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ABSTRACT

Human Robot Cooperation (HRC) refers to the cooperation between humans and
robots to achieve a common goal or perform a task together. In HRC, the robot is
designed to work alongside a human operator, providing assistance and support as
needed. This collaboration can take many forms, ranging from a robot that provides
physical assistance to a person with a disability, to a robot that helps workers in a factory
assemble products more efficiently. HRC has many potential applications in areas
such as manufacturing, healthcare, logistics, and service industries. For example, in
manufacturing, robots can work alongside humans to perform repetitive or dangerous
tasks, while in healthcare, robots can assist with patient care, rehabilitation and surgery.

HRC can involve the use of advanced robotics technologies such as artificial
intelligence, machine learning, natural language processing, and human motion
processing to enable robots to understand human intentions and communicate with
people in a more natural way. Through this collaboration, humans can leverage the
strength, speed, and precision of robots to perform tasks that are difficult, dangerous,
or impossible for humans to do alone.

The main focus of this study is to develop a reliable Human Motion Estimation
(HME) method to be used in industrial HRC applications. HME is the process of
tracking and analysing human body movements with different sensory devices to
determine the pose, posture, motion and/or gesture of the human. The estimated
feature set is used as human input to create an action on the robot side. This thesis
investigates how to choose the best motion capture system for industrial applications,
how to obtain sufficiently accurate human motions and gestures, how to generate
intuitive human input, and how to translate that input into a specific robot output.

HRC is a widely researched topic in robotics, including dynamics, control, motion
planning, robot learning, teleoperation and machine vision among other branches.
All of these branches aim to optimize the advanced interactions between robots and
humans. Today, examples of HRC in the industry are limited to turn-based and
low-level applications, such as simple pick-and-place tasks and interacting with buttons
to start/stop a process. The integration of more complex applications has not been
successful enough. An analysis of the literature revealed two key points causing
this problem. The first reason is related to the accuracy, reliability, applicability, and
convenience of the HME for industrial applications. There are some highly accurate
HME methods presented in the literature, which mainly use visual-based motion
tracking devices. However, they often fail due to occlusion, loss of line-of-sight,
intolerance to lighting changes, and lack of mobility, as well as they often come with a
high financial and computational cost. The second reason for the gap between HRC
research and implementation in industrial applications is related to user education and
the neglect of training system development. Despite the substantial amount of research
in the literature, only a few studies address user training, and no studies provide a
methodological approach.

Therefore, the primary motion capture system for this study is Inertial Measurement
Unit (IMU) which does not suffer the aforementioned issues. The biomechanical human



body is constructed based on real-time IMU measurements and a respective human
input is generated. The usability of such an estimation is tested in a cooperative lifting
scenario which is a fundamental task in many HRC applications such as manufacturing,
assembly, medical rehabilitation, etc. Additionally, this study investigates effective user
training methods and proposes a gamified approach for HRC training.

The qualitative and quantitative results in this study show that HME based HRC is
promising. IMUs are portable, affordable and reliable tools for this purpose, which
makes them convenient for industry. The applicability of the proposed gamified
training methodology is validated with multi-user experiments. According to the user
test which is carried out at Western Norway University of Applied Sciences Campus
Førde with 32 healthy adults within the age range of 20-54 years, all users show a
satisfactory progression. They achieved successful cooperation with the robot after
a relatively short training process regardless of age, gender, job category, gaming
background and familiarity with robots, etc. While some user backgrounds affect
the learning criteria in terms of how quickly, consistently and optimally the user
reached a sufficient learned state, no background factor was found to be significantly
advantageous or disadvantageous on overall learning achievement. In conclusion, the
developed system is highly promising to be implemented in industrial applications.



SAMMENDRAG

Human Robot Cooperation (HRC) er til samarbeid mellom menneske og robot for å
oppnå eit felles mål eller å utføre ei felles oppgåve. I HRC er roboten utforma for å
arbeide saman med ein menneskeleg operatør, og gje assistanse og støtte etter behov.
Dette samarbeidet kan ta mange former. Alt frå ein robot som gjer fysisk hjelp til ein
person med ei funksjonshemming, eller ein robot som bistår arbeidarar på ein fabrikk
med å montere produkt meir effektivt. HRC har mange potensielle bruksområde
innanfor område som produksjon, helse, logistikk og serviceindustri. Til dømes kan
robotar i produksjon arbeide saman med mennesker for å utføre repetitivt eller farleg
arbeid, medan dei i helsevesenet kan assistere med pasientpleie, rehabilitering og
kirurgi.

HRC kan involvere bruk av avansert robotteknologi, som kunstig intelligens,
maskinlæring, naturleg språkprosessering og bevegelsesanalyse, for å gjere det mogleg
for robotar å forstå menneskeleg intensjon og kommunisere med mennesker på ein
meir naturleg måte. Gjennom dette samarbeidet kan mennesker utnytte styrken, farta
og presisjonen til robotar for å utføre oppgåver som er vanskelege, farlege eller umogleg
for mennesker å gjere åleine.

Hovudfokuset til denne studien er å utvikle ein påliteleg Human Motion Estimation
(HME)-metode som kan brukast i industrielle HRC-applikasjonar. HME er prosessen
med å måle og analysere menneskelege kroppsrørsler med ulike sensorar for å bestemme
posisjon, haldning, rørsle og/eller gester frå mennesket. Den estimerte rørsla blir
brukt som menneskeleg input for å skape ei handling frå roboten si side. Oppgåva
undersøker korleis ein kan velje det beste rørsleregstreringsystemet for industrielle
applikasjonar, korleis ein kan få målt tilstrekkeleg nøyaktige menneskerørsler og gester,
korleis ein kan generere intuitiv menneskeleg input, og korleis ein kan oversette denne
inputen til ei spesifik robotrørsle.

HRC er eit hyppig studert tema innan robotikk. Mellom anna dynamikk, kon-
troll, rørsleplanlegging, robotlæring, teleoperasjon og maskinsyn er vanlege greiner
innanfor HRC. Alle desse greinene har som mål å optimalisere dei avanserte interak-
sjonane mellom robot og menneske. I dag er døma på HRC i industrien avgrensa til
tur-baserte og låg-nivå applikasjonar, som enkle plukk-og-plasser oppgåver og inter-
aksjon med knappar for å starte/stoppe prosessar. Integreringa av meir komplekse
applikasjonar har ikkje vore tilstrekkeleg vellykka. Ein analyse av litteraturen avs-
lørte to nøkkelpunkt som moglege årsaker til dette problemmet. Den første årsaka er
knytt til nøyaktigheita, pålitsgraden, bruksverdien og brukarvenlegheita til HME for
industrielle applikasjonar. Det finst nokre svært nøyaktige HME-metodar presentert
i litteraturen, som hovudsakleg brukar visuelt baserte rørslesporingsutstyr. Desse
mislykkast ofte grunna okklusjon, tap av synslinje, intoleranse for lysendringar og
manglande mobilitet, samt at dei ofte kjem med ein høg kostnad eller er sterkt be-
grensa av behov for tekniske/digitale resursar. Den andre årsaken til gapet mellom
HRC-forsking og implementering i industrielle applikasjonar er knytt til brukarop-
plæring og neglisjering av å utvikle eit opplæringsystem. Til tross for den store mengda
forsking i litteraturen, adresserer berre få studiar brukaropplæring, og ingen studiar



presenterer ei metodisk tilnærming.
Difor er Inertial Measurement Unit (IMU) hovudrørslesporingsystemet valgt for

denne studien. Desse vert ikkje påvirka av dei førnemnde problemstillingane. Den
biomekaniske menneskekroppen blir konstruert basert på sanntids IMU-målingar og
gjev eit representativt menneskeinput. Bruksevna til ein slik estimasjon blir testa i eit
samarbeidsløftescenario som er ei grunnleggjande oppgåve i mange HRC-applikasjonar
som produksjon, samansetjing, medisinsk rehabilitering osb. I tillegg undersøker
denne studien effektive brukaropplæringsmetodar og foreslår ein spelifisert metode
for HRC-opplæring.

Kvalitative og kvantitative resultat i denne studien viser at HME-basert HRC
er lovande. IMU-ar er portable, kostnadseffektive og pålitelege verktøy for dette
føremålet. Dete gjer dei godt eigna for industrien. Nytteverdien til den foreslåtte
spelifiserte opplæringsmetoden er validert gjennom eit fleirbrukareksperiment med
32 friske vaksne i aldersgruppa 20-54 år, med ulike yrker. I følgje brukartesten
som utført på Høgskulen på Vestlandet Campus Førde viste alle brukarane ein
tilfredsstillande framgang og oppnådde vellykka samarbeid med roboten etter ein
relativt kort opplæringsprosess, uavhengig av alder, kjønn, yrkeskategori, spelerfaring
og kjennskap til robotar, osb. Medan nokre brukarbakgrunnar påverkar læringskriteria
med tanke på kor raskt, konsistent og optimalt brukaren når ein tilstrekkeleg lært
tilstand, vart det ikkje funne noko bakgrunnsfaktor som var eit vesentleg føremon eller
ei ulempe for total læringssuksess. Konklusjonen er at det utvikla systemet er svært
lovande for å bli implementert i industrielle applikasjonar.
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Well begun is half done.
—Aristotle

CHAPTER 1
INTRODUCTION

1.1 Human-Robot Interaction

The need to combine human and robot skills to their fullest potential has given rise
to the field of Human-Robot Interaction (HRI). The birth of this field lies back in the
mid-1990s and early years of the 2000s [2]. It combines the fundamental robotics and
control theory subjects with psychology, cognitive sciences and social science to achieve
this interaction as ’natural’ as possible. From a social perspective, humans learn new
communication methods to interact with robots and it shapes society towards a shift.
Interacting with robots in public is a part of the new normal and will be more common
in the future. For children to learn how to read, to order and be delivered food in a
restaurant or be welcomed by a robot at a hospital is not only a science-fiction movie
any longer.

The HRI has various application fields such as search and rescue, assistive robotics,
military and police, edutainment, entertainment, space, home and industry [2, 3].
Some of the areas are intertwined with each other such as assistive robotics covers a
wide range of examples in the rehabilitation field. Similarly, search and rescue robotics
has big contributions to remote science and exploration studies in space. All those
fields commonly aim to improve individuals’ lives either directly by supporting them
in daily activities or introducing a reforming step to solve a dangerous/challenging
operation. The human-centric classification of HRI is given in Fig. 1.1.

Robots and humans can be co-located in a workspace with or without contact. If
there is no contact between the human operator and the robot, it is generally considered
as a teleoperated case. On the other hand, if there is direct or indirect contact (through
an object) between a human and a robot, then these cases are within the pHRI field.
The level of HRI based on proximity can be summarized as in Fig. 1.2.

A physical contact may occur intentionally and/or unintentionally. Moreover, the
expected contact can be lost during collaboration. To know the level of physical contact
with some certainty is important. A very coarse way of defining physical contact is that
some parts of the human body take space on the same point in the coordinate system
as some parts of the robot. If this contact is desired and required for the task (for
example carrying an object together), the robot should continue executing the required
set of actions to keep the contact available. On the other hand, if such a contact is not
demanded (a collision or a crash case), then the robot should take a different set of
actions so that such a contact could not occur.
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Fig. 1.1: Human-centric classification of HRI [3]

HRI is researched in two main directions; social science majors (psychology, political
science, economics, sociology etc.) and technical sciences (natural science, computer
science, engineering etc.). Those two directions have been doing their research
independently most of the time. The HRI community is getting together [5] and there is
a new era in HRI has started where the vast amount of research in the two perspectives
(i.e. the technical and social aspects of HRI) is merging.

1.2 Collaborative Robots

Since the first usage of the "robot" term in 1920 by the Czech writer Karel Capek in
his science fiction R.U.R. (Rossum’s Universal Robots), humans were seeking a "thing"
which does some programmed actions to make life easier for humans. After about 30
years of research, in 1954, the first industrial robot arm called a "Programmed Article
Transfer" [6] device is patented by George Devol at General Motors.

Throughout robot history, they have been acknowledged as they were scary and
dangerous machines. Therefore from the very early examples of robots, we can see
them behind the cages, doing predefined tasks which are mostly mass-production
related. They were quite powerful parts of the whole procedure that’s why they were
gaining more interest every day yet still behind the cages.

Acknowledging the fact that robots would move out of their cages one day, the
robotics field has been a focus of interest in literary works and movies. Isaac Asimov,
an American writer who is known mainly for his "robotic series" (which is a set of 37
science fiction short stories and six novels about robotics), set three rules in his short
story named Runaround. These rules are:
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Fig. 1.2: Classification scheme for physical Human-Robot Interaction based on proximity
[4]

Law 1: A robot may not injure a human being or, through inaction, allow a
human being to come to harm.
Law 2: A robot must obey the orders given it by human beings except
where such orders would conflict with Law 1.
Law 3: A robot must protect its own existence as long as such protection
does not conflict with the Law 1 or Law 2.

Even though these rules are from a science fiction work, they are adopted by robot
scientists and engineers in their studies as a rule of thumb. Eventually, the emerging
technology and the necessities in various fields lead humans to think beyond borders;
robots do not have to operate standalone, instead, they can work "with" humans. This
idea is presented for the first time in 1999 as a patent by defining cobot (i.e. Collaborative
Robot) with these words: "an apparatus and method for direct physical integration
between a person and a general-purpose manipulator controlled by a computer." This
definition then shades off into what we would call today an Intelligent Assist Device
(IAD), which can be considered as the earliest ancestor of cobots [7]. The first step of
moving the robots to our side of the cage has been accomplished.

Afterwards, a German company called KUKA1 announced its first cobot LBR3 in
2004. This robot is registered as the first cobot manipulator. Meanwhile, a Danish
company called Universal Robots2 was also working on collaborative robots and in
2008 they made a sale to Linatex, a Danish supplier of technical plastics and rubber
for industrial applications. This company did something extraordinary and instead

1https://www.kuka.com/
2https://www.universal-robots.com/
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of setting up the robot behind safety cages, they installed it right alongside their
employees. They showed the possibility of robots being able to operate safely alongside
people. This usage is registered as the first industrial human-robot-work-together
example in the HRC history.

Those big steps lead other robot manufacturers to direct their studies to the
collaboration of robots with humans. Today, there are more than 150 cobots available
in the market[8]. In 2019, ABI Research [9] analyzed 12 leading collaborative robot
vendors and listed as:

• ABB (Switzerland)

• Aubo Robotics (USA)

• Automata (UK)

• Doosan Robotics (South Korea)

• FANUC (Japan)

• Franka Emika (Germany)

• Kuka AG (Germany)

• Precise Automation (USA)

• Productive Robotics (USA)

• Techman Robot (Quanta Group) (USA)

• Universal Robots (Denmark)

• Yaskawa Motoman (Japan)

The automation industry grows exponentially and will keep growing at a similar
pace in the coming years [10]. On top of the USD 191.89 billion market in 2021,
the market is projected to grow from USD 205.86 billion in 2022 and is estimated to
increase 9.8% compound annual growth rate until 2029 and reach almost USD 400
billion. This gross estimation applies to big, small and medium-sized enterprises
(SMEs) companies. However, it is also stated in the same report that high upfront
costs and unpredictable returns on automation investment make small and medium-
sized enterprises (SMEs) hesitant to adopt the benefit of the technology. Therefore,
collaborative robotics technology becomes a more profitable solution for companies in
which mass production is not applicable. Cobots enable the HRC to be applicable in
the production state, keeping the decision skills of the experienced human operator in
the chain while introducing the benefits of the precision and repetition skills of the
robot.

Today the term the robot is under the influence of a paradigm shift [4]. The intuition
of calling a device or a machine a robot seems to be more of how it looks rather
than how actually it functions conceptually. Moreover, the robotics field has been
fed by the methods and facts of the good old control theory, mechanisms and machine
theory, for so long. As the robotics field grew, newer fields such as machine learning,
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Fig. 1.3: Common cobots in the market today. From top left to bottom right: ABB YUMI,
AUBO i5, Doosan A0509, FANUC CRX,Productive Robotics OB7, Franka Production 3,
KUKA LBR iiwa, Techman Robot TM14, Universal Robots UR5e, Yaskawa HC20DTP

human-computer interaction etc. are incorporated more and the robotics field has
become a portal of older fundamental engineering subjects and newer shaping the
future fields. This shift is relatively quick such that our social-linguistic adaptation lags
behind. To distinguish between a machine and a computer was rather easy in the ’90s.
Today we are confused if our self-driving car is a machine or a computer. As of today,
it is easier to call these so-called confusing devices robots in a popular science talk
despite the fact that many roboticists would disagree. This paradoxical and dissonant
discussion is surely interesting yet not within the scope of this study. Therefore, the
definitions in this work are reconcilable to the ISO definitions [11]: a robot is a device
that is reprogrammable in two or more axes.

1.3 Cooperative Lifting

Cooperative Lifting (co-lift) is a common task in collaborative, cooperative and/or
supportive examples of HRI. It requires balance, coordination, power distribution and
sufficient communication between robot(s) and human(s). In a broad perspective,
co-lift is interested in the interaction dynamics that exist among humans, workpieces
and robots to optimize the picking, carrying and placing sub-tasks.

Co-lift is a rather general term which is involved in several tasks in various
application areas. For instance, in an industrial setting, integrating co-lift in material
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manipulation is opportune. The material manipulation applications (e.g. handling,
positioning, polishing etc.) constitute more than 20% in the manufacturing industry
[12]. Co-lift, and HRC in general, provide speed and efficiency so that the tasks can
be performed relatively easily via collaborative robots and supportive technologies.
Moreover, the developments co-lift are useful in rehabilitation in which the robot helps
the patient regain the mobility of a body part after an accident.

Co-lift is a relatively new field and sometimes addressed in the literature as
collaborative carrying [13, 14]. It generally includes only the active carrying part such
that pre- and post-phases are not mentioned. However, it causes a considerable
gap between the academic co-lift studies and successful industrial implementation.
Therefore, the co-lift term covers the whole HRC task from picking up the object,
carrying it from point-A to point-B and placing it as shown in Fig. 1.4

Fig. 1.4: The full-cycle of co-lift task and its states (APPROACH, CO-LIFT and RELEASE)
and the pick and place locations of the common object [15].

The lack of implementation of advanced HRC developments in the actual industrial
settings has been addressed in the literature and deeply discussed in Chapter 2. I
would like to mention two particular references here to explain why co-lift is the central
application of this study. According to [12]: "No hand gesture and other sophisticated
communication means have been identified to be in use in current manufacturing floors." This
is a rather dismal finding regarding the current status of HRC in real applications.
There are several successful and sophisticated studies in the HRC yet they often fail in
being an actual product/service. The second reference is [16]. The researchers remark
the current collaboration of humans and robots is not a real collaboration but more of a
sequence of turn-based actions. The main advancements in involving cobots are not
in the enhancement of the collaboration between humans and robots but simply in
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removing the safety cages of the robots. They indicate the underlying reason for this
situation is the lack of educational technologies that facilitate effective worker-cobot
interaction.

Considering the two references given above, a deep focus on co-lift gives a convenient
canvas to test and improve real collaboration, sophisticated communication between
the human and the robot and the user training perspective of the HRC. Additionally,
the technical trips to small and mid-size manufacturing companies organized by HVL
Robotics in the Western Norway region luminate the potential of implementing the
co-lift technologies.

1.4 Human Motion Estimation

The focus of Human Motion Estimation (HME) is to capture human motions with some
certainty using sensors and analyse them using various models and algorithms. HME
is often used to send the required information to the robot such as the pose, motion,
and gesture of the human within the HRI field. Moreover, if the collaborated robot
understands human intentions, it can provide necessary support and assistance during
the whole process or at an appropriate moment.

In human motion tracking and prediction, the first step is to define the human
model which is a mathematical representation of the human in the system. This model
can be a silhouette as in [17, 18] or a biomechanical model as in [19–21]. The human
body can be defined as a kinematic chain similar to robot modelling. However, human
joints and links (i.e. soft tissue with ligaments and tendons) are more complex than
the generic modelling elements in robotics (prismatic/revolute joints and rigid links).
It is difficult to establish a complete kinematic model of the human body because it is a
very complicated and correlated system.

As a result of that, the total Degrees of Freedom (DoF) of the human model is
not exact. The DoF of this model changes according to the motion of interest (i.e.
full-body, upper body, gait etc). For example, the human arm is modelled as 4 DoF
in [22], 9 DoF in [23] and 7 DoF in [24] and in general applications. Modelling the
human body and estimating the motions according to that model depends on the
application. Increasing the DoF would result in more accurate estimation yet it would
exponentially increase the computational cost. Particularly in HRC applications, the
real-time capability of the developed system may play a vital role. Therefore, carefully
identifying the requirements is as important as developing a precise method for human
motion estimation for HRC.

Another important parameter in human motion estimation is the Motion Capture
(MoCap) technology. Human motions can be tracked by cameras, wearable sensors or
a combination of them. Each MoCap system has advantages and disadvantages. For
example, cameras or visual-based tracking systems are widely used, providing relatively
precise and accurate results if the tracking environment is ideal. However, they often
come with a higher financial cost and require higher computational resources. The
wearable systems may consist of different sensory equipment, often more affordable yet
cannot provide as accurate results as their visual-based counterpart. Particularly, Inertial
Measurement Unit (IMU)s are good options and reported to be superior for industrial
use in many aspects such as compatibility with lightweight microcontrollers using
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low-frequency sampling rates, providing more optimized data gathering algorithm and
low-power communication protocol, a smaller impact on performance due to varying
lighting conditions and body pose etc. [25]. Considering the efficiency, reliability in
various industrial settings and mobility, a wearable inertial system is used as the main
MoCap system in this study. This debate is an important part of this study and a
detailed literature survey is provided in Section 2.1.3.

1.5 Research Area, Motivation and Challenges

The emerging side of HRC in the industrial and medical applications is the main
motivation of this study. Despite the substantial amount of research in the literature,
there is still a gap in real HRC applications. A recent survey conducted with nine
experts shows that contrary to the envisioned use of cobots, most cobot applications
are only low-level interactions such as pressing the start/stop buttons etc. [16].
Additionally, experts feel traditional robotics skills are needed for collaborative and
flexible interaction with cobots.

1.5.1 On Literature
The literature survey takes a big part in this study since there are several studies
presented so far in HME, HRC, motion tracking using IMUs, etc. However, very few of
them are applicable in a scenario where all the keywords are included. For instance,
HME studies computed in the medical area are generally elaborated in an optimal
laboratory environment. The application of such a system in the industrial area is
most likely to fail due to electromagnetic noises, dust, required dressing rules and so
on. Moreover, motion tracking using IMUs either suffers from drift in longer periods,
which is not safe for pHRI or they process data using computationally expensive
optimization algorithms and eliminate the drift error considerably but they often not
applicable in real-time HRC applications.

Therefore, the research process started with the exploration and selection of an
optimal methodology in the literature. As mentioned before, it is aimed to utilize
IMUs for pose estimation for pHRI and HRC. When it is investigated in the literature,
there are various approaches; selection of the optimal number of the sensors to be
used, selection/definition of the human model, possible sensor fusion algorithms both
using only IMUs and combination of other MoCap systems as multi-system, etc. All
approaches have a small or big impact on HME quality. We are looking for the effects
of those approaches and how big an impact they have on the quality of HME. In this
manner, calibration-related improvements (in Section 4.1) and different methods (in
Section 4.3) take part in this study.

The communication media plays a fundamental role in HRC. It is important both to
let know the robot about human commands and intentions and also to avoid undesired
collisions during the collaboration. Investigating the optimal communication media
between humans and robots for particular tasks and developing a realistic system
to be used in the industry is the main challenge. The valley of death is a growing
issue from research to innovation [26] and it is regrettably a big challenge in HRI field
[3]. Therefore, this study aims to define the problems in the technical aspect of the
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human-motion-based HRI development, propose an affordable and realistic solution
for the industrial applications and validate it with multiple user tests. Each step of this
sequence is defined as a standalone challenge of this study.

1.5.2 On Inertial Measurement Units

Fig. 1.5: MVN system which consist of 17 IMUs by the Xsens company
Source: [19]

In IMU-based HME, the procedure is such that one (or more number of) IMU is
attached on different body sections as shown in Fig. 1.5. The 3D estimation of the
position and/or estimation of individual IMUs is elaborated with the biomechanical
constraints of the human body in calculating human posture, pose, position etc. The
drift problem is by far the most mentioned challenge in using IMUs in the literature (see
details in Chapter 2). Basically, the drift problem occurs in any kind of time-dependent
signal measured in the real world (i.e. continuous) and transferred into the computer
world (i.e. the digital world). Signals have to be processed digitally and any ’actual’
signal change in the continuous world in between each consecutive time step is lost
in the discrete world. To fill this missing information in the discrete world, there
are various interpolation methods in the scientific calculation field to reconstruct the
actual signal. However, no matter how good the signal processing is after capturing a
continuous signal in the digital world, it will never be reconstructed exactly the same.
The error between the actual and the reconstructed signal will accumulate over time
and the problem will occur as we call the "drift" problem. Specifically for IMUs, the
drift problem addresses the accumulated integration error over time as well as the
error in reconstructing velocity/acceleration signal in the discrete world as shown in
Fig. 1.6.

Researchers have been looking for an IMU based drift-free MoCap system for more
than a decade. There are proposed different methods today to reduce or limit this error
type by improving integration techniques and filtering techniques. However, filtering
techniques are reported to somewhat slow down the error accumulation process, but
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not completely eliminate it [27]. Also, even very recent and sophisticated integration
methods aimed at IMU drift reduction [28] suffer from drift in a few seconds according
to [29]. Therefore, since IMU output is in velocity and acceleration level, the drift
problem in state estimation in the position and orientation level based on integration is
inevitable [30, 31].

Fig. 1.6: Demonstration of drift error: The pink continuous signal is the actual motion
signal and the green staircase signal is the reconstructed (i.e. sampled) signal. As the
discrete integration is implemented, the accumulated integration error (shown as red
region) grows. This is referred to as drift error.

To eliminate the drift error in the estimation phase, various algorithms have been
presented in the literature (see Section 2.1.4) and the Bayesian filtering approach is
one of the most promising. The IMUs which are being used through this study are
MTw Awinda by the Xsens company. The orientation of the MTw is computed by
Kalman filter (KF) in 3 DoF [32]. Nonetheless, the drift error is there and some other
methodological approaches must be applied to obtain safe human inputs in pHRI
applications. This has been processed in the human-robot motion mapping step in this
study.

1.5.3 On Human Modelling
Modelling the human body and estimating human motions fast and reliably enough
is a fundamental step of HME. The real-time capabilities of an HRC system affect its
usability in the industry. It is much easier to run resource-demanding algorithms
using today’s technology at a research level. However, the financial cost of the
system is a substantial parameter within our criteria. Therefore, to develop a simple
yet efficient human biomechanical model for HRC, suitable motion tracking and
estimation algorithms are important. Moreover, the representation of models is as
important as choosing them. For instance, rotations can be represented as Euler
sequences, rotation matrices, quaternions or other methods such as Rodrigues rotation,
special orthogonality etc. In addition to that, translations can be represented as
vectors+Euler angles, Homogenous Transformation Matrix (HTM) or dual-quaternions
or other methods like the twist/wrench method, screw theory etc. The selection of
representation plays a fundamental role in computation cost. It is decided to use
quaternions for rotations and HTM for pose calculations. The selection process and
reasoning are explained in detail in Section 3.1.
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Another challenge is related to modelling errors. The human model can be a
silhouette as in [17, 18] or a biomechanical model as in [19–21]. Since the human body
contains more complex joints and links than ordinary actuators and link elements, it is
not possible to model the human body with 100% accuracy. As a result of that, the
total Degrees of Freedom (DoF) of the human model is not exact. For example, the
human arm is modeled as 4 DoF in [22], 9 DoF in [23] and 7 DoF in [24]. Although the
most common approach is to define the human arm as 7 DoF the distribution of this
DoFs through the shoulder to wrist is tricky (see Fig. 1.7).

Fig. 1.7: Modeling human arm as 7DoFs
Source:[24].

Previous studies elaborated on different parts of the body and got satisfying results
which does not necessarily mean that the method is applicable to all human segments.
For example, upper body motion estimation has a higher complexity than gait analysis.
The reasons can be listed as:

1. No contact force detection periodically to correct errors in inertial measurements,

2. Shoulder and wrist joints are more sophisticated than ankle joints,

3. In contrast to gait for the lower limb, there are no standard activities for the arm,

In this study, the focus is on upper body motion estimation. Therefore, a rich literature
on gait analysis, activity tracking or fall detection-related studies are inspiring but it
should be noted that their methods are not necessarily applicable to this study.

Soft Tissue Artifact (STA) is another challenge on every type of wearable human
motion capture systems [33, 34]. Body marker-based, IMU based, wearable strain gauge-
based systems are some examples which suffer from soft tissue artifacts. Basically,
STA refers to the relative motion of the wearable sensors attached to the skin with
respect to the bone. Since the soft tissue (i.e. muscles and ligament) moves around
the bones during motion and they have a soft materialistic property, the displacement
error caused is called STA.

Chapter 1 13



Introduction

1.5.4 On User Training

The training aspect of a developed system is a part of this research. Although HRC
has been researched for a couple of decades, cooperating with robots is still a new
phenomenon for both employees and employers in the industry. The implementation
of new technology in the industry has always been challenging. Two major reasons
for this challenge addressed in the literature are perceptions of the technology’s ease
of use and perceptions of the technology’s usefulness [35]. Training is important
not only to facilitate learning about how to use new technology but also to manage
employee perceptions and attitudes about the new technology [36]. Particularly in an
HRC extension of the ongoing production, the operators are hesitant to be integrated
into such a novel field. The clear benefit and usability of the HRC should be both
qualitatively and quantitatively verified.

As a daily life example, driving a car is a relevant human-machine interaction.
People would need a relatively tedious training procedure to qualify to get a driving
license. The effectiveness of the training process makes the cars an indispensable piece
of our daily lives, otherwise, the cars could be killing machines. For a new beginner,
the concept of gas, brake, clutch, gears and signals could be perceived a lot even before
the traffic rules are presented. Obviously, the concept of clutch and gear change is
cumbersome for some and as time goes on, the hassling aspects of car technology are
being eliminated, and people have been benefiting from the cars for decades. The
training procedure for driving has been developing with the technology itself such
that the technology benefits humanity as it is being improved. If we waited for cars to
be perfect before started using them, and disregarded the potential of user training,
humanity could not have come that far.

In everyday life, a prominent example of human-machine interaction can be
observed in the act of driving a car. Even today, individuals are required to undergo a
comprehensive training process to obtain a driving license, which is crucial for ensuring
the safe and effective operation of vehicles. This training process plays a pivotal role
in transforming cars from potentially dangerous machines into indispensable tools
that facilitate our daily activities. For novice drivers, the multitude of concepts such as
gas, brake, clutch, gears, and signals can initially appear overwhelming, even before
the intricacies of traffic rules are introduced. As automotive technology continues to
advance, with the introduction of features such as automatic gear shifting and the
emergence of self-driving cars, certain complexities associated with operating vehicles
are gradually diminishing.

The training procedures for driving have evolved in tandem with technological
advancements, ensuring that the benefits of these innovations are effectively harnessed
by humanity. If society had waited for cars to achieve perfection before embracing their
use, disregarding the potential of user training, our progress as a civilization would
have been severely hindered. Therefore, it is imperative to recognize the significance of
training programs in enabling individuals to navigate the complexities of human-robot
interactions, ultimately enhancing the overall safety and efficiency of our interactions
with technology.

Unfortunately, user training is not addressed sufficiently in the context of HRC and
only a few studies suggested methodologies for user training in HRI. One approach
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to improving human-machine interfaces (HMIs) for industrial machines and robots
is through the use of adaptive methodologies [37]. This involves assessing the user’s
capabilities, adjusting the information displayed in the HMI, and providing training to
the user. The goal of this approach is to tailor the interface to the specific needs and
abilities of the user, thereby reducing cognitive workload and enhancing the user’s
interaction with the robot.

Another approach employed in the field of human-robot interaction is the Wizard-
of-Oz (WoZ) technique. This methodology involves the utilization of a control interface
by a remote supervisor (i.e. wizard) to operate the robot, thereby creating the illusion of
an artificially intelligent entity or a fully functioning system whose missing services are
supplemented by a hidden wizard [38, 39]. It allows researchers and designers to study
and refine the interaction between humans and robots in a controlled environment.
By using a human operator to control the robot’s behaviour, researchers can observe
and analyze how users interact with the robot and gather valuable insights into user
preferences, expectations, and challenges. This technique is particularly useful in the
early stages of human-robot interaction design, as it allows for iterative testing and
refinement of the system based on user feedback. While this approach brings a valuable
contribution to user training in HRI, it is not fully adapted and the examples are still
limited. They are mostly focused on the social aspect and linguistic communication of
HRI [40–42] and designed with the main purpose is to improving the current design
rather than training the human users [43]. Moreover, there are still fundamental
concerns about using WoZ since it is more of a human-human interaction via a robot
rather than a real human-robot interaction [42].

Another pattern seen in user training in HRI related studies is that they vastly
focus on the safety and trust factors. In [44], the researchers found that user training
influences the occurrence of involuntary motion which is linked to trust. In [45],
compulsory training/licensing is suggested in their evaluation of trust and safety in
HRI since they found that human-robot trust directly affects people’s willingness to
cooperate with the robot. Those studies increase awareness and surely contribute
to the user training aspect of HRI studies; however, the functionality and efficiency
training of the system are lacking. Cross-training refers to a collaborative planning
approach where a human and a robot engage in an iterative process of role-switching
to acquire a mutual understanding and develop a shared plan for a task. This method
is suggested by Nikolaidis et al. [46]. Its main focus is on optimizing the robot motions
and the results are significantly better than reinforcement learning, yet the user is also
aimed to be trained meanwhile.

When we look at other methods in user training in various fields Serious Games and
Gamification (SGG), gamification and game-based learning approaches appear to be
significantly effective. These methods can be used to create supplemental learning tools
that engage with interactive learning opportunities and make the learning objectives be
translated into knowledge easier [47–49]. Serious games provide users with a safe and
simulated environment where they can practice skills and strategies without real-world
consequences. This allows users to make mistakes and learn from them without facing
any negative outcomes. The interactivity and engagement of gameplay in serious
games help reinforce learning and improve knowledge retention [50]. On the other
hand, gamification applies game elements such as scoring, rewards, challenges, and
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player progression to training contexts. By incorporating these elements, gamification
aims to increase motivation and engagement in the training process. Both serious
games and gamification make the training process more enjoyable and engaging while
still achieving real training outcomes [51].

Applying these approaches to HRI user training could potentially enhance the
efficiency and comprehensiveness of the training compared to traditional instruction
alone. The increased engagement and interactivity offered by serious games and
gamification can aid in knowledge retention and allow users to develop practical skills
through simulated practice. This is particularly relevant in the context of HRI systems,
where functionality and efficiency training are crucial [51–53]

In conclusion, serious games, gamification, and game-based learning approaches
have shown promise in enhancing user training in various fields. Their application
in HRC user training can potentially improve the efficiency and comprehensiveness
of the training process. By engaging users in interactive learning opportunities and
providing a safe environment for practice, these methods can facilitate the translation
of learning objectives into knowledge and help users develop practical skills.

1.5.5 Research Questions

The fundamental research question is how to reliably measure and interpret human
motions and translate them into meaningful robot actions in an HRC scenario?
Around this main question, there are some subquestions which are investigated in this
thesis. They can be listed as follows:

• How can human motions be captured with sufficient accuracy for HRC applica-
tions?

• Is it possible to develop a sufficiently precise and accurate HRC model or a system
which is computationally cheap and operates smoothly for real-time industrial
usage?

• What type of MoCap systems are available today? What are the advantages and
disadvantages of choosing one over another in HME?

• Which techniques are presented within HME so far? What are the advantages
and disadvantages of these techniques in terms of efficiency, real-time capability,
industrial applicability, reliability etc.?

• How can human motions and gestures be translated into something meaningful
for the robotic system(s)?

• In a human-robot team, which one performs superior so that one can lead the
collaboration? What does this superiority depend on; is it static or changes
during the task being executed? How can the most efficient leadership roles be
dynamically assigned in an HRC application?

• What are the bottlenecks in HRC research for it to be effectively used in the
industry? What kind of methodological approach can be utilized?
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• Is training an important factor in imparting HRC research into real innovation? If
so, what are the most effective methods and how to implement them?

As a result of a detailed literature survey, many studies have been found related
to HME. The majority are within the rehabilitation, entertaining and animation fields
yet very few of them are readily applicable in robotics, particularly in HRC and pHRI.
Therefore, this study targets to fill a gap in the literature as well as support industrial
needs. The motivation and the effective area of this study are highly linked to the
Teknoløft project, which is briefly explained in Section 1.6.

1.6 About Teknoløft

Teknoløft is a business-oriented research project with the collaboration of Western
Norway University of Applied Sciences and Vestlandsforsking. It aims to increase
capacity and competence within automation and robotics, digitization and big data
by making the research and development environment more relevant to the business
community in the west of Norway.

The project aims to increase the business community’s use of research for develop-
ment and innovation, and stimulate collaboration with new national and international
partners. The main initiatives in the project are to facilitate more step-by-step au-
tomation with robots in small and medium-sized companies and to develop a strong
competence within Big Data that can make the business community better able to use
existing data for innovation and change. The initiative will increase top competence in
the R&D environment, and train new doctoral fellows on business-relevant issues. The
project will develop new continuing and further education offers and a new master’s
degree in robotics and digitalisation to increase the supply of relevant and competent
labour for the business community in Norway.

Within the automation and robotics branch, three PhD students (including me)
have enrolled to develop some research on pHRI so that the results can be used in
small/mid-scale companies mainly in the west of Norway and the whole country. For
this purpose, HVL Robotics Lab has been established in late 2018 under the Teknoløft
project in Western Norway University of Applied Sciences Campus Førde. Three main
work packages are conducted:

• Human Motion Estimation: Analyze human motions by inertial motion tracking
systems and estimate human behaviour for pHRI applications.

• Human-Robot Interaction Control: Develop a safe cooperative interaction control
scheme for pHRI.

• Human-Robot Cooperative Learning: Develop a cooperative human-robot
learning scheme for pHRI in a shared workspace.

This thesis is shaped around the work package-1 of the Teknoløft project.
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Paper D 
(Open-source

imu_human_pkg)

Paper A 
(From IMUs to human

motion estimation)

Paper B 
(Dynamic role

changing in Co-lift)

Paper E 
(Proposal of the
gamified training
setup for HRC)

Paper F
(Multiple User Tests)

Paper C 
(Introduction to

serious games in
robotics)

Fig. 1.8: The overview of scientific articles included in this thesis

1.7 Summary of Papers

During the period of this thesis, 6 peer-reviewed articles have been produced. The first
focal point and the first paper were to model an optimal biomechanical representation
of the human upper body and obtain sufficiently accurate human motions using inertial
measurement units. In the second paper, this idea is improved by including compliant
force and designing a dynamic role allocation in a co-lift scenario. The implementation
of the proposed HRC system is presented as an open-source ROS package with the
addition of a teleoperated scenario. In addition, training methodologies in robotics
have been researched. A serious game was developed to teach fundamental robotics
topics to bachelor’s degree students. Although this paper was not directly linked to
the HRC applications, it shed a light on further research. A gamified training setup is
developed and it is also published as open-source. Finally, all the components have
been put together in an extensive user study. 5 of the papers have been published and
presented, and one paper was recently submitted to one of the leading IEEE journals
in HRI field and is under review. The overall map of the scientific articles and how
they are connected within this thesis are given in Fig. 1.8.

Paper A: Human-Robot Cooperative Lifting using IMUs and Human Gestures.

This is the first paper produced during this thesis period. It is published in Springer
proceedings of the Lecture Notes in Computer Science book series (LNAI, volume
13054) and the work is presented at TAROS 2021: Towards Autonomous Robotic
Systems. It creates a baseline for how upper-body human motions and gestures are
captured using IMUs. A novel co-lift task assessment is presented as a full cycle and
improved towards actual industrial use. Our preliminary soft real-time experimental
setup is presented in this paper which includes a human operator, a common object
(i.e. a table) and a UR5e cobot. Human and robot are assigned leader roles based on
the stage of the task. The results of the motion data regarding human inputs and robot
end-effector pose output were successful but the system usability was not sufficient. It
requires a lot of effort to use the system, which reduces its usability. Therefore, these
aspects were improved in Paper B.

Paper B: Force and Gesture-based Motion Control of Human-Robot Cooperative

Lifting Using IMUs : This paper is published in HRI’22 Proceedings of the 2022
ACM/IEEE International Conference on Human-Robot Interaction and presented at its
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respective conference which is one of the leading conferences in the HRI field. This
paper is an improved version of Paper-A where the main purpose was to improve the
system’s usability. In addition to the IMU-based human motion input, a compliant force
interaction is introduced as a communication channel. Particularly in the active lifting
part the user and the robot became more in harmony. Pure human motion commands
are used in the manipulating and grasping phase of the table by providing a goal pose
to the end-effector and in the active lifting phase the robot produces its compliant
force. This is a breakthrough in conceptual design because human is no longer the sole
leader. Three dynamically allocated leadership roles are presented and validated on a
real-world task. The improved usability is also validated by measurements taken from
an IMU attached to the table.

Paper C: Work in Progress: Learning Fundamental Robotics Concepts Through

Games at Bachelor Level : This paper is published and presented at the 2022 IEEE
Global Engineering Education Conference which is a profound conference held since
2010 on research and industrial collaboration on global engineering education. The
paper takes upon a feeder road role in this thesis. It is the first paper in this thesis
where SGG is introduced as an efficient training/learning mechanism in robotics.
After a relatively deep literature survey, it is found that SGG are actively used for
educational purposes in various fields. In this paper, a serious game is developed to
teach fundamental robotic subjects at the bachelor level. Although, the serious game
used in this paper is not directly towards HRI, the methodology and implementation
tools used in developing this game made a way for Paper-E and Paper-F.

Paper D: A Generic Framework for Human-Robot Interaction by IMU-based

Human Motions and Gestures : This paper is published and presented at 23rd
IEEE International Conference on Industrial Technology, which is one of the flagship
conferences of the IEEE Industrial Electronics Society, devoted to the dissemination
of new ideas, research and works in progress within the fields of intelligent and
computer control systems, robotics, factory communications and automation, flexible
manufacturing, data acquisition and signal processing, vision systems, and power
electronics. The paper is about an open-source ROS package which is developed on top
of what is proposed in Paper-A and Paper-B. The main idea is to provide an easy-to-use
human-motion-based robot control framework. Both teleoperation and pHRI cases are
covered. Additionally, this study is awarded as the "BEST PAPER PRESENTATION" at
ICIT 2022 conference.

Paper E: Design of a Gamified Training System for Human-Robot Cooperation

: This paper is published and presented at IEEE 2022 International Conference on
Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). The
paper presents an open-source gamified modular training design for HRC applications.
It is where the proposed IMU-based HRC system merged with the gamified training
concept. It shows how the user can be trained in/for an HRC system using a gamified
approach, what game elements can be utilized and how the learning curve of the user
can be measured as a game parameter to evaluate the usability and efficiency.
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Paper F: Exploring Human-Robot Cooperation with Gamified User Training: A

User Study on Cooperative Lifting : This paper has been submitted to Frontiers
Robotics and AI Journal and is currently under the review process. It is a conclusion
paper where the developed HRC system is tested and validated on 40 users which is
considered quite a large study for HRI standards [54, 55]. It is found that a successful
collaboration is plausible for everyone yet training is a vital step. The duration of
the training and the level of expertise slightly vary between people. It is found that
some parameters such as age, gender, occupation, programming background and
anticipation of robots are relevant in learning. However, the purpose of this paper
is not to reach a strict conclusion between a personal background parameter with
a learning criteria. Its target is to observe the learning process of individuals and
investigate rigorously what parameters might play a role in learning. Evidently, this
study elucidates how to train employees with different backgrounds to increase the
effectiveness of the training in the implementation of an HRC system in the industry as
well as which parameters should be considered in future human-robot experiments
design.

1.8 Contributions

There are several theoretical and practical contributions made during this study. First
of all, an effective use of IMUs in the HRC field is presented and validated. Since
IMU-based motion tracking solutions are considerably cheaper than the visual-based
ones [25], this real-world experimental validation plays a substantial role in turning
the research into industrial innovation. The presented novel HRC system does not
require to have long calibration procedure in each environment and for each user, it is
rather a plug-and-play solution.

The human-motion estimation problem for HRC applications is taken as a method-
ological issue rather than a sole estimation problem. The effect of estimation errors in
absolute positioning is more critical. The presented human-robot motion mapping
suggests an algorithmic solution. Since the human-robot motion mapping is computed
as relative motion mapping, the minor position estimation errors of the human body
could be neglected. Eventually, a natural and intuitive control mechanism using the
human body is designed.

Another methodological approach is to take the co-lift task as a whole rather than a
part of a random HRC task. There are several interesting and promising solutions to
the co-lift problem in the literature [56–58] yet they present solutions only in the active
carrying phase. Therefore, the actual implementation of the proposed solution in an
industrial setting is not addressed. There is still a gap between the research and actual
innovation, which I deliberately focused to narrow in all the papers included in this
thesis. In the proposed system, the human operator can activate/deactivate the robot,
and transit between different HRC states only with gestures. Additionally, the system
is designed as a full cycle that can automatically restart without any interrupts.

The design of quality research studies for use in HRI applications with results that
are verifiable, reliable, and reproducible is reported to be a major challenge [3, 59, 60].
Therefore, all codes used in developing this study are published as open-source in
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the HVL Robotics’ GitHub page3. The main development environment is ROS on top
of Ubuntu, both of which are free to use all around the world. Therefore, technically
everything presented in this thesis is free to access/use/implement. I genuinely believe
in the importance of collaboration and contributing to it to the best ability. Currently,
some of the articles are not publicly available yet due to copyright restrictions but they
are in the process of getting permission.

Game development is a relatively uncommon concept in the ROS environment.
The user interface is mainly a black/purple terminal where the only interaction is via
scripting codes. Although one might claim that there are a sprinkling of game elements
in ROS, particularly around the "turtle" notion such as Turtlesim4, Turtlebot5, it is not a
common matter overall. Our developed games and gamified training system are in the
ROS environment.

Similarly, SGG and gamified training is not a common merge with HRC. There are
more studies in the social sciences mainly regarding communication improvement
where SGG is involved, however, it is scarcely researched from the technical perspec-
tive. For context, a broad search result in the IEEE Xplore Digital Library for (("All
Metadata":serious game*) AND (("All Metadata":human-robot interaction) OR ("All Meta-
data":hri)) ) returns only 31 publications (29 conference papers and 2 journals) where
the majority are related to the social sciences. A literature gap is discovered in this
study and relevant validated results are produced.

It is reported that real-world experiments with multiple users are scarce in HRI,
particularly non-social HRI topics [3]. As mentioned before, a relatively large user study
is conducted within this thesis in a real-world co-lift task. A part of the data collected
in the experimental procedure is presented in Paper F and some yet unpublished data
is mentioned in Section 5.0.4.

Finally, the dataset collected during the user experiments described in Paper F is
made publicly available on DataverseNO as an open-access resource [61].

1.9 Dissertation Outline

This thesis is organized into two main parts. Part I introduces the study, presents
the state-of-the-art, provides background about technical requirements to build the
methodology, the methods used in developing this study and the discussion of the
findings.

Part II consists of a collection of six articles, where five of which have been published
[15, 62–65] and one is currently under review. These papers are summarized in
Section 1.7.

Chapter 1: Introduction — This section introduces the study, defines the key
concepts and problems, gives a brief overview of the current status of the field, the
challenges and the summary of the solutions I provided in this study.

3https://github.com/frdedynamics
4http://wiki.ros.org/turtlesim
5https://learn.turtlebot.com/
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Chapter 2: State of the Art — A detailed literature search and strategy are given
in this chapter. The literature review is carried out using both systematic and narrative
methods. The gap in the literature and the direction of this study through closing the
gap are highlighted.

Chapter 3: Background — The scientific background is given in this section. It
contains relevant subjects about human biomechanical modelling, robot kinematics,
probability theory and statistics.

Chapter 4: Methodology — This section uses the fundamentals in Chapter 3 and
presents how the scientific contributions in Part II are made. Initial sensor calibration,
from sensor to human body calibration, the proposed human motion estimation
methods, HRC states and roles, and the design of the human-robot experiments are
given in this chapter.

Chapter 5: Discussion — In this section, the general findings are discussed and the
published articles are reviewed. Additional data analysis of the non-published data is
also discussed in this chapter in Section 5.0.4.

Chapter 6: Conclusion — It is the final chapter of this thesis where the key findings
are winded up. The recommendations for relevant stakeholders are presented and
new questions for further research are revealed.
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CHAPTER 2
STATE OF THE ART

For many decades, robots had been considered dangerous machines that can be harmful
if there is any contact during operation. They were operated behind cages, and the
process had to be stopped before any physical interaction occurred due to safety reasons.
Recent advances in the robotics field have led robots to be involved in human life in
various ways: from production lines to surgery rooms, from rehabilitation purposes to
house cleaning purposes. Although those fields may appear to be quite different areas,
they all share the same need: robots need to be out of their cages.

As the robots started to be taken out of their cages and operate in the same
environments as the humans work and live Human-Robot Interaction (HRI) has become
an increasingly important field in research. The proximate interaction between a robot
and a human can be supportive,collaborative and cooperative depending on the task and
the design of the system.

Supportive robotics refers to robots that provide assistance to humans in a task
without actively collaborating with them. These robots may be used to lift heavy
objects, perform repetitive tasks, or provide assistance to individuals with disabilities.
Supportive robots typically operate autonomously but can be programmed to respond
to certain human inputs or environmental conditions.

Collaborative robotics refers to robots that work alongside humans in a shared
workspace to accomplish a shared task. These robots are designed to be safe and
efficient when working in close proximity to humans. Collaborative robots may be
used in manufacturing, healthcare, or other industries where humans and robots work
together to achieve a common goal. Collaborative robots may be controlled by humans,
but also have the ability to work autonomously.

Cooperative robotics refers to robots and humans working together to accomplish
their individual tasks but sharing their strengths and complementing each other’s
weaknesses. These robots are designed to be adaptable to human behaviour and
preferences and can adjust their actions based on the feedback they receive from
humans. Cooperative robots may be used in settings such as education, rehabilitation,
or emergency response, where humans and robots need to work closely together to
achieve a specific outcome.

In summary, supportive robots provide assistance to humans, collaborative robots
work alongside humans, and cooperative robots actively collaborate with humans. In
the literature, collaboration and cooperation terms are sometimes used interchangeably.

However, it is important to underline that the methodology in this literature review
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hardly differs in either case (supportive/ collaborative/ cooperative). Therefore in
order not to bother the reader with detailed terminology and distract them from the
main target of this study, the HRI term is used to define all Supportive Robotics, Human
Robot Collaboration (HRC), Human Robot Cooperation (HRC), Human Robot Interaction
(HRI) cases through this section since it covers a wider literature.

The literature review consists of two parts. In Section 2.2 a systematic approach is
presented and aimed to show the importance of this study in the field. Afterwards, the
gaps in the first survey have been filled in Section 2.1 to collect necessary studies to
understand the literature before shaping and building up a reliable methodology.

2.1 Narrative Approach on the HME Methods and MoCap Tech-

nologies

After a systematic literature survey, the results were examined in detail. An overall
finding is that a big portion of these studies do not present human motion capture
and analysis methods. There are a number of studies about the ethical aspects, social
robotics and system design proposal in the results of the systematic literature survey.
These topics are not necessarily related to the core of the methodology of this study yet
important studies to construct the objectives. On the other hand, there are some studies
that did not appear in those results yet are pretty relevant for the methodology of this
study for example motion capture-related studies including IMUs but not necessarily
include "human" motions. However, including all those keywords lead to a lot more
confusing results since there would be many unrelated studies included as well. Hence,
after a systematic literature review, a traditional literature survey is presented in this
section.

This section is constructed such that it starts by understanding human motions
and presents some important resources in human motion analysis in Section 2.1.1.
Afterwards, different applications of HME in today’s human life is presented in
Section 2.1.2. In the third subsection Section 2.1.3, the most useful human motion
capture system for this study is discussed by presenting different types of sensors and
systems. As the last part of this section, different estimation methods are discussed in
Section 2.1.4.

