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Abstract—This paper presents a search-based approach rely-
ing on multi-objective reinforcement learning and optimization
for test case generation in model-based software testing. Our
approach considers test case generation as an exploration versus
exploitation dilemma, and we address this dilemma by imple-
menting a particular strategy of multi-objective multi-armed
bandits with multiple rewards. After optimizing our strategy
using the jMetal multi-objective optimization framework, the
resulting parameter setting is then used by an extended version
of the Modbat tool for model-based testing. We experimentally
evaluate our search-based approach on a collection of examples,
such as the ZooKeeper distributed service and PostgreSQL
database system, by comparing it to the use of random search for
test case generation. Our results show that test cases generated
using our search-based approach can obtain more predictable
and better state/transition coverage, find failures earlier, and
provide improved path coverage.

Index Terms—model-based testing, test case generation,
bandit-based methods, multi-objective optimization, genetic al-
gorithm, search-based software testing

I. INTRODUCTION

The complexity of software systems today has amplified
the importance of software testing as a scalable and efficient
technique to discover defects. However, producing test cases
by hand is tedious, expensive, and error-prone. Model-based
testing (MBT) [1] addresses this problem by automatically
generating test cases from abstract (formal) models of the
system under test (SUT). These abstract models encode the
intended behaviors of the SUT and are often easier to develop
and maintain compared to low-level test scripts [2]. However,
for complex software systems, it is infeasible to explore and
generate all the possible test cases for the software system
under test. This means that a challenging decision needs to be
made on how many tests cases to generate.

MBT is conducted via the automatic generation and ex-
ecution of a test suite, that is, a set of test cases. Before
starting MBT process, it is necessary to choose test adequacy
criteria in order to evaluate the extent to which a test suite

contains sufficient test cases. These criteria may consider the
discovery of defects and obtaining a good code coverage.
In this paper, our test adequacy criteria include state- and
transition coverage, linearly independent path coverage, and
the number of test cases needed to find the first failure.

It is a challenge for MBT to obtain test adequacy by
generating a small test suite having few redundant test cases.
Uncontrolled random approaches might result in test suites
having redundant test cases which only cover few execution
paths of the model and the SUT. Also, the decisions required
to select a possible test case to generate faces the exploration
versus exploitation dilemma when searching/exploring the
state space. This dilemma can be described as finding a
balance between: a) the exploration of diverse states/transitions
which have not been selected to construct a test case; or have
been selected fewer times, but might result in better addressing
the test adequacy criteria; and b) the continuous exploitation
of the states/transitions which have empirically resulted in
better outcomes, with regard to the test adequacy criteria, when
constructing a test case.

In this paper, we focus on the test case generation with
a search-based approach relying on multi-objective reinforce-
ment learning and optimization. Our aim is to find and
generate a subset of test cases that optimizes the results when
considering the chosen test adequacy criteria. We consider
that 1) the process of test case generation is a problem
that faces the exploration versus exploitation dilemma when
searching/exploring possible test cases; 2) obtaining good and
balanced results of the chosen test adequacy criteria with fewer
generated test cases is a multi-objective optimization problem.
In particular, we want to implement an efficient search that (1)
does not require user-defined weights, which rely on domain
knowledge; and (2) adjusts the choices dynamically based on
the coverage of previous tests.

The main contribution of this paper is to present a search-
based test case generation approach combining: 1) generation



of test cases based on a particular strategy of multi-objective
multi-armed bandits with multiple rewards; and 2) optimizing
the chosen adequacy criteria with a Pareto-efficient multi-
objective genetic algorithm, in the form of the non-dominating
sorting genetic algorithm (NSGA-II) [3]. We evaluate our
approach on several models developed for the Modbat model-
based API tester [4] by comparing our search-based testing
with the random testing. Our experiments show that our
search-based approach can obtain more predictable and better
results of the chosen adequacy criteria compared to random
test case generation, when considering the trade-offs of the
criteria.

A second contribution is an implementation of our bandit-
based search strategy in the Modbat model-based API tester,
which is a new feature for the Modbat 3.4 release [5].
We define test adequacy criteria as multi-objectives so that
Modbat implements our search-based test case generation in
addition to its standard random search. The test adequacy
criteria are optimized using the jMetal [6], [7] multi-objective
optimization framework which applies the NSGA-II algorithm
on the Modbat models that we use as training set to find a
Pareto optimal solution set having reward parameter settings.
The parameter settings in the Pareto optimal solution set is
then used as inputs to our bandit-based search strategy to
generate test cases for other advanced Modbat models and
targeting the chosen test adequacy criteria.

The rest of this paper is organized as follows. Section II
provides background on the Modbat model-based API tester,
the definition of execution paths as test cases, and the test ade-
quacy criteria. In Section III, we present our approach of multi-
objective test case generation and optimization. Section IV
presents our experimental evaluation and analyzes the results
obtained from the experiments. Section V discusses related
work, and in Section VI, we conclude and discuss future work.

II. MODEL-BASED SOFTWARE TESTING

Our work assumes that a mechanism for automated test
execution of a system under test (SUT) is provided in the
form of a test harness and properties (such as assertions)
about the behavior of the SUT. In addition to executing test
cases automatically, MBT can also generate inputs (or calls) to
the SUT automatically, and verify that its output matches the
expected output [1]. We introduce MBT of state-based systems
in the context of the Modbat tester [4].

A. Modbat Model-based API Tester

Modbat is a model-based testing tool that performs online
testing of state-based systems that runs on a Java Virtual
Machine [4]. Modbat uses extended finite state machines
(EFSMs) [8] as its theoretical foundation and implements
extensions in a domain-specific language based on Scala [9].
The EFSMs used by Modbat is formally defined as:

Definition 1 (Extended Finite State Machine [10]). An ex-
tended finite state machine is a tuple M = (S, s0, V, A, T )
such that:

• S is a finite set of states, including an initial state s0.

• V = V1 × . . . × Vn is an n-dimensional vector space
representing the set of values for variables.

