

Vision System for
Detection of Exposed Anode Surface

Exploring the Feasibility of Reducing CO2 Emissions
in the Aluminium Industry Using Computer Vision

Asbjørn Tjensvold, Eskil Digernes, Stian Flåten

Bachelor’s thesis in Automation and Robotics

Submission date: 22nd of May, 2023
Supervisor: Endre Håland, HVL
Co-supervisor: Simen Vatslid Øystese, Hydro

Western Norway University of Applied Science (HVL)
Faculty of Engineering and Science

PREFACE

In this thesis, we explored Computer Vision (CV) and Machine-Learning (ML)
despite not having studied them formally. Our foundation came from our robotics
course book, "Robotics, Vision and Control," which guided our initial approach.

We express our gratitude to our co-supervisor at Hydro, Simen Vatslid Øystese,
for his unwavering support, and Dr Morten Karlsen, who shared insights and
urged simplicity with his mantra, "Why overcomplicate it?". We extend our
gratitude to our supervisor at HVL, Endre Håland. His unwavering passion
and enthusiasm have been contagious, and his guidance has been invaluable
throughout this project—lastly, Dr Trond Eirik Jentoftsen, who introduced us to
this subject via a simple email.

This thesis presents our development of a vision system for detecting exposed
anode surfaces at an aluminium smelter. We hope our work contributes to the
field and inspires future research.

Bergen, 22nd of May 2023

i

ii

ABSTRACT

This thesis applies Computer Vision (CV) techniques to develop a Proof of
Concept (POC) to detect exposed anode surfaces in aluminium smelters.
Both basic colour, as well as edge detection algorithms and sophisticated
Machine-Learning (ML) neural networks, were employed in developing this POC.
A comparative analysis of the two methods revealed the neural network approach
to be superior in accuracy, despite its more time-consuming development process.

The purpose of the POC is to target the adverse effects of aluminium smelting
on the environment and economy. Aluminium production is among the most
energy-intensive processes in Norway and accounts for 4 % of Norway’s total
greenhouse emissions [1]. The system is designed to identify exposed anode
surfaces in the smelting process, which can significantly reduce CO2 emissions
and make aluminium production more profitable in a future with increasing CO2

quota costs.

Furthermore, the results of this study demonstrate the feasibility and effectiveness
of employing CV techniques for detecting exposed anode surfaces in aluminium
smelters. The POC system developed in this research lays the groundwork for
future advancements and exploration in this field, such as the automation of tasks.

iii

SAMANDRAG

Denne oppgåva nyttar bildegjenkjenning, eller Computer Vision, for å utvikle
eit konseptbevis i form av ein bildegjenkjenningsalgoritme, som skal oppdage
eksponerte anodeoverflater i aluminiumssmelteverk. Både grunnleggjande
farge- og kantgjenkjenning, samt nevrale nettverk vart nytta i utviklinga av
dette konseptbeviset. Ein samanliknande analyse av dei to metodane viste at
tilnærminga med nevralt nettverk hadde klart betre nøyaktighet, men ein meir
tidkrevjande utviklingsprosess.

Føremålet med konseptbeviset er å takle dei negative konsekvensane
aluminiumsproduksjon har på miljøet og økonomien. Aluminiumsproduksjon er
blant dei mest energikrevjande prosessane i Noreg og står for 4 % av Noregs
totale klimagassutslepp [1]. Systemet er laga for å identifisere eksponerte
anodeoverflater i smelteprosessen, noko som kan redusere CO2-utsleppa
betydeleg, og gjere aluminiumsproduksjon meir lønsamt i ei framtid med
aukande CO2-kvotekostnader.

Resultata i denne oppgåva viser at det både er gjennomførbart og effektivt
å bruke eit maskinlæringssystem for å oppdage eksponerte anodeoverflater i
aluminiumssmelteverk. Konseptbeviset som er utvikla i denne oppgåva, legg
grunnlaget for vidare framsteg og utforsking på dette området, til dømes
automatisering av arbeidsoppgåver.

iv

Contents

Preface i

Abstract iii

Abstract (Norwegian) iv

Contents vii

List of Figures viii

List of Tables x

Acronyms xi

1 Introduction 1
1.1 Motivation . 1
1.2 Consequences of Inadequate Covering 2
1.3 Project Description and Milestones 3
1.4 Thesis Overview . 4

2 Background 11
2.1 The Production of Primary Aluminium 11

2.1.1 The Electrolysis Cell . 11
2.1.2 The Anode Covering Operation 13
2.1.3 The Cause of Hot Spots . 14
2.1.4 Hydro Årdal’s CO2 Roadmap 15

2.2 Tool Background . 17
2.2.1 Image Sensor and Bit Resolution 17
2.2.2 Introduction to Machine-Learning 18

2.2.2.1 Datasets and Training-Test Split 18
2.2.2.2 Preventing Overfitting in Machine Learning Models 19
2.2.2.3 Parameters and Hyperparameters 19

2.2.3 Convolutional Neural Networks 19

v

3 Methodology 25
3.1 Challenge Analysis . 25
3.2 Tool Consideration . 26

3.2.1 Hardware Selection . 27
3.2.2 Software Selection . 27

3.3 Camera Positioning . 28
3.4 Determining Height of Anode Cover Material (ACM) 29
3.5 Solution One: Colour and Edge Detection 30

3.5.1 Analysing Colours with Histograms 30
3.5.2 Detecting Hot Spots with Hue-Saturation-Value 32
3.5.3 Detecting Uncovered Areas with Edge Detection 34

3.6 Solution Two: Convolutional Neural Network 34
3.6.1 Training YOLOv5 Step-by-Step 35

3.6.1.1 Step I: Setting up the Software 35
3.6.1.2 Step II: Preparing the Data 35
3.6.1.3 Step III: Training Our YOLOv5 Model 36

3.6.2 Version 1.0: Using YOLOv5 and Roboflow 38
3.6.3 Version 2.0: Using YOLOv5 and MakeSense 39
3.6.4 Version 2.1: Using YOLOv5 and RoboFlow 40

3.7 Running our Models Locally . 42
3.7.1 Implementation with Images 42
3.7.2 Implementation with Video 43

4 Results 45
4.1 Results: Solution One . 45

4.1.1 Colour and Edge Detection Examples 45
4.2 Results: Solution Two . 47

4.2.1 Version 1.0: YOLOv5 and Roboflow 47
4.2.2 Version 2.0: YOLOv5 and MakeSense 53
4.2.3 Version 2.1: YOLOv5 and RoboFlow 57

4.3 Testing: Images and video . 61
4.3.1 iPhone Images . 62
4.3.2 GoPro Images . 66
4.3.3 iPhone Video . 68
4.3.4 GoPro Video . 71

5 Discussion 73
5.1 Results from Solution One and Two 73

5.1.1 Version 1.0 . 74

vi

5.1.2 Version 2.0 . 74
5.1.3 Version 2.1 . 75
5.1.4 Comparing Versions . 76
5.1.5 Wide-Angle Impact on Detection from the GoPro 77
5.1.6 Latency Issues and GPU Requirements 78

5.2 Potential Solutions . 79
5.2.1 Corrosion Protection . 79
5.2.2 Real-Time Detection . 79
5.2.3 Cloud-Based Prioritisation 80
5.2.4 Vehicle Considerations . 81

5.3 Further Work . 82
5.3.1 Phase I: Refining the Algorithm 82
5.3.2 Phase II: Implementation 82
5.3.3 Phase III: Autonomous Covering Crane 83

6 Conclusions 85

References 87

Appendices: 93

A - Github and Google Links 94

B - Equations and Functions 95

C - Report Organising and Employer 112

D - Calculation of Savings 114

vii

List of Figures

1.1.1 Rows of electrolysis cells in Øvre Årdal [4]. 1
1.2.1 Inside an electrolysis cell: a hot spot on an anode. 2

2.1.1 Cross section of an electrolysis cell [9]. 12
2.1.2 Illustration of the anode replacement pattern [9]. 13
2.1.3 The covering vehicle [11]. 14
2.1.4 The visible wavelength spectrum in nanometres [12]. 14
2.1.5 CO2 target for 2025 [5]. 15
2.1.6 Hot spots around tapping hole and feeding point. 16
2.2.1 Illustatition of image sensor end the Red-Green-Blue (RGB) colour

profile. 17
2.2.2 Illustration of data set division [20]. 18
2.2.3 Architecture of our first Convolutional Neural Network (CNN)

model V1.0. 20
2.2.4 Convolution between input image I and a kernel K [27]. 20
2.2.5 Graph of the Rectified Linear Unit (ReLU) function [29]. 21

3.2.1 Out-of-focused cell image due to strong magnetic fields. 26
3.3.1 Pictures of us gathering data for our training set. 28
3.4.1 A ruler depicting the height of the stub. 29
3.5.1 Histogram of well-covered anodes. 31
3.5.2 Histogram of anodes with a hot spot present. 31
3.5.3 HSV diagram indicates the Hue-Saturation-Value values,

respectively [40]. 32
3.5.4 HSV values used to mask hot spots. 33
3.5.5 Left to right: RGB with hot spot detector, HSV image, and

NumPy mask. 33
3.5.6 Edge detection results highlighting the limitations in accurately

identifying uncovered areas. 34
3.6.1 Simplified flow diagram of how we trained our You Only Look

Once version 5 (YOLOv5) model. 35
3.6.2 Sample of object annotation on a hot spot. 36

viii

3.7.1 Interface for operators showing detection off and on with a console
log of the precision point probability of each class. 43

3.7.2 Alternative interface for operators with class probability depicted
in percentage. 44

4.1.1 Illustrating the limitations of simple colour detection. 46
4.2.1 A textbook demonstration of Precision-Recall (PR) curves for

three models: No Skill, Good Model, and Perfect Model. Illustrating
clearly the differences in performance among models [51]. 47

4.2.2 PR curve of Version 1.0. 49
4.2.3 mean Average Precision (mAP) curves of Version 1.0. 50
4.2.4 Confusion matrix of Version 1.0. 51
4.2.5 F1 curve of Version 1.0. 52
4.2.6 PR curve of Version 2.0. 53
4.2.7 mAP curves of Version 2.0. 54
4.2.8 Confusion matrix of Version 2.0 55
4.2.9 F1 curve of Version 2.0. 56
4.2.10 PR curve of Version 2.1. 57
4.2.11 mAP curves of Version 2.1. 58
4.2.12 Confusion matrix of Version 2.1. 59
4.2.13 F1 curve of Version 2.1. 60
4.3.1 Real-world test for detecting a hot spot. 62
4.3.2 Real-world test for detecting uncovered area. 63
4.3.3 Real-world test for detecting exposed stubs around tapping hole. . 64
4.3.4 Real-world test for detecting hidden uncovered area. 65
4.3.5 Real-world test for GoPro’s wide focal length. 66
4.3.6 Real-world test on distorted image. 67
4.3.7 Real-world test on iPhone video for detecting uncovered areas. . . 68
4.3.8 Real-world test on iPhone video for detecting hot spots. 69
4.3.9 Real-world test on iPhone video for detecting hot spots. 70
4.3.10 Real-world test on GoPro video for detecting uncovered areas. . . 71
4.3.11 Real-world test on GoPro video for detecting hot spots. 72

5.1.1 The budget-friendly Nvidia GeForce RTX 2070 Graphics
Processing Unit (GPU) [54]. 78

5.2.1 A crust breaker chiselling out a butt. 81

C.1 From left to right: Asbjørn, Stian, Eskil. 112
C.2 Norsk Hydro’s emblem [60]. 113
C.3 The aluminium smelter in Øvre Årdal [61]. 113

ix

List of Tables

1.4.1 Overview of objects and industry-specific terminology central to the
thesis. 5

1.4.2 Overview of the different solutions. Solution One’s performance is
not worth considering. 6

1.4.3 Overview of the tests carried out. 7
1.4.4 Comparison of YOLOv5, Colour Detection, and Edge Detection. . . 8
1.4.5 Overview of the tools used: premade or self-made. 9

3.6.1 NVIDIA Tesla T4 specification sheet. [47]. 37
3.6.2 V1.0 Classification table showing the count of each class. 38
3.6.3 V2.0 Classification table showing the count of each class. 40
3.6.4 V2.1 Classification table showing the count of each class. 40
3.6.5 Test results showing the performance of V2.1 on a NVIDIA® T4

GPU. 41

5.1.1 Overview of the quantity and types of images, as well as the
labelling tools used in training the various ML-models. 77

x

ACRONYMS

List of all acronyms in alphabetic order:

ACM Anode Cover Material

ADC Analogue-Digital Converter

AI Artificial Intelligence

API Application Programming
Interface

CCD Charge-Coupled Device

CFA Colour Filter Array

CMOS Complementary
Metal-Oxide-Semiconductor

CNN Convolutional Neural
Network

CPU Central Processing Unit

CV Computer Vision

FPS Frames Per Second

GPU Graphics Processing Unit

HSV Hue-Saturation-Value

HVL Western Norway University
of Applied Science

IPCC Intergovernmental Panel on
Climate Change

LiDAR Light Detection and
Ranging

IoU Intersection over Union

mAP mean Average Precision

ML Machine-Learning

NMS Non-Maximum Suppression

POC Proof of Concept

PR Precision-Recall

ReLU Rectified Linear Unit

RGB Red-Green-Blue

ROC Receiver Operating
Characteristic

SOP Standard Operating
Procedure

TOS Technology and Operational
Support

YOLOv5 You Only Look Once
version 5

xi

CHAPTER

ONE

INTRODUCTION

1.1 Motivation

According to a statement by the Norwegian government [2], achieving carbon
neutrality by 2050 is a global imperative. In response to this goal, Norsk Hydro,
a leading Norwegian aluminium company, has initiated various strategies to curb
carbon emissions [3]. One such strategy targets the reduction of CO2 emissions
stemming from insufficient anode covering in Hydro’s aluminium-producing
facilities, commonly referred to as aluminium smelters. These facilities produce
aluminium via electrolysis cells, as seen in Figure 1.1.1.

Figure 1.1.1: Rows of electrolysis cells in Øvre Årdal [4].

Currently, the anode covering operation is performed by operators, with little to
no subsequent monitoring. To tackle this issue, Norsk Hydro has commissioned us
to development of a Proof of Concept (POC) for an image recognition algorithm
capable of identifying inadequately covered anodes that could provide feedback

1

2 CHAPTER 1. INTRODUCTION

to the respective operators. While the research phase will involve a camera
mounted on a tripod, the final objective will be to incorporate the camera onto
the equipment used for the anode covering operation. However, the final object is
not a part of this thesis but could be completed in a later project.

1.2 Consequences of Inadequate Covering

Inadequate anode covering will lead to exposed anode surfaces that eventually
develop oxidation points, often called hot spots, as shown by the red circle in
Figure 1.2.1. If left unaddressed, these hot spots contribute significantly to
CO2 emissions, accounting for more than 9 % of the total CO2 generated in the
electrolysis process at Norsk Hydro’s smelter in Øvre Årdal.

Figure 1.2.1: Inside an electrolysis cell: a hot spot on an anode.

Consequently, Hydro Årdal incurs substantial costs, exceeding 2 million NOK
per month, for CO2 quotas related to anode burn [5]. However, the financial
implications of this issue extend beyond quotas, as they do not include the loss
of carbon anode mass [6].

Most importantly, CO2 emissions have significant environmental consequences.
The current climate crisis, driven predominantly by greenhouse gases such as
CO2, represents one of our society’s greatest challenges. According to the
Intergovernmental Panel on Climate Change (IPCC), urgent action must be taken
to minimise its effects [7].

CHAPTER 1. INTRODUCTION 3

1.3 Project Description and Milestones

Aluminium smelters pose a challenging operational environment with high
temperatures, magnetic fields, and corrosive dust and gases. Consequently,
this thesis will involve assessing and optimising the camera’s specifications and
positioning to ensure optimal performance under these demanding conditions.
Furthermore, we aim to develop a vision algorithm that meets three milestones
outlined by Hydro Årdal:

1. Capable of detecting hot spots.

2. Expand the algorithm to identify uncovered areas that have not yet
developed into hot spots.

3. Ultimately, enable the algorithm to determine the height of the Anode Cover
Material (ACM).

The latter is not directly linked to anode burn, but the covering is also an
important insolation layer and, thus, important for the energy efficiency of the
cell. If the concept proves successful, it could yield substantial benefits and
warrant further investment for continued development. This thesis is open to
a range of interpretations, and the milestones set by Hydro were purposely
structured to enable multiple approaches.

The project team will visit Hydro Årdal, where we will conduct multiple visits
to gather images for algorithm development and take measurements of potential
camera positions. In the next section, a brief overview of this thesis will be
provided.

4 CHAPTER 1. INTRODUCTION

1.4 Thesis Overview

The main structure of this thesis is as follows:

Introduction: This section offers an introduction and overview of the project,
along with a description of its motivating factors.

Background: This section provides necessary background information that
enhances the comprehension of the project.

Methodology: This section details the project’s procedures and the means of
their application.

Results: This section presents and critiques the outcomes of the multiple
solutions. It also includes an analysis of the images and videos used in the testing.

Discussion: This section provides a discussion of the results and offers possible
solutions for future research and development.

Conclusions: This conclusive section encapsulates the project, emphasising the
most effective solution and providing a summary of the work accomplished.

CHAPTER 1. INTRODUCTION 5

Table 1.4.1 briefly describes objects and industry-specific terminology associated
with the aluminium sector that is central to the thesis. All of these objects are
located within the electrolysis cell.

Object Image Description

Hot spot Exposed anode surface that has
developed into an oxidation point. The
glowing red spot on the anode surface
is often called hot spot.

Uncovered area Exposed anode surface, or Uncovered
area, that eventually will develop into
a hot spot.

Stub Cylindrical mounting on top of the
anode.

Point flame Flames that often spew through the
cracks of the crust. The colour can vary
from darker red (resembling the colour
of a hot spot) to blue.

Tapping hole Intentional holes in the anode cover
material that are used to extract the
aluminium from the cell. (The colour of
a tapping hole can resemble the colour
of a hot spot.)

Table 1.4.1: Overview of objects and industry-specific terminology central to the thesis.

6 CHAPTER 1. INTRODUCTION

Table 1.4.2 provides an overview of the different solutions implemented and
evaluated in the thesis.

