)

for all z in C.
(ii) Let J(g,ψ) be bounded on Fp. If J(g,ψ) is bounded below on the kernel functions,

then there exist positive numbers ε, r , and σ such that

A
(
	ε

(g,ψ) ∩ D(z, r)) � A(D(z, r)
) ≥ σr2 (3.10)

for all z in C.

Proof (i) Let p < ∞ and α > 0 such that for all w ∈ C

α ≤ ‖V(g,ψ)kw‖p
p ≤ cp

2π

∫

C

|g′(z)|p
(1 + |z|)p |kw(ψ(z))|pe− p

2 |z|2d A(z)

= cp

2π

( ∫

�ε
(g,ψ)

+
∫

C\�ε
(g,ψ)

) |g′(z)|p
(1 + |z|)p |kw(ψ(z))|pe− p

2 |z|2d A(z),

where c is a positive constant from the relation in (3.2) and ε a small positive number
which can be made a bite more specific later. It follows that

∫

�ε
(g,ψ)

|g′(z)(1 + |z|)−1|p|kw(ψ(z))|pe− p
2 |z|2d A(z)

≥ 2πα

cp
−

∫

C\�ε
(g,ψ)

|g′(z)(1 + |z|)−1|p|kw(ψ(z))|pe− p
2 |z|2d A(z)

= 2πα

cp
−

∫

C\�ε
(g,ψ)

Mp
(g,ψ)(z)|kw(ψ(z))|pe− p

2 |ψ(z)|2d A(z)

>
2πα

cp
− ε p

∫

C\�ε
(g,ψ)

|kw(ψ(z))|pe− p
2 |ψ(z)|2d A(z)

≥ 2πα

cp
− ε p

∫

C

|kw(ψ(z))|pe− p
2 |ψ(z)|2d A(z) = 2πα

cp
− 2πε p

p|a|2 .
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By change of variables,

∫

Gε
(g,ψ)

|g′(ψ−1(z))|p
(1 + |ψ−1(z)|)p |kw(z)|pe− p

2 |ψ−1(z)|2d A(z) >
2πα|a|2

cp
− 2πε p

p
. (3.11)

Next, for each w ∈ C and R > 0 we estimate from below the left-hand quantity in
(3.11) on the set Gε

(g,ψ) ∩ D(w, R) as

∫

Gε
(g,ψ)

∩D(w,R)

|g′(ψ−1(z))|p
(1 + |ψ−1(z)|)p |kw(z)|pe− p

2 |ψ−1(z)|2d A(z)

=
∫

Gε
(g,ψ)

|g′(ψ−1(z))|p
(1 + |ψ−1(z)|)p |kw(z)|pe− p

2 |ψ−1(z)|2d A(z)

−
∫

Gε
(g,ψ)

\D(w,R)

|g′(ψ−1(z))|p
(1 + |ψ−1(z)|)p |kw(z)|pe− p

2 |ψ−1(z)|2d A(z).

The difference of the integrals above is bounded below by

2πα|a|2
cp

− 2πε p

p
−

∫

C\D(w,R)

|g′(ψ−1(z))|p
(1 + |ψ−1(z)|)p |kw(z)|pe− p

2 |ψ−1(z)|2d A(z)

= 2πα|a|2
cp

− 2πε p

p
−

∫

C\D(w,R)

Mp
(g,ψ)(ψ

−1(z))|kw(z)|pe− p
2 |z|2d A(z)

≥ 2πα|a|2
cp

− 2πε p

p
− Mp

∫

|z−w|>R
|kw(z)|pe− p

2 |z|2d A(z). (3.12)

On the other hand, using the local estimate in (3.8), the exists a positive constant C1
such that

∫

Gε
(g,ψ)

∩D(w,R)

|g′(ψ−1(z))|p
(1 + |ψ−1(z)|)p |kw(z)|pe− p

2 |ψ−1(z)|2d A(z)

≤ Mp
∫

Gε
(g,ψ)

∩D(w,R)

|kw(z)|pe− p
2 |z|2d A(z)

≤ C1Mp

R2

∫

Gε
(g,ψ)