• A is a finite set of actions A : V → (V,R), where
res ∈ R denotes the result of an action, which is
either successful, failed, backtracked, or exceptional.
A successful action allows a test case to continue; a
failed action constitutes a test failure and terminates the
current test; a backtracked action corresponds to the case
where the enabling function of a transition is false [8];
exceptional results are defined as such by user-defined
predicates that are evaluated at run-time, and cover the
non-deterministic behavior of the SUT. We denote by
Exc ⊂ R the set of all possible exceptional outcomes.

• T is a transition relation T : S × A × S × E; for a
transition t ∈ T , we denote the left-side (origin) state
by sorigin(t) and the right-side (destination) state by
sdest(t), and use the shorthand sorigin → sdest if the
action is uniquely defined. A transition includes a possible
empty mapping E : Exc → S, which maps exceptional
results to a new destination state.

Listing 1 illustrates a Modbat model of a garage door
control system that we will use as a running example to
introduce the basic concepts of Modbat. A valid execution
path in a Modbat model starts from the initial state (auto-
matically derived from the first declared state) and consists
of a sequence of transitions. Transitions are declared with
a concise syntax: “origin” → “dest” := {action}. The
GarageDoorTester model in Listing 1 consists of five states:
“DoorUp”, “DoorClosing”, “DoorDown”, “DoorOpening”,
and “End”. The initial state is “DoorDown” in Line 4.

The GarageDoorTester model tests the garage door system
shown in Listing 2 (only fields, public methods and the stop
private method are shown due to page limitations). The garage
door system controls the opening and closing of a 2-meter
garage door using open and close methods to set a door
motor with a speed +0.125m/s or −0.125m/s , respectively
(Line 14 and Line 21 in Listing 2). The system uses a private
method waitLimitHit (Line 18 and Line 25) to check the
status of the door every second and it calls the stop private
method (Line 28) when the door is fully open or closed. The
system takes 16 seconds to open or close the garage door, as
implemented by waitLimitHit method. When the garage door
is fully open or closed, the speed of the door motor is set to
zero and the motor is stopped by the stop private method.

Modbat has built-in require and assert methods. The
GarageDoorTester model in Listing 1 uses the require method
(Line 5, Line 6, Line 14 and Line 15) in transitions to check if
preconditions are fulfilled. Preconditions must be fulfilled in
order for a transition to be enabled. For example, if the require
methods in Line 5 and Line 6 expressing preconditions are sat-
isfied, then the transition “DoorDown” → “DoorOpening”
is enabled. The open method is then called to open the
garage door. The preconditions are similar for the transition
“DoorUp” → “DoorClosing” that calls the close method.
The attribute stay of a transition is used to delay (in this case
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16 seconds) while waiting for the door to be fully open or
closed. After the open or close method is called and the corre-
sponding transition is executed, the assert methods in Line 10
and Line 11 in transition “DoorOpening” → “DoorUp”,
or in Line 19 and Line 20 in transition “DoorClosing” →
“DoorDown”, are used as assertions to check that the status
of the door and door motor is correct when the door is fully
open or closed.

1 class GarageDoorTester extends Model {
2 val garage = new GarageDoor()
3 // transitions
4 "DoorDown" -> "DoorOpening" := {
5 require(gargage.doorFullyClosed)
6 require(garage.motorStopped)
7 garage.open()
8 } stay 16000
9 "DoorOpening" -> "DoorUp" := {

10 assert (garage.doorFullyOpen)
11 assert (garage.motorStopped)
12 }
13 "DoorUp" -> "DoorClosing" := {
14 require(gargage.doorFullyOpen)
15 require(garage.motorStopped)
16 garage.close()
17 } stay 16000
18 "DoorClosing" -> "DoorDown" := {
19 assert (garage.doorFullyClosed)
20 assert (garage.motorStopped)
21 }
22 "DoorDown" -> "End" := skip
23 "DoorUp" -> "End" := skip
24 }

Listing 1: Modbat model GarageDoorTester.

Modbat actions (which execute code related to transitions)
have four possible outcomes: successful, backtracked, failed,
or exceptional. Given the different possible outcomes of Mod-
bat actions, different rewards of our bandit-based search strat-
egy are defined in Section III. A successful action allows a test
case to continue with another transition, if available. An action
is backtracked and resets the transition to its original state if
any of its preconditions are violated. An action fails if an asser-
tion is violated, if an unexpected exception occurs, or if an ex-
pected exception does not occur. In our GarageDoorTester ex-
ample, the action of transition “DoorUp” → “DoorClosing”
is backtracked if any require methods in the action evaluate
to false, and the action fails if any assert methods evaluate
to false in, e. g., “DoorClosing” → “DoorDown”. If no
preconditions or assertions are violated, and no exceptional
result occurs, the action is successful.

B. Execution Paths and Test Cases

For Modbat models, a finite execution path consists of
a sequence of transitions starting from the initial state and
leading to a terminal state (a state without outgoing transitions,
or a state after a test failed). Each finite execution path
represents a test case generated from a Modbat model. That
is, a test case is an execution path consisting of a sequence
of transitions. Execution paths of Modbat models are formally
defined as:

1 class GarageDoor {
2 val garageTopHeight = 2d // two meters
3 val garageBottomHeight = 0d
4 val motorSpeeds = Map[String, Double]("Zero"

-> 0.0, "PlusSpeed" -> 0.125, "MinusSpeed"
-> -0.125)

5 // initial door close
6 var currentDoorHeight = garageBottomHeight
7 // initial motor speed 0.0
8 var motorSpeed = motorSpeeds("Zero")
9 var motorStopped = true

10 var motorUp = false
11 var motorDown = false
12 var doorFullyOpen = false
13 var doorFullyClosed = true
14 def open() {
15 motorUp = setMotorSpeed("PlusSpeed")
16 if(motorUp) {
17 doorFullyClosed = false
18 waitLimitHit()
19 }
20 }
21 def close() {
22 motorDown = setMotorSpeed("MinusSpeed")
23 if(motorDown) {
24 doorFullyOpen = false
25 waitLimitHit()
26 }
27 }
28 private def stop() {
29 motorStopped = setMotorSpeed("Zero")
30 if (motorStopped){
31 currentDoorHeight match {
32 case garageTopHeight
33 => doorFullyOpen = true
34 case garageBottomHeight
35 => doorFullyClosed = true
36 }
37 }
38 }
39 ...
40 }

Listing 2: Garage door system.

