

BACHELOR THESIS:

BO23EB-11 Unified Namespace

<Mathias Normann Knutsen>

<Fredrik Fauske Skavlem>

<Jokubas Morsund>

 19. May. 2023

Document Control

Report title

BO23EB-11 Unified Namespace
Date/Version

19. May. 2023/0.10
Report number:

B023EB-11
Author(s):

Mathias Normann Knutsen
Fredrik Fauske Skavlem
Jokubas Morsund

Course:

AUTB20
Number of pages including
appendixes

150

Supervisor at Western Norway University of Applied Sciences

Adis Hodzic
Security classification:
Open

Comments:

We, the authors, allow publishing of the report.
Source code will not be publicly published due to legal conflicts.

Contracting entity:
Goodtech

Contracting entity's reference:

None

Contact(s) at contracting entity, including contact information:
Svein Borlaug

Revision Date Status Performed by

0.10 19.05.23 First issue MNK, FFS, JM

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 3 of 150 19.05.2023

Preface
This thesis will be submitted to fulfill the Bachelor's degree in Automation with Robotics and will

conclude our time at the Western University of Applied Science. The work in the thesis was carried out

during the spring semester of 2023 under the supervision of Adis Hodzic.

The thesis has been inspired by Goodtech, which suggested the problem of system design and

architecture based on experience from current projects and customer interest. Goodtech is a leading

company in the field of IT and automation solutions. Founded in 1913, they have delivered automation

systems for over 100 years and have been part of the innovation that has taken place over the last

century. Goodtech focuses on providing intelligent solutions to customers that use the latest

technology and make their business more efficient. Over the past few years, they have seen the need

to re-think and redesign new system architectures due to current data collection and acquisition

trends.

Much of the work on this thesis has been to combine already existing technology into a larger system.

A substantial part of our time has therefore been spent acquiring the necessary insight to deploy and

integrate different devices into a unified system architecture.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 4 of 150 19.05.2023

Summary
The industry constantly evolves, leveraging newly developed technologies to maximize profits while

minimizing costs and environmental impacts. One recent trend is the collection of vast amounts of

data, which can be used to optimize processes by identifying potential areas for improvement or

enhancing the ability to rapidly adapt to emerging trends facilitated by real-time insights across the

entire enterprise. Central to this trend is data sharing involving cross-vendors and protocol

interoperability, essential for seamless information exchange between data sources and the systems

that utilize the information.

A prominent example of data exploitation is AI which has achieved impressive results, showcasing the

value of leveraging historical data to gain a competitive advantage over like-sided companies. In the

past, data used to be isolated within the devices that produced it. However, companies now recognize

the value of collecting and storing big data in data centers, often referred to as data lakes.

Nevertheless, a challenge remains as the data within these centers is often without labels or context,

limiting its usefulness for analytical tools that are increasingly prevalent in the IT domain. This

motivates the need to model information and the extension of automation systems to be directly

connected to IT networks, including the cloud, to fully capitalize on these benefits.

In this thesis, an architecture based on the Message Queuing Telemetry Transport (MQTT) protocol is

proposed and evaluated. A strategy for implementing a software-based system for routing

information, similar to how hardware routers function, is outlined. This approach challenges the

traditional principle of isolation and segmentation commonly employed in automation systems to

enhance cybersecurity. Consequently, the open architecture enabling seamless information flow

across the entire enterprise must be balanced against security concerns. A proof of concept is realized

to demonstrate the feasibility of the proposed system. Finally, the thesis concludes by summarizing

key findings and providing recommendations on how a unified architecture can be implemented in a

newly developed system or alongside an existing system in operation.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 5 of 150 19.05.2023

Sammendrag
Industrien utvikler seg kontinuerlig og benytter seg av nylig utviklede teknologier for å maksimere

profitt samtidig som man minimerer kostnader og miljøpåvirkning. En nylig trend er innsamling av

enorme mengder data, som kan brukes til å optimalisere prosesser. Optimaliseringen gjøres ved å

identifisere potensielle områder for forbedring og evnen til å tilpasse seg raskt til nye trender ved hjelp

av innsikten dataen gir. Sentralt i denne trenden er deling av data mellom ulike leverandører og

protokollinteroperabilitet. Dette er essensielt for sømløs utveksling av informasjon mellom datakilder

og systemene som bruker informasjonen.

Et fremtredende eksempel på utnyttelse av data er kunstig intelligens (KI) som har oppnådd

imponerende resultater og har demonstrert verdien av å utnytte historiske data for å oppnå en

konkurransefordel over andre selskaper. Tidligere var data isolert innenfor enhetene som produserte

dem, men nå begynner selskaper å se verdien av å samle inn og lagre store mengder data i datasentre,

ofte referert til som "datalakes". Denne oppsamlede dataen lider ofte av en stor utfordring, nemlig

mangel på kontekst og identifikasjonsattributter. Dette begrenser bruken av analytiske verktøy, som

blir stadig mer utbredt innenfor IT-domene. Derfor er insentivet stort for å modellere informasjonen

og utvide automasjonssystemer med forbindelser til IT nettverk, slik at data automatisk gis kontekst

når de lagres, for å benytte seg av fordeler analytiske-verktøy og KI gir.

I denne avhandlingen vil en arkitektur basert på protokollen Message Queuing Telemetry Transport

(MQTT) bli drøftet og evaluert. Avhandlingen vil gi en strategi for å implementere et

programvarebasert system for sømløs informasjon flyt innad i en virksomhet. Dette systemet vil

utfordre de tradisjonelle prinsippene om isolasjon og segmentering, som vanligvis brukes i

automasjonssystemer for å forbedre cybersikkerhet. Derfor må den åpne arkitekturen som muliggjør

sømløs informasjonsflyt på tvers av hele virksomheten, balanseres mot potensielle sikkerhetstrusler.

Et konsept har blitt realisert for å demonstrere gjennomførbarheten av det foreslåtte systemet og

eventuelle muligheter og problemstillinger realiseringen vil medbringe. Avhandlingen avsluttes ved å

oppsummere sentrale funn og gi anbefalinger om hvordan en kan fase inn et slikt system, samtidig

som eksisterende system er i drift.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 6 of 150 19.05.2023

1 Table of Content
Document Control ... 2

Preface ... 3

Summary ... 4

Sammendrag ... 5

1 Table of Content .. 6

Figure List .. 12

Abbreviations .. 16

2 Introduction ... 17

2.1 Background and motivation .. 17

2.2 Problem description .. 20

2.3 The main idea of the solution.. 21

2.4 Thesis Layout ... 23

3 Background theory .. 24

3.1 Network Communications ... 24

3.1.1 OSI model .. 24

3.1.2 TCP / IP model ... 24

3.1.3 Ethernet ... 24

3.1.4 Transport layer protocol .. 25

3.1.5 Internet protocol ... 25

3.1.6 Time Sensitive Network ... 25

3.1.7 SCADA systems .. 25

3.2 OPC UA .. 26

3.2.1 Client – Server architecture ... 26

3.2.2 Service-oriented architecture.. 27

3.2.3 Address space .. 28

3.2.4 Nodes ... 28

3.2.5 Publish and Subscribe .. 30

3.2.6 PubSub ... 30

3.3 MQTT ... 31

3.3.1 Data broker .. 31

3.3.2 Topics and Payloads .. 32

3.3.3 Quality of service(QoS) .. 33

3.3.4 State awareness .. 34

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 7 of 150 19.05.2023

3.3.5 Will flag .. 34

3.3.6 Clean sessions .. 34

3.4 Sparkplug B .. 34

3.4.1 Benefits of Adoption.. 35

3.4.2 Death and birth certificates ... 35

3.4.3 SparkplugB compatible systems .. 35

3.5 Data structuring ... 36

3.5.1 ISA 95 standard .. 36

3.5.2 Standardization ... 36

3.5.3 Tagging conventions .. 36

3.6 Cyber security .. 37

3.6.1 Confidentiality, Integrity, and Availability ... 37

3.6.2 Authentication and Authorization ... 37

3.6.3 Cryptographic algorithms .. 38

3.6.4 Certificates ... 38

3.6.5 Certificates stores .. 39

3.6.6 Hashing .. 39

3.6.7 Transport Layer Security.. 39

3.6.8 SSH ... 39

3.6.9 VPN .. 40

3.6.10 IPSec .. 40

3.6.11 Firewalls ... 40

3.7 Web technology .. 40

3.7.1 HTTP... 40

3.7.2 API .. 41

3.7.3 JSON ... 41

3.7.4 XML .. 41

3.7.5 Simple Binary encoding ... 41

3.7.6 Protobuf ... 41

3.8 Hosting Technologies .. 42

3.8.1 Virtual Machines .. 42

3.8.2 Clustering ... 42

3.8.3 Loadbalancers .. 42

3.8.4 Kubernetes .. 42

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 8 of 150 19.05.2023

3.8.5 Docker.. 43

3.9 ChatGPT ... 43

4 The realization of the Unified Namespace .. 44

4.1 MQTT broker implementation .. 45

4.1.1 MQTT Brokers .. 46

4.1.2 Broker security .. 54

4.1.3 Network ... 55

4.1.4 Server attacks - challenges of unsecured connections. .. 57

4.2 Edge devices .. 58

4.2.1 Siemens S7-1500 as a data source/producer .. 58

4.2.2 OPC UA server ... 62

4.2.3 MQTT regular communication .. 63

4.2.4 OPC UA PubSub ... 64

4.2.5 OPC UA software gateway ... 65

4.2.6 Ignition Gateway ... 70

4.2.7 Design of UNS IIoT MQTT client .. 74

4.3 Data consumers ... 76

4.3.1 HVL Water rig SCADA .. 76

4.3.2 Object template definitions... 76

4.3.3 Integrating IIoT devices ... 77

4.3.4 Integrating OpcUaGateway into Ignition .. 77

4.4 Historian and data processing ... 78

4.4.1 Preliminary .. 78

4.4.2 SSL and security within the Historian .. 79

4.4.3 Historian logic and message handling. .. 79

4.4.4 Deserialization of JSON .. 80

4.4.5 Protobuf as encoding .. 82

4.4.6 Asynchronicity and R2DBC. ... 83

4.4.7 Information visualization ... 84

5 Testing of the implemented architecture ... 85

5.1 Description of the test bed .. 85

5.2 Throughput, what is the system capacity ... 86

5.2.1 Overloading the broker cluster ... 86

5.2.2 OPC UA server gateway loading .. 87

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 9 of 150 19.05.2023

5.2.3 Maximum storage rate in the database .. 87

5.3 Latency, how responsive is the system ... 88

5.3.1 Host-to-host delay ... 88

5.3.2 Delayed processing between hosts ... 89

5.4 Robustness, how will the system recover ... 90

5.4.1 Stale data ... 90

5.4.2 Redundancy ... 92

5.4.3 Automatic system recovery ... 92

5.5 Reliability, can the system be trusted ... 94

5.5.1 Read-only access ... 94

6 Discussion .. 95

6.1 Systems interoperability .. 95

6.2 Implementation strategies .. 97

6.3 Security .. 98

6.4 Databases optimization ... 100

6.5 Unified namespace possibilities .. 101

6.5.1 Machine learning ... 101

6.5.2 Information hubs ... 102

6.5.3 MES .. 102

6.6 Future work ... 102

7 Conclusion ... 103

APPENDIX A - Reference list .. 104

APPENDIX B - Project organization .. 108

8 APPENDIX C - Design and manufacture of UNS printed circuit board .. 109

8.1 Overarching design philosophy ... 109

8.1.1 ECAD .. 109

8.1.2 MCU ... 110

8.1.3 Power over Ethernet ... 110

8.1.4 LAN .. 111

8.1.5 Programmer .. 111

8.1.6 Debugging .. 111

8.2 PCB layout design criteria’s of prototype .. 112

8.2.1 Units .. 112

8.2.2 PCB layer stack up and size ... 112

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 10 of 150 19.05.2023

8.2.3 Magnetic isolation ... 113

8.2.4 Trace routing ... 113

8.2.5 Component packages .. 114

8.2.6 Soldering techniques ... 114

8.3 Testing regime of prototype .. 115

8.3.1 Prototype 1 Build phase .. 116

8.3.2 Initial Power testing ... 116

8.3.3 Test of ESP32 MCU quadrant .. 116

8.3.4 Test of USB programmer quadrant ... 117

8.3.5 Test of LAN quadrant ... 118

8.3.6 Test of Power over ethernet quadrant(PoE) ... 121

8.3.7 Overview of reworks done .. 122

8.4 Final design .. 122

9 APPENDIX D – Historian JSON parsing code from 4.4 ... 123

10 APPENDIX E - PLC OPC server configuration ... 125

10.1 Setting up CA management in TIA portal .. 125

10.2 Enabling of OPC UA server .. 126

10.3 Configuring Authentication and Security .. 127

10.4 OPC UA gateway client configuration ... 128

10.5 Structuring data ... 128

11 APPENDIX F - OPC to MQTT gateway .. 129

11.1 Conceptual design ... 129

11.2 Overall application structure ... 130

11.3 Project organization .. 131

11.4 Logger .. 131

11.5 Graphical user interface .. 132

11.5.1 Shell view ... 132

11.5.2 Home page .. 132

11.5.3 OPC page ... 133

11.5.4 Monitor page ... 134

11.5.5 MQTT page .. 135

11.5.6 Settings page ... 135

11.6 App.cs .. 136

11.7 OpcDataAccess class .. 137

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 11 of 150 19.05.2023

11.8 MqttDataAccess class .. 139

11.9 Async wrapping ... 140

11.10 Cryptography ... 141

11.10.1 Certificate handling in OpcDataAccess .. 142

11.10.2 Certificates handling in MqttDataAccess .. 144

11.11 OpcToMqttMapperService .. 145

11.12 Information modeling .. 146

11.13 TreeViewNode ... 147

11.14 .Net design principles .. 149

11.14.1 MVVM .. 149

11.14.2 Dependency Injection .. 149

11.14.3 Bindings ... 149

11.14.4 Event-based ... 149

11.14.5 Asynchronous programming ... 150

11.14.6 Stores ... 150

11.14.7 Services .. 150

11.14.8 Interfaces ... 150

11.14.9 App settings ... 150

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 12 of 150 19.05.2023

Figure List
Figure 1 Diagram showing the initially planned bachelor thesis end result ... 22

Figure 2 OSI compared to TCP/IP model ... 24

Figure 3 OPC security settings ... 26

Figure 4 Protocol tunneling of lower level protocols. ... 26

Figure 5 OPC encoding formats ... 26

Figure 6 OPC Status code. First two bits are standardized. .. 27

Figure 7 Example of motor object built as a node hierarchy .. 28

Figure 8 OPC Base node class .. 28

Figure 9 Basic node classes defined in the OPC UA specification ... 28

Figure 10 OPC UA subscription principle ... 30

Figure 11 OPC UA PubSub principle .. 30

Figure 12 Clients and Brokers arranged in a MQTT architecture. ... 31

Figure 13 Example of SparkplugB attributes [6]. ... 35

Figure 14 ISA95 Enterprise hierarchy .. 36

Figure 15 The CIA triad [5] ... 37

Figure 16 Docker logo [2] .. 43

Figure 17 ChatGPT logo [3] .. 43

Figure 18 The final UNS network which was implemented in this thesis. .. 44

Figure 19 Global MQTT UNS network ... 45

Figure 20 MQTT traffic bridge between local and cluster brokers ... 46

Figure 21 Different remote SSH servers in VSCODE .. 47

Figure 22 Factory broker and connected component architecture ... 48

Figure 23 The default HiveMQ (cluster) dashboard ... 49

Figure 24 Desired broker cluster implementation using Kubernetes clustering. 50

Figure 25 Final broker cluster implementation using HiveMQ extensions. .. 52

Figure 26 Overview from Cluster dashboard that shows 3 connected servers in the cluster. 53

Figure 27 The final build of our raspberry pi cluster ... 53

Figure 28 Cluster installed at Hvl site .. 53

Figure 29 CAD model in Fusion360 ... 53

Figure 30 Security layers [1] .. 54

Figure 31 Access control structure .. 54

Figure 32 SQL database structure [1] .. 55

Figure 33 Port achitecture at HVL server park .. 55

Figure 34 Hvl network simulated in Packet Tracer .. 56

Figure 35 Unknown Foreign Client .. 57

Figure 36 Intruder client subscription ... 57

Figure 37 Lab waterrig simulator at HVL ... 58

Figure 38 PLC object for controlling the waterrig simulator ... 58

Figure 39 fbAnalog function block .. 59

Figure 40 fbPID finction block ... 59

Figure 41 fbMotor function block ... 60

Figure 43 Object internal interface ... 60

Figure 42 Object network interface .. 60

Figure 44 Expanded network interface of fbMotor object ... 61

https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397533
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397534
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397535
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397536
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397537
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397538
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397539
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397540
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397544
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397545
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397546
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397547
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397548
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397549
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397550
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397551
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397552
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397553
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397554
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397555
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397556
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397557
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397558
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397559
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397560
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397561
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397562
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397563
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397564
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397565
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397566
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397567
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397568
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397569
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397570
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397571
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397572
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397574

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 13 of 150 19.05.2023

Figure 45 OPC UA server endpoint .. 62

Figure 46 TIA portal functioning as a certificate authority ... 62

Figure 47 Part of Siemens Mqtt client UDT ... 63

Figure 48 Waterlevel received by Ignition .. 63

Figure 49 Signal flow of transmitting MQTT messages from Siemens PLC to UNS 63

Figure 50 PubSub data organization [4] .. 64

Figure 51 Principal flow of information from the edge PLC to UNS .. 65

Figure 52 Online configuration and drag&drop to configure information sharing in gateway. 65

Figure 53 OPC Gateway classes used to handle data access to remote endpoints 66

Figure 54 Information flow through OPC Gateway ... 66

Figure 55 MVVM principle ... 67

Figure 56 Topic name is partially fixed and partially configured by the integrator 67

Figure 57 OPC Gateway restricted information models ... 68

Figure 58 OPC and MQTT security alternatives selected in gateway application 68

Figure 59 Overview of currently configured mappings in gateway application 69

Figure 60 Interaction between Cirrus Link Modules ... 70

Figure 61 Tag organization, access control, and distribution of tag sets inside Ignition 71

Figure 62 Tag metadata ... 71

Figure 63 Indirect Tag addressing in Ignition .. 72

Figure 64 Ignition architecture for redundant systems .. 73

Figure 65 IIoT prototype left. IIoT final design right. ... 74

Figure 66 IIoT prototype trace, layer 1 red, layer 2-3 green, layer 4 blue .. 74

Figure 67 IIoT final design Trace, Red layer1, Green layer 2-3, Blue layer 4 ... 75

Figure 68 Testing of final IIoT design ... 75

Figure 69 IIoT final design circuit schematic ... 75

Figure 70 HMI representation of HVL Water rig via Ignition... 76

Figure 71 IIoT signal displayed on HMI .. 77

Figure 72 IIoT device available as a data sources in Ignition... 77

Figure 73 PLC tags shared by OPC Gateway .. 77

Figure 74 Text file for storing historian topiclist on local host .. 79

Figure 75 List of topics, ID's and their column length in the database topiclist schema 80

Figure 76 Flattening complex models by mapping attributes to HashMap keys in historian 81

Figure 77 Incoming message to historian flow diagram ... 82

Figure 78 Example .proto file .. 82

Figure 79 Grafana dashboard visualization of cluster statistics .. 84

Figure 80 Configuration during system performance testing ... 85

Figure 81 Inbound messages pr Second. ... 86

Figure 82 Cluster statistics during load testing ... 86

Figure 83 Connection statistics recorded by OPC gateway application .. 87

Figure 84 Example of a skewed distribution ... 89

Figure 85 Timestamps from wireshark during the command-to-feedback test 89

Figure 86 Different delays contribution to latency ... 90

Figure 87 Ignition tags marked as uncertain when the OPC server is offline. 91

Figure 88 Ignition tags marked as faulty when the gateway is offline .. 91

Figure 89 The Quadrants ... 109

https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397576
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397578
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397579
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397581
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397585
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397588
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397593
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397594
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397595
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397596
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397597
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397598
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397599
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397600
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397602
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397603
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397604
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397605
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397609
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397611
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397612
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397613
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397615
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397616
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397617
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397620