Solution Purpose Description Reference Result

Colour Detection
(Solution One)

Detect hot spots Hue-Saturation-Value
colour detection
(OpenCV)

Sec. 3.5.2,
4.1, 5.1, 6

Images:
Inaccurate
Video:
N/A

Edge Detection
(Solution One)

Detect uncovered
areas

cv2.Canny method,
edge detection
(OpenCV)

Sec. 3.5.3,
4.1, 5.1, 6

Images:
Inaccurate
Video:
N/A

Version 1.0
(Solution Two)

Detect hot spots
and uncovered
areas

Custom YOLOv5
model

Sec. 3.6.2,
4.2.1, 4.3,
5.1.1, 5.1.4,
6

Images:
Accurate
Video:
Inaccurate

Version 2.0
(Solution Two)

Detect hot spots,
uncovered areas,
stubs, point
flames, and
tapping holes

Custom YOLOv5
model

Sec. 3.6.3,
4.2.2, 4.3,
5.1.2, 5.1.4,
6

Images:
Accurate
Video:
Accurate

Version 2.1
(Solution Two)

Detect hot spots,
uncovered areas,
stubs, point
flames, and
tapping holes

Custom YOLOv5
model

Sec. 3.6.4,
4.2.3, 4.3,
5.1.3, 5.1.4,
6

Images:
Accurate
Video:
Accurate

Table 1.4.2: Overview of the different solutions. Solution One’s performance is not
worth considering.

CHAPTER 1. INTRODUCTION 7

Table 1.4.3 provides a summary of the tests conducted in the thesis to evaluate
the effectiveness of different solutions and factors. (The acronym ML in the table
stands for Machine-Learning.)

Test Purpose Description Reference Result

Colour and
Edge
Detection

Assess its
effectiveness

HSV colour
detection,
cv2.Canny method
edge detection
(OpenCV)

4.1.1 Inaccurate

Various
ML-versions

Determine the
most effective
version

ML-versions V1.0,
V2.0, and V2.1
tested on images
and video

Sec. 4.3 V2.1: Most optimal
V2.0: Comparable
accuracy to V2.1
V1.0: Inaccurate

Various
cameras

Determine
which camera
is optimal

Capturing images
and video from
iPhone 11 Pro and
GoPro HERO11

Sec. 4.3,
5.1.5

iPhone 11 Pro
marginally more optimal
than GoPro HERO11

Distorted
image

Moderate
stress testing
on the various
solutions

Testing Solution
One and
ML-versions in
Solution Two on
distorted image

Sec. 4.1.1,
4.3.4

Solution One:
Inaccurate
V1.0: Accurate
V2.0: Mostly accurate
V2.1: Mostly accurate

Table 1.4.3: Overview of the tests carried out.

8 CHAPTER 1. INTRODUCTION

Table 1.4.4 compares the pros and cons of YOLOv5, Colour detection, and Edge
detection.

Methods Description Pros Cons Result

YOLOv5 Real-time object
detection
algorithm using
deep learning and
convolutional
neural networks.

- Real-time object
detection
- High accuracy

- Requires large
annotated dataset
- Higher
computational
requirements

Accurate
detections in
images and
video

Colour
Detection

Separates hue
from value and
saturation,
enabling easier
color-based
operations like
detection and
segmentation.

- Simpler
implementation
- Lower
computational
requirements

- Less accurate
- Sensitive to
lighting conditions
- Basic technology

Inaccurate in
this instance

Edge
Detection

Employs Canny
technique for edge
detection,
analysing
gradients and
reducing noise for
better accuracy.

- Simpler
implementation
- Lower
computational
requirements

- Less accurate
- Sensitive to
lighting conditions
- Not very
customisable
- Basic technology

Inaccurate in
this instance

Table 1.4.4: Comparison of YOLOv5, Colour Detection, and Edge Detection.

CHAPTER 1. INTRODUCTION 9

Table 1.4.5 provides an overview of which tools we have used and if they are
premade or self-made.

Tools Used Description Premade Self-made Reference

YOLOv5 framework Object detection
algorithm that employs
a single neural network
for real-time object
recognition and
localisation in images.

✓ Sec. 3.6

YOLOv5
implementation for
Solution Two

Custom -trained
YOLOv5 models.

✓ Sec. 3.6, 4.2

Local
implementation
with images

Running the YOLOv5
models with images
locally on a computer
without an internet
connection.

✓ Sec. 3.7.1

Local
implementation
with video

Running the YOLOv5
models with video
locally on a computer
without an internet
connection.

✓ Sec. 3.7.2

Table 1.4.5: Overview of the tools used: premade or self-made.

10 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

BACKGROUND

2.1 The Production of Primary Aluminium

To understand the relevance of this thesis, it is essential to understand the
fundamentals of primary aluminium production. This subsection is therefore
dedicated to this purpose.

2.1.1 The Electrolysis Cell

Primary aluminium is produced through the electrolysis of aluminium oxide
(Al2O3), also known as alumina, in an electrolytic cell containing carbon
electrodes: anodes and a cathode. A high electric current flows through the
cell, driving the electrochemical reactions. The anodes, which are the positively
charged electrodes, are submerged in an electrolyte solution, commonly referred
to as bath, consisting of a mixture of alumina, cryolite (Na3AlF6), and other
compounds. Cryolite serves to dissolve the alumina and decrease its melting point,
while the additional compounds are employed to fine-tune the chemical properties
of the electrolyte [8]. This thesis will focus on the simplified electrochemical
reaction, as depicted in Equation 2.1.

2Al2O3(s) + 3C(s) −→ 4Al(l) + 3CO2(g) (2.1)

This reaction is a reduction-oxidation (redox) process in which the oxygen present
in the alumina reacts (oxidises) with the carbon in the anode, yielding carbon
dioxide. At the same time, the liquid aluminium precipitates to the cathode
(reduces) at the bottom of the cell.

11

12 CHAPTER 2. BACKGROUND

Figure 2.1.1: Cross section of an electrolysis cell [9].

The electrolysis process operates continuously, necessitating regular tapping of the
molten aluminium and replacement of the anodes. The consumption rate of the
anodes and the production of primary aluminium is proportional to the current
strength and is described by Faraday’s Law of Electrolysis as shown in Equation
2.2 [10].

m =
Q

F
· M
z

(2.2)

Where:

• m is the mass of substance produced (aluminium) or consumed (carbon
anode) in grams (g)

• Q is the electric charge passed through the electrolytic cell in coulombs (C)

• M is the molar mass of the material being deposited or dissolved (in grams
per mole)

• F is Faraday’s constant, representing the charge per mole of electrons and
having a value of 96,485 C/mol for most applications.

• z represents the number of moles of electrons that are transferred during the
reaction.

At Hydro Årdal, the anodes are typically replaced every 24 days. In Figure 2.1.2,
a side view of a cell illustrates the consumption of anodes.

CHAPTER 2. BACKGROUND 13

Anode one will be the next anode to be replaced, whereas anode eight is most
recently changed. Used anodes are commonly referred to as butts.

Figure 2.1.2: Illustration of the anode replacement pattern [9].

2.1.2 The Anode Covering Operation

After replacing an anode, the surfaces of the anodes are exposed, rendering them
vulnerable to react with oxygen present in the ambient air rather than the oxygen
in the alumina. Extended exposure to ambient air will cause the entire carbon
mass of the anode to burn off, leading to decreased production and increased CO2

emissions. Consequently, covering the anodes with Anode Cover Material (ACM)
is crucial.

The ACM also serves as an insulator, enhancing the cell’s energy efficiency,
balancing the bath’s chemical properties, and reducing fluoride gas emissions.
The covering compound is a mixture of alumina and cryolite, and its composition
is adjusted based on the chemical properties of the bath [11]. Anode covering
should start approximately four hours after the anode replacement.

The ACM is ejected through a nozzle, as shown in Figure 2.1.3, either by a crane
or a vehicle. A vehicle is utilised for the covering operation at Hydro Årdal,
where this project is conducted.

In addition to covering the newly changed anodes, the covering operator is
also responsible for applying additional ACM where needed, i.e. hot spots and
other uncovered anode surfaces, which is one of the proposed applications of the
algorithm developed in the thesis.

14 CHAPTER 2. BACKGROUND

Figure 2.1.3: The covering vehicle [11].

2.1.3 The Cause of Hot Spots

An uncovered anode surface becomes a hot spot because of the tremendous electric
power that passes through the anode. In Hydro Årdal’s case, the cells draw a total
current of 235,000 A with a voltage set to roughly 4.4 V if we use the equation for
electric power 2.3.

P (t) = V (t) · I(t) (2.3)

Where:

• P(t) is the power consumed, measured in Watts (joules per second).

• V(t) is the electric energy potential of the cell, measured in Volts.

• I(t) is the current going through the cell, measured in Amperes.

This results in a total power consumption of over 1,000 kW per cell. If anodes are
exposed to the ambient air, power consumption of this magnitude will burn the
anode—emitting a distinct electromagnetic wavelength of around 650 nm, which
our eyes interpret as red (depicted in Figure 2.1.4).

Figure 2.1.4: The visible wavelength spectrum in nanometres [12].

Using this information, we can use an affordable consumer camera to detect hot
spots and possibly other uncovered anode surfaces.

CHAPTER 2. BACKGROUND 15

2.1.4 Hydro Årdal’s CO2 Roadmap

As demonstrated by the stoichiometry of Equation 2.1, a certain amount of CO2

will be generated during aluminium production. The theoretical minimum CO2

emission is calculated using the three-over-four molar ratio between CO2 and
aluminium, then converting molar mass into mass. This means that for every
kilogram of aluminium produced, approximately 1.23 kg of CO2 (kg CO2/kg Al)
is generated, which is the unit used in Figure 2.1.5. However, as Figure 2.1.5
illustrates, Hydro Årdal currently emits 1.67 kg CO2 per kilogram of aluminium
and aims to reduce this to 1.55 kg by 2025. Figure 2.1.5 also depicts the
composition of CO2 emissions. However, this thesis will exclusively focus on the
hot spot aspect of this objective, which Figure 2.1.5 depicts as Airburn.

Figure 2.1.5: CO2 target for 2025 [5].

As seen for the target for 2025, Hydro Årdal aims to reduce the hot spot aspect
from 0.16 kg CO2/kg Al to 0.14 kg CO2/kg Al. With the current cell technology,
it is challenging to lower the CO2 past 0.14 kg CO2/kg Al because aluminium
production necessitates frequent tapping of aluminium and feeding of alumina
(Al2O3) as depicted in Figure 2.1.6a and Figure 2.1.6b, respectively.

16 CHAPTER 2. BACKGROUND

(a) Tapping hole. (b) Point feeder.

Figure 2.1.6: Hot spots around tapping hole and feeding point.

This leads to an open tapping hole and feeding points, causing some anode mass
to be exposed and burned off. However, other areas have significant potential
for improvement by enhancing anode covering and ensuring that unintentional
anode surfaces are covered appropriately. A reduction of 20 kg of CO2 per
tonnes aluminium (0.16 to 0.14) may sound small but could, according to our
calculations, yield an annual saving of approximately 3,600,000 NOK, solely from
CO2 quotas. However, the price of carbon anode mass is approximately 10,000
NOK [13], yielding an annual saving of almost 11,000,000 NOK for the 2025 goal.
Even a tiny reduction, such as 3 kg of CO2 per tonnes aluminium, will save over
1,600,000 NOK. For complete calculation, see Appendix D.

CHAPTER 2. BACKGROUND 17

2.2 Tool Background

In addition to understanding the production of primary aluminium, it is also
paramount to understand the theory of the tools we used during this thesis, such
as image sensors and Machine-Learning (ML) concepts.

2.2.1 Image Sensor and Bit Resolution

An image sensor comprises millions of light-sensitive pixels, each acting as a
tiny photosensitive diode. When light falls on a pixel, it generates a voltage
charge proportional to the light intensity. To capture colour, a Colour Filter
Array (CFA) is placed in front of the sensor, as depicted in Figure 2.2.1a [14].
A CFA consists of blue, red, and green squares, allowing specific wavelengths
of light to pass through and forming an RGB colour profile, the most common
method for capturing the visible light spectrum (Figure 2.2.1b).

(a) CFA, sensor and an ADC [15]. (b) The RGB Profile [16].

Figure 2.2.1: Illustatition of image sensor end the RGB colour profile.

The camera’s processor utilises an Analogue-Digital Converter (ADC),
representing the RGB colours with a given bit resolution. Bit resolution
refers to the number of bits used to represent each pixel in an image. Higher bit
resolutions enable more colours and shades, resulting in higher quality and more
detailed images. For instance, 8-bit resolution allows 28(256) different values,
while 16-bit resolution allows 216(65, 536) values, providing smoother gradations
and a wider range of RGB colours. However, higher bit resolutions demand more
processing power. In our case, an 8-bit resolution should be sufficient.

18 CHAPTER 2. BACKGROUND

2.2.2 Introduction to Machine-Learning

Machine-Learning (ML) is a branch of Artificial Intelligence (AI) to make
computers learn and draw predictions using data without explicitly being
programmed for the task [17]. In simple terms, ML algorithms use statistics to
find patterns within the data. Then it applies these patterns to make predictions
in new situations.

2.2.2.1 Datasets and Training-Test Split

An essential part of ML is the dataset, a collection of data points used to train the
algorithm. Datasets can vary in size and complexity depending on the problem at
hand. In most cases, larger datasets lead to better performance, as they provide
more information for the algorithm to learn from [18].

The dataset is divided into two parts to effectively train an ML model: the
training set and the test set. The training set instructs the algorithm in making
predictions, whereas the test set assesses the model’s performance on previously
unencountered data. Typically, the dataset is divided into 80% for training and
20% for testing. However, this ratio might be adjusted based on the problem and
the dataset’s size [19].

Figure 2.2.2: Illustration of data set division [20].

CHAPTER 2. BACKGROUND 19

2.2.2.2 Preventing Overfitting in Machine Learning Models

At its core, ML relies on statistical methods to discern patterns and associations
within the data. Nevertheless, it is crucial to prevent overfitting. This
phenomenon arises when a model excels at performing on the training set but
struggles to generalise previously unseen data [21]. Overfitting can result in
subpar performance on the test set and may suggest that the model has learned
the data’s noise instead of the true underlying relationships.

Various techniques can be applied to mitigate overfitting, such as regularisation,
early stopping, using a validation set (as seen in Figure 2.2.2), or fine-tuning the
model’s hyperparameters [22]. The number of epochs, which refers to the number
of times the entire training set is passed through the learning algorithm, can also
impact overfitting. Too few epochs may result in underfitting, while too many
epochs can lead to overfitting. Hence, selecting the appropriate number of epochs
is crucial for achieving optimal performance [23].

2.2.2.3 Parameters and Hyperparameters

In ML, two distinct types of adjustments can be made to the learning process:
hyperparameters and parameters.

Hyperparameters are the parameters that govern the learning process. Examples
include the number of epochs, the train-test split ratio, and the batch size. In
simple terms, all the layers in Figure 2.2.3 are hyperparameters, except for the
content inside the Fully Connected layer. These are known as parameters and are
adjusted purely from the data as the algorithm maps features between the input
and output of the neurons. Examples of parameters are the neurons’ weights,
coefficients, and biases. All the parameters are trainable but become frozen once
the model is trained [24].

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning algorithms
that have succeeded in image recognition and classification tasks [25]. In this
application, we use a CNN to detect hot spots, uncovered areas, and other
features within the cell. The architecture of the CNN used in this project consists
of several layers, each responsible for a specific task, as shown in Figure 2.2.3 and
are as follows:

20 CHAPTER 2. BACKGROUND

Figure 2.2.3: Architecture of our first CNN model V1.0.

Input Image: As illustrated in Figure 2.2.4, the input image I is supplied to the
network, and its matrix elements correspond to pixel values. Higher values denote
brighter pixels, whilst lower values signify darker ones. Subsequently, a kernel K
(the yellow rectangle visible in both Figures 2.2.3 and 2.2.4) is applied. This small
matrix, known as the kernel, detects features by convolving (sliding) over the
input image and carrying out element-wise multiplication, followed by summing
the resulting values. Mathematically, convolution is described in Equation 2.4 [26].

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗K

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.2.4: Convolution between input image I and a kernel K [27].

out(Ni, Coutj) = bias(Coutj) +

Cin−1∑
k=0

weight(Coutj, k) ∗ input(Ni, k) (2.4)

Where:

• Ni: The i-th input image in a batch.

• Cin: The number of input channels.

CHAPTER 2. BACKGROUND 21

• Coutj: The j-th output channel.

• weight(Coutj, k): The weight connecting the k-th input channel and the j-th
output channel.

• input(Ni, k): The value of the k-th input channel of the i-th input image.

• bias(Coutj): The bias term associated with the j-th output channel.

• out(Ni, Coutj): The value of the j-th output channel for the i-th input image
after the convolution operation.

Feature Maps: This stage comprises multiple layers, including convolutional,
pooling, and Rectified Linear Unit (ReLU) layers. The convolutional layers
apply multiple kernels to the previous layer’s output, producing feature maps
representing different aspects of the image. The network refines these filters
by adjusting their values during the training process, enabling the extraction
of meaningful features from the image. The pooling layers help reduce the
spatial dimensions of the feature maps, making the network more robust and
computationally efficient. ReLU layers introduce non-linearity into the network,
allowing it to learn complex patterns [28].

Figure 2.2.5: Graph of the ReLU function [29].

22 CHAPTER 2. BACKGROUND

In simple terms, the ReLU sets all negative values to zero while retaining the
positive values as illustrated in Figure 2.2.5. Mathematically the function is
described in Equation 2.5.

x̂ =

0 x < 0

x x ≥ 0
(2.5)

Flatten Layer: After passing through the feature extraction layers, the output
feature maps are flattened into a one-dimensional vector. This vector contains
the high-level features extracted from the input image and is used as input for
the subsequent classification stage.

Fully Connected Layer: Following the flattening layer, the goal is to classify the
input image according to the features identified earlier. The fully connected layer
includes neurons that are interconnected with every component in the flattened
feature vector, as demonstrated in Figure 2.2.3. This layer amalgamates the
high-level features that have been extracted previously and learn to recognise
patterns associated with the target classes [30].
This layer comprises a significant portion of the model’s parameters, determined
by the total number of neurons in the fully connected layer, the size of the flattened
feature vector, and the biases. In our model, there are a total of 7,025,023
parameters, with the majority being weights of the connections between neurons.
The output generated by a fully connected layer is formulated as shown in
Equation 2.6:

y = Wx̂+ b (2.6)

In this equation, W denotes the weight matrix, x embodies the input vector, and
b signifies the bias vector. The weight matrix W has dimensions that allow it to
transform the input feature vector x into the output y, while the bias vector b is
added to shift the result [31]. These weights and biases are learned during the
training process, allowing the network to make accurate predictions.