2.1.1 Understanding Human Motions

The human body has a very sophisticated mechanical model. There is a whole field
called kinesiology, specifically focusing on the mechanics of movement. As a sub-field
of kinesiology, biomechanics is the science of the movement of a living body, including
how muscles, bones, tendons, and ligaments work together to produce movement.
The history of biomechanics goes back a very long in human history [66]. Human
biomechanics reaches back to 15th century with Leonardo da Vinci’s studies and
animal biomechanics are even longer back to 4th century B.C. to Aristotle’s book “De
Motu Animalium” (On the Movement of Animals) defined animals’ bodies where the
mechanical systems and the actions of the muscles are described as well as they are
subjected to geometric analysis for the first time. As such, there are numerous amount
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of studies in the literature about human body modelling.
The most important thing for robotics is not only understanding the anatomical

reasons and results of human motions but also translating these semantics into
usable data for the robotics field so that human motions can be used in humanoids
development, exoskeleton developments, new robotic structures development or HRC
purposes as in this case. What we are dealing with biomechanics in this study is to
estimate human motions and short future intentions. Therefore in a HRC scenario, the
robot can plan its motion according to human intentions.

In human motion tracking and prediction, the first step is to define the human
model. This model can be a silhouette as in [17, 18] or a biomechanical model as
in [19, 21, 67]. In robotics, the biomechanical model is represented as a kinematic
chain. However, the human body has a quietly sophisticated model chain. Despite
the ordinary actuators which are used in mechanics, the motion of the human body
occurs by contraction and relaxation of the muscles which are wind around the bones.
The largest percentage of muscles in the muscular system consists of skeletal muscles,
which are attached to bones and enable voluntary body movements. There are over 600
skeletal muscles in the human body [68]. Some muscle contractions create holonomic
motion and it is very hard to distinguish all the individual muscle movements’ effects.
Therefore, it is not possible to model the human body as a kinematic chain the perfect
biomechanical model of a human using general actuators available in the market today.

As a result of that, the total Degrees of Freedom (DoF) of the human model is not
exact. The DoF of this model changes according to the motion of interest (i.e. full-body,
upper body, gait etc). As the complexity of the model increases, the DoF increases,
as well. For example, Madapura et al. modelled the full human body as 25DoF for
their 3D articulated human body tracking study, Chung et al. modelled as 36DoF
for animating human walk and Van Den Bogert used 47 markers to model 44DoF
human model to investigate 300 muscle length changes and forces to the biomechanical
analysis of human movements [69].

The Fig. 2.1 shows how the degrees of freedom is distributed in which parts of
the human body in Cazzola et al’s study. They used 43DoF Rugby model to analyze
the spinal loading after cervical spine injuries and investigate cervical spine injury
mechanisms during rugby activities.

Depending on the interest of motion in different studies, some human parts might
be modelled very detail in one study whereas it is not modelled in another study at all.
For example, compared to 0 DoF in [70], George ElKoura and Karan Singh modelled
the human hand as 27 DoF in their hand simulation study.

The general approach in human body modelling in robotics and mechanics is that
if the study requires a rough approximation, then the DoF of the model decreases for
optimization reasons. On the other hand, although the total number of DoF is the same
in some studies, their distribution might differ. For example, human arm is modeled
as 4 DoF in [22], 9 DoF in [23] and 7 DoF in [24]. Moreover, the DoF might be the same
as in two studies but the distribution of these DoFs differs. As an example for this case,
in Ashitava Ghosal’s study on analyzing the resolution of redundancy in robots and in
a human arm, he used the 3-2-2 arm model (3 DoF on shoulder joint, 2 DoF on elbow
joint, 2 DoF on wrist joint) whereas Shintemirov et al. used 3-1-3 arm model in their
human arm motion-tracking study. The main reason is again the difference between
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Fig. 2.1: Degrees of freedom in full body
Source: [70]
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how human motions are created by muscle contractions anatomically and how robot
actuators work in real life. Since the focus of our study is upper body motion/intention
estimation, the rest of the body for modelling does not take a part in this literature
survey.

2.1.2 Applications of HME

As mentioned before, human motion analysis and estimation studies go far back in
history. Therefore, the studies resulted in successful applications in various fields as
shown in Fig. 2.2. Some previous studies are presented and discussed in this section.

Fig. 2.2: Example use case of HME in robotics: Teleoperation tasks (a) reaching-to-grasp
an individual object; (b) collecting multiple objects in a cluttered counter workspace.
Source: [71]

Rehabilitation: Medical applications lead in other categories since HME is an
important process not only in a healing process but also in distinguishing healthy
and abnormal human motions. Rehabilitation purposes take a big part of this cake.
According to [72] Human motion tracking for rehabilitation has been an active research
topic since the 1980s. For instance, Zhou et al. developed a wearable system using
Inertial Measurement Unit (IMU)s to track arm motions of after-stroke patients in
home-based rehabilitation [73]. Moreover, a physiotherapy exercise recognition study
was carried out by [74] using RGB-D Human skeleton using a camera system (ASUS
Xtion). The human model that they used has 15 DoF: 2 joints/leg, 2 joints/hand, 6 for
the torso and 1 for the head. Nine predefined motions are given to subjects and the
authors successfully distinguish them in live capture mode. A study by Lin and Kulic
[75] was performed for human pose recovery on 20 subjects. The authors proposed an
algorithm for estimating lower body pose based using 3 IMU; 1 on the lower leg, 2 on
the upper leg, and 1 on the belt. Their method can estimate knee pose with an average
4.3 cm error. The authors reported that their system was valid in a clinical setting for
joint replacement patients undergoing physiotherapy.

Patience Assistance: Besides healing purposes in rehabilitation, there are some
studies that are developed to help those patients who require assistance to do daily
stuff during the rehabilitation period. Tsung-Chi, Achyuthan and Li mapped human
motions for teleoperation assistance [71]. They conducted a user study on muscle
effort to compare physical effort, task completion time and the number of errors. They
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conclude that such an aiding increases the users’ preference in the acceptance of
teleoperated robot technology.

Detecting impairment: Gait analysis is also a very trendy topic in HME, especially
orthopaedics. In the clinical gait assessment study of Andreas Kranzl, impairment in
walking is observed using 2D video capture [76] and [77] used wireless body sensors to
diagnose abnormalities in gait. Since gait analysis is an important tool for diagnosing
disease and evaluating disease progression, there are several studies in this field
as nicely discussed in [78]. However, there is an important note worth mentioning
here about our study. As it was mentioned in Chapter 1, we focused on upper body
motion analysis and estimation. In this manner, upper body motion estimation is
considerably harder than gait analysis for several reasons: 1)No contact force detection
periodically to correct errors in inertial measurements, 2) shoulder and wrist joints are
more sophisticated than ankle joints in contrast to gait for the lower limb, 3) there are
no standard activities for the arm as in walking, etc.

Robotic Surgery: Another field of using HME in medical is in surgeries. Especially,
robotic surgeries gain an enormous interest in the last 2 decades after ZEUS and da
Vinci went on to dominate the field of robotic surgery although the history of robotics
in surgery begins with the Puma 560, a robot used in 1985 by Kwoh et al. to perform
neurosurgical biopsies with greater precision [79–82]. A HRC example of robotic
surgeries using human motions can be seen in the design of a teleoperation scheme
with a wearable master for minimally invasive surgery by [83, 84]. In their study, they
control the position/velocity of an endoscope holder robotic arm which is controlled by
a ring-shape IMU sensor in pituitary surgeries (Fig. 2.3). Moreover, another wearable
device for controlling a robot gripper with fingertip contact, pressure, vibrotactile, and
grip force feedback is developed by [85].

(a) Overall system controlled by human finger
motions

(b) Ring-shaped master controller

Fig. 2.3: Active robotic endoscope holder system controlled by human finger motions
Source: [84]

Entertainment: Entertainment is also a famous use case for HME and HME studies.
As an extra on commercial game systems, human motion sensing allows the user
to engage in entertaining motor games using gross body movements that are not
bound by the limits of a mouse, joystick or game-pad interface animation purposes.
Some commercially available examples can be given as EyeToy games 1 by Sony’s

1https://sonycorporation.fandom.com/wiki/SIE_London_Studio
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London Studio for PlayStation, Kinect games2 by Microsoft for Xbox, animated avatars
(i.e. Memoji3) by Apple etc. Furthermore, there are other commercial products for
animation and filmmakers such as Xsens4 is a Dutch company which is famous for
their miniature inertial sensors for human motion tracking and MVN Animate [86] is
the motion capture system for creating animation. Definitely, animation techniques,
particularly based on human motions are important for HRC user studies. Schulz,
Torresen and Herstand analyzed animation techniques in HRI cases and systematically
reviewed the previous studies from animation to move a robot [87]. Their study is an
important guideline showing the possibilities of this study as a use-case in animation
for/with pHRI. Another comprehensive study is carried out by Hoffman and Ju in
[88]. They presented four movement-centric designs (including character animation
sketches, video prototyping, and interactive movement explorations) which could be
used in real-world feasibly in HRC studies. This study is relevant and useful for this
research because not all robots have an anthropomorphic mechanical structure yet
well-designed robot motion can communicate, engage, and offer dynamic possibilities,
and hence, give clues to its human friend.

Fig. 2.4: A sample of the multiple human pose estimation using OpenPose
Source:[89]

Serious game industry: Serious games can be categorized outside of entertainment.
Motion Rehab AVE 3D was published by Trombetta et al. as a game for post-stroke
rehabilitation [90]. It is a VR-based exergame using a Kinect camera and Oculus Rift VR
glass and Unity game engine. All of the 10 subjects in this study were between 61 and
75 years old and all the participants classified the interaction process "as interesting and
amazing for the age", presenting a good acceptance. Moreover, Aguilar-Lazcano et al.
developed a serious game for performance analysis for finger rehabilitation [91]. They
used a Leap motion controller to detect finger movements and their study could be
used in lighting environments ranging from 43 to 392 lux whereas most of the camera

2http://xboxaddict.com/xbox-360-kinect-game-list/
3https://support.apple.com/en-us/HT208986
4https://www.xsens.com/products/mvn-animate
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systems do have not this wide tolerance to lightning changes.
Mechanical Design in Robotics: Many of the mechanical structures of robots are

influenced by human and animal anatomy. Therefore understanding human motions,
reliable tracking and analysing them is essential. Festo is a famous robotic company
which also gained even more reputation with its bionic robots such as BionicOpter,
BionicKangaroo, BionicANT, BionicFinWave5 etc. Unquestionably, one of the most
useful cases in this field is humanoid development. For instance, [92] studied on
dynamic leg motion generation of a humanoid robot based on human motions. Their
aim is to design humanoid leg motion with high stability and similarity with the
human actor. The effectiveness of the proposed method has also been experimented
with successfully on the robot BHR-2. In [93], they moved one step forward and
using human walking motion primitives, they developed an online path planning
for humanoids. Humanoids are not only expected to achieve as much as human-like
motions due to their similar shape to the human body but also they are expected to
overcome the shortcomings of the human body. A comparative study between humans
and humanoid robots is presented by [94]. Their study shows the different joint
limits between humans and 6 different humanoid robots. Therefore, some kinematic
singularities of the human body are possible configurations for some humanoid robots.
Of course, there are many skills that the human body can achieve with no hassle
whereas it is still impossible for a humanoid robot. In [95], the authors discuss
optimization and imitation problems for humanoid robots. Nevertheless, those studies
show that there is still a long way to understanding and using human motions in
mechanical robotic designs.

Industrial HRC: Another field gaining interest in HRC where understanding
human motions play a fundamental role in manufacturing applications. There are
many reasons for using not only robots or humans alone in manufacturing but using
those two powerful ’components’ together. For instance, even a small company can
focus on customer demands and offer a product for a lower price. Robots’ repeatable
positioning accuracy and ability to keep working for longer periods provide better
quality yet can require post-processing and quality control.

The applications in this area are only limited to human imagination. From carrying
an object together [96], to collaborative screwing application [97], collaborative sealant
application on a white goods production line [98], in mining industry [99], human-robot
interactive agricultural operations [100], or industrial service applications [101]. Every
day a new use case is presented from all over the world. If we look at some of the given
examples in a bit more detail, in [96] the authors analyze the effects of dynamic role
allocation for a physical robotic assistant in an experimental setup where a human and
a robot are collaboratively carrying a robot in 2-D x-y plane. The human motions are
observed in 2 axes by a wrench sensor which is attached to the table where the human
grasp the table. An identical wrench sensor is also attached on the robot’s holding side
and the information from both wrench sensors is used to detect the voluntary effect in
the effort policies as shown in Fig. 2.5.

In [97], the researchers presented a collaborative screwing application where a
projector-camera-based system was used to prevent collision and display interaction
and safety-related information during the task. In [98], the authors presented a wearable

5www.festo.com/us/en/e/journal/bionics-id_9229-66/
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Fig. 2.5: Given exemplary external wrench realized by three different effort policies.
Source:[96]

AR-based interface safety system. The wearable AR provides virtual instructions on
how to execute the current task in the form of textual information or 3D model
representation of the parts and a wristwatch is used for controlling the steps of the
shared task as well as some other feature selections.

Safety reasons are also important to reliably follow human motions in human-robot
coexisted environments. De Gea Fernández et al. [102] and Magrini et al. [103] used
different motion capture systems (IMU, RGB-D and laser) to standardize the control and
communication architecture for safe HRC. Human actions and intentions were estimated
through hand gestures and the systems experimented with a real industrial task in the
automotive industry. Another example study related to automotive manufacturing
operations is from Ji and Piovesan about the validation of inertial-magnetic wearable
sensors for full-body motion tracking [104]. The authors tested the wearable systems
for HME in a manufacturing environment with compared to camera systems despite
the shortcomings of both systems. Also, Czech car manufacturer Skoda demonstrated
how the system supports the training of assembly workers and quality assurance in
the assembly [105] based on human motions. They concluded that wearable assistance
provided online instructions to the trainees about upcoming assembly steps, thereby
streamlining the training.

Besides being productive, human motions are useful to assess ergonomics and
work risks. A human postures inertial tracking system for ergonomic assessments is
presented by [106]. The system allows for an estimation of the orientation of body
segments and to assess the postures during the working tasks. The proposed system is
composed of 4 independent modules in full-body configuration, each one made of 3 or
4 inertial units to increase mobility. In [107], the authors proposed a novel wearable
system for the online assessment of risk for biomechanical load in repetitive efforts.
Moreover, Maurice et al. published a thorough dataset of human motions in industry-
like activities [108]. They collected full-body kinematics data using both wearable
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inertial sensors and marker-based optical motion capture from thirteen participants
who performed several series of activities, such as screwing and manipulating loads in
different conditions, resulting in more than 5 hours of data.

Sport: As the last example use case which is touched upon in this literature review
is in sports activities. Wearable systems and cameras are widely used in monitoring
the workload, performance and motion efficiency of sportspersons as well as their
safety in performing certain actions. In [109], the internal and external workload of
the athletes is monitored using wearable sensors. Magalhaes et al.[110] used wearable
inertial and magnetic sensors in swimming motion analysis (Fig. 2.6). Their study
includes both front crawls and breaststroke swimming styles and all joint degrees of
freedom modelled (shoulder, elbow and wrist) are analyzed. Moreover, we can see
HME is studied in the sports area not only for analyzing purposes but also for teaching
purposes in the literature. In [111, 112] sportspersons’ motions are animated after
capturing with video devices. The research group animated athletes’ body motions in
the first study [111] and they animated divers’ body motions in their following study
[112]. In a recent and well-cited study ([113]) IMUs are used together with a visual
system to monitor hitting load in tennis using machine learning algorithms.

Fig. 2.6: An example use case of IMUs in swimming motion recording
Source: [110]

2.1.3 Motion Capture Systems

In the previous section, we categorized the relevant studies based on their purpose
of development. As can be seen, many studies used the same motion capture system
although they are in considerably different fields such as wearable sensors are used
both in [109] for swimming motion monitoring and [83] in robotic surgeries. Therefore,
it is also useful to categorize the relevant studies based on used Motion Capture
(MoCap) systems in the HME process. This kind of categorization will give a more
methodological point of view/approach to solving the defined research problems.
Another advantage of such a classification is that virtues and deficiencies of different
MoCap systems become more insightful.

Inertial Measurement Unit (IMU): An IMU is a device that contains an accelerom-
eter to measure linear acceleration and a gyroscope to measure the angular velocity
of the body/object to which the sensor is attached. Moreover, today many IMU de-
vices contain magnetometers to measure the magnetic field and its direction in the
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environment. In some resources [114–116] IMUs are named as m-IMU or magnetic and
inertial measurement unit. However, considerably many of the examples in the literature
[19, 31, 117, 118] do not underline this distinction even though magnetometers do not
measure an inertial property but an external property. To be consistent with the most
used way in the terminology, IMU term includes all three elements (accelerometer,
gyroscope, magnetometer) in this study.

Based on Muro-de-la-Herran et al’s research [78], 40% of the reviewed articles
published in late 2012 and 2013 on gait analysis methods were related to non-wearable
systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5%
corresponded to other wearable systems. An increasing number of research works
demonstrate that the IMU based HME is a promising method for human motion
analysis.

In fact, IMUs are acknowledged as "low-cost motion sensors" [119, 120] and increased
in popularity in the past few years. Accelerometers, gyroscopes and/or magnetometers
can be found in most available smartphones and gaming controllers. The Apple®
iPhone, Nintendo Wii and the PlayStation EyeToy are just a few examples where such
technology is used to provide a more natural interaction with people’s devices. A
number of HME methods and use cases have been presented using IMUs such as:

• full body [19, 104, 121],

• upper body [34, 122],

• lower body [123–125]

• arm [126–129]

• joint specific [130, 131];

– elbow [114, 132, 133],
– finger [83],
– shoulder [134]
– hip and knee specific [135]

The advantages of using IMUs in HME are enumerated as being low-cost, portable,
available in daily devices (such as smartphones) and computationally efficient. Com-
pared to image and video processing, position and orientation estimation based on
IMUs is possible even on basic microcontrollers [136]. On the other hand, there are
some challenges also using IMUs in position and orientation estimate. Since IMU
output is in velocity and acceleration level, the drift problem (i.e. accumulation of
integration error) in state estimation in the position and orientation level is inevitable
[30, 31]. Also, fast motion tracking is a challenging concept for IMU based HME studies
[130, 137].

Magnetic disturbances, electronic devices, motors etc are some of the biggest
enemies of IMU-based position/orientation estimation. Magnetometers are highly
sensitive ferromagnetic materials and magnetic field changes around them. Therefore,
the heading (i.e. yaw motion) estimate is more challenging as it is stated in [138, 139].
There are studies in which magnetometer-free estimation algorithms are developed
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[140–142]. Such an approach increases the required number of IMUs for tracking the
same amount of DoFs in the human body. For instance, [30] uses 4 IMUs for 2 joint
estimations (hip and knee). Another approach is to use an external magnet to ensure
the magnetic field direction in a small environment as in [143] yet a proper calibration
might overcome magnetic disturbances at some level [139, 144].

Looking at the HME applications using IMUs, we see some advantages of using them
instead of visual-based systems. For example, home-based rehabilitation applications
are considerably easier and cheaper. Sara Oliveira’s study enables using IMUs for knee
rehabilitation at home [145]. Moreover, Pereira et al[146] accomplished a feasibility
study on home rehabilitation. The patient wears one or two IMU devices depending on
the exercise type. They propose 6 different exercises; shoulder flexion and extension,
shoulder adduction and abduction, hip flexion and extension, hip adduction and
abduction, knee flexion and extension, and elbow flexion and extension. They
compared the results with marker-based video tracking software Kinovea and they
reported that the results were reliable compared to the reference system. In [147],
researchers introduced low-cost motion-tracking for virtual rehabilitation.

The number of IMU sensors used in motion tracking depends on the complexity
of the human model. For example, [19] used 17 IMUs for full-body motion tracking
whereas [148] used only 3+2 IMUs for their walking and running activity tracking
study and [149] used 7 IMUs on upper body motion estimation. Obviously, as the
number of IMUs decreased, the complexity and the cost of the overall system reduces.
In this manner, [150] proposed a novel approach to reducing the number of sensing
units for wearable gait analysis systems.

There is an important fact about the difference between the motion types (pitch-
yaw-roll) and how human anatomy allows computing these motions. Especially, joint
angle estimation is a very challenging subject as it is stated in [146]. The coupling effect
(i.e. the inability of computing one axis angle independently of other axes), soft tissue
artefact and translational motions in revolute-modelled joints increase the estimated
joint angles error. Another big challenge is the drift problem (i.e. accumulation of
integration error) and speed issue in IMU-based position and orientation estimate.
Those problems and different algorithms to overcome the listed issues are presented in
Section 2.1.4 in detail.

A more detailed look at using IMUs in HME can be carried out using visual literature
review tools such as "Connected Papers6". The Survey of motion tracking methods based on
inertial sensors: A focus on upper limb human motion is a literature-leading survey article
in this field and for this study, [1]. Taking this paper as the seed, the major articles
about using IMUs in HME as shown in Fig. 2.7 and the list of 10 leading articles related
to this search is given in Table 2.1.

These are the papers that were most commonly cited by the papers in the graph.
This usually means that they are important seminal works in this field and it could be
a good idea to get familiar with them. Selecting a prior work will highlight all graph
papers referencing it, and selecting a graph paper will highlight all referenced prior
work.

Lastly, it is important to mention the strong and weak points of the most used
MoCap systems; visual-based and IMU-based systems. According to [151] accuracy

6https://www.connectedpapers.com/
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Fig. 2.7: Leading prior work of IMUs in HME visual map based of [1]

between optical and inertial motion capture systems for assessing trunk speed during
preferred gait and transition periods is fair during walking, but the accuracy was
reduced in the transition periods (i.e stops and waits due to IMUs drift problem.)
Visual-based systems are detailed in the following subsection.

Camera and Depth Sensors: Visual-based systems (i.e video or image capture
devices) are one of the most used human motion capture devices. One reason is
undoubted that the sense of seeing feels like the most reliable among all 5 senses of
humans although it is not correct 100% of the time. Therefore, eye-like sensing devices
in principle "feel" more reliable. Another important reason is that since the sense of
seeing is so superior in human life, the environment is also developed towards this
direction; labelled signs, light indications and even human-human interactions.

Camera systems are extensively used in HME related tasks and studies. A survey
of advances in vision-based human motion capture and analysis explored over 350
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Table 2.1: Leading prior work

Title First Author Year Citation

Quaternion-based extended Kalman filter for determining orientation
by inertial and magnetic sensing A. Sabatini 2006 795

Compensation of magnetic disturbances improves inertial and magnetic
sensing of human body segment orientation D. Roetenberg 2005 534

Ambulatory measurement of arm orientation. H. Luinge 2007 346
Design, implementation, and experimental results of a quaternion-based
Kalman filter for human body motion tracking X. Yun 2005 588

Xsens MVN: Full 6DOF human motion tracking using
miniature inertial sensors D. Roetenberg 2009 761

A simplified quaternion-based algorithm for orientation estimation from
earth gravity and magnetic field measurements X. Yun 2008 307

Magnetic distortion in motion labs, implications for validating
inertial magnetic sensors. W. D. de Vries 2009 236

Ambulatory measurement of shoulder and elbow kinematics
through inertial and magnetic sensors A. Cutti 2008 264

Estimation of IMU and MARG orientation using
a gradient descent algorithm Sebastian Madgwick 2011 1650

Shoulder and elbow joint angle tracking with inertial sensors M. El-Gohary 2012 217

studies in years between 2000-2006 [152]. Clearly, this amount is even higher today.
Visual-based motion tracking systems are based on four main components, namely
a camera system, a body model, the image features used and the algorithms that
determine the shape, pose and location of the model itself [153]. Some of these studies
are based on object tracking, some are human body tracking and some of them are
outside of both these two categorizations. Since the interest is on HME for HRC-related
studies, only studies that track human motions are examined. The studies selected for
mention here also include some fundamental concepts of object tracking as a side topic.

The objective of using cameras in HME can be to track or estimate some body parts
of the human body such as hand pose and/or motion tracking [154, 155], elbow angle
estimation [156], gait analysis [157], eye gaze tracking for estimating facial expression
[158] or the camera systems can be used full-body human pose and/or motion tracking
and estimation purposes such as in [159–161]. Those studies commonly use a single
camera to estimate human motion or for dynamic human modelling as in [162].

In limited conditions where the lightning is appropriate for cameras to detect
colours correctly, where there is no obstacle between the camera and the human, where
there is no occlusion on the camera lens, where the human has proper clothing or
is relatively naked the camera systems work outstandingly successful in a limited
workspace (i.e. total camera recording scene). Even not with average commercial
camera options, it is possible to obtain sufficient results. Microsoft Kinect7 is one of
the most used relatively low-cost RGBD cameras in the literature on human motion
tracking [163] (note that Microsoft has discontinued the Kinect sensor itself in the Fall
of 2017 [164]). Asteriadis et al. used multiple Kinect cameras for estimating full-body
human motion in [165] while Tian et al. [166] used it for upper body motion estimation
and Chang et al. used them for physical rehabilitation purposes in [167]. Although the
various possibilities of use even with a not-sophisticated camera system, in real-life
applications the restrictions of camera systems are quite challenging. Also using a
single RGB camera is lack depth information.

7https://en.wikipedia.org/wiki/Kinect
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The general approach to overcome the mentioned challenges in visual systems is
to use one or more extra cameras. There are advantages of using camera systems,
especially in position estimation in GPS-denied environments [168]. For example in
[169] used two cameras for real-time hand gesture recognition. The authors tracked
the hand motions based on stereo images and obtained successful results. Also, [170]
used two cameras for animation purposes. In [171] the researchers used stereo-Kinect
for accurate, low-risk occlusion in full-body motion capture. Still requires a dedicated
camera-suitable environment for reliable results. Moreover, [172] uses three RGBD
cameras for indoor human motion tracking, in [173] uses high-speed RGB cameras for
full-body motion estimation and in [165] the researchers used multiple Kinect cameras,
as well. Some studies are using several cameras to increase reliability and accuracy.
For instance, [174] used 8-16 cameras for full-body motion tracking.

The bottleneck in scenarios where multiple cameras are used, they have to be
synchronized with each other and the processing computer. There are camera networks
to satisfy this necessity such as in [175] the researchers used VICON8 for 3D gait
analysing. Moreover, Malaguti et al. developed a methodology using RGBD Camera
Networks in [176] for real-time tracking-by-detection of Human Motion.

Using multiple camera systems to increase the workspace, and reduce the sight-loss
and occlusion problems is feasible yet expensive. To reduce the cost, some studies
mounted the camera on the body as in [177] or some mirror systems as in [178] to track
arm segments on both sides or a wheelchair user by two still-cameras (Canon T90) and
a mirror.

Despite some rare examples such as in [177], visual-based motion tracking systems
are generally rigidly attached to a wall or a still platform. As it is mentioned in [76]
in their clinical gait assessment, the visual systems are very intolerant of any small
changes in the tracking environment or the tracked body such as lightning and the
clothes of the human and it requires very much pre-calibration before each use.

Another challenge is when there are multiple bodies to be tracked in the environment,
especially those bodies are at a close distance to each other whereas some other MoCap
systems do not have such an issue even in the beginning such as Ultra-wide Band
(UWB) or IMU based system. There are some studies which are developed novel
algorithms for visual-based systems to solve this problem and provide more reliable
motion tracking and estimation such as in [161] where the researchers used a single
RGB camera for real-time multi-person 3D motion capture. Elhayek et al. proposed a
fully automatic multi-person human motion capture method for VR applications [179].

Markers with visual systems: To enhance the quality of the visual-based motion
tracking systems, a set of small objects are attached to the human body parts as shown
in Fig. 2.8. Some of the problems can be adequately solved by using markers or tags
on some body segments or tools which is held/attached to the human. For instance,
[21] uses 22 markers to obtain a kinematic model in 3D for full-body human motion
capture. In [180], the researchers used reflective markers for a fast motion capture
system for optical sensors. As an early example [181], the arm model is obtained by a
marker-based optical tracking system.

One biggest disadvantages is that to obtain a fault-tolerant and reliable marker-based
optical tracking system, it is necessary to use more than sufficient markers [182]. This

8https://www.vicon.com/
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Fig. 2.8: Silhouette reconstruction of full-body human mannequin using markers and
camera
Source: [153]

fact increases the complexity of the system and therefore the calibration process and
the algorithm.

Despite some advantages and disadvantages over each other, marker-based and
markerless visual human motion tracking methods are reported similar results in 3D
joint angle estimation in [183]. However, for highly dynamic motion tracking, such as
running, markerless solutions are acknowledged as advantageous [184].

Point cloud and laser systems (depth sensors): Point cloud and laser systems (or
depth sensors/cameras) have similar advantages and disadvantages to the camera
systems yet the procedure behind them is different. Instead of capturing the motion
as an image or a video, it is captured as a set of depth information of body segments
[185]. In [186], real-time full-body motion capture with high accuracy is accomplished
by using a single depth sensor. Also in [187], the authors captured full-body motion
using the surface geometry properties of the body. The experiments show that their
method enables increasingly denoised, detailed, and complete surface reconstruction.
Zhang et al. used multiple depth cameras for real-time full-body motion tracking [188].
As well as the full-body motion capture, there are some studies which focused on some
parts of the body such as [189] used a depth sensor to estimate upper-body human
pose in real-time.

LIDAR sensors are very common MoCap devices which can be categorized under
this section. The studies [190–192] show that LIDAR sensors are possible to be used
in body motion tracking. Moreover, some studies record multiple human tracking is
achievable using 360-degree LIDAR sensors [193]. A successful HRC example using
LIDARs in human motion tracking is by [194]. They developed a person-following
shopping support robot based on human pose skeleton data and LIDAR sensor.
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Leap motion controller9 is a common and affordable depth sensor that uses a laser
system to track hand motions (see Fig. 2.9). There are some studies using Leap motion
controller such as for finger motion tracking [195] and finger rehabilitation [91].

Fig. 2.9: Leap motion controller detecting two hands
Source: [196]

Ultrasonic sensors can also be classified under this category since the motion
detection is carried out by depth information. In [197], the researchers used a wireless
ultrasonic sensor network to follow foot trajectory and in [198], the researchers used
an ultrasound-based motion analyzer to determine the spatial position of the human
shoulder.

Some of these MoCap systems are also tested in work conditions. In [199], analyzed
depth cameras in real industrial conditions for human motion analysis. The authors
recorded that this technology is quite promising yet it is not precise enough for joint
angle estimation and it suffers from similar challenges as in RGB camera systems.
Although depth sensors are powerful in human motion tracking and there are successful
examples in certain conditions, they are still not reliable enough. Therefore, these
systems are encountered as an aiding system in human motion tracking to an actual
MoCap system such as camera [155, 200] or Inertial Measurement Unit (IMU) [201, 202].

Bio-signals: Biosensors are tools which are used to detect biological activities,
mainly based on electrical or chemical changes in a human (or on a microorganism in
general). They consist of three parts: a component that recognizes the bioelectrical/bio-
chemical activities, a signal transducer, and a processing device. There are different
biosensors used in laboratories and hospitals for disease diagnosis. Some are also used
in HRC related research by predicting human motions and intentions.

Electromyography (EMG) is a technique for evaluating the electrical activity pro-
duced by skeletal muscles by sending and receiving weak electric signals. The muscle
character (electro-permeability) changes as the muscle contracts or releases [203]. EMG
devices are widely used in hospitals to diagnose different diseases for a long time.
Also, EMG signals are studied in HME related studies. The same research group
that was mentioned in home-based rehabilitation using IMU has also achieved an-
other home-based rehabilitation technique using EMG [204]. Their system corrects the
exercises using EMG.

9https://www.ultraleap.com/product/leap-motion-controller/
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We mostly see EMG based motion estimation not necessarily in a pose or orientation
estimation but more in control-based, correction related or motor intention prediction
in HRC studies [205–208]. For example, in [209] the contraction on biceps and triceps
are measured by a couple of EMG sensors to estimate human intention and achieve
human-robot collaborative lifting. Also, there are some studies which map EMG
signals muscle-to-muscle to some robots which have custom-engineered mechanical
designs [210].

Electroencephalogram (EEG) is another widely used bio-sensor which records the
electrical activity of the brain by attaching a set of electrodes on the scalp. Despite its
being used often in hospitals for diagnoses of different diseases like EMG, it is also
widely used in human-computer interface-related studies [211]. Human-computer
interface-related studies opens up the EEG signals in HRC as well. There is not any
registered studies in the literature on full-body motion/pose/intention estimation
using EEG based HME studies yet there are some HRC examples such as driving a
mobile robot [212] and correcting robot mistakes in real-time using EEG signals [213].

Uncategorized: As it seems, there are a number of different MoCap systems
available both in markets and under investigation in the researchers’ world. Some
systems have gained more interest than others as it is discussed. There are relatively
less popular yet quite interesting systems that are worth mentioning. For example, a
recent study [214] used radio-frequency (RF) signals to detect human motions even
behind the wall. Moreover, goniometers and exoskeletons are used in body motion
tracking. Carbonaro et al. used goniometers in hand motion tracking [215] and
Kramer et al. developed a goniometer-based body-tracking device [216]. The device
is composed of several body-attached/worn parts which are basically resistive bend
sensors. As the body bends on some joints, the resistance changes on those bands and
enables full-body motion tracking. This type of resistive bands are also called membrane
potentiometers and they are used in robotic arm control through human arm movement
in [217]. Song and Guo developed a real-time upper limb motion tracking exoskeleton
device for active rehabilitation[218]. They presented the reliability of their system
compared to IMU-based results on elbow joint angle tracking. The result shows a
similar characteristic in both systems. Strain gauges are used in HME, as well. In [219],
super-stretchable, transparent carbon nanotube-based capacitive strain sensors and
in [220], an extremely elastic wearable carbon nanotube fiber strain sensor is used for
human motion detection. Lastly, UWB based systems recently gained interest in HME
studies. UWB is an RF technology which has a very low energy level for short-range
and high-bandwidth communications in frequencies ranging from 3.1 to 10.5 GHz
in the RF-spectrum[221]. By short pulses sending and receiving time comparison,
it enables precise real-time indoor positioning and GPS-denied environments. A
novel biomechanical UWB and IMU-based lower body motion capture method are
presented in [222]. An experimental investigation is also presented for 3-D human
body localization using wearable ultra-wideband antennas in [223].

Multi systems: Among all these MoCap systems, there is not a "perfect" solution
for every use. To design the most optimal MoCap method and overcome unreliability as
much as possible for the relative study, researchers use more than one MoCap system
(see Fig. 2.10). For instance, Tian et al. proposed a fusion strategy using a Kinect camera
and IMU using the unscented Kalman filter. According to their results, the proposed
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Fig. 2.10: Olympic and World Champion Ireen Wust wearing the IMU suit, combined
with a Local Positioning System transponder. The lower graphs illustrate the right hip
joint angles. Courtesy of University of Groningen.
Source: [19]

method provides a drift-free upper body motion estimation method. The results were
also compared with only IMU by double integration of the linear acceleration signal
and only Kinect-based estimation methods. It is recorded as more robust and accurate
than the other two systems.

The combination of camera and IMU systems is not unique, contrarily, it is a
quite widely used method as investigated in [224, 225]. Since the IMU system gives
sufficient and accurate results in orientation estimation but is often unreliable in
position estimation, and the camera systems are reliable in position estimation yet
loss-of-sight is a big problem, the general approach is to merge the stronger sides
of both systems in position+orientation (i.e. pose) estimation. Such a combination
provides quite accurate results yet it is also open to improvements such as in robustness
[30], increases dynamics [226] and reducing the cost of the overall system. For the cost
issue, there are some other sensors used in absolute position/distance measurement.
For instance, in [222] IMU systems are merged with UWB antenna system, [120] used
3-axis flow meters and in [227–229] the researchers used depth sensors together with
IMUs. For instance, in [230], the authors proposed a real-time teleoperation system to
control a mobile robot’s hand arm by the vision and IMU.

Since this study is focused on IMU-based motion estimation, the presented examples
in this section are towards this purpose. However, the possibility of merging two
MoCap systems is various. A very nice comprehensive survey by [231] shows that
IMU+EMG systems and IMU+camera multi-systems cover more than half of the studies
in 2007-2017 on sensor fusion in upper limb area. Other systems and their portions are
given in Fig. 2.11.

We can list some examples as follows:

• IMU and camera in [230, 232],

• IMU and EMG in [233]
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Fig. 2.11: Sensor fusion types in upper limb area in literature 2007-2017 and the
comparison of two most common combinations over years
Source: [231]

• IMU and depth sensors in [234, 235]

• Camera and depth sensors [169, 236],

• Leap motion controller and flex sensors in [195],

• IMU, vision, UWB and GPS in [237],

• IMU and UWB in [238],

• IMU and optical fiber sensors [239],

2.1.4 Different Methods in HME using IMU
Motion capturing, tracking and generation have gained interest from many researchers
in various fields for years. There are several methods to track and estimate motion
based on different sources of information. As the MEMS technology has improved, the
inertial systems received more attention. Since the IMU based motion tracking systems
have fundamentally overcome two challenges; occlusion and limited workspace, which
are the biggest limitations of visual-based MoCap systems as the most preferred in the
literature. Therefore, researchers insisted on improving IMU based motion capture
and estimation techniques also considering the fact that they are cost-efficient.

In this manner, there has been established several companies which are working on
IMU based motion tracking systems, such as; Invensense10 (Invensense, San Jose, CA,
USA), Trivisio11 (Trivisio, Trier, Germany), Microstrain12 (Lord Microstrain, Willistone,
VT, USA) and XSens13 (Xsens Technologies B.V., Enschede, The Netherlands) and many
start-ups. Their target varies from navigation in automated robot cars to attitude
estimation for drones and human motion reconstruction. Regardless of the aim, the
techniques used in motion estimation based on IMUs should be investigated to plan a
path in our study for HME for HRC.

One interesting conjunction between the selected method and application area is
the complexity of the motion tracking algorithm. For instance, stability and activity

10https://invensense.tdk.com/
11https://www.trivisio.com/inertial-motion-tracking
12https://www.microstrain.com/inertial/IMU
13https://www.xsens.com/
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recognition related studies have simpler algorithms and fewer sensors than human
model reconstruction according to [1].

Algorithms vary based on the sensor fusion technique such as filters/observers
with Complementary filter (CF), KF, EKF; learning algorithms hidden markov models,
neural networks, k-nearest neighbour, discriminant analysis, random forest etc. Even
studies differ from each other although they use the same algorithm yet differ in how
the parameters of the algorithms are set. The section of algorithms highly depends on
the sensors used; some of them exploit IMUs, but magnetometer signals are not always
used and one method requires a visual reference for tracking human upper limbs etc.
Moreover, as explained in Section 2.1.1 the complexity of the selected kinematic model
of the human body varies a lot. Hence, the selected kinematic model plays a big role,
as well. Some studies use Euler angles, some use the Denavit Hartenberg convention
and others use quaternions. Finally, they differ in how the constraints of the kinematic
chain are considered.

Particularly on human motion analysis using wearable sensors, [119] categorized
the techniques based on the focus of the human body as shown in Fig. 2.12. In their
comprehensive review study, the researchers classified HME techniques based on the
data extraction method and selected algorithm.

Fig. 2.12: Taxonomy of clinical applications of HMA
Source:[119]

According to [119], 880 HME studies are extracted from databases with keywords:
group 1 (“human motion” OR “human movement”) and group 2 (“wearable sensors” OR “in-
ertial sensors” OR “wearable system”). After a screening process of these 880 publications
37 of them were selected which fully explains the authors’ 5 review criteria:

1. the sensor used for the measurement,

2. the measuring motion unit,

3. the sensor fusion algorithms,

4. the evaluation system, and

5. the subjects of study.

According to these 37 publishes selected in [119], (14/37) of them the orientation
of a joint was estimated [119] whereas only one study (1/37) estimated individually
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the position of a segment and no studies were reported on an individual estimation
of the position of a joint. Moreover, (6/37) studies are reported as both position and
orientation estimation of a segment or a joint and only one study (1/37) reported both
position and orientation estimation for both segments and joints. An outcome of this
classification to my study is that orientation estimation of joints and/or segments rather
than positions is a good starting point. Also, besides being good per se, estimating
the orientation is fundamental in the strap-down approach to position estimation
according to [240]. In fact, the orientation solution allows gravity to be cancelled from
the acceleration signals so that the inertial acceleration is double-integrated for position
estimation (gravity compensation).

Another classification of HME studies is based on the selected algorithm. In [52], six
attitude estimation methods using IMUs are compared. It is seen that the Kalman filter,
complementary filter and observer theories occupy a big space in this type of estimation
problem. Also in [1], 5 different HME techniques are presented and compared based
on the accuracy (how reliable the estimated results are with respect to actual values),
correlation (indicates whether the estimated position follows the real pattern of the
performed movement), the capability of fast motions and source of error.

On the other hand, machine learning algorithms have also gained a substantial
reputation in HME studies. For the completeness of the detailed literature review, it
is important to highlight them. For instance, in [113], six different machine learning
algorithms are compared in which the data is IMU-based wrist load measurement of
tennis athletes. They concluded that the combination of miniature inertial sensors and
machine learning offers a practical and automated method.

According to these well-categorized in-depth review articles [1, 113, 119], one of
the most cited technical reports on using inertial sensors for position and orientation
estimation [117] and the studies reviewed through this literature survey in other
subsections of this study, some of the most used methods in motion estimation in HME
are listed below:

• Algorithm:

– Estimators:
* Complementary Filter [241–243]
* Kalman Filter [19, 117, 244–248]
* Extended Kalman Filter [31, 117, 249–251]
* Unscented Kalman Filter [166, 252, 253]
* Particle Filter [254, 255]
* Riccati observers [256–258]

– Learning Algorithms:
* Markov chain [259, 260]
* Hidden Markov Model (Note: derived from Markov chains) [261–263]
* Support Vectors [260, 264]
* Neural networks [265, 266]
* Discriminant analysis [267–269]
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* Support vector machine [260, 262]
* k-nearest neighbor [121, 270]
* Random forest [271, 272]
* Gaussian mixture model [273]

– Estimators + Learning Algorithms merged [274, 275]

• Mathematical Model:

– QUEST [276]
– TRIAD [252]
– Simple integration [19, 83, 117]

• Representation:

– Euler-based [277, 278]
– Rotation matrix based/ DH parameters [279–281]
– Quaternion based [241, 244, 247, 249, 251, 276, 282]
– Lie/Euclidean groups [242, 256, 257]

The list above shows that numerous methods exist for HME using IMU. If attention
is paid to the dates of the example works, it can be seen that most of them have been
published in the last 5 years, which indicates that this field is still open to improvements.
A trade-off exists between complexity and efficiency. Often, these two terms change
proportionally, such that a more complex system provides better accuracy. However,
complexity reduces efficiency and applicability. Since the aim is to use the system for
industrial purposes, a system that is as simple as possible, yet highly reliable is sought
after.

2.2 Systematic Approach on the IMU Usage and User Training

The systematic literature review is conducted to answer the status of HRI in two major
aspects:

1. Status of IMUs in HRI

2. Status of training in HRI

The birth of Human-Robot Interaction (HRI) field lies back in the mid-1990s and
early years of the 2000s [2]. Therefore, the broad literature search covers the last 30
years. It is aimed to have the first insight into the status of HRI over years, including
the subtle aspect of MoCap system used in the human motion tracking/estimation
part. Although Google Scholar is not an ideal tool for complex search terms, it is still
useful to have an overview of the number of publications in certain domains.

The first set of search keywords are "human robot" for exact match and interaction
cooperation collaboration is at least one match in the advanced search option in Google
Scholar. Since we are interested in the status of IMUs in the field and how it is compared
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Fig. 2.13: Number of publications on HRI over the last two decades based on Google
Scholar. The filter keywords are categorized as yellow is unfiltered, blue: camera and
pink: IMU. The three numbers in each column show the number of publications in
each category respectively.

to the camera-based ones, the search is filtered by adding imu and camera keyword
filters to focus on the MoCap perspective. The number of publications based on these
keywords and filters is given in Fig. 2.13.

It is evident that there were not many publications in the early years of the 2000s,
and IMUs were barely introduced in this field, as shown in pink colour in Fig. 2.13.
Despite the fact that the history of IMU in motion estimation dates back earlier than
2002 (i.e., about 6,310 results are returned by a simple search on IMU in motion estimation
before 2002), it was not commonly used in the HRI field for quite a long time. A small
jump in the number of HRI publications including IMUs was observed around 2015;
however, it is still clear that IMUs have never been as popular as cameras in this field.
If the focus is readjusted on the camera-included publications in the HRI field (shown
in pink colour in Fig. 2.13), it can be seen that the interest in cameras has grown at a
similar pace to the total number of publications.

It should be noted that a few publications in the yellow zone of each category are
likely to belong to the pink or blue zones, such as publications that use "inertial*"
instead of IMU or "visual*" instead of the camera. However, these keywords are not as
common as the selected ones, so if the publication does not mention the common ones,
it will not be captured in our filters. The main purpose of this section is evidently to
provide an overview rather than a detailed systematic literature review.

Patents and theses are included in this search, but citations are not. The reason
why the number of publications in 2022 is lower than the trend line is that several
publications are still under review, as the date of the last update of this literature search
was January 9, 2023.
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2.2.1 Status of IMUs in HRI

In this section, the methodology of the systematic search and the results are presented.
The literature analysis has been computed using 4 electronic library databases until
2022: IEEE Xplore, Web of Science, Scopus and Engineering Village. The main purpose
of this section is to have a deeper look at the status of IMU in human motion estimation
in HRI field.

The selection of keywords is divided into 3 sub-categories. The first subcategory is
related to human motion/intention estimation, the second is robot interaction/collaboration/-
cooperation/teleoperation, and the third is imu/inertial measurement unit. Additionally, we
investigated the pHRI case with physical keyword since this is an important criterion
for this study. The overall systematic review approach with the applied keywords and
boolean combinations are as shown in Fig. 2.14.

Fig. 2.14: Systematic literature review search keywords and boolean combinations

There are many studies for those individual main fields. First of all, the common
studies of human motion estimation/tracking/analysis and HRI are investigated. The
results are collected under RESULT-1 (R1). Also for the second part, as it is explained
in Chapter 2 in detail, we are interested in IMUs for motion estimation and these are
under the RESULT-2 (R2). Finally, the narrowed-down studies where the human and
robot are in physical contact are under the RESULT-3 (R3). The number of studies in
each result is as shown in Table 2.2.
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Table 2.2: Systematic literature review results in 4 electronic databases

Number of studies

Library

First found study

(year)

R1 R2 R3

IEEE Xplore 2007 6579 105 15
Web of Science 2012 2647 47 7
Scopus 2004 8777 144 18
Engineering Village 2008 13264 144 35

2.2.2 Status of User Training in HRI
Another research question is related to the status of user training and/or system
training. As it is mentioned in Section 1.5, the lack of user training plays a fundamental
role in the gap between the HRI research and the successful innovation. In this section,
the status of training in this field is investigated. The literature search is performed
using three keyword sets.

1. The status of training and Serious Games and Gamification (SGG) in the HRI

field. The used keyword set: "human robot" and training as the exact terms match,
gamification "game based learning" "serious games" are at least one match.

2. The status of all types of user training in the HRI field. The used keyword set:
"human robot" and "user training" as the exact terms match.

3. The status of SGG-related user training in the HRI field. The used keyword
set: "human robot" and "user training" as the exact terms match, gamification "game
based learning" "serious games" are at least one match.

(a) Keyword set 1 (b) Keyword set 2 (c) Keyword set 3

Fig. 2.15: Number of publications in user training in HRI in the last decade
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The results are given in Fig. 2.15.
There is an ambiguity in referring to "training" in the literature. There are three

main training concepts related to HRI field which showed up in Fig. 2.15a. One is
what we are interested in where the humans are trained in learning the functionality of
the developed HRI system. The second is related to training humans in learning new
skills using robots and serious games such as rehabilitation, education with robots,
assessing and improving autism spectrum disorder etc. The third is related to the
training of a machine learning algorithm in developing the HRI system. By adding
the filter related to SGG, a big portion of the third category is eliminated but it is still
the first and second category is blended. Although the first subplot in Fig. 2.15 does
not give many relevant numbers on what we are looking for, it is still important to
have an overview of the number of publications where HRI and SGG fields are merged
and a learning evaluation is computed in some sort of training concept. The numbers
are not very high compared to a well-researched field until around 2017/2018 but
the increase is promising in the last 5 years. This trend shows us it is a hot topic in
academia, currently.

When the search is narrowed down to user training, the numbers drop drastically.
Although the numbers until around 2016 are close between Fig. 2.15a and Fig. 2.15b,
they diverge significantly. An important conclusion is that other types of training
concepts (such as skill training, system algorithm training etc.) gained comparably
more interest than the actual user training of the system. This divergence clearly shows
that user training is a gap in the HRI field.

Particularly with the usage of SGG and game-based learning, there is only a scarce
amount of publications. SGG is reported to be an effective and often better training
experience than the conventional methods in various fields such as in health [283, 284],
language and culture training [285], business [286], military [287] etc.

Serious Games and simulations can be used to create supplemental learning tools
that are engaging with interactive learning opportunities and can provide visualization
of the concepts that make them easier to translate knowledge [48, 49]. It is statistically
proven that serious games are more effective than conventional instruction methods
[53]. Developing technology makes the game-making process easier, and the produced
games become more realistic, immersive, engaging, effective etc.

For objectiveness, it is important to highlight the drawbacks of the SGG. A well-cited
review article about SGG in various fields presents the advantages and disadvantages
of these teaching methods [47, 288]. The main advantages are listed as improving
psychomotor skills, visual selective attention, motivated learning experience and better
improvement compared to conventional methods whereas the main disadvantages are
the violence in games, the cost of developing serious games and the current unreliable
evaluation methods of effectiveness. For instance, one study scientifically proves that
learning via serious games depends on the culture (r=0.667 strong), ethnicity (r=0.842
very strong), native language (r=0.754 strong), motivation to learn (r=0.752 strong)
[289]. On the other hand, [286] found no significant difference in gender or ethnicity
in learning via SGG but only the age factor has significance such that those who
are younger than 40 scores significantly higher. Ryan Wang et. al presented earnest
concerns of serious games in training health care professionals mainly due to the cost
and unreliable effectiveness measures.[290].
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To sum up, SGG is a highly interdisciplinary and intricate area. There is not a
concrete enough methodology to develop serious games and evaluate their effectiveness.
Each field might require its own approach in involving SGG in the most effective way.
The main reason for the concerns and the contradictions in the publications are related
to this. Therefore, it is indigent for proper research in HRI training.
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CHAPTER 3
BACKGROUND

In this chapter, it is aimed to provide a sufficient background related to what is
presented in methodology (Chapter 4) and the published papers for the readers to
grasp the ideas clearly. The aim of this chapter is not to "teach" anything new, it is a
brief reminder of theoretical concepts.

In the first section, robot kinematics are explained. Both the human model and the
robot model are defined as kinematic chains. Since the developed methodology is on
real-time bases, it is important to know the different approaches to select the optimal
and most reliable method.

The second section describes the human motion types in general terms. Afterwards,
it explains how the human body can be defined using terms in the robotics field so
that a meaningful human input can be generated for HRC.

The third section is about probability theory which draws an important baseline for
both HME and human-robot experiments. The most fundamental terms are explained
such as random variable, expected value, distribution function, mean and variance.
These terms are then used in explaining Bayes filters and statistical tests.

In the fourth section, statistical testing methods are described. It is highlighted how
a statistical test is chosen based on the data type and the most common statistical tests
are explained.

3.1 Fundamentals of Kinematics

Kinematics is the study in robotics that finds a mathematical relationship between each
link’s position, velocity and acceleration of a robot. The connection points between the
two links are called joints. Those joints can be actuated (by a motor), passive (free to
move in at least one direction/axis) or rigid (no motion is allowed). Therefore, the aim
of kinematics is that by knowing the link lengths and the properties of the joints robot
motion planning and control can be computed.

Two main terms in robot kinematics are translation and rotation. The translation is
the position change of the robot without changing its heading direction. On the other
hand, rotation is the orientation change of the robot without changing the location. In
an action of a robot, those two motion types generally occur synchronously. Kinematics
seeks a solution of the link relations which is valid for the whole of the action time.

A pose is a term which is used to describe the position and the orientation of the
robot, or just a part of the robot. In three-dimensional space, 6 independent variables
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are required to be able to fully define the pose. In robotics, three of those 6 independent
variables are related to the position of the robot and the other three are related to the
orientation with respect to an origin frame (reference frame).

To completely describe the pose of a rigid object in a 3-dimensional world, 6
parameters are needed: 3 to describe its position and 3 to describe its orientation.
Orientation changes by rotational motion, and position changes by translational motion.
As a result, pose change is observed. So the pose change has two components: rotation
and translation.

The position and orientation of the end-effector of a robot manipulator with respect
to its base frame have to be calculated for every task. The robot is defined as a kinematic
chain and using link lengths and joint angles, the respective pose of the end-effector is
calculated.

The human body can be considered a sophisticated kinematic chain. It can be
modelled as if it was a robotic structure which has revolute and/or linear actuators on
the joints and consists of rigid links as body parts despite some modelling error. The
human arm, for example, can be considered a robot manipulator. In fact, a lot of the
robotic designs as well as many scientific improvements are bio-inspired (See Festo’s
bionic robots1).