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 14 of 150 19.05.2023

Figure 90 prototype trace layout without ground-planes, red toplayer, blue bottomlayer 109

Figure 91 Initial protoype schematic design ... 110

Figure 92 Example of the use of pinheader on strapping pins .. 111

Figure 93 Optimal layer stackup to reduce EMI propegation ... 112

Figure 94 Bad layer stackup, that increases EMI propagation between traces. 112

Figure 95 Protype magnetic isolation bridge in groundingplane .. 113

Figure 96 Different IC packages ... 114

Figure 97 Solder paste reflow curve .. 114

Figure 98 SMD stencil .. 116

Figure 99 Components placed on solder paste ... 116

Figure 100 Design recommendation of power on CP2102 ... 117

Figure 101 5V to VBUS cable. .. 117

Figure 102 Auto configure circuit with RC delay. .. 117

Figure 103 10uf EN FIX blue purple gray wire ... 117

Figure 104 Recommended strapping pin config ... 118

Figure 105 Serial output from ESP32 on internet test .. 118

Figure 106 Wireshark network packet analyser data.. 118

Figure 107 CLK line wired out of PCB for testing ... 119

Figure 109 CLK line fix yellow, green, orange wire.. 119

Figure 108 measured packetloss before and after modification .. 119

Figure 110 Connected to internet with IOTT device ... 120

Figure 111 Measurement of datalines with and without reflection resistors 120

Figure 112 Debugging PoE section .. 121

Figure 113 Reply from analog devices... 121

Figure 114 IIOT Schematic, all reworks marked in red .. 122

Figure 115 Final PoE design. Not manufactured ... 122

Figure 116 FlatMapper method for finding the innermost HashMap in the JSON string 123

Figure 117 The FlattenHashMap method ... 123

Figure 118 CreateNewTopicTableString method responsible for creating SQL strings. 124

Figure 119 Configuration setup of TIA portal as CA and S7-1500 as an OPC UA Server 125

Figure 120 Enabling the certificate store in TIA portal.. 125

Figure 121 TIA certificates and client certificates signed by TIA root certificate 126

Figure 122 Imported certificates added to PLCs' trust lists. ... 126

Figure 123 Certificate manager enabled for project devices .. 126

Figure 124 S7-1500 server certificate ... 127

Figure 125 S7-1500 Upc Ua server interface ... 128

Figure 126 Overview of OPC Gateway classes and relationships .. 130

Figure 127 OPC Gateway project organization ... 131

Figure 128 Example of logging exceptions with additional information using Serilog. 131

Figure 129 Gateway application shell view ... 132

Figure 130 Gateway application home view ... 132

Figure 131 Gateway application OPC view .. 133

Figure 132 Gateway application OPC Settings view .. 133

Figure 133 Gateway application Monitoring view .. 134

Figure 134 Gateway application MQTT view .. 135

https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397621
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397622
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397623
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397624
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397625
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397627
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397628
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397629
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397630
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397631
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397632
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397633
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397634
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397635
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397636
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397637
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397638
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397639
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397640
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397641
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397642
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397643
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397644
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397646
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397658

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 15 of 150 19.05.2023

Figure 135 Gateway application settings view .. 135

Figure 136 App.cs including dependency injection ... 136

Figure 137 Starting the application and services asynchronously. ... 136

Figure 138 Terminating the application and disposing of services. .. 136

Figure 139 OpcDataAccess class diagram ... 137

Figure 140 Disposing event handlers in OpcDataAccess ... 137

Figure 141 Connecting to OPC and MQTT endpoint at application startup 138

Figure 142 Cancelling current OPC re-connect cycle .. 138

Figure 143 Periodic OPC server connection status evaluation ... 138

Figure 144 Connection statistics displayed on the home page ... 138

Figure 145 Methods for encoding and serialize messages into Json or protobuf 139

Figure 146 MqttDataAccess class diagram .. 139

Figure 147 MQTT client parameters ... 139

Figure 148 Cancelling current MQTT re-connect cycle ... 140

Figure 149 Async wrapping of methods into Tasks. .. 140

Figure 150 Locating OPC server certificate in windows certificate store .. 141

Figure 151 Accepting and adding server certificate into windows certificate store (right side) 141

Figure 152 Certificate stores used in the gateway Opc client .. 142

Figure 153 Creating a new certificate for the Gateway Opc client ... 142

Figure 154 Exporting Gateway OPC client certificate ... 143

Figure 155 OPC client certificate handler used to fetch server certificate ... 143

Figure 156 OPC settings view for configuring Opc security .. 143

Figure 157 Browsing for MQTT certificates ... 144

Figure 158 Verifying MQTT client certificates with passwords from storage or user input 144

Figure 159 Storing MQTT client certificate into application configuration ... 144

Figure 160 OpcToMqtt mapper class diagram .. 145

Figure 161 Dictionaries with hash keys used for efficient lookups. .. 145

Figure 162 meta data stored on the objects. .. 145

Figure 163 Temporary storing MQTT messages while endpoint connection is offline. 145

Figure 164 Predefined information models .. 146

Figure 165 Base class for information models .. 146

Figure 166 Overriding Value property of Base class ... 146

Figure 167 UI component for information model ... 147

Figure 168 TreeViewNode class diagram .. 147

Figure 169 TreeViewNode Hierarchy .. 147

Figure 170 Different components of the TreeViewNode class displayed on the UI 148

Figure 171 MVVM principle ... 149

https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397667
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397668
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397669
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397670
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397676
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397677
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397678
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397680
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397682
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397683
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397684
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397686
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397687
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397691
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397693
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397695
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397696
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397697
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397698
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397699
https://hvl365.sharepoint.com/sites/ELE350UnifiedNamespace/Delte%20dokumenter/General/BO23EB-11%20Unified%20Namespace.docx#_Toc135397700

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 16 of 150 19.05.2023

Abbreviations

AES Advanced Encryption Standard
AI Artificial Intelligence
EMI
FB

Electromagnetic Interference
Function Block

GND Ground
GPL General Public License
HMI Human Machine Interface
IC Integrated Circuit
IT Information Technology
JTAG Joint Test Action Group
MCU Microcontroller Unit
ML Machine Learning
MQTT Message Queuing Telemetry Transport
NTP Network Time Protocol
OOP Object Oriented Programming
OPC UA Open Platform Communications Unified Architecture
OS Operating System
OSI Open Systems Interconnection
OT Operational Technology
PCB Printed Circuit Board
PLC Programmable Logic Controller
PoE Power over Ethernet
PnP Plug and Play
PSK Pre-Shared Key
QoS Quality of Service
SIG Signal
SBC Single Board Computer
SSH Secure Socket Shell
SOA Service Oriented Architecture
TCP Transport Control Protocol
TLS Transport Layer Security
UDP User Diagram Protocol
UNS Unified Namespace
VM
VPN

Virtual Machine
Virtual Private Network

X509 Standard for digital certificates

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 17 of 150 19.05.2023

2 Introduction

2.1 Background and motivation
New technology and automation systems are constantly being adopted as the industry is evolving.

Significant development steps are characterized as industrial revolutions. Currently, Industry 4.0 [7] is

the fourth industrial revolution, which embraces the leading trends in the exchange of data,

autonomous systems, artificial intelligence, and the Internet of Things (IoT) in manufacturing systems.

There is an increased effort to optimize production by creating smart factories of interconnected

devices that share data at high speed. Overall, industrial revolution 4.0 is characterized by

digitalization, increased efficiency, productivity, and the ability to rapidly adapt to received inputs from

the environment, like customer demand or vendor delivery changes. It will likely have significant social

and economic impacts on the industry's operations.

Digitalization [8] is a crucial aspect of the industrial revolution 4.0. It can be challenging to define

digitalization. One way to describe it can be the process of converting information, processes, and

systems into digital formats, making them easier to access and more efficient to manage. On the other

hand, digital transformations are the processes of implementing digital technology that utilizes the

increased amount of available data to automate and streamline various processes, such as data

collection, analysis, and communication. Digitalization is transforming almost every sector of society,

like healthcare, finance, education, and the manufacturing industry. The benefits are improved

decision-making through data analytics and visualizations, improved accuracy, and increased efficiency

by automating tasks previously done manually.

The use of data is central to making the industry more efficient. Decision-makers can use data to better

understand and make informed decisions by providing a basis for analysis and comparison [9]. For

example, sales data can provide trends and identify growth opportunities or areas which may be

improved. Customer behavior and preference data can be used to improve products or services.

Historical data from an automation line can help identify bottlenecks or potential waste of material

and energy that can be optimized for better performance. One central tool, Machine learning (ML),

can use historical data to predict machine failures [10], thereby implementing a maintenance schedule

based on the state of the plant instead of periodic intervals reducing unnecessary downtime and cost.

Information Technology (IT) systems are computer systems used for data-centric computing. These

systems are typically used in office environments and are designed to support a wide range of business

operations, such as data management, communication, and decision-making. On the other hand,

operational technology (OT) systems are used to monitor and control physical machines, processes,

and electromechanical devices in industries like factories or oil and gas production. OT systems are

often used to automate and optimize these industrial processes. They include sensors, actuators,

control systems, and other devices used to collect data and control equipment in real-time. Today, IT

and OT systems are often combined to facilitate exchange of data and enable more efficient and

effective operation of the industrial process. However, they serve different purposes and are typically

designed and managed separately [11, 12].

Plug and Play (PnP) is a term used to describe devices designed to be easily connected to a computer

and configured for use without additional software installation or setup. A PnP device should be

recognized by the system and made available for use as soon as it is connected. A prerequisite for PnP

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 18 of 150 19.05.2023

systems is that hardware and protocols are standardized. Devices used in IT systems have traditionally

been more homogeneous than OT devices due to the implementation of standardization. An example

of standardization is how devices seamlessly make themself known to others when added to a Wi-Fi

or Bluetooth network without any intervention from the user. OT systems developed by vendors are

often proprietary and have the implementation details hidden, making combining products from

different suppliers more difficult [13]. Increased standardization will be necessary for OT systems to

become PnP devices that can be added and removed without the complexity and at the increased cost

compared to IT devices.

Typically, connections are established between devices that produce data (publishers) and those who

want access to it (subscribers). Consequently, many point-to-point links are established, resulting in a

spaghetti structure and a tightly coupled system, making it difficult to add or remove new devices

without disturbing or breaking the existing communication structure. A better principle and a

prerequisite for PnP functionality are to make data producers decoupled from the consumers.

Decoupling is accomplished by a broker, described in detail later, functioning as an intermediate link

through which all data passes. If information definitions are pre-defined and the message broker has

the capability to temporarily store messages destined for subscribers, decoupling in time, location, and

information formats can be achieved. This decoupling allows for more flexibility and scalability in

distributed systems [14]. It makes it possible to connect and disconnect producers and consumers

freely and in arbitrary order, with no requirement for direct links between devices.

One of the primary challenges to overcome is suppliers developing systems solely for their own

product line, resulting in solutions that work well in isolation but do not have the opportunity for

interoperability. Consequently, customers get locked to a specific supplier due to the financial cost of

integration with non-supplier systems. Open System Interconnection (OSI) model is a framework to

separate and standardize various functions in the transfer of information, enabling suppliers to

develop at certain levels in the communication stack. Interoperability is guaranteed by defining

interfaces between the layers. The model is divided into lower layers that describe the physical

management of bits in the communication medium, the layers in the middle that handle addressing

between devices, and higher layers that describe information encoding and structuring. A prerequisite

for cross-vendor communication is that data arrives at the communicating parties, which is probably

why the model's lower levels are almost standardized without many options to choose from. TCP/IP

has become the de facto standard that most suppliers follow. Today’s challenges lie at the upper layers

that describe how data is structured. A prerequisite for full interoperability without requiring extensive

manual integration is that these layers are also standardized [15].

Understanding the context of the data is crucial for accurately interpreting and using it effectively.

"Data context" refers to the state or environment in which data was collected or used. It includes

additional information surrounding the data, such as the location, the time when it originated, reason

for why it was collected, as well as any relevant background information[16]. For example,

temperature and humidity measurements collected in a room will be more valuable if we know the

circumstances surrounding the data. The context for this data can include information about the date

and time of day when the data was collected, the room's location, and any relevant factors, such as

the size of the room, the details about entries into the room, or the presence of any heat sources.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 19 of 150 19.05.2023

Computer programs must uniquely name variables and functions to address them in code modules. "A

namespace is a declarative region that provides a scope to the identifiers (the names of types, functions,

variables, etc) inside it. Namespaces are used to organize code into logical groups and to prevent name

collisions that can occur especially when your code base includes multiple libraries" [17]. Variables hold

the data produced in the system or process under control. A namespace provides a way to guarantee

globally unique names for identifiers across different vendor deliveries. This allows identifiers with the

same name to co-exist without causing name clashes. The downside is that data often end up isolated

inside the node that produced it, and it is often costly and complex to make it globally available. The

concept of a Unified Namespace (UNS) creates an address space that combines multiple separate

namespaces into a single one. A unified namespace is not a technology but a conceptual design

principle enabling data addressing across the entire enterprise.

Increased amounts of data have provided new opportunities but have also caused challenges because

of the increased amount of traffic between network devices that process and share the data.

Traditionally, communication between devices has been done by pull and response requests. The

device that will use the data had to request it frequently enough to ensure that changes in values are

updated with a high enough frequency for the control task. Update times can be down to milli- or

microseconds for processes with fast dynamics. A need to reconsider how and when devices

communicate data across the network was needed. To minimize the traffic, several developers have

therefore started to use event-based communication based on publish and subscribe messaging. The

idea is that data should only be sent when it has changed. Subscribers will then subsequently receive

the updated values. This way, network traffic is reduced by up to 90% [18]. However, there are

downsides to the Subscriber/Publisher architecture. Systems that are consumers of data can no longer

depend on periodic samples and must be modified. More important, if no updates are received, it must

be because the values have not changed. Mechanisms to determine if devices have failed and are no

longer online must be included in the system.

Making the systems available and dependent on networks also added additional challenges such as

cyber security and robustness that must be considered. It is not uncommon for organizations to isolate

certain systems or networks to improve their security. This practice is often referred to as air gaping,

segmentation, or creating a "security island" [19]. Having isolated systems makes it more difficult for

attackers to gain access to them. Unauthorized access and preventing malware from infecting or

spreading across systems or networks is minimized by restricting or blocking all traffic into the

network. Although it has improved the cyber security problem by isolating the systems, it is an obstacle

to data sharing or utilizing cloud-based tools already developed. Cryptographic tools and technologies

for securing and verifying information transfer have therefore been developed to overcome security

concerns. It is essential to thoroughly understand the strengths and weaknesses of these technologies

when exposing the entire enterprise data on the web. Cyber-attacks can have devastating economic

and social consequences for businesses and must be upheld as a significant threat to any enterprise.

Not all systems can or should be dependent on data communication through the UNS. Safety or Real-

time systems dependent on reliable and frequent sensor updates and actuator commands with

microseconds requirements are unsuited for signal flow through a cloud broker. In the event of a

communication failure, a safety system should ensure that the physical process always stays safe.

These systems should be designed as fail-safe independent nodes, only receiving external setpoints.

Alternatively, the broker can be situated on the local network. Still, deterministic requirements can be

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 20 of 150 19.05.2023

an issue for time-critical systems. On the other hand, analysis and visualization systems often do not

have the same requirements for real-time updates as those that control and regulate the physical

process. But requirements for reliability and timestamping can still be as important. For example, the

real edge on a signal change can be decisive when a machine learning (ML) algorithm predicts the need

for maintenance or estimates newly optimized parameters based on historical data. Correct

timestamping is part of the data context that must accompany the data, even if the transfer is delayed.

2.2 Problem description
The concept of a Unified Namespace has been agreed upon in theory, but there seems to be a lack of

experience from actual implementations. Practical experience is needed to advise customers better

when they desire to digitalize their processes and lift the automation data to a UNS where it can be

made available. Often, the customers' systems are in production, making it expensive and therefore

not desirable for them to be stopped when making the necessary changes required to move them into

the cloud. There is often a significant complexity and cost in modifying these systems.

In this thesis, we will try implementing a UNS on a cloud platform using a centralized data broker and

publish and subscribe communication. We will attempt to connect different devices from different

suppliers to determine PnP capabilities and ease of expanding or modifying a system that is in

production. Our goal is to determine a strategy for how these systems can be gradually interconnected,

preferably in a decoupled method to make them available in the cloud. Also, recommendations for

designing systems not yet built to make them compatible with a UNS from the initial starting point will

be explored in this thesis.

A requirement for operability is that hardware and protocols are agreed upon. The UNS's success will

depend on suppliers and integrators moving toward a common hardware and software platform.

Open-source technology has the advantage of being freely available to all. It is being developed and

battle-tested by the entire online community. Consequently, guides and example codes are published

on public forums, which helps reduce implementation costs. An example is Cryptography which is

open-source. The fundamental principle of cryptographic algorithms are freely available to the public

and have been extensively tested by the entire community for decades. Cryptographic security lies in

the encryption keys and not in the implementation details of the algorithm. Goodtech desires that we

strive to use open-source protocols and the well-agreed-upon interface of Ethernet and TCP/IP as a

foundation for data communication.

An essential requirement for industrial systems is uptime and security. The system design must be

robust so that errors and unforeseen events do not lead to unnecessary downtime or dangerous

situations that should have been avoided. The system must presume a safe state in the event of a

failure and return to normal operating condition after failure recovery. Before the concept of a UNS

can be recommended to customers, reliability and robustness must be tested and documented. One

of Goodtech's main priorities is for us to look into how we can test and document the system's

robustness.

Goodtech is not recommending that a customer is involved as part of the thesis based on previous

experience conducting student thesis in cooperation with customers. Customer involvement has

previously led to delays in the project workflow, absolute deadlines, and less flexibility. It is more

desirable for Goodtech to have more influence and control of the project direction. The thesis will

therefore be conducted as a proof of concept. The scope will be flexible and allow us to freely decide

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 21 of 150 19.05.2023

during each stage on what technologies to include in the UNS prototype, also dependent on available

time.

In summary, the thesis goals are:

• Identify potential solutions for integrating OT and IT systems with reliability, security,

expandability, and decoupling in time and location as main priorities. Strive for open-source

solutions where possible.

• Suggest a strategy for data context and organizing the address space of the UNS with generality

and the ability to expand as bearing principles.

• Verify and document the reliability, security, and robustness on a realization of a proof-of-

concept system.

2.3 The main idea of the solution
The strategy for the thesis UNS system will be to implement a system parallel to the one in operation

where current and future data producers and consumers can be added over time. The intent is to grow

the system while parts are online and under regular operation to determine the system's ability to

expand without re-configuration or breaking already existing nodes. HiveMQ is a prevailing alternative

for a data broker with an active community and educational materials readily available. It will be the

technology on which we base the UNS in this thesis. Different solutions for broker implementation and

the possibility of a hierarchical architecture of brokers under the canopy of the HiveMQ broker will be

investigated as part of the thesis.

Common practice today is that the suppliers delivering automation systems at the edge are designing

primarily with the unit control objective in mind and with fewer considerations for interoperability. A

standard solution is to create a separate system connecting to each of the different units to centralize

the factory state on a common user interface. It has usually led to many point-to-point connections,

which make it almost impossible to change or modify the system without extensive re-configuration

of existing devices. The design intent of the UNS is to make the system centralized around a broker.

Implementing the broker will be part of defining the principles for communication, rules for data

contexts, and information definitions in the Namespace. New nodes connecting to the UNS must adapt

to be compatible with the existing configuration instead of being the ones that set the conditions.

One of our main design principles will be to explore and implement open-source technologies. But to

gain better insight, we will attempt to develop our own gateways as bridges between legacy devices

that run on the most common protocols in use today. These gateways will be implemented as software

modules that run on clients connected to the same network as the legacy devices. We will strive to use

standard libraries developed and released to the public by the companies responsible for maintaining

the protocol or open-source libraries maintained and tested in cooperation with the public.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 22 of 150 19.05.2023

To demonstrate the simplicity of adding new devices to the system, we will develop our own IIoT

device. It will be based on a microprocessor on an in-house designed circuit board. It will be developed

in isolation without needing to know how the rest of the system is built. The device will implement the

MQTT protocol and standardize information to be recognizable inside the UNS. This should

demonstrate that any sensor from any supplier will be able to send data to the UNS and that consuming

devices can obtain and utilize this data without significant integration work.