Definition 2 (Execution Path [10]). Let M = (S, s0, V, A, T )
be an EFSM. A finite execution path p of M is a sequence of
transitions, which constitute a path p = t0t1 . . . tn, tn ∈ T ,
such that sorigin(t0) = s0, the origin and destination states
are linked: ∀i, 0 < i ≤ n, sorigin(ti) = sdest(ti−1), and
sdest(tn) ∈ Sterminal ; Sterminal is the set of terminal states.

C. Test Adequacy Criteria as Multi Objectives

For MBT, test adequacy criteria are often chosen to guide
the automatic test case generation so that it produces a good
test suite [1]. Modbat supports test adequacy criteria including
state- and transition coverage [4], and linearly independent
path coverage [10]. The state- and transition coverage indicates
the number of states and transitions, respectively, that have
been explored by a test suite. A linearly independent path
(LIP) is any path through a program that contains at least one
new path edge (transition) which is not included in any other
linearly independent path [10]. Therefore, the linearly inde-
pendent path coverage indicates the execution paths covered
by a test suite.
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These test coverage metrics can be measured as the outcome
of the executed test suite and visualized (along with the
test model) using Graphviz [4], [10] by Modbat. In addition
to coverage, Modbat can also provide the measurement of
failures found after a test suite is executed [4]. Thus, for
our test case generation approach, we choose four different
test adequate criteria: 1) state coverage (Covs ); 2) transition
coverage (Covt ); 3) linearly independent path (LIP) coverage
(Covlip); and 4) the number of test cases used to find the
first failure (NTestfail1 ). We use these test adequacy criteria
as objectives for multi-objective optimization.

Prior to this work, Modbat already supported static weights
for transition choices, which affect the likelihood of choosing
a given transition. However, a good setting of these weights
requires insight into the semantics of the model, and the
weights remain fixed during the entire test generation process.

III. MULTI-OBJECTIVE OPTIMIZATION

A test suite consists of a set of test cases derived from
the test model, and each test case represents one execution
path which in turn consists of a sequence of transitions. The
generation of a test case therefore relies on the decisions
made in each step to select the transitions that are to be
part of the constructed execution paths. As introduced earlier,
the decision made to select a transition faces the exploration
versus exploitation dilemma in terms of finding a balance
between: a) the exploration of different transitions which have
not yet been selected; or have selected fewer times; and
b) the continuous exploitation of already selected transitions
which have empirically resulted in better outcomes (e. g., a
high coverage). Reinforcement learning [11] is the subfield of
machine learning devoted to studying problems and designing
algorithms that analyze this dilemma. The multi-armed bandit
problem, extensively studied by Berry and Fristedt [12], is a
well-established class of sequential decision problems in the
context of reinforcement learning.

A. Bandit Search-based Test Case Generation

Bandit problems consider a player (agent) that needs to
choose among K arms (actions) in I rounds on a multi-armed
bandit slot gambling machine. The objective is to maximize
the cumulative reward (money) as much as possible in a
casino by consistently taking the optimal arm (action) over
rounds [13]. At each round i = 1, . . . , I , the player selects
an arm (action) j ∈ {1, . . . ,K} and receives the reward r(j,i)
(money). The player (agent) has a goal: on one hand, finding
out (exploit) which arm could be currently optimal to have the
highest expected reward; on the other hand, exploring other
arms (actions) that currently are not optimal, but may turn out
to be optimal in the long run [13], [14], [15].

Several algorithms, such as ϵ-greedy [11], Boltzmann Ex-
ploration (Softmax) [16], and Reinforcement Comparison [11]
have been proposed to solve bandit problems. In our approach,
we rely on the Upper Confidence Bounds (UCB) family [15] of
algorithms. For reinforcement learning, the regret is one popu-
lar measure of a policy’s success in addressing the exploration

versus exploitation dilemma. The regret is the expected loss
due to the fact that the policy does not always play the best
(optimal) action [15]. Compared to other algorithms, the UCB
family has been theoretically analyzed and has an expected
optimal logarithmic growth of regret uniformly over time [15],
[13]. An extension of UCB-style algorithms has proven very
successful in computer Go [17]. Lai and Robbins [18] showed
that the regret for the multi-armed bandit problem has to grow
at least logarithmically in the number of rounds. We use the
UCB1 bandit algorithm from the UCB family [15] as a basis
for implementing our multi-objective search strategy for test
case generation.

The UCB1 algorithm operates as follows:
a) each bandit arm is played once at the initialization of the

algorithm.
b) afterwards, the algorithm iteratively plays bandit arm j

that maximizes

x̄j +

√
2 lnn

nj
(1)

where x̄j is the average reward (in [0, 1]) from arm j , nj

is the number of times arm j was played, and n is the
overall number of plays so far.

The UCB1 algorithm indicates that the reward term x̄j encour-
ages the exploitation of higher reward arms, while the term√

2 lnn
nj

encourages the exploration of less-visited arms [15].
Based on the UCB1 algorithm, we consider each transition

tj ∈ T to select for constructing an execution path (a test case)
as a bandit arm to play. We denote the reward function as r :
T → R. After executing a transition tj ∈ T , its corresponding
immediate reward rtj ∈ R is received accumulatively, and
computed as rtj = r̄tj + r̂tj , where r̄tj is a transition outcome
average reward iteratively accumulated, and r̂tj is a transition
action expected reward iteratively accumulated. All rewards
are in the interval [0, 1], and we show how to compute them
shortly.

The above implies that our bandit heuristic search (BHS)
strategy for test case generation becomes the following:

a) each transition t ∈ T is selected once at the initialization
of the strategy.

b) afterwards, the strategy iteratively select a transition tj ∈
T that maximizes

r̄tj + r̂tj +

√
2 lnnsorigin(tj)

ntj

(2)

where r̄tj is the transition outcome average reward (in
[0, 1]) for transition tj , r̂tj is the transition action ex-
pected reward for transition tj , ntj is the number of times
transition tj was selected, and nsorigin(tj) is the number
of times that the origin state sorigin of the transition tj
is visited and used to select transitions.