3.1.1 Parametrizing Rotation

The main target of this study is those who have general knowledge of mechanics in
physics. Therefore, the definition of position, velocity, acceleration, jerk, force, torque
etc. and the relationship between those terms are assumed to be known. A more
comprehensive knowledge can be obtained in [291] mainly in section 2.8.

Motion creates pose changes. The pose change is defined as a change with respect
to a reference frame. The representation of this change varies. This section explains
how rotations and translations are defined and used in robotics. For roboticists, Euler
sequences, rotation vectors, and rotation matrices are quite familiar representations.
The quaternion representation may be less familiar and intuitive than the others. Due
to this reason and the fact that quaternions are the most used representation type in
this study, the emphasis is more on quaternions than the other representations.

There are a number of different representations of rotations and translations
[292]. It is useless to touch upon all of them in this chapter. The main features of
the parametrizations that take a place in this study to represent an orientation are
summarized in Table 3.1

Table 3.1: Main characteristics or parameterization of rotation

Representation # of parameters Continuous Non-Singular

Euler Sequences 3 ✗ ✗

Rotation Matrix 9 ✓ ✓

Axis-Angle 4-6 ✗ ✗

Unit Quaternion 4 ✓ ✓

1https://www.festo.com/group/en/cms/10156.htm
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3.1.1.1 Rotation using Euler Sequences

Orientation in 3D space requires at least 3 independent parameters to be fully defined.
The orientation of an object can be defined as a rotation around 3 orthogonal axes with
respect to an initial frame. Euler angles, which are first presented by Leonhard Euler in
1775 to define a spherical geometry, are a set of three angles to represent a full rotation
about these three orthogonal axes respectively. The geometrical representation of Euler
angles are presented in Fig. 3.1.

The consecutive order in which the three rotations are done is important. The
general terminology of defining an Euler sequence is such that:

1. about the x, y, or z-axis of the fixed frame or the x’, y’, or z’ of the mobile frame,
by α (or θ) degrees,

2. about the x, y, or z axis of the fixed frame or the x’, y’, or z’ of the mobile frame,
by β (or ϕ) degrees,

3. about the x, y, or z axis of the fixed frame or the x’, y’, or z’ of the mobile frame,
by γ (or ψ) degrees.

According to that, there are 216 (63) possible ways. For instance, x→y→z, y→y→z,
z→y→z, x’→y→z, y’→y→z, z’→y→z, and so on. Some of those sequences do not
define a full orientation (i.e. rotation about the same axis consecutively). Therefore
only 12 meaningful ordered Euler sequences exist to describe a general orientation:
XYX, XYZ, XZX, XZY, YXY, YXZ, YZX, YZY, ZXY, ZXZ, ZYX, ZYZ.

Fig. 3.1: Geometrical representation of Euler angles
Source:[293]

Some Euler sequences are used more than others for consistency in the field. In
robotics XYZ (roll-pitch-yaw) or in aerospace ZYZ sequences are mostly used. In fact,
neither of the Euler sequences is better than the other in performance. However, one
can be preferred over the others in some cases. This is mostly when a system’s structure
allows rotation in all 3 axes for all angles [−π, π].
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Let’s think about the case where there is a mobile robot on a z-axis normal plane.
Also, let’s assume that the orientation of the mobile robot (i.e. the frame of its body)
is represented in the ZYX Euler sequence. Assuming that a B- frame is rotated by
(ψ, θ,ϕ) with respect to the A-frame, the sequence is expressed as:

RA,B = RA,B(u1, ϕ)R
A,B(u2, θ)R

A,B(u3, ψ) (3.1)

=



1 0 0

0 cosϕ sinϕ
0 − sinϕ cosϕ






cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ






cosψ sinψ 0

− sinψ cosψ 0

0 0 1




where the following definitions of the unit vectors F
∣∣∣
A

are:

u1 = [1 0 0]T , u2 = [0 1 0]T , u3 = [0 0 1]T .

Using Euler sequences is probably the most intuitive way of representing a rotation.
However, there is an inevitable problem in using Euler sequences in full rotation:
Gimbal lock. See Fig. 3.2[294]. It is a demonstration of what is mathematically
explained above. The red circle shows pitch rotation, the green circle shows yaw
rotation and the blue shows the roll rotation. At the time when the yaw rotation reaches
π
2

or −π
2

, the red and green circles coincides. Therefore, any rotation either on pitch
or roll will give the same results. This is a singularity point of this system, which is
widely named as Gimbal Lock.

(a) Before gimbal lock (b) At gimbal lock

Fig. 3.2: Gimbal lock example
Source: [294]

The Gimbal lock is inevitable in 3D rotation representation using Euler sequences.
Based on the system, it can be tweakable. The rule of thumb in using Euler sequences
in the representation of rotation is that one should always choose the middle axis as
the less likely to compute full rotation in [−π, π]. In the case where the gimbal lock
is shown in Fig. 3.2, it is more likely that the camera has a horizontal shot than a
vertical shot. I.e the camera would less likely have a full rotation around X than Y or Z.
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Therefore, any Euler sequence which doesn’t set the X-axis as the middle axis would
perform without a gimbal lock.

Three ways of quitting the gimbal lock are; one to use a redundant gimbal axis (a
fourth axis) which is actively driven by a motor to maintain a large angle between roll
and yaw gimbal axes as in the aviation field. Secondly is to lock the system or warn the
user when it is approaching a gimbal lock. And third is not to use Euler sequences in
systems where a gimbal lock is likely on all 3 axes.

3.1.1.2 Rotation Matrix

The rotation matrix is a mapping function of one coordinate frame rotated with
respect to another coordinate frame. We have already encountered rotation matrices in
explaining Euler sequences. The Eq. (3.1) is, in fact, the multiplication of three rotation
matrices. As a definition, a rotation matrix, R is a 3× 3which is a special orthogonal
group SO(3) and thereby has the following special properties:

RRT = RTR = I3, det[R] = 1 (3.2)

Multiplication of two or more rotation matrices gives another rotation matrix.
Following the Euler sequence expression, the result of Eq. (3.1) is:

RZYX =

RA,B =




cos θ cosψ cos θ sinψ − sin θ
sinϕ sin θ cosψ− cosϕ sinψ sinϕ sin θ sinψ+ cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ+ sinϕ sinψ cosϕ sin θ sinψ− sinϕ cosψ cosϕ cos θ




=



r11 r12 r13
r21 r22 r23
r31 r32 r33


 (3.3)

where r11, ..., r33 are the indexes of R.
Different from Euler sequences, rotation matrices can represent any angle rotation

about any real axis using a single 3× 3 matrix. That’s why rotation matrices do not
suffer from Gimbal lock.

Multiple Rotations:

In a motion, when the rotation does not compute only in a single axis and there is a
cascaded rotation, or if there is a kinematic model that frames are connected to each
other as a chain, any situation as shown in Fig. 3.3, the resultant rotation matrix RA,C is
a matrix multiplication:

RA,C = RA,BRB,C (3.4)

There are various ways of creating a rotation matrix. The two most common ways
are using the multiplication of Euler sequences and using direction cosines. The Euler
sequence method is already explained. The transformation from rotation matrix to
Euler angles is by using the equivalence of two matrices in Eq. (3.3). Each index of
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Fig. 3.3: Multiple frame rotations. F
∣∣∣
A

the rotation matrix r11, ..., r33 has an equivalent trigonometric relation of the rotation
angles based on the Euler sequence used. Thereby the rotation order has to be known.
Since ROS tf.transformations (ROS TF) library is used for Euler angles ⇄ rotation
matrix, the calculation details are outside the scope of this study.

Direction cosines, on the other hand, create the columns of the rotation matrix in
regard to the basis vectors of the stable and rotating frames.

Let’s think about two frames, F
∣∣∣
A

and F
∣∣∣
B

which are initially coincident and their
unit vectors are û1

A, û2
A, û3

A and û1
B, û2

B, û3
B, on axes x-y-z respectively. A rotation

about the y-axis is applied as shown in Fig. 3.4.

Fig. 3.4: Direction cosine angles example demonstration

where the element in the ith row and the jth column represents the angle between the
axis-i of the reference frame and the axis-j of the body frame.

RA,B =




cos θA,B
11 cos θA,B

12 cos θA,B
13

cos θA,B
21 cos θA,B

22 cos θA,B
23

cos θA,B
31 cos θA,B

32 cos θA,B
33


 =

[
u1

(B/A) | u2
(B/A) | u3

(B/A)
]

(3.5)

where cos θA,B
ij is the cosine of the angle between ith axis of frame A and jth axis of
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frame B. Moreover, u(B/A)
i is the unit vector of frame B, represented in frame A.

Lastly, to find the angle between two axes in frames, the necessary unit vectors are
pre-multiplied and post-multiplied by the rotation matrix:

θA,B
ij = arccos

(
uT
i R

A,Buj

)
(3.6)

Zero Rotation

Zero rotation is defined by 3× 3 identity matrix.

RA,A =



1 0 0

0 1 0

0 0 1


 (3.7)

that satisfies:

RR−1 = RRT = RA,BRBA = I3 (3.8)

Rotating a Vector:

The bar representation of vector #»v in F
∣∣∣
A

is vA defined in frame A. It is expressed in
reference frame B by pre-multiplying the vector by the rotation matrix RA,B as:

vB = RA,BvA (3.9)

•Note that rotation matrix representation is one of the most used orientation representations
in robotics. It is both intuitive and non-singular. However, there are many redundant
matrix elements which are not used for any calculations. Therefore, they are not the most
computationally efficient method.

3.1.2 Rotation Vector (Axis-Angle)

The most famous axis-angle rotation formula is derived by Olinde Rodrigues known
as Rodrigues’ rotation formula. It says that if #»v is a vector in 3D space and #»

k is a unit
vector describing an axis of rotation about which rotates by an angle θ according to the
right-hand rule (see Fig. 3.5), the Rodrigues formula for the rotated vector #»v rot is:

#»v rot =
#»v cos θ+ (

#»
k × #»v ) sin θ+ #»

k (
#»
k · #»v )(1− cos θ) (3.10)

Angle-axis representation is more useful when two vectors defining a plane are
involved. In this study, this representation is not used in the methodology, that’s why
details in deviation are not given here. However, it is important to mention them to
understand the quaternion representation better in the following subsection.
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Fig. 3.5: Demonstration of an axis-angle rotation

3.1.2.1 Rotation with Quaternions

Every morning in the early part of October 1843, on my coming down to
breakfast, your brother William Edwin and yourself used to ask me: "Well,
Papa, can you multiply triples?" Whereto I was always obliged to reply, with
a sad shake of the head, "No, I can only add and subtract them."

from a letter Hamilton wrote to his son Archibald

Quaternions are a number system proposed as an extension of complex numbers. In
the 1800s, William Rowan Hamilton, an Irish mathematician, was looking for symmetry
in the mathematical operations of complex numbers. The fact that the points in space
can be represented, added and subtracted easily in 3D space but the multiplication
operation was missing.

According to [295], on October 16, 1843, Hamilton was enlightened on his walk with
his wife. He got the idea that the multiplication of "triples" was not possible. Instead,
they had to be "quadruples". Then he wrote his famous quote (Fig. 3.6) attaching his
brilliant idea on Brougham Bridge, Dublin:

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of
genius discovered the fundamental formula for quaternion multiplication

i2 = j2 = k2 = ijk = −1

cut it on a stone of this bridge.(See Fig. 3.6)

This finding has opened a door in theoretical and applied algebra. Quaternions
have been started to be used in pure mathematics and applied mathematics. Thereby,
they gained fame, particularly for calculations involving three-dimensional rotations.
The advantages over Euler sequences are that they do not suffer from Gimbal lock,
over rotation matrices that they are more computationally efficient (rotation matrix
has 9 parameters to describe a full rotation whereas quaternions need only 4) and over
rotation vectors the computation is faster since fewer steps are required.
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Fig. 3.6: Hamilton’s complex number multiplication
Source: [295]

The following part of this section is to provide the reader with the necessary
knowledge about quaternions to comprehend this study. More can be found in
[296, 297].

Representation:

A quaternion is represented using 4 parameters:

q = q4 + q1î+ q2ĵ+ q3k̂ =

[
q4

q

]
(3.11)

where the parameter q4 is called as the real or scalar part, and q1î+ q2ĵ+ q3k̂ = #»q is
called as the imaginary or vector part of the quaternion. All 4 parameters of a quaternion
are correlated with the following rule:

q =




kx sin
(
θ

2

)

ky sin
(
θ

2

)

kz sin
(
θ

2

)



= ˆ̂k sin

(
θ

2

)
, q4 = cos

(
θ

2

)
(3.12)

Unit Quaternion:

Unit quaternions can be used to represent a rotation. A quaternion can be any number
in a 4D space yet not all quaternions are directly used in orientation representation.
In a rotation, the size of the vector must remain the same. So, a quaternion is a unit
quaternion if it satisfies:
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|q| =

√
qTq =

√
|q|2 + q2

4 (3.13)

Identity Quaternion:

Based on the definition of unit quaternion, the identity quaternion corresponds to "no
rotation" whose magnitude is also equal to |qI| = 1:

qI = 1+ 0î+ 0ĵ+ 0k̂ (3.14)

Pure Quaternion:

Pure quaternions are used in representing a 3D vector in the 4D space. It has no
component in the real part and the vector value represents the imaginary part of the
quaternion. Assuming a vector in 3D space defined as #»v = ax̂+bŷ+cẑ, the quaternion
representation of this vector #»v :

qx = 0+ aî+ bĵ+ ck̂ (3.15)

Quaternion Multiplication:

Assuming q and p are quaternions. The quaternion multiplication is defined as:

q⊗ p = (q4 + q1î+ q2ĵ+ q3k̂)(p4 + p1î+ p2ĵ+ p3k̂) (3.16)
= q4p4 − q1p1 − q2p2 − q3p3 + (q4p1 + q1p4 − q2p3 + q3p2)î

+ (q4p2 + q2p4 − q3p1 + q1p3)ĵ+ (q4p3 + q3p4 − q1p2 + q2p1)k̂

=




q4p1 + q3p2 − q2p3 + q1p4
−q3p1 + q4p2 + q1p3 + q2p4
q2p1 − q1p2 + q4p3 + q3p4
−q1p1 − q2p2 − q3p3 + q4p4




The quaternion multiplication can alternatively be written in matrix form. For this,
the matrix notation for the cross-product using the skew-symmetric matrix operator
⌊q×⌋, defined as:

⌊q×⌋ =



0− q3q2

q30− q1

−q2q10


 (3.17)

Then the cross-product can be written as:
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q⊗p =

∣∣∣∣∣∣

î ĵ k̂

q1 q2 q3

p1 p2 p3

∣∣∣∣∣∣
=



p2p3 −q3p2
q3p1 −q1p3
q1p2 −q2p1


 =



0 −q3 q2

q3 0 −q1

−q2 q1 0





p1
p2
p3


 = ⌊q×⌋p (3.18)

Therefore, the quaternion multiplication is:

q⊗ p =




q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4







p1
p2
p3
p4


 (3.19)

=

[
q4I3×3 − ⌊q×⌋ q

−qT q4

]

︸ ︷︷ ︸
L(q)

[
p

p4

]

︸ ︷︷ ︸
p

or equivalently:

q⊗ p =

R(p)︷ ︸︸ ︷[
q4I3×3 − ⌊q×⌋ q

−qT q4

]
q︷ ︸︸ ︷[
p

p4

]
(3.20)

=




p4 −p3 p2 p1
p3 p4 −p1 p2
−p2 p1 p4 p3
−p1 −p2 −p3 p4







q1

q2

q3

q4




Hence;

L(q)p = R(p)q

also L and R has the property:

L(q−1) = LT (q)

R(p−1) = RT (p)

•Note that quaternion multiplication is not commutative.

Quaternion Inverse:

After defining the identity quaternion and the multiplication operation in quaternions,
we can define the inverse of a quaternion. In any number system, the inverse of a
number over a defined operation in this system is the number that returns the identity
element. It works exactly the same in quaternions.
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q⊗ q−1 = q−1 ⊗ q = qI

Instead of getting into complex calculations to find q−1 for unit quaternions, we can
consider the definition of quaternions in an intuitive way. A quaternion has a vectorial
and a non-vectorial part; similar to axis-angle representation. Different than axis-angle
representation (θ, #»v ) or [(θx, θy, θz), (vx, vy, vz)], the parameters in quaternions depend
on each other. That’s why the rotation axis in units and the rotation angle in radians are
not clear. Nevertheless, it is there. Let’s have a look at the quaternion representation:

q =

[
q4

q

]
=




cos
(
θ

2

)

k sin
(
θ

2

)


 (3.21)

This definition is more clear to see that the quaternion q defines θ radians rotation
about axis k̂. Here it is represented in bar form k. A rotation in the opposite direction
to such a rotation has to give the inverse of the quaternion q. Therefore, either taking
the axis k̂ in the opposite direction or defining the rotation as −θ radians must give
q−1.

q−1 =

[
q4

−q

]
=




cos
(
−
θ

2

)

k sin
(
θ

2

)


 =




cos
(
θ

2

)

k(− sin
(
θ

2

)
)


 =




cos
(
θ

2

)

−k sin
(
θ

2

)


 = q4−q1î−q2ĵ−q3k̂

(3.22)

To simplify the quaternion inverse for robotics is vital. Since a vector rotation using
quaternions require both left and right multiplication in each rotation, the inverse of a
quaternion has to be used in every rotation process.

Similar to rotation matrix inverse property as its transpose C−1 = CT , the inverse of
a unit quaternion is also represented as its conjugate:

q−1 = q∗ (3.23)

The simplified path to find the inverse of a quaternion is valid only for unit
quaternions. In the general approach, the magnitude of the quaternion must be
considered in finding its inverse:

q−1 =
q∗

|q|
=
q4 − q1î− q2ĵ− q3k̂√
q2
4 + q

2
3 + q

2
2 + q

2
1

(3.24)
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Rotating a Vector via Quaternions:

A vector in three-dimensional space can be expressed as a pure quaternion as
mentioned. Assuming the quaternion qR with the additional requirement that its
norm |qR| be equal to 1 represents a rotation. A rotation of a vector a # »vA = (vx, vy, vz)

from one coordinate frame A F
∣∣∣
A

to another frame B F
∣∣∣
B

is given by the conjugation
operation:

qB = qRqAqR∗ (3.25)

where qA is a pure quaternion derived from #»v A such that qA = 0 + vxî + vyĵ + vzk̂.
Therefore,

qRqAqR∗
= (q0 + q1î+ q2ĵ+ q3k̂)(xî+ yĵ+ zk̂)(q0 − q1î− q2ĵ− q3k̂) (3.26)
= (vx(q

2
0 + q

2
1 − q

2
2 − q

2
3) + 2vy(q1q2 − q0q3) + 2vz(q0q2 + q1q3))î+

(2vx(q0q3 + q1q2) + y(q
2
0 − q

2
1 + q

2
2 − q

2
3) + 2vz(q2q3 − q0q1))ĵ+

(2vx(q1q3 − q0q2) + 2vy(q0q1 + q2q3) + vz(q
2
0 − q

2
1 − q

2
2 + q

2
3))k̂

•Note that quaternion multiplication does not require the computation of trigonometric functions,
only the addition and multiplication of real numbers. Therefore, quaternion-based orientation is
computationally efficient.
•Note that the resultant quaternion qB has no real component, i.e. qB is also a pure quaternion.
It can be directly used in the vector notation simply by omitting the 0 valued real part.

Multiple Rotations with Quaternions:

In a motion, when the rotation does not compute only in a single axis and there is a
cascaded rotation, the quaternion representation of such a case is pretty similar to how
it is in other representations. Assuming qGA defined the rotation from global frame
to F

∣∣∣
A

and qGB defined the rotation from global frame to F
∣∣∣
B

. The orientation of F
∣∣∣
B

with respect to F
∣∣∣
A

is defined as:

qA,B = qG,A∗ ⊗ qG,B (3.27)

From Quaternions to X Transformation:

From quaternion to vector transformation for a pure quaternion is straightforward, as
mentioned. However, it is not that simple to transform a quaternion into a rotation
matrix or an Euler rotation. Since ROS tf.transformations library is used when it is
needed in implementation, derivations of all the steps are not given in detail here. Just
the results are given here for easy-to-look-up for future works and relevant readers.
Detailed validation is available in [296, 297] and [298].
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Taking the quaternion q defines θ radians rotation about axis k̂.

→ General quaternion representation: q = q4 + q1î+ q2ĵ+ q3k̂

→ Quaternion to Euler angles:

q =

[
cos(θ/2)
k sin(θ/2)

]
= ek̂θ (3.28)

→ Quaternion to rotation matrix:

RL,G(q) = I3 − 2q4 ⌊q×⌋+ 2 ⌊q×⌋2 (3.29)

OR

RL,G(q) = exp(−
⌊
k×

⌋
θ) (3.30)

→ Quaternion to axis-angle:

R(q) = (2 cos2(θ/2− 1)) · I3 − 2 cos(θ/2) sin(θ/2)
⌊
k̂×

⌋
+ (2− sin2(θ/2))k̂k̂T (3.31)

Quaternion Derivative:

Quaternion derivative is important in the transition from orientation to the angular
velocity. In angular motion, the derivative in a very basic way defined as how much
rotated in a unit of time. Therefore, the derivative quaternion qL(t),L(t+∆t) describes
the rotation of reference frame L(t) to reference frame L(t+ ∆t) in terms of the rotation
angle θ and the axis of rotation k̂. In infinitesimal time difference ∆t, using first-order
Taylor expansion of cosine and sine coefficients in our general quaternion column
vector representation:

qL(t),L(t+∆t) =

[
cos(θ/2)
k̂ sin(θ/2)

]
≈

[
1

k̂θ/2

]
=

[
1

1
2
· δθ

]
(3.32)

The vector δθ has the direction of the axis of rotation and the magnitude of the angle of
the rotation. Dividing this vector by ∆twill yield, in the limit, the angular velocity:

ω = lim
∆t→0

δθ

∆t
(3.33)

We are now ready to derive the quaternion derivative as:
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q̇
(G,L(t))

(t) = lim
∆t→0

1

∆t

(
q(G,L(t+∆t)) − q(G,L(t))

)
(3.34)

= lim
∆t→0

1

∆t

(
q(L,L(t+∆t)) ⊗ q(G,L(t)) − qI ⊗ q(G,L(t))

)

≈ lim
∆t→0

1

∆t

([
1

1
2
· δθ

]
−

[
1

0

])

=
1

2

[
0

ω

]
⊗ q(G,L(t))

=
1

2
Ω(ω)q(G,L(t))

whereΩ(ω) is:

Ω(ω) =




0 ωz −ωy ωx

−ωz 0 ωx ωz

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


 (3.35)

Quaternion Integral:

Often we need to integrate the angular velocity obtained from the gyroscope to find
orientation. Integrating a quaternion is equivalent to solving the first-order differential
equation which is just explained in Eq. (3.34).

q̇
(G,L(t))

(t) =
1

2
Ω(ω)q(G,L(t)) (3.36)

The solution to this differential equation has the general form:

q̇
(G,L(t))

(t+ ∆t) = Θ(t+ ∆t, t)q(G,L(t))(t) (3.37)

If ω(t) = ω is constant over the integration period ∆t, the matrix Ω does not
depend on time. Therefore,

Θ(t+ ∆t, t) = Θ(∆t) = exp
(
1

2
Ω(ω)∆t

)
(3.38)

Hence,
q(G,L(t))(t+ ∆t) = exp

(
1

2
Ω(ω)∆t

)
q(G,L(t))(t) (3.39)

•Note that quaternions are numbers that belong to a large number system. It is impossible and

useless to touch upon all the properties of the quaternions. It is aimed only to summarize enough
knowledge to show how quaternions are used in related papers. Nevertheless, quaternions are
extremely useful as much as they are beautiful. For better understanding, good references about
quaternions: [296, 297] and [299].
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3.1.3 Arm Kinematics
A robot arm is a sequence of links and joints, mostly connected in a serial configuration,
to be used in manipulation. A robot arm can be a simple 2 DoF serial link chain or
it can have higher DoF which contains both revolute and linear actuators. The arm
kinematic model is a cascade multiplication equation of joint poses. It can be simplified
considering two consecutive links where an IMU is attached on each link as shown in
Fig. 3.7. Those body parts can be considered as upper and lower arm segments.

Fig. 3.7: Two consecutive body segments where all joints are simplified as revolute and
rotation axes are through the page

As a general approach, the end-effector pose is calculated with Homogenous
Transformation Matrix (HTM)s as in Section 3.1.3.1. Additionally, some kinematic
and dynamic library functions allow automating this process such as in the ROS TF
package, in which the procedure is explained in Section 3.1.4.

Arm kinematics is important for modelling both the human arm and the robot
arm in this study. The comparative explanation of HTM and the quaternion+ROS TF
approach is given in this section.

The following part of this section is to provide the reader the necessary knowledge
about arm kinematics to comprehend this study. More can be found in [291] in chapter
4 and [300] in chapter 7.

3.1.3.1 Homogeneous Transformation Matrix

The Homogenous Transformation Matrix (HTM) H is an extended version of the rotation
matrix R including a vectorial translation part r̄ [291, 300]. HTM is a 4× 4matrix and
defined as:

HA,B =

[
RA,B rA

0
T

1

]
(3.40)

where HA,B describes the transformation from frame A to frame B in which the
rotation is defined with CA,B and the translation is defined with rA as shown in
Fig. 3.8. Therefore, transformed vB vector from vector vA using the HTM HA,B will be
represented as:
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Fig. 3.8: Homogeneous transformation example using two frames

[
vB

1

]
= H(A,B)

[
vA

1

]
(3.41)

On a link chain, the frames A and B in Fig. 3.8 are named enumerated and the rotation
matrices and translation vectors are calculated iteratively (i.e. F

∣∣∣
(k−1)

and F
∣∣∣
(k)

). The
most common approach is to use DH (Denavit-Hartenberg) convention. Referring to
Fig. 3.9, joint frames are defined with three unit vectors: −→u1

(k) is the common normal
between two consecutive joint axes, −→u3

(k) joint axis and the −→u2
(k) = −→u3

(k) × −→u1
(k) so

that the frame is right-handed. Therefore, the four parameters of DH convention are
αk is the rotation around the common normal −→u1

(k), θk is the joint variable which is
the rotation around the joint axis −→u1

(k) for revolute joints, ak is the effective link length
which is the distance from the proximal joint center Ok−1 to current joint center Ok

along the common normal, and the joint offset dk is the distance from the proximal
joint centerOk−1 to current joint centerOk along the joint axis. For the prismatic joints,
the joint variable θk becomes Sk which is the displacement along the joint axis.

The transformation from F
∣∣∣
(k−1)

to F
∣∣∣
(k)

by rotation matrix and translation vector
is defined as.

Rk−1,k = eũ3θkeũ1αk (3.42)
= eykθk (3.43)

and

r(Pk−1Pk)

∣∣∣
Fk−1

= sku3 + ake
ũ3θku1 (3.44)

(3.45)
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Fig. 3.9: Interconnection of the links and assignment of the link frames using unit
vectors using DH convention

Hence the HTM from P0 to P2 in Fig. 3.7 will be:

∴ H(k−1,k)
(Pk−1Pk)

=


R

k−1,k r(Pk−1Pk)

∣∣∣
Fk−1

0
T

1


 (3.46)

H
(0,1)
(P0P1)

·H(1,2)
(P1P2)

=


R

0,1 r(P0P1)

∣∣∣
F0

0
T

1


 ·


R

1,2 r(P1P2)

∣∣∣
F1

0
T

1




H
(0,2)
(P0P2)

=


R

0,2 r(P0P2)

∣∣∣
F0

0
T

1




This method is used in calculating the end-effector of regular robotic arms. Each
robot arm manufacturer provides the DH parameters (or a sufficient kinematic model
to obtain the DH parameters) of their robots. UR5e robot is the one used in the scientific
papers of this thesis. The derivation of the DH parameters of UR5e (and other UR
cobots) are provided in the manufacturer’s website2.

3.1.4 Quaternions and ROS TF package

The raw orientation data from the IMU (or estimated orientation) is qG,S
i where i is the

IMU number. Each IMU provides orientation information with respect to global frame
F0. If the link-(k-1)’s frame of reference is called Fk−1 and link-k’s frame of reference is
called Fk, the rotation from the global frame to sensor frames will be qG,S

k−1 and qG,S
k

respectively. To calculate the joint angles in between two links the rotation qk−1,k

should be obtained. From quaternion multiplication:

2https://www.universal-robots.com/articles/ur/application-installation/
dh-parameters-for-calculations-of-kinematics-and-dynamics
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qk−1,k = (qG,S
k−1)

∗ ⊗ qG,S
k (3.47)

whereqk−1,k gives the solid able between link k-1 and k in global frame. This can be
defined respective to the rotation matrix and position vector representation in Eq. (3.42)
and Eq. (3.44) as

Rk−1,k = eũ3θkeũ1αk (3.48)

= eykθk → qy = cos(
θk

2
) + ĵsin(

θk

2
)

and

r(Pk−1Pk)

∣∣∣
Fk−1

= sku3 + ake
ũ3θku1 (3.49)

= skyk + ak(cosθkxk + sinθkyk)

= akcosθkxk + (sk + aksinθk)yk

where sk and ak are DH-parameters of link-k.
After obtaining the rotation between two links, quaternion to Euler transformation

(in ROStf.transformation library) gives the Euler angles with respect to one previous
body link.

At this step, for simulation reasons, quaternion-to-Euler conversion is needed. It
gives us the Euler angles about each axis. From Section 3.1.2.1 we know that quaternions
are representations of a full 3D rotation as a combination of about 3 orthogonal axes.
In order to calculate Euler angles, first an Euler sequence should be decided. For a ZYX
rotation (yaw-pitch-roll) they can be represented as:

q =




cos(ψ/2)

0

0

sin(ψ/2)







cos(θ/2)

0

sin(θ/2)

0







cos(ϕ/2)

sin(ϕ/2)

0

0


 (3.50)

Therefore after necessary calculations, the Euler angles can be calculated such that:


ϕ

θ

ψ


 =



atan2(2(qwqx + qyqz), 1− 2(q

2
x + q

2
y))

asin2(2(qwqy − qzqx))

atan2(2(qwqz + qxqy), 1− 2(q
2
y + q2

z))


 (3.51)

The reason why Euler angles are needed at the last step is that Rviz 3 is the
visualization and Gazebo 4 for simulation tool in the ROS environment. Both of these
software packages accept a file format called URDF5 which is used to describe the
robot model. It contains links, joints and basic material information about each part
of the robot. We can only provide joint angles as Euler angles. Therefore as the last

3http://wiki.ros.org/rviz
4http://gazebosim.org/
5http://wiki.ros.org/urdf/Tutorials
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step, a conversion from quaternions into Euler angles is computed. These Euler angles
are mapped into movements as defined in Section 3.4.2. Example visualization on the
human frames is shown in Fig. 3.24.

3.2 Fundamentals of Probability Theory

It is never possible to predict a physical occurrence with unlimited
precision.

Max Planck

It is remarkable that a science which began with the consideration of games
of chance should have become the most important object of human
knowledge.

Pierre-Simon Laplace

When the probability name is pronounced, many people think about rolling some dice,
tossing a few coins, picking colourful balls from a bag, picking a few cards from a
deck with some order etc. Those are how we perceive probability theory and how to
understand this nondeterministic world in an intuitive way. In robotics, on the other
hand, we do not deal with colourful balls, cards and coins yet probability theory plays a
fundamental role in the robotics field. Especially in navigation and localization, sensor
readings, pose estimation, motion planning, robot learning and safety in robotics are
the main studies where probability theory takes a considerable part.

In robotics, everything works on signals. IMU, camera, laser, F/T sensors, encoder
readings, driver inputs and outputs motors etc. can be imagined as "information"
signals. There is one thing that we are sure about the signals that we can never be sure
about the signals themselves. Due to the true nature of how signals are produced and
transmitted, they are exposed to noise, distortions, measurement and calculation errors.
The physical world we are living in is a collection of continuous information and the
world in which we are processing data (i.e. PC, microcontroller, robot’s controller unit
etc.) are discrete environment. At the very least, there is always a conversion error
from our continuous world to the robot’s discrete world and vice versa.

Every actual value is exposed to some distortions during measurement. Also
sometimes it is not possible to measure the actual value directly but we can measure
some other values and find a mathematical relation to obtaining whatever property
is desired to be measured. If that’s the case, then there will be additional modelling
errors on the measured value as well as the aforementioned uncertainties.

Although we cannot 100% accurately measure a property, we can measure or calcu-
late it with some uncertainty. Within this uncertainty range, using some probabilistic
approaches it is possible to determine the most likely value of this state with acceptable
confidence. Based on different scenarios, seeking the most correct value of a state is a
state estimation problem.

According to [301] uncertainty in robotics arises from five different factors:
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• Environment: Dynamic properties about the physical world.

• Sensors: Any limitations on the measurement devices for perceiving the robot or
the environment such as resolution, noise etc.

• Robots: Uncertainties about actuators due to noise, signal ripples and wear-and-
tear.

• Models: Inaccuracies and lack of precision in the robot model and environment
model.

• Computation: Although robots are running in a continuous physical world in
real-time, the data is processed in a discrete and close-to-real-time environment.

The role of probability theory in robotics is quite big. However, in this section the
aim is not to teach probability in robotics; it is aimed to remind some bases which are
related to orientation estimation from IMU signals in Section 3.2.2 and understanding
some statistical approaches in Section 3.5. More about the theorems used in the
following section can be found [302] throughout chapters 2-6.

3.2.1 Fundamental Definitions

The most we can know is in terms of probabilities.

Richard Feyman

Some fundamental definitions of the probability theory are given. Since probability
theory is an enormous branch of mathematics, only the topics related to this study are
explained in this subsection. The details about the equations and derivations in this
chapter is found in [302].

3.2.1.1 Probability Density Function (PDF) and Cumulative Distribution Function
(CDF)

Probability Density Function (PDF) is a mathematical function that shows a random
variable’s all possible values as well as which values it can take in which probability. A
r.v., X, is a variable whose value is subject to variations that can take on a set of possible
different values, each with an associated probability. In robotics, it can be the position
or the orientation of a robot, or a sensor reading. It can be a continuous if the data can
take infinitely many values or it can be discrete if the data can take a countable number
of values.

PDF is represented as ρ(x) for continuous X and P(x) for discrete X. The sum of
the probabilities of all values in a PDF is equal to one (see Eq. (3.54)). If instead of the
probability of a r.v. to be equal to a certain value but the probability of the r.v. to be
higher or lower than some certain value is demanded, then CDF is considered. Cumula-
tive Distribution Function (CDF) is the accumulation of all the probabilities of a r.v.
from the less probable possibility to the highest possibility. It is represented as C(x)
for both continuous and discrete X. The relation between PDF and CDF is such that
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the integral of the ρ(x) (or the sum of P(x) if X is a discrete r.v.) is equal to its C(x).
The mathematical representation of this relationship is shown in Eq. (3.55).

PDF is defined for continuous r.v. as:

Pr(x ∈ I) =
∫
I

ρ(x)dx (3.52)

and for discrete r.v. as:

P(x) =


0 x ⩽ a

P(X = x) if x ∈ [a, b]

0 x ⩾ b

(3.53)

where I is a subset of [a, b], ρ(x) and P(x) defined on the interval [a, b] with a ⩽ b also
with the fact that:

ρ(x) =

∫b

a

ρ(x)dx = 1 (3.54)

The cumulative distribution f Pr(X ⩽ x) then defined as:

C(x) = P(X ⩽ x) =
∫x

a

ρ(ξ)dξ =

x∑
X=a

P(x) (3.55)

PDF varies depending on the distribution character of a r.v.. For instance, if we
pick a number between 0 and 10, the probability of choosing any random number
is equal for all numbers in [0,10] (i.e. uniform distribution). On the other hand, if
we chose a person in a group of 100 people, there is a higher chance of him/her
being around 170 cm height than being around 200 cm height (i.e. Normal (Gaussian)
distribution). Another example could be the expectation of an earthquake if it is
expected in a location. If it hasn’t occurred yet, every day there is a higher chance to
occur (i.e. exponential distribution). There are many more different distribution types
that yield different characteristics on PDF but they are not very common in robotics.
The uniform distribution is important because generally the initial values of a state are
distributed uniformly unless extra information is given. Most of the estimated states
under some constraints perform a normal distribution where the calculations give
certain values whereas noise adds Gaussian uncertainty. Or exponential distribution
becomes important when it is concerned with the amount of time until some specific
event occurs.

The comparative PDFs of these three distribution types are given in Fig. 3.10.

3.2.1.2 Gaussian (Normal) Distribution

The representation of Gaussian PDF is X ∼ N(µ, σ2) . where µ is the mean and σ2 is
the variance of the distribution. This representation is given by the following Gaussian
function for a one-dimensional r.v.:

72 Chapter 3



3.2 Fundamentals of Probability Theory

Fig. 3.10: Uniform - Gaussian - Exponential distribution functions

ρ(x) = (2πσ2)
1
2 exp

{
−
1

2

(x− µ)2

σ2

}
(3.56)

Furthermore, if a r.v. is a multivariate vector, then the Gaussian function is represented
as:

ρ(x) = det(2πΣ) exp

{
−
1

2
(x− µ)TΣ−1(x− µ)

}
(3.57)

where µ is the mean vector and Σ is a positive semi-definite symmetric matrix called
covariance matrix.

3.2.1.3 Conditional Probability

Another important term in probabilistic robotics is the joint distribution or two random
variables X and Y. This type of distribution is considered when it is calculated that
the probability of two events happened to be true together. The representation of joint
distribution of two events where the r.v. X takes on the value x and r.v. Y takes on the
value y is given by:

ρ(x, y) = ρ(X = x∧ Y = y) (3.58)

if these random variables are independent then the joint distribution of these two
events is equal to the multiplication of each event’s PDF:

ρ(x, y) = ρ(x)ρ(y) (3.59)

However, in most cases, random variables carry some information about other
random variables. In such cases, the probability of X to take the value xwhen Pr(Y = y)

is given is different than no information given about Y. This type of dependence is
called conditional probability and it is defined as:

ρ (x | y) =
ρ(x, y)

ρ(y)
= ρ(x) (3.60)
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3.2.1.4 Bayes Rule

This relation between two random variables leads us to one of the most predominant
concepts in the probability theory; Bayes Rule. This rule allows us to calculate multiple
beliefs.

ρ (x | y) =
ρ (y | x) ρ(x)

ρ(y)
=

ρ (y | x) ρ(x)∫
ρ (y | x ′) ρ(x ′)dx ′

(continuous) (3.61)

P (x | y) =
P (y | x)P(x)

P(y)
=

P (y | x)P(x)

Σx ′P (y | x ′)P(x ′)
(discrete) (3.62)

Bayes rule or Bayes theorem is undoubtedly the most used fact in the probability
theory. Especially in robotics, thanks to Bayes theorem the probability of a r.v. (i.e.
state of a system) can be calculated depending on both sensor measurements and
the prior probabilities of this state. If x is a quantity that is to be inferred from y,
the probability ρ(x) will be referred to as prior probability distribution, and y is called
the data (e.g., a sensor measurement). The probability ρ (x | y) is called the posterior
probability distribution over X. Therefore Bayes rule gives the opportunity to calculate
a posterior ρ (x | y) using the "inverse" conditional probability ρ (y | x) as well as the
prior probability ρ(x). In other words acknowledging that the sensor measurement Y
has y values since the state variable X causes it to be so, and therefore the posterior
state can be calculated based on this acknowledgement.

Another useful outcome of Bayes rule is that the denominator ρ(y) does not depend
on the state variable X, which means that ρ−1(y) is the same for any value x in the
posterior ρ (x | y). Therefore the equation can be rearranged as in Eq. (3.63).

ρ (x | y) = ηρ (y | x) ρ(x) (3.63)

where η is mostly referred as normalizer variable in robotics since it normalizes the final
result of ρ (x | y) to 1.

3.2.1.5 Expected Value and Covariance

Since after overall calculations a result to be used is needed, the final decision of a
distribution of a r.v. is called as expected value of this r.v.. The expected value of r.v. X is
given by:

E[X] =

∫
xρ(x)dx (continuous) (3.64)

E[X] =
∑
x

xρ(x) (discrete) (3.65)

and the covariance of X is obtained as:

Cov[X] = E[X − E[X]]2 = E[X2] − E[X]2 (3.66)
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3.2.1.6 Generalization on Multivariate Cases

As a conclusion of basic concepts in probability, it is perfectly fine to condition any of
the rules discussed so far on arbitrary other random variables, such as the variable Z.
For example, Pr(Z = z) conditioning on Bayes rule gives us:

ρ (x | y, z) =
ρ (y | x, z) ρ (x | z)

ρ (y | z)
(3.67)

if x and y are independent on z then the joint distribution of these variables holds such
that:

ρ (x, y | z) = ρ (x | z) ρ (y | z) (3.68)

therefore the conditional independence can be observed:

ρ (x | z) = ρ (x | z, y) (3.69)
ρ (y | z) = ρ (y | z, x)

However, conditional does not imply absolute independence. x and y can be
independent on z yet they can be dependent on each other. Also, absolute independence
does not imply conditional independence.

ρ (x, y | z) = ρ (x | z) ρ (y | z) =⇏ ρ(x, y) = ρ(x)ρ(y) (3.70)
ρ(x, y) = ρ(x)ρ(y) =⇏ ρ (x, y | z) = ρ (x | z) ρ (y | z)

3.2.1.7 Probability vs Likelihood

Supposing a stochastic process which takes X as a r.v.. Let the observed outcomes O
and the set of parameters that describe this stochastic process as θ. As it is seen so far,
the probability of the observation O given θ is P (O | θ).

However, it is hardly possible to perfectly define all the model parameters θ in real
life. Then the problem becomes such that the observation O and then the goal is to
arrive at an estimate for θwhich would yield a satisfying choice given the observed
outcomes O. It is known that at a given value of θ the probability of observing O is
P (O | θ). Therefore a likelihood problem seeks the best probability of the parameter
values θ to maximize the chance of observing O. The mathematical description of such
a function is:

L (θ | O) = P (O | θ) (3.71)

In continuous cases, this approach is not applicable as it is since it is obvious that
the probability of observation for a specific parameter value P (O | θ) is zero. Adapting
the concept into continuous cases, a specific value of a state is no longer the concern
but the PDF is associated with the observed outcomes O. Therefore, the likelihood
problem in continuous case problem seeks the best PDF of θ to maximize the chance of
observing O. The mathematical description of such a function is then:

Chapter 3 75



Background

L (θ | O) = ρ (O | θ) (3.72)

3.2.2 Bayes Filters

In robotics, at every time step, new data is collected through sensors and a set of actions
is taken that updates the robot’s state. Therefore, the uncertain robot states have to be
updated recursively based on both prior states and the current sensor inputs. Such a
process which takes the current measurements, as well as the prior estimates of the
system state, is called recursive state estimation.

It is explained that the Bayes rule allows us to calculate multiple beliefs (i.e. in
robotics prior knowledge of robot states and the current sensor measurements). There
are different algorithms to filter undemanded signal residuals, estate estimators and
observers which are developed on the Bayes rule. Depending on the purpose of the
algorithm, similar approaches can be named as those terms interchangeably, the root
from the same principle. Therefore those types of algorithms are a type of Bayes Filter.

Bayes filters, both named as an observer or a filter, have two main steps: prediction
and correction. The correction step can be named as innovation or update in different
resources. For consistency, the "correction" term is used for the step where the predicted
states are corrected according to prior knowledge.

There are many different forms of Bayes filters. Kalman filter (KF), Extended Kalman
filter (EKF), Unscented Kalman Filter, Particle Filter and many well-used estimation
and learning algorithms can be given as an example. In this section, the principle on
KF and how the prediction and correction steps are calculated are presented. Although
neither KF nor EKF is manually calculated in the presented papers in Part-II, it is still
an essential step in understanding the position and orientation estimation linked to
this study.

The following part of this section is compiled from the online lecture notes from
Cyrill Stachniss [303] and in [304].

3.2.2.1 Kalman filter (KF)

Kalman filter (KF) is the equivalent form of Bayes filter when the variables are normally
distributed and the transition is linear. It is known as the best/most optimal state
estimator in linear systems [304], and therefore, one of the most common estimation
algorithms for linear systems. It produces estimates of imponderable states of a system
based on past estimations and current measurements. In other words, it is an estimator
(and observer). Using the linear system model reduces the estimation error in every
iteration. In a case where angular velocity and linear acceleration can be measured but
orientation can not, then the orientation is an imponderable state.

Every linear time-invariant (LTI) system can be modelled as:

x̂t = A · x̂t−1 + B · ut +wt (3.73)
yt = C · x̂t + vt
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Where x̂t is the estimated system state vector, ut is the input vector and yt is the
measurement vector at time t.

• A: system matrix (n× n) (relates the current states to the next states)

• B: input matrix (n× l) (relates inputs to the next states)

• C: output matrix (k× n) (system states to the measured/observed states)

• wt: process noise (N ∼ (µ = 0, σ2w = Q) where Q is (n× n))

• vt: measurement noise (N ∼ (µ = 0, σ2v = R) where R is (k× k))

• x̂t: estimated state vector

• ŷt: measurement vector (observation vector)

Simply, in a linear motion model under Gaussian noise, KF seeks the solution of
the problem ρ (xt | ut, xt−1) in the representation of Bayes filter. In other words, if the
system states vector x̂t holds the position or orientation states of the robot, the KF
estimates the most likely values of the robot states considering the past states x̂t−1 and
the current sensor measurements ut which yields the observations ŷt.

Note:Column vector notation xt is omitted for brevity from now on. xt represents all
of the states, not a single value.

The linear motion under Gaussian noise looks like this:

ρ (xt | ut, xt−1) = det(2πRt)
− 1

2exp

(
−
1

2
(xt −Atxt−1 + Btut)

TR−1
t (xt −Atxt−1 + Btut)

)

(3.74)
where Rt represents the noise of the motion. The same representation for a linear
observation model looks like this:

ρ (zt | xt) = det(2πRt)
− 1

2exp

(
−
1

2
(zt − Ctxt)

TR−1
t (zt − Ctxt)

)
(3.75)

whereQt represents the noise of the observation/measurement. As explained in Since
everything is Gaussian, given an initial Gaussian belief, the belief is always Gaussian
(derivation in [305]):

bel(xt) =

∫
ρ (xt | ut, xt−1)bel(xt−1dxt−1) (3.76)

bel(xt) = ηρ (zt | xt)bel(xt−1)

Kalman Filter is based on modelling the process noise. As well, the Kalman filter
provides a prediction of the future system state by prediction. How this process is
applied using the mathematical system model is as follows:
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A posterior
estimate: 

A prior
estimate: 

A prior
estimate: 

PREDICT CORRECT

Fig. 3.11: Kalman equations

In the prediction step, the system model is used in the calculation of error covariance
matrix P as in Eq. (3.77):

x̂t = A · x̂t−1 + B · ut (3.77)
P = A · P · A

T + Q

Then, this error covariance matrix is used in updating the Kalman gain K as in Eq. (3.78):

ỹt = yt − C · x̂t+1 (3.78)
S = C · P · C

T + R

K = P · C
T · S

−1

x̂t = x̂t + K · ỹt
P = (I − K · C) · P

where,

• K is the Kalman gain,

• P is the error covariance,

• Q is covariance matrix of the process noise,

• R is covariance matrix of the measurement noise,

• ỹt is error between the actual measurement and the estimated.

Validation of KF According to Eq. (3.77) and Eq. (3.78), the Kalman gain K is
adapted based on Q and R. Principally, KF estimates a posterior states depending on
the reliability of the model prediction (a prior estimate) and the observation prediction,
i.e. lower variance in measurement noise (limR⇒0) makes the Kalman gain K closer to
1 and posterior estimates will be more based on the measurements.

It can be mathematically proven like that:

lim
R→0

K =
P
− · C

T

C · P
− · C

T + (R = 0)
→ K = C

−1 (3.79)
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If Eq. (3.79) is substituted into the a posterior estimation in Fig. 3.11:

x̂+ = x̂− + K · (y− − C · x̂−) (3.80)
= x̂− + C

−1 · (y− − C · x̂−)
= x̂− + C

−1 · y− − C
−1 · C · x̂−

= C
−1 · y−

and C
−1 is equal to 1 in general case. Therefore the estimated value only depends on

the measured value, not prior estimates. Hence:

x̂+ = y− (3.81)

In the opposite case, lower variance in prior estimate covariance converges to zero
(limP⇒0), then only prior estimates contribute to our current estimation.

lim
P
−→0

K =
(P− = 0) · C

T

C · (P− = 0) · C
T + R

→ K =
0

R

= 0 (3.82)

If Eq. (3.82) is substituted into the a posterior estimation in Fig. 3.11:

x̂+ = x̂− + K · (y− − C · x̂−) (3.83)
= x̂− + 0 · (y− − C · x̂−) (3.84)

Therefore the estimated value only depends on the prior estimates, not measurements.
Hence:

x̂+ = x̂− (3.85)

3.2.2.2 Extended Kalman filter (EKF)

The Kalman filter is only applicable in casual, linear and time-invariant systems.
If the system model does not satisfy these three conditions, then another type of
filter/estimator/observer or a different variation of the Kalman filter should be
implemented.

For not-highly nonlinear systems, an Extended Kalman filter (EKF) can be imple-
mented. In this case, the system matrix is not a function of the non-linear states but
also it may be a function of states and inputs that cannot be separated linearly. On the
other hand, the non-linearity might appear in the measurement part. Therefore, the
system equations must be formulated as the following equation set:

x̂t = f(xt−1, ut) +wt (3.86)
yt = h(xt) + vt (3.87)

In such a case, with arbitrary functions, f and h, the belief is no longer a Gaussian.
The system model does not behave linearly to all the states therefore the behaviour of
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Fig. 3.12: Why KF does not work in nonlinear systems: The KF assumes the system
is linear and the character of system uncertainty is Gaussian. Therefore, the output
system maintains its Gaussian properties. However, the Gaussian property breaks
down at the output and it causes big errors in estimated properties.

the output states does not reflect a Gaussian property as shown in Fig. 3.12. The figure
shows on state function f(x) but the same case is valid in the measurement function
h(x), as well.

Therefore, in the EKF process local linearization processes are applied. The
nonlinear functions are linearized in each time step, and afterwards, the same pre-
diction+correction steps are applied as in KF. The Fig. 3.13a shows how the local
linearization affects the output differently than what is shown in Fig. 3.12.

The EKF calculates an approximation to the true belief. The representation is pretty
much the same as linear KF whereas f replaces the matrices A and B, and h replaces
the matrix C.
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[h]

(a) Local linearization

(a) EKF dynamic concept

Fig. 3.15: How EKF works: The system model is linearized in each prediction cycle to
apply linear KF predict state, then the observer model is linearized in the filtering cycle
to apply linear KF correction state.

The EKF linearizes the system dynamics and measurement dynamics in every time
step (see Fig. 3.15). Then, apply the KF steps as if everything is linear and has Gaussian
characteristics.

One most common way to do it is to use Taylor expansion to approximate the f and
h functions around the working point i.e. a tangent line to the function at the mean of
the Gaussian as shown in Fig. 3.13a. These linearized functions F and H respectively
are also called Jacobians. The Jacobian functions of the system and measurement
function using 2nd degree Taylor expansion would be as in Eq. (3.88).

F =
∂f

∂x

∣∣∣∣∣
x̂k−1,uk

= f(x̂k−1, uk) + fx(x̂k−1, uk)(x− x̂k−1) + fu(x̂k−1, uk)(u− uk) (3.88)

+
fxx(x̂k−1, uk)

2
(x− x̂k−1)

2 + fxu(x̂k−1, uk)(x− x̂k−1)(u− uk)

+
fuu(x̂k−1, uk)

2
(u− uk)

2

H =
∂h

∂x

∣∣∣∣∣
x̂k

= h(x̂k) + h
′(x)(x− x̂k) +

f ′′(x̂k)

2
(x− x̂k)

2

where fx and fu are the first derivatives, fxx, fuu and fxu are the second derivatives of the
system function with respect to system states vector x and inputs vector u, respectively;
h ′ and h ′′ are the first and second derivatives of the measurement function’s first and
second derivatives with respect to system states vector x. Then the linearized system
becomes:
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∆(xk, uk) ≊ F∆(xk−1, uk) +wk (3.89)
∆yk ≊ H∆xk +wk

The functions F∆(xk−1, uk) and H∆xk are linear functions are linear KF procedures
can be safely applied as in Fig. 3.14a.

Fig. 3.16: Linearization problem in highly
nonlinear systems

The EKF is a very useful approach to
applying Bayes filter-based optimal state
estimation. Compared to the KF, the EKF
is computationally more expensive be-
cause the Jacobians have to be calculated
in every step. Moreover, the EKF is only
applicable to systems that have a differen-
tiable model.