To test the system, we will use Ignition, a widely used Supervisory and Data Acquisition (SCADA) system

in the industry, to verify the availability of data published to the Namespace. We will also design new

data consumers whose sole aim is to verify the system's robustness by logging data that has been

received and identifying whether something was lost during transit. Data distributed through the

broker is essentially volatile data that is not stored. It will therefore be of interest to explore solutions

for historians (databases) that can be connected as a subscriber to the UNS to store this data for long-

term access.

Our end goal is to implement a complete system consisting of edge PLCs publishing process data and

receiving external setpoints to a hierarchical cluster of local and cloud brokers. A dashboard and

historian will be configured as subscribers to visualize real-time data and for long-term storage. We

will attempt to add IIoT devices from various suppliers with different communication standards into

the same infrastructure to prove cross-vendor interoperability, always with concerns for cyber security

and reliability in mind. OPC UA and MQTT, the two most widely used protocols for industrial IoT [15],

cannot be overlooked and will be central technologies in our system. As an edge system, we plan to

connect the educational PLC station at HVL, attempting to use OPC UA translating gateways and the

native MQTT protocol incorporated in the S7-1500 CPU for communication to the UNS.

Figure 1 Diagram showing the initially planned bachelor thesis end result

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 23 of 150 19.05.2023

2.4 Thesis Layout
The thesis is organized into seven parts and is comprised of the following sections:

Chapter 3 presents the relevant background theory of the related technologies and concepts that the

Unified Namespace is built upon, including the most common protocols for device interoperability in

use today, fundamentals of cyber security, and information modeling and standardization. Readers

who are familiar with these concepts can skip the chapter without missing the general intent of the

thesis.

In chapter 4, the realization of the Unified Namespace is described, including a complete system

topology. Strategies and necessary technologies for connecting legacy systems are described in detail.

Most of the implementation details have been abstracted from the main report to keep it concise but

can be found in appendices for interested readers.

Further, Chapter 5 presents test procedures and results for verifying overall system performance,

robustness and recovery.

Then, in Chapter 6, both the theoretical and practical experiences are discussed to determine

recommendations for UNS planning, including the feasibility of implementing a unified namespace

parallel to existing systems. Finally, Chapter 7 concludes the thesis.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 24 of 150 19.05.2023

3 Background theory
The reader is assumed to have a basic understanding of networking and related technologies to

understand the work done in this thesis. Chapter 3 briefly describes these technologies as a way for

the reader to understand the principal building blocks of the proposed architecture. It can be read in

its entirety or used as a reference.

3.1 Network Communications

3.1.1 OSI model

The OSI model is a widely used reference model to explain the

different functions needed for network communication. Each

layer has protocols with a specific purpose and a defined interface

to the layer below and above. The modularization of the

communication stack enables developers to work on isolated

network functions. It is also part of future-proofing the

technology by allowing the exchange of individual protocols in

the stack because of security issues or technology being

deprecated.

1. Physical layer handles the electrical transmission of bits on the wire or air.

2. Data Link handles the transmission and error detection/correction of data on the physical link.

3. Network layer handles logical addressing and routing between hosts on the network.

4. Transport layer handles end-to-end delivery of data, flow control, and error recovery.

5. Session layer establishes and manages sessions between hosts.

6. Presentation layer handles the encoding, compression, and encryption of data.

7. Application layer is the endpoint and utilizes the data transmitted over the network.

Both the OSI and TCP/IP models are widely used as a reference for teaching and understanding

network communication.

3.1.2 TCP / IP model

The TCP/IP stack defines four layers that map to equal layers in the OSI model. The upper three levels

of the stack have been combined into one, emphasizing that it is more focused on the flow of data

between hosts, not the internal processing by the host. The lower levels in the models are almost

identical and illustrate that this part of network communication has practically become standardized.

3.1.3 Ethernet

Ethernet is a physical and data link technology that can run on various media like copper or fiber. It is

commonly used to connect hosts in Local Area Networks (LAN) or Wide Area Networks (WAN). The

ethernet standard is continuously updated to support higher bit rates, increased number of nodes,

and longer distances. Each data stream is divided into ethernet packets called frames with the sender

and receiver MAC addresses and error detection codes. The standard has been the de facto

technology for network transmission.

Figure 2 OSI compared to TCP/IP model

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 25 of 150 19.05.2023

3.1.4 Transport layer protocol

The Transmission Control Protocol (TCP) and User Diagram Protocol (UDP) represent the transport

layer. TCP is a non-deterministic and connection-oriented protocol that establishes and maintains

point-to-point communication between hosts. It is a reliable protocol that ensures packet ordering,

error detection, and re-transmission of lost packets. Although it is reliable, transmission is not

deterministic, making it less suited for industrial networks with real-time dependencies. The protocol

has significant overhead resulting in greater use of bandwidth. An advantage is that protocols above

the Transport Layer often do not implement functionality to ensure reliable communication when the

transmission is over TCP.

UDP is a non-deterministic and non-reliable protocol that does not verify or order packets at the

receiver. It is comparatively faster, simpler, and more efficient than TCP. There is no overhead for

establishing connections, error checking, or termination. The protocol is best suited for communication

where bandwidth is most important, and re-transmission of lost packets is not as crucial. Examples of

used cases are constant streaming of data like video or high-speed sensor updates.

3.1.5 Internet protocol

The transport layer protocols run on top of Internet Protocol (IP) which ensures that destination hosts

are uniquely identified on the network. Each host has an IP address consisting of 32 bits for IPv4 and

128 bits for IPv6. The IP address contains a network part identifying the subnet and a host part

identifying the device on the subnet. Hosts are commonly separated into subnets, identified by a sub

mask, to reduce the amount of traffic and to enable unique addressing within the subnets. If the

destination IP address is unknown to a device, it will forward it to the configured gateway that handles

routing between subnets, including the internet. It is the responsibility of the IP protocol to maintain

routing tables so that paths to remote hosts can be identified.

3.1.6 Time Sensitive Network

Time Sensitive Networking (TSN) is a set of protocols and technologies designed to make messaging

more deterministic and reliable on standard Ethernet. It has been invented primarily for industrial

networks dependent on performance guarantees on latency, minimization of jitter, and accurately

controlling the timing of packets on the network. It includes elements like traffic prioritization, shaping,

and Quality of Service mechanisms. An essential feature is time synchronization which enables devices

to synchronize their clock to a precise reference. TSN networks are based on the IEEE 802.1 standard

and aim to improve the network convergence between IT and OT systems.

3.1.7 SCADA systems

Supervisory Control and Data Acquisition (SCADA) systems are designed to improve operational

efficiency, enable remote monitoring and control, and enhance safety of industrial processes by being

a central hub for the overall plant's real-time state. They combine communication from Programmable

Logic Controllers (PLC), Human Machine Interface (HMI), and Databases for long-term storage and

trending into a large interconnected system. Overall, they benefit modern industrial automation

systems by being a central node where the operator can monitor and manage complex processes in

real-time and respond to events and alarms.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 26 of 150 19.05.2023

3.2 OPC UA
Open Platform Communication (OPC) was first released in 1996 with the intention of abstracting away

the communication protocols of industrial controllers, enabling products from different vendors to

exchange data. Initially, it was based on Microsoft DCOM technology, limiting its scope of use. In 2008,

the protocol expanded to become OPC Unified Architecture (OPC UA), which is no longer restricted to

only Microsoft systems and has interoperability and data modeling as its two fundamental pillars. OPC

UA is not a single protocol but a stack with flexibility at every level, designed to be future-proof by

exchanging individual protocols of the stack as new technologies develop. OPC UA has solid industrial

support and is widely implemented as the solution for industrial controllers to enable cross-platform

interoperability. It is designed for real-time, secure, robust, and platform-independent

communication.

Chapter 3.2 is a condensed version of the OPC Foundation documentation [20].

3.2.1 Client – Server architecture

OPC UA is built on the client-server architecture, where the clients initiate requests for data to OPC

server endpoints, which then respond by sending back the requested information or performing some

action or method requested by the client. OPC servers are often programmable logic controllers (PLC)

that directly control and interface the edge sensors and actuators. Clients can be Human Machine

Interfaces (HMI) or analytics software requiring factory floor data. OPC UA communication is stateful,

meaning a static and secure communication channel must be established and maintained between

client-server pairs. The server URL identifies several protocol choices for each function of the channel.

Transportation is by UA TCP, an extension of regular TCP / IP protocol that adds a small overhead to

optimize size, security, and maintains sessions during connection interruptions. The other popular

choice is HTTPS, which establishes a secure Transport Layer Security (TLS) connection between devices.

Security is handled by UA-SecureConversation protocol, establishing a

secure channel inside the transportation channel to maintain

confidentiality and integrity. Implemented as a separate protocol is part

of future-proofing OPC UA by enabling exchanging only parts of the

protocol stack. The security level can be different on different endpoints

and is included in the endpoint description. The main session security

parameters are Security Policy and Security Mode.

 Encoding messages is the serialization of complex data structures for

communication on the wire. The most utilized protocol is UA BINARY,

optimized for size and transportation efficiency. Other choices are JSON

or XML, widely used because of their interpretability and being

understandable to humans, but with less efficiency.

Figure 4 Protocol tunneling of lower level protocols.

Figure 3 OPC security settings

Figure 5 OPC encoding formats

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 27 of 150 19.05.2023

3.2.2 Service-oriented architecture

The device interaction is based on a request-response and service-oriented architecture (SOA).

Services are used to establish communications and to perform operations on nodes to enable

information exchange. Every service request must be made within an established channel. Lower

layers of the protocol stack ensure that data encoding, encryption, and transportation are standardized

before it reaches the service level, abstracting away the services' implementation details. There is no

need to understand internal components implementation details, allowing developers to freely choose

a programming language and internal server and client details. The OPC UA specification defines a set

of 37 services that manufacturers can decide to implement. Services are categorized into service sets

to better understand their purpose and are listed for reference but will not be explained in detail.

Table 1 Services defined in the OPC UA standard

Discovery service set Query service set

• FindServers

• GetEndpoint
• RegisterServer

• QueryFirst
• QueryNext

Session service set Attribute service set

• CreateSession

• ActivateSession

• CloseSession
• Cancel

• Read

• HistoryRead

• Write
• HistoryUpdate

SecureChannel service set Method service set

• OpenSecureChannel
• CloseSecureChannel

• Call

NodeManagement service set MonitoredItem service set

• AddNodes

• AddReferences

• DeleteNodes
• DeleteReferences

• CreateMonitoredItems

• ModifyMonitoredItems

• SetMonitoringMode

• SetTriggering
• DeleteMonitoredItems

View service set Subscription service set

• Browse

• BrowseNext

• TranslateBrowsePathToNodeIds

• RegisterNodes
• UnregisterNodes

• CreateSubscription

• ModifySubscription

• SetPublishMode

• Publish

• Republish

• TransferSubscription
• DeleteSubscription

Error handling is an essential aspect of industrial communications. A set of standardized error codes

constituting 16 bits have been pre-defined by the OPC Foundation and are included in the service

response, simplifying error handling between devices from different vendors.

Figure 6 OPC Status code. First two bits are standardized.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 28 of 150 19.05.2023

3.2.3 Address space

OPC UA servers are divided into namespaces, each with an endpoint that specifies transportation

protocol, encoding, and security. The NodeId and BrowseName need to be unique within each

Namespace. Namespaces are stored in an array on the server index by number to minimize the size of

the node identifiers. The OPC Foundation defines the first two indexes. “http://opcfundation.org/UA”

is defined as index 0 and contains the base nodes defined by OPC UA. Server URI is index 1 containing

server-specific nodes such as diagnostics information and certificates. Other namespaces are server

specific and contain node types and object instances. Some industries are common to many and have

been standardized in companion specifications. These specifications offer agreed-upon namespaces,

including information models for common objects, such as the robotics industry. Examples of

namespaces can be:

ns=http://opcfoundation.org/UA/Robotics/

ns=http://www.siemens.com/siemens-s7-opcua

3.2.4 Nodes

The fundamental building block in the server address space is a node. Nodes are

object-oriented entities consisting of attributes with corresponding values. All

nodes have a node class that specifies their attributes, and the base node class

defines a minimum number of attributes mandatory to all nodes. Complex data

models can be created by combining base node classes and references which

help contextualize and link together their data. A client connected to a server

can navigate the node structures and references to identify how the

information models not previously known are built up. All nodes are uniquely

identified by their NodeId, which comprises a node name and the Namespace

it belongs to. An example of a node identifier in the namespace

http://opcfundation.org/UA is:

ns=http://opcfundation.org/UA;string=Temperature

The OPC Foundation defines eight basic node classes from which all other nodes

are built. Type nodes represent metadata that explains and contextualizes the

structure of the information. Instance nodes contain the variable's data and make

up the majority of the address space.

The nodes' data are stored in attributes, each with its data type. The OPC Foundation standardizes

attributes and Built-in Data Types. User-defined datatypes are composed of the basic types and

reference back to one of them.

Base Node Class

1. Node Id

2. DisplayName

3. NodeClass

4. BrowserName

Figure 8 OPC Base node class

Figure 7 Example of motor object
built as a node hierarchy

Figure 9 Basic node classes defined in the OPC UA specification

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 29 of 150 19.05.2023

Table 2 OPC UA defined identifiers assigned to attributes

Table 3 OPC UA defined built-in data types

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 30 of 150 19.05.2023

3.2.5 Publish and Subscribe

Figure 10 OPC UA subscription principle

In contrast to polling a server with request-response communication, a more elegant and

recommended method is creating a subscription. When a client initiates a subscription, selected

variables are specified in a “Monitored Items” list, and then the server publishes these variables when

they change. Subscriptions significantly reduce the amount of network traffic because clients no longer

have to poll servers with short intervals to be sure that updated values are transferred frequently

enough. It must be noted that subscriptions are between individual client-server pairs. Separate

subscriptions must be created between every client and server that will exchange data.

3.2.6 PubSub

Figure 11 OPC UA PubSub principle

Client-server communication does not scale because of all the active connections that must be

maintained between communicating devices. Therefore, the OPC Foundations have introduced

PubSub, a One-to-Many and Many-to-One communication protocol, no longer a service-oriented

protocol between clients and servers. A publisher, a source of data, will be configured to publish

variables on change or on a fixed interval to subscribers, which consumes data through a message-

oriented middleware. Two types of middleware are defined, Broker-less and Broker-based. If the

transport protocol is UDP, then the message-oriented middleware only consists of routers and

switches between the publishing and subscribing nodes. Variables will be broadcasted once with no

guarantees that the recipient received them. Another option is to use MQTT protocol and a message

broker as middleware. The broker can be configured to a Quality of Service (QoS) level that

guarantees that recipients will receive the messages, even if it was offline at the time of transmittal.

The main advantage is the decoupling of producers and consumers, allowing the network to be

connected to the cloud and scale in order to be a fully interconnected IIoT infrastructure.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 31 of 150 19.05.2023

3.3 MQTT
Message Queuing Telemetry Transport (MQTT) is a lightweight messaging protocol that adds minimal

overhead to guarantee message delivery and device status maintenance used for information

exchange between an information publisher and subscriber. The primary goal of MQTT is to enable

information exchange over limited bandwidth, unreliable, and high-latency networks, using one-to-

many and machine-to-machine communication. The MQTT protocol was invented in 1999 by Andy

Stanford Clark and Arlen Nipper. They required a protocol for minimal battery loss and minimal

bandwidth to connect with oil pipelines via satellite. In October 2014, the MQTT protocol became an

officially approved OASIS standard.

The MQTT protocol is built as a service-oriented architecture, making it possible to include clients

developed in different programming languages into the same MQTT architecture. The protocol is

designed to run over TCP/IP networks and comes with three Quality of Service (QoS) levels for

messages. QoS is used to configure the reliability of the message delivery on the network.

Chapter 3.3 is a condensed version of the OASIS MQTT documentation [21].

3.3.1 Data broker

An MQTT data broker is at the heart of the MQTT protocol. The whole network depends on having an

MQTT broker to route the traffic in the network. Having the broker as the central hub enables all clients

in the network to be independent of each other, making the whole system highly modularizable.

An MQTT broker is a server that acts as a message hub for connected MQTT clients. The broker receives

and manages the flow of messages to and from clients, temporarily storing them until they are

delivered to the appropriate recipients.

Figure 12 Clients and Brokers arranged in a MQTT architecture.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 32 of 150 19.05.2023

There is a risk if the broker that routes all client messages should malfunction. However, in MQTT

networks, broker clustering and load-balancing techniques make it possible to ensure data flow even

if a broker goes offline. Clustering also makes the MQTT broker network extremely scalable. If more

computing resources are needed, you can add brokers to the cluster to expand the system.

3.3.1.1 MQTT 5.0

MQTT protocol has evolved, where 5.0 is the latest standard. MQTT 5 is not backward compatible with

MQTT 3.1 and MQTT 3.1.1, however MQTT 3.1.1 is a minor revision being backward compatible with

3.1. Nevertheless, broker solutions are available such that all three standards can intercommunicate

on the same network.

The major functional incentive for the standard revision to 5.0 was

- Improvements in scalability and large systems

- Improved error reporting

- Formalize common patterns, including discovery and request-response

- User properties

- Performance improvements

Changes were achieved by adding 42 properties that can be assigned to various control packages to

give additional context and 43 reason codes to indicate the result of operations, such as server status

messages and the cause of disconnection, which has greatly improved debugging.

3.3.2 Topics and Payloads

The "topic" is fundamental to MQTT. It is a string that represents the subject of a message. Devices

publish messages on topics to which other devices subscribe to receive the information. In the MQTT

network, these messages are referred to as payloads, much like PubSub for OPC UA. This allows for a

flexible, decoupled communication model where devices can publish and subscribe to the information

as needed.

One disadvantage of MQTT is that there is no enforcement on how the message payload should be

sent or received. Consequently, plug-and-play interoperability between devices can be challenging. A

specification must be added to the payload to ensure plug-and-play. The Eclipse Foundation has

attempted to resolve this shortcoming by developing the SparkplugB specification, described in

chapter 3.4.

3.3.2.1 MQTT defined packages

The MQTT standard has gained popularity as a communication protocol for IoT devices due to its

lightweight structure. The MQTT messages consist of three layers. The first layer of the MQTT control

packets is a fixed header that contains essential information, including the message type, quality of

service (QoS), and control flags. The second layer contains the topic name, packet identifier, and a

custom field, while the third layer is the payload. The first layer is mandatory for all MQTT messages,

ensuring the message is delivered correctly with the desired QoS.

The MQTT standard includes 15 different control packets that manage communication in the network,

and they are available in both MQTT standards 3.1.1 and 5.0. MQTT has size limitations in place for

topics and messages to ensure the efficiency of the protocol. A topic string can be up to 65536 bytes

in length, while the message size cannot exceed 268435455 bytes, which is approximately 260MB.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 33 of 150 19.05.2023

Table 4 Types of MQTT control packages

3.3.3 Quality of service(QoS)

MQTT is implemented with three qualities of service levels for message delivery. QoS ensures stable

message deliveries in unreliable networks. It also set a precedence on how often the same message

should be retransmitted to prevent old information from arriving multiple times to the same client.

QoS0 "At most one". Message loss can occur, and delivery is after the best efforts of the operating

environment. The messages are not stored or re-transmitted in the event of devices being offline and

therefore provides the same guarantee as the underlying TCP protocol.

QoS1 "At least once". Messages are assured to arrive, but duplicates can occur. The sender stores the

message until it receives a PUBACK packet from the broker, acknowledging the receipt of the

message.

QoS2 "Exactly once". Messages are assured to arrive exactly once. Requires a four-part handshake

between client and broker, where the packet identifier of the original PUBLISH message is used to

coordinate the delivery of the message.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 34 of 150 19.05.2023

3.3.4 State awareness

The CONNECT package has a Keep alive parameter to maintain a state awareness of the network,

determining the maximum allowed time between a Client last transmitting a message and when the

broker determines that the client is no longer connected. If the time exceeds one and a half times the

Keepalive period, the broker will publish the last will messages of the device. The minimum package

that must be sent is a PINGREQ packet to ensure the keep alive tag on the connection. Edge devices

can also be programmed such that the connection is deemed broken if no PINGRESP is received within

a reasonable time after transmitting a PINGREQ.