∩D(w,R)

∫

D(z,R)

|kw(ζ )|pe− p
2 |ζ |2d A(ζ )d A(z)

≤ C1Mp2π

pR2 ‖kw‖p
p

∫

Gε
(g,ψ)

∩D(w,R)

d A(z)

= C1Mp2π

pR2 A
(
Gε

(g,ψ) ∩ D(w, R)
)
.
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This together with (3.12) imply

A
(
Gε

(g,ψ) ∩ D(w, R)
)

R2 ≥ α|a|2
cC1Mp

− ε p

M pC1
− p

2πC1

∫

|z−w|>R
|kw(z)|pe− p

2 |z|2d A(z).

Since the integral above is convergent, we can choose R big enough and ε so small (if
need be ) such that

A
(
Gε

(g,ψ) ∩ D(w, R)
)

R2 ≥ β > 0,

where

β := α|a|2
cC1Mp

− ε p

M pC1
− p

2πC1

∫

|z−w|>R
|kw(z)|pe− p

2 |z|2d A(z)

and completes the proof for finite p. Let now p = ∞ and α ≤ ‖V(g,ψ)kw‖∞ for all w
in C. Since V(g,ψ) is bounded on both F1 and F∞, by the inclusion property on Fock
paces we have α ≤ ‖V(g,ψ)kw‖∞ ≤ ‖V(g,ψ)kw‖1 and then we argue as above setting
p = 1 to arrive at the claim.

(ii) The proof of this part follows from a simple variant of the proof of part (i). �
Lemma 3.5 Let g, ψ ∈ H(C) be nonconstant, and 1 ≤ p ≤ ∞.

(i) Let V(g,ψ) be bounded on Fp. If there exist positive numbers ε, r , and σ such
that (3.9) holds, then M(g,ψ) is essentially bounded away from zero on C.

(ii) Let J(g,ψ) be bounded onFp. If there exist positive numbers ε, r , and σ such that
(3.10) holds, then M̃(g,ψ) is essentially bounded away from zero on C.

Proof (i) The sufficiency of the condition follows easily. We prove the necessity and
suppose that V(g,ψ) is bounded below. Let ε be as in Proposition 3.4 and E = {z ∈
C : M(g,ψ)(z) < ε

2 }. Then we aim to show that A(E) = 0. Suppose on the contrary
that A(E) > 0. Then we can find a disc D of radius δ1 and center w contained in
{z ∈ C : M(g,ψ)(z) < δ1} for some 0 < δ1 < ε

2 such that 0 < A(D) = δ21. Now using
the constant β in Proposition 3.4 and setting δ1 = (|a|ε)/2,

βA(D(w, δ1)) ≤ A(Gε
(g,ψ) ∩ D(w, δ1)) =

∫

Gε
(g,ψ)

∩D(w,δ1)

d A(z)

= |a|−2
∫

�ε
(g,ψ)

∩ψ(D(w,δ1))

d A(z) = |a|−2
∫

�ε
(g,ψ)

∩D
(
w,δ1|a|−1

) d A(z)

= |a|−2A(�ε
(g,ψ) ∩ D

(
w, δ1|a|−1)

) = 0

since �ε
(g,ψ) ∩ D

(
w, δ1|a|

)
has no element in it. Hence A(E) = 0.

(ii) This follows from a similar argument as in the proof of part (i). �
Lemma 3.6 Let g, ψ ∈ H(C) be nonconstant and 1 ≤ p ≤ ∞.
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(i) Let V(g,ψ) be bounded on Fp. If M(g,ψ) is essentially bounded away from zero
on C, then V(g,ψ) has closed range and its range is given by

R(V(g,ψ)) = F0
p. (3.13)

(ii) Let J(g,ψ) be bounded on Fp. If M̃(g,ψ) is essentially bounded away from zero
on C, then it has closed range and its range is given by

R(J(g,ψ)) = F0
p. (3.14)

Proof (i) Let ψ(z) = az + b, 0 < |a| ≤ 1 and γ > 0 be an essential lower bound for
M(g,ψ). Applying (3.2), for each f in Fp and p < ∞,

‖V(g,ψ) f ‖p
p 
 |a|−2

∫

C

|g′(ψ−1(z))|p
(1 + |ψ−1(z)|)p | f (z)|pe− p

2 |ψ−1(z)|2d A(z)

= |a|−2
∫

C

Mp
(g,ψ)(ψ

−1(z))| f (z)|pe− p
2 |z|2d A(z)

≥ γ p|a|−2
∫

C

| f (z)|pe− p
2 |z|2d A(z) � γ p|a|−2‖ f ‖p

p.