This strategy indicates that the reward terms r̄tj and r̂tj jointly
encourage the exploitation of higher rewarded transitions,

while the term
√

2 lnnsorigin (tj)

ntj
encourages the exploration of

less-selected transitions.
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To iteratively compute a transition outcome average reward
r̄tj , we consider four types of transition outcome rewards
as a set of rewards Rto including the rto_self , rto_success ,
rto_back , and rto_fail . Among these four types, the rto_self
is a self-transition reward for a successful transition that has
sorigin = sdest , while the rto_success is a reward given to a
successful transition that has sorigin ̸= sdest . The rto_back
is the reward for a backtracked transition, and the rto_fail
is the reward for a failed transition. We denote a transition
outcome reward received at the i ’th iteration for a transition
tj ∈ T by rto(tj ,i)

∈ Rto , and ntj denotes the number
of times transition tj was selected. Therefore, we compute
the accumulated transition outcome average reward r̄tj for a
transition tj using Equation 3:

r̄tj =
1

ntj

ntj∑
i=1

rto(tj ,i)
(3)

The excepted transition action reward r̂tj is the sum of the
given rewards for pass/fail, weighted by how many times the
two verdicts actually occurred. To compute an expected reward
iteratively, we take into account four different rewards for
two types of transition actions (precondition and assertion)
as a set of rewards Rta including the passed precondition
reward rprecond_pass , failed precondition reward rprecond_fail ,
passed assertion reward rassert_pass , and failed assertion re-
ward rassert_fail . Then, the excepted transition action reward
r̂tj for a transition tj can be computed using Equations 4, 5
and 6.

r̂tj = r̂tj_precond + r̂tj_assert (4)

r̂tj_precond =
Cprecond_pass

Cprecond_total
× rprecond_pass

+
Cprecond_fail

Cprecond_total
× rprecond_fail

(5)

r̂tj_assert =
Cassert_pass

Cassert_total
× rassert_pass

+
Cassert_fail

Cassert_total
× rassert_fail

(6)

In Equation 4, r̂tj_precond represents the expected precondi-
tion (action) reward for the transition tj ; r̂tj_assert represents
the expected assertion (action) reward for the transition tj .
Likewise, the counts for passed and failed preconditions and
assertions used in Equations 5 and 6, as well as their total
number, are updated during each iteration. The overall steps
for test case generation with our bandit heuristic search strat-
egy are summarized in pseudocode in Algorithm 1. This is the
heuristic search strategy that we have implemented in Modbat.
The core of Algorithm 1 is implemented with Equation 2
which is based on UCB1 algorithm. We have mentioned that
the UCB1 algorithm has an expected optimal logarithmic
growth of regret uniformly over time, so Algorithm 1 based on
Equation 2 also has the expected optimal logarithmic growth
of regret uniformly over time as the efficiency. We explain

the steps related to our search strategy, without showing the
pseudocode for how transitions and test cases are executed.
Modbat initializes a list of transitions transitions and s from
an initial state s0. We need to initialize the number of test
cases n , all counter variables (with 0 values), and reward
variables. In Line 4, the function EXECUTETRANSITIONS
generates and executes a test case consisting of a sequence
of selected transitions from an initial state s0 to a terminal
state sterminal . In Line 6 in function EXECUTETRANSITIONS,
the function BANDITHEURISTICSEARCH is invoked to select
a transition trans using our bandit heuristic search strategy.
Then, this selected transition trans is executed by the func-
tion EXECUTETRANSITION shown in Line 7, with a transition
result of type result as the function return value. Meanwhile,
function EXECUTETRANSITION calls the function UPDATE-
EXPECTEDREWARD in Line 16 to update the transition action
expected reward r̂tj for the selected transition trans based on
Equations 4, 5 and 6. After receiving the return value result
in Line 7, the function UPDATEAVERAGEREWARD in Line 30
updates the transition outcome average reward r̄tj for trans
with Equation 3, based on the result type of trans .

B. Bandit Search-Based Test Suite Optimization with JMetal

The aim of our bandit heuristic search strategy is to guide
the test case generation with the objective of addressing the
test adequacy criteria with smaller test suites containing less
redundant test cases. The strategy relies on the configuration of
eight different rewards to initialize the test case generation (as
shown by the Require in Algorithm 1). Therefore, to achieve
our aim, we need to find optimal solutions to configure these
rewards and obtain optimized test adequacy criteria (objec-
tives) defined as in Section II-C, while considering the trade-
offs of these criteria. Thus, we consider our bandit heuristic
search strategy as a multi-objective optimization problem: tune
our bandit heuristic search strategy shown in Algorithm 1 to
find the optimal solutions. With these optimal solutions found,
we can use them for the test case generation of Modbat models
in general with our strategy.

Formally, we assume for our multi-objective bandit search
optimization problem that a solution can be described in
terms of an 8-dimensional reward decision vector r⃗ in the
reward decision space R8. Such a solution can be used to
initialize the generation of a test suite ts ∈ TS (initialization
of Algorithm 1), where TS is a set of test suites. Then, the
vector-valued objective function f⃗ : R8 → O evaluates the
quality of a specific solution by assigning it an objective vector
o⃗ = f⃗(r⃗) in the objective space O. We define the reward
decision vector as

r⃗ =(rto_self , rto_success , rto_back , rto_fail , rprecond_pass ,

rprecond_fail , rassert_pass , rassert_fail),
(7)

and the objective vector with our four objectives (test adequacy
criteria) as

o⃗ =(f1(r⃗), f2(r⃗), f3(r⃗), f4(r⃗))

=(Covs,Cov t,Cov lip ,NTest fail1 ),
(8)
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Algorithm 1 Bandit Heuristic Search for Test Case Generation
Require: Initialize s , transitions , n , rto_self , rto_success , rto_back , rto_fail ,

rprecond_pass , rprecond_fail , rassert_pass , rassert_fail , Cprecond_pass ,
Cprecond_fail , Cassert_pass , Cassert_fail .