3.3.5 Will flag

Devices can provide a will message when connecting to a broker. The will message contains a topic

and a payload provided in the CONNECT package. It is stored on the broker associated with the client's

sessions. The will message is published to subscribers of the will topic if the connection to the edge

device is lost due to:

- An I/O error or network failure detected by the Server.

- The Client fails to communicate within the Keep Alive time.

- The Client closes the Network Connection without first sending a DISCONNECT packet
with a Reason Code 0x00 (Normal disconnection).

- The Server closes the Network Connection without first receiving a DISCONNECT packet
with a Reason Code 0x00 (Normal disconnection).

3.3.6 Clean sessions

MQTT was developed for an unstable network environment where connections were expected to fail

occasionally. The clean session flag was implemented to enable a client to resume the previous session

after a period of being disconnected, including all the session parameters.

3.4 Sparkplug B
Sparkplug B is an open-source software specification that defines a set of rules and guidelines for how

data should be formatted and organized when it is sent over MQTT, including the specification of topic

structure and payload formats. The specification provides MQTT clients the framework to enable

plug&play interoperability in a range of devices that is optimized for the SCADA/IIoT solutions. Chapter

3.4 highlights the significant aspects given in the specification [6]

The three main goals that SprakplugB intends to resolve are

- Define an MQTT topic Namespace

- Define MQTT state management

- Define the MQTT payload

Sparkplug requires a 100% implementation of minimum MQTT standard 3.1.1 on clients and brokers.

An advantage is that it is possible to send regular MQTT traffic on the same network as SprakplugB.

The only implication is that clients not supporting SparkplugB cannot interpret those messages.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 35 of 150 19.05.2023

3.4.1 Benefits of Adoption

One of the biggest advantages of implementing SparkplugB is that it

provides an agreed-upon data structure to transmit and receive

information between devices. The specification defines a .proto file, a

blueprint of an information model with standard attributes and defined

data types, which also allows for nested data structures providing the

necessary flexibility to send complex models. By making the essential

attributes mandatory and including additional attributes as optional,

SparkplugB has achieved a balance between generality and optimized

processing by the receiver while restricting the freedom needed to

achieve reduced integration time and costs.

State management is another essential feature that makes MQTT more

geared toward the requirements of a SCADA system. By building on existing MQTT functions such as

will message and standardization of topic namespace to define topic areas for NBIRTH and NDATA

messages, SparkplugB has standardized data transfer, device discovery, and online state management.

Another benefit is the report-by-exception principle which Sparkplug is based on. In traditional poll-

response systems, a data consumer must poll the data producer for information to check if data has

changed. In report-by-exception, the data producer publishes only when the data changes to save

bandwidth, computing power, and memory consumption. State management and death certificate are

used to detect stall data and immediately notify the data consumer of any abnormal behavior, like a

disconnect.

3.4.2 Death and birth certificates

SparkplugB utilizes the built-in functions of MQTT will message and keep alive and adds a set of defined

BIRTH and DEATH topic namespaces and payload definitions.

A birth and death certificate is sent immediately after a device has connected to the broker. The birth

certificate is used for the management and discovery of the device. The content is up to the protocol

user, but common practice is to announce all the information, data types, and last known values that

the device will publish. It is possible to re-publish a new birth certificate if the information that the

device sends should change while online.

Suppose a publishing device were to go offline after it has sent a birth certificate. The broker will then

send all subscribing entities of the publishing device the death certificate of that device. The Death

certificate is registered as the MQTT will message.

3.4.3 SparkplugB compatible systems

As of 19.01.2023, there are listed zero hardware systems and two software systems supporting

SparkplugB on the Eclipse official site for Sparkplug. The software systems supporting SparkplugB are

currently Eclipse Tahu and HiveMQ. However, several suppliers like EMQX MQTT system supplier and

OPC UA system supplier claim SparkplugB compatibility, so it might be wider adopted than the official

listing indicates.

Figure 13 Example of SparkplugB
attributes [6].

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 36 of 150 19.05.2023

3.5 Data structuring

3.5.1 ISA 95 standard

ANSI/ISA-95 standard [22] is a set of guidelines for implementing an enterprise-

wide system with a well-thought-out tag structure that will prevent name

collisions and which can be easily extended. The tag structure provides data

context by labeling information according to where it was produced. The

standard is intended to be extensive, describing the entire information flow

from the factory floor all the way up to the business and management level. It

is the only recognized standard for hierarchically naming the different parts of

a business or manufacturing process. The standard also defines models,

including standardized attributes for when information is transferred from the

operational systems to the management layers.

3.5.2 Standardization

Agreeing on common attributes, data types, and encoding optimizes data sharing between systems. It

also reduces the potential for misinterpretations and subsequent errors. For example, Unix has a

standardized time format and time zone used in timestamps, efficiently eliminating uncertainty at the

receiver.

3.5.3 Tagging conventions

All nodes need to be assigned symbolic names to be uniquely identified. Two types of grouping

variables are commonly used. Grouping by type is when similar information is arranged together. For

example, all temperature measurements are given a tag number and grouped accordingly in a system.

It is essential to have a sound tagging convention that prevents naming collisions and eventually results

in the need to re-think and re-tag parts of the enterprise.

On the other hand, grouping can be based on the physical layout of the organization. Each temperature

sensor belongs to a module that also has its own tag number. The complete temperature tag will be

the entire link of the tag names from the enterprise root to the individual variable value. Physical tag

numbering can be more forgiving because the same tag numbers can be re-used without concerns for

naming clashes. A disadvantage is the length of the tag numbers. It is primarily a concern for those

who design the tag system and do initial tagging. During communication, most protocols have

functionality for exchanging unique variable handles between hosts to shorten the variable address.

Figure 14 ISA95 Enterprise hierarchy

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 37 of 150 19.05.2023

3.6 Cyber security
National Institute of Standards and Technology (NIST) defines Computer security as "The protection
afforded to an automated information system in order to attain the applicable objectives of
preserving the integrity, availability, and confidentiality of information system resources (includes
hardware, software, firmware, information/data, and telecommunications)." [23] It is the tools and
principles implemented to safeguard the information from being eavesdropped on, tampered or
deliberately falsified.

3.6.1 Confidentiality, Integrity, and Availability

The security triad is a model used to describe the three fundamental principles within cyber security

to ensure that information is protected and systems are available and reliable.

Confidentiality is the protection of information from being accessed or disclosed to individuals or

systems not authorized for it. Security is achieved through the use of encryption, user authentication,

and authorization. Confidentiality measures are mostly passive technologies like encryption that

scrambles the data making it unreadable or restricting access to the communication channel.

Integrity is guarding against information tampering, modification, and the consistency of information.

It builds on the principle that it should not be possible for anyone but the owner of a publicly known

secret key to produce the digital signature accompanying the message. Measures to prevent or detect

message modification are hashing, certificates, and digital signatures.

Availability refers to ensuring timely and reliable access to the systems and information therein. It is

achieved through measures such as redundant systems, backups, load balancing, and recovery

procedures. Availability measures must handle single point of failure and cyber attacks that aims to

overwhelm the system making it unavailable to the intended users. A distinct difference between IT

and OT systems is that availability is by far the most important factor for OT systems, which must be

available at all times.

3.6.2 Authentication and Authorization

In short, authentication is the process of verifying a user or system, while authorization is the process

of restricting information access to only individuals or systems that have been granted permission.

Authorization often requires the individual or system to provide a set of credentials that are verified

against a database to confirm the true identity of the requestor. Examples of credentials used for

authentication are username and password, certificates, or pre-shared keys (PSK), all of which should

be kept secret. Multifactor authentication can be utilized when increased security is required by

Figure 15 The CIA triad [5]

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 38 of 150 19.05.2023

requiring several identifying factors like a username/password, something the individual knows,

combined with a token like an authenticated cellphone that is something that the individual possesses.

Authorization are the measures that restrict access to resources or parts of the system. The principle

of the least amount of access is when everything is initially blocked, and then access is granted based

on necessity. Logging when and what information a user accessed or changed is also part of the

authorization system. Often users have to authenticate before the system determines what

information is made available based on registered access level. Maintaining and updating the

individual's access permissions can be work intensive. Therefore a role-based access model assigning

pre-defined roles with specific access levels configured is often chosen.

3.6.3 Cryptographic algorithms

Cryptographic algorithms are tools used to encode information making it unreadable to unauthorized

individuals. A fundamental principle is that security should not depend on the secrecy of the

implementation details because the revealing of these details must be anticipated. The security lies in

the length of the encryption key and the algorithm's ability to randomize the data. It is essential that

the encryption is reversible so that the recipient can decrypt the message. There are essentially two

different types of encryption.

Symmetric encryptions utilize the same key for encryption and decryption. Symmetric algorithms

mostly use very efficient permutations and substitutions, which also can be implemented in hardware

for even faster processing times, making it suitable for large amounts of data. The most widely used

symmetric algorithm is Advanced Encryption Standard (AES). The main disadvantage of symmetric

encryption is the need to distribute secret keys between communicating participants.

Asymmetric encryption like RSA uses mathematical operations to transform the information. Two

parties can create a common shared secret by sending each other partial mathematical products,

enabling parties without prior knowledge to establish secure communication. Each participant will end

up with a private and a public key pair. Data encrypted with the public key can only be decrypted with

the associated private key. The algorithms are often computationally heavy, and the length of the

secret key is significant to prevent brute force attacks making these algorithms unsuitable for large

amounts of data. Asymmetric algorithms are primarily used for exchanging symmetric keys,

authentication, and digital signatures.

3.6.4 Certificates

The secrecy of the cryptographic keys is essential to secure communication. Man-in-the-middle attacks

are when an advisory intercepts communication between two parties during session establishment,

impersonating the intended recipients and exchanging secret keys with both parties. All messages are

then relayed through the advisory enabling him to eavesdrop on or modify the content of the

communication. Digital certificates are asymmetric public keys registered and stored by certificate

authorities (CA). The CAs have publicly known certificates used to sign the hashes of public keys

together with a claimant's identifying information. The CAs must adequately verify the claimant before

the certificates are distributed. If the signing CA is trusted, the entire chain of certificates and signings

can be verified before secret keys are exchanged by encryption with the recipient public key. X509 is a

certificate standard and is the most widely used format for digital certificates. Most operating systems

(OS) and internet browsers are distributed with trusted root certificates pre-registered.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 39 of 150 19.05.2023

3.6.5 Certificates stores

A certificate store is a secure database of digital certificates and possibly the associated private keys.

It’s commonly subdivided into a personal store containing certificates used by the host, a trusted store

for known and verified partner devices, and an untrusted store containing certificates of known

malicious devices. An application can have its own certificate store, or alternatively, it can be shared,

such as the Windows certificate store to which many applications interface. The big advantage is that

collecting all certificates in one location provides better organization and improved security since

mechanisms such as secure storage and preventing memory leaks are implemented around this

controlled storage location. A certificate store contains numerous certificates, possibly from different

certificate authorities. Certificates signed by a root CA will be trusted as long as the root CA is stored

in the certificate store.

3.6.6 Hashing

A hashing algorithm is used to transform a variable-length message to a fixed-length fingerprint of the

original message. A good hash function should map the input space to the output space evenly and

with the same probability. Cryptographic hash functions are pre-image resistant requiring that it be

infeasible to find the input x given the hash h(x) and strong second pre-image resistance requiring it to

be infeasible to find any two inputs x and y that map to the same output h. Digital signatures often

utilize a hash function combined with a secret key to create a message identifier attached to the

message. Message integrity is achieved because only the owner of the secret key could have produced

the hash. Alternatively, a hash can be encrypted with a private key as a digital signature. It can only be

decrypted with the corresponding public key, proving that only the one possessing the private key

could have produced the message. In principle, encrypting the entire message using the private key

will prove integrity but is computationally slow. Only encrypting the hash saves a lot of time.

3.6.7 Transport Layer Security

The most used encryption standard on the web is Transport Layer Security (TLS) secures data to be

transmitted at the transport layer of the OSI model by creating a secure channel from port to port. TLS

encrypts data from the application layers so that applications do not need to implement security

protocols to communicate safely on the network, making it a popular choice for web browsers and

servers. An example is Hyper Text Transfer Protocol Secure (HTTPS), which is regular text encapsulated

by TLS and recognized by the famous hallmark lock symbol in the address bar of internet browsers.

Secure Socket Layer (SSL) is the predecessor of TLS and is still widely used even though TLS was

intended to replace it. These protocols are essentially the same. Authentication of the recipient and

exchange of cryptographic keys are handled with very little overhead by the 3-way handshake and

SSL/TLS certificates. TLS traffic uses the standard port 443, which usually is allowed to pass most

firewalls because it is authenticated and encrypted communication.

3.6.8 SSH

Secure Shell (SSH) is a network protocol that allows two computers to connect with each other and

remotely access the terminal of another computer. This connection provides a secure channel over an

unsecured network by encrypting all communication. SSH also provides the ability to view the file

structure on the system. During this thesis, we utilized an extension in the Visual Studio Code IDE called

Remote Explorer. This extension provides a shell terminal, file explorer, and IDE editor for

instantaneous code editing.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 40 of 150 19.05.2023

3.6.9 VPN

Encryption and data integrity between two endpoints can be implemented at the IP level of a network

as Virtual Private Network (VPN). Data is secured in a secured tunnel established with encryption from

router-to-router or host-to-router, providing a path secured against manipulation in an unsecured

network. VPNs implemented in router endpoints can be very efficient since traffic on the internal

network is not encrypted by the hosts, but traffic destined for the remote endpoint will be encrypted

by special-purpose hardware optimized for efficiency and security. [24]

3.6.10 IPSec

IPsec stands for Internet Protocol Security and is a VPN protocol used to provide secure communication

over an insecure network, such as the internet. IPsec can be used to create VPNs between two

endpoints, allowing them to communicate securely as if they were on a private network. IPsec can be

used in two modes: transport mode and tunnel mode. In transport mode, only the payload of the IP

packet is protected, while in tunnel mode, the entire IP packet is protected. Tunnel mode is typically

used when creating VPNs between networks, while transport mode is used for end-to-end

communication between hosts.

3.6.11 Firewalls

Firewalls protect the network by filtering incoming and possibly outgoing traffic across the network's

border. Inbound and outbound rules are set up to decide on what criteria traffic is blocked or allowed.

Stateful firewalls increase security by only allowing devices inside the protected network to initiate

communication across the border. A record with a configured timeout keeps track of ongoing sessions,

only allowing outside traffic to enter if it belongs to an active session. Firewalls are often implemented

in-depth, segmenting the network into different security zones with different rules for traffic entering

different segments. Servers that must be available for hosts on the outside network are often located

in the outermost segment, called a demilitarized zone. Traffic destined for these servers does not need

to enter the inner network, reducing the risk of malware spreading to these systems. If the devices

inside the network are only transmitting, not receiving any data from the outside, then all incoming

traffic can be blocked, significantly increasing network security.

3.7 Web technology
“Web Technology refers to the various tools and techniques that are utilized in the process of

communication between different types of devices over the internet." [25] Communication throughout

the web is managed by web-browsers, which translate, create, deliver and manage web-content using

a hypertext markup language (HTML). We can send a request to a web server with a browser that

responds with HTTP.

3.7.1 HTTP

Hypertext Transfer Protocol (HTTP), is an application-layer(OSI) request-response protocol that

transfers data over a network. HTTP was designed for communication between web browsers and web

servers. Due to its extensibility, it can fetch anything from hypertext documents to images and videos.

It can also be used to post content to servers or update web pages on demand. HTTP has changed and

been updated slowly since its creation, which has been a coordinated effort launched by the Internet

Engineering Task Force (IEFT) in 1996. In later years, many websites made the switch to HTTPS, which

is HTTP with encryption and verification. HTTPS uses TLS to encrypt and sign normal HTTP requests and

responses.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 41 of 150 19.05.2023

3.7.2 API

API stands for Application Programming Interface. Its purpose is to open up the services a program

offers to others while still being secure and only granting requests it deems legal by pre-written rules.

An API could allow us to interact with a service and gain some access to the service’s data without

being constrained by the possible limitations of the service’s own interface.

3.7.3 JSON

JSON, also known as JavaScript Object Notation, is a structured text file for formatting and structuring

data for storage. JSON was designed to be very basic and straightforward and to closely mimic data

structures and primitive types that many programming languages have built-in by default. JSON excels

at being easy to access and manipulate. Being able to freely exchange and work with stored data is

nearly as important as the data itself.

3.7.4 XML

XML, also known as Extensible Markup Language, is a markup language and file format for storing,

transmitting and reconstructing arbitrary data. It defines a set of rules for encoding documents in a

format readable by humans and computers. While very much like JSON, it has a couple of distinct

differences. The biggest one is that XML must be parsed with an XML parser, while a standard

JavaScript function can parse JSON. XML must also include end-tags and a nested tag pair structure,

making it longer and slower to read and write than JSON.

3.7.5 Simple Binary encoding

Simple Binary Encoding (SBE) is a binary-format protocol for decoding and encoding messages with

low latency and deterministic performance. The SBE message format is specified using native primitive

types, which means there is no need for further translation since these types are generic. It also only

concerns itself with data representation, which means that the structure of the message is not subject

to other applications. The message layout, which is specified in the SBE template, is based on XML.

3.7.6 Protobuf

Protocol Buffer or Protobuf [26], is a language-independent binary serialization format developed by

Google. It is a flexible and efficient way to transmit structured data between different systems,

particularly in high-performance scenarios. It is used by defining a schema in a “.proto” file. This file

specifies the data structure, data types, and field names for all messages that will either be sent or

received. Once a schema is agreed upon and defined, every receiver and transmitter receives the same

proto file, which Protobuf uses to generate the needed structures in the code base to encode and

decode messages. Protobuf messages are typically smaller and faster to transmit and parse than

formats like XML and JSON.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 42 of 150 19.05.2023

3.8 Hosting Technologies
Hosting technologies refer to different methods of making applications and programs available over

the Internet. In this thesis, we will be implementing cloud hosting technology that employs a cluster

of servers, allowing for a high scalability level. Resources can be easily scaled up or down based on

demand, ensuring efficient resource allocation.

3.8.1 Virtual Machines

Virtual machines (VMs) are an increasingly popular technology used in the IT industry for various

purposes, including application deployment, testing and development. They allow multiple operating

systems and applications to run on a single physical machine by creating a software environment that

simulates the behavior of a physical computer. The VM consists of a software layer that uses the

underlying physical hardware, including the CPU, memory, storage, and networking resources. This

enables multiple VMs to run on a single physical machine, each with its own isolated environment and

virtual resources, including the operating system, applications, and data. Another advantage of virtual

machines is their ability to provide fast and consistent deployment of applications. By packaging the

application, operating system, and other dependencies into a single VM image, developers can then

easily deploy and test their applications on different environments without worrying about

compatibility issues.

3.8.2 Clustering

Clustering involves grouping multiple servers to form a single, highly available system. The primary

objective of clustering technology is to enhance the reliability and availability of services. Reliability is

ensured by incorporating multiple servers that offer redundancy and failover protection. In case of a

server failure, the workload is automatically transferred to another server. Moreover, availability is

increased by leveraging load balancers to distribute incoming requests across the cluster of servers.

3.8.3 Loadbalancers

Load balancing is a technique used to distribute incoming requests to a group of servers to ensure that

the workload is evenly distributed across the cluster. It works by placing the load-balancer as the entry

point for clients approaching the cluster. When a client sends a request to an application on the cluster,

the load balancer receives this request initially and decides which server in the cluster should handle

this request based on factors such as server capacity, availability, and current workload. In this thesis,

we will use HAproxy loadbalancers[27].