However, the EKF is not optimal if the
system is highly nonlinear. As shown in
Fig. 3.16, if high nonlinearity occurs in
between time steps, they are missed in
the linearization process and return faulty
F∆(xk−1, uk) and/or H∆xk. Therefore,

different nonlinear state estimators should be used.

3.2.3 State Estimation

States are system parameters which are used in a model. There is a mathematical
model and any variable changing in time can be a system state.

There are two common approaches in HME state estimation [119]: orientation-based
and position based. One can either directly use orientation estimate and find joint
angles and then joint+end point positions (shoulder, elbow, wrist, hand), or one can
do position estimation to find out each joint+end point respective positions to a fixed
point (chest), calculate joint angles, and then using human body model to find out joint
angles. The differences in the processes are summarized in Fig. 3.17.

States in robotics are generally the position/orientation/heading/tilt/joint position
information of a robot. In this case, the human body is treated as a robot model
i.e a kinematic chain. The general approach behind the state estimation is to use a
mathematical model and calculate/predict states based on this model, and after, to
correct them by some observable states if needed. In every time step, new data is
collected through sensors and a set of actions is taken that updates the robot’s state. If
the uncertain states have to be updated recursively based on both prior states and the
current sensor inputs. Such a process which takes the current measurements, as well
as the prior estimates of the system state, is called recursive state estimation.

Bayes filter is one of the most used recursive state estimation methods in robotics.
It uses the measured states in given input values as well as the prior estimates to find
out the desired output states. It is such a game-changer method that even the basis
of machine learning and some different filter bases of the Bayes filtering approach.

82 Chapter 3



3.2 Fundamentals of Probability Theory

Fig. 3.17: Orientation vs position-based human pose estimation

Kalman filter is one of them. Kalman filter is the best possible linear estimator in the
minimum mean-square-error sense [304].

Recently machine learning, deep learning, artificial intelligence, convolutional
neural networks, hidden markov, etc. are used in state estimation in robotics. This
study focuses on HME using Kalman Filter. As the basic principle, the Kalman filter (in
general a Bayes filter) adaptively updates the Kalman gain Kt to reduce the observation
error yt − Hx̂−t based on aprior estimates of the system states x̂−t , and calculate a
posterior estimate x̂+t as shown in Eq. (3.90).

x̂t
+ = x̂t

− + kt(yt − hx̂t
−) (continuous) (3.90)

x̂k
+ = x̂k

− + Kk(yk − Cx̂k
−) (discrete)

The general approach in using IMUs in the state estimation is either integrating the
gyroscope values to obtain the orientation and then correcting the calculation with
accelerometer and magnetometer readings or double integration of the accelerometers
to obtain the position and then correcting the calculation with gyroscope and mag-
netometer (an more commonly using some other external sensors) [117]. All these
methods are also called sensor fusion. In HME using IMUs, there are some extra observ-
able states for aiding state estimation by using IMUs than using them in free space.
Commonly in IMU-based HME problems, the IMUs are used in the mathematical
model as inputs, body constraints and/or external sensors (such as cameras, lasers,
strain gauges, etc.) are used in the correction step as observable states.

The estimation of the position of the human is investigated in 2 categories; local
HME and global HME. This study uses only local HME.

In local HME, the aim is to estimate the correct orientation between each body links
(i.e. correct joint angle). It is based on only IMUs without any external sensors. It is
fundamental in the strap-down approach to position estimation. In one point of view,
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orientation estimation can be superior since allows the gravity to be cancelled from the
acceleration signals yet it is inferior since the orientation estimate accepts the human
joints as pure rotational joints. This acknowledgement causes orientation estimation to
be less powerful for soft tissue artifacts and translational motion on the human joints.

On the other hand, in global HME, the aim is to estimate the position of the human
in the environment as well as the position of the body links with respect to the human
reference frame. To eliminate long-term drift, generally, external sensors are involved.
It is most likely to use the external sensors to estimate the global position of the human
such as GPS, depth sensor, leap motion, camera, force sensor etc. Position estimation
requires perfect determination of the center of rotation and determination of the axis
of rotation of a rigid body.

Although, in the end, no stochastic state estimation was manually applied in this
study, it occupies quite a big portion of this study. Instead of manual KF implementation,
the Xsens Awinda IMU orientation output is used, which is estimated using KF [32] by
the firmware.

3.3 IMU Measurement Model

IMU has 3 distinct measurement devices in it; a gyroscope for angular velocity mea-
surement, an accelerometer for linear acceleration measurement and a magnetometer
to measure the magnetization in the environment. This subsection explains how those
measurements are mathematically modelled. While the majority of the mathemat-
ical models delineated in this section are not straightforwardly employed in any of
the papers introduced in Part II, comprehending this section is critical for grasping
how the entire system functions and the rationale behind choosing the presented
methodologies.

Before getting into the details about the orientation and position estimate there are
4 main coordinate frames which play fundamental roles:

• F
∣∣∣
S

is the coordinate frame of the moving IMU,

• F
∣∣∣
B

The coordinate frame of the moving body part,

• F
∣∣∣
G

is the the coordinate frame of the world; Ground/Base frame,

• F
∣∣∣
I

The coordinate initially coincident with the Global frame. Contrary to F
∣∣∣
G

, the
initial frame is stationary whereas the global frame rotates with the earth.

There is also navigation frame which is a local geographic frame to be navigated.
However, the difference between the navigation frame and the global frame is negligible
at small distances. It is important in aviation but not HME.

A pose is defined as a combination of the orientation and the position of an object.
Orientation defines the direction or the object whereas position defines the location,
both with respect to a reference frame. The distinction between the initial frame and
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the global frame is important in long periods of usage; like a few years. This is mostly
because of the magnetometer challenges explained in Section 4.1.

To utilize a state estimation using IMUs, it is important to mathematically describe
the data which is obtained from an IMU.

Angular velocity measurement model:

The gyroscope measures the angular velocity of the sensor frame with respect to the
inertial frame, expressed in the global frame. It is denoted asωG

S expressed as [117]:

ωG
S = RS,GωS + RI,G ·ωI (3.91)

where ωI
IG is our planet’s angular velocity around its own z-axis in 23.9345 hours

with respect to the Sun according to [306] represented in F
∣∣∣
I
. Hence, the earth rate is

approximately 7.29× 10−5 rad/s. This is negligible in our case. Hence, the angular
velocity of a sensor in the sensor frame [117]:

ωG
S = RG,S(ωS

S) (rotation matrix representation) (3.92)
ΩG

S = qG,S ⊗ΩG
S ⊗ qG,S∗

(quaternion representation) (3.93)

whereΩG
S is the quaternion representation of the vector #»ω, defined as a pure quaternion

Ω = (0, #»ωG
S ) = (0,ωx,ωy,ωz)

T and represented in F
∣∣∣
G

. qS,G is the quaternion
represents the rotation from sensor frame to global frame, qS,G∗ is the conjugate of the
qS,G. Both qS,G and qS,G∗ are unit quaternions.

The measurement vector from the gyroscope at time t including the noise effect σ is:

yω,t = ω
S
t + σω,t (3.94)

Linear acceleration measurement model:

The accelerometer measures the specific force #»
F in the sensor frame F

∣∣∣
S
. This can be

expressed as [117]:

sS := RS,G(aS − gS) (rotation matrix representation) (3.95)
fS := qS,G ⊗ (aS − gS)⊗ qS,G∗

(quaternion representation) (3.96)

where the same notation rules are valid as in angular velocity expression.
The measurement vector from the accelerometer at time t including the noise effect

σ is:

ya,t = R
S,G
t (aS − gS) + σa,t (3.97)
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Environment magnetization measurement model:

Magnetometers measure the local magnetic field, consisting of both the Earth’s magnetic
field and the magnetic field due to the presence of magnetic material. The (local)
Earth’s magnetic field is denoted mn. The ratio between the horizontal and vertical
components depends on the location on the earth. The angle between the needle and
the horizontal plane is the inclination angle; the angle between the needle and the true
north is the declination angle. These two angles make a solid angle so-called dip angle
α. The dip angle and the magnitude of the Earth’s magnetic field are accurately known
from geophysical studies. Similar to the tilt calculation from known gravity value,
heading (i.e yaw) calculation from the known magnetization direction of the location
can be computed.

Magnetometers provide information about the heading in all locations on the earth
except on the magnetic poles, where the local magnetic fieldmn is vertical. Orientation
can be estimated based on the direction of the magnetic field. The magnitude of the field
is irrelevant. Because of this, without loss of generality, the Earth’s magnetic field can
be modelled as [117]:

mn = (cosα 0 sinα)T (3.98)

assuming that |m|2 = 1 and the magnetometer only measures the local magnetic field,
its measurements ym,t can be modeled as:

ya,t = R
G,S
t (mS) + σm,t (3.99)

3.3.1 Orientation-based HME with IMUs

The orientation estimation from an IMU has been studied widely [117]. A simple
integration of the angular velocity is computed by integration of gyroscope data as in
Eq. (3.100).

roll→ ϕ̂G =

∫ t

t0

ωx∆t =

∫
yGωx,t

dt = ϕk−1 +
#»ωk · dt (3.100)

pitch→ θ̂G =

∫ t

t0

ωy∆t =

∫
yGωy,t

dt = θk−1 +
#»ωk · dt

yaw→ ψ̂G =

∫ t

t0

ωz∆t =

∫
yGωz,t

dt = ψk−1 +
#»ωk · dt

(3.101)

This mathematical expression is our system model in the KF where the gyroscope
readings are the system inputs in Eq. (3.77).

For the correction step of the KF, observable states must be expressed mathematically
by system states. Accelerometer readings can be used for roll and pitch correction,
magnetometer readings can be used for yaw correction.

Accelerometers are sensitive to both linear acceleration and the local gravitational
field (Eq. (3.97)). If the linear acceleration on the body is negligible, then assume that
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the only acceleration exerted on the body is gravity. In our case, as the body stays still,
the gravitational acceleration is measured only by the z-axis of the IMU (see Fig. 3.18).
If the IMU is rotated, let’s say θ angles around the y-axis, then the gravity vector is
expressed by x and z components on the IMU readings.

Fig. 3.18: Tilt measurement by accelerometer

Generally, rotations are not only around one axis. If the IMU is rotated around both
x and y axes, by θ and ϕ angles respectively:

Fig. 3.19: Tilt in 2 axes

where the θ and ϕ angles are found by the following formula:

tan(ϕ) = −
ay

ãz

= −
ay√

(a2
x + a

2
z)

(3.102)

tan(θ) =
ax

ãz

=
ax√

(a2
y + a2

z)

and the ψ angle is found by:

Hx = mx cos θ+my sin θ sinϕ+mz sin θ cosϕ (3.103)
Hy = my cosϕ−mz sinϕ

ψ = arctan

(
Hy

Hx

)
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Eq. (3.102) and Eq. (3.103) can now be used in the KF where the accelerometer and
magnetometer readings are the measurements in Eq. (3.78).

Since the orientations of each IMU are obtained, the orientation based HME can
begin. Fig. 3.7 shows the poses of two consecutive links in which the orientation of each
IMU is estimated by the KF at this point. Also, the HME gives us the kinematic chain
representation of the human body. The Eq. (3.104) maps the IMU sensor orientations
into body link orientations.

qG,B = qG,S ⊗ qB,S∗ (3.104)

where ⊗ denotes the quaternion multiplication and ∗ the complex conjugate of the
quaternion. Neglecting the STA, qS,B is a constant value. Hence, qG,B gives the
orientation of each link with respect to F

∣∣∣
G

.

qG
i represents the orientation of link i and the quaternion qG

i+1 represents the
orientation of link i+ 1with respect to F

∣∣∣
G

. Then, the rotation from link i to i+ 1 is
represented as:

qi,i+1 = qG∗
i ⊗ qG

i+1 (3.105)

qi,i+1 is the rotation between link i and i+ 1. According to Fig. 3.20, three joint angles
θs, θe, θw denoting shoulder, elbow and wrist angles in 3-axes respectively calculated
by this process.

Fig. 3.20: Human arm joint angles and positions

pc, ps, pe, pw and ph denotes the joint (and end effector) positions as frame origins,
ls, le, lw, lh are the body link lengths of the (chest), shoulder, elbow, wrist and hand
respectively. pc is assumed stationary as well as the chest IMU is used as the body
frame. Therefore, any undemanded motions caused by the torso and affecting the arm
motion are eliminated. The rest of the positions are calculated by multiplying the joint
angles with their respective body links as shown in Eq. (3.106).
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pGc = (0, 0ˆ̂i, 0ˆ̂j, 0 ˆ̂k) (3.106)

pGs = pGc + qG
s ⊗ ls

∣∣∣
Fs

⊗ qG∗
s

pGe = pGs + qG
e ⊗ le

∣∣∣
Fe

⊗ qG∗
e

pGw = pGe + qG
w ⊗ lw

∣∣∣
Fw

⊗ qG∗
w

pGh = pGw + qI ⊗ lh
∣∣∣
Fw

⊗ qI∗

(3.107)

where pGi is the position of link-i in the global frame, qG
i is the orientation of the link-i

with respect to the global frame, li
∣∣∣
Fi

is the link length of the link-i represented in its

own frame and qI is the unit quaternion which represents the null rotation (1, 0î, 0ĵ, 0k̂).
To sum up, in orientation based HME, the system is modelled such that a rotation

input is given and orientation is tried to be estimated. Orientation in 3-axes, therefore,
is the system states x̂, accelerometer and/or velocity are the observable states y.
Hence, the mathematical model in which the relation between rotation input and
acceleration/velocity output relation is defined gives us the possibility of comparing
the outputs of the physical model and the mathematical model. By eliminating the
difference between observable states, the Kalman gain updates itself and reduces the
error in unobservable states i.e. reduces the estimated orientation error. The diagram
of such an approach would be as in Fig. 3.21

Fig. 3.21: Orientation estimate system diagram

After the orientation of each IMU is estimated, their joint angles are calculated
using kinematic relations. Finally, using link lengths, the position of each joint and the
end effector are calculated.
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3.3.2 Position-based HME with IMUs

In orientation-based HME, there are some assumptions such as rigid body link lengths,
neglecting the linear acceleration of the body, etc. that cause errors in state estimation.
To remedy these deficiencies, position-based HME is proposed. The method is derived
from the studies proposed in [19, 117].

Orientation of each IMU is either calculated as in Section 3.3.1 or directly from the
raw orientation data which is provided by Xsens Awinda IMUs. For manual calculation
of the orientation, the approach from Kok et. al. [117] is used to obtain the orientation
by integration:

q̇G,S
t =

1

2
qG,S
t ⊗Ωt (3.108)

Hence,
qG,S
t+1 = qG,S

t ⊗ expq(
T

2
(yω,t − σω,t)) (3.109)

where expq is the exponential map, expq : R3 → q ∈ R4 : ||q||2 = 1, from a corresponding
Lie algebra (SO(3)). However, the process explained in this chapter does not depend
on how the orientation of IMUs are obtained, so we will not explain further.

If the orientation of the sensor qG,S
t is known, the linear acceleration at time t of the

body in the global frame is obtained by:

aG
t − gG = qG,S

t ⊗ (aS
t − gS)⊗ qG,S∗

t (3.110)

where aG
t and gG are linear acceleration and gravity in global frame in quaternion

form. Note that they are pure quaternions.
The process starts with double integrating the accelerometer measurements in

3-axes. After removing the gravity component, the acceleration at can be integrated
once to velocity vt and twice to position pt, all in the global frame:

p̈Gt = aG
t (3.111)

pGt is the position of the IMU. The relation which is used as a system model is based
on that. Since the position is updated discretely and every time step, using Newton’s
equations of motion [307], the velocity and position vectors can be described as:

pGk+1 = pGk + TvGk +
T2

2
aG
k (3.112)

vGk+1 = vGk + TaG
k

where T is the time between two samples. In some approaches, the dynamics of the
orientation is also mathematically described and the system state vector contains all
position, orientation angular+linear velocity as well as the linear acceleration as in
[117]. However, it is better to simplify the system equation since the process has to be
repeated in every time step. Hence, the state vector only contains the positions of each
joint origins.

The offsets where the IMUs are placed with respect to their belonging joint origins
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are shown in Fig. 3.22 denoted as ds, de, dw for shoulder, elbow and wrist joints,
respectively. The offsets are assumed to be rigid for simplicity neglecting the bone-
to-skin motion of the human body limbs. However, if the effect of STA needed to be
considered, these offsets are also supposed to be adaptively parametrized.

Fig. 3.22: Human arm joint angles and positions

As Fig. 3.22 implies, the joint origins are expressed as two points; 1 and 2 for each
joint. The notation 1 is used where the previous link ends and 2 is used where the next
link starts. In my assumption, I choose point-2s as the joint origin. Neglecting the joint
clearance, point-1 and point-2 belong to the same joint and are coincident. However,
these points are separated due to the drift error during position estimation. Therefore,
the positions of each body link are estimated individually in the KF predict step and
the kinematic constraints are used in the correct step.

Let pi1,k+1 represent the position of the origin of the ith1 link at k+ 1 and Let pi2,k+1

represent the position of the origin of the ith2 link, the system model is based on these
equations:

pi1,k+1 = pi1,k +

integral︷ ︸︸ ︷
T #»v G

i,k +
T2

2
aG
i,k (3.113)

pi2,k+1 = pi2,k + T #»v G
i,k +

T2

2
aG
i,k (3.114)

pi2,k = pi1,k +

rotation︷ ︸︸ ︷
qG,S
i1,k

⊗ lB1 ⊗ qG,S∗
i1,k

(3.115)

and our observable states are:

pi1,k − pi2,k = 0 (3.116)
pi1,k+1 − pi2,k+1 = 0 (3.117)

If Eq. (3.115) is substituted into Eq. (3.113), the KF steps will be:
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Fig. 3.23: Position estimate system diagram

Predict step:

pi1,k+1 = pi2,k − qG,S
i1,k

⊗ lB1 ⊗ qG,S∗
i1,k

− T #»v G
k +

T2

2
aG
k (3.118)

pi2,k+1 = pi2,k + T #»v G
k +

T2

2
aG
k (3.119)

where p, #»v and a are pure quaternions as the representation of 3D vectoral position,
velocity and acceleration respectively.

Correct step:

qG,S
i1,k

⊗ lB1 ⊗ qG,S∗
i1,k

= pi1,k − pi2,k (3.120)
qG,S
i1,k+1 ⊗ lB1 ⊗ qG,S∗

i1,k+1 = pi1,k+1 − pi2,k+1 (3.121)

where qG,S
i,k is the rotation from the ith sensor to global frame at time step k. Hence,

the system state vector xk holds the positions of two consecutive link origins.

xk =

[
pi1,k
pi2,k

]

The KF representation of this process is summarized in Fig. 3.23.

3.4 Biomechanical Modelling of Human Body

Achieving a human-like motion is one of the most interesting areas in the robotics
field. Most of the serial industrial manipulators are inspired by the human arm in
their design procedure. From the mechanical design to control the robot, from the
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interaction level of the robot to social skills there are different ways to increase the
anthropomorphism of the robots.

Biomechanical modelling of the human body is the first step in motion and gesture-
based HRC. In robotics, the biomechanical model is represented as a kinematic chain.
However, the human body has a sophisticated model chain. Despite the ordinary
actuators which are used in mechanics, the motion of the human body occurs by
contraction and relaxation of the muscles which are wind around the bones. The largest
percentage of muscles in the muscular system consists of skeletal muscles, which are
attached to bones and enable voluntary body movements. There are over 600 skeletal
muscles in the human body [68]. Some muscle contractions create holonomic motion
and it is very hard to distinguish all the individual muscle movements’ effects.

Fig. 3.24: 14 DoF Human body visualized in ROS Rviz. The left shoulder is up,
respective axis colours are RGB:xyz

In Fig. 3.24, the model has 7 DoF on the right arm and 7 DoF on the left. The left
arm is shown in its initial pose. The DoF distribution for this upper body model is that
the shoulder joint has 3 DoF, the elbow has 1 DoF and the wrist has 3 DoF on each
side of the human model. The methodology is the same for both arms, therefore, the
explanation is going to be only for the left side.

The model varies depending on the field of interest of the study. Less number
of joints allows simpler computation but gives more vague information about the
human pose. Increasing the DoF would result in more accurate estimation yet it would
exponentially increase the computation cost. Particularly in HRC applications, the
real-time capability of the developed system might play a vital role. Therefore, carefully
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identifying the requirements is as important as developing a precise method for human
motion estimation for HRC.

3.4.1 Human Arm Kinematic Calculation
The 7 DoF human arm can be modelled by DH parameters as follows:

θk sk ak αk

1 θ1 0 0 0

2 θ2 0 0 +π
2

3 θ3 0 0 −π
2

4 θ4 0 d1 0

5 θ5 0 d2 +π
2

6 θ6 0 0 +π
2

7 θ7 0 0 −π
2

Hand (EE) 0 0 d3 +π
2

Table 3.2: Human arm DH parameters
If it is applied Eq. (3.47) from link-0 (chest to shoulder) to link-4 (wrist to hand), an

arm posture of a human based on orientation based HME is obtained.
In order to find the rotation from the global frame to the wrist frame, the kinematic

chain for such a human model from the base (chest) to the tip (hand) can be written in
quaternion form as:

qG,W = qG,C ⊗ qC,S ⊗ qS,E ⊗ qE,W (3.122)
qG,E = qG,C ⊗ qC,S ⊗ qS,E (3.123)
qG,S = qG,C ⊗ qC,S (3.124)

where qG,W , qG,E, qG,S are the quaternions that represent the orientation from the
global frame to the wrist, elbow, and shoulder frames respectively. Those values are
measurements of IMUs after calibration. G, C, S, E, W indices represents global →
chest → shoulder → elbow → wrist, respectively. Each quaternion in this chain is the
orientation from the previous body link to the next one. In other words, quaternion
representation of each joint.

Note:qG,C is a fixed orientation and it is equal to 1+0î+0ĵ+0k̂ to reduce the error
on the base frame (i.e chest frame) in this study.

3.4.2 Types of Human Body Movements
Human motions are provided by muscle contractions and relaxations. Human anatomy
can be translated into robotics terminology as such that the actuators of the human
body are the muscles, and the links are the limbs of the body.

Since the muscles are wrapped around the bones, the actuation does not occur at
a single point on the joint contrary to what we are used to in robotics. Furthermore,
the contraction and relaxation of the muscles change the link lengths as well as the
ligament displacement (soft tissue artifact). Therefore, even anatomically well-defined
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human motions can be hardly translated into the robotics world. Moreover, having
numerous different muscles leads to the fact that the human biomechanical model has
quite high DoF yet it can hardly be modelled by current methods in robotics. Therefore
there has not been a conclusion about the exact independent/non-holonomic DoF of a
human body in the literature yet. However, according to the focus of the study, the
biomechanical model of the human body is simplified and widely used in the robotics
field.

Human motions are defined with respect to three anatomical planes which are
shown in Fig. 3.25. Although for almost every body limb the naming for certain motion
types differs in anatomical terminology, there is a simplified naming convention for
general motion types according to these three planes [308].

• Flexion/extension refers to a decrease/increase in joint angle in the sagittal plane.

• Abduction/adduction is the motion of a segment away from/towards the midline
in the frontal plane.

• Internal/external rotation is the joint motion in the transverse plane.

Fig. 3.25: The major anatomical planes of human motion, and axes of rotation

As well as this general recognition, during the motion, the relative motion of the
body limbs’ planes changes. Therefore, there are many other naming conventions for
different joint motions for clarification. Pronation and Supination is also important to
mention in this manner. These two terms are used for the complex triplanar action of
the subtalar joint (on the ankle) and the radioulnar joint (on the forearm) and they are
important to define the roll motion of the hand and foot. This motion can be mapped
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as the roll motion in robotics if the body limb axes are taken as the x-axis in the body
frame.

Within this study, the main focus is upper-body motions. According to [309], the
upper limb is composed of six body segments (thorax, clavicle, scapula, humerus,
forearm, and hand) and three main joints (shoulder, elbow, and wrist).

Human joints are mostly underactuated and holonomic. This issue is addressed as
coupling pronlem. In particular, the shoulder and wrist joints are complex. For instance,
on the wrist joint, executing only a roll motion without imposing any yaw motion is
extremely hard due to the biomechanical structure of the human wrist.

Fig. 3.26: Forearm anatomy for flexion/extension and abduction/adduction
source: Visible Body - Muscle Premium 2

The wrist is an ellipsoidal (condyloid) type synovial joint, allowing for movement
along two axes (flexion/extension, abduction/adduction). Those two motions are the
pitch and yaw motions in robotic terminology. They are performed in the radiocarpal
joint (where indicated as wrist, which consists of 7 small carpal bones on the hand and
one long bone named radius on the lower arm) by the muscles of the forearm as shown
in Fig. 3.26.

The pronotion/supination (or the roll motion) on the other hand is performed by
distal biceps brachii which is placed on the upper arm and attached to the radius on
the elbow end. As the distal biceps brachii contracts and relaxes, it affects the forearm
position so that it pronates and supinates and therefore changes the radiocarpal joint’s
orientation as shown in Fig. 3.27.

In the robotics field, one way of representing the whole set of 3D motions in
orientation is pitch-yaw-roll angles. The respective equivalents of those motions in the
human wrist are flexion/extension, abduction/adduction and pronotion/supination.

The fact that the muscles of the upper arm generate the actuation of the roll motion
of the wrist joint whereas the muscles of the forearm generate the pitch and the yaw
motion causes some problems in mirroring human wrist motions by generic industrial
manipulators intuitively. Most of them have a spherical wrist structure and the roll
motion is mostly the last joint on the manipulator contrary to the human wrist (which
is the ’first’ one in this case). This fact makes it harder to control/mimic the wrist
motion in joint space. It gives undesired results for direct joint-to-joint mapping and
unnatural motion for one-to-one end effector mirroring.

The explanation of the human-to-robot motion mapping problem related to complex
human anatomy is exemplified in the wrist joint. However, each human joint is unique
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Fig. 3.27: Upperarm anatomy for pronotion/supination
source: Visible Body - Muscle Premium 2

and each creates the motion with a different set of muscle contraction/relaxation
procedures.

However, the details of each joint’s motion are not in the scope of this study. The
definitions in this section will be referred for shoulder, elbow, and wrist joint motions
are discussed in the following chapters.

3.5 Statistics for User Experiments

Even if you are not normal, your average is normal.

Josh Starmer

Statistics is a branch of collecting and analysing data using quantified models
and representations as a whole from those in a representative sample. Generally, no
individual data is clean and useful but more of it reveals a meaningful conclusion.

The statistical process in scientific research starts with a hypothesis, which is called
the null hypothesis H0, and its mutually exclusive alternative statements Hi [302]. The
null hypothesis and the alternative hypotheses must complement 1 in total probability
distribution for the test to be valid. For simplicity, the focus is only two mutually
exclusive statements, so there is only one alternative hypothesis H1.

Based on the selected null and alternative hypotheses, the test of the hypothesis is
decided. It can be one-tailed where the rejection region is either on the left or on the
right side of the test’s bell curve as shown in Fig. 3.28, or it can be two-tailed where the
rejection region is both the left and the right regions. For example, in a test scenario
where it is stated that the average IQ of adults is 100 (H0 : µ = 100) but if it is believed
that it is lower, then it is a left one-tailed test (H1 : µ < 100). Oppositely, if the belief is
the average adult IQ is higher, then the alternative hypothesis (H1 : µ > 100), which
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Fig. 3.28: One-tailed and two-tailed rejection regions of a statistical test

leads the test to be computed right one-tailed. The two-tailed test is mostly used when
two group means are compared. The null hypothesis states that two group means
are equal (H0 : µ1 = µ2) and the alternative hypothesis becomes true if the means are
significantly different lower or higher (H1 : µ1 ≶ µ2).

The region of the one-tailed or two-tailed test is calculated corresponding to the
confidence level of the test. The respective test table is used to find out the critical test
score.

Afterwards, a data collection process starts. Depending on the hypothesis, the
collected data might be numerical or categorical. The applied scientific test differs
based on the data type - not all statistical tests are applicable to all types of data. Finally,
a proportional result is obtained regarding the null and alternative hypotheses.

However, a statistical test does not mean much without knowing the confidence
interval and the effect size of the findings. A confidence interval is the mean of the
estimate plus and minus the variation in that estimate. An effect size is the standardized
mean difference which tells us how meaningful the relationship between variables is
or the difference between groups. It indicates the practical significance of a research
outcome, or in other words, how meaningful is the significance.

There are three common assumptions in the implementation of a statistical test:

1. Gaussian distribution: The qualitative data follows a normal (Gaussian) distri-
bution.

2. Independent observations: The observations/variables are independent among
different test subjects - although the variables are not independent within the
subject.

3. Homogeneity of variances: The variance of each group being tested is similar
enough not to limit the test’s effectiveness.

In this section, different statistical tests based on the data type, confidence interval
and effect size calculations are briefly explained to understand the findings in multi-user
human-robot cooperative lifting experiments.
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The following part of this section is compiled from the online lecture notes from
Josh Starmer [310] and in [302] throughout chapters 8-12.

3.5.1 Selection of Statistical Test

There are two types of data: numerical (quantitative) and categorical (qualitative).
Also, those data types are divided into sections within each other. The numerical data
can be continuous (i.e. can be divided into units and have a decimal value e.g. 0.5N
force) or discrete (i.e cannot be divided into the decimation of units, represent counts
e.g. 2 times a day). The categorical data can be ordinal (ranking-based), nominal
(representation name-based) or binary. It is important to analyse the data properly
before applying a statistical test otherwise, the results may not point to the correct
implication.

Parametric vs Non-Parametric Tests These types of tests are strict in implementa-
tion and they are able to make stronger interference from the data. The most common
parametric tests are regression tests, comparison tests and correlation tests. The regres-
sion tests look for a cause-and-effect relationship, comparison tests look for differences
among group means, and correlation tests check whether the variables are related
without concluding if there is a cause-and-effect relationship. The usage of those tests
is summarized in the Table 3.3:

Table 3.3: Parametric statistical tests

Test Type Observed variable Outcome Example research question

Simple linear
regression - Continuous

- 1 observed variable
- Continuous
- 1 outcome

What is the effect of
user height on learning
score?

Multiple linear
regression

- Continuous
- 2 or more observed
variables

- Continuous
- 1 outcome

What is the effect of the
user height and age on
learning score?Regression

Tests Logistic regression - Continuous - Binary
What is the effect of gender
on learning score?

Paired t-test - Categorical
- 1 observed variable

- Numerical
- groups from
the same population

What is the effect of two
different training methods
on average learning score?

Independent t-test - Categorical
- 1 observed variable

- Numerical
- groups from
different populations

What is the difference in
average learning score
for users tested on two
different training setups?

ANOVA - Categorical
- 1 or mote observed
variable

- Numerical
- 1 outcome

What is the difference in
average learning score
for users tested on three
different training setups?

Comparison
Tests

MANOVA - Categorical
- 1 or mote observed
variable

- Numerical
- 2 or more
outcomes

What is the effect of the
user’s occupation on
leaning category-1,
learning category-2
and learning category-3.

Correlation
Tests Pearson’s r - 2 continuous

variables - Ratio in [-1,1]
How is the user’s age
related to the learning score?

Chapter 3 99



Background

Non-parametric tests can be used where one or more common assumptions are
violated. They are not suggested to be used as long as the parametric test is applicable
because the inferences they make are not as strong as with parametric tests. Some of
the alternative non-parametric tests with their respective parametric test are given in
Table 3.4.

Table 3.4: Non-parametric statistical tests

Test Observed variable Outcome Example research question
Spearman’s r Numerical Numerical Pearson’s r
Chi2 Categorical Categorical Pearson’s r
Sign Test Categorical Numerical One-sample t-test

Kruskal-Wallis H Categorical
3 or more groups Numerical ANOVA

ANOSIM Categorical
3 or more groups

Numerical
2 or more outcomes MANOVA

Wilcoxon Rank-Sum Test Categorical
2 groups

Numerical
groups from different
populations

Independent t-test

Wilcoxon Signed-rank Test Categorical
2 groups

Quantitative
groups from the same
population

Paired t-test

3.5.2 T-test Implementation

The independent t-test is the most applicable test which is suitable for our research
questions. It is also called one-way ANOVA among two independent variables and it is
very similar to z-test. However, the z-test requires the mean and standard deviation of
the whole population in the calculation steps, it is used seldom.

The simplest t-test score calculation is computed with the following formula:

t =
m− µ
s√
n

(3.125)

df =n− 1 (3.126)

where t is the t-score (to reject or fail to reject the null hypothesis), m is the mean of the
sample, µ is the hypothetical mean, s is the standard deviation and n is the group size.

The degrees-of-freedom (df) has a slightly different meaning in statistics than it has
in robotics. Degrees of freedom in statistics, often represented by v or df, is the number
of independent pieces of information used to calculate a statistic. It’s calculated as the
sample size minus the number of restrictions if the sample sizes of the two groups are
equal and standard deviations are close enough. If not, the following formula should
be used:
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t =
(x̄− ȳ) − (µx − µy)√

s2x
nx

+
s2y

ny

(3.127)

df =

( s2x
nx

)2

nx − 1
+

( s2y
ny

)2

ny − 1
(3.128)

where x̄, ȳ are the calculated means, sx, sy are the standard deviations and nx, ny

are the size of the sample-X and sample-Y. The term (µx − µy) is the difference of
hypothetical means of two samples, which is equal to zero in this case based on
our selection of null hypothesis (H0 : µx = µy). The denominator is the estimated
standard deviation, which is the denominator of Eq. (3.127) (SEx̄−ȳ) of the distribution
of differences between independent sample means to for unequal variances.

There are alternative versions of correcting the standard deviation differences (e.g.
Asprin Welch’s standard error calculation) and df calculation of different group sizes
(e.g. Satterthwaite’s correction) but so far the explained calculation steps for the t-test
are sufficient for this study.

3.5.3 Confidence Interval and Significance Level

The confidence interval reveals how much uncertainty there is with any particular
statistic. With the sample data the null hypothesis might be rejected but it is most likely
not 100% correct for every sample in the world. Different random samples drawn from
the same population are likely to produce slightly different intervals.

The confidence level is the percentage of the intervals that contain the parameter.
For 95% confidence intervals, an average of 19 out of 20 includes the population
parameter right. The p-value is the most common representation of confidence level.

While the confidence level measures how confident we are that our conclusions
are correct. In contrast, the significance level (also called α value) is the probability of
rejecting the null hypothesis when it is true.

This type of error is called a false positive (i.e. Type I error). A similar failure in a
test result is a false negative (i.e. Type-II error) when the null hypothesis is not rejected
when it is false. The visualization of errors in statistical decision-making is given in
Table 3.5. In other words, α = Prob(Type I error), β = Prob(Type II error).

Table 3.5: Errors in statistical decision-making

H0 rejected Fail to reject H0

H0 false Correct Type II error
H0 true Type I error Correct

In summary, if the p-value is less than alpha, the null hypothesis is rejected. If it is
greater than the alpha, the null hypothesis fails to be rejected.
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3.5.4 Effect Size
Effect size tells how meaningful the relationship between variables or the difference
between groups is. It is an indication of the practical significance of a research outcome.
A large effect size means that a research finding has practical significance, while a
small effect size indicates limited practical applications. For example, assume that
a statistical test result shows female students have better mathematics grades than
male ones with 95% confidence (α = 0.05). The effect size compares the differences
between means within the standard deviations. If the mean of the mathematics grades
of female students is 89/100 and for the male students it is 87/100, then the difference
is statistically significant but not an effective conclusion is made.

Two common effect size calculation methods are using Cohen’s d and Hedge’s g.
Cohen’s d is used when the standard deviations of two samples are similar enough.

d =
(x̄–ȳ)√
s2x + s

2
y

2

(3.129)

Hedge’s g is the extended version of Cohen’s d, where the standard deviation
differences of two samples are considered in the effect size calculation.

g =
(x̄–ȳ)√

((nx − 1) · s2x + (ny − 1) · s2y)
nx + ny − 2

(3.130)
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METHODS

This chapter provides a detailed account of the methods utilized in conducting this
study. The focus is on techniques for upper-body 3D human pose and gesture estimation
using wearable inertial measurement units (IMUs). This enables the estimated poses
and gestures to be applied in a dynamic cooperative task. Figure Fig. 4.1 visually
summarizes the overall study. Chapter Chapter 3 characterizes the problem, provides
the necessary background, and takes initial steps to implement proposed solutions.
Specifically, a biomechanical model of the human upper body is constructed by fusing
orientation data from a network of IMUs worn on the body and merging it with
upper-body kinematics.

Fig. 4.1: The map of this thesis and how the pillars in fundamental chapters are
connected. The straight-line-framed pillars indicate the main focus of the study and
the dashed-framed pillars indicate them as supplementary yet essential pillars. The
coloured background with 3 subdivisions indicates the state of the work in the pipeline

To enable a reliable model, the first critical step is obtaining clean measurement data,
which requires calibration. Filtering is the most important aspect of calibration. In
particular, noisy accelerometer data is nearly useless without proper filtering. A digital
low-pass filter is ideal for eliminating high-frequency GWN and outlier measurements
that appear as glitches in the IMU signals. Applying a cascaded median filter further
smooths the signals, preparing them for subsequent usage.

Another critical calibration step is sensor-to-body calibration, which involves setting
a reference origin for each IMU on the body. Properly establishing the alignment
between each IMU sensor frame and the anatomical frame of the corresponding
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body segment is essential for accurate pose and gesture estimation. This calibration
transforms the raw sensor measurements into biomechanically meaningful joint angles
and segment orientations.

Common calibration procedures include precisely locating bony landmarks through
manual palpation or using an external measurement system. The joint centers and
segment axes defined by these landmarks provide the anatomical coordinate frame.
The calibration protocol then assigns the predefined rotation matrix and offset that
transforms the initial arbitrary IMU frame to the anatomically aligned one. Some
advanced methods even estimate these calibration parameters during live motion using
kinematic constraints, however, such an implementation does not take part in this
study.

At this stage, reliable measurements of human upper-body pose and gestures
have been obtained. The next step is to generate a robot trajectory based on human
motions. It is important to note that the estimated poses are relative, not absolute. This
implies two key points. First, the processed arm motions are defined with respect to
the human’s own frame of reference, not the global world frame. Second, the initial
human-fixed frame of reference is set at t = 0 and arbitrarily changes upon restarts. A
few methods are presented to translate human motions into meaningful robot motions
in terms of robot action type, motion mapping type and mapping space selection.
After a thorough evaluation and back-and-forth experimental processes, adequate
human-robot motion mapping methods are selected for each sub-task of the proposed
Cooperative Lifting (co-lift) scenario.

The procedures summarized above correspond with the implementation piece of
Fig. 4.1. The verification step starts with designing user experiments and it is handled
in the final section of this chapter. The methodology of how user experiments should
be designed within the HRI field, the interpretation of the collected data according to
Cohen’s kappa and the risk assessment of human-robot experiments are covered. The
rest of the verification step is wrapped up in Chapter 5.

4.1 IMU Calibration

An IMU is a device that contains an accelerometer to measure linear acceleration and a
gyroscope to measure the angular velocity of the body/object to which the sensor is
attached. Moreover, today many IMU devices contain magnetometers to measure the
magnetic field and its direction in the environment. In some resources, those IMUs
are named as m-IMU or inertial-magnetic measurement. However, most of the examples
in the literature do not underline this distinction even though magnetometers do not
measure an inertial property but an external property. To be consistent with the most
used way in the terminology, IMU term includes all three elements (accelerometer,
gyroscope, magnetometer) in this study.

An IMU provides the linear acceleration, angular velocity, and magnetic field
information in 3 orthogonal axes, which provide 9 independent parameters in the
measurement. Therefore those types of IMU devices are acknowledged as 9DoF inertial
navigation devices.

For a reliable sensor fusion, all measurement parts of IMU should be calibrated.
The main reasons for an IMU not to give reliable results can be listed such that:
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• Gyroscope: Offset (sensor bias).

• Accelerometer: bias and high-frequency noise

• Magnetometer: By far the most effort required for magnetometer calibration.
The distortions can be listed below:

(a) hard-iron offset (magnetometer bias)
(b) highly dependent on the location on Earth (tilt due to the shape of the Earth,

magnetic field magnitude) as well as the attitude. The needle does not show
direct north. It has a tilt (angle of dip or inclination angle),

(c) time (the magnetic pole is drifting toward Russia with an average speed of
40km/year[311], it is updated every 5 years) and the ferromagnetic materials
in the environment. Here is the picture of the isometric lines showing the
same magnetic field strength in 2022,

(d) ferromagnetic (Hard iron) distortion: If there is iron it is bad. It is created by
objects that produce a magnetic field, such as magnetized iron,

(e) soft iron distortion stretches or distorts the magnetic field and is caused by
metals such as nickel and iron.

Also, the calibration of the magnetometer tends to distort quite easily. Therefore,
researchers try to find better sensor fusion algorithms without using magnetome-
ters [114, 142].

Fig. 4.2: World Magnetic Model (2020) developed by NCEI and the British Geological
Survey, with support from the Cooperative Institute for Research in Environmental
Sciences (CIRES)
Source: [311]

Those are the main things to adjust before using an IMU in a sensor fusion process.
In addition to measurement calibration, sensor-to-body calibration is also required
where IMU systems are used for human motion analysis purposes. This calibration
can be executed in static and/or dynamic predefined positions.

According to [32], there are several different data available in the Xsens Awinda
wireless IMU sensors such as 3D orientation, wireless network properties, sample
counter, etc. as well as accelerometer, gyroscope, and magnetometer data as expected
from an IMU. Depending on which output data type is used, calibration steps change.
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When accelerometer, gyroscope or magnetometer raw data directly used, an IMU
calibration step is required afterwards. However, the 3D orientation output is provided
by an internal sensor fusion algorithm, and it is factory-calibrated; the Sensor-to-body
calibration step follows as next. This raw 3D orientation data is also more robust to
drift than regular lower cost IMU since it corrects the orientation data with the internal
barometer data [32].

4.1.1 Digital Filters

In electronics, a filter is a piece of hardware and/or software that eliminates unwanted
components of a signal. According to input and output signal types, filters are divided
into 2 categories: digital filters and analog filters. In analog filters, the input signal is
a continuous signal. Since the processing of the analog signal does not involve any
sampling step, the output signal is also a continuous signal. On the other hand, a
digital filter takes the input signal and takes samples in each sampling period (1/fs).

Filtering is the most important part of the calibration. As specified in [32], Xsens
Awinda has its own analog and digital filtering process before it outputs the data.
However, some extra noise is also attached to the output data, especially on the
accelerometer data. Therefore, a digital filter needs to be designed before using the
IMU data for estimation.

As explained in bias and noise elimination, 2 different cascaded digital filters are
used. One is a low-pass filter with a cutoff frequency of 10 Hz and sampling frequency
of 512 Hz for an input accelerometer signal, which is obtained in 100 Hz. The second
digital filter that is a moving median filter with 51 samples of window size and 512 Hz
sampling frequency. In both implementations, scipy.signal library is used.

The working principle of these two filters can be simplified as follows:
Low-pass Filter: It eliminates any components which have a higher frequency than

the filter’s cutoff frequency of an input signal. A digital low-pass filter has impulse and
frequency responses as shown in Fig. 4.3.

Fig. 4.3: Low pass filter impulse and frequency responses

The general representation of the transfer function of a filter in the time domain is
h(t) and in the frequency domain is H[n] where t is the time and n is the sample step
[312]. For a digital input signal x[n] (or X [n] in the frequency domain), the output
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signal y[n] can be found by convolution of the signal with the filter transfer function
h[n] in the time domain.

x[n]⊛ h[n] = y[n] (4.1)

∀n, h[n] ⇒ (x⊛ h)[n] =
∞∑

k=−∞h∞[k].x∞[n− k] (4.2)

However, in the implementation of convolution, is it not possible to have all the
samples in −(∞,∞) so the filter function has to be truncated. After the truncation, the
transfer function and expanding it in a Fourier representation to find the coefficients of
the filter.The number of samples after the truncation is the filter order. The bigger is the
filter order, the slower get the filter. In an example of a 3rd order low-pass filter then:

Fig. 4.4: Basic implementation of an FIR filter

This implementation is the same for both the moving median filter and low-pass
filter with a finite impulse response. The coefficients of the low-pass filter can be
calculated by the Fourier transformation yet for moving the median filter, this step is
not needed. For a median filter that has a window size = N, the required number of
coefficients is N+1 as shown in Fig. 4.4. To keep the magnitude of the signal the same,
the summation of all the coefficients used in the filter should be equal to 1. To make
each sample of input signal behave/contribute the same, all the coefficients must be
equal to each other in the median filter.

h[0] = h[1] = h[2] = . . . = h[N]∧ h[0] + h[1] + h[2] + . . .+ h[N] = 1

∴ h[0] = h[1] = h[2] = . . . = h[N] =
1

N+ 1
(4.3)

Hence, the implementation is
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y[n] = h[0] · x[n] + h[1] · x[n− 1] + h[2] · x[n− 2] + . . .+ h[N] · x[n−N] (4.4)

=
1

N+ 1
· x[n] + 1

N+ 1
· x[n− 1] +

1

N+ 1
· x[n− 2] + . . .+

1

N+ 1
· x[n−N]

(4.5)

=
1

N+ 1

[
x[n] + x[n− 1] + x[n− 2] + . . .+ x[n−N]

]
(4.6)

4.1.2 Noise Elimination

Noise can be defined as any unwanted additional signal added to the actual measure-
ment in signal processing. Noise in a measurement device can occur for many reasons.
In general, in any sensor measurement, additive noise occurs due to electrons’ motion
in capturing, storing, or processing the signal. The character of this noise is mostly
undetermined so its uncertainty is accepted as it has a Gaussian distribution. This
term is also "white noise" or "Gaussian White Noise (GWN)".

The noise effect on different sensors is different. In some cases, it can be neglected.
For instance, in this case, we see a high-frequency noise added to the raw data of
the accelerometer (see Fig. 4.5 and Fig. 4.6), yet we do not see a big effect on the raw
gyroscope data. It is well known that accelerometer readings have a white noise due to
the electronic noise of the circuitry that converts the motion into a voltage signal and
the mechanical noise of the sensor itself [313].

Fig. 4.5: Accelerometer raw and filtered (gravity eliminated) data in a stable position

The character of the additive noise in the accelerometer data is GWN, which has
high frequency. The use of a low-pass filter with a sampling frequency of 512 Hz and a
cut-off frequency of 10 Hz is adequate to eliminate this GWN. It is safe to use such a
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Fig. 4.6: Accelerometer raw and filtered (gravity not eliminated) data during 2 pitch
motion

low cut-off frequency because relatively slow motions are computed.

4.1.3 Bias Elimination

Bias, or in another terminology sensor offset, is the nonzero reading when the IMU
stays stable. The bias elimination is computed simply by removing these offset values
before the actual measurement starts.

At any place, the MEMS magnetic needle in the IMU points in the direction of
the resultant intensity of Earth’s magnetic field and the accelerometer measures the
gravity vector at the place. The direction of this needle and the inclination angle can be
converted into compass headings of the magnetometer’s x-y-z axis as in [314]. Those
expected readings of the magnetometer and the accelerometer are accepted as zero
readings in a stable pose. Gyroscope, on the other hand, should return numerical zero
values when the IMU is stable.

Table 4.1: Expected and measured IMU readings when it is stable at the location of
HVL Robotics in Førde (Latitude:61.459145 N, Longitude:5.835823 E) when the IMU’s
x-axis is directed to the north

Device Axis Expected Measured Error
x 0 0.001536 -0.001536
y 0 0.003052 -0.003052Gyroscope

(deg/sec) z 0 -0.00049 0.00049
x 0 -0.025217 0.025217
y 0 -0.053239 0.053239Accelerometer

(m/s2) z 9.820306 9.835812 -0.015506
x 51.485µT · cos(73.37) · cos(1.5) 70.0 -55.27
y 51.485µT · cos(73.37) · sin(1.5) 2.4 -2.01Magnetometer

(µT) z 51.485µT · sin(73.37) 30.9 18.43

These values in Table 4.1 are fluctuating over time. Instead of treating the offset
as a constant, they are measured before each use and bias elimination is computed
dynamically on the site. The result of the noise elimination and the bias elimination on
accelerometer raw data is shown in Fig. 4.7.

As explained, bias and noise are the biggest problems in using IMUs for pose
estimation. The residuals, sensor-to-motion axis misalignment and integration errors
cause non-neglectable errors. This step is vital for sure but more calibration and
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Fig. 4.7: Accelerometer raw data, noise eliminated data and noise+gravity eliminated
data during 2 pitch motion

different human-to-robot motion mapping methods are needed to reliably use IMUs in
HRC applications.

4.2 Sensor-to-Body Calibration

Sensor-to-body calibration is to position the sensors with respect to the body frame and
remove the zero-error; this refers to when the sensor records a small angle even though
it is totally level. It is required in every type of MoCap system. For a camera system, the
position of the cameras and the position of the human with respect to each camera has
to be calibrated before HME. Moreover, marker-based systems need to be calibrated as
camera-based systems as well as IMU based systems because body-attached markers
have the sensor-to-body displacement problem as IMU systems. Since the scope of this
study is using IMU in HME, IMU calibration is focused on in this section.

This calibration step is not a part of the internal calibration of IMU but it is a part of
the calibration process before human motion analysis and estimation. The purpose of
this calibration is to provide information to the system about the initial pose of the
human. Moreover, during the action, the defined position of the sensors is displaced
due to anatomical reasons such as soft tissue artifacts, joint clearances etc.

The calibration can be static calibration; performing some predefined poses, and/or
dynamic calibration; performing some predefined motions. Static calibration is for
eliminating the initial orientation/position offsets on each individual sensor. In this
study, only static calibration is performed in the results, dynamic calibration is only
researched. Therefore, this section only focuses on static calibration.

N-pose is the natural human pose in which the human is standing up, arms are
naturally released on the sides. T-pose is the two-arms-up pose in which the human is
standing up, arms are lifted as if the body makes a T-shape (see Fig. 4.8). An initial
pose is when the calibration pose is the same as the initial pose of the HRC system
start. During different processes of the study, different calibration poses are used such
as N-pose, T-pose or initial pose calibration. Since the T-pose is the easiest to illustrate
and the one used in this study at most, the sensor-to-body calibration methods are
explained via this pose. The process is the same in each pose, just the given human
angles set to a different IMU initial reading. However, the initial pose calibration gave
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better usage in the end.
The rotation angle between each consecutive IMU corresponds to a joint angle. The

7 IMUs placement on the human body for measuring chest, shoulder, elbow and wrist
joint angles from the torso and two arms respectively. The process of calculating the
joint angles is given in Chapter 4 with details.

The human body frame is defined such that it is concentric as the IMU-0’s sensor
frame. The axes are defined as x: towards to head, y: towards to right shoulder, z:
out of the chest. According to this assumption, the initial orientation of each IMU in
Fig. 4.8 can be listed as:

• IMU-0 initial: R(0) = Î3×3 or qI

• IMU-1,2,3 initial:
(
Rx(−

π
2
)× Rz(−

π
2
)
)

or q(−π
2 ,x) ⊗ q(−π

2 ,z)

• IMU-4,5,6 initial:
(
Rx(−

π
2
)× Rz(

π
2
)
)

or
(
q(−π

2 ,x) ⊗ q(π
2 ,z)

)

Fig. 4.8: IMU attachment on the body

All measurement data is in the sensor frame. The quaternion qG,S
i represents

the rotation from the global frame to the sensor frame of respected ith] IMU. The
quaternion qB,S

i represents the rotation from the body frame to the sensor frame of
respected ith] IMU (i.e qB,S

0 is for IMU-0). For simplicity, the method is explained on
the left arm but the procedure is the same for the right arm.

Therefore the orientation of the body on which the ith IMU is attached with respect
to the global frame is then:

qG,B
i = qG,S

i ⊗ qB,S∗
i (4.7)

If we analyze the Eq. (4.7) component-wise, qG,B
i is what we want to find, qG,S

i is
what we read from the IMU and qB,S

i is what we initially set.
An important point is that the sensor gets misaligned during the action due to skin

motion with respect to the underlying bone. This issue is known as soft tissue artifact.
To overcome this problem an adaptive calibration process can be implemented or it
can be considered as noise in the pose estimation process. The misalignment can be
examined by dissolving qB,S

i as in Eq. (4.8).

qB,S
i = qB,S

i,accurate ⊗ qB,S
i,distortion (4.8)
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where qB,S
i,accurate is the accurate sensor-to-body orientation. qB,S

i,distortion can be deter-
mined adaptive and qB,S

i,accurate can be updated as qB,S
i during the experiment/usage.

However, this misalignment issue is eliminated in the human-robot motion mapping
step in this study.