1: function EXECUTETESTS
2: for i = 1 to n do ▷ n:number of test cases
3: EXECUTETRANSITIONS

4: function EXECUTETRANSITIONS
5: while s is not a sterminal do ▷ s:current state, starting from s0
6: trans ← BANDITHEURISTICSEARCH(transitions)
7: result ← EXECUTETRANSITION(trans)
8: UPDATEAVERAGEREWARD(result , trans)

9: function BANDITHEURISTICSEARCH(transitions)
10: if transitions has any never selected transitions then
11: return t1st_unselected in transitions
12: else
13: return tj′ in transitions having argmax{r̄tj + r̂tj +√

2 lnnsorigin (tj)

ntj
}

14: function EXECUTETRANSITION(trans)
15: UPDATEEXPECTEDREWARD(trans)

16: function UPDATEEXPECTEDREWARD(trans)
17: if precondition of trans then
18: if pass then
19: update Cprecond_pass += 1
20: else
21: update Cprecond_fail += 1

22: update Cprecond_total = Cprecond_pass + Cprecond_fail

23: if assertion of trans then
24: if pass then
25: update Cassert_pass += 1
26: else
27: update Cassert_fail += 1

28: update Cassert_total = Cassert_pass + Cassert_fail

29: update r̂trans = r̂ttrans_precond + r̂ttrans_assert for trans with Equa-
tions 5,6

30: function UPDATEAVERAGEREWARD(result , trans)
31: switch result do
32: case success
33: rto(trans,i)

= rto_success

34: case self
35: rto(trans,i)

= rto_self

36: case backtracked
37: rto(trans,i)

= rto_back

38: case failed
39: rto(trans,i)

= rto_fail

40: update r̄trans = 1
ntrans

∑ntrans
i=1 rto(trans,i)

for trans

according to our test adequacy criteria defined in Section II-C.
Without loss of generality, it is assumed that all objectives
are all equally important and our goal is to optimize them.
Therefore, to solve our multi-objective bandit search opti-
mization problem, we need to find those reward decision
vectors as solutions that optimize the vector-valued objective
function f⃗ : R8 → O. These solutions balance the trade-offs
between the objectives, and we measure the optimality of the
solutions through the concepts of Pareto optimality and Pareto
dominance [19], [20], [21].

Following the concept of Pareto dominance, given two
solutions r⃗ ∈ R8 and r⃗ ′ ∈ R8 as reward decision vectors
which can be used to initialize two test suites ts and ts′, r⃗ is
said to dominate, or Pareto-dominate, r⃗ ′ (written as r⃗ ≻ r⃗ ′)
if and only if their objective vectors o⃗ = f⃗(r⃗) and o⃗ ′ = f⃗(r⃗ ′)
satisfy: ∀i ∈ {1, 2, . . . , k}, f⃗(r⃗) ⩾ f⃗(r⃗ ′)∧∃i ∈ {1, 2, . . . , k} :
f⃗(r⃗) > f⃗(r⃗ ′). Here, we use k = 4 since we have four
test adequacy criteria used as objectives. All reward decision
vectors that are not dominated by any other reward decision
vectors are said to form the Pareto optimal set R8∗ ⊆ R8,
while the corresponding objective vectors are said to form
the Pareto frontier O∗ = f⃗(R8∗) ⊆ O. That is, the Pareto
optimal set R8∗ contains only non-dominating reward decision
vectors as optimal solutions to our multi-objective bandit
search optimization problem. Each non-dominating reward
decision vector can then be used to initialize the generation
of a test suite. This means that we find an optimal subset of
test suites TS∗ ⊆ TS which balance the trade-offs of our
four different test adequacy criteria: no other subset of TS
can improve one objective without making another objective
worse.

To obtain a Pareto optimal set R8∗ for our multi-
objective bandit search problem, we apply the jMetal [6],
[7] Java-based framework for multi-objective optimization
using meta-heuristics. jMetal is specifically oriented towards
multi–objective optimization, and implements a number of
state-of-the-art multi–objective optimization algorithms, such
as the NSGA-II [3]. NSGA-II is one of the most well-known
and widely used multi-objective evolutionary algorithm to
obtain the Pareto optimal set.

Modbat

Bandit Heuristic Search

Models SUT

JMetal

NSGA-II

Bandit Search Problem

Pareto Optimal Set
Pareto Frontier

re
w

ar
ds

objectives

Fig. 1: Multi–objective bandit-search optimization.

Fig. 1 gives an overview of our implementation used to
solve our multi–objective bandit search optimization problem
for Modbat models with the aid of jMetal v5 [7] and NSGA-
II. The working principle of jMetal is based on algorithms
(such as NSGA-II) chosen by users and user-defined problems
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to solve. Users need to first define their multi–objective
optimization problems with objective functions, and then solve
them with the chosen algorithm. We have implemented our
multi–objective bandit search optimization problem in jMetal
with our defined vector-valued objective function f⃗ : R8 → O.
Then we use the NSGA-II genetic algorithm provided by
jMetal to solve this problem. The process goes through eval-
uation rounds of the NSGA-II algorithm with the number of
rounds and population provided. For each evaluation round,
we run different Modbat models in parallel using 8 different
values of rewards (generated by the NSGA-II from jMetal) as
the input parameters for our bandit heuristic search strategy.
After the Modbat models are executed, the results of our
defined four test adequacy criteria for all models are sent
to jMetal as the values of the objectives which can then be
used by the NSGA-II algorithm to generate reward values
for the next evaluation round. When all evaluation rounds
of the NSGA-II algorithm are finished, jMetal provides files
containing the Pareto optimal set and the Pareto frontier found
by the NSGA-II. The detailed configuration of our experiment
will be discussed in Section IV.

IV. EXPERIMENTAL EVALUATION

We have evaluated our bandit heuristic search strategy on a
pre-existent collection of Modbat models which have earlier
been used to generate test cases with the standard random
approach provided by Modbat.