CHAPTER 2. BACKGROUND 23

Output with Softmax Activation Function: The final layer of the CNN
generates an output vector with a length that matches the number of target classes.
The softmax activation function is applied to this vector, transforming it into a
probability distribution over the target classes. The predicted class for the input
image is determined by selecting the class with the highest probability [22]. The
Softmax function is defined as seen in Equation 2.7.

fi(x) =
exi∑
j e

xj
(2.7)

Where xi is the input value for the i-th class and fi(x) is the probability of the
i-th class. The denominator normalises the output so that the sum of probabilities
for all classes equals 1 [32].

In summary, the CNN architecture used in this project is designed to detect and
classify features within the cell effectively. The feature extraction stage identifies
high-level patterns in the input image, while the classification stage uses these
patterns to determine the most probable class for the input image.

24 CHAPTER 2. BACKGROUND

CHAPTER

THREE

METHODOLOGY

3.1 Challenge Analysis

One technique for detecting anode surfaces involves utilising colour recognition
and edge detection, which employs an image sensor to identify specific attributes
of the anode surfaces. For hot spots, detection is comparatively simple, as they
emit a unique wavelength of light, as previously noted. However, identifying
exposed anode areas may be considerably more difficult due to their dark colour,
which is nearly indistinguishable from the ACM. Nevertheless, exposed regions
frequently exhibit sharp, sudden edges where an edge-detection algorithm might
be applicable.

While colour and edge detection are relatively simple, they come with challenges.
For instance, the anode surface colour can vary depending on various factors,
most notably the ambient lighting conditions at the smelter. Shadows can create
hard edges and other colours and features inside the cell, potentially reducing the
accuracy of this approach.

An alternative method for detecting anode surfaces involves using ML techniques.
These algorithms can be trained on comprehensive datasets of anode surface
images, enabling them to identify distinguishing features between hot spots and
uncovered areas. Such an approach could offer greater robustness to variations
in colour and lighting conditions and can be tailored to recognise anode surfaces
across a wide range of environments.

25

26 CHAPTER 3. METHODOLOGY

Developing a reliable ML model for anode surface detection may necessitate
considerable time and resources. This process includes gathering a large and
diverse dataset of images, selecting and fine-tuning appropriate ML algorithms,
and training and validating the model to ensure its accuracy and dependability.

3.2 Tool Consideration

One of the most significant challenges in this project is selecting a camera that
can withstand the harsh conditions within the smelter, where temperatures during
the summer months can exceed 70 °C in certain areas, in addition to the radiation
heat from the cells. It is worth noting that operators work in these conditions,
utilising appropriate protective equipment to ensure their safety. Additionally,
the camera must resist corrosive gases and dust, which erode vehicle windows and
reduce their transparency. The strong magnetic fields generated by the substantial
current passing through the cell can also impair the camera’s autofocus capability,
as seen in Figure 3.2.1.

Figure 3.2.1: Out-of-focused cell image due to strong magnetic fields.

Considering these factors, we must select an affordable and durable camera
system with minimal moving parts to ensure reliability and longevity in the
demanding environment. In addition, there are also two primary types of image
sensors used by cameras, Complementary Metal-Oxide-Semiconductor (CMOS)
and Charge-Coupled Device (CCD).

For the demanding environment of an aluminium smelter, CMOS sensors are a
better choice than CCD sensors. They are less susceptible to magnetic fields and
consume less power [33]. The GoPro HERO11 and iPhone 11 Pro, which both use
CMOS sensors, are therefore considered suitable options.

CHAPTER 3. METHODOLOGY 27

3.2.1 Hardware Selection

After concluding that the CMOS sensor is the preferred choice, we have selected
the GoPro HERO11 as our primary camera, as it has proven to withstand the harsh
conditions in Hydro Årdal [34]. Furthermore, its minimal moving parts render it
less susceptible to interference from magnetic fields. Alongside the GoPro, we will
employ an iPhone 11 Pro for testing. We hypothesise that the GoPro’s 16.5 mm
focal length might be too wide for our specific application. In contrast, the iPhone
11 Pro features three cameras, each with the following focal lengths:

• ultra-wide (13mm)

• wide (26mm)

• telephoto (52mm)

This choice of focal lengths allows us to experiment with various perspectives.
Moreover, implementing a smartphone-based system can offer a portable solution
for operators by utilising a device many people already own.

3.2.2 Software Selection

Python was chosen for our CV system for its numerous advantages. It offers
various image processing and ML libraries like OpenCV and PyTorch, catering
specifically to CV applications. These libraries simplify and accelerate the
development process.

As a free and open-source language, Python is cost-effective and accessible.
Its user-friendly nature allows for rapid prototyping and development, and its
cross-platform compatibility ensures seamless execution across various operating
systems, such as Windows, macOS, and Linux.

Python’s popularity guarantees access to many resources and extensive community
support, making it suitable for developing our CV system.

28 CHAPTER 3. METHODOLOGY

3.3 Camera Positioning

To capture a comprehensive view of the electrolysis cell, we placed the GoPro
camera on a tripod 50 cm away from the cell at the height of 170 cm and angled
it at -25° from the horizontal plane. This particular positioning was crucial
to mitigate the impact of strong magnetic fields on the camera’s autofocus
capability, protect the camera from the high temperatures within the cell, and
ensure effective observation of vital aspects of the cell, such as detecting hot
spots, uncovered areas, and the height of ACM. The chosen setup was optimal
for our specific requirements and constraints.

(a) (b)

Figure 3.3.1: Pictures of us gathering data for our training set.

Moreover, we took handheld iPhone photos simultaneously to capture alternative
angles of the cell. After conducting multiple trials, we concluded that the tripod
position was optimal for the GoPro camera, allowing for easy mounting on a
vehicle or crane used in the covering operation. Meanwhile, the handheld iPhone
offered the flexibility to capture additional footage from other perspectives, further
emphasising the importance of considering different camera setups.

CHAPTER 3. METHODOLOGY 29

3.4 Determining Height of ACM

We hypothesise that the two first milestones can be done without any form
of specialised camera. However, the same cannot be said for our third and
final milestone, determining the height of the ACM. A range of systems was
considered, including Light Detection and Ranging (LiDAR), which utilises laser
light to generate a three-dimensional model of the cell. However, this approach
might fall outside the scope of this thesis. Our co-supervisor suggested an
alternative method: using the stubs as reference points. This idea presents a
feasible solution worth considering.

The stubs have a known height of 19 cm, as shown in Figure 3.4.1, and according
to the Standard Operating Procedure (SOP) for the covering procedure [11], the
ACM should have a height of 10 to 12 cm, which means approximately 8 cm of
the stub should be visible. However, the challenge in measuring this with a single
camera, like our GoPro, lies in its lack of depth perception. The camera should
maintain a consistent distance from the stub to measure the height accurately.

Figure 3.4.1: A ruler depicting the height of the stub.

We measured the distance between the first stub and the camera to be roughly
140 cm. Nevertheless, during the process of covering anodes at Hydro Årdal using
a vehicle, it is difficult to maintain a constant distance, as the covering vehicle
occasionally has to manoeuvre according to its constraints, such as the length of
its nozzle and the varying degree to which the cell cover can open.

30 CHAPTER 3. METHODOLOGY

The height of cell covers does indeed fluctuate from our observations.
Consequently, we hypothesised that a stereo camera would be better suited.

A stereo camera consists of two image sensors, akin to how humans possess a pair
of eyes. This pair of sensors allows for depth perception via triangulation [35].
There are readily available stereo cameras, such as the Intel® RealSense™ D435.
Alternatively, one can utilise two separate cameras, like GoPros, and calibrate
their angles according to the desired specifications. Nonetheless, this approach
might be more time-consuming and expensive than purchasing a pre-built 3D
camera.

3.5 Solution One: Colour and Edge Detection

As previously mentioned, hot spots emit a wavelength of 650 nm, which the human
eye perceives as red. This allows us to employ a simple colour-detecting algorithm
to identify hot spots. Furthermore, the uncovered areas have distinct edges, which
may be recognised using basic edge detection.

3.5.1 Analysing Colours with Histograms

In an RGB image, a histogram separately represents the distribution of intensities
for each colour channel (i.e. Red-Green-Blue). Where:

• X-axis represents the intensity values or brightness (8-bit, 0-255).

• Y-axis is the number of pixels with that intensity value in the image.

By analysing the histograms of an image, we can obtain information about the
image’s brightness, contrast, and, most importantly, colour distribution. In
Figure 3.5.1, a histogram is plotted next to a well-covered cell, and in Figure
3.5.2, a hot spot is present.

CHAPTER 3. METHODOLOGY 31

Figure 3.5.1: Histogram of well-covered anodes.

Figure 3.5.2: Histogram of anodes with a hot spot present.

As the two figures demonstrate, Figure 3.5.2 displays a notable red spike beyond
x = 250, signifying a hot spot. However, the Hue-Saturation-Value (HSV) model
is frequently favoured for colour detection, as it segregates colour information
based on human colour perception. In comparison, RGB is a colour model
founded on the primary colours of light, which are additive [36].

The other spikes observed in Figure 3.5.2 can be attributed to the additive nature
of the RGB profile. This profile combines the RGB colours to produce the visible
light spectrum, as illustrated in Figure 2.2.1b. These spikes arise because the
individual RGB channels contribute to the overall colour representation. When
the values of the RGB channels vary 0 ≤ x ≤ 200 as seen in Figure 3.5.2, they
form different shades and combinations of colours, resulting in the observed spikes
in the histogram [37]. This phenomenon can be explained by considering that the
RGB model is sensitive to lighting changes and other environmental factors, which
can lead to variations in the colour distribution [38].

32 CHAPTER 3. METHODOLOGY

3.5.2 Detecting Hot Spots with Hue-Saturation-Value

While RGB is useful for displaying colours on screens or monitors, it is less effective
in colour-based image processing tasks such as detecting hot spots. HSV, on the
other hand, separates colour information into a cylindrical model as depicted in
Figure 3.5.3 with three components:

• The hue is defined as an angle where 0° represents red, 120° represents green,
and 240° represents blue

• Saturation represents the purity of the colour, given by the length of the
vector.

• The value represents the brightness or intensity of the colour.

This separation of colour information in HSV makes it easier to isolate and
segment-specific colours in an image, making it a better choice for detecting hot
spots [39].

Figure 3.5.3: HSV diagram indicates the Hue-Saturation-Value values,
respectively [40].

To convert from RGB to HSV, we have to establish the minimum and maximum
values of Red-Green-Blue in the RGB model, which ranges from 0 to 255 in 8-bit.
We accomplished this task by using OpenCV’s cv2.COLOR_BGR2HSV function to
transform the image from RGB to HSV profile. To help us generate matrices and
masks, we also utilised the NumPy library.

CHAPTER 3. METHODOLOGY 33

Inspired by Murtaza Hassan’s online lecture [41], we added trackbars. These
trackbars aided us in adjusting the bit range for each channel in the HSV colour
space based on each channel’s minimum and maximum values. By fine-tuning
the mask, we could display only the desired colours. Figure 3.5.4 illustrates the
resulting trackbar values.

Figure 3.5.4: HSV values used to mask hot spots.

Furthermore, we developed a function that adds green rectangles around the hot
spots to increase their visibility. The output depicted in Figure 3.5.5 effectively
demonstrates the successful use of trackbars.

Figure 3.5.5: Left to right: RGB with hot spot detector, HSV image, and NumPy
mask.

34 CHAPTER 3. METHODOLOGY

3.5.3 Detecting Uncovered Areas with Edge Detection

Since uncovered anode areas usually have noticeable corners, we hypothesised
that simple edge detection could be used. Luckily, OpenCV also has built-in edge
detection algorithms like the cv2.Canny method. However, it has a few drawbacks
making it unsuitable for our task, such as:

• Vulnerability to noise: Resulting from other features within the cell.

• Difficulty with tuning: We had to use different values when tuning for
each image as they did not have the same lighting

After implementing and testing it on a small data set of images, as seen in Figure
3.5.6, it became clear that we had to develop a more accurate method of detecting
uncovered areas, possibly involving ML methods.

Figure 3.5.6: Edge detection results highlighting the limitations in accurately
identifying uncovered areas.

3.6 Solution Two: Convolutional Neural Network

A potentially more precise solution for our problem could be found within the
field of ML, specifically Convolutional Neural Networks (CNN). We selected
a particular implementation of CNN called You Only Look Once version 5
(YOLOv5). It is an open-source, Python-based framework available on GitHub.
YOLOv5 has been proven capable of fast and accurate detection of objects within
images, making it an ideal choice for detecting hot spots and uncovered areas [42,
43].

CHAPTER 3. METHODOLOGY 35

3.6.1 Training YOLOv5 Step-by-Step

The method of training our custom YOLOv5 is illustrated in Figure 3.6.1 and
consists of three main stages: setting up the necessary software, preparing the
data (a collection of images), and running the training process. All our models
generally followed this form with only slight adjustments further discussed in their
sections, respectively.

Figure 3.6.1: Simplified flow diagram of how we trained our YOLOv5 model.

3.6.1.1 Step I: Setting up the Software

We started by cloning the YOLOv5 repository from GitHub and installing the
necessary additional tools. We used pip install to include the Roboflow Python
library to manage our data. Additionally, we imported the PyTorch library to
enable the heavy computational tasks of ML.

3.6.1.2 Step II: Preparing the Data

This subsequent step is dedicated to the preparation of our data for training. In
our case, we annotated our collection of anode images by delineating bounding
boxes around the intended objects of interest, such as hot spots and uncovered
areas. This data was stored in a .txt file detailing classes alongside the

36 CHAPTER 3. METHODOLOGY

corresponding x, y coordinates of each bounding box for the respective class.

This is the most time-consuming step, which can not be automated in the
beginning. For example, model 2.1 has 1358 annotations and took an entire day
of annotating bounding boxes.

Figure 3.6.2: Sample of object annotation on a hot spot.

In deciding how to label our data, we had several options. We discovered that
web-based platforms such as MakeSense [44] and Roboflow [45] provided the
most user-friendly interfaces. The main difference is that Roboflow necessitates
an account and offers project-saving capabilities. At the same time, MakeSense
provides a rapid and lightweight alternative for label generation, allowing the
option to download the labels as a .txt file immediately. Figure 3.6.2 visually
represents object annotation.

Upon completing the annotation process, our attention shifted to training the
YOLOv5 algorithm. It is important to emphasise that machine learning tasks
are computationally intensive and require powerful hardware. Nevertheless, once
trained, the models can run on lower-spec hardware [46].

3.6.1.3 Step III: Training Our YOLOv5 Model

To train our YOLOv5 model, we utilised Google Colab, a cloud-based platform
that runs Jupyter Notebooks and provides the powerful NVIDIA® T4 GPU.
The T4 GPU specifications can be found in Table 3.6.1. This allowed us to write
and execute Python code efficiently. Using Google Colab was advantageous as

CHAPTER 3. METHODOLOGY 37

it allowed us to focus on other project tasks while the training was ongoing.
Additionally, Google Colab came pre-installed with libraries such as PyTorch and
TensorFlow, which are necessary for YOLOv5.

During the training process, we had the flexibility to adjust various
hyperparameters, including the size of the input images, the batch size (i.e.
the amount of data processed at once), and the number of training epochs.
Furthermore, we could either use pre-existing weights or create a custom model
where all 7,023,610 parameters were trainable.

Throughout the training, we received regular updates through the console,
providing feedback on the progress. This allowed us to monitor any potential
issues or improvements. Once the training was complete, we obtained a custom
YOLOv5 model that was specifically trained to detect features within the cells.
We based our training on a modified version of The Roboflow team’s YOLOv5
training notebook. Our version of the notebook can be found in Appendix A.

Parameter Value

GPU Name TU104

Architecture Turing

Process Size 12 nm

Transistors 13,600 million

Shading Units (Cores) 2560

Tensor Cores 320

TeraOPS 130

RT Cores 40

Memory Size 16 GB

Memory Type GDDR6

Memory Bus 256 bit

Base Clock 585 MHz

Boost Clock 1590 MHz

Memory Clock 1250 MHz (10 Gbps effective)

Bus Interface PCIe 3.0 x16

TDP 70 W

Table 3.6.1: NVIDIA Tesla T4 specification sheet. [47].

38 CHAPTER 3. METHODOLOGY

3.6.2 Version 1.0: Using YOLOv5 and Roboflow

To train our first model, V1.0, we followed the step-by-step instruction on
Roboflow’s website [45]. Our dataset comprised 111 images encompassing hot
spots and uncovered areas, our first and second milestones. Our class balance is
shown in Table 3.6.2. We partitioned the dataset into training, validation, and
testing sets using a 99/6/6 split, where the images were captured using iPhones
and GoPros. Preprocessing and augmentation were available on Roboflow’s
website but not beneficial in our case.

Using PyTorch and YOLOv5, the training process began with a Google
Colaboratory script downloading data from Roboflow using a unique Application
Programming Interface (API) key. We employed a standard batch size of 16 and
1000 epochs. In this context, batch size refers to the number of training examples
used in a single update of the model’s weights. Large batch size usually means
faster training time but can make the model less accurate. Epochs represent
the number of times the model iterates over the entire dataset. In addition, we
resized the images to a resolution of 640 pixels.

More epochs typically result in better performance but may cause overfitting if
set too high, leading the model to perform worse with new unseen data. However,
the training stopped at 621 epochs due to no improvement during the last 100
epochs. The best weights, at 521 epochs, were saved and uploaded back to
Roboflow. The model training took approximately 37 minutes and is ready for
use in the web application or offline.

Unfortunately, only two classes led to some false classifications, as seen in Chapter
4. Specifically Figure 4.3.7. To correct this issue, we created additional classes
that would hopefully make our model more accurate.

Classes Count

Hot spot 168

Uncovered area 83

Null examples 13

Table 3.6.2: V1.0 Classification table showing the count of each class.

CHAPTER 3. METHODOLOGY 39

3.6.3 Version 2.0: Using YOLOv5 and MakeSense

For our second iteration, we created an object detection algorithm, V2.0, to
improve the distinction between tapping holes and point flames. The two were
frequently misidentified as hot spots due to their similar visual attributes.
Notably, point flames release hydrogen fluoride (HF), a hazardous and corrosive
gas [48].

Moreover, V2.0 was designed to recognise stubs, the cylindrical mounts of the
anode. This would allow the estimation of the ACM height by using the stub
height as a reference. This approach, however, yielded images without any null
examples, meaning there were no images without objects of interest. Although
it might negatively affect accuracy as all images include stubs, this compromise
was necessary to accurately identify stubs, which were occasionally misclassified
as uncovered areas.

The development of V2.0 followed a YouTube tutorial by DeepLearning, which
utilised the MakeSense website for image labelling [49]. A .zip folder containing
.txt files with image labels, coordinates, and corresponding full-resolution iPhone
images from both the train and validate folders were processed. The decision
to use iPhone images was motivated by their image quality and a preferred 26
mm focal length compared to the GoPro. However, exploring how well V2.0
could perform when applied to GoPro images was also of interest. The training
dataset comprised 55 images and their respective .txt files from the train folder.
Simultaneously, the validate folder consisted of 13 images and their corresponding
.txt files for assessing object detection accuracy during training.