4.3 Human-Robot Motion Mapping

The methodology of motion mapping between the human and the robot is as important
as estimating the human motions. The intuitiveness of the system is highly connected
to the selected human-robot motion mapping mode. The teleoperation of a 6 DoF
manipulator is one of the basic methods to extend people’s capabilities in a wide variety
of applications [315]. One of the key challenges in robotic imitation is kinematics
mapping, especially across dissimilar bodies and the captured sensor data may not be
able to directly map the actual human motions [315, 316]. To eliminate the kinematic
mismatch and human motion estimation errors, there are various human-robot motion
mapping methods are presented in the literature.

This step in HRC using human motions as human input of the system is particularly
important. So far, it has been discussed how to obtain the estimated human motions,
presented various approaches in the methodology, and quantitatively compared in
detail the advantages and disadvantages of different methods. The focus of optimizing
human motion and gesture-based HRC has been only on the human motion estimation
side. However, the environment and applications enable new parameters to be used in
the system.

A motivating example: A generic PC mouse has a limited range of input methods -
two press buttons, one rotating button and an optical sensor that detects motions on a
2D surface. Yet, the aptitude for things that can be done with a generic PC mouse is vast.
The range of functionalities that can be assigned to those inputs improves the usability
range. Human motion mapping methods influence the HRC application/system the
same. The intricacy of the human body is not even comparable to a regular PC mouse.
The opportunity to use human body motions as an input method to interact with a
robot is bizarre.

Human-robot motion (and gesture) mapping methods are related to improving the
intuitiveness and efficiency of the HRC system. The HME errors can be eliminated and
new functionalities can be assigned to different poses, gestures and the sequence of
these.

Additionally, human-robot motion mapping is not necessarily unilateral. It is not
straightforward to assign a leader to a human-robot team to achieve the task in the
most optimal way. When the robot takes over a non-passive role, the human-robot
motion mapping paradigm shifts. In this section, different motion mapping methods
and dynamic role allocations between human(s) and robot(s) are discussed.

4.3.1 Mapping Methods
When the motion mapping term is used in between humans and robots, a mimic behaviour
is imagined by many people. However, there are several variations of motion mapping
between a human and a robot. A deterministic real-time human-to-robot motion
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mapping procedure using wearable sensors can be divided into three methodological
categories: action type, motion mapping type and mapping space selection.

1. Robot action type

(a) Active-command cooperation
(b) Predefined-command cooperation

2. Motion mapping type

(a) Absolute mapping
(b) Relative mapping

3. Mapping space selection

(a) human joint space → robot joint space
(b) human joint space → robot task space
(c) human task space → robot joint space
(d) human task space → robot task space
(e) Other

The robot action type is related to the response level of the robot. The robot
can either follow the given human commands simultaneously (active-command
cooperation) or it can process a given human command - for instance, a gesture or a
haptic input - and execute a predefined function (predefined-command cooperation).
The predefined-command cooperation (also referred to as task-based approach in the
literature [317, 318]) has the advantage of requiring less bandwidth yet the online
liberty to achieve other tasks is limited. In this study, both action types are used based
on the task state and how to select the action type is explained in Section 4.3.2 in detail.

The motion mapping type predicates how the frame of origin of the command
from the human and the frame of origin of the execution by the robot are handled
during the motion translation. Since motion can be defined as the act of changing the
position and/or orientation of an object or a part of the object with respect to time, it
is necessary to define a reference frame to translate the motion from human to robot.
In absolute mapping, they share one fixed reference frame. The absolute pose of the
human arm with respect to the fixed reference frame is used in calculating the goal
pose of the robot. On the other hand in relative mapping, the translated human motion
is not the absolute position of the arm with respect to a fixed reference frame but the
displacement of the human arm with respect to a predefined reference frame. It can be
an internal frame on the human body, an external frame in the task environment, a
robot-fixed frame or it can be dynamic. Regardless of the selection of the reference
frame, the initial poses of the human arms are registered at time t = 0 and the pose
change (relative pose) of the human arm is translated into robot motion. The human
and the robot may or may not share a common reference frame for securing safety and
avoiding collisions but their absolute poses are not used in motion translation. The
intuitiveness is highly linked to the mapping reference frame. In [319], the results on
teleoperated grasping with iCub humanoid robot via 7 DoF arm motions are reported
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to be worse when the user when operator was facing the robot, due to the confusing
point-of-view.

Joint space and task space regulations are two common control schemes for robot
manipulators [320]. The motion space selection deals with the scheme to be mapped
between the human and the robot. 4 combinations of such a selection are given above,
some of which are more common than others. Additionally, there are some examples
of parameter mapping other than pose mappings such as force, torque, velocity and
acceleration. Those are under the other category.

The most common motion mapping types between a human and a robot manipulator
are Joint Space Mapping (JSM) (human joint space → robot joint space) Task Space
Mapping (TSM) (human task space → robot joint space). In the JSM method the human
joint angles are mapped to a respective robot joint angle set.

The limitation of this type of mapping scheme is the kinematics dissimilarities. The
robot’s and human body-limb’s kinematic structure should be similar enough as shown
in Table 4.2. One of the DoFs in the human shoulder (about x-axis) is not mapped to
any joints on the UR5e side. The rest of the joints are mapped as listed:

Human UR5e

shoulder-y shoulder pan
shoulder-x shoulder lift

elbow-z elbow
wrist-y wrist-1
wrist-x wrist-2
wrist-z wrist-3

Table 4.2: Human-UR5e joint mapping table
In the early stage of this study, the JSM is tested out between the human arm

and the UR5 robot arm at simulation level as shown in Fig. 4.10. Human joint
angles are published as Euler angles and the robot controller subscribes to this
topic. The active topics and nodes are presented in Fig. 4.9. According to this
presentation, /awindamonitor publishes each IMUs orientations in quaternion as qG,S

i

where i = shoulder, elbow,wrist to /IMU_to_human_joints node. It is where IMU
orientations are transformed into human joints as explained above. The human joints
are published as joint_states to /arm_controller. The controller sets the required
actuation for the simulated UR5e and sends them to /gazebo and the robot state is
published in real-time.

Fig. 4.9: Running nodes and active topics in real-time teleoperation of 6-DoF robotic
arm with 7-DoF human arm model in Gazebo
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This method is common and useful both on simple joint mappings such as gait,
elbow, and head motions and with highly anthropomorphic designs such as hand and
fingers, humanoids etc. However, it has limitations, especially across dissimilar bodies
[316] such as between a generic robotic manipulator and a human arm. Therefore TSM
comes in hand.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.10: Human vs. UR5e arm poses, respectively, using joint space mapping
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In TSM human’s end point of the body limb (i.e. hand for human arm, foot for
human leg, etc.) is mapped to the robot’s end-effector pose. If we focus on the human
arm to robot manipulator TSM mapping scenario, first the human joint angles are
calculated, then using the human body limb sizes, the human hand pose is calculated
using FK with respect to a fixed frame (i.e. chest, human base, world etc.). The hand
pose is then sent to the robot as an end-effector goal pose. The necessary IK calculations
are computed and the respective robot joint angles are set. With this method, the
kinematic dissimilarities between the robot and the human can be relatively suppressed;
however, new issues can show up. Two of the issues that are experienced and solved in
this study are given below.

• Singularities 1

• Real-time issues 2

Singularity can be defined as configurations in which the robot end effector becomes
blocked in some directions. It can occur when either two actuated axes become
parallel during a motion or the robot arm gets to the workspace limits. In these
circumstances, the robot’s motion capabilities are restricted. If the end-effector goal
pose causes a singularity, the IK solver still finds a solution but with a different
kinematic configuration. Often, this alternative configuration is computed via the elbow
joint. The robot end-effector can still reach the requested pose, but it can jump between
two different elbow configurations during the motion, which is unacceptable for a
co-lift scenario.

Therefore, either each singularity pose should be handled specially or motion plan-
ners should be used in TSM mapping. Motion planning is a large research field within
robotics and several parameters are considered based on the task requirements. In this
scenario, obtaining a continuous motion path is vital. Generally, the motion planner
optimizes the path either by the shortest path or by minimum power requirement on
one or one set of the joint(s). However, if the optimization for real-time use cases is not
handled properly, it will not be useful in real-time co-lift scenarios. There are methods
to improve TSM on the robot side with respect to how the robot handles end-effector
pose commands in real-time, such as visual servoing.

There are other motion mapping types which are mentioned in the literature. For
example, robot and human dynamics can be mapped [319], poses can be functionally
mapped, where commanding human body parts and robot are placed in a number of
similar functional poses, and a relationship between each robot and human joint is
calculated [321], or the mapping can be object-specific [322]. However, the details of
these methods are out of the scope of this study.

4.3.2 Proposed HRC States and Roles in Co-lift
In total four different states are defined for the whole HRC co-lift operation: IDLE,
APPROACH, CO-LIFT, and RELEASE, and the 3 different roles of cooperation as
Human Leading, Robot Leading, and Shared Control. The states and roles of the
system are demonstrated in Fig. 4.11.

1https://youtu.be/p28DdWnTDew
2https://youtu.be/faqxhQmiAB0
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Fig. 4.11: HRC roles and states in the experimental co-lift scenario.[323]

Human Leading role The human is the sole leader of the HRC systems. The states
defined under this role are
IDLE: This is a safety state that the human can enter with the clutching gesture at any
time. No motion command is sent to the robot, and the robot stays at rest in the initial
position.
APPROACH: A merged hands motion - a combined pose parameter of the two
hand poses with an adjustable scale - is actively calculated and sent as servo control
commands to the robot. The robot follows the merged hand’s motion. This type of
human-to-motion mapping is referred to in the previous subsection as active-command
cooperation. The initial merged hand pose is calculated in every IDLE→APPROACH
transition.

To create the merged hand’s motion, the relative motions of both human arms are
merged and translated into a single goal pose for the robot as introduced in [62]. Pose
calculations are computed using 4x4 Homogenous Transformation Matrix (HTM). The
merged hands pose is calculated based on the relative motions of each arm. Two arms
of the human are referred to as the motion arm and steering arm. The steering arm is
also responsible for clutching and state transitions. For the current setup, the steering
arm is the right arm but it can be changed in the open-source code easily.

P̂−h,t = ŝ · (P̂−1
hm,t=0 × P̂hm,t) + k̂ · (P̂−1

hs,t=0 × P̂hs,t) (4.9)

where P̂−h,t is the merged hand pose at t = 0−, P̂hm,t=0 is the motion hand’s pose,
P̂hs,t=0 is the steering hand’s pose. The multiplication with their inverse respectively
at t = 0 simply sets the pose readings to zero for relative motion mapping.

Also, different weights for each arm motion can be defined by the scaling factors
ŝ and k̂ in Eq. (4.9) in the code but for these experiments, they both set to the same
multiplier.

The robot goal pose based on the merged hand pose is

Ĥ(t) = P̂−1
h,t=0 × P̂h,t P̂r,t = P̂r,t=0 × Ĥ(t) (4.10)
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Fig. 4.12: Predefined-command cooperation in the active lifting phase (i.e. COLIFT
state) [323]

where P̂r,t=0 is the initial pose of the robot and P̂r,t is the current pose of the robot. The
Ĥ is set as target pose in servoL command[324] with 0.1s look-ahead time to smoothen
the trajectory.

Shared Control role The human and the robot share the leadership of the HRC
systems. The state defined under this role is
CO-LIFT: The robot applies a directional-compliant force. The direction is determined
by the human elbow heights (rather than direct hand motion mapping as in [62] due to
the restrictions on hand movements during holding an object). The robot is actively
leading the cooperation until an external force is applied by the human to the object.
When the human force input is detected by the robot, the compliant force is adjusted
based on the elbow configuration as shown in Fig. 4.12.

If both elbows are higher than a threshold, the direction is set UP. If the left elbow is
higher than the threshold and the right elbow is lower than the threshold, the direction
is set LEFT, or vice-versa. If both elbow heights are lower than the threshold when
the human external force is applied, the robot generates no directional compliant
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force (direction is set to NULL). This behaviour is computed by using the forceMode
command[324] where the compliance is set in the end-effector frame with 170 mm
maximum allowed deviation on non-compliant axes and 30 N force applied with
0.5m/s maximum end-effector speed on the compliant axis.

Robot Leading role The robot is the sole leader of the HRC systems. The state
defined under this role is
RELEASE: The robot takes the lead in the operation, and moves to a predefined pose.
The human follows the robot’s motions.

Note that the defined states can be expanded under these three roles according to
different HRC tasks.

4.4 Designing Human-Robot Experiments

The design of quality research studies for use in HRI applications with results that
are verifiable, reliable, and reproducible is reported to be a major challenge [3, 60].
To increase the reliability of the user studies in HRI, multiple metrics should be
measured from the five primary methods of evaluation methods: (1) self-assessment,
(2) observational or behavioural measures, (3) psychophysiology measurements, (4)
interviews, and (5) task performance metrics [325–328], tested on a sufficient sample
size and not conduct studies using a convenience sample of college-aged students. The
highlights in this section are important methods/points in designing HRI experiment
design.

The collected data from 32 users in this study is relatively large and comparatively
diverse according to [3, 55]. The data collection is performed by various methods (i.e.
sensor measurements and user surveys), and all the code required to reproduce the
experiment setup is open-source to improve the verify-ability and reliability. For further
research or for other researchers who focus on relevant studies, the following section
aims to provide a methodological approach to designing human-robot experiments.

History of HRI experiment design Some social scientists are working to establish
methodological approaches for HRI [329]. There is an urgent need to examine extended
studies in real-world settings to move studies away from laboratory settings with
college-aged students and practical samples [330, 331].

Despite this contribution, it appears that the HRI community still needs more focus
on evaluation methods. For example, in [332] evaluation methods are investigated and
recommendations are made for design experiments. They suggested possible hybrids
of HRI methods should be applied according to the research questions. The study
[333] highlighted methodological problems in scenario-based evaluation, arguing that
scenario media characteristics influence robot user acceptance and attitudes and that
human-computer interaction methods may not be applicable to HRI. They suggested five
guidelines to help select the most appropriate storyline media for evaluation purposes,
recognizing that media could introduce significant bias. Furthermore, a virtual robot
does not produce the same effect as a real robot, because humans can identify more
with a physical robot than with a simulated robot [334]. It is important for the proposal

Chapter 4 119



Methods

of a reproducible HRI experimental design (to induce empathy towards robots in
the laboratory) and an empathy measurement tool that would allow researchers to
reproduce the same result.

Problems of current HRI experiment evaluation methods It is difficult to compare
robotic systems which are designed for different tasks so it is important to establish
benchmarks for effective and ethical HRI[335]. Currently, it does not seem feasible
to compare results across studies due to the lack of a respective methodology. In the
reviewed literature, almost no standardized research tools have been used, implying
that the research field of assistive robotics is still in an "exploratory" state in which
qualitative methods and subjective measurements predominate [336].

Impact measurements such as measurements of the user’s quality of life (perceived
safety) or user care were carried out as part of short-term user trials in a living lab
situation. Effects are usually measured in long-term studies using pre-post measures,
as reported in [337] and [338]. It seems that the question remains open whether impact
factors measured in the short term can provide valuable information about subsequent
long-term effects on the ground.

Suggestions The field of user experience (or UX) is a particularly relevant field for
designing interactions between robot agents and human agents. It proposes to consider
and anticipate the experiences (real or imaginary) that individuals have with technical
objects such as robots. Moreover, social influence refers to an individual’s attitudes
and/or behaviours being influenced by others, whether implicit or explicit, such that
persuasion and compliance gaining are instances of social influence [339, 340]. In
human-human interaction (HHI), the desire to understand compliance and maximise
social influence for persuasion can lead to the development of theory and resulting
strategies one can use in an attempt to leverage HRI through social influence.

Cohen’s kappa is used to measure the level of agreement between two qualita-
tive data; both for it is transcription data and behavioural data. Many statistical
analysis software packages can be used to perform this statistical test and there
are also online calculators available (for example: https://idostatistics.com/
cohen-kappa-free-calculator/). It is commonly agreed that a Cohen’s Kappa
score of 0.60 or greater indicates satisfactory reliability [326]. It is important to perform
this evaluation and report it as part of the HRI studies which involve qualitative data.
The scale to evaluate Cohen’s Kappa and reliability is:

• 0.01–0.20 slight agreement

• 0.21–0.40 fair agreement

• 0.41–0.60 moderate agreement

• 0.61–0.80 substantial agreement

• 0.81–1.00 almost perfect or perfect agreement
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4.4.1 Design Methods

There are three broad design approaches, each of which may be valid depending on
the context and intended goals: human-centered design, robot-centered design, and
symbiotic design [3].

4.4.1.1 Human-centered design (HCD)

Human-centered design (HCD) is the central paradigm of HCI and therefore a large
part of HRI design. It aims to involve the intended user population in most phases of
development, including identifying needs and requirements, brainstorming, conceptu-
alizing, creating solutions, testing and refining prototypes through an iterative design
process [341].

In the HRI context, the main assumption is that humans have their own com-
munication mechanisms and unconsciously expect robots to follow human social
communication modalities, rules, conventions, and protocols. Important aspects of the
robot behaviour and embodiment design that play a strong role in terms of the human’s
perception of the interaction include physical presence [342], size [343], embodiment
[344, 345], effective behaviours [346], role expectations [347], just to cite a few. From an
evaluation point of view, HCD relies a lot on subjective self-reports of users to measure
their perceptions, and complement more objective measures such as task performance.

There are many HCD approaches that exist particularly for social robots. An
interesting observation is treating robots as expressive characters, i.e. robots with the
ability to express identity, emotion, and intent during autonomous interaction with
human users [348] via animation elements. Designing for expressivity can be achieved
for example by bringing professional animators to work side by side with robotic and
AI programmers. The idea is to utilize concepts of animation developed over several
decades and apply them to robotic platforms [349–351].

4.4.1.2 Robot-centered design (RCD)

Historically, robots were developed solely by engineers who carried little concern
about the human beyond the interface. While the focus in HRI has now shifted to a
more human-centered approach as was discussed in the previous section, HCD as a
general design paradigm has been criticized by many researchers who consider it to be
harmful in some aspects [352, 353]. For example, it has been criticized for its focus on
usability (how easy it is to use) as opposed to usefulness (what benefits it provides) and
its focus on incremental contributions based on human input conditioned by current
technologies, which prevents it from pushing technological boundaries. Additionally,
adapting the technology to the user may sometimes be more costly than having the
user adapt to the technology.

Therefore, there are instances where a more RCD approach may work best. Over-
fitting robots with humans can lead to lower performance, high development costs, or
unmet expectations. It is important to realize that in some cases it may be better to
ask the human to adapt to the robot (possibly through training) in order to achieve
better long-term performance. Humans are much better at adapting than robots and
it is crucial to know when robots should not adapt, as it would be more efficient to
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ask or expect humans to do so [353]. In many cases, the robot may have needs that
impose immediate costs on humans but result in better future performance. It can be
that the robot asks people for help if they encounter limitations [354] or teach the robot
to perform a certain task so that it can better perform relevant tasks. An RCD approach
can also involve modifying our environments to make them suitable for robots.

4.4.1.3 Symbiotic Design

Considering the advantages and disadvantages of HCD and RCD, a merged approach
is also possible. It is important to carefully identify the strengths and weaknesses of
each part and design for increased symbiosis between the human(s) and the robot(s).
One way to achieve this symbiosis is to take a holistic view that focuses on the overall
behaviour of the system based on robots, humans, and the environment[355].

4.4.2 Risk Assessment and Consent
In human-robot experiment design, there are some bureaucratic steps which must be
followed. Two of the most important ones are related the user risk assessment and
consent. In this subsection, the procedure is briefly explained according to Norwegian
Centre for Research Data (NSD)3 regulations.

4.4.2.1 Risk Assessment

Risk assessment is a systematic process of evaluating the potential risks that may be
involved during the experiment (or a project in general). It is an essential step, especially
in pHRI experiments where there are collision risks. There are various evaluation
methods such as quantitative, qualitative, semi-quantitative, asset-based, vulnerability-
based, or threat-based [356]. Each methodology can evaluate an organization’s risk
posture, but they all require trade-offs. We evaluated a vulnerability-based risk
assessment due to the limited resources in the literature in this regard.

Risk analysis provides answers to these three questions [356]:

1. What can go wrong?

2. What is the likelihood of that happening?

3. What are the consequences?

First of all, the risk factors of the experiment are defined. In the co-lift experiment,
the risk factors are related to fatigue and possible collisions of the robot (or the carried
object) with the different parts of the human body. Hence, the severeness of such
collisions is determined as in Fig. 4.13.

3https://www.nsd.no/
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Fig. 4.13: Labeled zones on human body based on pain severeness in case of a collision

Afterwards, the risk assessment matrix is created as in Table 4.3. It is a relatively
common severity vs likelihood matrix but modified according to the application. The
probability scale can also be modified depending on the risk and severity resolutions.

Table 4.3: Risk assessment matrix

Severity of Harm
Negligible Minor Moderate Serious CatastrophicRisk Probability
1 2 3 4 5

5 Almost Certain 5 10 15 20 25 Extreme [15+)
4 Likely 4 8 12 16 20 High [9,15)
3 Moderate 3 6 9 12 15 Moderate [5,9)
2 Unlikely 2 4 6 8 10 Low [0, 5)

Likelihood

1 Hardly Ever 1 2 3 4 5

Finally, the list of possibilities is calculated based on the risk assessment matrix as
shown in Table 4.4.

4.4.2.2 User Consent and Data Collection

The type of users, the collected data type, the procedure of how the data is collected,
who has access and how long it will be stored must be reported to the user and
NSD before the experiments. The relevant consent form related to the multiple user
experiments in Paper F is provided as an appendix in Appendix-A.

In human-robot experiments, the collected data varies. It can be via sensor
measurements, self-reporting methods, user surveys etc. [3]. The collected data
must be verifiable and anonymous if possible. The sensor measurements and the
methodology of the process of collecting the respective data are explained in each paper.
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Table 4.4: The list of risk factors

Risk Factor Likelihood Severity Risk Zone
Fatigue 5 1 5
Arm Pain 4 2 8
Hit by the robot at LOW zone 1 2 2
Hit by the robot at MINOR zone 1 3 3
Hit by the robot at MODERATE zone 1 3 3
Hit by the robot at MAJOR zone 1 4 4
Hit by the robot at CATASTROPHIC zone 1 5 5
Hit by the table at LOW zone 2 2 4
Hit by the table at MINOR zone 3 3 9
Hit by the table at MODERATE zone 1 3 3
Hit by the table at MAJOR zone 2 4 8
Hit by the table at CATASTROPHIC zone 1 5 5

The vast portion of the collected data comes from the experimental procedure of Paper
F. The quantitative measurements of each user from the sensors are provided as an
appendix in Appendix-C and the accommodated surveys are presented in Appendix-B.
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CHAPTER 5
DISCUSSION

In this chapter, the general findings are discussed. Additional data analysis of the
non-published data is also reviewed in Section 5.0.4.

5.0.1 HME in HRC Applications

Human Motion Estimation (HME) is a fundamental step in interacting with a robot
through postures, motions, and gestures. The anthropomorphic inspiration in robot
design makes it more convenient in many applications. Through this study, different
techniques for obtaining accurate and reliable human motions are investigated both in
selection of the optimal motion tracking solution, and in implementation for industrial
use.

Overall, the human body is a good communication tool for HRC. When attempting
to solve HME as a part of an HRC system rather than a standalone estimation problem,
efficiency increases significantly. HRC enables more observable and controllable
parameters in the system model, making pose, motion, and gesture more successful
and reliable. For example, relative motion mapping between the human and the
robot is one of the main novel methodological implementations in this study, which
significantly contributed to eliminating HME errors when HME is used in generating
the robot’s target pose.

The possible set of human input data to an HRI system can be vast. I would like
to elaborate on this claim with an example: imagine how much you can achieve with
three buttons on a 2D surface (i.e. with a computer mouse). As long as a meaningful
equivalent functionality is well-defined on the computer side such as selecting, copying,
dragging etc., the amount of work you can achieve is enormous – as humankind has
been doing for decades. The human body, in this regard, has infinitely more potential
control surfaces. Postures, gestures, and the sequences of these can be translated into
a goal for various types of robots in an HRI system. Different functionalities can be
assigned to each and every single human limb motion. Therefore, research on HME in
HRI investigates not only the mathematical aspect of an estimation problem but also
discovers the intuitive translation of motions between a human and a robot.

When there is a human-robot team, it is not straightforward who is supposed
to be the leader for achieving the task in the most efficient way. Furthermore, the
sole leadership from either part does not result in universal efficiency in every task.
Therefore, a dynamic leadership switching scheme in the HRI applications is handy.
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The HME-based HRI systems enable this switching step smoothly and intuitively. This
concept is demonstrated in Paper A, Paper B and Paper D extensively. The smooth and
intuitive leadership switching is another important advantage of using human motions
in HRI applications.

5.0.2 The Use of IMUs in HME

One main design criterion of an HME-based HRC is the selection of the MoCap
technology. As it is thoroughly discussed in Section 2.1.3, there are various tools in the
motion estimation field, and each technology has its own advantages and disadvantages.
The vision-based technologies are the most common ones in HME when it comes
to accuracy and precision, but they suffer from occlusion, loss of line-of-sight, light
changes, often require long and tedious calibration procedures and are less portable.
These bottlenecks affect their efficient and safe use in HRC applications. Among the
non-vision-based technologies, IMUs offer solutions to each of the aforementioned
problems.

Although the motion estimation algorithms using IMUs are still in debate due
to the drift problem, the current solutions are thoroughly investigated in this study.
Unfortunately, there is no drift-free position estimation method using only IMUs in
the literature, but several methods exist to minimize it. Starting from manual sensor
fusion methods [117, 139], several approaches have been tested to obtain the most
reliable position estimate from IMUs. What is found in the end is that the IMUs
that provide a filtered absolute orientation output are the most convenient ones for
this use. Since the noise elimination, signal filtering, and tuning of the orientation
estimator (often the Kalman Filter or the Extended Kalman Filter) are carried out at the
hardware level, the estimated orientation is less prone to drift. Some examples IMUs
that can be used for this purpose and are available in the market today are Xsens MTw
Awinda, Infineon CY8CKIT-062S2-43012, and BOSCH BNO055. Particularly, Xsens
MTw Awinda uses an additional barometer and claims that they provide a 3D drift-free
orientation output [32]. However, the drift elimination quality is not a part of this
study, and no quantitative evaluation is computed in this regard. It is only stated for
guidance to the relevant stakeholders.

The question is then, can this drift be minimized such that IMUs can reliably be
used in HRI applications? For example, if the drift is minimized sufficiently, then the
usage of IMUs is suitable. IMUs are already reported as superior in several aspects for
industrial HRI [25]. In this study, the feasibility of IMUs in HME for HRI applications is
validated. In this study, using Xsens Awinda raw orientation output and implementing
a relative motion mapping algorithm from the human to robot eliminate the drift
problem sufficiently. The user is calibrated before each trial by staying stable for 4
seconds in N-pose (details can be found in Paper B and Paper D). No major errors are
recorded during the experimental studies regarding the drift problem.

The final point of using IMUs in HME studies and applications is related to
calibration. In this study, there are several calibration points in the process of estimating
human motions and translating them into robot commands (see Paper A), the first
of which is IMU calibration. The only calibration methods applied in this study on
IMUs are static bias elimination and noise filtering (see Section 4.1). The developed
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system allows a quick calibration option that takes only 3 seconds. The IMUs can be
recalibrated at any step. However, I believe that dynamic IMU calibration methods
can give better results, which is important to highlight as a recommendation for future
studies.

5.0.3 Serious Games and Gamification in HRC

Serious Games and Simulations (SSGs), Game-Based Learning (GBL), and gamification
are used to create supplemental learning tools that are engaging. They allow for
translating knowledge into skills in a more intuitive way. They have been widely used
in several fields for over two decades; however, HRC is not a common one. In this study,
the investigation of SSGs, GLB, and gamification started with Paper C and focused
more on HRC training in Paper E and Paper F.

User training is an essential step in developing an HRC system. Gamified training
is a promising method for this purpose. Based on the observations and quantitative
results during the experimental procedure in Paper F, gamification and game score-
based learning evaluation triggered user learning positively. Users stated amusement
both verbally during the physical experimental procedure and in the relevant questions
in the surveys. It is observed that a gamified training methodology rather than a
conventional reading-the-manual approach is preferred by the users. Nonetheless,
the effectiveness of the two main approaches should be quantitatively evaluated by a
dedicated experimental study if more general conclusions are to be drawn.

On the other hand, it is observed that the gamification aspect of the training setup
triggered competitive users to learn unconventionally. This is something referred in
Paper F to as "reverse learning". This type of behaviour is observed more in users with
competitive traits and those who have another acquaintance enrolled in the experiment.
As the user feels more comfortable using the system, they tend to ask/request more
risky execution options, such as if the robot could do something faster, or trying to
develop new strategies in different states of the task, to pass their individual best
scores, which sometimes results in worse scores. It is more likely to be observed
in a gamified training setup than in a conventional training method. Therefore, the
adequate proportion of motivational vs risky competitiveness of gamification in the
design of a training setup should be carefully considered. However, there is not enough
data to conclude a correlation between personality traits and gamified learning.

The use of virtual reality (VR) in SSG is rather common. In this study, a regular
screen is used in giving visual feedback to the users during the experiments instead of
a VR goggle. Since there is physical contact between the robot and the human, either
directly or through an object, the mental involvement of the user should be in the
current state for safety reasons. Therefore, VR technology is not suggested/planned
to be the focal point in future studies in gamified training methodology in HRC. VR
technology might add unnecessary complexity, but augmented reality (AR) or mixed
reality (MR) technologies are more suitable in this regard.

Finally, in the current setup, the gamified training system is supervised by a human
expert and the system is not in a fully-developed game format. The users were informed
that they could ask questions but the supervisor could not reveal any answers which
could cause unfairness between users. As a future work, the system can be modified
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towards a version which can provide more clear feedback and guidance. However, there
is still a debate about this in development of SSGs for education and training purposes
due to the overall effort in developing games. Therefore, the cost vs effectiveness of a
fully-developed serious game should be evaluated beforehand.

5.0.4 Human-Robot Experiments

The experiments involving humans and robots in this study can be divided into three
categories. The first category consists of only one user during the development of the
system, the second category refers to the pilot users who are mainly the members of
HVL Robotics Lab and experienced in the robotics field, and the third category refers to
the regular users whose age varies between 20 and 54 and those who might or might
not have experience in the robotics field. The most significant category is the third one
because it is the biggest and randomly selected to represent the average end-user the
most adequately.

A total of 8 pilot users and 32 actual users took a part in the human-robot experiments.
The pilot data are used in optimizing the system parameters and the actual user data
are used in hypothesis testing. The experiment consists of 4 stages: pre-survey, video
tutorial, physical experiment and post-survey. The pre-survey and post-survey are
provided as in Appendix-B and the training setup code is open-source1. The technical
details of the training setup are explained in Paper E and the collected user data are
reviewed in Paper F. The procedure of the physical experiment is summarized in
Section 4.3.2, which was repeated 10 times for each user.

The presented results in Paper F focus on the usability and learnability of an HRC
system and the paper covers only parts of the collected data. Some additional user
perspective-related data are also presented and discussed in this section.

5.0.4.1 Measures From Physical Experimental Procedure

The overall user results are given in Fig. 5.1. Although the experiment is designed for
10 trials, some users would like/agree to continue trials due to curiosity, eagerness,
competitiveness and desire to achieve their personal best. The comparative discussions
are made only for the first 10 trials for all users but the results of all trials are given
here for complete reference. The majority of the users within 10 trials and almost all
users at the end seem to reach a very good learning state.

Note that some users reach a decent learning state within 10 trials but experience
worse results afterwards. This paradigm is addressed as "reverse learning" in Paper F
and in Section 5.0.3 and is often observed as a result of risk-taking behaviour as user
comfort increases.

In total, 9 motion metrics related to the HRC system from 32 users are presented as
an appendix in Appendix-C. At a glance, it is clear that all users have some unique
behaviours as well as common ones. For instance, the user score is considerably
increased from the 1st to the 10th trial in every user. The average score of the first trial
is 503 points whereas the last is 659 points. The Paper F discusses the effect of each user

1https://github.com/frdedynamics/hrc_training
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Fig. 5.1: User scores on each trial in human-robot experiments. The results are colour-
coded from red to green to visualize the training results from low to high. [323]

background parameter with respect to 6 different learning criteria. Therefore, I will
only briefly discuss the highlights between users and comment on the overall system.

One of the most distinct behaviours between users was how they interacted with
the robot during the IDLE and APPROACH states. After the first IDLE to APPROACH
transition, some users preferred staying in the APPROACH state until the COLIFT
starts - without any human-robot motion mapping reset - (i.e. ID:42761, ID:46173,
ID:46904), some users used the human-robot motion mapping resetting quite often by
transiting between IDLE and APPROACH (i.e ID:44035 trials [5-9], ID:45345, ID:70285,
ID:10958) and some started with the resetting behaviour until they reach to the learned
plateau (i.e. ID:52870, ID:65092). Similarly, some users used both left and right hands
actively (i.e. ID:80266, ID:83972, ID:95467), and some used only one hand motion
(ID:70285, ID:78604, ID:95691). All users show significant progress, nonetheless, there
are interesting user behaviours which can be investigated later to compare progression.

Another distinct behaviour is related to the number of poking attempts during
the COLIFT state and the magnitude of poking force over trials. In the first trials,
there are notably more poking attempts than in the last trials. The poking force is
either well above the threshold (i.e. ID:10958 trials [2-3], ID:11982 trial 1, ID:14026,
ID:20430) or well below (i.e. ID:10958, ID:21984). Some users applied both excessive and
non-sufficient forces throughout their training which can be related to the uncertainty
of the system responsiveness. However, it is seen that almost all users converged to the
same level of interaction force which is around 30-40 Newton and the same number
of poking gestures which are often 7 times, sometimes 8 times and rarely different
numbers. Even though the level of the interaction force and attempts do not imply
any universal conclusion outside of this setup, the process of reaching it by several
user data shows clear progress in learning about human-robot interactions and how
humans can develop a common strategy.
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The changes in the duration of the IDLE+APPROACH and COLIFT states are
another point to highlight. The duration of the IDLE+APPROACH state shows how
comfortably the user controls the robot’s motion using two arm motions when the user
is the sole leader of the system. For the user ID:35764 for instance, the first attempt
to grab the table took around 160 seconds whereas the user managed to reduce it to
under 10 seconds in the last trials. Moreover, the duration of the COLIFT state shows
two things: 1) how comfortably the user controls the robot’s motion using instant
gestures when the user is not the sole leader any longer, and 2) how well the grasping is
succeeded. In default, the robot moves upwards after grasping the table is completed.
If the grasping is too harsh, the robot will not automatically start moving upwards
(as seen in trials 1,2, 5 and 10 of user ID:35764) because it registers an initial poking
gesture. The user needs to adjust the elbows’ poses adequately and poke the robot so
that the initial upward motion starts again.

It is important to highlight that it is the first version of the proposed HRC system
except for moderate tuning based on the pilot studies with 8 users. I made the majority
of the critical design choices only based on my initial intuition such as which motion
types will be mapped (i.e. two arms merged motion in APPROACH state and elbow
heights in COLIFT state), which gesture types during the state transitions are applied,
which feedback will be given to user via screen etc. However, after observing the users
during the experiments, I can see some design choices are better than expected and
some are worse. For example, the usage of two arms instead of only one arm in the
APPROACH state, the right-hand rotation gesture for transition IDLE↔APPROACH,
the initial upwards motion of the robot when the COLIFT starts and the poking
gesture in the COLIFT state are commented on positively by the many users whereas
several people complained the COLIFT→RELEASE gesture (releasing the right arm
downwards) because they triggered the RELEASE state unintentionally while they
are trying to lift the table in the COLIFT state. Another interesting observation is
related to the mirror motion behaviour of the robot instead of mimic motion. Many users
who often play computer games found it counter-intuitive whereas many other users
stated completely opposite. The human-robot experiments revealed many interesting
human-robot interactions during a complex collaboration as well as validated the
system’s usability. In conclusion, there is still room for improvement in investigating
the most optimal and intuitive gestures.

Finally, the soft-real time response of the system is superb and the robot’s end
effector follows the merged hand’s motion satisfactorily.

5.0.4.2 User Surveys

The users answered 23 pre-survey questions and 33 post-survey questions. The aim of
the pre-survey is to obtain relevant user background and the aim of the post-survey is
to get user feedback. Some of the variables from 56 data points from the surveys are
used in Paper F but there are still possible correlations to be investigated.

For instance, there is a section in both pre-survey and post-survey containing the
same questions which measures the user anticipation about the robot technology. This
section is to observe if there are any changes in the user’s perception, expectation, fear
and hope about robotics before they carry out the physical experimental procedure
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and after. The findings are interesting and quite positive in terms of triggering positive
anticipation via human-robot studies.

The questions are in the fom of 7-point Likert scale items between Completely disagree
and Completely agree. The answers are quantified between -100 and +100. The mean
of the 32 answers to each common question from the pre-survey and post-survey are
compared. The change in user anticipation is given in Table 5.1. The change value is
expected to be 0 for all questions if taking part in this human-robot experiment does
not have any effects.

Table 5.1: The change in user anticipation about robot technology before and after they
are involved in a human-robot research study

Question Change
I think robotics technology has developed a lot and it amuses me. 19.35
I think robotics technology has developed a lot and it scares me. -12.10
I think robots will take over human jobs and THEREFORE many people will be unemployed. -13.71
I think robots will take over human jobs BUT many new job opportunities will be formed. 3.23
I think robots will take over heavy human jobs and the average life quality will increase. 17.74

As seen in Table 5.1, the overall user perception of the positive opinions about
robotics technology such as amusement, increasing job opportunities and increas-
ing life quality increased whereas the negative opinions such as fear and worry of
unemployment reduced.
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CHAPTER 6
CONCLUSION

This is the final chapter of this thesis. The purpose, methods and key findings are
summarized and some recommendations are provided for relevant stakeholders.

This study focuses on estimating human motion and gestures reliably for safe Human
Robot Cooperation (HRC). The intended usage is in the production, manufacturing
and machining processes in small/medium-scale industries which acquire sufficient
profit, efficiency, and performance in neither fully atomized nor manual solutions and
require more modular solutions. Additionally, this study aims to open up possibilities
of HME-based HRC applications in the medical field.

An intensive literature search revealed two major gaps: one is related to the need for
a reliable, cost-efficient, and intuitive-to-use interaction method for HRC that is suitable
for industrial applications. While many highly precise and accurate motion-tracking
solutions have been found to work well in ideal research setups, they often fail when
implemented in an actual industrial environment. The other gap is related to the lack
of user/operator training. The absence of methodological user training in HRC causes
successfully researched and promising HRC solutions not to be implemented in a
real application, which widens the valley of death between research and successful
innovation.

The proposed Human Motion Estimation (HME) solution in this study is computed
using several Inertial Measurement Unit (IMU)s which are low in the cost scale of
motion capture devices. They do not suffer from issues such as occlusion, loss of line of
sight, light changes etc. and require substantially fewer computational resources than
their common alternatives visual-based sensory devices, which makes them favourable
in industrial applications. Additionally, the selected HME method is orientation-based
motion estimation which was found to be the most suitable with the chosen motion
tracking sensors.

First sufficiently reliable poses and gestures of the human are obtained in real-
time. The remaining tracking and estimation errors are eliminated by appropriate
human-robot motion mapping methods. Two key findings are:

• IMUs are low-cost devices which satisfactory real-time HME results can be
obtained with. The modularity allows them to be convenient in industrial HRC
applications.

• HME for HRC is a broad concept rather than a mere tracking/estimation problem.
Obtaining accurate and precise pose estimation is a fundamental step, but it
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is not the whole picture. The system (including the robot) and environmental
parameters should also be carefully considered. Various algorithms for mapping
human-robot motion are effective in achieving this goal.

The HRC implementation in this study is shaped around a fundamental task which
is called Cooperative Lifting (co-lift). Different methods are provided for three HRC roles
- human leading, robot leading and shared leadership - and endorsed with real-world
experiments to deeply investigate the leadership roles. The proposed methodology and
implementation are validated with a relatively large user test. Four key findings related
to human-robot leadership and user training are:

• The robot and the human excel in different skills so the HRC system should
be either designed or dynamically assigning the most efficient leadership roles
between the human and the robot. While humans are good at problem-solving
and decision-making, robots are more efficient if the task requires precision,
accuracy and repeatability.

• Everyone can cooperate with robots regardless of age, gender, occupation and
body size. However, there are some differences in the learning process and the
type of learning based on different user background factors.

• Training is fundamental. As engineers, we are responsible not only for developing
solutions to meet society’s needs but also for providing adequate educational
techniques so that the solutions can be used effectively. This is particularly
important in the field of HRI.

• The anticipation of the user towards robots and collaborative tasks is important for
efficient HRC. Moreover, this change can be achieved through proper training and
interaction with robots, as discussed earlier. This finding is significant because
there is hesitancy among a non-negligible portion of the industry to implement
HRC in their manufacturing or production processes. An interactive training
opportunity would enable HRC solutions to be more positively considered by
the industry.

Moreover, this study supports the open-source community and all the codes related
to this study can be found under HVL Robotics Github page1. This study provides a
free-of-charge HME solution which otherwise would be relatively expensive.

In conclusion, research is a never-ending process in which findings reveal new
questions. Although this study fulfilled the research questions, it also led to more
curiosity. These questions are not presented as future work of this study but rather the
beginning of new chapters. For instance, the methodology implemented in this study
can be expanded to the full body. Additional sensory devices, such as cameras for
precision-critical positioning tasks or F/T sensors for sense-critical tasks, can enhance
the proposed methodological approach and increase the variations of possible HRC
tasks. Moreover, the user training part is a big research area that should be focused
more on in HRC studies. In this study, a novel gamified training setup was developed

1https://github.com/frdedynamics
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and tested. However, diverse methods of user training (i.e. documents, tutorial videos,
games, etc.), as well as different methods of gamified/game-based learning, should
be compared. For instance, the effectiveness of a fully developed serious game might
be different from a supervised gamified training setup. Additionally, the different
application areas of this system might be investigated. Medical applications, service
industries, and home use are areas where HRC has potential, and the proposed
methodological approach can be useful.
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Abstract. In physical Human-Robot Cooperation (pHRC), humans and robots
interact frequently or continuously to manipulate the same object or workpiece.
One of the tasks within pHRC that has the highest potential for increased value in
the industry is the cooperative lifting (co-lift) task where humans and robots lift
long, flexible or heavy objects together. For such tasks, it is important for both
safety and control that the human and robot can access motion information of the
other to safely and accurately execute tasks together. In this paper, we propose
to use Inertial Measurement Units (IMUs) to estimate human motions for pHRC,
and also to use the IMU motion data to identify two-arm gestures that can aid
in controlling the human-robot cooperation. We show how to use pHRC leader-
follower roles to exploit the human cognitive skills to easily locate the object to
lift, and robot skills to accurately place the object on a predefined target location.
The experimental results presented show how to divide the co-lifting operation
into stages: approaching the object while clutching in and out of controlling the
robot motions, cooperatively lift and move the object towards a new location, and
place the object accurately on a predefined target location. We believe that the
results presented in this paper have the potential to further increase the uptake
of pHRC in the industry since the proposed approach do not require any pre-
installation of a positioning system or features of the object to enable pHRC.

Keywords: physical Human-Robot Interaction · Cooperative lifting · IMUs

1 INTRODUCTION
In physical Human-Robot Cooperation (pHRC), humans and robots work towards a
common goal in a shared workspace with physical interaction, and more examples of
pHRC such as cooperative lifting and carrying, kinesthetic teaching, coordinated ma-
terial handling and rehabilitation therapy are seen within industry and healthcare [16].
The introduction of collaborative robots (cobots) is particularly important for small and
medium-sized enterprises since the configuration of the fully automated production for
each design might take as much effort as the conventional production process when the
number of product is little. Installation can be done without replanning whole factories
or introducing additional safety measures such as fences or cages for the cobots.

? This work was funded by the Research Council of Norway through grant number 280771.
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The cooperative lifting (co-lift) operation have the potential to enable humans and
robots to lift and carry long, flexible, or heavy objects together while exploiting the hu-
man cognitive skills and the robot accuracy in different parts of the task. However, to
enable safe and accurate pHRC in co-lift tasks, the control system must have access to
human motion data to be able to follow human motions. There are several studies on co-
lift and manipulation between a human and a robot in the literature. In [11], the authors
use haptic data to dynamically allocate human-robot leader roles on a co-lift scenario.
A recent study using only haptic data from the robot joints without requiring external
sensors is presented in [7] where the authors estimated external forces applied by the
human operator during the collaborative assembly of a car engine. In [13], a human
operator and a cobot on a mobile platform carry a long aluminium stick between two
locations in the work environment. Cartesian impedance control is applied in the co-lift
process and the localization in the environment is done by using a laser scanner. Learn-
ing algorithms are also quite popular in co-lifting and co-manipulation studies [2, ?,?].
In [12], a novel approach using the learning by demonstration for various cooperative
tasks is proposed where a demonstrated trajectory is adapted through weighting factors
to adjust learning speed and disturbance rejection to collaboratively transport an object.
In [3] a table-lifting task performed by a human and a humanoid using programming by
demonstration and in [2] the human-robot role change is assessed probabilistically us-
ing Gaussian Mixture Regression. While these studies found cover important topics for
HRC and co-lift tasks, they generally only address the stages of the cooperation where
the human and robot is physically interacting. There is no study found that also address
the approach to the co-lift stage of the cooperation as this requires motions sensors able
to detect human motions when not in contact with the object or robot directly.

To enable pHRC for a cooperative lifting task where also the approach stage is in-
cluded, the control system must be able to estimate human motions both to control and
to detect gestures that can enable/disable human control over the robot. Studies on hu-
man motion tracking and estimation can be categorized based on the type of the motion
tracker devices used: visual-based [10, 15], and nonvisual-based [1, 4, 14], and hybrid
solutions [8, 9]. Each category has its advantages and disadvantages depending on the
application area. For example, visual-based solutions are dominant in motion tracking
solutions since provide highly accurate human motion tracking but they often fail in
industrial usage for pHRC due to occlusion, loss in line-of-sight, intolerant to lightning
changes, and lack of mobility etc. IMU-based solutions are stand-alone systems without
no permanent installations and can be a good alternative to address the challenges of
vision-based systems at a lower cost, but are prone to drift for long term usage. While
several solutions to eliminate the drift problem have been proposed [5], there are still
few pHRC industrial applications using IMU-based solutions in soft real-time.

The roles in pHRC may change in different stages of a cooperative lifting task [2,
6, 11]. The human cognitive skills can be exploited in the approach stage of a co-lift
task to identify the location of the object to pick up, while the robot accuracy can be
used to accurately place the object on a predefined target location. In this scenario, the
human takes the leader role in picking and the follower role in placing. In addition to the
active stages, a passive idle stage is also needed for the user to clutch in and out of. This
allows the human to disconnect from controlling the robot to re-position. Switching
between roles and active/passive stages of the cooperation requires that triggers may be
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identified in the operation, or that additional control signals are introduced to control
the switching.

In this paper, we propose a novel approach for Human-Robot cooperative lifting in
section 2, and show how we can estimate human motions using IMUs during the ap-
proach and co-lift stage of the cooperation in section 2.1. We also address the different
roles of cooperation in section 2.2 by using individual human arm gestures to clutch
in and out of active roles. The proposed approach is experimentally tested in section 3,
and the results discussed in section 4. Conclusion and outlook is provided in section 5.

2 Human-Robot cooperative lifting using IMUs and gestures
In this paper, we address the problem of collaborative lifting, carrying and placing an
object as a joint operation between a human and a robot to share the load of the object,
and also to exploit the accuracy of the robot to place the object at a predefined target
location. First, we will show how we estimate human motions and gestures using IMUs.
Second, we show how leader-follower roles are defined, and how arm gestures are used
to switch between active (approach, co-lift, release) and passive (idle) states.

2.1 Posture and Gesture Estimation

We propose to estimate 13 DoFs upper-body motions (chest, left and right arm) using 5
IMUs placed as shown in fig. 1. Note that we disregard any wrist motion in this paper.
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Fig. 1: Human model, IMU placements and joint angle definitions.

The full upper-body posture and motion estimation is a collection of estimated in-
dividual joint angles, and where a joint angle can be found by calculating the rotation
between two consecutive links with attached IMUs as shown in figure fig. 1a. The illus-
trated body parts in fig. 1b can be considered as upper and lower arm segments.

The raw orientation data from the IMU sensor is referred as as qGS
i where i is the

IMU number. Each IMU provides orientation information with respect to global frame
F0. If the link-1’s frame of reference is called F1 and link-2’s frame of reference is called
F2, the rotation from the global frame to sensor frames will be qGS

0 and qGS
1 respectively.

We can find the joint angle q01 between two links as the rotation from F1 to F2 using
quaternion multiplication as

q01 = (qGS
0 )∗⊗qGS

1 (1)

where ⊗ denotes the quaternion multiplication and ∗ the complex conjugate of the
quaternion. The term qGS

1 is the rotation of the IMU attached on link-1 from global
to sensor frame. If we apply this process from link-0 (chest to shoulder) to link-2 (el-
bow to wrist), we obtain the arm posture of a human arm based on estimated IMU

Paper A 181



4 G. Ates and E. Kyrkjebø

orientations. One arm can be modelled as a total of 5 DoFs where 3 DoFs are on the
shoulder joint and 2 DoFs are on the elbow joint as shown in fig. 1a. The kinematic
chain for such a human model from the base (chest) to the tip (hand) can be written as:

qc = qCH qs = q∗c ⊗qLS qe = q∗c ⊗q∗s ⊗qLE (2)

where qc, qs and qe are the quaternions representing joint angle rotations, qCH , qLS and
qLE are the IMU orientation from global to the sensors frame in fig. 1a - which are the
raw orientation readings from the sensors. The process is identical for the second arm.

2.2 Cooperation roles and states in cooperative lifting

The cooperative lifting scenario can be divided into three active (APPROACH, CO-
LIFT, RELEASE) and one passive (IDLE) state of the operation as shown in fig. 2.

IDLE APPROACH

CO-LIFT

RELEASE

Clutch deactive

Clutch active

Hand holdHand release

Clutch deactive

Clutch active

Steering arm down

HUMAN LEADER

ROBOT LEADER

Start new cycle

Fig. 2: HRC states and leader roles

There are two key concepts in this
scenario, one is the role and the other
is the state. The role is defined by who
is leading the cooperative task and the
state defines which stage of the task is
running. There is a dynamic role change
between human and the robot leader-
follower roles based on the human two-
arm gestures and the completion of the
task, and also the state changes are trig-
gered based on human arm gestures.

Human leader: This role is where
the robot takes actions led by the human
operator based on his/her upper-body motions. The pick position of the object is not
necessarily to be known by the robot. The cognitive skills of the human can be ex-
ploited to approach the object sensibly, identify the object to pick up, and finally lift
and carry it towards a target position. Within a close distance to the place position, the
robot-leader role is activated by a gesture so that a precise placement is achieved.

In our proposed approach, we track both human arms individually and can use them
for different purposes in human-robot cooperation. We define one arm as the motion arm
(left) and the other as the steering arm (right). The motion arm is directly controlling
the robot motions in the active stages when the human is the leader, while the steering
arm motions are superimposed on the motion arm when applied to the robot. In this
way, the human can approach and grip the object on one end using the motion hand –
and the robot will mirror this motion – but also use the steering hand to adjust the robot
position to the proper gripping position on the other end of the object while keeping the
motion hand still. Thus, any misalignment between the starting position of the human
and robot can be corrected. Furthermore, gestures from the steering hand can be used
as triggers or control signals to move from one state to another in cooperation. There
are 3 states in the human-leader role: idle, approach and co-lift.

In IDLE, no human motions are mapped into robot motions. The human can move
closer to the pick-up position without moving the robot. This state is also a safe state
which the human can switch to from any other state in the human-leading role, and thus
enables the human operator to move freely at any time. In APPROACH, motion and
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steering arm motions are combined into a hand pose that controls the goal pose of the
robot. The individual contribution of the two arms can be scaled through gains. Human
forward/backwards and up/down motions are identical on the robot, but sideways mo-
tions are mirrored by the robot. In CO-LIFT, both the robot and the human is holding
the common object and lifting it towards the desired target position. Only the motion
hand controls the goal pose of the robot. The steering arm is free to move to help to lift,
or to perform gestures. Two gestures of the steering arm are defined as ”release down”
and ”rotate up/down” to trigger state and role changes.