Therefore, the operator is bounded below and hence has closed range.
To prove (3.13), for each f in F0

p, consider the function

h f (z) =
⎧
⎨

⎩

f ′(ψ−1(z))
g′(ψ−1(z))

, g′(ψ−1(z)) �= 0

limw→z
f ′(ψ−1(w))

g′(ψ−1(w))
, g′(ψ−1(z)) = 0.

Clearly, V(g,ψ)h f = f . We claim that h f ∈ F0
p. Since g

′ is entire, it vanishes at most
in a set of measure zero. Then we estimate the norm of h f as

‖h f ‖p
p = p

2π

∫

C

| f ′(ψ−1(z))|p
|g′(ψ−1(z))|p e

− p
2 |z|2d A(z)

= p

2π

∫

C

M−p
(g,ψ)(ψ

−1(z))
| f ′(ψ−1(z))|p

(1 + |ψ−1(z)|)p e
− p

2 |ψ−1(z)|2d A(z)

≤ pγ −p

2π

∫

C

| f ′(ψ−1(z))|p
(1 + |ψ−1(z)|)p e

− p
2 |ψ−1(z)|2d A(z) � ‖ f ‖p

p < ∞.

For p = ∞, we replace the integral above by the supremum and argue similarly.
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(ii) If α2 > 0 is an essential lower bound for M̃ , then arguing as above,

‖J(g,ψ) f ‖p
p 
 1

|a|2
∫

C

|g(ψ−1(z))|p
(1 + |ψ−1(z)|)p | f ′(z)|pe− p

2 |ψ−1(z)|2d A(z)

= 1

|a|2
∫

C

M̃ p(ψ−1(z))
| f ′(z)|p

(1 + |z|)p e
− p

2 |z|2d A(z)

≥ α
p
2

|a|2
∫

C

| f ′(z)|p
(1 + |z|)p e

− p
2 |z|2d A(z) 
 α

p
2 |a|−2‖ f ‖p

p.

and p < ∞. For p = ∞, we argue with the supremum in stead of integral again. To
prove (3.14), for each f in F0

p, consider the function

t f (z) =
⎧
⎨

⎩

f (ψ−1(z))
g(ψ−1(z))

, g(ψ−1(z)) �= 0

limw→z
f (ψ−1(w))

g(ψ−1(w))
, g(ψ−1(z)) = 0,

and argue as in the proof of (3.13). �

3.3 Proof of Theorem 2.5

In this section we prove the results related to reverse Fock–Carleson measures. By
Proposition 3.3, V(g,ψ) has closed range on Fp if and only if there exists ε > 0 such
thatGε

(g,ψ) is a (p, 0) sampling set forFp. Consequently, there exists a positive δ such
that

∫

Gε
(g,ψ)

| f (z)|pe− p|z|2
2 d A(z) =

∫

C

| f (z)|pχGε
(g,ψ)

(z)e− p|z|2
2 d A(z) ≥ δ‖ f ‖p

p.

for all f in Fp. This shows με
(g,ψ) is a (p, 0) reverse Fock–Carleson measure, where

dμε
(g,ψ)(z) = χGε

(g,ψ)
(z)e− p

2 |z|2d A(z),

and this proves the equivalency of (a) and (b).
Next, we show the equivalency of (a) and (c). Since ψ(z) = az + b with a �= 0 is
bijective on the complex plane,

‖V(g,ψ) f ‖p
p 


∫

C

|g′(z)(1 + |z|)−1|p| f (ψ(z))|pe− p|z|2
2 d A(z)

= |a|−2
∫

C

| f (z)|p
( |g′(ψ−1(z))|p

(1 + |ψ−1(z)|)p e
− p|ψ−1(z)|2

2

)

d A(z)

=
∫

C

| f (z)|pdμ(g,ψ,p)(z) ≥ C‖ f ‖p
p
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for some C > 0, where

dμ(g,ψ,p)(z) = |g′(ψ−1(z))|p(|a|2(1 + |ψ−1(z)|)−pe− p|ψ−1(z)|2
2 d A(z).