The training process continued to utilise the same YOLOv5 repository on a Google
Colaboratory script, where images were resized to 640 pixels. The class balance
of V2.0 is shown in Table 3.6.3.

40 CHAPTER 3. METHODOLOGY

Classes Count

Hot spot 79

Uncovered area 51

Stub 298

Point flame 36

Tapping hole 5

Table 3.6.3: V2.0 Classification table showing the count of each class.

3.6.4 Version 2.1: Using YOLOv5 and RoboFlow

The success of V2.0 encouraged us to extend our dataset by incorporating the
complete set of images, including the GoPro images, to create V2.1.

V2.1 investigated whether the performance of V2.0 could be enhanced by
employing a larger dataset, despite GoPro’s less preferable focal length. Like
its predecessor, V2.1 encompasses all five classes: hot spots, uncovered areas,
point flames, stubs, and tapping holes. While V2.0 was developed using a dataset
of 55 images, V2.1 utilised the same 111 images as in V1.0, with the additional
classes annotated accordingly. Although the dataset remained the same, the class
balance differed significantly due to the annotation of the three supplementary
classes. V2.1 class distribution is shown in Table 3.6.4. Notably, unlike V1.0,
V2.1 does not contain any null examples.

Classes Count

Hot spot 91

Uncovered area 193

Stub 962

Point flame 98

Tapping hole 14

Table 3.6.4: V2.1 Classification table showing the count of each class.

Besides employing a larger dataset, we attempted to fine-tune the training
parameters, such as batch size and training image size, and apply various
RoboFlow filters. This was undertaken because no documentation was available

CHAPTER 3. METHODOLOGY 41

for optimal training values, leading us to test for ourselves. Our model ultimately
achieved the best results without any RoboFlow filters, using a batch size of 16
and a training image size of 1440 pixels.

Filter
version

Applied
Roboflow
filter

Training
image
resolution

Batch
size

mAP
0.5

mAP
0.5:0.95

Epochs Training
time
(hours)

1 Split
81/21/7

1088 16 0.782 0.421 147 0.302

2 Split
89/20/0

1088 16 0.806 0.432 266 0.466

- - 1088 10 0.808 0.427 178 0.361

- - 1088 8 0.783 0.454 301 0.896

- - 2240 4 0.789 0.43 242 1.556

- - 1088 30 0.785 0.442 543 0.771

- - 1440 16 0.807 0.46 286 0.793

- - 1920 8 0.784 0.446 282 1.280

Table 3.6.5: Test results showing the performance of V2.1 on a NVIDIA® T4 GPU.

Table 3.6.5 demonstrates that reducing batch size to accommodate larger training
image sizes does not enhance performance; the results are less effective. Although
the version with 1440 pixels proves to be the best, the improvement is marginal. It
is noteworthy that training image size primarily affects training time. Investigating
the potential gains achieved by employing a more powerful GPU would be
intriguing, as it would enable the use of larger images and batch sizes.

42 CHAPTER 3. METHODOLOGY

3.7 Running our Models Locally

In addition to running our models on Google Colab, we also developed Python
scripts for local execution. This approach gave us greater flexibility in customising
the colours of the classes and the font styles. In addition, to test the performance
on a regular consumer computer.

3.7.1 Implementation with Images

We started by cloning the YOLOv5 repository and creating separate Python
scripts for our project. These scripts involved importing essential libraries like
PyTorch, OpenCV, and NumPy. Subsequently, we loaded pre-trained models
(i.e. V1.0, V2.0 and V2.1), which we downloaded from Google Colab.

We preprocessed the input images in a few key steps to achieve optimal
performance. First, we maintained the aspect ratio of the images to prevent
distortion. Subsequently, we resized them to a target size that is divisible by
the model’s stride, ensuring that the convolutional layers in the model can scan
every region of the image without missing any sections. The stride refers to
the number of pixels the convolutional filter moves at each step during its scan
across the image. Following this, we transformed the preprocessed images into
tensors, which are multi-dimensional arrays suitable for computational operations
in machine learning models.

We established two thresholds, one for confidence and another for Non-Maximum
Suppression (NMS), which filters out weaker detections. Each threshold was
set to standard 0.4 and 0.5, respectively. The model processed the input image
and generated outputs through bounding boxes and class labels. We employed a
dictionary to map each class label to a unique colour for visualisation purposes.

Lastly, we used OpenCV’s rectangle and text drawing functions to display the
annotated image, which included the detected objects, their corresponding class
labels, and their confidence scores represented in decimal probabilities. The result
is as seen in Figure 3.7.1.

CHAPTER 3. METHODOLOGY 43

Figure 3.7.1: Interface for operators showing detection off and on with a console
log of the precision point probability of each class.

3.7.2 Implementation with Video

We observed our algorithm’s strong performance on images and decided to
capture videos for a more accurate representation of its application at the smelter.
This change would also generate additional training material for our ML model.

We modified our code to handle video input using OpenCV’s cv2.VideoCapture
function, obtaining video properties and setting up an output video writer. The
primary change involved processing input video frame-by-frame, preprocessing
each frame, and converting it into a tensor. We applied the algorithm to detect
objects in each frame and visualised results using OpenCV functions. Annotated
frames were written to the output video, and the user could view the output in
real-time.

We encountered a challenge when saving the processed video, which was resolved
by ensuring the correct order of out.release() and cap.release(). Another
challenge we encountered is that when the algorithm was employed locally on a
Central Processing Unit (CPU), latency issues did occur. One can mitigate this
issue by reducing the Frames Per Second (FPS) resolution or opting to run it on
a dedicated Graphics Processing Unit (GPU).

44 CHAPTER 3. METHODOLOGY

Finally, in line with Dr Morten Karlsen’s assertion that the primary objective is to
help operators comprehend their tasks, we altered the probability representation
from decimal to percentage—this modification aimed to enhance the operators’
understanding of the bounding boxes. See Figure 3.7.2 for the end result.

Figure 3.7.2: Alternative interface for operators with class probability depicted
in percentage.

CHAPTER

FOUR

RESULTS

4.1 Results: Solution One

As previously mentioned, in Solution One, we devised a colour and edge-detection
model to address our initial two milestones:

• Detecting hot spots through colour detection.

• Identifying uncovered areas through edge detection.

Regrettably, the results were unsatisfactory concerning detecting uncovered areas.

4.1.1 Colour and Edge Detection Examples

As demonstrated in Figure 4.1.1a, this solution detects all colours represented
by the HSV values depicted in Figure 3.5.4. Consequently, tapping holes and
point flames are surrounded by green detection clusters. Furthermore, upon
altering the colour temperature of Figure 3.5.5, which successfully detected a
hot spot, the model failed to detect anything of interest, as shown in Figure 4.1.1b.

45

46 CHAPTER 4. RESULTS

(a) Tapping hole and point flames detect as hot spots.

(b) Failed to detect the hot spot after colour balance adjustment.

Figure 4.1.1: Illustrating the limitations of simple colour detection.

In addition to hot spots, we tried to detect uncovered areas with the simple
cv2.Canny method. However, as seen in Chapter 3.5.3, we were unsuccessful.

CHAPTER 4. RESULTS 47

4.2 Results: Solution Two

Solution Two employs a ML approach using YOLOv5. The following subsection
presents three versions of a ML model. It details their quantitative measures, such
as Precision and recall, and uses images and videos to evaluate their performance
in real-world applications.

4.2.1 Version 1.0: YOLOv5 and Roboflow

This version focused on just two classes: hot spots and uncovered areas. After
training this model, we used TensorFlow to present our model’s performance
graphically, as shown in Figures 4.2.2, 4.2.3, 4.2.4 and 4.2.5.

The standard plot for ML tasks is the Receiver Operating Characteristic (ROC)
curve. However, according to a paper by Takaya Saito and Marc Rehmsmeier for
unbalanced data such as ours, the Precision-Recall (PR) curve is preferable [50].
Figure 4.2.1 illustrates textbook examples of PR curves.

Figure 4.2.1: A textbook demonstration of PR curves for three models: No Skill,
Good Model, and Perfect Model. Illustrating clearly the differences in performance
among models [51].

The PR curve shows how Precision and Recall correlate. We must understand
what the two metrics describe to understand this curve fully.

48 CHAPTER 4. RESULTS

Precision is a measure of the accuracy of a model’s positive predictions, indicating
the proportion of correct positive predictions out of all positive predictions made
by the model.

Precision =
TP

(TP + FP)
(4.1)

Recall is a metric that measures the proportion of correct positive predictions out
of all actual positive instances in the data.

Recall =
TP

(TP + FN)
(4.2)

Where:

• TP is True Positive.

• FP is False Positive.

• FN is False Negative.

A true positive refers to correctly detecting a hot spot when there is one. A
false positive, on the other hand, occurs when a hot spot is mistakenly detected
without actually being present. Lastly, a false negative occurs when a hot spot
that should have been detected is missed.

In other words, a higher Precision implies that the model has a lower rate of
false positives and is more capable of correctly identifying positive instances. In
contrast, a higher Recall indicates that the model has a lower rate of false negatives
and is more capable of identifying all positive instances in the data, even at the cost
of including some false positives. These metrics allow us to prioritise either high
Precision or recall by adjusting the confidence threshold during the deployment of
our model.

CHAPTER 4. RESULTS 49

Figure 4.2.2: PR curve of Version 1.0.

Figure 4.2.2 shows the PR curve for this model. In this case, we can see
there is a steep trade-off between the two metrics, clearly demonstrating a
significant trade-off between Precision and recall. As Precision escalates, there
is a corresponding decrease in recall. This suggests that while we can achieve
high Precision, it might be at the expense of overlooking some relevant instances.
However, it is decently close to the Good Model shown in Figure 4.2.1.

50 CHAPTER 4. RESULTS

Figure 4.2.3: mAP curves of Version 1.0.

The two graphs in Figure 4.2.3, namely mAP 0.5 and mAP 0.5 : 0.95, represent the
mAP for two distinct classes: Uncovered area and Hot spot. These are the same
two classes depicted in Figure 4.2.2. The mAP value is calculated using the data
from the confusion matrix, recall, Precision and Intersection over Union (IoU),
making it a very proficient metric to evaluate our model’s performance. The
equations of AP, mAP and IoU is given by Equation 4.3, 4.4 and 4.5

AP =
N∑
k=1

P (k) · rel(k)
number of relevant documents

(4.3)

mAP =
1

n

k∑
k=1

APk (4.4)

IoU =
Area of Intersection

Area of Union
=

A ∩B

A ∪B
(4.5)

The mAP 0.5 curve shows the Precision for a confidence threshold of 0.5 which
is not high. We want our model to be as accurate as possible, so we look to the
0.5 : 0.95 curve, which shows the model’s Precision across the confidence thresholds
from 0.5 to 0.95, giving a more holistic view of our model’s performance. This
model has mAP scores of 0.919 and 0.479, respectively. This was achieved after
150 epochs and took approximately 8 minutes.

CHAPTER 4. RESULTS 51

Figure 4.2.4: Confusion matrix of Version 1.0.

The confusion matrix is possibly the most important metric to understand our
model’s performance as it is better visualised. Along the y-axis, we have the
objects predicted, crossed with objects detected along the x-axis. The diagonal
shows the rate of true positives. One can examine this by observing the three
squares furthest to the left. This indicates the proficiency of our model in
accurately identifying uncovered areas while also demonstrating its ability to
avoid misclassifying these as hot spot or background. Our data set did not include
many images without any objects, which leads to this model separating objects
from the background unreliably.

Examining Figure 4.2.4, it seems our model often mistakes hot spots for
background. This raised some concerns that were later confirmed when we tested
this model with video. This also showed us this version was quite often mistaking
stubs to be uncovered areas which is problematic and made it evident to us that
version 2.0 is preferred.

52 CHAPTER 4. RESULTS

A compelling aspect of the confusion matrix is its relationship to the financial
calculations detailed in Appendix D, which accounts for the combined cost/lost
income from hot spots and uncovered areas. According to these calculations,
Hydro Årdal could save approximately 14.5 million NOK annually if the model
reliably detects all hot spots or uncovered areas. This means that the financial
implications of reliable detection are substantial.

Figure 4.2.5: F1 curve of Version 1.0.

Lastly, we can review the F1 curve. The F1 score is calculated as seen in
Equation 4.6. This is the combination of the Precision and recall metrics into a
harmonic mean, which provides a balanced evaluation of our model’s performance.

F1 =
(1 + β2) · (precision + recall)

(β2 · precision) + recall
(4.6)

The F1 score tells us what the ideal threshold for our model is. When β is set
equal to 1, we get the curve in Figure 4.2.5. For this model, it is given as 0.316
with an F1 score of 0.76. However, we could use Equation 4.6 to choose whether
we want a higher precision or recall by tuning the value of β.

CHAPTER 4. RESULTS 53

4.2.2 Version 2.0: YOLOv5 and MakeSense

The goal of V2.0, which involved the implementation of YOLOv5 for training and
MakeSense for object labelling, was to demonstrate the version’s capability to
identify and separate diverse objects accurately. The results were noteworthy,
considering the version was trained on a dataset comprising 55 images and
validated on a separate set of 13 images.

Figure 4.2.6: PR curve of Version 2.0.

This version’s PR curve has a smoother trade-off between Precision and Recall.
We can see that we do not have to sacrifice Precision to attain higher Recall values
compared to version 1.0 as the curve for all classes is approaching the Perfect Model
depicted in Figure 4.2.1

54 CHAPTER 4. RESULTS

Figure 4.2.7: mAP curves of Version 2.0.

As seen in Figure 4.2.7, the mAP scores are lower than in V1.0. This is to be
expected, seeing as this version includes five classes instead of two. The mAP 0.5
score of 0.775 and the mAP 0.5 : 0.95 score of 0.391, though not considerably
lower, are still not as favourable as those of V1.0. This version achieved its best
training result after 424 epochs and was completed in 10 minutes.

CHAPTER 4. RESULTS 55

Figure 4.2.8: Confusion matrix of Version 2.0

The confusion matrix for V2.0, illustrated in Figure 4.2.8, is distinct due to
additional classes, resulting in a larger grid. A notable aspect of this matrix
is the significant reduction in the frequency of mistaking uncovered areas for the
background, a trend observable across almost all classes. Most likely because each
image contains a larger number of recognised objects, reducing the background
amount. This indicates that solely relying on mAP scores may not sufficiently
evaluate our model’s performance, and it also helps explain why V2.0 outperformed
V1.0 in video tests.

56 CHAPTER 4. RESULTS

Figure 4.2.9: F1 curve of Version 2.0.

As illustrated in Figure 4.2.9, the ideal threshold for V2.0 is 0.35, which results
in an F1 score of 0.82, an improvement over V1.0. However, poor tapping hole
detection notably reduces the overall score.

CHAPTER 4. RESULTS 57

4.2.3 Version 2.1: YOLOv5 and RoboFlow

As stated in Chapter 3.6.4, V2.1 builds upon V2.0 and aims to improve it. This
version was, like the others, tested on both images and video.

Figure 4.2.10: PR curve of Version 2.1.

The PR curve of V2.1 closely resembles its predecessors. A comparison reveals
unique strengths in each version; V2.0, depicted in Figure 4.2.6, is better in
detecting hot spots, while V2.1, presented in Figure 4.2.10, performs better in
identifying uncovered areas. Overall, V2.0 has a similar score of 0.827 compared
to V2.1’s 0.807.

58 CHAPTER 4. RESULTS

Figure 4.2.11: mAP curves of Version 2.1.

Figure 4.2.11 shows comparable results as the previous version. Comparing these
results, we can clearly see from the mAP graphs that V2.1 is preferred in this
regard, having an mAP 0.5 score of 0.807 and mAP 0.5 : 0.95 score of 0.46.
This result was achieved after 286 epochs and was completed in approximately 47
minutes.

CHAPTER 4. RESULTS 59

Figure 4.2.12: Confusion matrix of Version 2.1.

The comparison becomes more complex upon examining the confusion matrix.
A specific point of interest is the comparison of the Predicted Point flame with
the True Point flame for both versions. V2.0 scores 0.92, while V2.1 yields a
lower score of 0.58. Intuitively, one might expect the larger dataset of V2.1, with
twice the amount of images, to offer enhanced results. However, a side-by-side
comparison of Figure 4.2.8 and 4.2.12 suggests that this is not necessarily the case.

Two potential explanations for these observations come to mind. First, the class
imbalance in V2.1 might be more pronounced than in V2.0. Second, differences
in image sizes between the datasets could contribute. Notably, V2.0 exclusively
utilises iPhone images, all of which share the exact dimensions, while V2.1
incorporates a mixture of iPhone and GoPro images, which differ in both aspect
ratio and size.

60 CHAPTER 4. RESULTS

Figure 4.2.13: F1 curve of Version 2.1.

In Figure 4.2.13, we observe the F1 score for V2.1. Notably, the score for the
Tapping hole shows an improvement, indicating that a threshold of 0.498 should
be applied to achieve an F1 score similar to that of V2.0, as depicted in Figure
4.2.9. However, the information these graphs provide is somewhat contradictory,
making it challenging to determine the better model. Thus, further practical
testing is required to confirm the optimal model selection, thus leading to the
next section.

CHAPTER 4. RESULTS 61

4.3 Testing: Images and video

In this section, we look at the real-world results of our algorithm. From left to
right, V1.0, V2.0 and V2.1 are tested, respectively. We used thresholds of 0.4 for
confidence and an NMS of 0.5 due to the limited accuracy of our models, as seen
in the mAP curves.

As mentioned, videos and images were captured using two devices: a GoPro
HERO11, with a wide focal length of 16.5 mm, and an iPhone 11, with a focal
length of 26 mm. Each device was placed at a distance of approximately 50
cm from the cell. Furthermore, the classification of the objects is depicted in
probability precision point. However, as previously mentioned, we opted for
percentage probability for the videos.

The results are discussed in sections 4.3.3 and 4.3.4. For the videos and images,
the link can be found as a Google Drive link in Appendix A

The folder from which the relevant videos and images can be found is called Test
Videos and Images (with detection). Within this folder, there are four separate
folders titled:

• GoPro images - contain the GoPro test images discussed for all versions.

• GoPro videos - contain the GoPro videos discussed for all versions.

• iPhone images - contain the iPhone images discussed for all versions.

• iPhone videos - contain the iPhone videos discussed for all versions.