3.8.4 Kubernetes

Kubernetes [28] is an open-source platform used for container management in a cluster. With

Kubernetes, containers can automatically scale based on demand, and additional containers can be

started up when traffic increases and removed when traffic decreases. This ensures that computing

power isn't wasted on maintaining unnecessary applications and that there is always enough capacity

to handle an increase in traffic. One or more servers will act as the control panel which spawns and

despawns containers. These servers are often referred to as masters. The masters assign containers to

the worker nodes, which consist of other servers that have joined the Kubernetes cluster as worker

nodes and are selected upon joining the cluster. Containers are a lightweight way to package

applications and are defined by applying Kubernetes manifest files that describe the configuration of

the container, networking, and its image. The container holds an image of the application it runs,

created by building Docker files. When a single instance of these containers is deployed on the

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 43 of 150 19.05.2023

Kubernetes cluster, they are referred to as pods. For this thesis, we will be using the K3S Kubernetes

cluster software.

3.8.5 Docker

Docker is an open-source platform for containerizing applications [29]. It makes it possible to package

applications and system dependencies into a container. Containers can then be

built in whatever environment the developer chooses. The built containers are

often referred to as images. Docker uses a Dockerfile to build the container,

which is a script that defines the components of the image, including the

application code, runtime libraries, and other dependencies the application

code needs. Once the image is built, it can be pushed to the Docker registry as

a private or public repository for easy access across platforms.

3.9 ChatGPT
In November 2022, ChatGPT was introduced to the world. This large language model

was created using machine learning techniques to mimic human-like responses in

written form. In the initial phase of this bachelor thesis, we experimented with this new

technology. While ChatGPT can produce perfectly formulated texts, we experienced that

it often contains inaccuracies in the information it provides.

However, ChatGPT excels at taking loosely formulated written text, written as our

thoughts appear, and restructuring it into a more formal sentence structure while

maintaining the accuracy of the information. This has greatly increased our efficiency in writing texts,

as we can now focus on conveying information rather than spending vast amounts of time scouring

through our texts for sentence structure and grammar errors.

An example of how ChatGPT has been used in this thesis, under is a loosely structures text:

The need for VPN technology is paramount in order to ensure isolation of the local area network where

the factory brokers are located. This structure of isolating the local sites is often used by companies

today.

What ChatGPT suggests from the loosely written text.

The use of VPN technology is essential to ensure isolation of the local area network where the factory

brokers are located. This approach of isolating local sites is commonly employed by companies today.

Figure 16 Docker logo [2]

Figure 17 ChatGPT logo [3]

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 44 of 150 19.05.2023

4 The realization of the Unified Namespace
Chapter 4 will explain how our team started with a simple broker concept and expanded it into a

scalable networked broker solution.

The network solution has a central component, which is the cluster broker (1.). This broker acts as the

heart of the system, connecting all factory brokers into a large network. The factory broker (2.) is a

standalone broker that operates at local sites such as factories. While they can function as independent

local entities, they can also share their clients with the entire network by connecting to the cluster.

The factory broker (2.) can have different edge devices such as PLCs (4.) that can share data with SCADA

systems using protocol gateways like Ignition (3.) through VPN connections to the factory site. These

devices are connected to the factory broker locally, but through the cluster, can be monitored remotely

by offsite SCADA systems (5.). Data in this network is volatile. Therefore, storing the data for long-term

access is crucial, which is the responsibility of the Historian (6.) The final component of the network is

an IIoT(7.) device, that we have self-designed and produced to experiment with connecting non-

standard hardware to architecture.

The network in the figure utilizes the MQTT protocol for all information exchanges between the

different entities in the network. The connections' security is ensured by using Transport Layer Security

(TLS) and user authentication in the form of usernames and passwords. In the figure, the systems

secured with usernames and passwords are marked with a green card.

Two network solutions support the network. The factory site is set up using a Cisco LAN with Cisco

routers and switches connected to the internet, while the cluster is connected to the factory brokers

and data users via an internet connection. These two technologies form the "glue" that binds the

different entities in the network together. Overall, the network architecture is designed to ensure

seamless communication between different entities while maintaining security and reliability.

This is only a short summary to give the reader an overview of what is implemented in the UNS

network. Further details of the individual systems are covered in this chapter.

Figure 18 The final UNS network which was implemented in this thesis.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 45 of 150 19.05.2023

4.1 MQTT broker implementation
Chapter 4.1 will detail how we implemented our chosen MQTT broker solutions and our reasoning for

these selections. When it comes to selecting an MQTT broker, numerous options are available, such as

Mosquito, HiveMQ, EMQ, and AWS IoT Core. Many companies offer hosting services that use these

brokers, ranging from standalone MQTT brokers to large cluster array broker solutions. Most of these

brokers come with complete preconfigured systems, which eliminate the need for users to write config

files in XML, set up cryptographic infrastructure, manage networking, and host and configure servers.

During the preliminary research for this project, it became evident that we would need to host our

own broker. The main reason behind this decision was that by building our broker solution, with all the

added complexity, we would gain a better understanding of MQTT broker solutions and be more

capable of designing our own network. Additionally, it was done to tailor the broker solution to our

specific needs rather than a general implementation.

The MQTT network we have designed is not limited to local

area networks and is intended to be deployed over the

Internet. Since the brokers are connected through secure

encrypted communication tunnels, the location of the

different sites is less significant, with the only requirement

being a stable internet connection. The local servers will

collect all of their underlying topic publishers and

subscribers, merging them into one packet. This packet will

then be transmitted to the cluster servers for handling. If no

access control is enabled in the network, all topics from

every site will be available to all participants in the network.

During the preliminary project meetings with Goodtech, they

wanted us to build and test the HiveMQ broker solution. As

such, HiveMQ was the solution we ended up using in our

Bachelor's thesis. We have built two broker solutions. The

first solution is the standalone HiveMQ for local servers,

which acts as an intermediary between all the edge devices

on that particular site and the cluster.

The second solution is for the cluster server. This cluster contains multiple servers with brokers

connected to enable scaling as needed. The cluster broker administers all clients connected to the UNS.

The factory broker must make all its content available through the cluster network so that data

subscribers across the network can access the factory topics.

Figure 19 Global MQTT UNS network

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 46 of 150 19.05.2023

4.1.1 MQTT Brokers

Both the factory site and the cluster broker use HiveMQ broker technology. This broker comes in two

versions - the community version and the enterprise version. To connect the various brokers together,

it was necessary to use the enterprise version of HiveMQ, which is not free for commercial use.

However, a full enterprise broker can be used with a four-hour limitation for testing purposes. This

provided our team the opportunity to test a full-scale HiveMQ implementation as a proof of concept

without committing significant resources to funding. During this chapter, representations of

technologies used are often displayed with logo of the brand, these logos are sourced from [2].

HiveMQ logos are sourced from [30].

The HiveMQ broker offers the ability to have an open MQTT connection and/or a Secure MQTT

connection. To get Secure MQTT connections, TLS must be applied to the connection between the

clients and the brokers. During our implementation, we initially used the open connection for testing

purposes before applying secure connections to all MQTT clients. In order to make the factory site

share its topics, we utilized a bridge extension for HiveMQ. In short, this bridge extension enables topic

sharing between the cluster broker and factory broker such that the topics in the factory broker get

transferred to the cluster and made available to the clients there.

4.1.1.1 Operating Systems(OS)

Any server connected to any network must maintain its own operating system, which acts as an

intermediary between the computer hardware and the software running on it. During the initial

implementation phase, multiple operating systems were tested for viability. HiveMQ recommends a

Red Hat enterprise Linux(RHEL) operating system. This OS was discarded due to high licensing fees but

is a potential candidate for hosting UNS due to its high focus on security. Another operating system

that showed promise was CENTOS. A broker solution was deployed on the CENTOS STREAM operating

system in order to test the viability of the operating system. It became evident that CENTOS STREAM

Figure 20 MQTT traffic bridge between local and cluster brokers

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 47 of 150 19.05.2023

was a community project maintained and secured on a voluntary basis, becoming a concern that this

could lead to a potential security risk in future deployment of UNS and was subsequently dropped.

Ubuntu 2022 Server(https://ubuntu.com/) distribution is an OS with a dedicated team to address

security issues and is continually updated. It is also a widely adopted OS, making it easier to implement

software on it. That is why we choose the Ubuntu 2022 Server OS. For our cluster solution, deploying

Ubuntu 2022 server OS on our Raspberry Pi hardware was not feasible since we would have exhausted

a substantial amount of the available computing resources. This is only a limitation for our thesis

project since we are building our cluster on Raspberry Pis. This would not be an issue if we had proper

server hardware. We deployed Raspberry’s own OS raspberry pi LITE 64-bit onto the Raspberry Pi’s to

sort out this limitation.

4.1.1.2 TLS

All our broker implementation employs a two-way authentication for TLS. When the TLS encryption is

initiated, it's called a handshake. In short, the client sends a request to the server indicating that it

wants to initiate a TLS connection. The server sends its certificate and a public encryption key to the

client to verify the server's authenticity. Since it’s a two-way handshake, the server will then request

the client certificate to verify the client's authenticity by confirming the certificate against the server's

keystore. The keystore is a repository of digital certificates of trusted certificates. After exchanging

certificates, the client generates a pre-master secret used for establishing the AES encryption between

the two entities. This secret is encrypted with the server's public key. The client then authenticates its

own certificate by sending a message to the server signed with its private key to verify its identity.

When this is completed, AES encryption can be used between the server and the client, and the

connection can be assumed secure.

4.1.1.3 Remote operations

In any server hosting environment, it is essential to be able to

operate remotely. In order to lessen the necessity of travel for

development and maintenance teams, we employed full remote

access to our servers. This was done primarily through remote

SSH connections to the servers via Visual Studio Code with the

Remote Explorer extension. Visual Studio Code provided a file

directory overview, an IDE that we could use to edit code files on

the server directly, and the SSH terminal command line on the

server was enabled. This greatly increased our efficiency and

speed when building our UNS network. The SSH connections are

a significant vulnerability if not properly handled. We employed

a 20-character password randomized password on the SSH connections for security. For extra

measures, we applied a 120-second ban if authentication failed more than four times to reduce the

number of brute-force attacks we experienced.

4.1.1.4 VPN

A VPN entry point was added to the network to further extend our remote operation capability. The

VPN enables us to be a participant in the local network. The IPSec VPN is part of the Cisco router and

was set up as a host-to-network topology. This security encrypts and authenticates every packet that

travels through the network to the remote access VPN access point. Since this entry point of the VPN

is from the router, the user has local access to all layer 3 networks.

Figure 21 Different remote SSH servers in VSCODE

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 48 of 150 19.05.2023

4.1.1.5 Factory Broker

The factory broker is a standalone broker hosted on an Ubuntu 2022 server located in our server rack

at HVL. The factory site broker can host multiple publishers and subscribing SCADA clients. But the

maximum number of connections is limited to 25 when using the trial enterprise edition. For all

inbound and outbound network access, we have set up a Cisco network, detailed in the Networking

chapter.

The clients can connect with the factory broker by setting the correct port of the TCP listeners, further

detailed in the Networking chapter. Upon receiving a client, the MQTT broker handles the connection

by establishing a secure connection using TLS. After establishing a secure connection, the broker

allocates topics for the client according to the client's request. It is possible to limit what topics a client

can access, discussed in the Authorization chapter. The broker utilizes the Prometheus extension that

allows us to publish all the broker statistics via HTTP for dashboard systems like Grafana to display

them.

Figure 22 Factory broker and connected component architecture

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 49 of 150 19.05.2023

The factory broker can only handle MQTT traffic from its LAN due to the rules we have enforced in the

Cisco network. This is done to block all potential clients from outside the LAN. Consequently, all the

topics must be transferred from the factory broker to the cluster broker. This is done by utilizing the

HiveMQ bridge extension.

The broker hosts its own website called the

dashboard. Here we can monitor what is currently

ongoing at the broker, view statistics like available

server resources, network traffic, MQTT traffic,

connected clients, and more is available through

the HiveMQ dashboard. It also allows the user to

see retained messages currently on the broker.

Figure 23 The default HiveMQ (cluster) dashboard

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 50 of 150 19.05.2023

4.1.1.6 Cluster broker

The Cloud broker is the primary broker in the Unified namespace and the broker that holds the entire

UNS network. To be able to seamlessly scale the UNS network, the Cloud broker must employ

clustering and load-balancing technology to rapidly scale the network as needed. Our implementation

will be the production of a deployable cluster image that can be infinitely scaled by deploying more

images on standalone servers and applying load-balancing technology.

In this thesis project, we developed two cluster broker solutions. The initial solution was based on

Kubernetes and Docker images, which offered high availability and seamless scalability. However, it

was discovered that this solution could not be implemented on the Raspberry Pi hardware due to its

ARM64 architecture. The project budget constraints also prevented the acquisition of AMD64 servers

that could have supported the solution. As a result, a second cluster solution had to be developed

specifically for the ARM64 architecture, which led to the loss of Kubernetes and scalability. The limited

RAM available on the Raspberry Pi devices further restricted the number of brokers that could be

established in the cluster network. Only three were successfully deployed out of five.

Figure 24 Desired broker cluster implementation using Kubernetes clustering.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 51 of 150 19.05.2023

4.1.1.6.1 Desired Cluster

Undoubtedly, the best technology to deploy for a cluster solution is Kubernetes, due to its ease of

deployment and scalability, as detailed in chapter 3. Initially, we built a cluster using this technology.

For the first system, we used K3s software on a Raspberry Pi 64-bit operating system to include

Kubernetes. K3s was chosen because it requires the least amount of hardware resources to run

Kubernetes. A load balancer with a proxy must be configured on the server to distribute incoming

traffic load to the server. K3s comes with an inbuilt load balancer and proxy called Traefik.

The proxy creates a virtual connection point to the cluster by duplicating the Ethernet interface via

software. This means, in practice, that a selected server will have two IP addresses. In our case, the

chosen master server was assigned the IP address 192.168.10.200, and the proxy was assigned the IP

address 192.168.10.210, which served as the entry point for the cluster. All traffic to the cluster was

directed from the Cisco router to this IP address. When incoming traffic arrives at the proxy IP address,

it enters the load balancer. The load balancer distributes the incoming connections over the connected

servers in the cluster by response time. Other parameters can be chosen as distribution parameters,

but we opted for response time. After the load balancer selected a server, the connection was sent to

that server.

HiveMQ supplied the Docker containers containing the image for the cluster brokers. However, this

container was packaged for the amd-64 architecture, rendering it incompatible with the arm-64

architecture on Raspberry Pis. We kindly requested HiveMQ to check if they had an arm-64 image, but

unfortunately, they could only advise us to check out their community portal, which did not provide

any further insight on how to obtain a potential arm-64 image. This was a major dealbreaker and would

have permanently terminated our desired solution. Therefore, we decided to rebuild the supplied

amd-64 image. We managed to rebuild the image by manually unpacking it on our Ubuntu server and

changing all the dependencies in the package from amd-64 to arm-64 dependencies. I cannot stress

enough that this is not a recommended approach. The amount of time used to rebuild this image

manually is a luxury only a student may have.

After rebuilding the Docker images, we were able to deploy three HiveMQ brokers to our Kubernetes

cluster with automated respawn. This means that if the broker were to crash at any point, the

Kubernetes network would shut down the pod containing that image and automatically deploy a new

one. This approach also gave us the ability to scale the cluster easily by adding another worker node

to the cluster, consisting of a Raspberry Pi with K3s installed. We only needed to change our desired

number of brokers from three to four, and Kubernetes would deploy it on the newly installed

Raspberry Pi.

The failure of the desired cluster solution was discovered when we attempted to connect clients to

the cluster. We found out that even though each individual broker was functional, the brokers

themselves did not establish a HiveMQ cluster network to share incoming topics between each

other. This meant that we had three individual brokers and not a cluster. After extensive

troubleshooting, we discovered that one of the extensions in the rebuilt HiveMQ image was not

functioning. This extension's role was to discover and share information between the HiveMQ

brokers connected in the network, and it was vital to enabling the HiveMQ broker cluster in

Kubernetes. We suspected that the malfunction of this extension was due to our rebuild of the

original image, as we were not able to find any entries in the community forum or GitHub with the

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 52 of 150 19.05.2023

same error. As this is the only extension that HiveMQ does not share openly on GitHub, we were not

able to obtain its source code. No fix was ever found during this thesis to remedy this issue. In order

to establish a cluster and build our proof of concept, we had to rethink our solution.

4.1.1.6.2 Final Cluster

After our desired solution failed, we gained a good grasp of the proxies and load balancers

technologies. This made it a lot easier to establish a networked broker cluster manually. HiveMQ offers

a downloadable extension called HiveMQ discovery. When applied to the servers, this extension allows

us to deploy multiple servers in a network, and they will start sharing their content with each other by

only supplying the IP address of the individual servers. Our final solution did not contain any

Kubernetes, and the broker hosted was a Java virtual machine that hosted a copy of our factory broker

with an added cluster and discovery extension from HiveMQ. The disadvantage of this solution was

that, in order to scale the network, the Java virtual machine had to be downloaded to the Raspberry

Pi and manually added to the Raspberry's services and boot configuration. Since we no longer used the

K3s software, we had to obtain new proxy and load balancer software. We chose the HAProxy software

since it was an open-source software with minimal configuration needed to host the proxy and load

balancer. We used the exact same setup for the proxy and load balancer as our desired solution but

now with HAproxy instead of Traefik.

Figure 25 Final broker cluster implementation using HiveMQ extensions.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 53 of 150 19.05.2023

4.1.1.6.3 Control

We wanted to avoid the necessity of configuring each worker node individually. As the cluster grows,

the time to configure the worker nodes individually will increase exponentially if not automated.

Therefore we have employed Ansible software, a tool used for managing

and configuring systems, applications and networks over SSH. This tool

is agentless, meaning it does not require any software installed on the

remote system.

4.1.1.6.4 Hosting services

During our preliminary research, we decided to use Azure hosting

services to host our clustered cloud-broker. During the

implementation phase of the cluster-broker in the cloud, financial

costs related to hosting services grew dramatically due to the

unforeseen and partly hidden costs at Azure hosting. It was therefore

decided to build our own cluster for cloud broker implementation.

It was necessary to drop the Ubuntu server OS in the cluster

implementation for a Raspbian lite OS which uses fewer resources to

build and run a raspberry pi cluster.

4.1.1.6.5 Raspberry PI Cluster

In the initial phase of our Raspberry Pi cluster build, one of the

issues that started to arise was the heat. Each of the individual Pis

would start reducing their performance due to heat on the boards.

It was then decided to build a framework to mount all the Raspberry

Pis and add fans to reduce the heat. We designed our own cluster frame and mounts in Fusion360

and 3D printed the frame and brackets. A small perforated board was used to solder eight XHP

connectors together to easily connect all the fans to one power source. After the Pis were mounted,

no performance drop caused by excessive heat was detected.

Figure 27 The final build of our raspberry pi
cluster

Figure 26 Overview from Cluster dashboard that
shows 3 connected servers in the cluster.

Figure 28 Cluster installed at Hvl site
Figure 29 CAD model in Fusion360

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 54 of 150 19.05.2023

4.1.2 Broker security

The Cluster employs four layers of security. The first layer checks if the

connecting IP address is authorized. The connection will be immediately

dropped if the inbound traffic IP address is not included in the access list on

the router.

The second layer of security is encountered after the connection has passed

the access list. Only a handful of routes are available from the router. These

routes are statically routed to ensure that no other routes are accessible in

the network for inbound and outbound traffic through the router. The same

can also be effectively achieved with a firewall.

The third layer comes into play after the connection is routed to the Cluster

on a static port. Here, the inbound connector must establish a two-way TLS connection with the

receiving server. If the connector fails to establish this connection, the connection will be terminated.

The last layer restricts what topics a connected user can access after connecting to the broker and is

detailed in the Access Control chapter.

4.1.2.1 Access control

When running an extensive network, it's essential to protect

the network from unwanted and unintentional user abuse.

Situations where one client in the network unintentionally

subscribes to all topics in a network with millions of topics

will impact the network's performance. The possibility to

publish to any topic should also be restricted to prevent

inconsistent data or intended manipulation from hosts on

the inside publishing to topics owned by others.

Therefore, it's essential to employ some sort of access

control mechanism in the network to control the various

connecting clients' ability to subscribe and publish topics.

HiveMQ has a pre-built extension called enterprise security

extension. This extension addresses the issue of access

control in the system.