Hence, the assertion follows.
ii) The equivalency of the statements in this part can be established by following

similar arguments as above. By Proposition 3.3, the operator J(g,ψ) has closed range
on Fp if and only if there exists ε > 0 such that 	ε

(g,ψ) is a (p, 1) sampling set for

F0
p. Thus, there exists a positive β such that

∫

	ε
(g,ψ)

| f ′(z)|p
(1 + |z|)p e

− p|z|2
2 d A(z) =

∫

C

| f ′(z)|pχ	ε
(g,ψ)

(z)
e− p|z|2

2

(1 + |z|)p d A(z) ≥ β‖ f ‖p
p.

for all f in Fp. Therefore, θε
(g,ψ) is a (p, 1) reverse Fock–Carleson measure, where

dθε
(g,ψ)(z) = χ	ε

(g,ψ)
(z)(1 + |z|)−pe− p

2 |z|2d A(z).

Thus, the statements in (a) and (b) are equivalent.
Similarly, applying (3.2) again

‖J(g,ψ) f ‖p
p 


∫

C

|g(z)(1 + |z|)−1|p| f ′(ψ(z))|pe− p|z|2
2 d A(z)

= |a|−2
∫

C

| f ′(z)|p
( |g(ψ−1(z))|p

(1 + |ψ−1(z)|)p e
− p|ψ−1(z)|2

2

)

d A(z)

=
∫

C

| f (z)|pdθ(g,ψ,p)(z) ≥ α‖ f ‖p
p

for some α > 0, where

dθ(g,ψ,p)(z) = |a|−2(1 + |ψ−1(z)|)−p|g(ψ−1(z))|pe− p|ψ−1(z)|2
2 d A(z).

This gives the equivalency of the statements in (a) and (c).

3.4 Proof of Theorem 2.6

(i) By Lemma 1.2, for |a| = 1 we have

g′(z) = (cz + d)K−ab(z) (3.15)
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for some c, d ∈ C and g′ vanishes at most at a point. To prove the sufficiency, consider
f in Fp and using (3.2) for p < ∞ and c �= 0,

‖V(g,ψ) f ‖p
p 


∫

C

∣
∣K−ab(z)

∣
∣p| f (az + b)|pe− p

2 |z|2d A(z)

=
∫

C

∣
∣K−ab(z)e

1
2 |az+b|2− 1

2 |z|2 ∣∣p| f (az + b)|pe− p
2 |az+b|2d A(z)

=
∫

C

| f (az + b)|pe− p
2 |az+b|2d A(z) 
 ‖ f ‖p

p.

Therefore, the operator is bounded below and hence the assertion.
For the case p = ∞, we argue with supremum in stead of the integral to arrive at the
same conclusion.

For the necessity, first suppose for the sake of contradiction that c = 0 in (3.15).
Using the sequence of kernel function Kn , (3.2) and boundedness from below,

‖V(g,ψ)Kn‖p
p 


∫

C

|d|p
(1 + |z|)p

∣
∣K−ab(z)

∣
∣p|Kn(az + b)|pe− p

2 |z|2d A(z)

= |denb|p
|(n − b)a|p

∫

C

|K ′
a(n−b)(z)|p
(1 + |z|)p e− p

2 |z|2d A(z)


 |de |b|2
2 |p|n − b|−p‖Kn‖p

p � ‖Kn‖p
p

for all n ∈ N. Letting n → ∞, we arrive at a contradiction and hence c �= 0.
Next, we consider the case when 0 < |a| < 1. By Theorem 2.3, M(g,ψ) is essentially
bounded away from zero. Since g′ is entire, its zero set does not affect the essen-
tial boundedness of M(g,ψ). Thus, we can assume that g′ is non-vanishing. Then by

Lemma 1.3, the function g′ has the form in (1.6), g′(z) = ea0+a1z+a2z2 , for some

constants a0, a1, a2 in C such that |a2| ≤ 1−|a|2
2 .