62 CHAPTER 4. RESULTS

4.3.1 iPhone Images

These are chosen images due to their importance and worth noting to showcase
our results. The figures in this part are all taken with an iPhone 11 Pro with
a focal length of 26 mm. As mentioned earlier, this focal length gives the most
comprehensive view of the cell.

(a) V1.0 Console output:
Uncovered area: 0.81
Hot spot: 0.53

(b) V2.0 Console output:
Hot spot: 0.89
Hot spot: 0.81

(c) V2.1 Console output:
Uncovered area: 0.75
Hot spot: 0.61

Figure 4.3.1: Real-world test for detecting a hot spot.

Figure 4.3.1 was chosen because it has a hot spot that requires covering. The
best performance is by V2.0 with a hot spot probability of 0.89, followed by V1.0
and V2.1. However, this hot spot is not fully formed. One can argue that it is a
combination of an uncovered area and a hot spot.

CHAPTER 4. RESULTS 63

(a) V1.0 Console output:
Uncovered area: 0.91

(b) V2.0 Console output:
Hot spot: 0.59
Uncovered area: 0.87

(c) V2.1 Consloe output:
Uncovered area: 0.87

Figure 4.3.2: Real-world test for detecting uncovered area.

Figure 4.3.2 was chosen because it has an uncovered area that, with enough
time, will become a hot spot. In addition, one can see that an operator has tried
to redress the cell but did not have enough ACM to cover the uncovered area. One
can tell by the scrape marks on the ACM between the stubs. Surprisingly, the
highest probability score is V1.0 at 0.91 for the uncovered area, but V2.0 found a
barely visible hot spot with a probability of 0.45. V2.1 and V2.0 have the same
probability of the uncovered area but do not detect the hot spot.

64 CHAPTER 4. RESULTS

(a) V1.0 Console output:
Hot spot: 0.69
Uncovered area: 0.51

(b) V2.0 Console output:
Hot spot: 0.84
Hot spot: 0.86
Hot spot: 0.82
Hot spot: 0.83
Tapping hole: 0.73

(c) V2.1 Console output:
Hot spot: 0.66
Hot spot: 0.76
Hot spot: 0.85
Tapping hole: 0.78

Figure 4.3.3: Real-world test for detecting exposed stubs around tapping hole.

Figure 4.3.3 was chosen because it has an open tapping hole with hot spots
around it. As mentioned earlier, cells need an opening in the crust for the tapping
of aluminium. However, in this instance, the cell has exposed stubs, and if left
uncovered, the bath will start to erode the stub, which in turn will make it
challenging to meet customer requirements on metal quality [52].

V1.0 failed to detect the hot spots encompassing the tapping hole, in contrast to
V2.0 and V2.1 exhibited good probabilities. However, V2.0 found more hot spots
around the tapping hole, and the hot spot furthest away from the tapping hole
V2.0 got 0.84 compared to V2.1’s probability of 0.66.

CHAPTER 4. RESULTS 65

(a) V1.0 Console output:
N/A

(b) V2.0 Console output:
Point flame: 0.83
Point flame: 0.72
Hot spot: 0.77
Point flame: 0.83
Hot spot: 0.75
Point flame: 0.73

(c) V2.1 Console output:
Point flame: 0.76
Point flame: 0.80
Uncovered area: 0.46
Tapping hole: 0.68

Figure 4.3.4: Real-world test for detecting hidden uncovered area.

Figure 4.3.4 was chosen since it has a barely visible uncovered area. At first
glance, V2.1 is noteworthy. It correctly detected the uncovered area with a
probability of 0.46 and also detected the tapping hole correctly with a score of
0.68. In contrast, V2.0 incorrectly detected a hot spot with a score of 0.77 and a
point flame with a score of 0.83. However, this point flame is stemming from the
tapping hole, so one could argue it is correct.

66 CHAPTER 4. RESULTS

4.3.2 GoPro Images

The following images are all taken by a GoPro HERO11. As mentioned earlier,
we suspect the wide focal length is not optimal. As a refresher, V2.0 is not
trained on GoPro images.

V1.0 Console output:
Uncovered area: 0.89

V2.0 Console output:
Hot spot: 0.54
Hot spot: 0.53
Point flame: 0.76

V2.1 Console output:
Uncovered area: 0.59
Hot spot: 0.61

Figure 4.3.5: Real-world test for GoPro’s wide focal length.

Figure 4.3.5 was selected because of its uncovered area. V1.0 had the best
probability and detected the uncovered area with a score of 0.89. In contrast,
V2.0 failed to detect the uncovered area and incorrectly classified a part of the
cell cover as a hot spot with a probability of 0.54. For V2.1 it did indeed find the
uncovered area but with a lower score, only 0.59. Both V2.0 and V2.1 incorrectly
classified a point flame as a hot spot with a score of 0.53 and 0.61, respectively.

CHAPTER 4. RESULTS 67

V1.0 Console output:
Uncovered area: 0.86

V2.0 Console output:
Hot spot: 0.58
Point flame: 0.74
Point flame: 0.71

V2.1 Console output:
Uncovered area: 0.48
Hot spot: 0.61
Point flame: 0.68
Point flame: 0.77
Point flame: 0.80

Figure 4.3.6: Real-world test on distorted image.

Figure 4.3.6 was selected because its colour balance is not set correctly and
is slightly out of focus. It is essential to know how our algorithm functions in
varying lighting conditions and the adverse effects of out-of-focused images, which
will be prevalent due to the magnetic fields. However, all vehicles at Hydro Årdal
are equipped with spotlights, which makes colour balance issues less likely.

As seen in V1.0, the uncovered area was detected with a high probability, an
impressive 0.86. However, the same cannot be said of V2.0. It incorrectly classified
illumination on a cell cover, possibly stemming from a tapping hole, as a hot spot.
It did, however, classify almost all the point flames. V2.1 did a decent job but did
not detect the crucial uncovered area. It detected an uncovered area at the feeding
point with a score of 0.48. As mentioned, it is unavoidable to have uncovered areas
around the feeding point.

68 CHAPTER 4. RESULTS

4.3.3 iPhone Video

The following images are screenshots taken from videos from an iPhone, which
are also chosen due to their importance in showcasing our results. The V1.0,
V2.0, and V2.1 screenshots are taken from approximately the same video frames
to highlight the differences between the versions.

V1.0 Console output:
Uncovered area: 68.4%

V2.0 Console output:
Uncovered area: 74.8%
Point flame: 64.9%
Point flame: 79.8%
Point flame: 75.2%

V2.1 Console output:
Uncovered area: 70.8%
Point flame: 81.3%
Point flame: 78.3%

Figure 4.3.7: Real-world test on iPhone video for detecting uncovered areas.

Figure 4.3.7 shows that V1.0 classified the stub to the far left as an uncovered
area, with a confidence score of 0.648 (64.8%). V1.0 has a few false detections in
this video and struggles to recognise hot spots and uncovered areas in general.
The detections in V2.0 are considerably more accurate. However, a part of the
alumina feeder (at the top of the image) was misclassified as a point flame. The
uncovered area detection to the bottom left in both V2.0 and V2.1 have high
confidence scores. In this frame, V2.0 has a confidence score of 0.758 (75.8%),
while V2.1 has a confidence score of 0.708 (70.8%). While playing the video, V2.1
has a better overall result regarding this particular uncovered area detection.

CHAPTER 4. RESULTS 69

V2.1 also has a slightly better result in this video frame, with no false detections.

V1.0 Console output:
Hot spot: 44.2%

V2.0 Console output:
Hot spot: 43.0%
Uncovered area: 46.5%
Point flame: 88.6%
Point flame: 74.5%
Hot spot: 50.9%
Hot spot: 82.7%
Point flame: 65.3%

V2.1 Console output:
Point flame: 84.6%
Point flame: 78.0%
Hot spot: 58.8%
Uncovered area: 68.5%

Figure 4.3.8: Real-world test on iPhone video for detecting hot spots.

Figure 4.3.8 displays that both V1.0 and V2.1 fail to detect the critical hot spot
on the left. However, they both detected the smaller, less significant hot spot on
the right. V2.0 has the highest confidence score regarding that particular hot spot
detection, with a confidence score of 0.827 (82.7%). V2.1 has a confidence score
of 0.588 (58.8%) for that same hot spot, as well as a questionable uncovered area
detection in the same spot, with a confidence score of 0.685 (68.4%). V2.0 also
successfully recognises the hot spot on the left as an uncovered area and hot spot.
Nevertheless, V2.0 exhibits a higher frequency of misclassifying point flames as hot
spots than V2.1 (as seen in the middle lower part of Figure 4.3.8 V2.0), and the
confidence scores of the hot spot and uncovered area detection to the left in V2.0 is
quite low; 0.43 (43.0%) for the hot spot, and 0.465 (46.5%) for the uncovered area.

70 CHAPTER 4. RESULTS

V1.0 Console output:
Hot spot: 54.4%

V2.0 Console output:
Hot spot: 84.0%
Hot spot: 63.8%
Point flame: 69.3%

V2.1 Console output:
Hot spot: 49.5%
Uncovered area: 77.6%
Hot spot: 49.8%
Point flame: 47.4%

Figure 4.3.9: Real-world test on iPhone video for detecting hot spots.

Figure 4.3.9 demonstrates that V1.0 detects merely a small hot spot and fails
to accurately detect the hot spot located to the upper left of the image. V2.0 and
V2.1 perform well in this instance, with no false detections and high confidence
scores in general. V2.0 has the highest confidence score for both the hot spot
detections, with 0.84 (84%) and 0.638 (63.8%). While V2.1 has confidence scores
of 0.495 (49.5%) and 0.498 (49.8%) for the same hot spots. V2.1 classifies the hot
spot to the left as both a hot spot and an uncovered area in this instance as well.

CHAPTER 4. RESULTS 71

4.3.4 GoPro Video

This test video, filmed with a GoPro HERO 11, is from the same cell as the
iPhone video in the previous section. These images are also screenshots from
approximately the same video frame, extracted as still images, showcasing the
differences between the versions.

V1.0 Console output:
Uncovered area: 65.0%

V2.0 Console output:
Uncovered area: 73.7%
Point flame: 85.3%
Point flame: 62.6%
Point flame: 71.8%

V2.1 Console output:
Uncovered area: 74.7%
Point flame: 82.3%
Point flame: 86.8%
Point flame: 78.8%

Figure 4.3.10: Real-world test on GoPro video for detecting uncovered areas.

Figure 4.3.10 displays that V1.0 successfully detects the uncovered area in the
bottom left, with a reasonable confidence score of 0.65 (65%). V2.0 and V2.1
also detect that same uncovered area, with V2.0 comprising a confidence score
of 0.737 (73.7%) and V2.1 having 0.747 (74.7%). There is minimal difference in
the results of V2.0 and V2.1 in this video frame, except for the confidence scores
being slightly higher overall in V2.1. In addition, V2.1 detects a higher number
of stubs, although they both fail to detect every single stub.

72 CHAPTER 4. RESULTS

V1.0 Console output:
N/A

V2.0 Console output:
Point flame: 85.3%
Point flame: 85.7%
Hot spot: 73.0%
Hot spot: 50.0%
Point flame: 65.3%

V2.1 Console output:
Point flame: 81.8%
Point flame: 83.9%
Hot spot: 41.4%
Uncovered area: 44.2%
Point flame: 76.5%
Point flame: 72.5%

Figure 4.3.11: Real-world test on GoPro video for detecting hot spots.

Figure 4.3.11 show that V1.0 does not detect anything in this instance,
although a hot spot is located slightly to the right in the middle of the image.
V2.0 and V2.1 successfully detect that hot spot, where V2.0 has the highest
confidence score of 0.73 (73.0%), while V2.1 has a combined hot spot and
uncovered area detection with confidence scores of 0.414 (41.4%) and 0.442
(44.2%). V2.0 classified one of the point flames at the bottom of the image
as a hot spot, while V2.1 classified the point flame correctly with a confidence
score of 0.765 (76.5%). Apart from this, V2.0 and V2.1 performed rather similarly.

CHAPTER

FIVE

DISCUSSION

5.1 Results from Solution One and Two

The results obtained from both Solution One and Solution Two exhibit varying
levels of success in detecting hot spots and uncovered areas.

Solution One, which relied on a colour and edge-detecting model, demonstrated
reasonable success in identifying hot spots. However, the method’s high sensitivity
to lighting conditions and inability to distinguish between hot spots and point
flames limit its practical application. Additionally, the edge detection method for
identifying uncovered areas failed to produce reliable results due to interfering
edge features inside the cell.

In contrast, despite their limited training data set, the versions obtained in
Solution Two worked better than expected. In the following subsections, the
results from each version will be discussed.

73

74 CHAPTER 5. DISCUSSION

5.1.1 Version 1.0

The object detection algorithm V1.0 exhibits a relatively high level of accuracy
when applied to test images. However, it did not perform well when tested on
video. V1.0 was able to identify some objects in different lighting conditions, but
its performance was not as precise as in later versions.

V1.0’s performance varies throughout the test cases. While tested on images,
V1.0 sometimes outperformed the other versions in detecting uncovered areas or
hot spots. However, it struggled to provide accurate results consistently.

The confidence scores for detected objects were generally low when tested on
video, with inconsistent results and several false detections. V1.0 was trained
using 111 images from both the iPhone and the GoPro, so the poor results on
video files were surprising.

In summary, V1.0’s performance was satisfactory when tested on images but could
not perform while being tested on video. By only being able to recognise hot
spots and uncovered areas, V1.0 was seemingly more receptive to false detections.
However, it provided a foundation for developing V2.0 and V2.1.

5.1.2 Version 2.0

The object detection algorithm V2.0 demonstrates a high degree of accuracy when
applied to test videos captured using both a GoPro HERO11 and an iPhone 11.
V2.0 could accurately detect objects in various lighting conditions, with almost
no false detections. It successfully detected a high number of objects, consistently
exhibiting relatively high confidence scores.

One notable feature of V2.0 is its ability to separate objects in crowded images,
even when objects are partially obscured. This is particularly impressive given
that the number of images used in training the object detection algorithm was
relatively low (68 images in total).

Although instances of false detections were observed, they were infrequent and
typically exhibited low confidence scores. The most common occurrence of
false detections was point flames being misclassified as hot spots. These false
detections often last only a few frames, but they can still be problematic and
attention-stealing when they occur consistently.

CHAPTER 5. DISCUSSION 75

Overall, V2.0 performed surprisingly well, given its relatively low amount of
training data. Its ability to recognise and separate objects in crowded images is
particularly noteworthy. However, the biggest weakness of V2.0 is false detections,
especially in the case of point flames being misclassified as hot spots.

5.1.3 Version 2.1

V2.1 performs well in both video and image testing, with almost non-existent
false detections. While being tested on iPhone and GoPro video, successful
object detections often hold high confidence scores in varying lighting conditions.
However, in some instances, V2.1 classify hot spots as both a hot spot and an
uncovered area.

V2.1 is accurate when tested on video files; few objects go unseen, and false
detections are rare. Being trained on 111 images might contribute to its ability
to detect objects even though they are obscured or have bad lighting. However,
as seen in the test videos, V2.1 sometimes struggles to detect certain hot spots
and uncovered areas instantly. Yet, except for the case in Figure 4.3.8, hot spots
and uncovered areas are eventually detected.

V2.1’s most significant weakness is the occasional classification of hot spots as
hot spot and uncovered area. Although these combined classifications might be
considered a drawback, hot spots are inherently uncovered areas; thus, these
detections can be argued as not being false.

V2.1 demonstrates a consistently high degree of accuracy, with minimal false
detections. Few objects go undetected. Besides the combined hot spot and
uncovered area detections and the occasionally uncovered area initially going
unseen, V2.1 is robust and reliable.

76 CHAPTER 5. DISCUSSION

5.1.4 Comparing Versions

In video testing, V1.0 failed to detect anything of interest except for brief hot
spot detections and uncovered area detections. V1.0 also exhibits numerous false
detections. In contrast, V2.0 and V2.1 both performed well. However, V2.0
is more likely to misclassify point flames as hot spots, even though such false
detections often only last a few frames. V2.1 more frequently classify hot spots
as both a hot spot and an uncovered area.

Nevertheless, since a hot spot is inherently an uncovered area, it can be argued
that these types of detections are not false. Seemingly, V2.0 and V2.1 each
possess their advantages and drawbacks. V2.0 detects hot spots more frequently,
and V2.1 is more accurate in detections, with fewer false detections and a reduced
likelihood of misclassifying point flames as hot spots.

Even though V2.1 has combined hot spot and uncovered area detections, rather
than V2.0’s single hot spot detections with higher confidence scores, V2.1 seems
sturdier with consistently fewer false detections. Both V2.0 and V2.1 handle the
wide angle from the GoPro well. However, V2.1 has no false detections outside
the cell. In contrast, V2.0 has occasional false detections, such as red paint being
misclassified as hot spots and other equipment misclassified as point flames or
uncovered areas.

The confusion matrices in Chapter 4 reveal that our image dataset scarcely
included images without objects, also known as background images. If the model
has not been trained with such images, it could struggle to identify them when
presented accurately. The fact that we did not specifically train the versions
with verified backgrounds (except for a handful in V1.0) might contribute to the
observed misclassifications.

V1.0 has some instances of successful detections, but it generally performs poorly
in test videos. V2.0 and V2.1 are the more comparable versions, each with its
own advantages and drawbacks. However, V2.1 is generally more reliable, with
fewer false detections and typically accurate detections.

CHAPTER 5. DISCUSSION 77

Table 5.1.1 gives an overview of what type of images the various versions were
trained on, the number of images, and the labelling tools used.

Version GoPro images iPhone images Total MakeSense Roboflow

Version 1.0 43 68 111 ✓

Version 2.0 0 68 68 ✓

Version 2.1 43 68 111 ✓

Table 5.1.1: Overview of the quantity and types of images, as well as the labelling
tools used in training the various ML-models.

5.1.5 Wide-Angle Impact on Detection from the GoPro

Potential issues were initially suspected due to the wide-angle focal length of the
GoPro HERO11. It could complicate the object detection algorithms’ ability to
discern between different objects. However, these concerns were largely proven
unfounded following further tests.

Although the GoPro’s wide angle is not detrimental, its footage generally appears
darker. This could diminish the accuracy of hot spot detection, resulting in some
hot spots being missed. The darker footage may be attributed to effects such as
vignetting, a common phenomenon with wide focal lengths. This could also be
due to a less light-sensitive sensor.

78 CHAPTER 5. DISCUSSION

5.1.6 Latency Issues and GPU Requirements

The object detection algorithms V1.0, V2.0, and V2.1 were executed and tested
on video files within two different environments: Google Colab, which used a
powerful GPU (often a Tesla T4 GPU) [53], and Python scripts running locally
on a personal computer.