After establishing the TLS connection when connecting to a

local or cloud broker, the client must submit a username and

password. The authentication manager will first check the

username and password to verify if the client is allowed access

to the broker. If the client is authenticated, the client is passed

on to the Authorization manager. This manager will give the

client access to the topics it can view based on the user's role.

Figure 30 Security layers [1]

Figure 31 Access control structure

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 55 of 150 19.05.2023

Since the security extension is deployed on all the

servers in the network, a centralized user database is

needed. We chose to use a PostgreSQL database as the

centralized database.

The HiveMQ security extension documentation details

how the SQL database should be structured in order to

host the user authentication and authorization

database. Roles can be set up in the database to make

user permissions easier to maintain. These roles are

then assigned to the different users by relations in the

database. This database is hosted on the cluster under

a separate proxy such that it is its own network,

detailed as auth server in the network section.

4.1.3 Network

In any broker solution, the first step is to ensure a viable network solution. We chose to go for a Cisco

network solution since it’s a widely adopted networking system and partly due to Cisco hardware being

readily available. During the thesis, only one global IP address was made available for the project by

the IT department at Hvl, so it became necessary to segment the factory broker and cluster broker net

to simulate different locations. One of our objectives during the deployment was to force ourselves to

utilize remote connections to build and maintain the servers without being at the site to learn how to

work in a truly remote environment.

4.1.3.1 Cisco network

Building advanced network solutions with Cisco without using prebuilt configs can lead to long

deployment periods and the implementation of unwanted networking relations. In order to mitigate

this and to ensure future reconfigurations are getting deployed without any breakage, we build our

entire Cisco network solution in Netacad Cisco Packet Tracer. This allows us to test and prove new

changes before any deployment to ensure viability.

Figure 32 SQL database structure [1]

Figure 33 Port achitecture at HVL server park

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 56 of 150 19.05.2023

Our cisco network contains one Cisco router and

one Cisco switch. The router's IP is dynamically

allocated from HVL’s router using DHCP. It is our

global IP entry point to the internet. Our

connection to the internet has no preceding

port-blocks or firewalls, and is as such an open

connection. Meaning in practice that the entire

world can access our router, including botnets

and malicious actors. To address this, we

implemented a whitelist Access-list on the

router that filters all inbound traffic and only

accepts traffic from the whitelisted IP addresses.

The factory broker is allocated the static IP of

192.168.1.100, and the cluster broker entry

point has 192.168.10.200. This was done to

manually route traffic from the router to the server through static port forwarding on the router.

The deployed router had only two physical ethernet ports. For us to employ three networks on this

port, one-to-one links had to be omitted and replaced by a method called trunking. It enables us to

convey multiple communications links on one connection. Further, the Cisco router employs one

software interface per connected physical ethernet port, but these can be further divided into sub-

interfaces. Consequently, the interface going to the local switch was split into three different interfaces

acting as particular subnets gateway.

4.1.3.2 Hostname DNS

Using hostname/DNS is essential to not statically commit every device on the network to a single IP

address. When a Hostname is used, we can control what IP address is mapped to which hostname,

meaning if the IP address were to change, no change in the hostname would occur. During our bachelor

thesis, we employed DNS services from a company called No-Ip at https://www.noip.com/.

We initially configured our first server with all devices, including TLS certificates bound to a single IP

address. This was a major misstep. In the deployment of our first server, we moved the server location

and subsequently changed the server’s global IP address. Due to this IP change, we were forced to

redo a lot of the code of the connected devices in the network and all TLS keys were voided. After this

incident, we adopted the hostname unifiednamespace.sytes.net for our server to mitigate this error.

4.1.3.3 Port allocations

Since both cluster and factory were hosted on the same network, multiple listeners were at the same

port, which could have interfered with each other, resulting in clients connecting to the wrong brokers.

Therefore, it was necessary to further split the cluster broker and factory broker by ports. We used

static routing to separate the different listeners. In practice, if you were to access the dashboard of the

cluster, it would be https://unifiednamespace.sytes.net:443/, and if you were to enter the factory

dashboard, you would have to change the port to

 https://unifiednamespace.sytes.net:4443/. The idea was to employ DNS SRV technology to make the

port differences more human-readable. The DNS SRV is a DNS service that holds an IP address and a

port. e.g. https://unifiednamespace.sytes.net:4443/ would become

Figure 34 Hvl network simulated in Packet Tracer

https://unifiednamespace.sytes.net/
https://unifiednamespace.sytes.net:4443/
https://unifiednamespace.sytes.net:4443/

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 57 of 150 19.05.2023

https://factorydashboard.unifiednamespace.sytes.net and the cluster would become

http://clusterdashboard.unifiednamespace.sytes.net. To set up a DNS SRV service at our DNS

provider No-ip, we only needed to insert our wanted subdomain of our DNS hostname

unifiednamespace.sytes.net with a port number and subdomain name. Accessing this service would

cost our project an additional 29.90$, and we decided to keep the ports in the URL and not employ

the DNS SRV service.

4.1.3.3.1 TCP listeners

The clients can connect to the MQTT broker simply by using the IP address of the network entry point.

The broker holds TCP listeners for the induvial ports such that the broker is listening for connections

from potential clients. These listeners can be limited to a range of IP addresses or allow all addresses

by setting wildcard IP address 0.0.0.0 and desired port.

4.1.4 Server attacks - challenges of unsecured connections.

This Section describes the server attacks that occurred during our

bachelor thesis and is a digression from the report. However, we wanted

to add it as an interesting read. On the 26th of January, an intrusion was

detected on our hiveMQ broker on the unsecure channel 1883. No IP

address was logged. The unknown intrusion subscribed to the topic

wildcard # to access all topics. It has been determined that this was just a

probe of the system to assess the server as any potential attack target. No

additional information was logged due to the server only logging failed

connection attempts. This has since been addressed and fixed.

This intrusion led to a wider deep dive into our server’s authentication

logs. It was discovered that between January 22 and January 26, a total

of 26023 failed login attempts on the server were detected. 71235

different user and password combinations were tried to primarily access

the SSH and CRON port.

After some analysis of the authentication data logs, it was determined

that no particular country of origin could be asserted. Applying

whois/whoip on a small set of entries concluded that these attacks

originate from no specific country. We found the highest concentration from India, Singapore, Israel,

China, Korea, United States, Switzerland, Malaysia and Taiwan. Most of these were dictionary attacks,

where the attacker tried different combinations of usernames and passwords until they got

disconnected due to too many failed attempts. We believe these attacks are part of automated

botnets, randomly scourging through the WAN for entry points.

In the initial days of this project, an informal agreement between us that we would use 20-digit

randomized passwords for potential logins connected to WAN was formalized. These attacks

legitimacies that decision and reflect that a continued security policy must be maintained.

Figure 35 Unknown Foreign Client

Figure 36 Intruder client subscription

https://factorydashboard.unifiednamespace.sytes.net/
http://clusterdashboard.unifiednamespace.sytes.net/

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 58 of 150 19.05.2023

4.2 Edge devices
This section covers Edge of Network (EON) devices positioned at a network's outermost perimeter,

typically where data originates. Examples of edge devices include Programmable Logic Controllers

(PLCs), smart sensors, or actuators, all of which have a network connection and the capability to

publish data to and subscribe from the broker architecture. Some devices are directly compatible with

MQTT, allowing them to be connected directly to the architecture. However, other devices, often

referred to as legacy devices, lack this built-in capability and require intermediary devices, known as

gateways, which are on the same network and publish and subscribe to data on behalf of the legacy

device. An important consideration when these EON devices communicate data is the context specified

in the producer to ensure consistency and make it easier for subscribing systems to make sense of the

information. Information structuring, often called modeling and added attributes like ranges and

engineering units, often called metadata, is a valuable addition to the variables which greatly enhance

the data. The following chapter will explore several solutions to showcase the possibilities of

connecting data sources to UNS.

4.2.1 Siemens S7-1500 as a data source/producer

We require a device that produces and consumes data to generate

information sent or received in the UNS architecture. In order to create

a source of information, we have set up a Siemens S7-1500 PLC, an edge

device in the UNS architecture. The PLC connects to the physical

process, which, in our case, is a lab rig for controlling the water level in

a tank. Using the rig, we are simulating a production environment

where the information about the real-time status of the process is

collected and processed, and control commands and setpoints are sent

to actuators to manipulate the process.

The process is small, and it is therefore easy to keep track of the

variables that exist in the namespace. In this isolated case, it only

includes our PLC. Since the thesis aims to connect all edge devices in an

overall system architecture to make the information available in a

common namespace, it is essential to structure information in a way

that makes it interpretable and which scales when the system is

expanded. Object Oriented Programming (OOP) is a

widely used method for structuring and encapsulating

logic belonging to a single entity. Objects are often

defined based on the physical or abstract reality having

functions and attributes necessary to control or gain

real-time status of the object. All management occurs

through a defined interface that gives the user limited

access to manipulate the object. Internal variables are

protected, and unnecessary details are abstracted

away from the user by hiding them inside the function

block. OOP makes it easy to structure variable names to

avoid naming clashes and enables unit testing to

guarantee that subfunctions work as intended.

Figure 37 Lab waterrig simulator at HVL

Figure 38 PLC object for controlling the waterrig simulator

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 59 of 150 19.05.2023

Based on the process, we have defined four main objects encapsulating the logic. fbAnalogInput,

fbMotor, and fbValve are derived from the physical process. These objects have attributes and

functions that should be intuitive for most, even those with no programming background. Functions

such as High, Low, Block, and Suppress are all defined in the NORSOK standard. “The NORSOK

standards are developed by the Norwegian petroleum industry to ensure adequate safety, value adding

and cost effectiveness for petroleum industry developments and operations.” [31, 32]. The fourth

object fbPID is an abstract object containing the algorithm that calculates the control effort based on

the error between the process value and the desired setpoint. It also follows the same convention

having the same attributes as the NORSOK standard.

The most commonly used functions defined in the NORSOK standard used in the project are:

• High: Switch equipment to high, running, open position or feedback indicating the same states

• Low: Switch equipment to low, stopped, closed position or feedback indicating the same states

• Auto: The object is controlled by logic in the programmable controller

• Manual: The object is controlled by commands from Hmi or other network interfaces

• Suppress: Object alarms will not be visible to the operator. No actions triggered by alarms will be

executed.

• Block: Safeguarding of the object is disabled. Alarm annotation is not affected.

• Safeguard: Actions to prevent the object from entering a dangerous state or causing harm.

• Lock: The object state is changed permanently. New command required to change the object state

• Force: Object state is changed as long as force input is high, then returns to the previous state

A level transmitter (LT_01) mounted above the reservoir measures the level inside

the control tank. An action alarm for high-high level will interlock the pump to

avoid further increasing the water level. Several high and low limits will trigger

additional alarms with no actions. Alarms can be suppressed to disable the

safeguarding caused by HH alarm.

A PID controller (LIC_01) calculates the control signal to

maintain desired water level. Control algorithm parameters are provided by the

network interface. When operating in automatic mode, the pump's control signal

is calculated based on the error between the measured water level and an

AutomaticSetpoint. A fixed ManualSetpoint provided through the network

interface will determine the desired pump speed when in manual mode. Setpoint

tracking has been implemented to force the inactive setpoint to follow so that

bumpless transfer is achieved when switching operating modes. A low-level

proximity switch in the reservoir will interlock the controller in the low state to

prevent the pump from running dry. The controller is locked in manual mode when

interlocked. Controller alarms can be suppressed, and interlocking can be blocked

by object commands.

Figure 39 fbAnalog function block

Figure 40 fbPID finction block

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 60 of 150 19.05.2023

The pump (PA_01) will be switched to automatic mode

when the controller transitions to automatic mode.

Speed reference is received from the controller when

operating in automatic mode. A fixed speed can be set

through the network interface in manual mode. The

motor is interlocked by a high-high water level alarm in

the control tank and by the low-level proximity switch in

the reservoir. The block has inputs for motor speed,

current, and voltage which are evaluated based on alarm

conditions and transferred to the control interface to

provide real-time status of the pump. Alarms can be

suppressed, and interlockings can be blocked. The

outputs from the block are connected to the PLC

hardware for controlling the pump.

A valve to adjust the pump resistance can only be controlled in manual mode. State and feedback

alarms are evaluated, alarms can be suppressed, and are transferred to the network interface. The

block has functionality for interlocking and blocking, which is not in use in our implementation.

The interface of these objects is separated into two parts. The object will respond to commands from

both interfaces based on the mode of operation. It has one part that is exposed as inputs and outputs

of the block. These attributes are connected logically in the program for automatic control by the PLC.

The other part of the interface is exposed as a nested data structure grouping different attributes

based on the type of function. It is for manual control of the object and is available over the network

for operation by Human Machine Interface (HMI) terminals or through an overarching SCADA system,

possibly connected through a UNS architecture. Grouping inside the structures simplifies integrations

for developers because it adds context to the data. Both parts of the interface can change between

Automatic or Manual mode.

Figure 43 Object internal interface

Figure 41 fbMotor function block

Figure 42 Object network interface

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 61 of 150 19.05.2023

Figure 44 Expanded network interface of fbMotor object

The expanded view of a motor object's variables demonstrates how variables are organized into a

nested structure for simplified grouping based on function type. The same structure can be

implemented on SCADA objects described later for simplified interoperability and reusability. Four

standard groups defined for all objects are:

• Operations contain commands that can be sent to the object to make it change state or

operate differently.

• Status is feedback from the object revealing the real-time state, often displayed on SCADA

systems.

• Parameters enable the same class to be instantiated several times with instance-specific

configurations like a range or alarm limit specific to the actual object implemented.

• Alarms triggered by the object can be used to execute a preventive action inside the PLC logic

or relayed to SCADA systems for operator notification.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 62 of 150 19.05.2023

4.2.2 OPC UA server

Not all devices are compatible with MQTT but offers other alternatives for communication. One of the

most used standards to exchange industrial data between devices is OPC UA. Most vendors offer OPC

UA servers and clients as an integral part of the programmable controllers or as separate add-on

interface modules. It enables system designers to expose internal PLC variables to any OPC UA

compatible device connected to this endpoint. In our thesis, we have chosen to set up an OPC UA

server on the Siemens S7-1500 PLC to share the PLC variables used by the control system.

Configuration of the server, setting up a certificate management system, as well as structuring of data

on the server was essential to get in place so that other systems could efficiently

access the process data through the UNS. A conceptual design will be described

here, and a more detailed implementation can be seen in the appendix.

An essential part of setting up the OPC UA server is configuring the endpoint

to which clients will connect. This involves configuring TCP/IP, Security, and

Namespaces settings. An endpoint can have several different security levels,

but a good practice is to turn off everything except for Basic256Sha256, which

is a level that most devices support.

OPC UA is based on defining Namespaces where variables are assigned

identifiers for addressing. In our setup, we have created a separate namespace called

WaterRigInterface with Id ns=4 to better organize the variables and which becomes part of the

variable addressing. The full variable address also includes a Node Id, a string identifier or

sequentially assigned integer by the PLC, and is unique within each namespace. An example of a

complete node address is then: ‘ns=4,i=56’. The OPC standard prioritizes the user being online and

browsing the address space since these names are not very intuitive.

TIA portal software from Siemens can function as a certificate authority, creating and signing device

certificates. This can be quite practical, as only the TIA CA root certificate needs to be exported to

MQTT brokers. Then all devices, such as PLCs, that have had their certificate generated and signed by

TIA portal will automatically be trusted by the brokers with no additional requirements.

Figure 46 TIA portal functioning as a certificate authority

OPC UA is the solution in many industrial plants being regularly used for device-to-device and SCADA

communication, thereby having many followers. But it has some weaknesses in that it is a

complicated and comprehensive standard, consequently not being optimal for the UNS architectures.

Additionally, it is not compatible with the MQTT protocol. In the following chapters, we will explore

possible solutions to achieve the unified architecture we seek.

Figure 45 OPC UA server endpoint

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 63 of 150 19.05.2023

4.2.3 MQTT regular communication

Directly publishing data from the device which produced it is the desired method for achieving a

decoupled system architecture. Newer PLCs from Siemens include MQTT drivers, and distributed

communication libraries can be added to the project for handling the MQTT broker connection. The

library includes a client as a Function Block (FB) for publishing or subscribing to regular MQTT

messages.

4.2.3.1 Communication principle

The client is based on a User Defined datatype (UDT) that includes fields for the various MQTT

parameters determining the session characteristics. Messages can be published or subscribed to by

executing the client FB after configuring the UDT and by setting the block input parameters

accordingly. TLS can be selected using the certificates imported into the TIA portal certificate store.

4.2.3.2 Structure of information

MQTT is payload agonistic, having no restrictions on the content

inside messages. Depending on the type of client FB used, it is

possible to provide the message content as either a string or a byte

array, meaning that the content must be serialized. Functions to

convert data types into strings are included in the standard library.

Alternatively, project function blocks can be created for serialization

specific to the data destined to be transmitted. The encoding of messages is not optimal and unsuited

for sending extensive amounts of data. Still, it could be an alternative for sending or receiving a string

containing a fixed set of monitored values or less frequent commands between the PLC and a selected

communication partner.

To demonstrate the possibility of sending MQTT messages directly from the PLC, we have serialized

the water level value into four UTF bytes and placed them into a pre-made byte array in the UDT used

by the MQTT client. A periodic task in the PLC operating system triggers the client Function Block every

1000ms, which then transmits the message. The message

{"waterlevel":XXXX,"units":"m"} is then transmitted and received by

the Engine module described in further detail later in the report. The

value is then available on the SCADA system host and is displayed on

the HMI screen.

Figure 49 Signal flow of transmitting MQTT messages from Siemens PLC to UNS

Figure 48 Waterlevel received by Ignition

Figure 47 Part of Siemens Mqtt client UDT

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 64 of 150 19.05.2023

4.2.4 OPC UA PubSub

OPC UA is not a protocol but a framework of protocols such as MQTT which enables communication

between devices. PubSub with the option of MQTT as the transport protocol is an option in the OPC

UA specification to send messages only on change and with a one-to-many principle. Other options

like UDP/IP also exist. The communications library includes FBs for publishing or subscribing messages

in different encodings to topics in the UNS architecture. It is thus possible to send data using the OPC

UA PubSub framework without intermediary gateways which are explained in the next chapter.

4.2.4.1 Communication principle

The PubSub library is based on UDTs for storing connection parameters and

handling variables published or subscribed over the MQTT architecture. Data

transmitted is divided into WriterGroups, which in turn are divided into

DataSetWriters with associated PublishedDataSets. Executing the

LOpcUa_PubMqttxxxx function block included in the communication library

will publish the variables in the UDT specified through the input to the FB.

Transmission can be either periodically or based on an event trigger

programmed in the PLC's logic.

4.2.4.2 Structure of information

Variables must be written to and read out of DataSetFields in the UDTs that the PubSub library

utilizes. Only basic data types like boolean, int, real, etc., can be assigned to Datafields.

Consequently, complex structures must be flattened into 1D lists, losing part of the context, before

publishing the entire DataSetWriter. Allocating one PublishedDataSet for each complex model or

variable group like “Commands” or “Parameters” is recommended to maintain data association and

context as much as possible.

As a proof of concept, we have implemented the PubSub client function block in the Siemens PLC and

successfully connected it to the MQTT broker. We have verified that messages were sent and could

be subscribed to by any MQTT client. The structure inside the messages is structurally different and

intended to be received by another PubSub client. Still, Json is one of several possible alternatives for

encoding and makes it possible to parse out values. The procedure for sending is nearly identical to

regular MQTT, except that values do not need to be manually converted into bytes before sending.

PubSub works for communication over MQTT, but it requires cooperation and agreement between

the parties setting up both sides of the communication. This is because the context and structures

are not yet intuitive or optimized according to the UNS principle.

Figure 50 PubSub data organization [4]

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 65 of 150 19.05.2023

4.2.5 OPC UA software gateway

Before a common protocol stack has been agreed upon, one solution is to write protocol translators,

often called gateways, which receive data on an interface and then format it before sending it to the

unified namespace architecture. This solution makes it possible to design the UNS without

considerations for legacy systems that do not natively support the desired protocol stack.