Case 1: If |a2| <
1−|a|2

2 , then the operator is compact, and it is known that a compact
operator can have closed range if and only if its range is finite dimensional. On the
other hand, V(g,ψ) is injective on Fp which is infinite dimensional. Thus, the operator
cannot have closed range in this case.
For the next cases, we may first write

M(g,ψ)(z) = |g′(z)|(1 + |z|)−1e
1
2 (|az+b|2−|z|2)

= C(1 + |z|)−1e�((a1+ab)z)+�(a2z2)+ |a|2−1
2 |z|2

for all z ∈ C, where C = e�(a0)+ |b|2
2 .

Case 2: If |a2| = 1−|a|2
2 and a1 + ab = 0, then

M(g,ψ)(z) = C(1 + |z|)−1e�(a2z2)+ |a|2−1
2 |z|2 .
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We write a2 = |a2|e−2iθ2 , where 0 ≤ θ2 < π and replace z by eiθ2w above to get

M(g,ψ)(e
iθ2w) = C(1 + |w|)−1e

1−|a|2
2 (�(w2)−|w|2)

for all w in C. This clearly shows that M(g,ψ) is not essentially bounded away from
zero in this case.
Case 3: If a1 + ab �= 0 and

a2 = − (1 − |a|2)(a1 + ab)2

2|a1 + ab|2 ,

then using the above polar notation for a2, we write

a2 = − (1 − |a|2)(a1 + ab)2

2|a1 + ab|2 = |a2|e−2iθ2

and observe that (a1 + ab)e−iθ2 = ±i |a1 + ab| is a purely imaginary number. Setting
(a1 + ab)e−iθ2 = iy for some y ∈ R and w = u + iv, we have

M(g,ψ)(e
iθ2w) = C(1 + |w|)−1e−yv+(|a|2−1)(�(w2)−|w|2)

= C(1 + |w|)−1e−yv+(|a|2−1)v2 .

Thus, M(g,ψ) cannot be essentially bounded away from zero in this case either.
ii) The proof of this part follows in a similar way as above using Lemma 1.2 and

Lemma 1.3.

3.5 Proof of Corollary 2.8

First note that because of the extra term in the relation Cψ f = J(1,ψ) f + f (ψ(0)),
some of the conditions in Corollary 2.8 do not directly follow from Theorem 2.4.
Thus, we may first verify the assertion (i) implies (ii). Let ψ(z) = az + b, |a| < 1
and supposeCψ has closed range and hence bounded below. If σ is such a bound, then
using the pointwise estimate,

| f (z)| ≤ e
|z|2
2 ‖ f ‖p, (3.16)

for each f in Fp we have

‖J(1,ψ) f ‖p = ‖Cψ f − f (ψ(0))‖p ≥ ∣
∣‖Cψ f ‖p − | f (ψ(0))|∣∣

≥ ∣
∣σ‖ f ‖p − e

|ψ(0)|2
2 ‖ f ‖p

∣
∣ = ∣

∣σ − e
|b|2
2

∣
∣
∣‖ f ‖p,
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where σ can be chosen such that σ �= e
|b|2
2 . It follows that J(1,ψ) is bounded from

below. Consequently, by Theorem 2.4

M̃(1,ψ)(z) = (1 + |ψ(z)|)(1 + |z|)−1e
1
2 (|ψ(z)|2−|z|2) 
 e

1
2 ((|a|2−1)|z|2+�(azb)+|b|2)

is essentially bounded away from zero, and this happens only if |a| = 1, and hence
b = 0 by boundedness of the operator.