Both environments produced identical results. However, the locally executed script
was more prone to latency issues, which resulted in a slower FPS rate when running
the videos live. These latency issues can largely be attributed to the limited CPU
capabilities of the computer running the script locally. As a point of note, the
training phase of machine learning models demands powerful GPUs. However,
when deploying pre-trained models, the requirements are not as demanding, and
a less powerful GPU can suffice.

Figure 5.1.1: The budget-friendly Nvidia GeForce RTX 2070 GPU [54].

Dedicated Graphics Processing Units (GPUs) can mitigate latency issues and
enhance performance, compared to Central Processing Units (CPUs). Economical
GPUs, such as the NVIDIA Jetson series, offer a beneficial balance between
cost and performance. They are specifically designed to handle ML tasks [55].
Alternatively, a cost-effective solution is to use an affordable consumer gaming
computer equipped with a modestly priced GPU, like the Nvidia GeForce RTX
2070 (see Figure 5.1.1). Despite being less powerful than its counterpart used in
the training phase, this GPU has the necessary 8 GB of memory to run pre-trained
ML operations effectively. As of 2023, it can be acquired for around 6500 NOK, a
relatively small cost considering the potential savings highlighted in Appendix D.

CHAPTER 5. DISCUSSION 79

5.2 Potential Solutions

In addition to finding the correct method for detecting hot spots and other objects
on the anode, we must discuss how to implement the system.

5.2.1 Corrosion Protection

The environment at Hydro Årdal is, as mentioned, harsh. This includes corrosive
dust and gases such as hydrogen fluoride (HF) and aluminium oxide (Al2O3).
These substances, as mentioned, severely corrode any form of glass, making it
essential to find ways to protect the lens to maintain decent image quality.

At Hydro Årdal, different protective measures are already in place to minimise
corrosion. For example, vehicles have replaceable films on their windows to
prolong the glass’s lifespan. Moreover, some flue gas sensors use a compressor
that continuously generates an overpressure at the lens of the laser beam, reducing
lens corrosion [56].

Our study suggests using cost-effective glass filters or cases that could be replaced
during regular service intervals as the most viable solution. This approach
has multiple benefits, such as being easy to implement, simple in design, and
having few potential failure points. However, it is important to consider that
the protective glass may have a limited lifespan, potentially lasting only one or
two shifts. This is similar to the initial performance of laser beam lenses before
introducing the overpressure method, which only yielded reliable measurements
for a few hours [56].

Given the challenges associated with movement, applying an overpressure system
on a moving vehicle might not be as effective as for stationary flue gas
sensors. Factors such as changes in pressure due to varying speeds or external
environmental influences could impact the system’s performance.

5.2.2 Real-Time Detection

Providing live feedback during the anode covering operation offers immediate,
precise responses, although it introduces certain challenges. Initially, real-time
feedback might increase the operator’s workload, potentially posing a challenge
to covering all the anodes within a single shift. Therefore, it becomes essential to
define tolerances and ascertain the criticality of hot spots to prevent the operator

80 CHAPTER 5. DISCUSSION

from being overburdened.

Secondly, real-time feedback necessitates an enhanced processing capacity for
immediate image analysis and suggestions. This requirement considers the
need for more powerful hardware, such as dedicated Graphics Processing Units
(GPUs), which excel in image processing tasks compared to Central Processing
Units (CPUs), as discussed in Section 5.1.6.

5.2.3 Cloud-Based Prioritisation

At Hydro Årdal, each operator in the electrolysis area is tasked with redressing
a designated number of cells. In a cloud-based system, these operators would
receive prioritisation notifications for their cells that require redressing. This
system could also initiate tasks for the upcoming shift. For instance, if a cell
lacks sufficient ACM, the covering operator can refer to a list of cells that need
additional ACM.

A cloud-based system offers numerous benefits, such as image processing in a
secure and centralised location and keeping hardware safe from the hazardous
environments found in Hydro Årdal. Additionally, it can monitor conditions
and provide more reliable documentation than random checks. This could assist
quality control, which is currently conducted through manual visualisation checks
[57].

However, this system also presents some drawbacks. To be a viable solution, the
vehicle on which the system is mounted must maintain a stable wireless connection
to the database, enabling the transfer of images for processing. Furthermore, the
wireless connection must possess sufficient bandwidth to transmit data wirelessly,
which could pose a challenge.

If establishing a stable wireless connection proves too difficult, an alternative
approach would be physically transferring the recordings using the memory card
or via cable when the covering vehicle refills the ACM. However, we hypothesise
that a physical transfer solution might become more of a burden than an aid for
the operators, as it could lead to the loss of memory cards.

A potential solution to address the mentioned challenges could involve
implementing a robust and reliable wireless communication system, such as a

CHAPTER 5. DISCUSSION 81

dedicated private network or 5G infrastructure. This can ensure stable connections
and sufficient bandwidth for data transfer.

5.2.4 Vehicle Considerations

While the anode-covering vehicle is an obvious choice for implementing our
system, several limitations must be addressed. Large quantities of dust are
generated during the anode covering operation, which we hypothesised can pose
challenges to the vision system’s accuracy. As our system has only been tested
under ideal conditions with controlled illumination and lighting sources, real-world
scenarios with varying levels of dust and debris may lead to decreased performance.

An alternative approach would be to integrate the system with the crust-breaking
operations. In this phase, the used anode, or butt, is broken free from the crust
by a crust breaker before the anode is replaced. This process requires the entire
cell cover to be opened, providing a clear view of the cell for the system to scan,
see Figure 5.2.1. By mounting the system on the crust breaker, it can acquire
images of the entire cell, which can then be relayed to a centralised database for
further processing.

Figure 5.2.1: A crust breaker chiselling out a butt.

This approach offers several advantages. Firstly, it allows the system to gather
information on the cell’s condition before the covering operation, enabling
operators to prioritise cells that require immediate attention.

82 CHAPTER 5. DISCUSSION

Secondly, the system may exhibit improved performance and accuracy as the
crust breaker operates in a relatively dust-free environment compared to the
anode covering process. However, integrating the system with the crust breaker
introduces new challenges. The system’s mounting, stability, and protection from
potential damage due to the crust breaker’s operation must be considered. Which
consist of the vibration caused by the chiselling of the crust. These vibrations
could inhibit the system’s image quality, making it less accurate. Despite these
challenges, integrating the vision system on the crust breaker presents a promising
solution.

5.3 Further Work

In this section, we suggest the potential for further work, which includes three
phases. Each phase builds upon the previous one, laying the groundwork for the
next step while addressing new challenges and expanding the scope of the project.

5.3.1 Phase I: Refining the Algorithm

Upon establishing that the POC is viable under ideal conditions, it is necessary
to expand the dataset. To achieve a robust algorithm, it is advisable to have
more images. However, it is difficult to determine the number of images since it
depends on the complexity of the task. Our findings indicate that a focal length
of approximately 26 mm is optimal, with a resolution of 640 pixels is sufficient.
Expanding the training set is facilitated by filming, and the tedious annotation task
could possibly be automated. To achieve this, the video feed would first undergo
inference, which refers to making predictions on new unseen data. The processed
output would then be fed back into Roboflow, which subsequently divides the
video into a specified number of still images. After the split, these images would be
manually reviewed to determine which among them would be selected for further
automated training. After collecting sufficient data, we recommend finalising the
height measurement for the ACM. A stereo camera is suggested for improved
accuracy, but one could continue using a single-sensor camera, albeit with potential
height inaccuracies for the ACM. Furthermore, develop a scoring system to
evaluate ACM coverage and instances of exposed anode surfaces, operators with
intuitive feedback.

5.3.2 Phase II: Implementation

The system’s implementation presents the most significant challenge. As
previously mentioned, our tests have been conducted under ideal conditions.

CHAPTER 5. DISCUSSION 83

We initially propose implementing the system on the covering vehicle, as image
acquisition and algorithm testing do not require powerful hardware on board the
vehicle. Data can be gathered and analysed elsewhere. The crust breaker solution
may be considered if dust generated during the covering process hinders image
clarity. It currently needs to be determined whether cloud-based or real-time
feedback is preferable; both options have their merits and drawbacks, as discussed
in Section 5.2. We advise making this decision after completing Phase I.

5.3.3 Phase III: Autonomous Covering Crane

Suppose Phase I and II are successfully implemented. In that case, it can be
used in the final goal, which is to integrate a vision system into an autonomous
robotic crane that automatically covers anodes. A monocular camera could be
adequate for this application based on the crane operating along a predefined track.
The distance between the anode and the camera frame can be calculated using
inverse and forward kinematics to transform coordinate frames. According to our
hypothesis, a monocular camera should offer sufficient performance, thus negating
the need for a 3D camera in this context. For a comprehensive understanding of
robotic vision techniques and principles, refer to the book "Robotics, Vision and
Control" by Peter Cork [58].

84 CHAPTER 5. DISCUSSION

CHAPTER

SIX

CONCLUSIONS

This project aimed to develop a POC for a CV system to detect exposed anode
surfaces at aluminium smelters. Two different solutions were explored: Solution
One, a colour and edge-detecting model, and Solution Two, a ML object detection
algorithm.

Solution One showed potential in detecting hot spots but struggled with
distinguishing between hot spots and other red-coloured objects in the cell, i.e.
point flames and tapping holes. Moreover, it faced challenges in identifying
uncovered areas due to interfering edge features inside the cell. On the other
hand, Solution Two presented three versions of the object detection algorithm.
V1.0 showed satisfactory results on images, but its video performance was subpar.
V2.0 demonstrated a fairly high degree of accuracy but had some issues with false
detections, such as point flames being misclassified as hot spots. V2.1 performed
the best, with minimal false detections and consistent accuracy in detecting hot
spots and uncovered areas.

The wide-angle focal length of the GoPro HERO11 camera did not pose significant
challenges to object detection. Our results showed that a resolution of 640 is
sufficient at a distance of 50 cm with a focal length of 26 mm. However,
dimmer footage from the GoPro could lead to less accurate detections of hot
spots. Latency issues were observed when running object detection algorithms
on a CPU. However, no latency issues were encountered when executing these
pre-trained models on a dedicated GPU. This means it is advantageous to have
a dedicated GPU for real-time detection.

85

86 CHAPTER 6. CONCLUSIONS

Various potential solutions were discussed, including corrosion protection for the
camera, real-time detection using dedicated GPU, cloud-based prioritisation, and
vehicle considerations. These solutions highlighted the importance of balancing
system performance, practicality, and operator workload. Ultimately, integrating
the system with crust breaker operations emerged as a promising approach,
providing a clearer view of the cell and possibly more efficient allocation of
resources.

In conclusion, this project demonstrates the potential of machine learning and
computer vision in detecting exposed anode surfaces within aluminium-producing
cells. The further development and implementation of our proposed system could
reduce emissions, enhance anode-covering quality, and thereby yield economic
benefits for Hydro Årdal. As Appendix D indicates, potential savings could
amount to 14.5 million NOK annually. These financial savings and reduction
in CO2 emissions can enhance Hydro Årdal’s profitability and support a more
sustainable future for aluminium production.

REFERENCES

[1] Enova. Skal produsere aluminium utslippsfritt. Accessed: 2023-04-12. 2021.
url: https://kommunikasjon.ntb.no/pressemelding/skal-produsere-
aluminium - utslippsfritt ? publisherId = 17848299 & releaseId =

17958182.

[2] Norwegian Ministry of Climate and Environment. Norway’s Climate
Action Plan for 2021–2030. https : / / www . regjeringen . no /

contentassets / a78ecf5ad2344fa5ae4a394412ef8975 / en - gb / pdfs /

stm202020210013000engpdfs.pdf. p. 32. 2020.

[3] Norsk Hydro. Climate. https://www.hydro.com/en/sustainability/
our-approach/environmental/climate/. 2022.

[4] Norsk Hydro. PotRoom. Accessed: February 13, 2023. 2022. url: https:
/ / www . hydro . com / en / media / news / 2022 / hydro - investerer - 80 -

millioner-i-ny-produksjonsteknologi-i-ardal/.

[5] Simen Vatslid Øystese. CO2 Strategi Hydro og Elektrolysen i Årdal.
Unpublished PowerPoint Presentation. slide 10. 2022.

[6] Simen Vatslid Øystese. CO2 Strategi Hydro og Elektrolysen i Årdal.
Unpublished PowerPoint Presentation. slide 13. 2022.

[7] Pachauri, R. K. and Meyer, L. A. Climate Change 2014: Synthesis Report.
Contribution of Working Groups I, II and III to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change. https://www.ipcc.
ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf.
pp. 13-16. Geneva, Switzerland, 2014.

[8] W. Haupin. “Electrochemistry of the Hall-Heroult Process for Aluminum
Smelting”. In: Journal of Chemical Education 60.4 (1983), p. 279. doi: 10.
1021/ED060P279. url: https://doi.org/10.1021/ED060P279.

[9] Hovedkurs i videreutdanning Fagoperatør Aluminium. Course material. pp.
3, 13. Oslo, Norway, 2006.

87

https://kommunikasjon.ntb.no/pressemelding/skal-produsere-aluminium-utslippsfritt?publisherId=17848299&releaseId=17958182
https://kommunikasjon.ntb.no/pressemelding/skal-produsere-aluminium-utslippsfritt?publisherId=17848299&releaseId=17958182
https://kommunikasjon.ntb.no/pressemelding/skal-produsere-aluminium-utslippsfritt?publisherId=17848299&releaseId=17958182
https://www.regjeringen.no/contentassets/a78ecf5ad2344fa5ae4a394412ef8975/en-gb/pdfs/stm202020210013000engpdfs.pdf
https://www.regjeringen.no/contentassets/a78ecf5ad2344fa5ae4a394412ef8975/en-gb/pdfs/stm202020210013000engpdfs.pdf
https://www.regjeringen.no/contentassets/a78ecf5ad2344fa5ae4a394412ef8975/en-gb/pdfs/stm202020210013000engpdfs.pdf
https://www.hydro.com/en/sustainability/our-approach/environmental/climate/
https://www.hydro.com/en/sustainability/our-approach/environmental/climate/
https://www.hydro.com/en/media/news/2022/hydro-investerer-80-millioner-i-ny-produksjonsteknologi-i-ardal/
https://www.hydro.com/en/media/news/2022/hydro-investerer-80-millioner-i-ny-produksjonsteknologi-i-ardal/
https://www.hydro.com/en/media/news/2022/hydro-investerer-80-millioner-i-ny-produksjonsteknologi-i-ardal/
https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf
https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf
https://doi.org/10.1021/ED060P279
https://doi.org/10.1021/ED060P279
https://doi.org/10.1021/ED060P279

88 REFERENCES

[10] Carl H Hamann, Andrew Hamnett, and Wolf Vielstich. Electrochemistry.
Wiley-VCH, 2007. Chap. 3, pp. 57–60. isbn: 9783527310692.

[11] AA 03 04 03 SOP Dekking. Unpublished standard operating procedure.
Developed by Elin Haugland. Approved by Simen Vatslid Øystese. 2022.

[12] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms
in MATLAB. 2nd. New York, NY: Springer, 2017, p. 287. isbn:
978-3-319-54413-7. doi: 10.1007/978-3-319-54413-7.

[13] Trond Eirik Jentoftsen. Personal communication: Price of anode mass.
Personal communication with Eskil Digernes. 2023.

[14] Junichi Nakamura. Image Sensors and Signal Processing for Digital Still
Cameras. CRC Press, 2005. isbn: 978-0-8493-3545-7.

[15] Silent Peak Photography. How Do Camera Imaging Sensors Work?
Accessed: February 6, 2023. 2021. url: https://silentpeakphoto.com/
gear / cameras / camera - guides / how - do - camera - imaging - sensors -

work/.

[16] Various. The Three Primary Colors of RGB Color Model (Red, Green, Blue).
Online. Accessed on March 2, 2023. 2019. url: https://en.wiktionary.
org/wiki/RGB#/media/File:The_three_primary_colors_of_RGB_

Color_Model_(Red,_Green,_Blue).png.

[17] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997. isbn: 0070428077.

[18] Alon Halevy, Peter Norvig, and Fernando Pereira. “The unreasonable
effectiveness of data”. In: IEEE Intelligent Systems 24.2 (2009), pp. 8–12.

[19] Sebastian Raschka. “Model evaluation, model selection, and algorithm
selection in machine learning”. In: arXiv preprint arXiv:1811.12808 (2018).

[20] AI Graduate. Use of Cross-Validation in Machine Learning. https : / /

aigraduate.com/use-of-cross-validation-in-machine-learning/.
Accessed: 2023-05-10. 2021.

[21] Douglas M Hawkins. “The problem of overfitting”. In: Journal of chemical
information and computer sciences 44.1 (2004), pp. 1–12.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
Cambridge, MA: MIT Press, 2016. isbn: 978-0262035613. url: https://
www.deeplearningbook.org/front_matter.pdf.

[23] Lutz Prechelt. “Early stopping-but when?” In: Neural Networks: Tricks of
the trade (1998), pp. 55–69.

https://doi.org/10.1007/978-3-319-54413-7
https://silentpeakphoto.com/gear/cameras/camera-guides/how-do-camera-imaging-sensors-work/
https://silentpeakphoto.com/gear/cameras/camera-guides/how-do-camera-imaging-sensors-work/
https://silentpeakphoto.com/gear/cameras/camera-guides/how-do-camera-imaging-sensors-work/
https://en.wiktionary.org/wiki/RGB#/media/File:The_three_primary_colors_of_RGB_Color_Model_(Red,_Green,_Blue).png
https://en.wiktionary.org/wiki/RGB#/media/File:The_three_primary_colors_of_RGB_Color_Model_(Red,_Green,_Blue).png
https://en.wiktionary.org/wiki/RGB#/media/File:The_three_primary_colors_of_RGB_Color_Model_(Red,_Green,_Blue).png
https://aigraduate.com/use-of-cross-validation-in-machine-learning/
https://aigraduate.com/use-of-cross-validation-in-machine-learning/
https://www.deeplearningbook.org/front_matter.pdf
https://www.deeplearningbook.org/front_matter.pdf

REFERENCES 89

[24] Towards Data Science. Parameters and Hyperparameters. Year. url: https:
/ / towardsdatascience . com / parameters - and - hyperparameters -

aa609601a9ac.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (2015), pp. 436–444.

[26] PyTorch Team. torch.nn.Conv2d. 2021. url: https://pytorch.org/docs/
stable/generated/torch.nn.Conv2d.html.

[27] Janosh Riebesell. Convolution Operator. 2022. url: https://tikz.net/
conv2d/.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet
classification with deep convolutional neural networks”. In: Advances in
neural information processing systems. 2012, pp. 1097–1105. doi: 10.1145/
3065386.