A. Experimental Setup

The pre-existent collection of models that we consider
includes four simple models as a training set and two large
and complex models as the test set. The simple models in the
training set encompass the ChooseTest model [10], the Java
Server Socket model [22], the Java Array List model [23], and
the Java Linked List model [23]. The large complex models
in the test set are the ZooKeeper [24] and PostgreSQL [25]
models. The Java Array and Linked List models, PostgreSQL
model, as well as the ZooKeeper model, consist of several
parallel EFSMs, which are executed in an interleaved way [4].
Table I summarizes the total numbers of states, transitions,
numbers of different EFSMs, and non-commenting lines of
code (NCLOC) for each model. Note that states refer to
labeled states, which in EFSMs are augmented with variables
that may be from a potentially infinite-sized domain; therefore,
the full number of extended model states is usually in thou-
sands or millions per test. Moreover, in Table I, we summarize
the declared states of all types of models involved, but we
do not count states of multiple model instances in a given
test multiple times. Likewise, transitions may include internal
choices over different functions, or invoke functions that are
arbitrarily complex. This means that the numbers in Table I
only give a picture of the syntactic complexity of a model.

Specifically, we first apply our strategy on the four simple
Modbat models in the training set using jMetal to optimize our
strategy. Then, the weights of the eight rewards in the resulting
Pareto optimal set are used in Modbat’s configuration as the

Table I: Number of declared states, transitions, EFSMs, and
code size for each model for the evaluation

Model States Transitions EFSM(s) NCLOC
ChooseTest 3 3 1 10
JavaServerSocket 7 17 1 105
ArrayList 5 51 3 392
LinkedList 5 59 3 428
PostgreSQL 13 15 2 414
ZooKeeper 17 58 2 2225

optimal parameters for our strategy on the two large complex
Modbat models in the test set.

The experiments have been performed using an Ubuntu
18.04.4 LTS (GNU/Linux 4.15.0-88-generic x86_64) on an
Intel(R) Xeon(R) Gold 6136 CPU 3.00GHz (48 CPUs). For the
experimental setup of Modbat, we configure that each Modbat
model runs 40 test suites. We preconfigure the seed for the
random number generator and fixed 40 seeds to make the test
generation deterministic. Each test suite consists of 50 test
cases.

To configure the NSGA-II algorithm provided in jMetal,
we use its default settings except that the population size
is set to 50, and the maximum number of generations in
the evolutionary search is set to 100. The reason for using
these two relatively small values is to keep the time used for
the experimental evaluation manageable. Furthermore, for the
optimization process, we configure Modbat and jMetal to run
the four simple models in parallel. That is, for each evaluation,
jMetal provide the values of 8 rewards as a parameter setting
for Modbat to run four models in parallel (random values for
8 rewards as the initialization). The resulting values of the
four test adequacy criteria of each model are then collected
and used as objectives for jMetal to execute NSGA-II (16
objectives together in total due to 4 models). All collected
resulting values of four test adequacy criteria are within 0 to
100, which are defined or computed as follows:

• State coverage: Covs ∈ {0, . . . , 100}
• Transition coverage: Cov t ∈ {0, . . . , 100}
• Score of Cov lip : Cov lip ∗ 2,Cov lip ∈ {1, . . . , 50}
• Score of NTest fail1 : 102− NTest fail1 ∗ 2,NTest fail1 ∈
{1, . . . , 51}

The two last scores are calculated based on the fact that with
50 tests, at most 50 linearly independent paths are possible,
and that the best possible outcome is if the first test finds a
failure; if no test finds a failure, we count the score as if the
51st test (which is never tried) would have found it.

As each parameter setting for 8 rewards was tested with
40 seeds and 50 test cases per seed on four models, we
ran 8,000 tests per parameter setting to determine fitness.
With a population size of 50 and 100 generations, we ran
a total number of 40 million tests in the training phase, which
took four days using a 48 CPUs cluster. For the ZooKeeper
model, we just apply 50 optimal solution candidates in the
Pareto optimal set directly and collect the results for the
test adequacy criteria; while for the PostgreSQL, we perform
mutation testing [26] using 86 mutants to inject 86 different

7



Covs Covt
Covlip

score

NTestfail1

score

40
seeds

4 objectives

Compute
Average

Global
Average

Compute
Average

Average Vector

Fig. 2: Result computations for the random approach.

errors to the PostgreSQL. Then, we apply 50 optimal solution
candidates to 86 mutated PostgreSQL, respectively.

B. Data Post-processing

We have compared the performance of our bandit heuristic
search strategy and its optimization to the random approach
already provided by Modbat. Fig. 2 shows the basic process of
collecting and computing result data of the random approach
for each model. We compute the average of collected resulting
values for each objective obtained using the 40 fixed seeds to
get an average result vector for the four objectives (Pareto
frontier). Based on the average vector, we also compute a
global average to indicate an overall result of the random
approach. For the PostgreSQL model, since it has 86 mutated
versions, we perform this process for each mutated version,
respectively, to collect result data. Then, we have 86 resulting
average vectors and 86 global averages for the 86 mutated
versions of the PostgreSQL model.

Fig. 3 illustrates the basic process for each model to collect
and compute results from the Pareto solution set obtained by
our bandit heuristic search strategy and its optimization with
jMetal. For each model, the Pareto solution set has 50 solution
candidates, and each candidate has resulting values obtained
for four objectives (Pareto frontier) using the 40 fixed seeds.
Therefore, for each candidate, we compute the average result
vector and the global average by applying the same process as
for the random approach. Then, for the Pareto solution set, we
have 50 average result vectors and 50 global averages in total.
Also, for the PostgreSQL model, we first perform this process
for its 86 mutated versions. For each mutated version, we then
compute an global average result from the 50 average vectors,
and an overall average result from the 50 global averages as
the final result for this mutated version.
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Average Vector
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Pareto solution set: 50 solution candidates

Fig. 3: Result computations for the bandit heuristic search
approach

C. Analysis of Results

We visualize the result data collected using the processes
discussed in Fig. 2 and Fig. 3 using box plots. Each box in
the plot shows the range between the first and third quartiles
(Q1 and Q3) as a rectangle, with a solid red line indicating
the median value. The distance between Q1 and Q3 is the
inter-quartile range (IQR); 25 % of the data lies below Q1,
and 75 % of the data lies below Q3. The blue dashed lines
indicate the smallest (largest) observed point from the dataset
that falls within a distance of 1.5 times the IQR below Q1
(and above Q3, respectively). Circles indicate outliers that lie
outside 1.5 times the IQR.