Next, we show (ii) implies (iii). Setting |a| = 1 and b = 0, we have M̃(1,ψ)(z) = 1
for all z in C. It follows that

�
ε1
(1,ψ) = {z ∈ C : M̃(1,ψ)(z) ≥ ε1} = C

for any ε1 ≤ 1 andhence	
ε1
(1,ψ) = C.Using the relation, J(1,ψ) f = Cψ f − f (ψ(0)) =

Cψ f − f (0), Theorem 2.4, and Theorem 2.6, we deduce that C is a (p, 1) sampling
set for each f in Fp.

The assertion (iii) implies (iv) follow by the same argument as above by considering
the operator J(1,ψ) and using its relation with Cψ . The case (iv) implies (v) follows
easily since (iv) implies that a �= 0 and hence for each f in Fp, the function h f =
f ◦ ψ−1 ∈ Fp, and Cψ(h f ) = f (ψ−1(ψ)) = f .

3.6 Proofs of Theorem 2.9, Corollary 2.10, and Corollary 2.11

(i) Suppose M(g,ψ) ∈ Lq(C, d A). We need to show V(g,ψ) is order bounded. For f in
Fp, applying the pointwise estimate in (3.16)

|V(g,ψ) f (z)| =
∣
∣
∣

∫ z

0
g′(w) f (ψ(w))dw

∣
∣ ≤ ‖ f ‖p

∣
∣
∣

∫ z

0
g′(w)e

|ψ(w)|2
2 dw

∣
∣
∣. (3.17)

Setting

h(z) =
∣
∣
∣

∫ z

0
g′(w)e

|ψ(w)|2
2 dw

∣
∣
∣,

and applying (3.2) for q < ∞,

∫

C

h(z)qe− q
2 |z|2d A(z) 


∫

C

|g′(z)(1 + |z|)−1|qe q
2 (|ψ(z)|2−|z|2)d A(z)

=
∫

C

Mq
(g,ψ)(z)d A(z) < ∞. (3.18)

Similarly for q = ∞, we have

sup
z∈C

h(z)e− 1
2 |z|2 
 sup

z∈C
|g′(z)|
1 + |z|e

1
2 (|ψ(z)|2−|z|2) = sup

z∈C
M(g,ψ)(z) < ∞. (3.19)
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By (3.18) and (3.19), it follows h belongs to Lq
(
C, e− q

2 |z|2d A(z)). Furthermore, (3.17)
implies

|V(g,ψ) f (z)| ≤ h(z)

for all z ∈ C and f ∈ Fp such that ‖ f ‖p ≤ 1.
Conversely, suppose V(g,ψ) is order bounded. Then there exists a positive function

h ∈ Lq
(
C, e− q

2 |z|2d A(z)
)
such that

|V(g,ψ) f (z)| ≤ h(z)

for all most all z in C. In particular for the normalized kernel kw = Kw/‖Kw‖2,

|V(g,ψ)kw(z)| =
∣
∣
∣

∫ z

0
g′(ζ )kw(ψ(ζ ))dζ

∣
∣
∣ =

∣
∣
∣

∫ z

0
g′(ζ )e

|ψ(ζ )|2
2 fw(ζ )dζ

∣
∣
∣ ≤ h(z)

for all w ∈ C, where

fw(ζ ) = Kw(ψ(ζ ))e− |ψ(ζ )|2+|w|2
2 .

Observe that fw is bounded as a sequence of w, and the maximum happens when
w = ψ(ζ ). It follows that

sup
w∈C

|V(g,ψ)kw(z)| = sup
w∈C

∣
∣
∣

∫ z

0
g′(ζ )e

|ψ(ζ )|2
2 fw(ζ )dζ

∣
∣
∣ =

∣
∣
∣

∫ z

0
g′(ζ )e

|ψ(ζ )|2
2 dζ

∣
∣
∣ ≤ h(z).

Now, if q < ∞, integration using (3.2) gives

∫

C

∣
∣
∣

∫ z

0
g′(ζ )e

|ψ(ζ )|2
2 dζ

∣
∣
∣
q
e−

q|z|2
2 d A(z) 


∫

C

|g′(z)|q
(1 + |z|)q e

q|ψ(z)|2
2 e−

q|z|2
2 d A(z)

=
∫

C

Mq
(g,ψ)

(z)d A(z) ≤
∫

C

h(z)qe−
q|z|2
2 d A(z) < ∞.