[29] PyTorch Team. torch.nn.ReLU. 2021. url: https://pytorch.org/docs/
stable/generated/torch.nn.ReLU.html.

[30] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[31] PyTorch Team. Defining a Neural Network in PyTorch. 2021. url: https:
//pytorch.org/tutorials/recipes/recipes/defining_a_neural_

network.html.

[32] PyTorch Team. torch.nn.Softmax. 2021. url: https://pytorch.org/docs/
stable/generated/torch.nn.Softmax.html.

[33] A. El Gamal and B. Fowler. “CMOS vs. CCD Imagers”. In: Handbook of
Image and Video Processing. Ed. by A.C. Bovik. 2nd ed. Elsevier Academic
Press, 2005, pp. 83–98. isbn: 9780121197926.

[34] Simen Vatslid Øystese. Personal communication: The use of GoPros with
vehicles at Hydro Årdal. Personal communication with Eskil Digernes. Apr.
2023.

[35] ClearView Imaging. Stereo Vision for 3D Machine Vision Applications.
https://www.clearview-imaging.com/en/blog/stereo-vision-for-

3d-machine-vision-applications. [Online; accessed 19-April-2023]. 2023.

[36] P. Polakis and A. Karakos. “RGB and HSV color models for image analysis:
A survey”. In: 2014 International Conference on Telecommunications and
Multimedia (TEMU). IEEE. 2014, pp. 1–6. doi: 10.1109/TEMU.2014.

6955153.

https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://tikz.net/conv2d/
https://tikz.net/conv2d/
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html
https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html
https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://www.clearview-imaging.com/en/blog/stereo-vision-for-3d-machine-vision-applications
https://www.clearview-imaging.com/en/blog/stereo-vision-for-3d-machine-vision-applications
https://doi.org/10.1109/TEMU.2014.6955153
https://doi.org/10.1109/TEMU.2014.6955153

90 REFERENCES

[37] Linda G. Shapiro and George C. Stockman. Computer Vision. Upper Saddle
River, NJ, USA: Prentice Hall, 2001. isbn: 978-0-13-030796-5.

[38] Richard Szeliski. Computer Vision: Algorithms and Applications. London,
UK: Springer, 2010. isbn: 978-1-84882-934-3.

[39] R. J. Cintra et al. “Color-based segmentation for forest fire detection: A
comparative study”. In: Journal of the Brazilian Computer Society 12.3
(2007), pp. 7–16.

[40] Yuanyuan Ma and Ognjen Arandjelović. “Classification of Ancient Roman
Coins by Denomination Using Colour, a Forgotten Feature in Automatic
Ancient Coin Analysis”. In: Sci 2.2 (2020), p. 37. doi: 10.3390/sci2020037.
url: https://www.mdpi.com/2413-4155/2/2/37.

[41] Murtaza Hassan. OpenCV Python Tutorial For Beginners 1 - Introduction
to OpenCV. Chapter 7: Color Detection. Murtaza’s Workshop - Robotics
and AI. 2021. url: https://www.youtube.com/watch?v=WQeoO7MI0Bs&
ab_channel=Murtaza/27sWorkshop-RoboticsandAI.

[42] Glenn Jocher. “YOLOv5: Improved Performance, Faster Speed”. In: (2021).
url: https://blog.roboflow.com/yolov5-improvements-and-speed/.

[43] J. Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
2015. doi: 10.48550/ARXIV.1506.02640. url: https://arxiv.org/pdf/
1506.02640.pdf.

[44] MakeSense. MakeSense. https://www.makesense.ai. Accessed: April 24,
2023.

[45] Roboflow. Roboflow. https://www.roboflow.com. Accessed: April 24, 2023.

[46] Priya Goyal et al. “Accurate, Large Minibatch SGD: Training ImageNet in
1 Hour”. In: arXiv preprint arXiv:1706.02677 (2017).

[47] NVIDIA Tesla T4 Specs | TechPowerUp GPU Database. Accessed:
2023-05-18. 2023. url: https : / / www . techpowerup . com / gpu - specs /

tesla-t4.c3316.

[48] Daniel L. Schwerin and Jason D. Hatcher. “Hydrofluoric Acid Burns”. In:
StatPearls [Internet] (Jan. 2023). Last Update: March 7, 2023. url: https:
//www.ncbi.nlm.nih.gov/books/NBK441829/.

[49] DeepLearning. YOLOv5 training with custom data. Accessed: 2023-02-23.
YouTube. Dec. 2020. url: https : / / www . youtube . com / watch ? v =

GRtgLlwxpc4&t=1072s.

https://doi.org/10.3390/sci2020037
https://www.mdpi.com/2413-4155/2/2/37
https://www.youtube.com/watch?v=WQeoO7MI0Bs&ab_channel=Murtaza/27sWorkshop-RoboticsandAI
https://www.youtube.com/watch?v=WQeoO7MI0Bs&ab_channel=Murtaza/27sWorkshop-RoboticsandAI
https://blog.roboflow.com/yolov5-improvements-and-speed/
https://doi.org/10.48550/ARXIV.1506.02640
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1506.02640.pdf
https://www.makesense.ai
https://www.roboflow.com
https://www.techpowerup.com/gpu-specs/tesla-t4.c3316
https://www.techpowerup.com/gpu-specs/tesla-t4.c3316
https://www.ncbi.nlm.nih.gov/books/NBK441829/
https://www.ncbi.nlm.nih.gov/books/NBK441829/
https://www.youtube.com/watch?v=GRtgLlwxpc4&t=1072s
https://www.youtube.com/watch?v=GRtgLlwxpc4&t=1072s

REFERENCES 91

[50] Takaya Saito and Marc Rehmsmeier. “The Precision-Recall plot is more
informative than the ROC plot when evaluating binary classifiers on
imbalanced datasets”. In: PloS one 10.3 (2015), e0118432. doi: 10.1371/
journal.pone.0118432.

[51] Analytics India Magazine. Complete Guide to Understanding Precision and
Recall Curves. Accessed on Date of access. Year of publication. url: https:
/ / analyticsindiamag . com / complete - guide - to - understanding -

precision-and-recall-curves/.

[52] Simen Vatslid Øystese. Personal communication: Iron content in aluminium.
Personal communication with Eskil Digernes. 2023.

[53] Tutorials Point. Google Colab - Using Free GPU. https : / / www .

tutorialspoint.com/google_colab/google_colab_using_free_gpu.

htm. 2021.

[54] Nvidia GeForce RTX 2070. Accessed: 2023-05-20. url: https : / /

prisguiden.no/produkt/nvidia-geforce-rtx-2070-337182.

[55] NVIDIA Jetson: Hardware for Machine Learning Tasks. https://www.

nvidia . com / en - us / autonomous - machines / embedded - systems/.
Accessed: April 27, 2023.

[56] Simen Vatslid Øystese. Personal communication: Use of overpressure to
protect laserbeam lens from corrosive HF gas. Personal communication with
Eskil Digernes. 2023.

[57] Simen Vatslid Øystese. Personal communication: Quality control of anode
covering. Personal communication with Eskil Digernes. 2023.

[58] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in
MATLAB. 2nd. New York, NY: Springer, 2017. isbn: 978-3-319-54413-7.
doi: 10.1007/978-3-319-54413-7.

[59] Nordnet. Norsk Hydro (NHY). Online. 2020. url: https://www.nordnet.
no/market/stocks/16105667-norsk-hydro?details.

[60] Wikipedia. Norsk Hydro logo. Online. url: https://no.wikipedia.org/
wiki/Norsk_Hydro#/media/Fil:Norsk_Hydro.svg.

[61] Hydro. Hydro Aluminium AS Årdal. Online. 2020. url: https://www.

hydro.com/no- NO/om- hydro/hydro- locations- worldwide/europe/

norway/ardal/hydro-aluminium-as-ardal/.

https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://analyticsindiamag.com/complete-guide-to-understanding-precision-and-recall-curves/
https://analyticsindiamag.com/complete-guide-to-understanding-precision-and-recall-curves/
https://analyticsindiamag.com/complete-guide-to-understanding-precision-and-recall-curves/
https://www.tutorialspoint.com/google_colab/google_colab_using_free_gpu.htm
https://www.tutorialspoint.com/google_colab/google_colab_using_free_gpu.htm
https://www.tutorialspoint.com/google_colab/google_colab_using_free_gpu.htm
https://prisguiden.no/produkt/nvidia-geforce-rtx-2070-337182
https://prisguiden.no/produkt/nvidia-geforce-rtx-2070-337182
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://doi.org/10.1007/978-3-319-54413-7
https://www.nordnet.no/market/stocks/16105667-norsk-hydro?details
https://www.nordnet.no/market/stocks/16105667-norsk-hydro?details
https://no.wikipedia.org/wiki/Norsk_Hydro#/media/Fil:Norsk_Hydro.svg
https://no.wikipedia.org/wiki/Norsk_Hydro#/media/Fil:Norsk_Hydro.svg
https://www.hydro.com/no-NO/om-hydro/hydro-locations-worldwide/europe/norway/ardal/hydro-aluminium-as-ardal/
https://www.hydro.com/no-NO/om-hydro/hydro-locations-worldwide/europe/norway/ardal/hydro-aluminium-as-ardal/
https://www.hydro.com/no-NO/om-hydro/hydro-locations-worldwide/europe/norway/ardal/hydro-aluminium-as-ardal/

92 REFERENCES

APPENDICES

93

A - GITHUB AND GOOGLE LINKS

The GitHub links contain all the Python scripts and our modified YOLOv5. The
Google links contain all the videos and images.

GitHub repository links

• https://github.com/eskilDigernes/BO23EB-08.git

• https://github.com/eskilDigernes/yolov5

Google Drive

• https://drive.google.com/drive/folders/

1nOwRtTs7T5r0G1gH5H4RB3v8b6mdj2Rh

Google Colaboratory

• https://colab.research.google.com/drive/

1G9E1bBhzeM191Yu0eaMa0o25EpD22J3K#scrollTo=eaFNnxLJbq4J

94

https://github.com/eskilDigernes/BO23EB-08.git
https://github.com/eskilDigernes/yolov5
https://drive.google.com/drive/folders/1nOwRtTs7T5r0G1gH5H4RB3v8b6mdj2Rh
https://drive.google.com/drive/folders/1nOwRtTs7T5r0G1gH5H4RB3v8b6mdj2Rh
https://colab.research.google.com/drive/1G9E1bBhzeM191Yu0eaMa0o25EpD22J3K#scrollTo=eaFNnxLJbq4J
https://colab.research.google.com/drive/1G9E1bBhzeM191Yu0eaMa0o25EpD22J3K#scrollTo=eaFNnxLJbq4J

B - PYTHON SCRIPTS

B1 - Google Colaboratory

-*- coding: utf -8 -*-

""" Yolov5_training.ipynb

Automatically generated by Colaboratory.

Original file is located at

https :// colab.research.google.com/drive/

1G9E1bBhzeM191Yu0eaMa0o25EpD22J3K

Custom Training with YOLOv5

In this tutorial , we assemble a dataset and train a custom

YOLOv5 model to recognize the objects in our dataset.

To do so we will take the following steps:

* Gather a dataset of images and label our dataset

* Export our dataset to YOLOv5

* Train YOLOv5 to recognize the objects in our dataset

* Evaluate our YOLOv5 model’s performance

* Run test inference to view our model at work

![](https :// uploads -ssl.webflow.com/5 f6bc60e665f54545a1e52a5/

615627 e5824c9c6195abfda9_computer -vision -cycle.png)

Step 1: Install Requirements

"""

95

Commented out IPython magic to ensure Python compatibility.

#clone YOLOv5 and

!git clone https :// github.com/ultralytics/yolov5 # clone repo

%cd yolov5

%pip install -qr requirements.txt # install dependencies

%pip install -q roboflow

import torch

import os

from IPython.display import Image , clear_output # to

display images

print(f"Setup complete. Using torch {torch.__version__}

({torch.cuda.get_device_properties (0).name if

torch.cuda.is_available () else ’CPU ’})")

"""# Step 2: Assemble Our Dataset

In order to train our custom model , we need to assemble a

dataset of representative images with bounding box

annotations around the objects that we want to detect.

And we need our dataset to be in YOLOv5 format.

In Roboflow , you can choose between two paths:

* Convert an existing dataset to YOLOv5 format.

Roboflow supports over [30 formats object detection formats]

(https :// roboflow.com/formats) for conversion.

* Upload raw images and annotate them in Roboflow with

[Roboflow Annotate](https :// docs.roboflow.com/annotate).

Annotate

![](https :// roboflow -darknet.s3.us-east -2. amazonaws.com/

roboflow -annotate.gif)

Version

![](https :// roboflow -darknet.s3.us-east -2. amazonaws.com/

robolfow -preprocessing.png)

96

"""

set up environment

os.environ["DATASET_DIRECTORY"] = "/content/datasets"

#Replace these lines with lines from your own Roboflow project

from roboflow import Roboflow

rf = Roboflow(api_key="L6PC4NZ0Yj3c6sKKprQ0")

project = rf.workspace("object -detection -5csc8").

project("black_red_detection")

dataset = project.version (1).download("yolov5")

"""# Step 3: Train Our Custom YOLOv5 model

Here , we are able to pass a number of arguments:

- **img:** define input image size

- **batch :** determine batch size

- ** epochs :** define the number of training epochs.

(Note: often , 3000+ are common here!)

- **data :** Our dataset locaiton is saved in the

‘dataset.location ‘

- ** weights :** specify a path to weights to start transfer

learning from.

Here we choose the generic COCO pretrained checkpoint.

- **cache :** cache images for faster training

"""

!python train.py --img 640 --batch 16 --epochs 1000 --data

{dataset.location }/data.yaml --weights yolov5s.pt --cache

"""# Evaluate Custom YOLOv5 Detector Performance

Training losses and performance metrics are saved to

Tensorboard and also to a logfile.

If you are new to these metrics , the one you want to focus on

is ‘mAP_0.5‘-learn more about mean average precision [here]

(https :// blog.roboflow.com/mean -average -precision /).

"""

Commented out IPython magic to ensure Python compatibility.

97

Start tensorboard

Launch after you have started training

logs save in the folder "runs"

%load_ext tensorboard

%tensorboard --logdir runs

"""# *** Plot and save mAP 0.5 and 0.5:0.95 curves ***"""

#import libraries

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

#load results file

df=pd.read_csv(’/content/yolov5/runs/train/exp3/results.csv’)

#shows indexes

print(df.columns)

#specify indexes

df = df[[’epoch’, ’metrics/mAP_0.5’,

’metrics/mAP_0 .5:0.95 ’]]

#show and save image

sns.set_style(’darkgrid ’)

plt.figure(figsize =(12, 8))

plt.plot(df[’epoch ’], df[’metrics/mAP_0.5’],

label=’mAP_0 .5’)

plt.plot(df[’epoch ’], df[’metrics/mAP_0 .5:0.95 ’],

label=’mAP_0 .5:0.95 ’)

plt.xlabel(’Epoch’)

plt.ylabel(’mAP’)

plt.title(’mAP Curves ’)

plt.legend ()

plt.show()

plt.savefig(’/content/yolov5/runs/train/exp/mAP_0.5 _Curve.jpg’)

"""#Run Inference With Trained Weights

Run inference with a pretrained checkpoint on contents of

‘test/images ‘ folder downloaded from Roboflow.

98

"""

!python detect.py --weights runs/train/exp/weights/best.pt

--img 416 --conf 0.5 --source {dataset.location }/test/images

#display inference on ALL test images

import glob

from IPython.display import Image , display

for imageName in

glob.glob(’/content/yolov5/runs/detect/exp/*.jpg’):

#assuming JPG

display(Image(filename=imageName))

print("\n")

"""# Conclusion and Next Steps

Congratulations! You’ve trained a custom YOLOv5 model to

recognize your custom objects.

To improve your model’s performance , we recommend first

interating on your datasets coverage and quality.

See this guide for [model performance improvement]

(https :// github.com/ultralytics/yolov5/wiki/

Tips -for -Best -Training -Results).

To deploy your model to an application , see this guide on

[exporting your model to deployment destinations]

(https :// github.com/ultralytics/yolov5/issues /251).

Once your model is in production , you will want to

continually iterate and improve on your dataset and model via

[active learning](https :// blog.roboflow.com/what -is-active -

learning /)."""

#Deploy Model back to Roboflow

project.version(dataset.version).deploy(model_type="yolov5",

model_path=f"/content/yolov5/runs/train/exp/")

#download full zipped folder

99

from google.colab import files

!zip -r /content.zip /content

files.download("/content.zip")

B2 - Colour Detection

import cv2

import numpy as np

def empty(a): # empty function for trackbars

pass

def stackImages(scale , imgArray): # see ch6 for explanation

rows = len(imgArray)

cols = len(imgArray [0])

rowsAvailable = isinstance(imgArray [0], list)

width = imgArray [0][0]. shape [1]

height = imgArray [0][0]. shape [0]

if rowsAvailable:

for x in range (0, rows):

for y in range(0, cols):

if imgArray[x][y].shape [:2] == imgArray [0]

[0]. shape [:2]:

imgArray[x][y] = cv2.resize(imgArray[x][y],

(0, 0), None , scale , scale)

else:

imgArray[x][y] = cv2.resize(imgArray[x][y],

(imgArray [0][0]. shape[1], imgArray [0]

[0]. shape [0]), None , scale , scale)

if len(imgArray[x][y].shape) == 2: imgArray[x][y]=

cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)

imageBlank = np.zeros((height , width , 3), np.uint8)

hor = [imageBlank]*rows

hor_con = [imageBlank]*rows

for x in range(0, rows):

hor[x] = np.hstack(imgArray[x])

ver = np.vstack(hor)

else:

for x in range(0, rows):

if imgArray[x].shape [:2] == imgArray [0]. shape [:2]:

100

imgArray[x] = cv2.resize(imgArray[x], (0, 0),

None , scale , scale)

else:

imgArray[x] = cv2.resize(imgArray[x],

(imgArray [0]. shape[1], imgArray [0]. shape [0]),

None , scale , scale)

if len(imgArray[x].shape) == 2: imgArray[x] =

cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)

hor= np.hstack(imgArray)

ver=hor

return ver

Add your image names to the list

path = ’resources/Full_Image_set/IMG_3260.jpg’

cv2.namedWindow(’TrackBars ’) # create a window for trackbars

cv2.resizeWindow(’TrackBars ’, 640, 240) # resize the window

to 640 x240

#"""

"Important! Define these values FIRST.

find the values for your image using the trackbars.

and then place them here.