Figure 51 Principal flow of information from the edge PLC to UNS

In this thesis, we have decided to write a gateway application that receives data on an OPC interface

and publishes it to UNS topics to better understand the implications of combining different

technologies. It is not comprehensive regarding information modeling, complex structures or property

bindings but should help understand problems and the various strengths and weaknesses encountered

when implementing a UNS architecture. Although it is not the recommended solution to write a

protocol translator, it has given a lot of valuable insight into the issues such a device must consider. It

should be the job of companies that can maintain such a product over time to build an application with

all the necessary functionality that a comprehensive information gateway must be able to perform and

which has the required robustness to ensure real-time communication and reliability.

We have intended to make the user interface as intuitive as possible, so configuring the application

would only require minimal training. The user interaction aims to ensure that data sent to the UNS is

structured in a recognizable format and has sufficient data context to be valuable to data consumers

that subscribe to it through topics in the UNS. The only requirement for the user should be to know

the address of the OPC server endpoint and the MQTT broker, and to possess authentication

credentials to establish a secure connection to these endpoints. After the connection is set up, most

of the configuration will be done online by browsing the server address space and navigating through

the application User Interface (UI). There shall be no requirement that the user has detailed prior

knowledge of the structure or type of data before configuration is carried out. Drag and drop is widely

used to improve the user experience and is implemented to map data between the interfaces.

Figure 52 Online configuration and drag&drop to configure information sharing in gateway.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 66 of 150 19.05.2023

Only a conceptual description of the gateway application will be given in the main part of the thesis. It

is intended to better understand a gateway's function in the overall system architecture. The source

code and a detailed description of the application structure, including design choices, have been

attached in the Appendix F for readers interested in further and more advanced details.

4.2.5.1 Overall application structure

The application is built with a service-oriented architecture enabling it to connect to any OPC UA server

or MQTT broker implementing the specifications. Roughly, it can be divided into three main categories

based on what function is to be solved by the specific classes.

The application’s fundamental functions rely on data access implemented with the classes

OpcDataAccess, MqttDataAccess, and OpcToMqttMapperService, which define methods for

establishing sessions, handling service requests inside the sessions and keeping a record of

communication statistics. Extensive use of services defined in the NetStandard.Opc.Ua and

M2MqttDotnetCore library is used to perform these functions. The classes are independent of a

graphical UI and can easily be imported as a library to a console or web application. OpcDataAccess

and MqttDataAccess are implemented with interfaces that define what functionality outside classes

can request. Internal logic for handling the communication to the remote endpoint is protected.

Replacing these classes with equal ones that implement the same interfaces is simple since all

functionality is guaranteed through the contract stated by the interfaces.

Figure 53 OPC Gateway classes used to handle data access to remote endpoints

Fundamental to the application is the handling of information passed between the

two interfaces. Data structures have been designed to organize and ensure data

context. A requirement for these structures is that data lookup and transfer must

be optimized to guarantee minimal latency and maximum capacity. Collections

implementing hash keys are preferred since they guarantee unique keys and

efficient searching. Hash lookup is on the order of 𝑂(1). The application can select

between Json, the most used encoding for data transfer, and Protobuf, a promising

encoding scheme developed by Google that guarantees a predictable data

structure and is optimized for size. Templates for InformationModels have been

designed to ensure that required data attributes are included and that the

information content is predictable to the receiver. These templates are separated

into a class library for easy maintenance and decoupling from the application logic.

A drawback of MQTT is that datatypes are not defined. OPC and PLC are dependent

on predefined types. DataType is therefore a mandatory attribute to all

InformationModels. The OPC UA definitions for data types are used as a basis.

Figure 54 Information flow
through OPC Gateway

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 67 of 150 19.05.2023

Figure 55 MVVM principle

The third most important feature is the graphical user interface which is based on MVVM architecture.

MVVM emphasizes decoupling between Views, which is what the user sees on the monitor, and the

code behind it, which is implemented in classes named ViewModels. The View itself performs no logic.

All Views have a corresponding ViewModel for organizing the code behind them. The advantage of

handling all the logic in the code behind is that you have complete control and can achieve exactly

what is needed. An example is the TreeView data structure described in detail in the appendix used to

browse the OPC server address space. It uses lazy loading to reduce OPC server communication and

handles node storage, hierarchy, and relationships. Logic not specific to a single View, for instance data

access is implemented in classes called Models. Models can be placed in a library and reused in various

applications. The advantage of using MVVM design principles is that the UI can be designed based on

desired functionality, and the logic behind it is modularized for easy maintenance or modifications. All

graphical controls are assigned names unique on the specific View and later bound to properties

defined on the ViewModel.

4.2.5.2 Restrictions imposed by the gateway

The organization of the data and its presentation are the biggest challenges experienced by system

integrators. Data published to the namespace are often unknown to the consumers before arrival from

the UNS. Possibilities exist to create algorithms that search through messages for information. Still, the

disadvantage is the computational cost lowering the upper limit of variables, often called tags, possible

to pass through the network, resulting in reduced scalability. Therefore, much of the responsibility is

on data producers. The gateway is designed with information modeling restrictions and standardized

information attributes to minimize integration time. The same principles of a recognizable frame

format as on protocol messages like IP packets are also enforced on gateway-published data.

4.2.5.3 Adding context

Context to the information is partially solved with a topic structure where the prefix is determined by

the node which produced the information, e.g. UNS/Hvl/Waterrig/. The rest of the topic is up to the

integrator to specify. One recommended strategy is that the hierarchy used to organize data on the

PLC is re-used, e.g. UNS/Hvl/Waterrig/LT_01/Status/Level is used for a parameter belonging to level

controller LIC_01. With such a structure, it is clear where the information originated. It can also be

expanded to an infinite number of nodes without the risk of redesigning the topic structure because

of naming collisions.

Figure 56 Topic name is partially fixed and partially configured by the integrator

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 68 of 150 19.05.2023

The other important part of the data context is the metadata transmitted with the changing values.

Optimally, there would be a common agreement on which attributes should accompany data so that

other systems can effectively utilize the information. The attached metadata simplifies external

integration and can enable automatic scaling or parameter limitations. We have tried to exemplify how

it can be solved by implementing fixed information models with attributes having clear meanings and

fixed names. It is in line with the OPC Foundation,

which has defined companion specifications [33] that,

for example, define how robotics devices should

package and transmit data. The companion models can

easily be added to the template system on which the

gateway is built. When configuring a new mapping, the

user is forced to choose among one of the possible

information models, partially determined by the node

data type.

4.2.5.4 Secure communication

It has become the norm that devices only offer encrypted and authenticated endpoints, even on local

networks, which can be significant in size as the number of connected devices increases. The de facto

standard in use today is X509 certificates. This invariable requirement of secure communication has

also forced us to implement logic for handling certificates used for authentication and encryption.

Well-tested libraries from Microsoft are used to simplify integration and to avoid beginner mistakes

that could compromise the certificates and thereby the application security. To further improve

security, the OPC library is designed to be easily integrated with the Windows certificate store. The

advantage is that the storage of certificates and keys is protected against attacks executed through

runtime memory on the host since the library is designed to prevent those kinds of leaks.

Alternatives to choose between different authentication credentials and types of certificates are

included to enable the gateway to be connected to a wide range of device endpoints. The security

against each endpoint is independent of the other. It ensures that if the OPC or MQTT certificates are

compromised, only the connection to this endpoint will be affected.

Figure 58 OPC and MQTT security alternatives selected in gateway application

Figure 57 OPC Gateway restricted information models

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 69 of 150 19.05.2023

4.2.5.5 Robustness

Unforeseen events can occur when a system is in operation. Power outages can cause the host

device to restart, or the connections that the gateway maintains to the remote endpoints can be

faulted due to network issues or server restarts. It is critical that the online state is restored after

errors have disappeared without requiring actions from the system administrator.

The gateway is configured with the option to start at Windows startup. All configurations executed

while online are continuously stored in the offline configuration file in addition to the runtime

memory. Plan or unforeseen application or host reboot will read from this file and thus continue with

the previous setup.

The connections to the endpoints are stateful and monitored to detect network issues. An event will

fire to notify if the connection is malfunctioning and triggers a re-connect cycle that will continuously

attempt to re-connect with a periodic interval. The previous session will be re-establish after a

successful re-connection to either of the two endpoints with all the previous parameters still active.

4.2.5.6 Configuration Overview

It is possible to see a complete list of configured mappings by navigating to the Monitor view. The list

can be searched based on the Display name, Node Id, or Topic name to identify already configured

items. Existing configured items can be edited or deleted from the list of items using the buttons

below. Finally, the complete list can be exported as a .csv file for easy distribution to external

partners that will interface with the system.

Figure 59 Overview of currently configured mappings in gateway application

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 70 of 150 19.05.2023

4.2.6 Ignition Gateway

After gaining experience in building a gateway from scratch, it was time to explore the recommended

solution: to use already existing technology on the market. Not all products have drivers that support

MQTT transmission protocol, and not all products are open to the public without expensive licensing

costs. Ignition is a SCADA alternative developed by a robust team that continuously maintains the

product and which has put effort into integrating MQTT via the SparkplugB specification. It has the

option of a 2-hour free trial which can be restarted an unlimited number of times. The trial provides

access to all of Ignition's functionality.

4.2.6.1 SparkplugB

MQTT was initially developed as the backbone for communication in SCADA systems deployed in

unreliable or constrained network environments. One of the success criteria was the freedom to send

anything anywhere and the possibility of device state management. The downside is the lack of

standardization when different systems are to be connected, which has demanded extensive manual

integrations. SparkplugB tries to overcome this shortcoming by limiting the freedom of topic names

and payload content and by using the underlying functions of MQTT to keep track of the nodes and

devices online state. Simply put, MQTT defines how the transport of packages should take place, and

Sparkplug defines a set of rules for how information should be organized. SparkplugB adds no new

functionality but limits the freedom that exists within MQTT so that devices that follow the

specification can be more easily integrated. Not everyone follows the specification, but data can be

exchanged much more efficiently for those who do.

4.2.6.2 Cirrus link modules

Cirrus Link is an organization focused on developing Ignition modules to add SparkplugB encoded

messages over MQTT as a data source into Ignition. There are three different modules of interest.

The Transmission module is designed to publish variables, known as tags, organized into tag sets to a

device topic in the UNS, e.g. spBv1.0/UNS/…/PLC_2. The source of the tags can be any local connection

configured inside the Ignition gateway. Our project fetches data from the OPC connection, making it

available to anyone with UNS access via the MQTT broker cluster.

The second module of interest is Engine, an MQTT subscriber, subscribing to the Transmitter published

tag sets, making them available as data sources on the SCADA system's host. It also includes

possibilities for publishing commands to any MQTT topic.

Distributor is a module that is an MQTT broker. Suppose we had not set up our own data broker. In

that case, the module is an alternative made by the same manufacturer and thus integrates specifically

to support the other Cirrus link SparkplugB modules.

Figure 60 Interaction between Cirrus Link Modules

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 71 of 150 19.05.2023

4.2.6.3 OPC connection

The connection to the OPC server endpoint is configured in the Ignition gateway, including the mutual

import of certificates into Ignition and the PLC's OPC server. It is then possible to go online to choose

which tags are to be added to the various tag sets that are distributed using the Transmitter module.

4.2.6.4 TAG sets

Tags (variables) are organized into tag sets. Information can be separated into different tag sets to

enable different authorization levels for specific tag groups. Drag and drop during online browsing can

add anything from a single tag to the complete device into published tag sets. The possibility of defining

User Defined Datatypes (UDTs) and adding metadata to tags further improves the context before

publishing to UNS. Ideally, all required context should be added before publishing to be faithful to the

single source of truth from the edge principle.

Figure 61 Tag organization, access control, and distribution of tag sets inside Ignition

4.2.6.5 User Defined Datatypes

Ideally, entire data structures should be automatically mapped to objects when configuring new tag

sets. Ignition is continuously developing support for partner devices. Unfortunately, Siemens devices

are not supported at the time of writing this thesis. A workaround is to define the UDTs manually. Then

any object matching the same attributes can be mapped to the blueprint, and a single reference is

sufficient. It is not a major drawback since most objects in PLCs and SCADA systems often follow a

predefined template to efficiently be reused in new projects resulting in a small number of object

classes. These same templates are implemented as UDTs in the Ignition gateway.

An advantage of the SparkplugB specification is the option to distribute UDT templates as part of the

birth message. Only the transmitter module is required to define UDTs. Based on the birth message,

the UDTs will automatically be generated in an Engine module. This is an important step towards

making information plug-and-play via online browsing.

4.2.6.6 Single source of truth

Often, variables are created to parameterize objects defined in edge devices. For

example, the AnalogValue object has a parameter PYHR which is the upper limit that

the instantiated value can take, enabling the same object to be utilized for different

measurements having different ranges. There is value in sending such parameters as

metadata associated with the analog value itself, enabling scaling or limiting values

to be automatic in the system that utilizes them. Ignition designer has standardized

properties when configuring new tags, which are assigned and included when the

data is distributed. In addition, custom properties can be added as needed. A

possibility is to add bindings that automatically update metadata when it changes in

Figure 62 Tag metadata

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 72 of 150 19.05.2023

the edge device where it originates. In our project, we have created this binding between PYHR/PYLR

and the Engineering Low/High Limit for the Level variable.

4.2.6.7 Lowering integration time

It is common to define objects used on the HMI based on the same UDTs that store data in the PLC

and are used by the Transmitter module when transferring objects. Defining these objects requires an

initial effort, but then new objects of the same type can be easily added just by addressing the UDT

root. All other references are derived from the root.

Ignition simplifies the process even further by enabling

drag-and-drop of tags directly from the Engine tag

provider onto the Hmi canvas. The Tag provider is

dynamically addressed inside objects to enable tags

from different providers or to simplify the exchange of

the default provider.

4.2.6.8 Update frequencies

There is a compromise between rapidly updating changing variables and the use of bandwidth in a

network. A SCADA system is traditionally intended to have an overall overview of the system with the

possibility of sending commands or updated setpoints to the control devices that directly interface the

physical process. It is not directly responsible for executing these commands on the physical hardware.

Therefore, the real-time for SCADA is different than for a PLC, which can require sensors' and actuators'

reaction times in the millisecond range. Consequently, there are options for how often a SCADA tag

provider will update the values to balance the trade of.

Some of the parameters that determine update intervals are:

• PLCs are configured with minimum update interval to ensure the CPU has enough time to

process between different requests. All changed monitored items will be updated if polled at

this minimum interval.

• Clients subscribing to embedded PLC OPC servers are configured with a minimum poll interval.

• The transmitter module has the option to wait for a configured delay after the first tag is

changed before all changed tags are transmitted in a combined SparkplugB message.

• Transmitting the entire PLC data set in one data block can be optimized since the time required

to transmit more data can be less than transferring an increased number of messages. Reading

the values of the message is efficiently done with pointers to fields inside this data block.

• Nested structure on Ignition pages is a penalty hit but is often required to achieve code

reusability and maintainability.

4.2.6.9 Access control in Ignition

Restrictions should be placed on who has access to data published to the UNS. Unintended or malicious

modification of tags could result in undesired or dangerous process states. Authorization is also

configured inside the different Ignition modules to limit access only to authorized users. Tags can be

separated into different tag sets to better control who has access to which tags. Each tag set has

separate read, write, or read-write levels. The option to block all write operations in either the

Transmitter, Engine, or Gateway can be an efficient method to prevent a client who should only be

able to observe real-time status from writing new commands. In addition, read-write access can be

configured on a tag-by-tag basis if there is a need for even finer-grained control.

Figure 63 Indirect Tag addressing in Ignition

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 73 of 150 19.05.2023

4.2.6.10 Redundancy in Ignition

Component malfunction must be expected. A common method to guarantee the system's availability

is having identical components in parallel, where a backup is ready to take over if the primary

component fails. Two Ignition gateways can therefore be integrated into the same network with built-

in functionality for fault monitoring and switchover. A prerequisite is that both gateways are

configured identically. This has not been tried due to time limitations.

While redundancy on the local network is achieved with duplicated gateways, redundancy on the route

between hosts is ensured with a robust network of brokers. One method is to connect to our

transparent cluster of redundant brokers.

Alternatively, Ignition has the option of configuring

connections to several brokers. Data is only

published to the preferred broker, but an

alternative route to our free HiveMQ cloud broker

has been configured if the cluster should go down.

It is possible to publish simultaneously to both

brokers, which may be relevant if certain clients do

not have access to the main cluster because of

access restrictions.

Several SCADA systems can be connected to the same architecture. It may be desirable for reasons

such as the possibility to monitor and manipulate from different locations and not just for redundancy

reasons. Among other things, it is common to have a SCADA placed locally to guarantee the possibility

of controlling the system even if the link to the internet is down.

Figure 64 Ignition architecture for redundant systems

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 74 of 150 19.05.2023

4.2.7 Design of UNS IIoT MQTT client

As a proof of concept, we wished to produce a hardware client to use in our MQTT network. Prebuilds

Single board computers (SBCs) combined with off-the-shelf sensors would be cheaper than building

simple standalone sensor arrays. However, we wanted to use the opportunity to explore PCB

manufacturing in this thesis. During the time of the thesis, we manufactured 2 PCBs, one prototype

and a final design. The final design successfully achieved connection to the UNS network with TLS and

published its sensor update to the MQTT network. The design, decision-making and manufacture of

these PCBs are thoroughly described in Appendix C.

4.2.7.1 Circuit design criteria’s

The criteria set for our PCB was a hardware

platform that could deploy sensors over the

communication protocol I2C. The I2C protocol is

intended to allow multiple digital ICs to

communicate with a controller over two lines.

The client must also be able to include the TLS

handshakes and be a plug and play unit in LAN

networks inside UNS. In order to be as versatile as

possible, multiple power connections were

added, with the added ability of power over

ethernet. The PCB should be able to utilize

ethernet and Wifi as potential communication

bearers for the MQTT client. In order to control

these various systems, a microcontroller (MCU)

unit is required. This MCU should be easily

programmed, and therefore a USB programmer

should be added to the design to interface with the onboard microcontroller to enable the uploading

of firmware without additional external programming hardware.

After the criteria’s for the PCB were set, we started the PCB

design process. The circuit design is primarily built from

compiling the datasheets of the different modules on the

PCB with some added inspiration from reference designs:

[34-36] Further details with regards to component choices,

reasoning for deviations from datasheets, solder

techniques, layer-stackup, design philosophy and testing of

the prototype can be found in appendix C.

One of the greatest challenges after conducting datasheet

research was manually tracing each PCB. This proved to be

a valuable experience, providing deep insights into the

intricate process of PCB assembly. The PCB consisted of four

layers, with the two inner layers serving as ground (GND)

and interconnected by vias (connectors) to minimize

potential electromagnetic interference (EMI), as explained

in greater detail in Appendix C.
Figure 66 IIoT prototype trace, layer 1 red, layer 2-3 green,
layer 4 blue

Figure 65 IIoT prototype left. IIoT final design right.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 75 of 150 19.05.2023

The final design was considered successful, as it was able to establish

a connection to the MQTT cluster with TLS, despite a minor issue with

the ethernet IC that caused a malfunction in the ethernet connector.

However, the WIFI connection remained functional. We suspect that

the malfunction occurred due to our manual removal of the LAN IC

from the prototype PCB. The repeated heating of the IC to

temperatures exceeding 300 degrees Celsius may have caused an

internal failure within the LAN IC. Given additional time for

investigation, we would have replaced the LAN IC with a new one to

determine if it could resolve the issue.

Figure 67 IIoT final design Trace, Red layer1,
Green layer 2-3, Blue layer 4

Figure 68 Testing of final IIoT design

Figure 69 IIoT final design circuit schematic

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 76 of 150 19.05.2023

4.3 Data consumers
Data consumers are devices that utilize data from the namespace to relay real-time state information

to operators or perform tasks such as system performance analysis based on historical data collected

during runtime. A prerequisite for consumer systems is gaining access to the information published by

the data producers. Examples of data consumers include SCADA systems for monitoring and control,

databases for long-term storage, dashboards for remote monitoring without system control

capabilities, and analytic tools such as ML and AI. In this thesis, we have chosen to use Ignition software

as our SCADA system. This chapter will start by describing how we have used Ignition as a SCADA host.