To prove (ii), in stead of the estimate in (3.16), we use

| f ′
(z)| ≤ e2(1 + |z|)e |z|2

2 ‖ f ‖p,

which follows from Cauchy integral formula, and (3.16), and argue as in part (i).
For Corollary 2.10, we set ψ(z) = z and observe

∫

C

Mq
(g,ψ)(z)d A(z) =

∫

C

|g′(z)|q(1 + |z|)−qd A(z) < ∞

if and only if g′ is a constant and q > 2.
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Similarly for the operator Jg , we have

∫

C

M̃q
(g,ψ)(z)d A(z) =

∫

C

|g(z)|qd A(z) < ∞

only if g is identically zero.

Proof of Corollary 2.11

Suppose Cψ is order bounded with a bound function h. Then using its relation with
the integral operator and (3.16)

|J(1,ψ) f (z)| = |Cψ f (z) − f (ψ(0))| ≤ |Cψ f (z)| + | f (ψ(0))|
≤ h(z) + e

|ψ(0)|2
2 ‖ f ‖p ≤ h(z) + e

|ψ(0)|2
2 =: h1(z)

almost for every z ∈ C and f ∈ Fp such that ‖ f ‖p ≤ 1. Note that h1 ∈
Lq

(
C, e− q

2 |z|2d A(z)
)
since the function h belongs to it. It follows that J(1,ψ) is order

bounded. Then by Theorem 2.9, the function

M̃(1,ψ)(z) = (1 + |ψ(z)|)(1 + |z|)−1e
|ψ(z)|2

2 − |z|2
2 (3.20)

belongs to Lq which further implies M̃(1,ψ) is bounded. By Lemma 1.2, it follows
that ψ(z) = az + b, |a| ≤ 1. Now if |a| = 1, then a simplification shows M̃(1,ψ) is
not Lq integrable. Thus, the necessity of the condition |a| < 1 is proved. Conversely,
suppose ψ(z) = az + b and |a| < 1. We need to show that the resulting composition
operator is order bounded. The assumption implies

M̃(1,ψ)(z) = (1 + |ψ(z)|)(1 + |z|)−1e
|ψ(z)|2

2 − |z|2
2

belongs to Lq . Then, by Theorem 2.9, the integral operator J(1,ψ) is order bounded
with a bound function h2. On the other hand,

|Cψ f (z)| = |J(1,ψ) f (z) + f (ψ(0))| ≤ |J(1,ψ) f (z)| + | f (ψ(0))|
≤ h2(z) + e

|b|2
2 ‖ f ‖p ≤ h2(z) + e

|b|2
2 =: h3(z)

almost for every z in C and f in Fp such that ‖ f ‖p ≤ 1. It is easy to see that h3 is an
order bound for Cψ and hence the claim.

4 Some Discussions on theMain Results

In this section we discuss further some of the main results presented in Sect. 2. In [13,
14], it was showed that the operators in (1.2) are bounded from above if and only
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if certain Berezin-type integral transforms are bounded. Part (iii) of the condition in
Theorem 2.3 asserts that such transforms play important role in determining when
the operators have closed ranges and bounded below structures. Note that, this is also
called the reproducing kernel thesis property; the property of having closed range
or bounded below can be determined only from the operator’s action on the kernel
functions.

Condition (iv) of the theorem ensures every sampling set Gε
(g,ψ) for the space is

dense in the sense that for all z in C, there exists a disc D(z, r) which contains a
positive measure subset of Gε

(g,ψ). This condition is in addition independent of the
Fock exponents p. Thus, if V(g,ψ) has a closed range on some Fock space Fp, then it
has closed range on all the other Fock spaces.

By Theorem 1.1, the boundedness property of V(g,ψ) is described by the bound-
edness of the function M(g,ψ) on the complex plane. Similarly, condition (v) of
Theorem 2.3 asserts that the essential boundedness from below of M(g,ψ) completely
characterizes the closed range and bounded below structures of the operator again. By
the relation in (2.3), we also deduce that V(g,ψ) cannot be surjective on Fp for any
choice of g and ψ inH(C).