#""

cv2.createTrackbar(’Hue Min’, ’TrackBars ’, 165, 179, empty)

cv2.createTrackbar(’Hue Max’, ’TrackBars ’, 179, 179, empty)

cv2.createTrackbar(’Sat Min’, ’TrackBars ’ ,119, 255, empty)

cv2.createTrackbar(’Sat Max’, ’TrackBars ’, 255, 255, empty)

cv2.createTrackbar(’Val Min’, ’TrackBars ’, 41, 255, empty)

cv2.createTrackbar(’Val Max’, ’TrackBars ’, 243, 255, empty)

while True: # create a loop to keep the trackbars open

img = cv2.imread(path)

imgHSV = cv2.cvtColor(img , cv2.COLOR_BGR2HSV)

convert the image to HSV

h_min = cv2.getTrackbarPos(’Hue Min’, ’TrackBars ’)

101

get the value of the trackbar each time it moves

h_max = cv2.getTrackbarPos(’Hue Max’, ’TrackBars ’)

s_min = cv2.getTrackbarPos(’Sat Min’, ’TrackBars ’)

s_max = cv2.getTrackbarPos(’Sat Max’, ’TrackBars ’)

v_min = cv2.getTrackbarPos(’Val Min’, ’TrackBars ’)

v_max = cv2.getTrackbarPos(’Val Max’, ’TrackBars ’)

print(h_min , h_max ,s_min ,s_max ,v_min , v_max)

prints the values to the consol

lower = np.array ([h_min , s_min , v_min])

create an array with the lower values

upper = np.array ([h_max , s_max , v_max])

create an array with the upper values

mask = cv2.inRange(imgHSV , lower , upper)

create a mask with the lower and upper values

imgResult = cv2.bitwise_and(img , img , mask=mask)

create a new image with the mask

contours , _ = cv2.findContours(mask , cv2.RETR_EXTERNAL ,

cv2.CHAIN_APPROX_SIMPLE) # find the contours

for cnt in contours: # loop through the contours

x, y, w, h = cv2.boundingRect(cnt) # get the x, y,

width and height of the contour

cv2.rectangle(img , (x, y), (x + w, y + h),

(0, 255, 0), 2) # draw a rectangle around the contour

cv2.imshow(’Original ’, img)

show the original image , ect.

cv2.imshow ("HSV", imgHSV)

cv2.imshow ("Mask", mask)

cv2.imshow (" Result", imgResult)

imgStack = stackImages (.2, ([img , imgHSV , mask]))

cv2.imshow("Stacked Images", imgStack)

cv2.imshow(’Original ’, img)

cv2.waitKey (1)

102

wait for 1ms, CRUCIAL while in a loop , otherwise

it will freeze.

B3 - Edge Detection

import cv2

import numpy as np

def process(img):

img_gray = cv2.cvtColor(img , cv2.COLOR_BGR2GRAY)

img_blur = cv2.GaussianBlur(img_gray , (11, 11), 10)

img_canny = cv2.Canny(img_blur , 0, 65) #img_blur

is the threshold , 0

kernel = np.ones ((19, 19))

img_dilate = cv2.dilate(img_canny , kernel , iterations =4)

img_erode = cv2.erode(img_dilate , kernel , iterations =4)

return img_erode

def draw_contours(img):

contours , hierarchies = cv2.findContours(process(img),

cv2.RETR_EXTERNAL , cv2.CHAIN_APPROX_NONE)

cnt = max(contours , key=cv2.contourArea)

peri = cv2.arcLength(cnt , True)

approx = cv2.approxPolyDP(cnt , 0.004 * peri , True)

cv2.drawContours(img , [approx], -1, (255, 255, 0), 2)

path = ’Resources/Full_image_set_resized/IMG_3273.jpg’

img = cv2.imread(path)

h, w, c = img.shape

draw_contours(img)

img = cv2.resize(img , (w // 2, h // 2))

cv2.imshow("Image", img)

cv2.waitKey (0)

103

B3 - Object Detection: Image

import torch

import cv2

import numpy as np

from models.experimental import attempt_load

from utils.general import non_max_suppression , scale_coords

from utils.torch_utils import select_device

Load the YOLOv5 model

weights = ’V21.pt’

device = select_device(’cpu’) # or ’cuda:0’ for GPU

model = attempt_load(weights , device)

Count the number of free and locked parameters

num_free_params = sum(p.numel()

for p in model.parameters () if p.requires_grad)

num_locked_params = sum(p.numel()

for p in model.parameters () if not p.requires_grad)

print(’Number of free parameters:’, num_free_params)

print(’Number of locked parameters:’, num_locked_params)

Set the model to evaluation mode

model.eval()

Define the classes

classes = [’Hot spot’

,’Point flame’

,’Stub’

,’Tapping hole’

,’Uncovered area’]

Define the input image size

def maintain_aspect_ratio(img , target_size , stride =32):

img_height , img_width = img.shape [:2]

aspect_ratio = img_width / img_height

Check if the image is horizontal or vertical

if aspect_ratio >= 1: # Horizontal

new_width = target_size

104

new_height = int(new_width / aspect_ratio)

else: # Vertical

new_height = target_size

new_width = int(new_height * aspect_ratio)

Ensure dimensions are divisible by stride

new_width = (new_width // stride) * stride

new_height = (new_height // stride) * stride

img_resized = cv2.resize(img , (new_width , new_height))

return img_resized

Define the confidence threshold and

non -maximum suppression threshold

conf_threshold = 0.4

nms_threshold = 0.5

List of input images

image_paths = [

’Resources\Full_image_set\IMG_3260.JPG’,

’Resources\Full_image_set\IMG_3282.JPG’,

’Resources\Full_image_set\IMG_7437.JPG’,

’Resources\Full_image_set\GOPR0117.JPG’,

’Resources\Full_image_set\GOPR0125.JPG’

]

Loop through all the images

for image_path in image_paths:

Load the input image

img = cv2.imread(image_path)

Preprocess the input image

img = maintain_aspect_ratio(img , 640)

img = img[..., ::-1] # BGR to RGB

img = np.ascontiguousarray(img)

Convert the input image to a tensor

img_original = img.copy()

img_vis = img.copy()

img = img.transpose ((2, 0, 1))

105

img = torch.from_numpy(img).to(device)

img = img.float()

img /= 255.0

if img.ndimension () == 3:

img = img.unsqueeze (0)

Run object detection on the input image

outputs = model(img)

results = non_max_suppression(outputs ,

conf_threshold , nms_threshold)

Add "Before" label to the original image

cv2.putText(img_original , "Detection: OFF",

(10, 30),

cv2.FONT_HERSHEY_SIMPLEX , 1,

(255, 255, 255), 2, cv2.LINE_AA)

Create a dictionary to map class names to

#their corresponding BGR colours

class_colors = {

’Hot spot’: (255, 0, 0), # Red in RGB

’Uncovered area’: (250, 128, 114), # Salmon in RGB

’Stub’: (245, 197, 66), # Orange in RGB

’Point flame’: (182, 48, 209), # Purple in RGB

’Tapping hole’: (0, 255, 0), # Green in RGB

}

Visualize the results

for result in results:

if result is not None:

result[:, :4] = scale_coords(img.shape [2:],

result[:, :4], img.shape [2:]).round()

for x1, y1, x2, y2, conf , cls in result:

label = classes[int(cls)]

print(f’{label}: {conf :.2f}’)

color = class_colors[label]

cv2.rectangle(img_vis , (int(x1), int(y1)),

(int(x2), int(y2)), color , 1)

cv2.putText(img_vis , f’{label}:

{conf :.2f}’,

(int(x1), int(y1) - 10),

cv2.FONT_HERSHEY_SIMPLEX , 0.75,

106

color , 1, cv2.LINE_AA)

Add "After" label to the image with object detection

cv2.putText(img_vis , "Detection: ON", (10, 30),

cv2.FONT_HERSHEY_SIMPLEX , 1,

(255, 255, 255), 2, cv2.LINE_AA)

Concatenate the original image and output

image side by side

combined_image = cv2.hconcat(

[img_original [..., ::-1],

img_vis [..., :: -1]])

Show the combined image

cv2.imshow(f’combined - {image_path}’, combined_image)

cv2.waitKey ()

cv2.destroyAllWindows ()

B4 - Object detection: Video

import torch

import cv2

import numpy as np

from models.experimental import attempt_load

from utils.general import non_max_suppression , scale_coords

from utils.torch_utils import select_device

Load the YOLOv5 model

weights = ’V21.pt’

device = select_device(’cpu’) # or ’cuda:0’ for GPU

model = attempt_load(weights , device)

Set the model to evaluation mode

model.eval()

Define the classes

classes = [’Hot spot’,’Point flame’,’Stub’, ’Tapping hole’,

’Uncovered area’]

107

Define the input image size

def maintain_aspect_ratio(img , target_size):

img_height , img_width = img.shape [:2]

aspect_ratio = img_width / img_height

if img_width >= img_height:

new_width = target_size

new_height = int(new_width / aspect_ratio)

else:

new_height = target_size

new_width = int(new_height * aspect_ratio)

Ensure dimensions are multiples of 32

new_width = (new_width // 32) * 32

new_height = (new_height // 32) * 32

img_resized = cv2.resize(img , (new_width , new_height))

return img_resized

Define the confidence threshold and non -maximum

suppression threshold

conf_threshold = 0.4

nms_threshold = 0.5

Open the input video

#input_video_path = ’Resources\GoPro_Video\GX010282.MP4’

input_video_path = ’Resources\iPhone_Video\iphone8.mp4’

cap = cv2.VideoCapture(input_video_path)

Verify if the video file was opened successfully

if not cap.isOpened ():

print(’Error: Could not open the video file.’)

exit()

Get video properties

frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))

frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

fps = int(cap.get(cv2.CAP_PROP_FPS))

Set up the output video writer

output_video_path = ’Resources/output_video.mp4’

108

fourcc = cv2.VideoWriter_fourcc (*’mp4v’)

Use ’mp4v’ codec for .mp4 video format

out = cv2.VideoWriter(output_video_path , fourcc , fps ,

(frame_width , frame_height))

Create a dictionary to map class names to their

corresponding BGR colors

class_colors = {

’Hot spot’: (255, 0, 0), # Red in RGB

’Uncovered area’: (250, 128, 114), # Salmon in RGB

’Stub’: (245, 197, 66), # Orange in RGB

’Point flame’: (182, 48, 209), # Purple in RGB

’Tapping hole’: (0, 255, 0), # Green in RGB

}

Process the input video frame by frame

while True:

ret , frame = cap.read()

if not ret:

break

Preprocess the frame

img = maintain_aspect_ratio(frame , 1080)

img = img[..., ::-1] # BGR to RGB

img = np.ascontiguousarray(img)

Convert the frame to a tensor

img_vis = img.copy() # Create a copy of the original

frame for visualization

img = img.transpose ((2, 0, 1)) # Move channels to the

first dimension

img = torch.from_numpy(img).to(device)

img = img.float()

img /= 255.0

if img.ndimension () == 3:

img = img.unsqueeze (0)

Run object detection on the frame

109

outputs = model(img)

results = non_max_suppression(outputs , conf_threshold ,

nms_threshold)

Visualize the results

for result in results:

if result is not None:

result[:, :4] = scale_coords(img.shape [2:],

result[:, :4], img.shape [2:]).round()

for x1, y1, x2, y2, conf , cls in result:

label = classes[int(cls)]

conf_percent = conf * 100 # Convert

confidence to percentage

print(f’{label}: {conf_percent :.1f}%’)

color = class_colors[label]

Get the color for the current class label

cv2.rectangle(img_vis , (int(x1), int(y1)),

(int(x2), int(y2)), color , 2)

Create a background rectangle for the text

(text_width , text_height), _ =

cv2.getTextSize(f’{label}: {conf_percent :.1f}%’,

cv2.FONT_HERSHEY_SIMPLEX , 0.50, 1)

cv2.rectangle(img_vis , (int(x1), int(y1) -

text_height),(int(x1) + text_width , int(y1)),

color , -1)

Put the white text on the background

rectangle

cv2.putText(img_vis , f’{label}:

{conf_percent :.1f}%’,

(int(x1), int(y1)), cv2.FONT_HERSHEY_SIMPLEX ,

0.50,

(255, 255, 255), 1, cv2.LINE_AA)

Write the visualized frame to the output video

out.write(cv2.resize(img_vis [..., ::-1], (frame_width ,

frame_height)))

Show the output frame

cv2.imshow(’output ’, img_vis [..., ::-1])

110

Break the loop if ’q’ is pressed

if cv2.waitKey (1) & 0xFF == ord(’q’):

break

Release the video writer and the video capture objects

out.release ()

cap.release ()

Close all OpenCV windows

cv2.destroyAllWindows ()

111

C - REPORT ORGANISING AND EMPLOYER

C1 - Report Organising

This thesis is written by a team of three final-year bachelor students, each of whom
holding a certificate of apprenticeship in electrical, chemical, and automation,
respectively. To ensure sound management, we divided ourselves into the following
roles:

• Communication: Eskil Digernes

• Financial: Stian Flåten

• Technical: Asbjørn Tjensvold

Figure C.1: From left to right: Asbjørn, Stian, Eskil.

112

C2 - Employer

Norsk Hydro is a global industrial conglomerate and one of Norway’s largest
companies. The company specialises in producing aluminium solutions and is
active throughout the entire value chain, from mining to producing rolled and
extruded aluminium products. In addition to its core business, Norsk Hydro also
operates hydroelectric power plants that produce aluminium. The company was
established in 1905 and has its headquarters located in Oslo [59].

Figure C.2: Norsk Hydro’s emblem [60].

This thesis is conducted at Hydro Årdal, under the Technology and Operational
Support (TOS) branch. The smelter in Øvre Årdal is staffed by 520 employees
and had a profit of 912 million NOK in the second quarter of 2022 [61].

Figure C.3: The aluminium smelter in Øvre Årdal [61].

113

D - CALCULATION OF SAVINGS

NOTE: This hypothetical calculation, derived from Figure 2.1.5 provided by
Hydro Årdal, demonstrates the potential for significant annual savings. By
implementing these measures, Hydro could save up to 3,600,000 NOK in CO2

quotas and an additional 10,909,091 NOK in carbon anode costs.

D1 - Current Scenario (2022)

• Quota price per tonnes CO2: 900 NOK / tonne CO2

• The current ratio is 16/167 airburn to total CO2 emissions.

• Production: 200,000 tonnes Al/year, 1.67 tonnes CO2/tonnes Al

Current annual CO2 emissions:

200,000 t Al/yr · 1.67 t CO2/t Al = 334,000 t CO2/yr

Current annual CO2 quota cost:

334,000 t CO2/yr · 900NOK/t CO2 = 300,600,000NOK/yr

Current annual cost of airburns:

300,600,000NOK/yr · 16

167
= 28,800,000NOK/yr

114

D2 - CO2 Target for 2025

• Target ratio for 2025: 14/155 airburn to total CO2 emissions

• Assuming same aluminium production and CO2 quota price.

Calculate the 2025 target annual CO2 emissions:

200,000 t Al/yr · 1.55 t CO2/t Al = 310,000 t CO2/yr

Calculate the current annual CO2 quota cost:

310,000 t CO2/yr · 900NOK/t CO2 = 270,000,000NOK/yr

Calculate the current annual cost of airburns:

270,000,000NOK/yr · 14

155
= 25,200,000NOK/yr

Hypothetical annual CO2 quota savings

28,800,000NOK/yr − 25,200,000NOK/yr = 3,600,000NOK/yr

115

D3 - Savings of Carbon Anode Mass

Given the following:

• Price of carbon anode mass: 10,000 NOK/t

• Current CO2 emissions: 334,000 CO2/yr

• MC = 12 g/mol, MCO2 = 44 g/mol

• Carbon-to-CO2 ratio: 12
44

Goal 2025: Reduce CO2 emissions by 20 kg per metric tonne Al

334,000 t CO2/yr − 200,000 t Al/yr · 1,65CO2/Al = 4,000 t CO2/yr

Annual carbon mass savings for 2025

4,000 t CO2/yr · 12
44

· 10, 000NOK = 10,909,091NOK/yr

Short term goal: Reduce CO2 emissions by 3 kg per metric tonne Al

334,000 t CO2/yr − 200,000 t Al/yr · 1,667CO2/Al = 600 t CO2/yr

Annual carbon mass savings short term

600 t CO2/yr · 12
44

· 10, 000NOK = 1,636,364NOK/yr

The price of carbon anode mass was given by Dr Trond Eirik Jentoftsen, Head of
Operations IOS Electrolysis, Norsk Hydro.

116

	Preface
	Abstract
	Abstract (Norwegian)
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Consequences of Inadequate Covering
	Project Description and Milestones
	Thesis Overview

	Background
	The Production of Primary Aluminium
	The Electrolysis Cell
	The Anode Covering Operation
	The Cause of Hot Spots
	Hydro Årdal's CO2 Roadmap

	Tool Background
	Image Sensor and Bit Resolution
	Introduction to Machine-Learning
	Datasets and Training-Test Split
	Preventing Overfitting in Machine Learning Models
	Parameters and Hyperparameters

	Convolutional Neural Networks

	Methodology
	Challenge Analysis
	Tool Consideration
	Hardware Selection
	Software Selection

	Camera Positioning
	Determining Height of acm
	Solution One: Colour and Edge Detection
	Analysing Colours with Histograms
	Detecting Hot Spots with Hue-Saturation-Value
	Detecting Uncovered Areas with Edge Detection

	Solution Two: Convolutional Neural Network
	Training YOLOv5 Step-by-Step
	Step I: Setting up the Software
	Step II: Preparing the Data
	Step III: Training Our YOLOv5 Model

	Version 1.0: Using YOLOv5 and Roboflow
	Version 2.0: Using YOLOv5 and MakeSense
	Version 2.1: Using YOLOv5 and RoboFlow

	Running our Models Locally
	Implementation with Images
	Implementation with Video

	Results
	Results: Solution One
	Colour and Edge Detection Examples

	Results: Solution Two
	Version 1.0: YOLOv5 and Roboflow
	Version 2.0: YOLOv5 and MakeSense
	Version 2.1: YOLOv5 and RoboFlow

	Testing: Images and video
	iPhone Images
	GoPro Images
	iPhone Video
	GoPro Video

	Discussion
	Results from Solution One and Two
	Version 1.0
	Version 2.0
	Version 2.1
	Comparing Versions
	Wide-Angle Impact on Detection from the GoPro
	Latency Issues and GPU Requirements

	Potential Solutions
	Corrosion Protection
	Real-Time Detection
	Cloud-Based Prioritisation
	Vehicle Considerations

	Further Work
	Phase I: Refining the Algorithm
	Phase II: Implementation
	Phase III: Autonomous Covering Crane

	Conclusions
	References
	Appendices:
	A - Github and Google Links
	B - Equations and Functions
	C - Report Organising and Employer
	D - Calculation of Savings