There are two transition gestures and a foot pedal activated transition between states
and roles. The ”clutch activate/ deactivate” gesture activates and deactivates the human
to robot motion mapping. The clutch is triggered by the steering hand rotating to the
palm up gesture to switch from IDLE to APPROACH/CO-LIFT, and rotating to palm
down gesture to switch from APPROACH/ CO-LIFT to IDLE. The ”handhold/release”
transition is triggered by a foot pedal to close the robot gripper so that the CO-LIFT
stage can start. The option to switch from CO-LIFT to IDLE state (dashed lines in
fig. 2) is included for safety reasons in case the human leader need to free the motion
hand from the object. Care should be taken to support the load of the lifted object in
such a scenario since the load cannot necessarily be supported by the robot alone. The
last transition gesture is the ”release down” gesture where the human points the steering
arm downwards to trigger the role change from human leader to robot leader.

Robot leader: The trigger gesture ”release down” switches from a human leader
role strategy to a robot leader strategy where the robot can take over control of the ex-
ecution to move the object to the target position while the human keeps supporting the
load of the object and follows the robot motions. Only one state called RELEASE is
proposed in our design, but a sequence of other tasks can be added for more complex
tasks. As soon as the robot reaches the desired target position, the gripper is automati-
cally released and the robot moves away from the object and is ready for another cycle.

2.3 Human-Robot Cooperative lifting of a table

The cooperation starts in the IDLE state, and is shown in fig. 3. The robot expects the
clutch deactivate signal (see the rotation of the steering hand from fig. 3a to fig. 3b). At
this stage, the motion hand pose P̂hm and steering hand pose P̂hs are combined into the
hand pose P̂h, but the goal pose P̂goal is not sent to the robot in the IDLE state.

When the clutch is released the HRC system switches to an active APPROACH
state as shown in fig. 3b. The human operator controls the robot, and as the human
approaches to the table with the motion hand, the robot approaches the table with a
scaled mimicking motion. If the motion hand reaches and grips the table, the robot can
still be controlled using the steering hand to approach the appropriate grip position on
the other side. Pose calculations are computed using 4x4 homogeneous transformation
matrix (HTM). The robot goal pose is calculated based on the relative position change
of the hand pose P̂h,t as shown in eq. (3).

P̂−
h,t = ŝ · (P̂−1

hm,t=0 × P̂hm,t)+ k̂ · (P̂−1
hs,t=0 × P̂hs,t) (3)

where P̂−
h,t is the merged hand pose. To get the approach response from the robot the

y-axis in P̂−
h,t is inverted and P̂h,t is obtained to control the approach of the robot.The
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(a) Idle (b) Approach (c) Co-lift (d) Release

Fig. 3: Human and robot poses in co-lift states. (a) shows both the human and the robot
initial poses in the IDLE state. The steering hand (right) is palm down. (b) shows both
the human and the robot poses in action in the APPROACH state. The steering hand is
palm up. (c) shows the CO-LIFT state where both the human and the robot is carrying
the table. The steering hand has does not influence motion commands, but is helping
the motion hand (left) to lift the object. Finally, (d) shows the RELEASE state triggered
by the ”release down” of the steering hand, and where the robot takes control of the
operation to place the object at the desired target position.

4x4 scaling matrix for the motion hand ŝ has the last row equal to [sxsysz1] with the rest
of the elements as 1. The scaling matrix k̂ is defined similarily for the steering hand.
The robot goal pose based on the combined hand pose is

Ĥ(t) = P̂−1
h,t=0 × P̂h,t P̂r,t = P̂r,t=0 × Ĥ(t) (4)

where Ĥ(t) is the tranformation of merged hand pose from initial to the current pose.
The goal pose is set to initial orientation of the robot for easier cooperation.

When the system switches to the CO-LIFT state, the contribution of the steering
hand is eliminated. The current pose of the motion hand is set to a new initial pose
and the robot goal pose is calculated based on only the motion hand’s relative position
changes as in

P̂−
h,t = ŝ2 · (P̂−1

hm,t=tco−li f t
× P̂hm,t) (5)

where P̂hm,t=tco−li f t is the new pose measurement of the motion hand in HTM form
needed to ensure a smooth transition between states. The ŝ2 term is the new scaling
factor for the motion hand. Finally, the y-axis measurements of P̂−

h,t are reversed for a
mirror the human motions to obtain the new hand pose command P̂h,t in CO-LIFT.

When the steering hand is released down to switch to the RELEASE state, we no
longer compute the human hand to robot motion mapping since the robot takes over the
leading role in the RELEASE state, and the human follows the robot motions.

3 Experimental setup and results
The experimental test was performed as a full human-robot cooperative lifting operation
as shown in fig. 3. We first present the experimental setup and the calibration steps
before presenting the resulting data.
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3.1 Setup

The human is equipped with 5 Xsens Awinda IMUs to estimate orientations output
as filtered orientation raw data in quaternions. The cooperative robot as the Universal
Robots UR5e cobot equipped with a Robotiq 2F-85 gripper. The data acquisition is
processed in the ROS Melodic environment on two PCs. One PC is running the ROS
master and the Universal Robot’s ROS driver, and the other PC runs all the other ROS
nodes. The UR5e is connected via Ethernet cable to the ROS Master PC, and the URCap
software is started after the UR5e ROS driver is started on the ROS Master PC. The data
acquisition from the IMUs runs at 100Hz whereas the UR5e controller runs at 50Hz.
The inverse kinematic solver node using ikfast runs at 10 Hz, and scaling factors for the
motion and steering hand are set to 1.

3.2 Calibration

The calibration process consists of three steps as following: The first step is to remove
any bias on IMU orientation raw data, the second is to initialize human posture and the
third is to map the human initial pose to the robot’s initial pose.
IMU Orientation Calibration: First, we eliminated the bias and set a relative initial
pose of each IMU to make sure the IMUs outpus zero orientation initially as

qI,abs ⊗qinit−rot = qbias qI,rel = q∗bias ⊗qbias. (6)

where qI,abs is the absolute initial orientation of an IMU, which is a unit quaternion, on
a particular 3D orientation where the IMU axes are perfectly aligned with the global
frame of reference. The qinit−rot is the rotation from the initial orientation to when the
data acquisition starts, which is unknown. The qbias is initial raw orientation data from
the sensors that changes in every setup. The initial orientation is set based on recording
qbias for 2s in a steady T-pose (arms out), and qI,rel is set to the identity quaternion.
Human Body Calibration: The IMU calibration is computed in a the T-pose , and all
the joint angles are set to zero, and q∗bias is set to identity quaternion.
Hands to Robot Calibration: This sets the human arm pose to the robot initial pose.
The human moves to a desired initial pose and the robot move to its predefined initial
pose fig. 3a. The robot initial pose P̂r,t=0 is registered, and the computed hand pose
P̂h,t=0 is initialized to zero position and zero rotation.

3.3 Results

The experiment is carried out by an inexperienced user and the data is presented in fig. 4.
As explained in section 3.1, the actual robot data is recorded on the ROS Master PC, and
therefore the recorded data clocks are synchronized after recording. In human-leading
role states, it can be seen how hand motions affect the goal position of the end-effector
of the robot whereas the hand positions are not affecting the goal position in the robot-
leading role state. In IDLE, we observe motions of the human arms (blue/orange), but
these motions do not affect the robot goal position (red) in this state. The merged hand
position (green) at the initial pose shown in fig. 3a is set to zero. When the clutch is
deactivated (t=8s), the goal pose is sent to the robot based on the merged hand pose
(green), and the robot starts following the same trend as the goal pose (red). Between
t=15-20s, the motion hand (blue) is stable (holding the table at one end) and the steering
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Fig. 4: A full cycle demo of the proposed HRC cooperative lifting scenario. The lines
shows the position change on the x-axis of the motion hand (left) in blue, steering hand
(right) in orange, merged hands in green, the goal pose to the robot’s end-effector in
red and the actual robot pose in purple. The states IDLE, APPROACH, CO-LIFT and
RELEASE are indicated as background colours. The roles (human or robot leading) are
indicated with blue texts at the bottom of the figure where human-leading role covers
IDLE, APPROACH and CO-LIFT and robot-leading role covers only RELEASE.

hand (orange) keeps commanding the robot to adjust the robot position to be ready to
grip the table. After the human is satisfied with the position on which the robot can
grip the table, the handhold signal is sent and the CO-LIFT stage starts. In this state,
only the motion hand (blue) is affecting the goal pose (red) - but inverted. The steering
hand (orange) helps to lift without affecting the goal pose. After the steering hand is
released down as in fig. 3d, a role changing is triggered and the RELEASE stage starts.
No hand motion is sent as the goal pose in this stage. Instead, the goal pose is set to the
predefined target position. When the robot reaches the target position at around t=40s,
it automatically opens the gripper and pulls itself back ( t=40), and waits for input to
do another cycle ( t=49s), where the goal pose is set to the robot initial pose. When
the robot reaches the desired position with a small tolerance (the absolute sum of joint
angle error is less than 0.001 rad), the system is automatically set to the IDLE and the
robot wait for the clutch to deactivate for the new co-lift cycle.

4 Discussion and Future Work
In this study, we demonstrated a human-robot cooperative lifting task scenario based
on estimated human motions and gestures using IMUs, and we tested and validated the
proposed pHRC states, roles and their transitions using a real robot in experiments.

The proposed method is a novel conceptual design that still requires some tuning
based on more extensive user tests. Different learning curves are observed for different
users, and also some feedback on preferences are reported which conflict between users:

Motion mapping: In the current setup, we take the spine-fixed frame as the human
motion reference frame. It is reported as confusing in the beginning. After a few trials, it
is reported to become more natural. It is still an open question for real applications and
highly depends on the users’ learning curve. To develop a training setup is a possibility
or more intuitive frame of reference can be analyzed with more user tests - potentially
using the motion arm as the frame of reference.
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Robot speed: It is seen fig. 4 that the actual pose (purple) does not follow the goal
pose (red) identically. There is no lagging or real-time during the experiments, but the
robot maximum speed is set to be 30% of full speed as a safety measure. If this is
increased, the robot becomes more responsive and exceeds the comfort zone of the hu-
man operator which then tries to slow the robot down, and thus we can induce harmonic
motions around the desired pose. With training, the trust in the robot increases, and the
speed limit can be increased.

Contribution of the two hands: We set the contribution of the two hands equal in
the experiments based on user preferences. However, during tests in the development
stage, other users reported that they preferred either the motion or steering hand to
be more dominant. Also, the approach direction of the motion hand could be either
mimicked or mirrored based on user preferences. These are open questions.

The pick and place positions are selected close due to the limited workspace of the
robot. The ikfast module provides a rapid inverse kinematic (IK) solution (on the
order of 4µs) but no limitless elbow/wrist configuration can be set. Therefore, we set
joint limits in the experiments to make sure the robot works within the configuration
space, but this can be extended in future versions, or changed to a recursive IK solver.

The human and robot motions are defined as relative positions with respect to the
initial states. Therefore, the parameters of the human model do not play a vital role. An
average human model can be used for most users. It should be noted that the behaviours
on the other axes are observed; the states and the transitions correspond in all axes yet
they are not presented in this paper due to the number of page limitations.

For the proposed method, the initial position of the object and its properties is un-
known. The approach is lead by the human, and the release is lead by the robot. Only
the target position of the object is necessary. Such a design opens up a wide range of
application possibilities such as co-manipulation, co-assembly as well as co-lifting.

The real-time term describes a soft real-time behaviour that the human does not feel
a delay or lagging. We have not assessed quantitatively the real-time capabilities, and
we are planning to address this issue in future studies.

The IMUs are prone to drift but the filtered orientation by Xsens Awinda pro-
vides relatively stable data. For about 15 minutes of data collection period without re-
calibrating IMUs, no drastic drift issue is reported. However, before testing the system
in real industrial applications, a quantitative drift assessment study in various magnetic
disturbances should be carried out.

5 CONCLUSIONS

In this study, a conceptual design of human-robot cooperative lifting based on human
motions and gestures captured using IMU data is presented and validated with a real-
world experiment. The proposed system consists of two leading roles as human-leader
and robot-leader which dynamically switches based on human gestures. The proposed
roles consist of 4 different states and the human-to-robot motion mapping differs ac-
cording to the system state. This study aims to open up new possibilities in pHRC for
industrial applications by using IMUs as cheap, portable, and low-cost measurement
systems that do not suffer from occlusion and line-of-sight loss.
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Abstract—Cooperative lifting (co-lift) is an important applica-
tion of HRI with use-cases in many fields such as manufacturing,
assembly, medical rehabilitation, etc. Successful industrial imple-
mentation of co-lifting requires the operations of approaching,
attaching, lifting, carrying and placing the object to be handled
as a whole rather than individually. In this paper, we target
all stages of cooperative lifting in a holistic approach and extend
previous results in [1] using IMU-based human motions estimates
by introducing force-based control. We demonstrate through
experiments on a UR5e robot how the force-based approach
significantly improves on the position-based approach of [1].
Additionally, we improve the real-time control capabilities of
the system by using a real-time data exchange communication
interface. We believe that our system can be an advancing point
for more human motion/gesture-based HRI applications as well
as increasing the uptake of human-robot co-lifting systems in
industrial settings.

Index Terms—Human Motion Estimation, Inertial Measure-
ment Units (IMUs), Compliant pHRC, Cooperative Lifting.

I. INTRODUCTION

The field of Human-Robot Interaction (HRI) covers a wide
range of interactions between humans and robots coexisting in
the same workspace. In an industrial context, the interactions
can be supportive, collaborative or cooperative [2]. If the
interaction requires continuous physical contact between a
robot and a human - either directly or through an object - it can
be defined as a physical Human-Robot Cooperation (pHRC).

The different strengths of human workers and robots make
them excel at different tasks. While robots are durable, precise
and repeatable, humans have excellent problem-solving skills
and are creative in their decision-making. cooperative lifting
(co-lift) is a widely studied application of pHRC where a robot
and a human carry a common object from one point to another
as shown in fig. 1.

Different HRI strategies and methods have been addressed
in the literature for the co-lift task [3]–[5]. In [3], the authors
proposed to use EMG activities on human biceps by training
neural networks. In [4], a Gaussian mixture model is used
on vision-based motion data. In [5], a kinesthetic teaching
method is proposed to create trajectories to allow adaptive
interaction both in co-manipulation and co-lifting tasks. The
examples in the literature present valuable results but only
focus on the co-lift stage rather than the whole pHRC cycle.

This work was funded by the Research Council of Norway through grant
number 280771.

Fig. 1: Frame-capture from co-lift experiments using IMUs for
human motion estimation and an EMG-sensor to open/close
the gripper. The co-lift states of APPROACH, CO-LIFT and
RELEASE, and the pick and place locations, are illustrated.

In [1], the whole pHRC cycle was addressed using human
motion estimates from IMUs, and in this paper, we will extend
these results by introducing compliant force interaction.

To enable cooperative lifting through pHRC, some key fac-
tors must be in place. First, human motions must be estimated
using a sensor system to inform the robot of human actions.
Second, the pHRC system should allow role allocation in
different stages of the co-lift operation; approaching the object,
lifting and placing it safely. Third, a human-robot interaction
interface must allow humans and robots to communicate
intentions and commands.

Human motion estimation is an active area of research for
HRI. It is crucial in HRI tasks both for controlling robot
motions when the human is in the leading role and for role
allocations during task execution for gesture-based interaction
interfaces. It can be either low-level such that human motions
are directly transferred to the robot [6], [7] or semantically
higher level using gestures [8]–[11]. Moreover, human motion
tracking and estimation can also be categorized based on the
type of the motion tracking devices used: vision-based [4],
[6], non-vision based [12]–[14], and hybrid solutions [15],
[16]. Depending on the application area, each category has its
advantages and disadvantages. While vision-based solutions
are dominant in motion tracking since they provide high
accuracy, they often fail in industrial usage due to occlusions
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and loss of sight, being sensible to lighting, and having lack
of mobility etc. IMU-based solutions do not suffer from these
issues but low-cost sensors are prone to drift when used for
position estimation. However, solutions to eliminate the drift
have been proposed in [17] that performs with comparable
accuracy as vision-based systems [18], but there are still few
pHRC industrial applications using pure IMU-based solutions.

In cooperative human-robot tasks, both the robot and the hu-
man can be assigned roles that are either static (human leader
and robot follower [19], [20] or vice-versa) or dynamically
changing during the task execution [21], [22]. Three different
shared role schemes were proposed in [22] where the adaptive
role allocation is assigned based on the necessary effort of
both the robot and the human. In [7], the authors executed
a role adaptation derived from the interaction force feedback.
Another study [21], commits roles in two steps where in the
first step the motion command is taught by a human leader,
and then in the second step, the leader role is assigned.

Force and haptic interaction is an important aspect of co-
lift applications [19]–[22]. A physical contact parameter can
be implemented such that both robot and human share the
sense of lifting and can take action accordingly. In [19], a
sensor-less haptic system is developed to form a force-to-
motion relationship. In [21] a haptic desktop controller is used
as a haptic interface with scaled force feedback to a human
leader while the robot is carrying a table with another human.

In this paper, we target the three key factors for successful
human-robot cooperative lifting: 1) Estimating human motions
using an IMU-based solution which can be easily applied
in industrial applications, 2) role transition between human
and robot during the different stages of the co-lift, and
3) employing human motion data for a gesture-based HRI
interface to send commands to the robot. We compare our
results to prior work in [1] to show the effects of introducing
compliant force interactions between the human and robot, and
also how improving the real-time data exchange capabilities
can enhance the system performance significantly.

II. METHODOLOGY

In this section, we show how human motions can be
estimated from a set of individual IMUs in section II-A, and
how the states and role-transitions is controlled in section II-B.

A. Estimating Human Motions

To estimate human motions, we can equip the human partner
with a set of IMU sensors on the chest, left/right upper
arms, and left/right forearms as shown in fig. 2. The IMUs
are used for human motion estimation for controlling robot
motions, and also for gesture estimation for the HRI interface
commands.

The human motion estimation follows the approach of [1].
First, the raw orientation data from each sensor in a global
frame is obtained. Then, individual IMU orientations in their
respective sensor frame is calculated as in eq. (1).

qjoint = (qGS
prevLink)

∗ ⊗ qGS
currentLink (1)
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Fig. 2: Human model and IMU placement on right/left elbow
(RE/LE), right/left shoulder(RS/LS) and chest (CH).

Further, joint angles in both arms starting from the chest to
the left wrist is calculated as in eq. (2).

qc = qCH qls = q∗c ⊗ qLS qle = q∗c ⊗ q∗ls ⊗ qLE (2)

where the asterisk denote quaternion conjugate, qc,qls,qle are
human joint angles; qCH , qLS , qLE are calibrated IMU-
readings of chest, left-shoulder, and left-elbow, respectively.
The same calculation applies to the human right-side. Note
that the human chest is modeled as a ball joint with 3 degrees
of freedom (DoF)s, and each arm is modeled with 5 DoF (i.e.
3 DoF shoulder and 2 DoF elbow), while wrist motions are
ignored. Finally, the biomechanical model of the human is
constructed as a pair of kinematic chains for both arms using
the measured body link lengths and calculated joint angles.
Additionally, a low-cost EMG sensor on the right forearm is
used to control gripper opening - which also changes HRC
states from APPROACH to CO-LIFT (see section II-B).

There are two main reasons why two-handed motions are
used as the control input to the robot rather than the motion
of only one hand. First, while mapping the motions of one
hand - the motion hand - as the desired motions for the robot,
the second hand - steering hand - can take on a clutching
function to engage or disengage the robot to follow human
main-hand motions, and allow the human to move without
controlling the robot. Second, the steering-hand motion inputs
can be used as corrective inputs to the motions of the main
hand to scale robot motions relative to human motions. This is
particularly valuable in the grasping state to enable alignment
of the human and robot wrists from any initial condition.

B. Roles and States

Following [1], we define four different states of the whole
HRC co-lift operation as IDLE, APPROACH, CO-LIFT, and
RELEASE, and the 3 different roles of cooperation as Human
Leading, Robot Leading, and Shared Control. The different
states and roles of the system are defined in the following.
Human Leading role: IDLE: No motion command is sent to
the robot, and the robot stays at rest in the initial position. This
is a safety state that the human can enter with the clutching
gesture at any time.

APPROACH: A merged hands motion - a combined pose
parameter of the two hand poses with an adjustable scale
as in [1] - is actively calculated and sent as servo control
commands to the robot. The robot follows the merged hands
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motions. The initial merged hand pose is calculated in every
IDLE→APPROACH transition as

[
P̂handLeft,t=0 × P̂handRigh,t=0

]−1

= P̂r,t=0 (3)

and the desired robot command is calculated continuously as

Ĥ(t) = P̂−1
h,t=0 × P̂h,t ⇒ P̂r,t = Ĥ(t)× P̂r,t=0 (4)

where P̂handLeft,t=0, P̂handRigh,t=0 and P̂r,t=0 are Homoge-
neous Transformation Matrix (HTM) representing human left
hand, human right hand (i.e. motion and steering hand for this
setup) and robot end-effector pose at initial, respectively. Ĥ
is a HTM mapping merged hands motion to robot pose with
respect to robot’s initial pose P̂r,t=0. The Ĥ is set as target
pose in servoL command [23] with 0.1s look-ahead time to
smoothen the trajectory.
Shared Control role: CO-LIFT: The robot applies a di-
rectional compliant force. The direction is determined by
the human elbow heights (rather than direct hand motion
mapping as in [1] due to the restrictions on hand movements
during holding an object). The robot is actively leading the
cooperation until an external force is applied by the human to
the object. When the human force input is detected by the
robot, the compliant force is adjusted based on the elbow
configuration as shown in fig. 3. If both elbows are higher
than a threshold, the direction is set UP. If left elbow is
higher than the threshold and right elbow is lower than the
threshold, the direction is set LEFT, or vice-versa. If both
elbow heights are lower than the threshold when the human
external force is applied, no directional compliant force is
generated by the robot (direction is set to NULL). This
behaviour is computed by using the forceMode command
[23] where the compliance is set in the end-effector frame with
170 mm maximum allowed deviation on non-compliant axes
and 30 N force applied with 0.5m/s maximum end-effector
speed on the compliant axis.
Robot Leading role: RELEASE: The robot takes the lead of
the operation, and moves to a predefined pose. The human
follows robot motions.

Fig. 3: Force profiles and elbow heights in the CO-LIFT state.
Blue (left) and orange (right) lines show elbow heights, green
line shows the external force input (in y-direction) and the
spikes indicate where the human applied an external force. The
red (x), purple (y) and brown (z) lines shows the actual end-
effector pose in the world coordinate system. The background
colors indicate compliant forces in different directions.

III. EXPERIMENTAL SETUP

An experimental setup of the pHRC co-lift scenario is
set up to demonstrate cooperative lifting of a table. The
demonstration setup allows the human to control the robot
approach (from any initial position), grip the table, and then
execute a cooperative lift and carry operation, before the table
is placed at a predefined release position as shown in fig. 1.
In this setup, the human is utilizing his superior cognitive
capabilities in understanding the task and identifying the pick-
up position during APPROACH stage, while the human and
robot is sharing the load while carrying in the CO-LIFT stage,
and the robot is utilizing its superior accuracy when placing
the table in the RELEASE stage.

In the experiments, a human user is equipped with 5 Xsens
Awinda IMUs as motion sensors, and one Myo Armband
for EMG-measurements as shown in fig. 1. Data acquisition
is carried out at 100Hz on a Ubuntu 20.04 computer with
ROS Noetic installed. The computer is connected to a UR5e
robot from Universal Robots using cabled Ethernet connection
transmitting servo control commands at 125 Hz while utilizing
the real-time data exchange protocol [23].

To compare our results to the results presented in [1], all
parameters are set equal for the task for both experiments, and
the same pick and place positions are used. The human user
is trained on the same task in both version of the system until
he feels comfortable in using both systems at his best. An
additional IMU is attached to the table to measure the table
tilt and acceleration during the process. For the experiments,
the human hand and elbow poses, robot end-effector pose and
force, and system state changes are recorded.

IV. RESULTS AND DISCUSSION

The main objective of this study is to develop a robot
partner for lift-and-carry operations. The goal is that the robot
should behave intuitively and smoothly, be comfortable to
work with, and ultimately increase the usability of the system
for industrial applications. To analyse the performance of the
system towards this goal, we measured the instant jerk and tilt
of the table during the co-lift operation using an extra IMU
attached to the table. This also indirectly measures the real-
time capabilities of the system since any time-delays resulting
in conflicting control inputs from the human and robot would
be apparent in the accelerometer data from the table.

The overall motion data and system states recorded from
the proof-of-concept experiments are shown in fig. 4. Fig. 4a
shows experimental data recorded using the position-based (P-
Lift) method from [1], while fig. 4b show experimental data
recorded from the force-enhanced cooperative lifting (F-Lift)
method presented in this paper. The figures shows the human
hand motions as well as the robot motions only for one axis
due to page limitation. Note that there is no ”goal pose” in the
F-lift system since the robot is controlled in servo and force
mode rather than in position mode (as in [1]).

The different colors of fig. 4 shows the states of the system
during the data collection. Both experiments start in the IDLE
state and complete the whole co-lift cycle of APPROACH,

Paper B 193



(a) Motion data from experiments using the P-lift method from [1]

(b) Motion data from experiments using the F-lift method.

Fig. 4: A full cycle demo of the co-lift scenario using P-
lift and F-lift methods. Lines show position change on z-axis
for motion hand (blue), steering hand (orange), merged hands
(green) for both plots. The goal pose of the end-effector is
shown (only) in (a) in red, with the actual end-effector pose
(purple). In (b), the actual end-effector pose is shown in red.

CO-LIFT, RELEASE, and move the robot back to the initial
position ready for the next cycle.

The main improvements from the results presented in [1]
can be seen particularly in APPROACH and CO-LIFT states.
The APPROACH state in the P-lift system takes more time
than using the F-lift method. The main reason is difficulties
in controlling the robot to approach the table at the correct
position for gripping. Joint safety limitations, and the lack
of real-time response despite calculating inverse kinematic
solutions in less than 10µs, cause what is experienced as
an un-natural HRC behaviour. The peak at t=27s show an
unsuccessful attempt of grasping the table and the user’s retry.
The shorter duration of the CO-LIFT state in the P-lift system
is mainly because of the difficulty in sending hand motion
commands while holding a rigid object. Therefore, the user
lifts the table as needed and quickly triggers the RELEASE.

Another main improvement is the introduction of the Shared
Control role. In the P-lift method, the motion hand pose is
mirrored to set a robot goal pose in CO-LIFT state, which
makes the human the leader through the whole state. In the
F-lift method, no hand motions are directly used in controlling
the robot pose in CO-LIFT. The robot is in force mode where
the direction of the compliant force is determined by the
elbow height when the human applies a force as seen in fig. 3.
The robot has the leader role in the majority of the time. When
an external force (above the threshold of 30N) is applied by
the human, the robot checks the elbow heights and updates
the compliant force. Note that since the leader role is mostly
on the robot in the CO-LIFT state in the F-lift system, and
that the state which was previously a Human Leading role in
P-lift is now a Shared Control role in F-lift since the human

and robot are actively role changing in this state.

(a) Acceleration in P-lift method (b) Acceleration in F-lift method

(c) Tilt angles and heading (blue)
in P-lift method

(d) Tilt angles and heading (blue)
in F-lift method

Fig. 5: Acceleration and orientation measurements of the table
Fig. 5a and 5c shows the table acceleration and tilt angles,

as well as the heading angle, for the P-lift method. Fig. 5b
and 5d shows the same data for the F-lift method. The raw
accelerometer data is filtered using a low-pass filter with 10Hz
cutoff frequency at 512 Hz sampling rate and cascaded with a
median filter with 155 window size in fig. 5a and 5b to remove
the accelerometer sensor noise. Comparing the acceleration in
both methods, it is seen that the magnitude of the acceleration
for the P-lift method in fig. 5a is higher (and even changing
direction) than the smoother behaviour of the F-lift method in
fig. 5b. The fluctuation of the tilt angles for the P-lift method is
related to the non-smooth trajectory and undesired behaviour.
Both the results on acceleration and angle deviations suggest
that the F-lift method is a significant improvement over the
P-lift method for a smoother human-robot cooperative lifting
operation.

V. CONCLUSION
We presented an ongoing study on HRC co-lift with signifi-

cant improvements compared to previous results in [1]. A full
co-lift scenario - consisting of four states: IDLE, APPROACH,
CO-LIFT, RELEASE - based on only human motion estima-
tions (P-lift) is augmented with compliant force interaction
(F-lift) as well as the real-time behaviour of the system is
enhanced with the real-time data exchange protocol. By adding
the force interaction, the human-robot role allocations are re-
defined and the Shared Control role is introduced in addition
to Human Leading and Robot Leading HRC roles in [1].
Improvements are experimentally validated on a UR5e robot.
The tilt angles and the jerk on the carried object are monitored
for quantitative comparison and a remarkable improvement is
recorded. Note that only a proof-of-concept study has been
performed, and future work aim for a broader user study with
more participants to verify the findings.
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Abstract—Increasing amounts of robotics applications and
possible job opportunities in the industry within the robotics field
encourage more universities to involve robotics subject in their
current programs or incorporate robotics engineering as a new
department. This highlights the importance of comprehensible
robotics teaching for more people with various levels of technical
background. One of the major subjects at the university level in
robotics education is representing the physical robot model using
mathematical notations. The majority of the current teaching
methods of robotics theory for undergraduate students use
conventional approaches from robotics books which relies on 3D
pictures and sketches for illustration. There are a few modern
approaches where the book chapters are linked to supplemental
videos, however, the lack of interaction diminishes the student
engagement. Moreover, there are some simulators to enhance
visual and interactive skills, but they are either costly or robot
specific and require adequate competence of programming skills
on the associated programming language. In this paper, a serious
game to be used in robotics teaching for bachelor students with
various technical backgrounds is presented. The game combines
the traditional notations in robot modelling with a gamified
approach so that the students can comprehend and imagine
easier.

Index Terms—Robotics Education, Serious Games, Kinematics,
Robot Operating System, Robot Modelling, Denavit-Hartenberg

I. INTRODUCTION

Robotics is a subject which is taught in various engineering
departments such as mechanical, electronics, computer, and
automation engineering. It can also be constituted as a stand-
alone engineering department in some institutes. Depending on
the main focus of the parent department or the objectives of
the degree, the content varies [1]. Some contents are accepted
as the core subject and taught in every approach such as robot
programming, modelling, or mechatronics [2].

Fig. 1: Links and
joints definitions
on a robot arm

Constructing a mathematical model of
a robot arm (i.e. kinematic modelling)
is one of the most fundamental sub-
jects in robotics at the bachelor level.
A robot arm consists of joints and links
connected sequentially from a fixed
ground to the robot hand (end-effector)
as shown in fig. 1. Denavit-Hartenberg
(DH) notation [3] is a universally used
kinematic modelling representation for
robot arms. It relies on describing each

joint relative to the previous one based on translations and

rotations based on 4 parameters. Those parameters are shown
in fig. 2. Although kinematic modelling of a robot arm using
DH-notation is methodologically straightforward, robotics stu-
dents struggle to learn it, intuitively comprehend it and visually
connect which mathematical representation reflects what type
of design criteria and/or the motion capability.

Serious Games and Simulations (SSGs) can be used to
create supplemental learning tools that are engaging with inter-
active learning opportunities and can provide visualization of
the concepts that make them easier to translate knowledge [4]–
[6]. This paper provides a potential solution that is a gamified
experience of robot modelling in various configurations. It
provides opportunities for students to experiment with how
changing parameters affects the robot in task-based training.

II. BACKGROUND

Robotics teaching is applied in a wide age range [1], [2], [7],
[8]. It is common to use robotics as a tool in teaching STEM
(Science, Technology, Engineering and Math) related subjects
to increase student engagement at early ages as well as to
teach robotics elements at a basic level. Tools used in primary
schools and at the K-12 level such as Lego Mindstorm, Evobot
and Turtlebot commonly have high human-robot interaction,
focus on gamified learning and the outcomes are easy to visu-
alize for students. The learning objectives are at a conceptual
and abstract level in this group of students; trigonometric and
algebraic calculations mostly do not take place.

The advanced mathematical calculations are covered at the
undergraduate and graduate levels in teaching robotics. The
conventional books-and-publications based methods are used
at this level [2], [8]. Although the gamified approach in teach-
ing robotics has a positive impact on early stages [9], there are
few examples of it at higher levels. Moreover, it is observed
that students struggle in relating the mathematical expressions
with the physical meaning of the robot design and motion.
Trigonometric and algebraic calculations in mathematics and
classical mechanics in physics underlie robot modelling in
the name of kinematics and dynamics. These are the most
fundamental subjects of robotics at the undergraduate level.
The kinematic modelling is widely taught using DH-notation
[3] to represent joint poses on a robot arm with respect to
the previous joint. The illustration in fig. 2 is a 3D drawing
of a part of a robot arm and its DH-table. Although this
illustration is not intuitive to relate in the real-world meaning
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Fig. 2: Visualization of a robot section and DH-parameters in
conventional teaching methods. Four DH-parameters for jointi
θi, si, di, αi are highlighted with orange background.

for beginner robotics learners, it is still the most common
method of teaching serial robot arms [10]–[13].

Despite the lack of serious games used in robotics teaching
at the undergraduate level, there are a few simulators both
for testing and development. The author of [14], provides
a MATLAB Toolbox for teaching robotics using MATLAB
functions [15] in addition to aiding videos referred to in his
book. Robotica has a software package for robot analysis
in the Mathematica environment [16]. Another interactive
software, which allows modelling and simulating robot arms,
is presented in [17] also comes with the implementation of
a computer-vision algorithm. These software provide compre-
hensive designing and visualizing platforms, but they require
a clear understanding of robot kinematics and dynamics also a
sufficient competence of the associated programming language
[18]. Additionally, there are simulators developed by the robot
vendors such as KUKA, Universal Robots, ABB etc. specific
for their robots, but due to high cost and low versatility, they
are hardly used for teaching. RoboAnalyzer [19] and Webots
[20] examples which are free-of-charge. The RoboAnalyzer is
based on 3D models of robots which is developed for teaching
and learning robot mechanics. Webots is a development plat-
form focusing on modelling, programming, and simulation of
mobile robots. Also, a virtual laboratory for robotics teaching
is developed by [21] which allows remote control of robots in
the virtual environment. Despite those platforms being useful
in robotic teaching, they are either limited to certain robot
types or presented as a simulator, hence they do not have
a concrete learning path. The platform dependency of the
software limits the developed robots to be used in further
research. Although MATLAB-based development tools [15],
[22] give space for additional research with the compatibility
to other toolboxes, the MATLAB software itself is not free-
to-use and each toolbox comes with additional cost.

The proposed game is developed in the Robot Operat-
ing System (ROS) which is an open-source meta-operating
system [23]. There are two main reasons for selecting the
ROS environment for developing such a game rather than
using common game development engines such as Unity,
GameMaker Studio, CryENGINE etc. First, ROS has a large

Fig. 3: ROS users distribution on location in December 2021
Source: http://metrorobots.com/rosmap.html

user group all around the world (see fig. 3) with a rapid
increase every year. There are 127.94% new users who have
joined the ROS community between July 2019 - July 2020
[?]. It is getting more popular in robotics teaching in advanced
topics such as motion planning, navigation, localization, robot
vision, etc. in addition to kinematics and dynamics. It allows
the designed custom robot in the proposed game to be used in
further research. Second, it is completely open-source, which
enables the developed game to be used by more users for free.

III. METHODOLOGY

The proposed game is a problem-solving style of game
where the player is supposed to achieve given objectives by
solving problems. The game consist of three pillars: task
selection, robot design and robot interaction. The objectives
are in gradual increasing difficulty and can be selected at the
beginning in the task selection. The students should design
a robot arm by selecting the correct number of joints, joint
types and link lengths to meet the objective requirements in
the design screen. Then, the students interact with the robot
and observe how the mathematical representation changes. In
this section, these pillars and the game setup are explained.

1) Task Selection: The game starts with an introduc-
tion screen containing questionnaire as game objectives in
6 categories to understand joint types, DH parameters, DoF
complexity, workspace, singularity, and optimization. Catego-
rization is constructed in an increasing difficulty and connected
to previous task. Each category has 3 to 5 questions, which
makes over 700 game paths related to robot design.

2) Robot Design: The robot design section in fig. 4 is the
first problem-solving step in the game. After selecting the
task, the students should plan how many joints (or degrees
of freedom (DoF)), which type of joints the robot should have
and how long the links should be. In this step, the conceptual
idea of a link and a joint with specific types is aimed to be
introduced to the students. Since the objectives are increasing
in difficulty, the students get familiar with the joint types and
the effect of link lengths to the design before they are asked
to build complex robots up to 7 DoFs in current version.

3) Robot Interaction: The goal in this section is to build a
systematic correlation between the robot design, robot motion
and mathematical expressions. The students can visualize
their custom robot, the respective DH-table of the robot and
interactively change the joint values as shown in fig. 5. The
DH-table is automatically created. The students are supposed
to achieve goals and observe the changes based on the task
selection which they made at the beginning of the game.
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Fig. 4: Design: Joint types and link-lengths selection screen

A workspace analysis tool is also provided in this section.
Every robot arm has a reachable and unreachable region
around itself. It is called workspace in robotics terminology.
As the number of joints increase, imagining the workspace
becomes more complicates. Singularities (configurations in
which the robot end-effector becomes blocked in certain
directions), collisions and unreachable sub-regions within the
workspace are hard to picture in the design step. To enable a
visual workspace the robot they create is important to relate
how their design choices affect the workspace. Only few
examples presented in the literature in robotics teaching has
such a feature, which signifies that there is a gap to be filled.

Fig. 5: Interact: moving the designed robot, observing math-
ematical representation and visualizing the workspace

The game uses the design parameters to create the robot
model and operates forward kinematics, which is the procedure
of calculating the pose of the end-effector of a robot arm with
given joint values. The students seek an answer where the
robot hand will be if certain joint values are set. An example,
the visual workspace of a custom 2-DoF robot arm is shown
in fig. 5 with light blue dots around the robot.

GAME SETUP: The game is developed in ROS Noetic.
The graphical user interface is designed using Qt and PyQt5
binding. The task selection screen runs a ROS node, which is
an executable Python script, to set the goal as a ROS action.
A ROS client runs at the background to count score.

IV. CONCLUSION AND FUTURE WORK

A novel serious game in the ROS environment is developed
so that the students can design various robot arms, chal-
lenge themselves with given objectives related to kinematic
modelling, interactively play with the designed robot and
observe the robot behaviour. The next goal is to evaluate the

effectiveness of the game qualitatively with a questionnaire
to robotics lecturers in our institute and quantitatively with
statistic approaches.
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Abstract—The field of human-robot interaction (HRI) covers
a wide range of interactions between humans and robots in
various settings. In most cases, both the human and the robot
should know the status of each other and interchange data
accordingly. Particularly, informing the robot about the human
poses and gestures is critical for safe and reliable interaction.
We present an open-source inertial measurement unit (IMU)-
based human motion estimation framework designed for HRI
applications which can be used with multiple robotic systems.
The presented framework is developed as a Robot Operating
System (ROS) package and takes on a bridge role between
the human and the robot by utilizing the estimated human
motions to produce a desired robot goal pose. Although there
are different human motion tracking systems that are used in
gaming, film making, industrial and medical applications today,
they are either quite costly, tedious to set up or system dependent.
Also, those systems have some limitations to be used in industrial
environments such as suffering from occlusion and obstacles
between the tracker system and the human, sensitive to light
changes etc., and require long calibration steps before each
use. The availability of a versatile human motion estimation
framework that can be easily used in different HRI scenarios
is handy for industrial applications. Some examples of usages
of the proposed framework both in simulation and real-world
applications are demonstrated in this paper. We aim our package
to be a useful boosting tool to develop IMU-based human motion
estimated HRI applications and auxiliary templates to develop
more complex HRI scenarios for research and development
purposes.

Index Terms—human-robot interaction, inertial measurement
unit, human motion estimation

I. INTRODUCTION

Robots can perform repetitive, dangerous or high-precision
task without getting tired or needing sleep. They are becoming
a bigger part of the industrial production processes every
day [1]–[4]. Particularly, with the focus on Industry 4.0,
the field of robotics have a key role in the development of
new and innovative technologies and solutions [5]. Despite
great advances in robot decision making by using artificial
intelligence [6], [7], robots are still lacking compared to human
intelligence when it comes to the replacing humans in the
majority of industrial applications.

The field of Human-Robot Interaction (HRI) covers a wide
range of interactions between humans and robots either coex-
isting in the same workspace or working together remotely. In

This work was funded by the Research Council of Norway through grant
number 280771.

an industrial context, interactions between humans and robots
can be supportive, collaborative or cooperative [8], [9] in the
common workspace, or the robots can be remotely controlled
by the humans (i.e teleoperation). Robots are excellent for
precision, accuracy and repeatability; humans are excellent
in decision making and problem solving. From an industrial
perspective, HRI focuses on employing the best skills of both
the robot and the human working together to achieve a com-
mon or shared task more efficiently. As a subcategory of HRI,
Human-Robot Collaboration (HRC) is where the human and
the robot work with the same objective in the same workspace,
but with different leadership roles. The roles can be assigned
either statically (human leader and robot follower [10], [11] or
vice-versa), or dynamically changing during the task execution
[12], [13]. Collaborative robots (COBOTs) are widely used
in HRC applications, and have a rapidly increasing market
share of new robots sold world-wide. Teleoperation is another
application of HRI where the human is the operator of a
master system and the robot is a part of the slave system
through the whole process. The data transaction can be from
human to robot only (unilateral) [14] or it can be both ways
(bilateral) [15], [16]. Teleoperated systems are widely used in
applications where the environment is dangerous for humans
such as in search and rescue missions, military operations, or
underwater explorations etc. [17]–[19], and for applications
where the robot located at a physical distance from the human
operator such as in surgical robotics and tele-rehabilitation
[16], [20].

Human motion tracking solutions to estimate human
motions and gestures for HRI can be investigated into
two categories: visual-based and non-visual-based. Cam-
eras, depth sensors, lasers etc. are common technologies in
the visual-based systems, while Inertial Measurement Unit
(IMU)s, Ultra-wide Band (UWB)s, radio-transceivers, wear-
able/attachable strain-gauge systems are part of the non-visual
based motion tracking category. Although the accuracy of
visual-based solutions in human tracking, especially with the
aid of body markers [21], [22] is excellent in some appli-
cations, there are still several drawbacks of using them in
real HRC applications such as possible obstacles between the
capturing device and the tracked body, occlusions, lighting
changes in the room, etc. Non-visual-based motion tracking
systems do not suffer from any of these issues, but may suffer
from drift or other disturbances inherent to their specific sensor
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technology.
Inertial Measurement Units are popular devices for non-

visual-based motion tracking solutions. There are a number
of studies using IMUs as the main motion tracking system
[23]–[25] as well studies combining them with different sensor
systems such as cameras, UWB, laser IMU for global motion
tracking [26]–[28]. In particular, acsimu-based human motion
tracking solutions have recently gained popularity due to their
portability and ease of settting up [23], [29], [30]. Some of the
challenges in using IMUs for motion tracking are drift, sensor
noise, and being prone to have big errors during fast motion
etc. Nonetheless, recent studies show that IMUs can achieve
as reliable results as cameras in human motion tracking [31].

In an HRI scenario, the reliability and the safety of the
overall human motion tracking system is important, and
the current available human motion tracking solutions have
promising capabilities. However, there is not yet a ’perfect’
system for every use and application. Available solutions are
either environment-dependent or too system-specific, and there
is a need for a versatile human motion estimation framework
that can interface to several types of collaborative robots, be
fast enough to be used in real-time, quick to calibrate, and
robust to environmental changes. To our knowledge, there
is no such available framework that can be used for both
industrial and research applications that with plug-and-play
functionality. Therefore, this paper aims to fill this gap by
proposing an open-source framework that estimates human
motions and gestures based on IMU data, and provides a robot
goal pose available for a wide range of COBOTs.

The proposed framework is developed in Robot Operating
System (ROS) which is an open-source meta-operating system
[32]. The framework can be downloaded as a ROS package
from our GitHub page1. The ROS environment is fully open-
source, have a large user group around the world2, and recently
approached the industrial segment through the ROS-i project.
ROS also supports most robotics and control programs such
as MATLAB and LabView.

The paper is structured as follows: section II covers the
mathematical representation of how the IMU-based human
motions are calculated, and section III shows how the motion
and gesture data are processed as an action command to the
robot. section IV explains the proposed package structure and
how to use it, and section V and section VI demonstrate two
example of using the package both for simulation and for real-
life robot control. Finally, the paper is concluded and future
work is presented in section VII.

Readers only interested in the functionalities and use of the
framework can jump to section IV.

II. IMU-BASED ONLINE HUMAN MOTION ESTIMATION

This section gives the mathematical background of the
proposed framework. Estimating human motions is done based
on body limb orientations as mentioned in a previous study

1https://github.com/frdedynamics/imu human pkg
2http://metrorobots.com/rosmap.html

[33] rather than as joint positions. First, the individual ori-
entation of each body limb part is obtained before the human
biomechanical model is constructed. In this paper, we will use
quaternions to represent body limb orientations and rotations.

A. Quaternion Rotation

There are different ways of representing rotations and
translations in robotics [34]. Quaternions provide a continuous,
non-singular, and parametrically efficient representation of
orientation, and are widely used in robotics. In this section, we
present only the necessary background on quaternions needed
to understand the basis of the calculations in the framework,
and more details can be found in [35], [36].

A quaternion is a 4-dimensional number system (q =
q0 + q1i + q2j + q3k) with a real part (q0) and imaginary
part (q = q1i + q2j + q3k). It represents a 4D sphere. To
define a rotation, it must be constrained on the unit sphere
where the rotated object’s (i.e. body part in this case) length
remains the same. Therefore, not all quaternions represent
rotation but only unit quaternions do. A unit quaternion q̄
has a magnitude equal to 1 (|q̄| = √

q̄∗q̄ =
√

|q|2 + q24 = 1)
and represents a full 3D orientation. The multiplication of a
quaternion with its inverse q−1 yields the identity quaternion
(q⊗ q−1 = qI = (q̄I = 1+0i+0j+0k)), which means zero
rotation in robotics. The same rotation in opposite direction
is defined with its conjugate (q∗ = q0 − q1i − q2j − q3k),
which is the same quaternion with the opposite sign for the
imaginary part. For unit quaternions, the conjugate and the
inverse are equal (q̄−1 = q̄∗/|q̄| = q̄∗).

Quaternions can be multiplied together to form a series of
rotations – similar to rotation matrices. For instance, a unit
quaternion representing the rotation from frame A to frame C
via frame B can be represented as qCA = qCB ⊗ qBA. This
is particularly important in constructing the kinematic model
of the articulated human arm as well as sensor-to-body frame
representations.

B. From Quaternions to Human Biomechanical Model

A human bio-mechanical model can be constructed with a
complexity determined by its use. The proposed framework
focuses on chest-to-hand motion estimation for two hands.
In section III-A and III-B, we explain how the human bio-
mechanical model is slightly changed based on its purpose
for the particular application. Regardless of the use case, the
process of building the model is the same. In this section,
we give the theory of chest-to-hand motion estimation for the
most comprehensive scenario. The details of the mapping in
different use cases are explained in the next subsections.

The measurements from the IMUs provide the raw orien-
tation data from each sensor in the global frame to sensor
frame. The calibration process is the first step of translating
the quaternion output from the IMUs into human model. It is
based on eliminating the ’bias’ of the sensor measurements
on a fix position and assigning predefined human joint angles
in a known posture. Currently, the very last sample of a 4-
seconds data collected at 100 Hz is assigned as the calibration
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Fig. 1: Left arm biomechanical model with 3-DoF chest, 3-
DoF shoulder, 2-DoF elbow and 2-DoF wrist. The orange
cubes represents the IMUs, qXX are raw orientation readings
of each IMU for the respective human joint, dx and ax are
the joint offsets. The mechanical joint illustrations are given
with cylindrical shapes and each represents one revolute joint
with the main axis uF

3 where F is the frame number.

quaternion yet a moving average filter implementation on
using averaging quaternion [37] method is under development.

After a calibration process, a calibration quaternion from
global (G) to sensor (S) frame (qGScal

) is used in human joint
angle calculation as in eq. (1). Each human joint angle is then
calculated as a quaternion rotation between each consecutive
body parts as in eq. (2).

qS(i,t)
= q∗GSi,t

⊗ qGSi,cal
(1)

qjointi = q∗jointi−1
⊗ qSi,t

(2)

where qSi,t
is the calibrated sensor orientation at each time

step, qjointi is the orientation of the ith joint. The joint angles
calculation starts from the chest to the wrists as described in
eq. (3). Finally, the bio-mechanical model of the human is
constructed as a pair of kinematic chains for both arms using
measured body link lengths and calculated joint angles.

qc = qCH (3)
qls = q∗c ⊗ qLS

qle = q∗c ⊗ q∗ls ⊗ qLE

qlh = q∗c ⊗ q∗ls ⊗ qle ⊗ qLH

where the asterisk denotes the quaternion conjugate,
qc,qls,qle, qlh are human joint angles, and qCH , qLS , qLE ,
qLH are calibrated IMU readings of chest, left-shoulder, left-
elbow, left-hand, respectively. The same calculation applies for
right-arm joint angles.

III. MAPPING HUMAN MOTIONS TO ROBOT GOAL POSE

Two arm motions are merged to create a robot pose. In the
default use, the left-arm is assigned as the main and the right-
arm as the secondary in the merge process. This assignment
can be changed in the package. To generalize, we will use

main arm/hand and secondary arm/hand through the rest of
the paper.

For mapping human motions to robot goal poses, we show
the mapping for the two categories of HRI; teleoperation and
HRC. For these two mappings, the human bio-mechanical
model is calculated slightly different. In the teleoperation
scenario the human teleoperates the robot to manipulate some
objects on a table. In this case, both the position and the
orientation of the end effector matters. The merged arm
motions are mapped as robot goal position with respect to its
base and the main hand orientation is assigned as end-effector
orientation. In the HRC scenario, the human and the robot
carries a table cooperatively. The initial orientation of the robot
end-effector is kept stable unless the robot has the leader role
and change its end-effector orientation itself. The combination
of two arms motions are mapped as robot goal position with
respect to its base and no human motion is assigned for end-
effector orientation.

There are three main reasons of using two arms rather than
one:

1) The secondary hand can be assigned a ”clutching” role
that triggers state changes in a HRC application. This
means that while the main hand motion is mapped to
be the desired robot motion, the secondary arm/hand
gestures can be assigned to control different function-
alities such as stopping the robot movement in case of
emergency and/or changing the system state to make the
robot move in with different motion characteristic.

2) The combination of two hands in relative motion map-
ping can be used as a correction of the main hand. This is
particularly valuable in cooperative lifting applications.
When one hand of the human is about to grasp the
common object to lift, the secondary hand-motions can
be used to correct the robot’s position to the correct
grasping point.

3) Since most of the commercially available robot ma-
nipulators have a different kinematic structure than the
human arm anatomy, a perfect anthropomorphic motion
mapping is challenging [38]. There is a trade of between
joint space mapping and task space mapping due to the
complexity neurobiomechanical processes underlying in
object manipulation. Although, the majority of the di-
rect control examples in the literature relies on task
space mapping, the differences in robot’s and human’s
workspace cause an additional complexity. Therefore,
the combination of two-arm motions, rather than a one-
to-one mapping of the human arm to robot arm motion,
eliminates this anthropomorphic confusion.

We used relative chest-to-hands motion mapping to change
the goal pose of the robot. By doing that, the human has more
opportunities for fine adjustment than if we assigned a posture
to be one particular robot goal pose statically. The mapping
starts with an initial human-to-robot mapping such that the
human takes a predefined posture to be set as the starting
posture, and the robot moves to its home configuration. The
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Fig. 2: Overview of the proposed package. The human wears the IMUs as instructed in the package. Motion parameters are
obtained and processed by the core of the package. Chest-to-hands individual motions are merged and published as a single
end-effector goal pose. This goal pose can be either used by ROS controllers to determine joint efforts or by a vendor-specific
controller. Finally, the robot takes an action accordingly.

initial postures of both hands are then mapped as in eq. (4)
[
P̂hm,(t=0) × P̂hs,(t=0)

]
= P̂h,(t=0) (4)

where P̂hm, P̂hs and P̂r are Homogeneous Transformation
Matrix (HTM) representing human main hand, human sec-
ondary hand and robot end-effector poses, respectively. The
main and secondary hand motions differ from each other by
their contribution to the merged hands calculation with a scale.
The robot goal pose is calculated based on the relative position
change of the merged hand pose P̂h,t,

P̂−
h,t = ŝ · (P̂−1

hm,t=0 × P̂hm,t) + k̂ · (P̂−1
hs,t=0 × P̂hs,t) (5)

where P̂−
h,t is the merged hand pose. To get an approaching

behaviour from the robot rather than escaping behaviour, the y-
axis in P̂−

h,t is inverted and P̂h,t is used to control the approach
of the robot. A 4x4 scaling matrix for the main hand ŝ has the
last row equal to [sxsysz1] with the rest of the elements as
1. The scaling matrix k̂ is defined similarly for the secondary
hand. The robot goal pose based on the combined hand pose
as Ĥ(t) is

Ĥ(t) = P̂−1
h,(t=0) × P̂h,t P̂r,t = P̂r,(t=0) × Ĥ(t) (6)

We can now do human-to-robot motion mapping for two
examples of HRI by changing the role of the hands in
collaborative lifting and in teleoperation. In both scenarios,
relative motion mapping starts with the initial mapping as in
eq. (4) and then differs as shown in the following.