We note in passing that by Theorems 1.1 and 2.3, the discussions made above
applies to the operator J(g,ψ) as well. It is interesting to note that while the range of
the nontrivial integral operator J(g,ψ) contain only functions in Fp which vanish at
the origin, the extra term in the relation Cψ f = J(1,ψ) f + f (ψ(0)) can make the
composition operator surjective as stated in Corollary 2.8

Theorem 2.6 is rather interesting in the sense that the conditions are simpler to apply
than those listed in Theorems 2.3, 2.4 and 2.5. It is known that a compact operator on
an infinite dimensional space cannot have closed range. By Theorem 1.1, compactness
of the operators impliesψ(z) = az+b such that |a| < 1. But the converse of this fails.

For example set ψ1(z) = z/2 and g1(z) = e
3
8 z

2
and apply Lemma 1.3 to observe that

the operator J(g1,ψ1) is not compact. The same counterexample holds for V(g,ψ) by
simply replacing g1 by g′

1. In this regard, the interesting question was whether there
exists closed range noncompact integral operators whenever |a| < 1. Theorem 2.6
answers the question negatively; ensuring that closed range happens only when a
belongs to the unit circle.

Carleson measures have proved to be useful tools in the study of several operators.
For Fock spaces, such measures were characterized in [9]. Now setting a pullback
measure

μ(g′,ψ,p)(E) :=
∫

ψ−1(E)

(|g′(z)|(1 + |z|)−1)pe− p
2 |z|2d A(z) (4.1)

for every Borel subset E of Cand applying (3.2), we note that for each f in Fp

‖V(g,ψ) f ‖p
p 


∫

C

(|g′(z)|(1 + |z|)−1)p| f (ψ(z))|pe− p
2 |z|2d A(z)



∫

C

| f (z)|pdμ(g′,ψ,p)(z),
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where

dμ(g′,ψ,p)(z) = |g′(ψ−1(z))|pe− p
2 |(ψ−1(z))|2

(1 + |ψ−1(z))|)p d A(ψ−1(z))

andψ−1(z) = (z−b)/a. It follows that V(g,ψ) is bounded onFp if and only ifμ(g,ψ,p)

is a (p, 0) Fock-Carleson measure. By replacing g′ by g in (4.1), one can also deduce
that J(g,ψ) is bounded onFp if and only ifμ(g,ψ,p) is a (p, 1) Fock-Carleson measure.
Similarly, Theorem 2.5 describes the closed range and bounded below properties of
both V(g,ψ) and J(g,ψ) in terms of the notion of reverse Fock-Carleson measures.

We now turn to Theorem 2.9. Like the other main results, the order boundedness
of the integral operators are characterized in terms of the functions in (1.3). While
the closed range conditions require ψ(z) = az + b with |a| = 1, on the contrary
order boundedness happens only when |a| < 1. Clearly, the conditions in the theorem
imply the corresponding conditions in Theorem 1.1. Indeed, if both p and q are finite,
then order boundedness implies the stronger compactness conditions as well. On the
other hand, if at least one of the exponents p or q is infinite, then the conditions in the
two theorems coincide. Furthermore, unlike the conditions in Theorem 1.1, the order
boundedness condition is independent of whether p ≤ q or p > q. Corollary 2.10,
which is a special case of Theorem 2.9, ensures that the operator Vg : Fp → Fp is
order bounded if and only if g is a polynomial of at most degree one, and p > 2.
By [5, Thoeorem 2], this condition coincides with the Schatten Sp class membership
characterization of the operator when it acts on the Hilbert space F2. In this context,
the requirement p > 2 implies the operator fails to be Hilbert–Schmidt. Therefore,
not every compact Vg is order bounded. Another consequence of Theorem 1.1 is
Corollary 2.11 which together with [4, Proposition 3] implies Cψ : Fp → Fq is order
bounded if and only if it is compact.
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