Fig. 4 and Fig. 5 shows the box plots for the Java Server
Socket and Array List models of the training set. The result
data are collected directly when jMetal finish all generations
of the NSGA-II algorithm. The size of the resulting dataset
to generate each box plot for the random approach is 40
(obtained from 40 seeds shown in Fig. 2), while for the
heuristic approach the size of the dataset is 50 (obtained from
50 average vectors shown in Fig. 3).

From Fig. 4 and Fig. 5, we can observe that for the box
plots of the Java Server Socket model, our bandit heuristic
approach gives better results on the transition coverage Cov t
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Fig. 4: Comparison of state and transition coverages for Java
server socket and array list models
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Fig. 5: Comparison of scores to number of test cases used to
find the first failure and LIP coverage for Java server socket
and array list models
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Fig. 6: Comparison of state and transition coverages for
PostgreSQL and ZooKeeper models

and the score of NTest fail1 compared to the random approach.
Concerning state coverage Covs and the score of Cov lip , the
random approach is slightly better. From the box plots of the
Array List model in Fig. 4 and Fig. 5, it can be observed that
our bandit heuristic approach has better performance on all
objectives in comparison to the random approach. The box
plots for both the Linked List and ChooseTest models show
that the heuristic approach has better results on all objectives,
which is similar to the results of Array List model. Hence,
we do not specifically discuss their box plots here due to the
space limitations.

After we obtained the Pareto optimal set from the training
phase of the four simple models in the training set, we apply
the resulting values of eight different rewards in the Pareto
optimal set to the 86 mutated PostgreSQL and ZooKeeper
models, respectively, from the test set. Fig. 6 and Fig. 7 show
the collected data for the PostgreSQL and ZooKeeper models
as box plots. The size of the dataset is 86 for the PostgreSQL
model with the heuristic approach, since we collected results
from 86 mutated versions of the PostgreSQL model. For each
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Fig. 7: Comparison of scores to number of test cases used
to find the first failure and LIP coverage for PostgreSQL and
ZooKeeper models

version, we collect an average result for each objective from
50 average vectors as was shown in Fig. 3. For the random
approach of the PostgreSQL model, the size of the dataset is
also 86. This dataset has 86 average vectors, and each vector is
computed from the results of 40 seeds as was shown in Fig. 2.
For the ZooKeeper model, the sizes of datasets for the heuristic
and random approaches are the same as the datasets for the
four simple models in the training set.

From the box plots for the PostgreSQL model, we see that
the heuristic approach is slightly better than random approach,
since the box plot of the transition coverage Cov t of the
heuristic approach does not have the extra outlier (around 85)
shown in the plot of the random approach in Fig. 6.

For the resulting box plots of the ZooKeeper model in Fig. 6
and Fig. 7, although the box plots of the random approach
seems to have better results on the four objectives than the
heuristic approach, the box plots also show that the distribution
of the resulting data for heuristic approach is more concen-
trated than the random approach. For instances, the resulting
box plot of the NTest fail1 score for the random approach has
some extremely bad results (0) and extremely good results
(100), compared to the box plot of the heuristic approach.
The box plots of the heuristic approach from other models also
reflect this characteristic, i. e., they have a more concentrated
distribution of their resulting data than random approach.

D. Discussion

Our box plots compare the performance between our bandit
heuristic approach and a random approach for each objective
separately. To compare all values at a glance, Table II shows
the global average over all four metrics across all generated
tests, as obtained by the process shown in Fig. 2 and Fig. 3.
For PostgreSQL, we additonally average the fault-detection
rate over 86 mutants [25] on the code.

For the training set, we can see a large improvement on the
results both in the best and in the average case, which shows
that our heuristic adapts well to four different types of models
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Table II: Comparison of global averages obtained by heuristic
and random approaches for each model.

Model Heuristic Random
Max GA Aver GA GA

ChooseTest 76.81 61.11 50.80
JavaServerSocket 82.26 75.38 64.35
ArrayList 82.62 68.95 59.15
LinkedList 71.19 69.77 58.06
PostgreSQL 72.74 48.45 48.45
ZooKeeper 72.91 69.55 84.79

and produces consistent results. For the test set (PostgreSQL
and ZooKeeper), the difference is less clear. The heuristic
approach for PostgreSQL has better transition coverage, but
the difference is not significant, and the average scores even
match up to two digits after the decimal point. For ZooKeeper,
the random search does better than the heuristic approach.

Therefore, the results of the bandit heuristic search for the
test set are not as good as the results from the training set. The
reason for this are that our training set is too small, resulting in
overfitting. Even so, the results of the PostgreSQL model from
the test set also show a potential for the heuristic approach to
perform much better than the random approach.

V. RELATED WORK

A. Test Generation with Multi-objective Optimization

Test generation related to multi-objective optimization using
Pareto-effective approaches have been developed in the exist-
ing literature. Oster and Saglietti [27] proposed a technique
for test data generation using multi-objective optimization and
evolutionary algorithms to handle two objectives including
data flow coverage and the number of test cases required. They
used two variants of genetic algorithms, including the Multi-
Objective Aggregation (MOA) and classical NSGA to compare
with a random approach and a simulated annealing algorithm,
in order to test object-oriented programs implemented in Java.
The results showed that simulated annealing outperformed
other algorithms, but NSGA offered a higher flexibility since it
can provide a complete solution set instead of a single optimal
result.

A multi-objective approach to test data generation was
presented by Harman et al. [28], which focused on applying
multi-objective optimization to branch coverage and generat-
ing branch adequate test sets for branch adequate testing. Two
objectives were considered by the authors, including branch
coverage and dynamic memory consumption. The authors
compared the effectiveness of three search approaches: a
random, a weighted genetic algorithm search, and the NSGA-
II. The case studies were carried out on testing C code from
both real-world and synthetic examples.