A. Teleoperation Scenario
In a teleoperation scenario, the human has full control over

the robot end-effector position and orientation. The human can

make the robot manipulate objects remotely as in fig. 5. To
avoid anthropomorphic confusion, the control of the orienta-
tion and position assignments are divided such that only the
change of the main hand wrist motion controls the end-effector
orientation and the change of merged hand position from two
hands is mapped as the end-effector position as shown in
eq. (7).

Ĥ(t) =




P̂hm[0, 0] P̂hm[0, 1] P̂hm[0, 2]

P̂hm[1, 0] P̂hm[1, 1] P̂hm[1, 2]

P̂hm[2, 0] P̂hm[2, 1] P̂hm[2, 2]

P̂h[0, 3]

P̂h[1, 3]

P̂h[2, 3]

0(1×3) 1


 (7)

where Ĥ(t) is the transformation matrix for the robot from
its initial pose to the current desired pose, P̂hm is the HTM
of the main hand and P̂h is merged hands HTM as calcu-
lates in eq. (4) from initial to current with respect to chest,
respectively.

Two arm motions are estimated using in total 6 IMUs;
on chest, left/right upper arms, left/right forearms, and main
hand.Secondary-hand motion is assumed to be rigid with
respect to its wrist.

The teleoperation scenario is based on mimicking human
motions in the most simplistic way without the complexity
of task-specific states. However, often teleoperating the robot
in a leader-follower (master-slave) approach is not the most
efficient method of HRI, especially in industrial applications.
The different strengths of human workers and robots make
them good at different tasks. While robots are durable, precise
and repeatable, humans have excellent problem-solving skills
and are creative in their decision-making. They can change
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roles in different stages of the task depending on their stronger
skills. This scenario is covered in the next subsection.

B. Human-Robot Cooperation Scenario

The field of HRC covers a wide range of cooperations
between humans and robots where they can change the lead-
ership roles during the task depending on their skill level.
Cooperative lifting (co-lift) is a widely studied application of
physical HRC where a robot and a human carry a common
object from one point to another as shown in fig. 6. It
is a versatile use case that is a part of various industrial
applications as well as an example of how to change between
different states of a predefined task. The co-lift scenario
contains 4 states; APPROACH, COLIFT, RELEASE and IDLE
[23]. The APPROACH is where human and robot approaches
the common object in human leadership affiliates the human
decision making skill. The COLIFT state is where the human
and the robot lifts the common object and manipulate it
cooperatively with shared leadership. The RELEASE state
exploits the robot’s precision and repeatability, and where the
co-lifted object is released onto a predefined location under
robot leadership. On top of that, the IDLE state is a cut-off
safety state which the human can trigger at any time by using
the clutching motion (secondary-hand palm rotate upwards)
to stop motion mapping from human to the robot in case of
emergency.

Two-arm motions are estimated using a minimum of 5
IMUs; on chest, left/right upper arms and left/right forearms.
Since the orientation of the robot end-effector does not change
while the human is taking the leader role, the 6th IMU on
the main hand wrist which is attached in the teleoperation
scenario is not needed. Both main and secondary-hand motions
are assumed to be rigid with respect to their respective wrists.

Different from the teleoperation case, in a cooperative lifting
scenario, we immobilize the end-effector orientation and set
it to an initial orientation which can only be changed if the
robot is assigned a leader role in the cooperation. It cannot
be changed based on human hand orientations. Therefore, we
assign a robot goal position by merging two hand positions
and keeping the end-effector orientation stable as in eq. (8).

Ĥ(t) =




P̂r,t=0[0, 0] P̂r,t=0[0, 1] P̂r,t=0[0, 2]

P̂r,t=0[1, 0] P̂r,t=0[1, 1] P̂r,t=0[1, 2]

P̂r,t=0[2, 0] P̂r,t=0[2, 1] P̂r,t=0[2, 2]

P̂h[0, 3]

P̂h[1, 3]

P̂h[2, 3]

0(1×3) 1




(8)
where P̂r,t=0 is the HTM of the initial pose of the end-effector
with respect to robot base.

IV. THE PACKAGE AND FUNCTIONALITIES

The proposed imu_human_pkg has imu_human_-
class node as the backbone of the overall system. This
node takes on a constructing role from individual IMU topics
to the human body model. The human model publishes the
transformation of each body link frame at 100 Hz. To map
human motions to robot goal pose, a 4-second calibration

process is needed, where the user stands still in a fixed position
(two arms are released down), each IMU reading is registered
with the ”Calibrate Human” button in the Actions Groupbox
as shown in fig. 3. After the human calibration process, the
”Connect to Robot” button is automatically activated and
human-to-robot initial mapping is computed. This action starts
the node publishing the Ĥ transformation matrix in eq. (7) and
eq. (8) depending on the type of the task (i.e. teleoperation or
cooperative lifting). Different types of the robot environment
(i.e. simulated or real) and the necessary robot nodes can be
started at this point. The required buttons are activated in an
order. Some representative robot examples are also included
in the package (see fig. 2).

A. Main Graphical User Interface (GUI)

Fig. 3: Main Screen

To provide an easy to use platform, a Graphical User
Interface (GUI) is provided. The main window has 3 selections
on the toolbar and 3 group boxes in the main layout. Each
selection both on the toolbar and in the layout is setting a
parameter in a ROS node/launch or a YAML file. The system
then calls the respective scripts with proper arguments.

Human Measurements Groupbox: This group box is
where the user enters upper-body human measurements. The
default values are provided based on [39]. In fact, accuracy
within a couple of centimetres is not critical because human
motions are mapped relative to the robot motions. However,
in position-critical applications, it is important to use the
measured values rather than default ones.

Robots Groupbox: It is possible to control either a simu-
lated robot selected from the dropdown menu or a real robot
connected via Ethernet. Both simulated and the real robot
cannot work at the same time in this version of the package.
Therefore, based on the selection, the other option is disabled.

Actions Groupbox: All the actions such as calibration,
human-robot initial pose initiation, human-robot motion map-
ping, teleoperation and cooperation. The actions which cannot
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be executed at the same time as some other actions or require
some actions to be done beforehand are disabled in default.
Also in this way, the user does not need to remember the orders
of the actions since the buttons are automatically activated as
the requirements are met.

B. Sensor Selection

In this paper, we used Xsens Awinda wireless Inertial
Measurement Units as the main Inertial Measurement Unit
system. The 3D orientation output is provided by the Xsens
device firmware [40]. The Xsens node can be started directly
from the GUI.

In addition to that, the package is not sensor-specific,
which means that any sensor providing orientation data as
sensor_msgs/Imu can be easily implemented in the Sen-
sors dialog box as shown in fig. 4. Sensors dialog is a one-
time-set additional dialog window that can be opened from
the toolbar→sensors→custom IMU sensors.

Fig. 4: Sensor selection dialog window

If it is desired to control the gripper, there is an EMG sensor
topic slot. A MYO armband EMG sensor can be worn by
either arm to control gripper motion by clenched punch and
release gestures. Since there are some state changes based
on the gripper position in cooperative lifting example, it is
a necessity only for this use case, otherwise, it is optional.

V. EXAMPLE CASE-1: TELEOPERATION IN SIMULATION

The package provides example usages of estimated upper-
body human motions and gestures with various robots in
different environments. RViz [41] is the main visualization tool
in the ROS environment. Most of the ROS-i [42] packages
provide a robot model which can be visualized on RViz by
setting the robot description parameter. Our package provides
a human description additionally which can be visualized in
the same space and rooted from the same parent world frame.
The human description is an automatically created XACRO

file based on the human measurements entered in the main
user interface (fig. 3).

To manipulate the visualized robot in the task space,
MoveIT [43] is a commonly used framework that consists of
several ROS packages. The robot goal is achieved by planning
the optimal trajectory, depending on the planning criteria,
within MoveIT. Our package provides the end robot goal
pose based on two arm motions. Although the main objective
of the MoveIT platform is not achieving a hard real-time
manipulation, it still gives satisfactory results for preliminary
tests, especially in simulated environments.

Additionally, some ROS-i packages provide Gazebo sim-
ulated robot models which include the inertia and collision
properties of the robot. Therefore, Gazebo simulated cases
give more realistic approaches. For this purpose, we provide a
custom human Gazebo model in this package. As an example
use case of a Gazebo simulated Franka Emika Panda robot
teleoperated with human upper-body motions as shown in
fig. 5 is included in the package as an auxiliary code.

Fig. 5: A teleoperation example using Panda to manipulate
objects on the table in Gazebo

VI. EXAMPLE CASE-2: HRC IN REAL WORLD

As an example of how to use the proposed package in
real-world applications, we provide the auxiliary code of
a cooperative lifting scenario with Universal Robots UR5e
manipulator as shown in fig. 6 [23]. The robot is connected
to the master PC with an Ethernet cable. The robot IP is
specified in the ”Robots Groupbox” in fig. 3. The real-time
robot commands are computed using Universal Robots Real-
Time Data Exchange (UR-RTDE) [44] protocol. UR-RTDE
allows sending various joint and end-effector commands via
C++ and Python API. We provided how to utilize the generated
robot end-effector pose using servo control in the package.

The co-lift example of the proposed package has been
validated and the results are presented in our related study [23].
In fig. 7, the real-time motion data of both robot end-effector
and human hands from a full co-lift cycle is shown. The robot
response to human merged hands input is visible particularly
in APPROACH state, which is belong to HUMAN LEADING
role in HRC. The actual robot motion curve represented in
red straight line follows the same character as the merged
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hands motion curve represented in green plus-signed line. Also
the merged hands curve is seen as an even combination of
both hands since the multiplier coefficients ŝ and k̂ in eq. (5)
are selected 1 for this demonstration. The same human-robot
motion match is not visible in other states as in APPROACH
state because; 1) there is not human-to-robot motion transfer
in IDLE state, 2) the robot is not directly driven by human
motions in COLIFT state but it decides its own motions in a
certain degree by taking a part in SHARED CONTROL, 3)
the robot motion is completely independent from the human
hand motions in RELEASE state since the robot has the full
leadership role. Note that the merged hands position is no
longer updated since it is not needed after the APPROACH
state.

Fig. 6: A co-lift experiment using IMUs for human motion
estimation and an EMG-sensor to open/close the robot gripper.
A frame of the real-time human hand motions and robot end-
effector pose is shown on the right bottom corner.
Source: https://www.youtube.com/watch?v=0BLS0e2amw4

Fig. 7: Motion of the hand positions calculated as stated in
eq. (5) and the actual robot end-effector in a full cycle co-
lift example. Lines show position change on z-axis - which
is chosen as in opposite direction of the gravity vector- for
motion hand P̂hm (blue cross), steering hand P̂hs (orange dot),
merged hands P̂h (green plus). The actual end-effector pose
is shown in red straight line.
(The figure is taken from [23] with authors’ permissions.)

VII. CONCLUSION AND FUTURE WORK

In this study, we presented an open-source generic frame-
work for HRI based on IMU estimated human motions for

HRI applications. Our target is to provide a base where
human motions are required to manipulate a robot arm and/or
cooperate with it and construct a bridge platform to be used
easily in HRI applications and in further HRI research. We
aim to facilitate usability by providing an interactive GUI.
For more advanced access, the source code is also provided.

The main purpose of this package is to provide a robot goal
pose based on human motions. Additionally, there are more
information available as ROS topics than only the robot goal
pose, such as individual arm poses, upper-body human joint
angles, elbow heights etc. Therefore, the package promises a
wide range of further research opportunities in various areas.

The package is in the early stage of the development
process. It currently contains the core utilities and a few
example use cases. Most of the advanced functionalities are
available in the source code but the GUI connection of some
functionalities are still in progress. There are several planned
improvements that could facilitate the use of the package even
further. We will add supports for more robots and example
tasks to provide a variety in using the system for different
applications. Human-to-robot workspace scaling by changing
the contribution of main/secondary hands in merged hand
motion calculations, changing the hand directions etc. can be
defined in the source code but they are not interactable via
GUI yet. Connecting those extra functionalities to the GUI
application as well as mapping a different human gesture
to a robot action assignment option via GUI is also in our
future plans. Moreover, the human model is created using
only revolute joints. The translational motions due to muscle
contractions and soft tissue artifacts are neglected in this
version. We will include Bayesian filtering based stochastic
approaches to enhance human motion estimation such as in
[45], [46].

Overall, the proposed package plays a bridging role between
the human motions and the robot actions. It can readily be used
for basic applications where upper body human motions are
required to be mapped to robot end-effector pose. We believe
that this package has the potential to play a key role in HRI
applications both in industry and research areas.
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niak, and A. Ziebinski, “The potential of physical human-robot coop-
eration using cobots on agvs in flexible manufacturing,” MIC Journal
(Submitted), 2022.

[10] S. Liu, L. Wang, and X. V. Wang, “Sensorless haptic control for human-
robot collaborative assembly,” CIRP Journal of Manufacturing Science
and Technology, vol. 32, pp. 132–144, Jan. 2021.

[11] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and
C. Torras, “Learning physical collaborative robot behaviors
from human demonstrations,” IEEE Transactions on Robotics,
vol. 32, no. 3, pp. 513–527, Jun. 2016. [Online]. Available:
https://doi.org/10.1109/tro.2016.2540623

[12] P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, and A. Kheddar,
“Teaching physical collaborative tasks: object-lifting case study with
a humanoid,” in 2009 9th IEEE-RAS International Conference on
Humanoid Robots. IEEE, Dec. 2009.
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Abstract—Human-Robot Cooperation (HRC) is a field which
focuses on employing the best skills of both the robot and
the human working together to achieve a common or shared
task more efficiently. In most cases, both the human and the
robot should know the status of each other and interchange
data accordingly. There are several successfully researched HRC
systems in the literature proposing solutions to various industrial
problems yet few of them are used actively in real-world tasks.
One of the major reasons for this gap is that the developed
HRC systems do not offer an effective training procedure. The
availability of a versatile training setup to get the optimal
efficiency is important in addition to evaluating the developed
HRC system’s usability. Recent studies show that serious games
offer effective training outcomes in various sectors such as
the military, disaster drills, aviation, health etc. This paper
presents an open-source gamified modular training design for
HRC applications. It shows how the HRC system can be trained
using serious games, what game elements can be utilized and
how the learning curve of the user can be measured to evaluate
the usability and efficiency. The proposed design is demonstrated
through a real-world Cooperative Lifting (co-lift) scenario. The
main motivation is to constitute a baseline for effective training of
the HRC systems so that the gap between research and successful
innovation in the HRC field becomes more narrow.

Index Terms—Human-robot cooperation, gamified training,
serious games, cooperative lifting, inertial measurement unit
(IMU)

I. INTRODUCTION

Humans and robots have different strengths. Robots are
excellent for precision, accuracy and repeatability; humans are
excellent in decision making and problem-solving. Human-
Robot Cooperation (HRC) field aims to bring upon the best
skills of both the robot and the human in a cooperative and/or
collaborative work to optimize the task efficiency [1]. This
is particularly useful for small and middle-size companies
where some automation is needed but fully automated systems
are not profitable because there is no mass production [2].
There is an increasing trend in using collaborative robots in
industrial settings [3]. An in-depth review of the use cases

This work was funded by the Research Council of Norway through grant
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of the collaborative robots in industrial settings is presented
in [4]. The study shows that an overwhelmingly big portion
of the use cases is in assembly tasks where the robot and
the human work side by side, one after another, but not in
active collaboration. It also shows the future trend in HRC
towards using Human-Robot Interaction (HRI) methodologies
to increase applicability and productivity. The lack of testing
is stated as a principal problem in using this research in real
industrial settings.

Testing and training are fundamental steps of any research
to be publicly used. Particularly in HRC systems, the human
is not only an external user of the system but is a part of it.
Therefore, training becomes an essential step of the develop-
ment process and should not be taken separately. Despite the
necessity of training being addressed in several studies [3]–[5],
there are few studies proposing different training strategies and
no developed HRC system presents a training method for its
usage.

A virtual simulation environment for real-time cooperation
between industrial robotic manipulators is presented in [6].
The study focuses on safety and aims to increase awareness
of robot collaborations and their acceptability. Another study
highlights the effectiveness of interactive training compared to
reading manuals [7]. It presents a computer-assisted training
system to familiarize the manual operations of CNC milling
using Virtual Reality (VR) technology. The virtual training
system consists of 5 modules one of which is performance
evaluation and based on the user tests, the interactively trained
group outperforms the reading manual group. In [8], a virtual
training environment is presented for effective human-robot
team performance evaluation. The study focuses on Unmanned
Aerial Vehicles (UAVs) and the level of trust is measured
during task allocation between the human autonomous UV
function. Another trust assessment in human-robot collabora-
tion is presented in [9] to measure the performance of the HRC
systems. The assessment is carried out in a Mixed Initiative
Team Performance Assessment System (MITPAS) simulation
environment.

Paper E 217



Serious games are defined ”as an experience designed using
game mechanics and game thinking to educate individuals
in a specific content domain [10]”. In serious games, the
main purpose is not entertainment but education, practice,
training etc. Serious games draw considerable interest in
enhancing learning and training outcomes since 2013 [11]
in various fields such as military, aviation, disaster drills,
crisis management, health etc. [12]. The value of game-based
mechanics in generating meaningful learning experiences has
been more visible through gamification [13]. Gamification is
adding game mechanics into non-game environments. Several
game elements are well defined in the literature [14]. The
use of game elements and gamification methods in training
increase the efficiency of the training outcome. There are some
applications of using serious games in the HRC field such as in
fatigue assessment [15], rehabilitation [16], constructing better
communication with individuals who has Autism Spectrum
Disorder [17] etc. Within our research, only one study [6] used
serious games in HRC training. A serious game is designed
in virtual reality that simulates in real-time the cooperation
between industrial robotic manipulators.

HRC applications can be categorized based on applications
such as cooperative assembly, manipulation, lifting etc. Coop-
erative Lifting (co-lift) is a common HRC application where
(a) robot(s) and (a) human(s) carry a common object together.
In some literature, co-lift is only referred as the action of
carrying [18] and some defines co-lift as a sequence of several
steps [19]. The communication channel between the human
and the robot can be verbally [20], haptic [18] or via human
motions [19].

Human motion tracking and prediction is an important part
of HRC and particularly co-lift applications. Informing the
robot about human motion is critical for safe and reliable
interaction [21], [22]. There are several motion capture device
used in robotics applications [23] such as optical devices with
[24] and without [25] markers, inertial devices [19], acoustic
devices [26], radio frequency transceivers [27], etc. Although
visual-based human tracking methods are quite precise when
it is well-calibrated, they lack mobility and suffer from occlu-
sion, loss of line of sight, and light changes. Therefore, the
non-visual-based tracking methods have gained interest and
Inertial Measurement Unit (IMU) is one of the most common
motion tracking systems in this regard [28].

According to the literature survey, several publications are
addressing the necessity of testing and training in HRC appli-
cations [3]–[5]. However, a few studies were found related to
this issue and those are focusing the trust and safety only rather
than training the users for the end application. The majority of
the related studies are developed either in simulation only or
in virtual reality. Although VR technologies have benefits re-
garding reducing the cost of training in complex environments
it is still tedious to create adequate realistic scenarios in VR
and still cannot fill the gap sufficiently today. The novelty
of this paper is the methodological design of an HRC training
setup using serious games, successful implementation in a real-
world example and its open-source code. As an example use

case, a co-lift scenario is demonstrated using the proposed
methodology. The example scenario is developed using Robot
Operating System (ROS) meta-operating system [29] and all
the resources used in this paper are open-source. This paper
brings novelty to the literature with the systematic and modular
design of a gamified HRC training architecture and presents a
template freely customizable for various HRC tasks.

The paper consists of 5 sections: the relevant background is
presented in section I, the systematic overview of the proposed
training setup is explained in section II, an experimental
setup for an example use case is given in section III, the
contributions and major findings are discussed in section IV
and the overall evaluation and the future work is presented in
section V.

II. METHODOLOGY

The methodology focuses on designing a modular and
gamified training setup. The system overview and the modules
are given in fig. 3. As an example case, a co-lift task defined
in [19] is taken where a human and a robot approach a
table whose initial position is unknown to the robot, lift it
together and place it in a predefined location. In different
stages of the task, the robot follows human motions, the human
follows the robot motions or they actively change leadership
and follow each other synchronously as illustrated in fig. 1.
Designing such an experimental task is aimed at utilizing
human cognitive skills and robot accuracy in different parts
of the task. The goal is to complete the co-lift starting with
picking up the table, carrying it to two desired positions and
then placing it as quick and smooth as possible.

In section II-A the gamification process as well as the co-
lift task criteria are presented and in section II-B the network
and the roles of different units are explained.

A. Gamification and game elements

Gamification of the HRC training can be defined as a
modelling process of the HRC task and all the task objectives
as inputs and the game score as output. This process for
the proposed HRC scenario is linked with game elements as
described in table I. The correspondence of each game element
class is explained in this subsection.

1) Theme: A theme adds interest and creates engagement
within a learning game. It can be a form of introductive
backstory or accompanying narrative running through the
game. For the proposed HRC scenario, the backstory is the
purpose of the research and also the use cases/values of the
HRC scenario in the future.

2) Achievement: Achievements are the mechanisms con-
necting the target outcomes of the HRC task that the user
should be capable of after the training. The game score is
calculated based on the user’s achievement and how quickly
they completed each achievement. In the proposed co-lift
scenario the user is supposed to go through four different
states as IDLE, APPROACH, CO-LIFT, and RELEASE as
defined in [19] and illustrated in fig. 1. During the state
changes the human and the robot exchange the leadership
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Fig. 1. HRC roles and states in the example co-lift scenario based on [19]. Human Leading role has two states: IDLE: Both chest-to-wrist (hand) motions
are actively calculated yet no motion command is sent to the robot. This is a safe state that the human can enter with the clutching gesture at any time.
APPROACH: Combined(merged) pose from two hands is actively calculated to produce soft real-time end-effector goal pose commands. The robot follows
the human actively. Shared Leadership role has one state: CO-LIFT: The robot applies a directional compliant force and the human decides the direction of
this force with elbow gestures. Robot Leading role has one state: RELEASE: The robot takes the lead in the operation, and moves to a predefined release
pose. The human follows the robot’s motions.

TABLE I
OVERVIEW OF THE INCLUDED GAME ELEMENTS

Classifier Game elements Description
theme e.g. backstory Additional information about the purpose

of the research and/or being trained HRC
system to add interest and create engagement
within a learning game.

achievement e.g. score A mechanism to show the user his or her
progress and achievements within the system
linked to the

challenge e.g. missions, Ask the user to perform a certain activity
quests under predefined conditions such as grabbing

the table, pressing physical buttons releasing
the table without any crashes etc.

feedback e.g. nofitications, The system provides the user with additional
guidance information, hints or gives encouraging

statements through the visual feedback unit.
time e.g. countdowns Users are given a certain amount of time in
constraint which they ought to complete a full HRC cycle.
self e.g. spaces for Freedoms where the user can tweak the usage
expression open creativity of the HRC system to improve their personal

performance such as the initial pose of their
hands, the way how they grab the table etc.

aesthetics e.g. visual, aural, The sensory phenomena that the player
haptic etc. encounters in the game

roles dynamically within the 3 different roles of cooperation
as Human Leading, Robot Leading, and Shared Leadership.
The aim is to improve the user’s skills in those transitions and
quantitatively measure the user confidence/skill in each state.
The states and roles are summarized in fig. 1:

The achievements show the progress of the user within the
trial as well as between trials. The achievement progress is
also linked with the learning curve of each user. Other than
achievement class, the contribution of the other components to
game score is given in challenges time constraints subsections.

3) Challenge: Challenges and conflicts are accepted as the
central game element and make the game interesting [14]. The
challenge can be a physical obstacle, combat with another
player, or a puzzle that has to be solved. In the co-lift scenario,
grabbing the table successfully, and requiring the table to be

moved to different locations are defined as challenges.

4) Feedback: Feedback stimulates a self-correcting training
experience. It enables the learner to understand their errors
better and avoid mistakes in real HRC applications. The
feedback given to the user is the simulated human model,
game score and HRC state. The simulated human model is
important because it has been observed in the pilot tests that
the users lose the perception of their body posture when they
overly focus on what the robot should do. The simulated
human model feedback shows how the system registers their
motions - almost like a mirror. The score is a continuous and
instant feedback type where the user can see own progress.
The HRC states data in the feedback provides two benefits;
required guidance and it directs the user to stay in the theme
and not deviate from the task.

5) Time constraint: Time constraint is a special type of
challenge in a serious game especially if the serious game is a
training simulator to be used in real-world applications. In our
HRC task, the time constraint is directly connected to the score
element. The game is supposed to be finished in 10 minutes.
The user starts with 600 points and loses 1 point every second.

6) Self-expression: Self-expressions are the parameters and
preferences of the game which are up to the user. Expression
category is linked to autonomy in some literature [14] and it
can contain any customizable feature that a user can get such
as an avatar, virtual goods etc. It is stated that self-expression
is a motivational game element since the user takes ownership
of one’s action [30]. In the gamified HRC training, expressions
can be used in investigating the effect of some parameters for
optimal use cases. In the co-lift task, the initial poses of the
user’s hands, and the way how the user grabs the table are not
restricted but only guided before the trials. These are open
questions in the relevant HRC study and user self-expressions
are believed to help decide the most optimal usage.
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7) Aesthetics: Aesthetics are the visual and audio language
of the game, the artwork and the style in a gamified system.
They play an engaging and immersive role in the game. In an
HRC scenario, the real robot can be perceived as an aesthetic
element. However, it is still important to have additional
aesthetic elements which serve in focusing the HRC task.
In the proposed system, the portable physical buttons have
built-in LEDs which are activated when the button is pressed.
Also, it is commonly known that ROS is a terminal-based
environment which can be perceived as non-appealing to many
users. Therefore, in addition to RViz visualization tool in ROS,
we have developed a GUI system where the user can easily
follow the whole process to increase the aesthetics.

B. The network and data flow between units

The training system consists of 4 main units: human
commander, robot commander, task environment and visual
feedback as shown in fig. 3.

1) Human Commander: The human commander is the
human motion tracking unit where the postures and gestures
of the human body produce a set of pose commands in
soft real-time. In the current setup, human motion tracking
and estimation are executed using an IMU-based approach
developed in [31]. A total of 5 IMUs are attached to the
human body as shown in fig. 2. The pose changes of the two
hands with respect to the chest-fixed frame are used in creating
relative motion mapping with the robot.

The raw orientation data from each IMU in a global frame is
obtained. Then, individual IMU orientations in their respective
sensor frame is calculated as in eq. (1).

qjoint = (qGS
prevLink)

∗ ⊗ qGS
currentLink (1)
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Fig. 2. Human model and IMU placement on right/left elbow (RE/LE),
right/left shoulder(RS/LS) and chest (CH) according to [31].

Afterwards, the joint angles in both arms starting from the
chest to the left wrist is calculated as in eq. (2).

qc = qCH qls = q∗c ⊗ qLS qle = q∗c ⊗ q∗ls ⊗ qLE (2)

where the asterisk denote quaternion conjugate, qc,qls,qle are
human joint angles; qCH , qLS , qLE are IMU-readings of chest,
left-shoulder, and left-elbow, respectively. To create a robot
command, both hand poses are used to construct a merged
hand pose data. The merged hand pose is calculated as in
eq. (4) and it is initially set to zero as shown in eq. (3).

[
P̂handLeft,t=0 × P̂handRigh,t=0

]−1

= P̂r,t=0 (3)

Ĥ(t) = P̂−1
h,t=0 × P̂h,t ⇒ P̂r,t = Ĥ(t)× P̂r,t=0 (4)

where P̂handLeft,t=0, P̂handRigh,t=0 and P̂r,t=0 are Homo-
geneous Transformation Matrix (HTM) representing human
left hand, human right hand. Ĥ is a HTM to be used in
mapping merged hands motion to robot pose with respect to
robot’s initial pose.

The same calculation applies to the human right side. The
human chest is modeled as a ball joint with 3 degrees of
freedom (DoF)s, and each arm is modeled with 5 DoF (i.e.
3 DoF shoulder and 2 DoF elbow), while wrist motions are
ignored. The 13 DoF biomechanical model of the human is
constructed as a pair of kinematic chains for both arms using
the measured body link lengths and calculated joint angles.
Additionally, a low-cost EMG sensor on the right forearm is
used to create gripper commands.

”Posture and gesture info” which is referred to in fig. 3 con-
tains filtered IMU data (angular velocity, linear acceleration
and magnetization surrounding as well as 3D orientation) and
the transformations of each body link with respect to a base
frame. From the transformations, the chest-to-wrist poses from
each arm are used to create a goal command for the robot’s
end-effector and the whole transformation chain is used in
visualizing the simulated human body on the visual feedback
unit.

2) Robot Commander: The robot commander is the unit
taking the goal pose for the end effector and executing the
required motion commands for the joints.

”Goal pose” in fig. 3 contains only the end-effector goal
pose. The robot commander takes the goal pose and projects
the current position forward in time with the current velocity.
Therefore, the end-effector does not necessarily reach zero
velocity at each pose but rather smoothens the motion at the
goal regarding the next goal pose. Although the robot joint
states are available, we do not provide them in the main data
flow because they are not used in any main units currently.
However, depending on the task, for instance, if the robot
simulation is required in the visual feedback unit, the joint
states data can be activated to create a robot model.

3) Task Environment: The task environment unit includes
all the physical objects that the robot and the human interact
with and have a role in the task. The importance of this unit
is that the task goals are engaged with physical objects with
which the interaction is assigned as points to the game score.
In the co-lift task, the task goals are liked to the duration of
completion and smoothness. Also, one extra IMU is attached
to the table to measure the orientation and the acceleration
changes of the table during the co-lift process. Additionally,
there are two physical portable buttons representing two loca-
tions where the table should be carried before being released.
The high jerk and the fluctuations of the table orientation
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Fig. 3. Overview of the system architecture demonstrating the 4 main units (human commander, robot commander, task environment and visual feedback)
connected to ROS network and the data transmitted/received via these units.

are minus points whereas each reached button gives positive
points.

”Physical environment interaction” data in fig. 3 contains
the button states to measure the timing when they are pressed
and the IMU measurements attached to the carried table.

4) Visual Feedback: The purpose of the visual feedback
unit is to provide dynamic progress feedback to the user as
game score as well as to inform the user about the current
state of the task.

”Game elements and the task status” data in fig. 3 includes
all types of variables affecting the game score and the relevant
guidance about the task. The importance of this unit is to give
feedback to stimulate a self-correcting training experience. In
the current setup, the visual feedback unit shows a simulated
human model, game score and state transition indicators
depending on the task state. Additionally, a robot model can
be visualized in this unit but we disable this feature in our task
because we want to keep the user focused on the real robot
rather than the simulated one.

III. EXPERIMENTAL

In this section, the technical specifications of the experi-
mental setup for the proposed gamified HRC training scenario
are presented. In this setup, 5 Xsens Awinda IMUs and one
base station as the human commander, Universal Robots UR5e
collaborative robot with UR-RDTE (Real-time Data Exchange
Protocol) as robot commander, 2 handcrafted portable physical

buttons with Arduino controller and 1 regular table on which
an extra Xsens Awinda wireless IMU attached as task envi-
ronment and a display for visual feedback. In this section, the
connection of those units to the ROS network and the technical
details are presented. However, the proposed training setup
is modular, open-source and easily configurable. The general
procedure to configure each unit with another type of setup is
also mentioned in the respective subsections.

The system is set in ROS Noetic environment. A laptop
PC which has Ubuntu 20.04 LTS installed is set to be the
ROS master and handles all of the communication between
each unit. The open-source code for the training setup can be
found by the following link: https://github.com/frdedynamics/
hrc training.

The base station in the human controller communicates
with 5 Xsens Awinda wireless IMU sensors wirelessly. The
communication frequency between the base station and each
sensor is set to 100 Hz. The base station is connected to the
ROS master PC via USB. The IMU data is converted to the
goal pose for the robot end-effector in the human controller
nodes. Additionally, a wireless Myo Gesture Control Armband
which has 8 EMG sensors is connected to control the robot
gripper. The armband has a dedicated USB dongle and it
communicates with the ROS master via serial port. Although
an IMU-based human motion estimator is used as the human
commander in this setup, it can be replaced by any type of
human motion tracking/estimating unit as long as the human
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body motions are translated as a respective robot command.
The robot controller commands a Universal Robots UR5e

collaborative robot. The computer and the robot are connected
to the same local area network and they communicate with
each other wirelessly. The robot controller transmits servo
control commands at 125 Hz while utilizing the real-time data
exchange protocol [32] as suggested in [33]. This command
type is specific for Universal Robots E-series and CB-series
robots [32]. However, thanks to the modularity of the proposed
network system, the robot controller unit can be replaced with
another robot which takes given pose commands and executes
them in real-time.

Fig. 4. Experimental setup of co-lift scenario in real-world with the compo-
nents of 4 main units highlighted.

The task environment consists of the carried table and 2
portable physical buttons as shown in fig. 4. Both the table and
the buttons are custom-made to meet the task requirements.
The table is 80 cm tall and weighs 2 kg. There is an
additional Xsens Awinda wireless IMU which is connected
to the same base station as the human commander IMUs.
This IMU provides orientation information in quaternions and
acceleration information up to 160 m/s−2. The physical but-
tons are crafted using wooden blocks of two different heights
110 cm and 130 cm. Each button is equipped with Arduino
Nano, an NRF24L01+ single Chip 2.4GHz Transceiver from
Nordic Semiconductors as Radio Frequency (RF) transmitters,
a limit switch and a regular LED. The Arduino Uno and
the RF module are connected via Serial Peripheral Interface
(SPI) protocol. An additional Arduino Uno is connected to
the master PC via USB and takes upon the receiver role.
The receiver Arduino is connected to the ROS system via
rosserial, which is a protocol for wrapping serial data
from another device and multiplexing multiple topics and
services [34], and provides the button states information with
time stamps.

IV. DISCUSSION

The main purpose of this paper is to design a systematic
gamified training architecture for HRC applications. The paper
introduces a novel gamification methodology in HRC training
and proposes how serious games and game elements can be
used for this purpose.

It is focused on the conceptual design and easy reproducibil-
ity of the architecture in this paper. The results are provided
as an open-source ROS package. The system has 4 main units
- human commander, robot commander, task environment and
visual feedback - and each unit can be modified/replaced with
a coherent mechanism. For instance, an IMU-based human
motion tracking system is used in the human commander but
another technology or methodology to generate a robot goal
pose based on human motions can be used. Similarly, UR5e is
used as the robot in the example scenario yet another robotic
system can be used as long as the controller of the robot can
execute real-time actions given a goal pose.

There are 3 main reasons for choosing ROS as the main
development environment. Firstly, ROS is a widely used open-
source environment in which the number of users more than
doubled between July 2019 - July 2020 [35]. The developed
solution can reach many users easier. Second, games and
gamified systems are not common subjects in ROS. This
study introduces how the ROS environment can be utilized
to develop serious games systematically. Third, the ROS
environment is highly modular and supported by various robot,
sensor and actuator manufacturers. Therefore, it aligns well
with the modularity aim of this study.

During the experimental co-lift scenario, it is observed that
the task environment and the visual feedback units are crucial
for gamification. Depending on the task and HRC system, the
size of those units may vary. In the co-lift scenario the task
environment is prioritized over the virtual feedback to keep
the focus and immersion in reality rather than virtuality. The
simulated robot model is initially deactivated and two physical
buttons are designed to represent the goal poses instead of
virtual elements on the visual feedback unit - which is used
only for guidance when needed. Therefore, it is important
to have both units in a gamified HRC training system and
configure the sizes of those units according to the HRC task
requirements.

V. CONCLUSION AND FUTURE WORK

As the benefits of human-robot teams are being more
visible, the number of researches to develop new HRC systems
is increasing. However, only a few applications are actively
taking a part in real-world tasks. The cause of this problem
is identified as a lack of training both in research for user
tests and in the industry for the end-users to excel in using
the developed system. Without effective training for users, the
evaluation of HRC systems’ efficiency, usability and profitabil-
ity is unfairly evaluated.

This paper provides a baseline for HRC training in a
systematic and gamified approach. The importance of training
in HRC system development is highlighted and the gap in
the literature is elicited. A methodology to develop a gamified
HRC training setup is presented and the proposed design is
demonstrated in a real-world co-lift scenario. This paper is
aimed to be a building block between research and successful
innovation for various HRC applications.
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As future work, multiple users are going to be trained in the
HRC system presented in [19] to evaluate the system according
to usability, learnability and eligibility scales.
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tusik, and J. Popović, “Practical motion capture in everyday surround-
ings,” ACM transactions on graphics (TOG), vol. 26, no. 3, pp. 35–es,
2007.

[27] S. Amendola, L. Bianchi, and G. Marrocco, “Movement detection
of human body segments: Passive radio-frequency identification and
machine-learning technologies.” IEEE Antennas and Propagation Mag-
azine, vol. 57, no. 3, pp. 23–37, 2015.

[28] A. Filippeschi, N. Schmitz, M. Miezal, G. Bleser, E. Ruffaldi,
and D. Stricker, “Survey of motion tracking methods based
on inertial sensors: A focus on upper limb human motion,”
Sensors, vol. 17, no. 6, p. 1257, Jun. 2017. [Online]. Available:
https://doi.org/10.3390/s17061257

[29] ROS-Open-Source, “ROS (Robot Operating System,” http://wiki.ros.org,
2022, [Online; accessed 24-June-2022].

[30] A. Suh, C. Wagner, and L. Liu, “The effects of game dynamics on user
engagement in gamified systems,” in 2015 48th Hawaii international
conference on system sciences. IEEE, 2015, pp. 672–681.
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ABSTRACT2

Human-robot cooperation (HRC) is becoming increasingly relevant with the surge in collaborative3
robots (cobots) for industrial applications. Examples of humans and robots cooperating actively4
on the same workpiece can be found in research labs around the world, but industrial applications5
are still mostly limited to robots and humans taking turns. In this paper, we use a cooperative6
lifting task (co-lift) as a case study to explore how well this task can be learned within a limited7
time, and how background factors of users may impact learning. The experimental study included8
32 healthy adults from 20 to 54 years who performed a co-lift with a collaborative robot. The9
physical setup is designed as a gamified user training system as research has validated that10
gamification is an effective methodology for user training. Human motions and gestures were11
measured using Inertial Measurement Unit (IMU) sensors and used to interact with the robot12
across three role distributions: human as the leader, robot as the leader, and shared leadership.13
We find that regardless of age, gender, job category, gaming background, and familiarity with14
robots, the learning curve of all users showed a satisfactory progression and that all users could15
achieve successful cooperation with the robot on the co-lift task after seven or fewer trials. The16
data indicates that some of the background factors of the users such as occupation, past gaming17
habits etc. may affect learning outcomes, which will be explored further in future experiments.18
Overall, the results indicate that the potential of the adoption of HRC in the industry is promising19
for a diverse set of users after a relatively short training process.20

Keywords: HRC, IMU, human motion tracking, co-lift, user training, gamification21

1 INTRODUCTION

Robotics has been a game changer in mass manufacturing by allowing various processes to be automated to22
produce a large number of items with the same quality, and often with a significantly shorter production time.23
For small and mid-size enterprises (SMEs) with smaller production volumes, the benefits of introducing24
industrial robots into production lines have not been as apparent and many have been reluctant to automate25
production processes (Insight, 2022). The introduction of collaborative robots (cobots) that can work next26
to human workers in the factory without fences has opened up a new potential in automation. However,27
robots and humans are still only taking turns when working on products, and the potential for Human-Robot28

1
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Cooperation (HRC) where humans and robots can cooperate to work on the same product simultaneously29
has not been adopted by the industry (Michaelis et al., 2020).30

A HRC system aims to combine the superior skills of humans (problem-solving, decision-making etc.)31
and robots (precision, accuracy, repeatability etc.) to accomplish the task more efficiently and accurately.32
There are several factors in HRC usability such as safety, trust, user’s experience, effectiveness, efficiency,33
learnability, flexibility, robustness and utility (Lindblom et al., 2020; Simone et al., 2022). Although safety34
is the most important factor, it is not sufficient for achieving optimal usability from an HRC system. This35
study focuses on three integral components of HRC system usability: 1) a robust communication method36
characterized by reliability, adequate precision, and accuracy; 2) dynamic role allocation between the37
human and robot within the HRC framework; and 3) human operator proficiency in utilizing the system.38

A human-robot team must have a reliable communication method to achieve successful HRC. The human39
input can be via joystick, voice, haptic and/or motion commands. The robot actions should be predictable40
and easily understood by human operators to ensure safe, intuitive and effective cooperation and build trust41
(Lindblom and Wang, 2018; Lee and See, 2004). Moreover, it is not straightforward to assign a leader to a42
human-robot team to achieve the task in the most optimal way. The robot and the human excel in different43
skills. Therefore, either their leadership roles should be allocated in a flexible manner depending on the44
task requirement/state, or prescribed optimally beforehand, to maximize system performance regardless45
of dynamic or static role assignment (Mörtl et al., 2012). Lastly, the human operator should have enough46
competence and training to understand system capabilities and usage and to handle system drawbacks and47
failures. In order for SMEs to benefit from using cobots for industrial applications, it is crucial that human48
operators receive proper training in using HRC systems Michaelis et al. (2020).49

User training is perhaps not addressed sufficiently in the context of HRC. Werner et al. show the50
importance of user training in Human-Robot Interaction (HRI) via an experiment on 25 elderly people who51
get help from a bathing robot which they communicate via gestures Werner et al. (2020). A few studies52
suggested three methodological approaches for user training in HRI. One methodology is the development53
of adaptive human-machine interfaces (HMIs) for industrial machines and robots. This approach involves54
measuring the user’s capabilities, adapting the information presented in the HMI, and providing training55
to the user (Villani et al., 2017). By adapting the interface to the user’s needs and abilities, the cognitive56
workload can be reduced, and the user can interact more effectively with the robot. The Wizard-of-Oz57
(WoZ) technique is another methodology used in human-robot interaction. In this technique, a remote58
supervisor drives the robot using a control interface to simulate an artificially intelligent robot (Tennent59
et al., 2018). Another approach is to use virtual/physical simulators mostly due to safety reasons (Mitchell60
et al., 2020), yet it increases the overall development cost of a novel HRC system. The current examples61
found in the literature are limited to mostly medical, surgical and military applications (Azadi et al., 2021;62
Dubin et al., 2017; Prasov, 2012) and the main training purpose is to train the user for the specific task63
rather than the user learning the HRC system itself.64

Serious games (SG), gamification methods and game-based learning (GBL) can be used to develop65
supplemental training materials that are interesting and interactive, making it simpler for learners to apply66
their newfound knowledge (Susi et al., 2007; Anil Yasin and Abbas, 2021; Kleftodimos and Evangelidis,67
2018). Several studies merged gamification and simulation in user training within various fields (Checa and68
Bustillo, 2020; Wang et al., 2016). According to Kapp (2012), ”a serious game is an experience created69
using game mechanics and game thinking to educate people in a specific content domain”. In serious games,70
learning, training, and other objectives come first rather than pure entertainment. The effectiveness of the71
training outcome can be increased by gamification techniques and game elements (Pesare et al., 2016). SG72
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and GBL have been popularly used in various training purposes since 2013 (Checa and Bustillo, 2020)73
such as in fatigue assessment (Kanal et al., 2020), rehabilitation (Andrade et al., 2013), constructing better74
communication with individuals who has Autism Spectrum Disorder (Silva et al., 2018) etc. Although it75
is not common in user training in HRC applications, one successful study used a serious virtual reality76
game that simulated the cooperation between industrial robotic manipulators (Matsas and Vosniakos, 2017).77
There is still room for merging SG, GBL and gamification in user training in HRI and HRC (Jones et al.,78
2022).79

Cooperative lifting (co-lift) scenario is a common example in HRC where humans and robots lift and80
carry heavy, flexible, or long objects together while exploiting human cognitive skills and robot accuracy81
in different parts of the task. The co-lift task was chosen as the experimental study scenario for HRC in82
this article due to the fact that material manipulation applications (e.g., handling, positioning, polishing)83
have been found to be the most common tasks in the industry with more than 20% of the total number84
of tasks (Parra et al., 2020). There are several studies on co-lift and manipulation between a human and85
a robot in the literature. In Mörtl et al. (2012), the authors used haptic data to dynamically assign the86
leader roles between the human and robot in a co-lift scenario. A recent study presented in Liu et al. (2021)87
estimated the external forces applied by the human operator during the collaborative assembly of a car88
engine. In Ramasubramanian and Papakostas (2021), the human operator and a collaborative robot on a89
mobile platform carried a long stick between two locations in the work environment. In Nemec et al. (2017),90
speed and disturbance rejection were adjusted for transporting an object through learning by demonstration.91
While these studies cover important topics for HRC and co-lift tasks, they present solutions only in the92
active carrying phase. It is important to address the before (approach) and after (release) phases of the93
active co-lift phase as shown in Figure 1 elaborating with the human input method so that the chain or94
repeated HRC tasks can automatically restart without any interrupts.95

Figure 1. The full-cycle of co-lift task and its states (APPROACH, CO-LIFT and RELEASE) and the pick
and place locations of the common object. The system uses IMUs for human motion estimation and an
EMG-sensor to open/close the gripper (Ates et al., 2022).
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In this paper, a novel human-motion-based HRC system using Inertial Measurement Unit (IMU)s as the96
motion capturing system (Ates et al., 2022) in a co-lift scenario is tested using a gamified user training97
approach. The objective is to conduct a quantifiable empirical unbiased observation on the quality of98
HRC and the effect of user training. We evaluated if users can quickly learn to cooperate with a robot99
irrespective of age, gender, technical background, interest in gaming etc. It is suggested in the literature100
that the performance of HRC could be affected by the worker’s previous experience with robotics (Simone101
et al., 2022), their personality Walters et al. (2005) as well as their gaming background (Tanaka et al.,102
2016). We aim to observe if there are significantly important factors in the learning rate in terms of how103
quickly and consistently a user cooperates with a robot. We investigate the learning process of 32 human104
users and analyze both quantitative data from IMUs and qualitative data from pre- and post-surveys. A105
detailed discussion is provided based on user learning curves and the different background factors that106
influence learning. Although the results are solely dependent on the specific type of application, these107
findings should be considered for the evaluation of the effective convenience of the cobots, including an108
analysis of the variation in the workers’ performance, and consequently, of the entire HRC system.109

2 METHODS

2.1 Cooperative Lifting110

The operation is divided into different states, and the roles of the human and robot change throughout the111
states as shown in Figure 2. The system starts in the IDLE state, where no motion is transferred from the112
human to the robot. The human can then use a clutching gesture to transit between IDLE and APPROACH113
states, where motion control commands are sent to the robot based on the pose information of the human’s114
hands. In the CO-LIFT state, the human and robot share leadership and perform complex motions specific115
to the application scenario. The human can then gesture the robot to enter the RELEASE state, where the116
robot takes charge of the position and velocity control of the object to place it accurately in a predefined117
position.118

2.2 Human Motions to Robot Actions119

Studies on human motion tracking and estimation can be categorized based on the type of motion tracker120
devices used: visual-based (Morato et al., 2014; Sheng et al., 2015), and nonvisual-based (Kok, 2014;121
Roetenberg et al., 2009), and hybrid solutions (Sugiyama and Miura, 2009). The visual-based solutions are122
widespread in motion tracking since they provide highly accurate human motion tracking but often fail in123
industrial usage due to occlusion, loss in line-of-sight, intolerant to lightning changes, and lack of mobility124
(Rodrı́guez-Guerra et al., 2021). Common alternatives to non-visual systems are IMU-based solutions125
which are stand-alone systems without no permanent installations. They often cost considerably less than126
their visual alternatives but are prone to drift for long-term usage. While several solutions to eliminate the127
drift problem have been proposed (Kok et al., 2017; M. and J., 2015; Ludwig and Burnham, 2018), there128
are still a few examples using IMU-based solutions particularly in real-time in HRC applications. Although129
IMUs are selected as the main motion tracking devices, the selected human motion tracking technology is130
not the most critical point in this study.131

2.2.1 Human Motion Estimation (HME)132

In this study, we used 5 IMUs as the motion-tracking system. After acquiring the 3D orientations from133
individual IMUs, the biomechanical model of the human body is placed in the calculations. In order to134
measure the full upper-body motions we placed the IMUs as shown in Figure 3. Nonetheless, the selected135
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Figure 2. HRC roles and states in the experimental co-lift scenario. Human Leading role has two states:
IDLE: Both chest-to-wrist (hand) motions are actively calculated yet no motion command is sent to the
robot. APPROACH: Combined (merged) pose from two hands is actively calculated to produce soft
real-time end-effector goal pose commands. The robot follows the human actively. Shared Leadership
role has one state: CO-LIFT: The robot applies a directional compliant force and the human decides the
direction of this force with elbow gestures. Robot Leading role has one state: RELEASE: The robot takes
the lead in the operation, and moves to a predefined release pose. The human follows the robot’s motions.
The steering arm is assigned for transition gestures and the red arrows show the respective transition
gestures between states. Rotating the right palm up/down is assigned as the de-clutching/clutching gesture,
clenching the right fist is the gripper close gesture (not highlighted in the fig.), pushing/pulling the table is
the poking gesture, and releasing the right arm down is the release gesture.

motion capture technology is not critical and any type of human-motion estimation method would work as136
long as the human input is appropriate to create a real-time goal pose command for the robot.137
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Figure 3. Human model and IMU placement on right/left elbow (RE/LE), right/left shoulder(RS/LS) and
chest (CH) (Ates et al., 2022)

With this model, we measure 13 degrees of freedom (DoF) upper-body motions including the chest, upper
and lower arm motions on both arms but neglected the wrist motions. Our human model is a collection of
estimated individual joint angles, where a joint angle can be found by calculating the rotation between two
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consecutive links with attached IMUs. The kinematic chain for such a human model from the base (chest)
to the tip (left hand) can be written as:

qc = qGS
CH qs = q∗c ⊗ qGS

LS qe = q∗c ⊗ q∗s ⊗ qGS
LE (1)

where qc, qs and qe are the quaternions representing joint angle rotations, qGS
CH , qGS

LS and qGS
LE are the IMU138

orientation from global to the sensor’s frame which are the raw orientation readings from the IMUs. The139
same procedure is applied to the right arm. The lower body is taken as the fixed reference frame.140

2.2.2 Human Biomechanical Model141

In human motion and gesture estimation, the first step is to define the human model. This model can be a142
silhouette as in Bradski and Davis (2000) or a biomechanical model as in Roetenberg et al. (2009); Cerveri143
et al. (2005). Since the human body contains more complex joints and links than ordinary actuators and144
link elements, it is not possible to model the human body with 100% accuracy. As a result of that, the total145
degrees of freedom (DoF) of the human model is not exact. For example, the human arm is modeled as 4146
DoF in Theofanidis et al. (2016), 9 DoF in Phan et al. (2017) and 7 DoF in Ghosal (2018).147

2.2.3 Human to Robot Motion Translation148

Human-to-robot motion translation converts estimated human motions and gestures into the desired goal149
pose for the robot manipulator in real-time. The human arm motion is not directly mimicked by the robot.150
Depending on the states explained in more detail in Section 2.1, different human-to-robot motion mapping151
methods are applied. This subsection presents how a robot manipulator goal pose command is created152
based on given human arm motions. The human arm is modelled as 5 DoF and the robot used in this study153
is a 6 DoF (RRRRRR) manipulator with a spherical wrist configuration.154

In the case of active command cooperation, two arm motions of the human are merged to create one155
end-effector goal pose. In the case of passive command cooperation, two elbow poses are used.156

2.2.3.1 Active command cooperation scenario157

The relative motions of both human arms are merged and translated into a single goal pose for the robot
as introduced in Ateş and Kyrkjebø (2021). The merged hands pose is calculated based on the relative
motions of each arm. We refer to the arms as the motion arm and steering arm. The steering arm is also
responsible for clutching and state transitions. In our setup, the steering arm is the right arm but this can be
changed in the merged hand pose equation (Equation (2)).

P̂−
h,t = ŝ · (P̂−1

hm,t=0 × P̂hm,t) + k̂ · (P̂−1
hs,t=0 × P̂hs,t) (2)

where P̂−
h,t is the merged hand pose at t = 0−, P̂hm,t=0 is the motion hand’s pose, P̂hs,t=0 is the steering158

hand’s pose. The multiplication with their inverse at t = 0 simply sets the pose readings to zero for relative159
motion mapping.160

Also, different weights for each arm motion can be defined by the scaling factors ŝ and k̂ in Equation (2)161
in the code but for these experiments, they both set to the same multiplier.162
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The robot goal pose based on the merged hand pose is

Ĥ(t) = P̂−1
h,t=0 × P̂h,t P̂r,t = P̂r,t=0 × Ĥ(t) (3)

where Ĥ(t) is the transformation of the merged hand pose from the initial to the current pose.163

2.2.3.2 Predefined command cooperation scenario164

When the human and the robot are both in the leadership role (i.e. carrying the object together, defined165
as COLIFT state in Sect.2.1) the predefined command cooperation method is applied. There the human166
uses elbows to show the direction where the robot should go with a poking gesture (i.e. by pulling/pushing167
the object). The motion type is predefined such that the robot goes upwards, downwards, left and right168
in the xz-plane. The flowchart of how the predefined command cooperation in the active lifting phase is169
implemented is given in Figure 4.170

Figure 4. Predefined command cooperation in the active lifting phase (i.e. COLIFT state)

2.3 Gamification171

Gamification methods in HRC user training are explained in detail in our previous study (Ates and172
Kyrkjebo, 2022). The time constraint is directly connected to the score element. The game (i.e. each trial)173
is supposed to be finished in 10 minutes. The user starts with 600 points and loses 1 point every second.174
There are 2 buttons within the common workspace that represent physical waypoints and are defined as175
achievement elements. Each successful button press gives an additional 60 points. The game elements used176
in this study and their role is listed below:177

• Themes create interest and engagement in educational games. It could be some sort of introductory178
backstory or a narrative that accompanies the entire game. For the proposed HRC scenario, the179
background story is presented as the research objectives.180
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• Achievements are the mechanisms connecting the target outcomes of the HRC task that the gained181
user skills.182

• The game score is calculated based on the user’s performance, which only depends on how quickly183
they complete each achievement in this study. Additional parameters can be enabled such as the184
measurements taken from the IMU on the carried table regarding the tilting, deviation and trembling185
of the table.186

• Challenges and conflicts are central elements in any game and they can be physical obstacles, battles187
with other players, or puzzles that need to be solved. In this study, the physical targets are set to be188
challenging elements.189

• In an entertainment game, feedback is usually immediate and continuous which can be delivered190
through, reward points, additional ‘powers’ within the game or direct messages. In this study, both191
immediate and direct message feedback types are used through three main elements: simulated192
human model, game score and HRC state. No guided feedback is implemented but the procedure was193
supervised by a human expert and objective guidance to all users are provided as needed.194

• Time constraint is a particular type of challenge in serious games, which is a powerful tool to push195
user limits. In this study, the time constraint is directly connected to the score element.196

• Self-expressions are the parameters and preferences of the game which are up to the user. The user197
could ask to change the speed and the responsiveness of the robot. Moreover, in the proposed HRC198
case, the initial poses of the user’s hands, and the way the user grabs the table are not restricted but only199
guided before the trials. These are open questions in the relevant HRC study and user self-expressions200
are believed to be helpful in deciding the most optimal usage.201

• Aesthetics are the game’s visual, aural and artistic elements in a gamified system. They play an202
engaging and immersive role in the game. In an HRC scenario, the real robot can be perceived as an203
aesthetic element. Nonetheless, it is still important to add aesthetic elements to help the user engage204
in the task. In this study, the physical buttons incorporate LEDs that are activated when the button is205
pressed. Additionally, a graphical user interface is developed for the procedures that the user is able to206
see throughout the experiment.207

3 USER EXPERIMENTS

This section explains how the cooperative lifting operation is set up for user experiments using human208
motion and gesture information, and gaming elements. The technical setup is explained in detail, along209
with the user recruitment and selection procedure, the experimental procedure that all participants perform210
in the experiments, and the learning criteria users are evaluated by. The experimental procedure was carried211
out in 4 stages: pre-survey, video tutorial, physical human-robot experiment, and post-survey.212

3.1 Technical setup213

The majority of the physical experimental part is suggested in our previous study (Ates and Kyrkjebo,214
2022). The human-robot experimental system was set up in ROS master PC which is a standard laptop with215
ROS Noetic installed. The ROS master handles all communication between the Xsens Awinda wireless216
IMU system, physical buttons connected to Arduino Uno microcontrollers transmitting wirelessly via217
NRF24L01+ RF transmitters, and the Universal Robot UR5e cobot which is connected to the same local218
network as shown Figure 5.219
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Figure 5. Experiment room and the units of the training system

3.2 User recruitment and selection220

The user experiments took place at Western Norway University of Applied Sciences, Campus Førde in221
autumn 2022. The announcements for recruitment to the experiment were distributed through social media,222
flyers at the University, and through the local newspaper. A total of 40 healthy participants between ages of223
20-54 were recruited in total, 8 of which were used as pilot users to optimize experimental parameters such224
as the number of trials, the robot interaction force threshold during in co-lift state, human-robot directions225
(mirrored mapping), and some additions to the GUI. Data from the pilot experiments are not included226
in the paper. In total, 32 participants did ten or more trials on the human-robot colift system, and were227
assigned a 5-digit random ID and stored anonymously according to Norwegian Centre for Research Data228
standards 1. Users with severe physical disabilities were excluded from participating in the experiments.229

3.3 Pre- and post-survey230

All participants were asked to fill in a pre-survey and a post-survey form online using Microsoft Forms.231
In the pre-survey, users were asked general personal questions, related to interest in robotics and familiarity232
with robots. In the post-survey, the users were asked to asses several elements of the system such as233
the visual feedback, leadership roles between them and the robot, difficulty of the task in four states,234
intuitiveness of the system and fatigue. The answers are collected either as short texts or a selection from a235
Likert scale depending on the question.236

User’s heights and arm lengths are measured before the physical experiment. The user was asked to keep237
the shoes on during the height measurement since we are interested in the effective height the user while238
s/he was performing the task. Arm length measurement was the length between right wrist to right shoulder239
origin.240

1 www.nsd.no/
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After the pre-survey, a tutorial video2 was made available to users to show them the task and how the241
system works. The video was uploaded on Youtube as Unlisted and the access link was only shared242
by the subjects before the physical experiments. To minimize the bias, users who had completed the243
experiment were asked not to discuss the details of the procedure with other participants. After the physical244
experimental procedure, the post-survey was applied.245

To analyse if any background factors played a role in how well users can learn to cooperate with robots,246
we divided participants into two samples based on the survey responses. For the gender and job category,247
the samples were Woman - Man and IT/Engineering - Other. For other categories, samples were divided248
into Low - High based on the numerical selection on the scale in the respective survey question. For249
the majority of the categories, the integer mid-point of the Likert scale was selected as the threshold for250
dividing into samples. However, for some questions, the participants’ answers were weighed on only one251
side of the threshold such as for physical tiredness and mental tiredness, and we used the mean of the252
answers instead of dividing participants into two samples.253

We applied a two-tailed t-test for each category with respect to each learning criterion. The null hypothesis254
was the same for all categories: ”There is no difference between sample-X and sample-Y in learning255
criteria L”. We analyzed the samples with respect to the learning criteria where the null hypothesis was256
rejected with 10% significance level.257

The t-test formula t for unequal sizes and variances between samples and the degree of freedom calculation258
df in Equation (4) was used.259

t =
(x̄− ȳ)− (µx − µy)√

s2x
nx

+
s2y
ny

, df =

( s2x
nx

+
s2y
ny

)2

( s2x
nx

)2

nx − 1
+

( s2y
ny

)2

ny − 1

(4)

where x̄, ȳ are the calculated means, sx, sy are standard deviations and nx, ny are the size of the sample-X260
and sample-Y , respectively. The term (µx − µy) is the difference of hypothetical means of two samples,261
which is zero in our case based on the null hypothesis (H0 : µx = µy). The denominator is the estimated262
standard deviation (SEx̄−ȳ) of the distribution of differences between independent sample means for263
unequal variances.264

To calculate the effect size, we used both Cohen’s d and Hedge’s g because of the difference in variance265
between samples. To decide which one to use for particular categories, we set a threshold such that the266
difference between two standard deviations was less than the minimum of the two standard deviations.267
Therefore, the effect size calculation was268





d =
(x̄–ȳ)√
s2x+s2y

2

if
∣∣sx − sy

∣∣ <
∣∣(min(sx, sy)

∣∣

g =
(x̄–ȳ)√

((nx−1)·s2x+(ny−1)·s2y)
nx+ny−2

otherwise.
(5)

2 https://youtu.be/_JZ-ENtvB7w
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3.4 Experimental procedure269

For the experimental procedure, we designed a co-lift operation that deliberately challenged participants270
to cooperate with the robot to achieve the goal of the operation. In the experiments, the human and the robot271
would pick a table whose location was not known to the robot, move it via two goal posts whose locations272
were also unknown to the robot, and place the table on a predefined final position known to the robot. The273
participants were scored based on the elapsed time, if they reached the goal posts, and if the overall co-lift274
operation was successful. Every participant started at 600 points, and lost one point each second. They275
gained 60 points for each successful goal post requiring that participant and the robot could cooperatively276
lift and move the table to trigger the physical buttons. When the last goal post was successfully reached,277
the user could gesture that the system should enter into the RELEASE state, and the robot would take the278
lead in placing the table on the final position to end the experiment and the score countdown.279

All users started with the same robot speed. In the APPROACH state the servoL parameters for the280
robot were selected as acceleration = 0.5m/s2, velocity = 0.3m/s, blocking time = 0.002s, lookahead time281
= 0.1s, and gain = 300. In the COLIFT state, the forceMode parameters were dependent on the direction,282
and the compliant force F upwards was set to 3 · F , downwards to 0.5 · F , and sideways to 1.5 · F . The283
maximum allowed end-effector speed along the compliant axes was 0.8m/s for horizontal directions and284
0.5m/s for vertical directions. For non-compliant axes, the maximum allowed deviation along any axis285
was 0.3m/s. The angular compliance limits along all axes were set to 0.17rad/s. In the RELEASE state,286
the moveL end-effector speed was set to 0.25m/s with acceleration = 1.2m/s2 in asynchronous mode.287
After the user felt comfortable in using the system with the current parameters, s/he could ask to speed up288
the robot in selected directions.289

Experiments took a place in a distraction-free room where only the experiment conductor (supervisor)290
and the participant were present during the experiments. The visual feedback unit and the robot were291
visible to the participant from the same perspective as shown in Figure 5.292

3.5 Learning evaluation293

To evaluate learning, we compared user scores of 10 trials using 6 different criteria:294

• Highest: The best score for the participant.295

• Average 3 (avg 3): Average of 3 best scores.296

• Average of last 5 (avg last 5): Average of last 5 trials.297

• Variation of highest 3 (var 3): Variation of 3 best scores.298

• Deviation from baseline (delta learning): Difference between average of first two trials (avg first 2)299
and last 2 (avg last 2) trials.300

• Learned trial (trial no avg reached): The trial number for which the participant reached the avg 3301
score.302

To eliminate the chance effect, the 3 best scores of the participants were averaged in avg 3, and to evaluate303
the level of how well the participant had learned the cooperation, the average score of the last 5 trials were304
calculated in avg last 5. The standard deviation of the highest 3 scores were calculated in var 3 to analyze305
if a particular high score was due to luck, or a more consistent learned cooperation. The average of the306
first two trials avg first 2 were compared to the average of the last two trials avg last 2 to get a measure in307
delta learning of how much the participants had improved during trials. How fast the participant gets used308
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to the system was calculated in (trial no avg reached). We avoided using a single criterion and/or single309
trial score to evaluate learning to obtain a broader perspective on user learning.310

4 RESULTS

A total of 32 healthy adults participated in the experimental study, with 10 female and 22 male participants311
between 20 and 54 years old. The users had different occupational backgrounds (health, IT, management,312
craftsmanship, pedagogy, unemployed, etc.) at different levels (students, employees) and had different313
previous experiences from interacting with robots (both on a technical and a social level). The presentation314
of the results is divided into two aspects. First, the measures of the system based on the motion and gesture315
data collected during the experiments is presented in Section 4.1. Second, how the participants were able to316
learn to use the system with respect to the various background factors collected in the pre- and post-survey317
is presented in Section 4.2.318

4.1 HRC System Measures319

In total nine metrics related to the HRC system are presented in Figure 6. One participant (User ID:35764)320
has been selected to illustrate the data from the experimental trials. The participant is a female health321
worker, more than 30 years old, has no current or past gaming habits, programming background and322
education in robotics, but stated that she has a cleaner type of robot at home/work in the user survey.323
The participant is not selected based on any particular background factor other than to visualize the data324
collected during the experiments. The user score data from all participants is provided for comparison as325
open access data for reproducibility (Venås, 2023).326

From Figure 6, we see that the user score increases from the 1st to the 10th trial. The duration of the327
first trial is about 400 seconds whereas the last is just over 60 seconds. There are quite a few transitions328
between the IDLE and the APPROACH states in the first trial.329

Since the participant is not familiar with the system, she has a difficult time making the robot move in the330
desired direction and resets the hand motions several times by going back to the IDLE state. This type of331
several hand-reset behaviours is seen in trials 2, 3 and partly 4, but decreases as the participant learns/gets332
familiar with the system. From the 6th trial the user reached a consistent level of performance.333

Another point to highlight is the changes in the duration of the IDLE+APPROACH and COLIFT states.334
The duration of the IDLE+APPROACH state shows how comfortably the participant controls the robot’s335
motion using two-arm motions when the participant is the leader of the system. The first attempt to grab the336
table took around 160 seconds, whereas she managed to reduce it to under 10 seconds in later trials. The337
duration of the COLIFT state shows two things: 1) how comfortably the user controls the robot’s motion338
using instant gestures when the user cooperates with the robot, and 2) how well the grasping has succeeded.339
By default, the robot moves upward when the grasp on the table is complete. If the grasping is too abrupt,340
the robot will not automatically start moving upwards (as seen in trials 1, 2, 5 and 10) because it registers341
an initial poking gesture. The user needs to adjust the elbows’ poses adequately and poke the robot so that342
the initial upward motion starts again.343

Some minor details to remark are the number of poking attempts during the COLIFT state, the magnitude344
of poking force, and the table acceleration over different trials. The table acceleration is pretty smooth345
overall for this user except for trial 5. In the first trials, there are significantly more poking attempts than in346
the last trials (except for trial 10). The poking force is well above the threshold which could be related to347
uncertainty about the system responsiveness. After the 6th trial, there is more consistent poking behaviour.348
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Figure 6. The figure shows the experimental measurements of user ID:35764 during the 10 trials. The
largest figure on the top is the first trial, and the rest of the trials are presented row by row from the top left
to the bottom right. The experiments start with the IDLE state highlighted with purple background colour,
followed by the APPROACH, COLIFT, and RELEASE states, which are highlighted with pink, green, and
yellow background colours, respectively. The user’s two hand motions, calculated merged hands motion,
and two elbow heights are measured from the participant’s side. The hand motions are visible shown in the
IDLE, APPROACH and RELEASE states, and the elbow motions are shown only in the COLIFT state.
The end-effector (TCP) motion and the exerted force are measured from the robot’s side, and the table
acceleration and user score are measured as training parameters.

Note that the slight inconsistency in the 10th trial with regards to the upwards trend in the score and349
consistent poking behaviour is discussed in Section 5.1.350

4.2 User Learning Evaluation351

We divided the user sample into two groups for 18 different user parameters such as age, gender,352
occupation, body size, robot familiarity, gaming habits etc. and observed their scores over 10 trials. The353
data is provided in Figure 7 as learning curve plots.354

The goal of the analysis was to identify any differences in learning curves between the sample groups355
if any significant difference. The null hypotheses are the same for all categories: ”There is no difference356
between sample-X and sample-Y in learning criteria L”: . We investigate the list of samples with respect357
to the learning criteria where the null hypothesis is rejected with 10% significance level.358
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Figure 7. Participant background data on learning curves. Each plot shows the score of participants divided
into two sample groups for the respective background variable. The plots show the aggregation of all
participant scores in each sample group for each trial; the middle line shows the mean, and the shadow
region shows the standard error.
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As seen in Figure 7, all groups in each category have a similar learning curve which is increasing steep359
until around trial 3, keeps increasing with a relatively fixed gradient between trial 3 and trial 7, and360
reaches a plateau after trial 7. We designate those regions as 1) steep learning, 2) steady learning and 3)361
plateau. There is no user background factor that can be identified as significantly positive or negative in the362
progress of learning from this perspective. This supports a hypothesis of ”everyone can cooperate” - or363
more precisely ”everyone can learn to cooperate” - with robots.364

Investigating the results more closely, there seems to be a drop in the score as the trial number increases365
in the majority of subplots in Figure 7 around 8th. This reverse learning effect is discussed in more detail366
in Section 5.2. Note also that the physical tiredness parameter seems to be one where there is more of a367
difference between the two sample groups. Although none of the users stated that they experienced severe368
physical tiredness or fatigue (see the mean and standard deviation, and the number of users in the sample369
group ”low”), those who have lower physical tiredness have more fluctuating scores in the plateau region.370

For most of the background factors, the two sample groups have relatively similar start levels, whereas,371
for some background factors, one sample group has a higher start score (gender, job category, height,372
arm length, programming background, past gaming habits, proximity to robots, feeling gradual easiness,373
communication feeling, beliefs on would do better and physical tiredness). While the higher start score374
in gender, height, programming background, past gaming habits, proximity to robots and communicate375
feelings is also reflected in higher end-scores, the higher start score for the job category, arm length, feeling376
gradual easiness, beliefs on would do better and physical tiredness converges to the same end score as377
the other sample group. The sample groups divided by age start and end in relatively similar scores, yet378
the steep learning region in higher age groups are even steeper. Lastly, there are no significant differences379
between the sample groups of current gaming habits, robot and robot arm familiarity, visual feedback380
screen usage and mental tiredness for the start and the end scores. Further details on the quantitative381
results for each background factor towards the learning criteria based on the results of the t-tests, respective382
p-values and effect sizes are given in Section 5.2.383

5 DISCUSSION

The learning progress of the different sample groups towards the different learning criteria, and the main384
findings regarding the results of the t-tests, respective p-values and effect sizes, are given in Table 1.385

Note that in Figure 7, we can see subtle decreases in the score around trial numbers 7,8 and 9. According386
to our observations and user feedback, this could come from several reasons. First, participants were new to387
the HRC control scheme and how to use both arms to control the robot. Therefore, the participants focused388
in their first trials (on average four trials) to get used how to control the robot and their own body motions389
and gestures, rather than trying to solve the task as quickly as possible. However, as user confidence390
increased (particularly in the learned plateau), more risk-taking behaviour was observed, and users asked391
for more speed and tried new approaches to accomplish the task faster. This behaviour was observed more392
in users with competitive traits and those who had acquaintances enrolled in the experiment.393

Note also that the majority of the users requested to continue the experiment after the 10th trial and394
achieve even better performance. The data from these trials were not included in the analysis for fair395
analysis but can be seen in Figure 8.396

5.1 Observed User Behaviours397

Relevant observations made by the supervisor during experiments are discussed in this section.398
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Figure 8. User score data on each trial. The results are colour-coded from red to green to visualize the
training results from low to high.

First, the user’s comfort with the experiment and the setting is important for performance. User comfort399
most likely differ between users who work in similar environments to where the experiment took place and400
those who had never been at campus. Observations on how the user felt after the first trial were noted during401
the experiments, and any discomfort can also be a compounding factor in the metrics related to feeling402
gradual easiness, communication quality, beliefs that would do better or worse. This will be discussed403
more in later sections.404

A risk-taking behaviour as the user comfort increases can be seen in the measurements figure of the405
example user Figure 6. The 10th trial ends up with a lower score than 7-8-9th trials. The reason was that406
the user learned how to smoothly transit from the APPROACH state to COLIFT state without any harsh407
grasping after trial number 5 (see the robot TCP line). However, in the 10th trial, the user was too quick408
lift the table before the robot’s grasp was completed, which violated the grasp action, and the robot didn’t409
start moving upwards which cost the user a few points. This type of behaviour was also seen for other410
participants as well as in different stages of the task such as elbow height adjustments, releasing before411
the goal post buttons were pressed etc. Another observation linked to user learning was the change in the412
poking force magnitude. Two distinct behaviour was observed between users: 1) they would interact with413
higher forces because they thought of the robot as a sturdy machine, and 2) they would interact with lower414
forces because of fearing to damage the robot. As seen in the force (scale 0.005) line of Figure 6, this415
particular user started with a relatively high poking force (trials 1 and 2) but lowered it in the later trials416
(6,7,8 and 9). Even though the user experienced a problem in trial 10, she did not increase the magnitude of417
the interaction force – she had learned the necessary level of force required to transition into the next state.418
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Participants also implemented instructions differently. For instance, some users preferred using both419
hands equally in the APPROACH state, whereas some chose one hand (unintentionally, regardless of which420
was their dominant hand) and kept the other hand stationary.421

5.2 Background factors vs Learning criteria422

Regardless of age, gender, job category, gaming background, and robot familiarity, the learning curves423
of all users are positively inclined in Figure 7. The user scores were evaluated in for 6 different learning424
criteria, and the significant participant background factors were calculated with a two-sample t-test as425
shown in Section 3. In total 34 [background parameter, learning criteria] pairs were found to be significant426
with a p-value less than 0.1 and effect size bigger than 0.5 as shown in Table 1427

We have avoided using a single learning criteria or single trial score to evaluate learning. Based on428
our observations during the experiments, some users changed behaviour after some trials which caused429
deviations and glitches in their score curves. The most common deviation was because of the ”reverse430
learning” effect. Some users who experienced that they learned to use the system well in early trials431
pushed their limits to achieve a better high-score. Although participants were informed that there was no432
competition between users, some users with highly competitive traits prioritized a higher score over a433
consistent learning curve. On the other hand, other participants aimed to achieve the task with as little risk434
for failure as possible, and declined increasing the speed even though observations indicated that they could435
have managed this change well. Therefore, we have analyzed data using all 6 learning criteria towards the436
all background factors for the participants.437

Table 1. Satistics table across user background and learning criteria. In total 34 background variables gave
significant results out of 144 t-tests
Category Learning Criteria x̄ ȳ sx sy nx ny t-score p-value effect size (d ∧ g)
Programming background highest 674.00 683.43 12.46 9.21 18 14 -2.46 0.02 Large(-0.86)
Programming background avg 3 660.41 674.10 16.76 12.06 18 14 -2.68 0.01 Large(-0.94)
Physical Tiredness avg first 2 551.08 459.71 54.23 109.76 25 7 2.13 0.07 Large(1.32)
Past Gaming Habits highest 671.25 682.25 12.26 9.96 12 20 -2.63 0.02 Large(-0.99)
Past Gaming Habits avg 3 657.33 671.83 18.49 12.14 12 20 -2.42 0.03 Large(-0.93)
Height avg first 2 491.38 554.92 99.86 50.55 12 20 -2.05 0.06 Large(-0.8)
Gender var 3 56.22 22.09 50.47 30.89 10 22 1.98 0.07 Large(0.82)
Gender avg first 2 473.10 557.45 98.81 49.63 10 22 -2.56 0.03 Large(-1.08)
Gender delta learning 167.55 96.23 89.71 52.90 10 22 2.34 0.04 Large(0.97)
Feeling Gradual Easiness var 3 21.03 58.56 27.38 53.28 22 10 -2.10 0.06 Large(-0.89)
Communication Feeling highest 669.25 683.45 12.45 8.03 12 20 -3.53 0.00 Large(-1.36)
Communication Feeling avg 3 657.89 671.50 16.94 13.76 12 20 -2.36 0.03 Large(-0.88)
Believes that would do better avg 3 674.28 661.67 11.64 16.95 12 20 2.49 0.02 Large(0.87)
Believes that would do better avg last 5 663.85 639.12 16.42 29.75 12 20 3.03 0.01 Large(1.03)
Believes that would do better avg last 2 667.62 638.80 21.71 36.73 12 20 2.79 0.01 Large(0.96)
Arm Length avg first 2 489.67 555.95 97.99 51.27 12 20 -2.17 0.05 Large(-0.85)
Arm Length delta learning 163.75 91.38 75.35 58.23 12 20 2.86 0.01 Large(1.07)
Age trial no avg reached 7.91 6.57 1.22 2.01 11 21 2.33 0.03 Large(0.8)
Age delta learning 155.77 99.00 73.64 66.58 11 21 2.14 0.05 Large(0.81)
Programming background avg last 5 639.51 659.81 29.74 21.65 18 14 -2.23 0.03 Medium(-0.78)
Programming background avg first 2 506.39 562.86 86.24 53.34 18 14 -2.27 0.03 Medium(-0.79)
Past Gaming Habits avg last 5 636.20 655.71 33.14 22.29 12 20 -1.81 0.09 Medium(-0.69)
Mental Tiredness trial no avg reached 6.44 7.62 1.67 1.93 16 16 -1.86 0.07 Medium(-0.66)
Job Category highest 682.91 675.62 9.17 12.69 11 21 1.86 0.07 Medium(0.66)
Job Category delta learning 90.00 133.45 47.20 80.70 11 21 -1.92 0.06 Medium(-0.66)
Height avg 3 659.92 670.28 14.87 16.06 12 20 -1.85 0.08 Medium(-0.67)
Height delta learning 153.71 97.40 87.68 55.16 12 20 2.00 0.06 Medium(0.77)
Gender avg 3 658.43 670.02 15.42 15.55 10 22 -1.96 0.07 Medium(-0.75)
Communication Feeling trial no avg reached 6.17 7.55 2.21 1.47 12 20 -1.93 0.07 Medium(-0.74)
Believes that would do better var 3 17.63 41.83 24.66 45.82 12 20 -1.94 0.06 Medium(-0.66)
Believes that would do better avg first 2 564.17 511.25 53.15 84.74 12 20 2.17 0.04 Medium(0.75)
Familiarity with Robots highest 674.76 681.93 12.13 10.95 17 15 -1.76 0.09 Medium(-0.62)
Familiarity with Robots avg 3 661.57 671.87 17.94 12.38 17 15 -1.91 0.07 Medium(-0.67)
Familiarity with Robots avg first 2 510.03 554.97 92.21 50.98 17 15 -1.73 0.10 Medium(-0.6)
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5.2.1 User Body Size438

The system is designed such that it does not require to be tuned between users to be easily integrated into439
industrial applications at a later stage. Since the human-to-robot motion mapping is a relative mapping,440
users with different body sizes should be equally able to use the system. From Figure 7, we see that the441
body size parameters height and arm length give similar progression of learning. However, according to442
Table 1 body size makes a difference in some learning criteria. Participants who are taller and have longer443
arms started with a better score (avg first 2), while shorter participants showed a faster learning behaviour444
(delta learning). In the end, there were no significant differences in the learning criteria except for the445
average of the best 3 scores avg 3. Note the effect of this user parameter is highly related to the model of446
the human and human-to-robot motion mapping method used in Section 2, and thus we cannot generalize447
that larger body sizes performs better. The takeaway from this experiment is that taller participants with448
longer arms performed better in this experiment, and that body size could play a role in HRC learning449
performance.

Figure 9. Body measures effect on learning. The pink group bar represents the lower measures and the blue
group bar represents the higher measures of the respective numeric user factor (for this and the upcoming
similar barplots).

450

5.2.2 Robot Familiarity and Anticipation451

According to the t-test results in Table 1, users who had commercial robots at home or at work performed452
slightly better on some learning criteria than those who were not that familiar with robots. However,453
having a theoretical background in robotics does not seem to be significant for learning. The participants’454
anticipation of the task had a bigger effect than assumed before the experiments. In total, 30 users out of 32455
thought the first trials were hard, but that it got easier in later trials. Therefore, we took the mean of the given456
answers and applied this threshold to divide the participants into two sample groups. Those participants457
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Figure 10. Robot familiarity and proximity effect on learning

who felt continuous difficulty achieved more consistent scores than those who felt the operation became458
gradually easier. This could be related to higher risk-taking from users that felt the operation became459
gradually easier. Another explanation could be that participants who felt a gradual easiness performed460
worse in the start trials, and then performed much better in later trials. However, the t-test does not return461
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any significant results either for avg first 2 or avg 3, which suggests that the risk-taking factor could play462
the bigger role.463

Similarly, the experience of having established a good communication with the robot is relativeley464
high among all users; only one user partly disagrees with this. Therefore, we took the mean of the given465
answers and applied this threshold to divide the users into two sample gropus with different levels of466
communication with the robot. The feeling of good communication with the robot seems to have a positive467
impact in reaching higher scores (highest and avg 3), but it takes longer to reach the plateau of learning468
according to the trial no avg reached learning criteria. Those who stated that they experienced a very good469
communication reached their consistent level of learning on average at the 8th trial, whereas those who470
agreed or partly agreed with having established a good communication reached their level of learning on471
average at the 6th trial. A possible reason for reaching the learning plateau slower could be that participants472
who commented positively towards having a good communication during the tests are observed to be more473
experimental and taking higher risks when they were about to reach the learning plateau.474

In all, (13/32) people expected to perform better, (14/32) people expected to perform worse, (2/32)475
did not give any opinions, and (3/32) provided conflicting opinions (i.e. agreeing or disagreeing to both476
questions). There seems to be an ambiguity in the self-reported success/failure beliefs due to conflicting477
answers. However, it is observed in the results of the t-test that those who believed they could have478
done better get significantly lower scores in 3 out of 6 learning criteria. Although delta learning was not479
found to be significantly different for this background factor, both the avg first 2 and avg last 2 were480
significantly different. This is an indication that users learned what could be objectively characterized as a481
good performance during the training. The results show that people who need more training could identify482
themselves based only on their own performance.483

5.2.3 Age, Gender and Job Category484

The age parameter was significant for 2 different learning criteria, trial no avg reached and485
delta learning. Although the difference is not large, the higher age group seem to converge on a learning486
state faster than the younger age group. However, when it comes to the plateau of learning, younger487
participants achieved a higher plateau of learning compared to older participants. In all, age seems not to488
be a significant factor if enough training is provided.489

Job category and gender should be looked at together because these two parameters are highly dependent490
on our group of participants. We registered people from 5 job categories; IT/engineering, health, craft, non-491
technical office job and unemployed. We analyzed data to see if IT/engineering-related jobs outperformed492
other jobs grouped together. Unfortunately, there were no women participants enrolled in IT/engineering493
jobs in the participant group, and thus the job category and the gender factor became indistinguishable494
in the learning criteria. From the analysis, we see that participants from IT/engineering jobs achieved495
significantly higher scores than other jobs. The amount of learning (delta learning) among men was also496
lower compared to the amount of learning among women. Although the baseline (avg first 3) of men were497
higher than women, and women performed learned more delta learning, men seem to learn enough from498
their baseline so that the difference in the average of highest 3 scores avg 3 is also significant in favour of499
men. Except for 3 outliers, men performed more consistently than women (See (var 3)).500

5.2.4 Gaming Habits501

The programming background seems to be advantageous both for the baseline (avg first 2) and for getting502
higher scores (highest, avg last 5 and avg 3). The current gaming habits do not seem to be a significant503
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Figure 11. Job category and gender effect on learning. The blue group bar represents IT/Engineering
related occupations in Job Category metric and male users in Gender metric. The pink and blue group bars
represent other occupations registered such as teacher, craftsperson, nurse, consultant, unemployed etc. in
Job Category metric and female users in Gender metric.

factor, which aligns with another relevant study in the literature (Tanaka et al., 2016), whereas past gaming504
habits seem to be advantageous in the same 3 learning criteria as for the programming background. We can505
note that the 3 users who were actively playing video games reported some confusion about the motion506
directions of the robot during the experiments. They reported that the mirrored motion of the robot was507
confusing since they were more used to a third-person or first-person view of controlling avatars. On the508
other hand, several users who did not have a lot of gaming experience reported the mirrored motion of509
the robot was intuitive, as the robot mimicked his/her motions. This should be taken into account when510
designing HRC systems that will be used by operators with different backgrounds in gaming.511

5.2.5 Physical and Mental Fatigue512

Neither mental nor physical tiredness was reported to be a challenging factor during the physical tasks513
as shown in Figure 7. Therefore, we took the mean of the given answers to the respective question and514
applied this threshold to divide the participants into two sample groups. The participants who experienced515
relatively low physical tiredness had a better start to the trials, and the users who experienced relatively516
high mental tiredness seemed to reach the learning plateau slower.517
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Figure 12. Programming skills and gaming habits effect on learning

Figure 13. Mental and Physical tiredness effect on learning

5.3 Independence of User Parameters518

As seen in the detailed comparisons, some parameters related to user background are not independent.519
For example gender and job category. To analyse which parameters were dependent for our participant520
group, we ran the Chi-Square test and the resultant dependent parameters list is given in Table 2. This521
suggests that we should be very careful to draw any individual conclusions on the link between learning522
criteria and the background factors in Table 2 without acknowledging the possible dependency on other523
background factors.524

6 CONCLUSION AND FUTURE WORK

This study investigates if anyone can learn to cooperate with robots through an experimental study with525
32 participants performing a co-lift task, and which background factors such as age, gender, job, gaming526
habits, programming skills, familiarity with robots etc. impact learning. The co-lift experimental setup527
used IMUs for upper-body motion estimation and gesture recognition, and a gamified experimental setup528
to increase user motivation. The results show that all users achieved a satisfactory level of cooperation529
with robots for the co-lift task regardless of background factors within seven or fewer trials. The rate530
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Table 2. Chi-Square of independence: list of dependent parameters
category-1 category-2 X 2 p
Gender Job Category 5.56 0.02
Gender Height 20.52 0.00
Gender Arm Length 8.73 0.00
Height Arm Length 14.22 0.00
Programming background Gender 4.89 0.03
Programming background Job Category 7.65 0.01
Programming background Past Gaming Habits 7.62 0.01
Past Gaming Habits Gender 4.69 0.03
Past Gaming Habits Job Category 4.07 0.04
Familiarity with Robots Gender 5.93 0.01
Familiarity with Robots Job Category 6.22 0.01
Familiarity with Robots Height 5.23 0.02
Familiarity with Robots Programming background 12.43 0.00
Familiarity with Robots Past Gaming Habits 9.11 0.00
Familiarity with Robots Current Gaming Habits 4.07 0.04
Believes that would do worse Mental Tiredness 4.66 0.03

of learning progression, level of achievement and how consistent the cooperation could be repeated for531
subsequent trials varied between different user groups, but the main conclusion is that all groups benefited532
from training irrespective of background factors and that all participants could achieve a satisfactory level533
of cooperation through training.534

We believe that the results show that the focus for HRC systems developers should not only be on535
optimizing the technical setup for human-robot cooperation but also focus on better user training to increase536
HRC uptake in the industry. The results presented in this paper show that all users benefit from training to537
better cooperate with a robot and that achieving a satisfactory level of cooperation for any user irrespective538
of background can be done within a fairly short time and a limited number of training runs. This suggests539
that the user’s background is not the hindering factor when it comes to the adoption of HRC in the industry.540

Finally, our study is limited to the co-lift task for HRC. Note that while the implementation of this task in541
this study was designed to be as generic and representative as possible for HRC tasks, we recognize that542
other HRC tasks that require other specific skills may give different results. However, we believe that the543
conclusions from this study apply to a wide range of HRC applications. Note also that the purpose of this544
study was not to reach a strict conclusion between user background factors and specific learning criteria,545
but rather to observe the learning process of the individuals and to investigate which background factors546
play a role in learning to better accommodate future implementation of HRC in industrial applications.547
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Gizem Ateş Venås: Conceptualization, Methodology, Investigation, Writing - original draft. Martin550
Fodstad Stølen: Conceptualization, Writing - review & editing. Erik Kyrkjebø: Conceptualization,551
Writing - review & editing.552

Frontiers 23

Paper F 249



Gizem Ates Venås et al.
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AUXILIARY DOCUMENT A
CONSENT FORM

The consent form which is signed by each human subject in the data collection step and
sent to the Norwegian Centre for Research Data (NSD)1 is provided in this chapter.

1https://www.nsd.no/
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Are you interested in taking part in the research project 

 “Experiments on physical human-robot interaction in a cooperative lifting scenario”? 

 
Purpose of the project 

You are invited to participate in a research project where the main purpose of this experiment is to 

investigate the applicability, intuitiveness, learnability, compatibility, and efficiency of human-robot 

interaction in a sample cooperative lifting scenario. The experiment relies on the hypothesis that while 

robots are durable, precise, and repeatable, humans have excellent problem-solving skills and are creative in 

their decision-making. The theory is that the humans and the robots can be an efficient team and this 

efficiency can be increased with training. Also, it is aimed to examine the relation of individuals’ particular 

features such as age, body size, related background etc. with the performance and the learning curve of 

human-robot interaction. It is hoped that the study will show the possibility of a human-robot team tested by 

various users. 

 

You are expected to carry a wooden table with a robot arm as shown in Figure-1 with the best of your 

ability. There will be 4 states named IDLE, APPROACH, COLIFT and RELEASE. The functionality of the 

system in different states will be explained in a tutorial video. 

 
 

Human-robot interaction can be assimilated to human-car interaction. You need to have a proper training 

before having a driving license and use a car effectively. Therefore, this experiment includes repetitive trials 

to train you in a short period of time. 

 

This project is a part of a doctoral thesis under the Teknoløft project which is funded by the Research 

Council of Norway through grant number 280771. The data collected during this experimental procedure is 

going to be used in academical publications within the same project. 

 

Which institution is responsible for the research project?  

Western Norway University of Applied Sciences is responsible for the project (data controller).  

 

Why are you being asked to participate?  

You are asked to be a participant because you are between 18 and 50 years old and have no reduced mobility 

of either arm (for example a cast or an inhibiting injury). Your contact details are not required but you can 

enter if you want to get updates about the publications where your data is being used. 

 

Figure 1: Experiment Overview 

258 Auxiliary Document: A



   

 

 

What does participation involve for you? 

The procedure consists of 2 surveys and 1 experimental activity. You can answer questions both in English 

and Norwegian. 

 

Pre-survey: 

You will be asked several questions about your personal information as well as your opinions about robots 

and technology. This will take about 5 minutes. 

Experimental activity: 

You will be equipped with 6 sensors to measure your body motions. The robot will move according to your 

motions and the behaviour of the robot will change in different states of the experiment. All the details of the 

robot movement, the game concept and the details about scoring will be explained in the tutorial video. The 

experimental activity consists of 10 repetitive trials. Each trial will take approximately 1-4 minutes (less in 

the last trials). The total procedure will take approximately 1 hour. 

Past-survey: 

You will be asked several questions about your experience with the experiment. This will take about 5 

minutes. 

 

The participants will be paid 200 Norwegian Kroner as SAMAN gift card. Additionally, the person who 

brought the most participants will earn an additional gift card. 

 

Participation is voluntary  

The participation in the project is COMPLETELY VOLUNTARY. If you choose to participate, you can 

withdraw your consent at any time without giving a reason. All information about you will then be made 

anonymous. There will be no negative consequences for you if you choose not to participate or later decide 

to withdraw.  

 

Your personal privacy – how we will store and use your personal data  

During the surveys, you will be answering some questions about your age, gender, anticipation to robots, 

technical background, occupation etc. Also, your height and arm length will be measured before the 

experiment. During the experimental activity, the data consist of body postures and motion data only – there 

will be no personal data registered. 

 

Additionally, we would like to record a video during the experimental activity for data comparison if 

needed. This will apply only if you agree. The privacy steps in storing the video data will be the same as 

other types of data. 
 

We will only use your personal data for the purpose(s) specified here and we will process your personal data 

in accordance with data protection legislation (the GDPR). Here is the list of people who will have access to 

your data and how your data will be stored. 

• All the data will be processed and secured by Gizem Ates (HVL - PhD Candidate). 

• The data will be accessible for Erik Kyrkjebø (Main Supervisor), Martin Fodstad Stølen (Co-

Supervisor) Janina Ramona Juranek (Adviser at the HVL research and innovation 

department) and Raquel Motzfeldt Tirach (HVL Robotics Lab Engineer).  

• The data will be collected by HVL owned password secured laptop (used by Gizem Ates) and 

stored on the HVL-secured OneDrive account (Gizem Ates’s HVL enterprise account). 

• The survey data will be directly stored on the HVL-secured OneDrive account (Gizem Ates’s 

HVL enterprise account). Experimental activity data will be first stored on HVL-200310 

laptop locally. Afterwards, it will be backed-up in the same OneDrive account. 

• Participants will not be recognizable in publications and no identifiable personal data will be 

publicly available. 
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What will happen to your personal data at the end of the research project?  

The planned end date of the project is December 2024. Afterwards, the data will be anonymized and 

archived according to HVL’s Open Data policy (archive reference 20/07537-4). 

 

Your rights  

So long as you can be identified in the collected data, you have the right to: 

- access the personal data that is being processed about you  

- request that your personal data is deleted 

- request that incorrect personal data about you is corrected/rectified 

- receive a copy of your personal data (data portability), and 

- send a complaint to the Norwegian Data Protection Authority regarding the processing of your 

personal data 

 

Note: Please note that after the academical articles are published, we cannot withdraw the publications made 

based on the collective data in which yours also included after they have been published. However, we can 

delete your data from the future publications if you contact us. 

 

What gives us the right to process your personal data?  

We will process your personal data based on your consent.  

 

Based on an agreement with Western Norway University of Applied Sciences Data Protection Services has 

assessed that the processing of personal data in this project meets requirements in data protection legislation.  

 

Where can I find out more? 

If you have questions about the project, or want to exercise your rights, contact:  

• Gizem Ates (Gizem.Ates@hvl.no , tel:46279880) Erik Kyrkjebø (Erik.Kyrkjebo@hvl.no ) 

• Our Data Protection Officer: Trine Anikken Larsen (Trine.Anikken.Larsen@hvl.no) 

 

If you have questions about how data protection has been assessed in this project, contact: 

• Data Protection Services, by email: (personverntjenester@sikt.no) or by telephone: +47 53 21 

15 00. 

 

 

Yours sincerely, 

 

 

 

Project Leader     

(Researcher) 

Gizem Ates 

 

------------------------------------------------------------------------------------------------------------------------- 

Consent form  
I have received and understood information about the project Experiment on physical human-robot 

interaction in a cooperative lifting scenario and have been given the opportunity to ask questions. I give 

consent:  

 

 to participate in pre- and post- surveys, 

 to participate in human-robot cooperative lifting activity, 

 for information about me to be published in a way that I cannot be recognised, 

 for my personal data to be anonymously archived after the project ends for research purposes only 
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I accept video recording during the experimental activity: 

 Yes 

 No 

 Anonymously only (All participants will be given a unified clothing to anonymize them during the 

video recording. Participants’ faces will not be recorded). 

 

 
I give consent for my personal data to be processed until the end of the project.  
 

 

---------------------------------------------------------------------------------------------------------------- 

(Signed by participant, date) 
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AUXILIARY DOCUMENT B
USER SURVEYS

The pre- and post-surveys which are used in the multi-user co-lift experiments.
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1/28/23, 5:52 PM PRE-SURVEY

https://forms.office.com/pages/designpagev2.aspx?subpage=design&id=lXkdCjS3KU2LkLqaB1vdbbsobL7xzChPrOWXh1CrTxxU… 1/6

* Required

PRE-SURVEY

The survey will take approximately 6 minutes to complete. 
Thank you for joining "experiments on physical human-robot interaction in a cooperative lifting scenario". 
This survey is the first step where we ask some personal questions about you. As explained in the 
consent form, your answer will be anonymized. Noone else than the people written on the consent form 
will have an access to your answers. 

So, if we are confident, let's start!

Personal Information

Experiment ID number: * 1.

How old are you? * 2.

Woman

Man

Non-binary

Prefer not to say

What is your gender? * 3.
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https://forms.office.com/pages/designpagev2.aspx?subpage=design&id=lXkdCjS3KU2LkLqaB1vdbbsobL7xzChPrOWXh1CrTxxU… 2/6

What is your occupation? If you are a student, please state your department 
also. * 

4.

What is your height? If you don't know for sure, we can measure it later.5.

How did you find us? Remeber: the participant who brings the most amount of 
participants will get double gift card :)

6.
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https://forms.office.com/pages/designpagev2.aspx?subpage=design&id=lXkdCjS3KU2LkLqaB1vdbbsobL7xzChPrOWXh1CrTxxU… 3/6

Interest

0 1 2 3 4 5 6 7 8 9 10

Never Almost every day

How often do you play video games? * 7.

0 1 2 3 4 5 6 7 8 9 10

Never Almost everyday

How often did you use to play video games when you were a kid? * 8.

0 1 2 3 4 5 6 7 8 9 10

Not at all Very Often

Have you done any programming? How often do you use programming in your 
life? * 

9.
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Anticipation on robots

Please read each statement and choose the option that suits you best. * 10.

Completely
disagree

Completely
disagree

Disagree

Disagree

Partly
disagree

Partly
disagree

No opinion

No opinion

Partly
agree

Partly
agree

Agree

Agree

Completely
agree

Completely
agree

I am quite
into robotics
field and I
have close
interaction
with robots.

I have a robot
(cleaner or
another
device) at
home/work
so I have
some
interaction
with robots.

I haven't
touched an
industrial
robot arm
before.

I enjoy
watching fun
videos about
robots.

I think
robotics
technology
has
developed a
lot and it
amuses me.

I think
robotics
technology
has
developed a
lot and it
scares me.

I think robots
will take over
human jobs
and Auxiliary Document: B 267
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https://forms.office.com/pages/designpagev2.aspx?subpage=design&id=lXkdCjS3KU2LkLqaB1vdbbsobL7xzChPrOWXh1CrTxxU… 5/6

and
THEREFOR
E many
people will be
unemployed.

I think robots
will take over
human jobs
and BUT
many new
jobs
opportunities
will be
formed.

I think think
robots will
take over
heavy human
jobs and the
average life
quality will
increase.

I prefer
humans and
robots work
together
instead of
removing
either of them
from the
picture.

I believe
there are
many jobs
that humans
cannot be as
good as
robots.

I believe
there are
many jobs
that robots
will never be
as good as
humans.

I believe that
robots will
take over the
world and
destroy
humankind
one day.
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This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

Problems and Solutions

I read instructions before I attempt solving it.

I start solving first and check the instructions meanwhile.

I try solving first. I check the instructions if I can't solve it myself.

I try solving first. I give up if I can't solve it. Challenge is not my cup of tea.

When I am given a task/problem11.

I am very sceptical. I don't think I can accomplish it or it will take very long.

With enough given enough time, I can accomplish it.

I believe that I can do it.

What do you think about accomplishing this task?12.
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* Required

POST-SURVEY

Thank you for joining "experiments on physical human-robot interaction in a cooperative lifting scenario". 
This survey is the last step where we ask your experience. As explained in the consent form, your answer 
will be anonymized. Noone else than the people written on the consent form will have an access to your 
answers. 

So, if we are confident, let's finish it!

Overall experience

Experiment ID number: * 1.

Please read each statement and choose the option that suits you best. * 2.

Completely
disagree

Completely
disagree

Disagree

Disagree

Partly
disagree

Partly
disagree

No opinion

No opinion

Partly
agree

Partly
agree

Agree

Agree

Completely
agree

Completely
agree

Tutorials
were clear
and enough.

The screen
was useful to
give a
feedback.

I am
surprized that
a robot can
be controlled
without using
any cameras
that good.

I thi ki
270 Auxiliary Document: B
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One more time about robots: * 3.

Completely
disagree

Completely
disagree

Disagree

Disagree

Partly
Disagree

Partly
Disagree

No opinion

No opinion

Partly
agree

Partly
agree

Agree

Agree

Completely
agree

Completely
agree

I was thinking
that I would
do better.

I was thinking
that I would
do worse.

I think this
study can be
useful for
human-robot
cooperation
use cases.

The first trials
were more
difficult but
the last ones
were quite
easy.

The duration
of the
experiment
was too long.

If feels like
the robot has
some sort of
intelligence.

It feels like
the robot and
I had a good
communicati
on.

It feels like
robot and I
established a
connection.

I think
robotics
technology
has
developed a
lot and it
amuses me. Auxiliary Document: B 271
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Completely
disagree Disagree

Partly
Disagree No opinion

Partly
agree Agree

Completely
agree

I think
robotics
technology
has
developed a
lot and it
scares me.

I think robots
will take over
human jobs
and
THEREFOR
E many
people will be
unemployed.

I think robots
will take over
human jobs
and BUT
many new
jobs
opportunities
will be
formed.

I think think
robots will
take over
heavy human
jobs and the
average life
quality will
increase.

I prefer
humans and
robots work
together
instead of
removing
either of them
from the
picture.

I believe
there are
many jobs
that robots
will never be
as good as
humans.

I believe
there are
many jobs
that humans
cannot be as
good as272 Auxiliary Document: B
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good as
robots.

I believe that
robots will
take over the
world and
destroy
humankind
one day.
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Physical and cognitive load

0 1 2 3 4 5 6 7 8 9 10

Easy Difficult

How difficult was the task? Please consider 1 task only, not the overall 
experiment. * 

4.

0 1 2 3 4 5 6 7 8 9 10

Easy Difficult

How difficult was the task? Please consider 10 trials together, not an individual 
trial. * 

5.

0 1 2 3 4 5 6 7 8 9 10

Not intuitive at all Very intuitive

How intuitive was the system to use? * 6.

0 1 2 3 4 5 6 7 8 9 10

Not at all Very tired

How tired do you feel? (Physically) * 7.

0 1 2 3 4 5 6 7 8 9 10

Not at all Very tired

How tired do you feel? (Mentally) * 8.
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Your opinions on...

What was the state that you think was the easiest?9.

What was the state that you think was the hardest?10.

What was the state that you enjoyed at most?11.

Has your opinion about robots changed after taking part in this research 
experiment? Please briefly explain.

12.

Has your opinion about human-robot cooperation changed after taking part in 
this research experiment? Please briefly explain.

13.
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Microsoft Forms

Do you have any opinions where this study (fully or partly) be useful?14.

Is there anything that we could improve?15.

Any last thoughts?16.
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USERS’ MOTION DATA

The data given in this section is the real-time motion data of 32 users collected from
the user, the robot and the table during the multi-user co-lift experiments.

5 types of measures of human motions are presented; motion hand (left hand for
this case), steering hand (right hand in this case), merged hands (human input to the
system, which is the combination of two hand motions), right elbow height and left
elbow height. 2 types of robot motions are presented: the TCP motion (end-effector
motion) and the exerted force in the y-axis, which is towards the robot. The human
motion data are in the z-direction of the global reference frame, which is from the
ground to the zenith. From the table motion measurements, only one type of data
is presented and it is the acceleration of the table in the x-axis (which is towards the
human’s left on the horizontal plane).

Additionally, the score data is shown as well as the task states are indicated with
respective background colours: IDLE-blue, APPROACH-pink, COLIFT-green, and
RELEASE-yellow. Commonly, in the initial part of the plots, the IDLE and APPROACH
colours are transitioned often but labelled separately. The reason is to show the
intended usage of the system which starts with IDLE, goes through APPROACH and
COLIFT and finalizes with RELEASE.

Notes: User 28373 - the battery of the 2nd button was out at trials 9 and 10. Therefore,
additional 60 points were added to each trial at the end of the experiments. Later on,
the button is fixed.

User 49345 trial-1 corrupted motion data - most probably related to the particular
rosbag at that particular time when the RAM was pretty full.

User 97647 trial-2 corrupted motion data - most probably related to the particular
rosbag at that particular time when the RAM was pretty full.
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Fig. 1: User ID: 10958

Fig. 2: User ID: 11982
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Fig. 3: User ID: 13421

Fig. 4: User ID: 14026
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Fig. 5: User ID: 20430

Fig. 6: User ID: 21984
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Fig. 7: User ID: 27968

Fig. 8: User ID: 28373
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Fig. 9: User ID: 35764

Fig. 10: User ID: 37446
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Fig. 11: User ID: 40002

Fig. 12: User ID: 42761
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Fig. 13: User ID: 43702

Fig. 14: User ID: 44035
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Fig. 15: User ID: 45345

Fig. 16: User ID: 46173
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Fig. 17: User ID: 46904

Fig. 18: User ID: 49345
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Fig. 19: User ID: 52870

Fig. 20: User ID: 54264
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Fig. 21: User ID: 65093

Fig. 22: User ID: 70285
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Fig. 23: User ID: 78604

Fig. 24: User ID: 80266
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Fig. 25: User ID: 83972

Fig. 26: User ID: 92463
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Fig. 27: User ID: 95467

Fig. 28: User ID: 95532
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Fig. 29: User ID: 95691

Fig. 30: User ID: 97647
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Fig. 31: User ID: 98684

Fig. 32: User ID: 98871
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