In this paper, we define four test adequacy criteria as objec-
tives. Instead of branch coverage, we consider path coverage
as one of our test adequacy criteria, since path coverage is
a stronger test adequacy criterion than branch coverage and
it concerns a sequence of branch decisions instead of only
one branch at a time. Also, our approach is based on models

of the system under test. Path coverage and other criteria are
optimized at the model level rather than coverage of the SUT
code. We notice that the process of test case generation faces
the exploration versus exploitation dilemma, so we propose
the heuristic search strategy to handle this dilemma and guide
the test case generation. We then use the jMetal framework
with the genetic algorithm NSGA-II to tune the strategy in
order to optimize the four objectives we defined, with respect
to their trade-offs. For the experimental evaluation, we also
compare our approach with a random approach.

B. Search-based Test Generation

Our bandit-based heuristic approach also relates to some
extent to work on search-based testing, where random testing
is augmented with heuristics to find fault-revealing test cases
more efficiently [29]. In random testing, the problem of choos-
ing suitable input with the right values and types exists; these
problems are taken care of in model-based testing because the
user provides a model that generates these inputs. Similarities
exist in three of the six heuristics used in Guided Random
Testing [29]: 1) Impurity: We use a different weight for self-
loop transitions, which contain at least some impure methods
as not to be completely redundant; 2) Bloodhound: We also
choose transitions based on coverage, but we use coverage
at the model level rather than coverage of the SUT code; 3)
Orienteering: At this point, we do not consider the time it
takes to execute a transition, because the execution times of
transition actions did not differ in major ways in our examples.

In addition to using Pareto-efficient approaches for search-
based test generation, Salahirad et al. [30] discussed different
fitness functions for white-box testing. Their findings confirm
that high (source code) coverage is a prerequisite for successful
fault detection, and that branch coverage stands out as the most
effective single criterion. They also used treatment learning to
discover which metrics best predicts fault detection. We have
not investigated how different subsets of our criteria (espe-
cially when used within a limited resource budget) compare
to each other, as we only have four, and hence much less
than they had to consider. Rojas et al. [31] found that multi-
objective optimization algorithms based on Pareto dominance
are less suitable than a linear combination of the different
non-conflicting objectives. It is not obvious to us how we
would prioritize weights among the four different objectives,
a question which also [31] left for their future work.

C. Test Section with Multi-objective Optimization

Related work also exists in multi-objective optimization
for test selection. Yoo and Harman [32] presented a multi-
objective formulation of the regression test case selection
problem to show how multiple objectives can be optimized
using a Pareto efficient approach. Their goal was to find a
subset of a test suite, which is a Pareto optimal set with
respect to the chosen test criteria. They gave three algorithms
to compare their effectiveness, including a single-objective
greedy algorithm, NSGA-II, and vNSGA-II. The evaluation
was carried out on five programs in the Siemens suite and a
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program from the European Space Agency. For each program,
the authors randomly selected test suites from existing avail-
able test suites as the input to the multi-objective optimization
process. The results showed that the NSGA-based approaches
can out-perform the greedy approach.

Mondal et al. [33] studied multi-objective test case selection
to analyze both coverage-based and diversity-based test case
selection approaches. They proposed two approaches for bi-
and three-objectives optimization, respectively, by considering
code coverage, test case diversity, and test execution time.
They used the Additional-Greedy and NSGA-II algorithms
for bi-objective optimization and NSGA-II only for three-
objective optimization on 16 versions of five real-world pro-
grams, such as JBoss and Apache Ant. The results showed an
improvement of the fault detection rate by the three-objective
optimization approach.

For our work, we do not have existing available test suites,
so we focus on using the bandit-based heuristic search to
generate optimal test cases directly, with the aid of the
Pareto-efficient approach to optimize the four test adequacy
criteria. Also, instead of considering test execution time as an
objective, we use the number of test cases to find the first
failure together with three different coverages as objectives.

VI. CONCLUSIONS AND FUTURE WORK

Our main contribution is a heuristic search based test case
generation approach for model-based testing, aiming at per-
forming well on test adequacy criteria with considering their
trade-offs. We have proposed a bandit-based heuristic search
strategy to handle the exploration versus exploitation dilemma
for test case generation. Then, we applied an optimization
technique to tune our strategy and optimize the chosen test
adequacy criteria with the aid of the jMetal multi-objective op-
timization framework and the NSGA-II Pareto-efficient multi-
objective genetic algorithm. We have evaluated our approach
on several models for the Modbat model-based testing tool by
comparing the results of the bandit-based heuristic search with
a random test case generation approach. Our experiments show
that our bandit-based heuristic search approach has potential
to obtain better and more consistent results on the chosen
adequacy criteria compared to random test case generation,
while considering the trade-offs of the test adequacy criteria.

The second contribution is an implementation of the bandit-
based heuristic search strategy in the Modbat. This imple-
mentation is now included as a new feature in the Modbat
3.4 release. We have defined test adequacy criteria as multi-
objectives so that Modbat implements our strategy for test case
generation in addition to its standard random search. The test
adequacy criteria are optimized using the jMetal framework
which applies the NSGA-II algorithm on the Modbat models
that we use as the training set to find a Pareto optimal set. The
reward parameter settings obtained in the Pareto optimal set
can then be used to initialize the test case generation with our
bandit-based heuristic search strategy to generate test cases for
advanced Modbat models in general and targeting the chosen
test adequacy criteria.

The work presented in this paper opens up several directions
of future work. The results of our heuristic search from the
training set are promising, but the results from the test set
are not as good, especially for the ZooKeeper model, due to
overfitting. To leverage the potential of our approach, we need
to obtain more and more diverse models for the training set,
especially in case of large-scale and complex systems, so that
multi-objective optimization can get well-fitted reward param-
eter settings in Pareto optimal set. Additionally, increasing the
size of the population and the number of generations for the
NSGA-II might give us better results in the Pareto optimal set.
Also, we may consider using alternative algorithms provided
by jMetal to solve our multi-objective optimization problem.

Another direction of future work is to investigate self-
optimizing approaches with optimization on the models at run-
time to achieve the potential of our bandit heuristic search
strategy for test case generation. Furthermore, other test ade-
quacy criteria such as the execution time of test cases could
be considered as additional objectives for the optimization.
Also, in addition to bandit heuristic search strategy, we plan
to implement other heuristic strategies for test case generation.
Finally, the application of our approach to platforms other than
Modbat is another possibility.
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