4.3.1 HVL Water rig SCADA

To exemplify data sharing over UNS, we have created a SCADA Hmi that subscribes to data published

over MQTT from PLC_2, which controls the water rig simulator at HVL. The same PLC objects for an

AnalogValue, Motor, Valve and PID controller have been defined in Ignition. New instances of these

objects are added by dragging a new tag onto the page in Ignition Designer. The Ignition gateway

resides on the same local network as PLC_2, publishing the tag set to the UNS. The SCADA host only

requires an internet connection to the public address of the MQTT broker and can be situated

anywhere. Real-time process status is displayed, and there is the option to send remote commands to

the PLC. This setup has also been used for performance testing in chapter 5.

Figure 70 HMI representation of HVL Water rig via Ignition

4.3.2 Object template definitions

Objects in the PLC are defined as classes, and this principle can also be implemented in SCADA systems

to significantly reduce implementation costs. Therefore, all the functions defined in the PLC objects

are also available on the Ignition template classes. All internal addressing within the object can be

resolved by knowing only the root address of the instance. This simplifies the addition of new objects

and reduces the risk of incorrect variable addressing, as only the root address needs to be configured

when the object is instantiated. Only the most essential information is necessary and should be viewed

on the Hmi pages as default. Minimal object symbols are the standard, with the option to open a pop-

up window having the entire set of commands, statuses and parameters available.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 77 of 150 19.05.2023

4.3.3 Integrating IIoT devices

Integrating tag providers into SCADA systems built for the industry is often time-consuming and

complicated. A thesis goal has been creating a system where arbitrary devices could easily

communicate data via the UNS architecture, which other consumers could use. We will try to disprove

this by integrating data from our own IoT device to display it on the Hmi and by sending commands in

the opposite direction. All this will be done with the system in operation without any downtime.

The first step was to make tags from the IIoT device available

in Ignition via the Engine module. By default, the Engine

module is set up to receive messages only from the predefined

SparkplugB namespace. However, expanding it with custom

namespaces is easy even while the Gateway and Engine are in

operation. As a result, the tag provider is grown with the most

up-to-date values received from recently added UNS topics.

The screenshot on the right shows the IIoT device added during

online operation.

With the updated tag provider, previewing the format and

structure of tags before implementing them in the SCADA

system is elementary. Configuration can be done through a

simple drag-and-drop interface, and additional metadata can

be transferred with the tags to further enhance the context on

the Hmi. As a result, integration times have been minimized.

Values and units are automatically updated. Sending commands

to the device for changing the units between Celsius and Fahrenheit has

also been implemented as a proof of concept for reverse communication.

4.3.4 Integrating OpcUaGateway into Ignition

The self-developed gateway was created as a means to

learn about the technology and gain experience with its

opportunities and limitations. However, it was not used in

the final system, where the intention was to demonstrate

an off-the-shelf solution developed and maintained by

others. Ignition, a fully developed gateway solution for

sharing tags between a source and a SCADA system, was

used to accomplish this. Nevertheless, this does not imply

that the self-developed gateway does not work. In fact,

we have successfully added it as a tag provider received

by the Engine module located on the same host as the

SCADA system. The tags are available in an organized

structure, along with the additional metadata provided

from the edge, which is part of simplifying integration.

Figure 72 IIoT device available as a data
sources in Ignition

Figure 73 PLC tags shared by OPC Gateway

Figure 71 IIoT signal displayed on HMI

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 78 of 150 19.05.2023

4.4 Historian and data processing
In this coming chapter, we will delve into a critical aspect of our MQTT-based communication system:

the Historian. Information passing through the broker is volatile, never being stored after delivery to

the intended recipients. To address this, we developed a custom Historian from the ground up. Its

primary function would be to handle the high volume of messages our HiveMQ cluster receives,

filtering and storing relevant messages and topics into our database. The Historian is designed to retain

new data and topics while avoiding storing redundant or unnecessary information. At the same time,

it will maintain the data context of the received messages so that the information may be used for

varying purposes later on. Throughout this chapter, we will explore the development and features of

our Historian and discuss its significance in the larger context of our UNS broker cluster.

4.4.1 Preliminary

There are several existing Historian solutions available from various vendors. Still, creating our own

Historian provides valuable insights into the technology and offers great control over the format and

structure of our historical data. The first step in the process of creating our own Historian was

identifying the dependencies and tools required to make everything work together. There are multiple

ways of configuring dependencies and libraries in a Java project. The two we were familiar with was

Maven, a mature, convention-based build tool with a vast plugin ecosystem, which is slower to compile

and does not have the same flexibility as its counterpart. Gradle is a more modern, flexible, high-

performance tool offering greater customization. Gradle also uses incremental builds and caching

mechanisms to improve build performance. However, for our purposes, the configuration of each

dependency was unnecessary, and the Historian itself was small enough not to worry about

compilation times.

Maven offers a public pool of available repositories to check for new dependencies, including many

versions, names and repository IDs. Fortunately, there are tools and websites available to simplify the

process. One such website used extensively during the development of the Historian was the Sonatype

Central Repository [37], an online storage and distribution platform for Java libraries, artifacts and

dependencies. It is one of the most popular and widely used Maven repositories. In short, it allows

developers easy access and incorporation of open-source libraries and artifacts, reducing errors and

streamlining the build and deployment process.

While HiveMQ offers a Java library for MQTT communication and translation, which at the time

seemed ideal due to our use of their product for our broker cluster, we quickly encountered issues

with more advanced use-cases of the library, such as security implementation and use of TLS.

Configuring and using the HiveMQ library was not as intuitive as we would have liked and simply took

too much time. The documentation and code examples found online were hard to understand and

lacked the details we desired. This resulted in us starting the search for other alternatives, with the

most promising being Eclipse’s Paho.

Given the challenges of the HiveMQ MQTT library, Paho was surprisingly easy to set up and start

working with, even while using TLS encryption. Implementing Paho into our Java Historian took a

similar amount of time as implementing HiveMQ-MQTT. However, Eclipse Paho had superior

documentation, and being more widespread, finding useful code examples to draw inspiration from

was less troublesome.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 79 of 150 19.05.2023

4.4.2 SSL and security within the Historian

Ensuring the security of data passing through our Historian was a key priority in the design process. In

line with our initial plans for generic code, we decided to create our own private certificates and keys.

While this approach provided greater control and flexibility, it also required a significant amount of

research about keys, certificates and general encryption that follows.

During the implementation of TLS in our HiveMQ cluster, we initially only generated PEM-keys for the

two-way handshakes between our cluster and external applications. However, we encountered that

Java was incompatible with these types of keys. Instead, we opt to use their specific keystore, which is

compatible with all Java services and devices. To address this issue, we used OpenSSL to connect to

our server and generate JKS-keys which the Historian could use. With this, we avoided developing our

custom code, making PEM-keys work in a Java environment. Once the JKS keys were generated,

authenticating and connecting with the use of PAHO was straightforward. This ensured the

confidentiality and integrity of all data received and transmitted by the Historian.

With the secure connection established and SSL/TLS fully implemented, the next step was enabling

information to flow into our database.

4.4.3 Historian logic and message handling.

When a message arrives via the PAHO client, background checks are performed to ensure minimal

resource waste. This means that every time a message is received, the Historian already has some

predefined information about existing messages and topics, as well as any new ones. Initially, our code

disregards the message entirely, focusing solely on the topic assigned to the message. Upon starting

the Historian, a text file is created to maintain data persistence between restarts. This text file stores

each topic string received from the MQTT

messages and assigns them a unique ID. To

optimize the efficiency of reading and writing

to the text file, the Historian reads the file

during the startup phase and converts it into

a HashMap stored in the heap. This approach

primarily aims to improve read and write

times while the application is running since

reading and writing to a text file would be far

too slow. Iterating over a text file has linear

O(n) speed, meaning that search time

increases with the file size. However,

searching through a HashMap has constant

speed O(1), ensuring constant search times

regardless of the HashMap’s size. The trade-

off for this solution is a longer startup time, as

the text file must be loaded into the

HashMap. Our primary concern is processing

speed during runtime, so a lengthier startup is

an acceptable compromise.

Figure 74 Text file for storing historian topiclist on local host

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 80 of 150 19.05.2023

After searching through the HashMap containing topics and their IDs, we determine whether the

received topic is new. If it is, a new ID is generated for that topic and saved alongside it. Simultaneously,

a unique schema in our database, “topiclist”, which stores all topics and their respective IDs, is updated

with the new topic and its ID.

First, we need a way to verify that no errors have occurred while storing these IDs; comparing our

offline text file to our online database provides a quick insight into whether the Historian has been

running correctly and if errors have occurred. Another reason is the schema and other identifier

character limit of 63 set across different database management systems. Topic names could easily

exceed this limit, so storing them in this manner allows for more flexible schema creation. A schema

for storing topic names linked to IDs was our first logical choice and implementation. After updating

the offline text file and online database with the unique ID and the corresponding topic, we can store

information, or rather, our message payload, into the appropriate schema.

Figure 75 List of topics, ID's and their column length in the database topiclist schema

4.4.4 Deserialization of JSON

A question that arose after experimenting with various types of payloads sent by the clients and the

publish and subscribe model was “What kind of structure do we need to enforce for the payloads?”.

Having everyone send data that was structured randomly would not be optimal for the historian, but

it was necessary to provide users flexibility. PostgreSQL being a rational database, having every new

client send differently structured data models would lead to the impossible task of managing the

various data structures in unique tables. It would require a unified data structure to be agreed upon

for all the various clients that would send and receive information in the unified namespace.

We decided that the best solution was to start with a generic format for sending information like JSON

and work outwards towards supporting other formats when it was successfully implemented. Having

agreed on this, next, we needed to determine how we could deserialize the incoming information as

efficiently as possible.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 81 of 150 19.05.2023

Our initial idea was to encapsulate the incoming data within objects and then send it to our database

in a manner customized for each distinct data type. However, this approach had several drawbacks. It

was slow, inefficient, and required new methods for deserializing each incoming data structure which

would differ from previous ones. The most obvious solution of boxing the JSON strings into objects and

then unboxing them into a SQL query for every single message would be too time-consuming and

inefficient in the long run. Instead, we agreed that the most efficient way would be to de-nest the JSON

messages and to make query strings directly out of the payloads received.

We identified several libraries that could potentially solve our problems or, at the very least, provide

tools to develop our own solution. The first library we tried was Jackson, by far the most popular JSON

parser for Java. Although Jackson did not fully address our parsing issue, we were able to use part of

its toolkit for our solution. The challenge we faced was that the information strings from the MQTT

broker could have varying lengths. This meant that the code responsible for handling incoming JSON

strings would need to support strings of any length. Another seemingly more complex issue was that

the received JSON strings could contain lists. While this was not a major problem on its own, complexity

increased as lists could be nested and comprised of more lists. The nesting could continue indefinitely

and required de-nesting since our database could not store lists in any format. One workaround was

to prefix every value within the list with the name of the list.

Figure 76 Flattening complex models by mapping attributes to HashMap keys in historian

Our solution involved writing recursive methods, which we will discuss briefly in the following

paragraph and is explained in greater detail in the appendix. The FlattenHashMap and FlatMapper

methods could be considered one but are separated to improve code readability. Starting from the

beginning, where we receive a JSON string, we used Jackson’s ObjectMapper library to convert raw

JSON into a workable HashMap. ObjectMapper is optimized by employing streaming and buffering to

minimize processing time. The GetMapFromJSON method takes the JSON-string as input, and initializes

an ObjectMapper to handle the conversion from raw JSON data into a HashMap. At this point, we have

HashMap with keys and values, where the latter is possibly a nested HashMap. To de-nest these, we

use the FlatMapper method recursively, with it going through every value and entering into each

HashMap it sees. When it is in the innermost HashMap, it starts de-nesting them on its way out toward

the original HashMap. Once the original JSON-HashMap has been reconstructed and is no longer

nested within itself, it is sent to the final method that transforms the HashMap into an SQL query ready

to be dispatched to our database.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 82 of 150 19.05.2023

Figure 77 Incoming message to historian flow diagram

4.4.5 Protobuf as encoding

We discovered Protobuf, a serialization/deserialization method showing great potential during our

preliminary research for this thesis. By design, Protobuf efficiently transmits and serializes structured

data between systems, making it a great match for our problem description. In short, this would mean

that we only needed to define a structure for our

messages once and that the publisher of the

message controls the encoding and decoding

format. As long as the clients receiving the messages

can access the .proto file, it can automatically

generate the code for encoding and decoding. This

would make the system much more reliable and less

error-prone, requiring less time to generate

boilerplate code for encoding and decoding. While

JSON still is a widely adopted and accessible format

that offers more flexibility and can be easier to work

with in some situations, Protobuf offers a more

fluent way to implement the same message

formatting over many different clients with varying

purposes and architectures.

Figure 78 Example .proto file

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 83 of 150 19.05.2023

HiveMQ is designed to handle large volumes of real-time data streams, processing them quickly and

efficiently. Many aspects of our project already prioritize performance, with Protobuf being a binary

format that is more compact than text-based ones, like JSON. IIoT applications require structured data,

high volumes and speed, making Protobuf a good solution. However, we were not interested in only

using Protobuf exclusively, rather we wanted it as an addition on top of our already existing solution

and implementation of JSON payloads.

Due to time constraints on this thesis, we only proved the viability of Protobuf implementation within

our system and settled on only using JSON protocol for user-generated payloads.

4.4.6 Asynchronicity and R2DBC.

Since we wanted our Historian to run alongside the main cluster, it had to be able to perform two main

actions asynchronously and independently of each other.

The first action was receiving a message from our MQTT cluster. Messages transmitted through the

UNS could arrive at any time after our MQTT PAHO client had connected to our MQTT cluster. When

a message does arrive, the PAHO client will jump to the “messageArrived” method. This method is run

in the background on a different thread, making it a non-blocking method, allowing other code and

methods to be executed simultaneously.

The second action we sought to execute independently and asynchronously involved storing the

message in our database. After performing the checks mentioned in Section 4.4.3 and generating a

fitting query for our database to execute, the next step was to implement queuing threads in a first-

in, first-out (FIFO) order. One solution would be that when a query is complete, the lock class gets

notified, allowing it to initiate the next query in the list. This method can be an effective way to achieve

concurrency without an asynchronous SQL handler, which by default, Java does not provide. However,

this solution’s scalability was uncertain. Consequently, a limited timeframe made us lean in favor of

using R2DBC.

R2DBC, short for Reactive to Relational Database Connectivity, is a modern programming API designed

for connecting and interacting with relational databases, in our case PostgreSQL, in a non-blocking

manner. By using reactive programming principles, R2DBC enables applications to handle many

concurrent database operations while maintaining efficient resource utilization. This approach is

particularly beneficial in data-intensive applications, like our HiveMQ cluster, where traditional

blocking JDBC connections may lead to performance bottlenecks.

R2DBC’s selling point is simple: it creates and manages its own thread pools, which can be more

efficient in many cases. R2DBC establishes a pool of pre-initialized worker threads used to execute SQL

queries concurrently. This approach reduces the overhead of thread creation and destruction, thereby

optimizing system resource utilization by reusing threads instead of creating new ones for each query.

Moreover, R2DBC is non-blocking, which enhances performance by enabling threads to handle

multiple requests simultaneously. Within our project, R2DBC provides the functionality and speed

needed to concurrently push messages into our database without blocking other parts of the Historian.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 84 of 150 19.05.2023

4.4.7 Information visualization

The primary goal and motivation behind integrating a Historian with our main HiveMQ cluster are to

leverage the time-series and other valuable data processed through the cluster. We can gain valuable

insights by storing, analyzing, and visualizing the information generated over time by the different

devices. A centralized repository for this data can help us identify trends and patterns, both positive

and negative, and serve as a preventive measure for detecting errors as early as possible. Utilizing a

visualization tool in conjunction with our database enables us to visually represent the data stored in

the historian in real-time, which can uncover trends, patterns, and relationships that might not be

evident from the raw data.

Initially, we opted to visualize the data scraped by Prometheus using the open-source version of

Grafana. This version still enabled us to query and display the desired information, mostly concerning

the health of our cluster. Grafana presents various data through custom dashboards, which showcase

real-time and historical data in different visual formats, such as graphs charts, tables and more. The

panels that display the historical data can be customized further with various options for formatting,

scaling and various filtering of the data. Grafana also supports data from numerous sources, including

both time-series and relational databases. However, many of the supported databases and additional

tools require extensions available only in Grafana’s enterprise edition. As a result, while Grafana is a

highly extensible and customizable platform, we were restricted to using only its base functionality.

Figure 79 Grafana dashboard visualization of cluster statistics

Grafana is capable of visualizing the information stored in our database as well. Prior to which, we

need to identify the appropriate table for any given topic stored in our topic list and sort the

recorded values. Sorting can be by the time when stored in the database or the time it was recorded,

both of which can identify potential issues in the system. The former being able to identify issues

within the Historian and the latter within the connected devices responsible for recording the

information in the first place. A prerequisite for efficient visualization is data standardization and

sufficient data context. Making sense of data with much uncertainty and noise is hard and labor-

intensive because of the required data transformations, which is particularly essential for third-party

consumers. This will be covered in greater detail in 6.5, where we will discuss the use of machine

learning to automate this contextualization of data.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 85 of 150 19.05.2023

5 Testing of the implemented architecture
Continuous uptime can be a decisive factor for the physical safety of an industrial automation system.

Availability is often ranked as one of the most important factors for a technology to be accepted as a

suitable solution in these situations. Cyber security is often ranked second to systems availability and

is resolved by compromises such as isolation. It is also the reason why Goodtech desires these tests to

be conducted. It is common to measure the performance of a system based on throughput, latency,

robustness, and reliability, which are also natural groupings that we have used to divide the various

tests.

5.1 Description of the test bed
The system architecture we have set up in our bachelor's thesis is designed to be easily scalable. We

built it on the principle that it can be expanded in terms of the amount of hardware available, the

capacity of the network connection from the ISP provider, and the number of nodes configured to

handle simultaneous activity and provide redundancy. The idea is to pay for more resources if needed

so that the system can continue to grow as demand increases.

Our system currently has very limited resources, particularly the broker solution running on Raspberry

Pis. These devices barely have the resources needed for the broker application, so our setup must be

considered a limited minimalistic setup rather than a realistic deployment. Therefore, tests such as

throughput are not representative and should not be taken as definite limits of the system's

capabilities. However, other tests such as reliability, detecting stale data, latency response times, and

ensuring that the system does not get stuck in a state that requires manual intervention to restore

normal operations, are still valid, even on our restricted test bed.

We conducted capacity and latency tests using a separately developed CUI client application that can

send requests and log the results, including the number of requests, response time, and statistical

information. We ran these tests using the client CUI application on a host outside of HVL to ensure

traffic was on the Internet. The remaining hardware and reliability tests were on the LAN networks

located at HVL.

Table 5 Hardware used during performance testing

PLC SIEMENS 1516F-3 PN/DP

IGNITION GATEWAY HOST Thinkpad T490 i5, 4 cores, 1.6Gz, 8GB RAM
FACTORY BROKER Acer Aspire 5, 2.4GHz quadcore, 8GB RAM
CLUSTERED BROKER RaspberryPi 4B 8GB RAM (Broker + Loadbalance)

RaspberryPi 4B 4GB RAM (Broker)
RaspberryPi 4B 2GB RAM (Broker)
RaspberryPi 3B 1GB RAM x2 (out of resources)

HISTORIAN Located on Factory Broker
ISP CONNECTION 20Mbit up/down

Figure 80 Configuration during system performance testing

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 86 of 150 19.05.2023

5.2 Throughput, what is the system capacity
Throughput measures the traffic a system can transfer in a given unit of time. It will be both a measure

of the capacity and will have consequences for the system's availability if all resources are consumed,

resulting in clients having to wait before they can execute their requests.

5.2.1 Overloading the broker cluster

As the system approached completion at the end of April, we began conducting system-wide message

overloading tests to assess the capacity of our system. Initially, we published as many message topics

as possible to the factory broker to determine how they would transmit through the system via the

bridge connection to the cluster. During this test, the cluster peaked at 24,500 messages per second.

In the second test, we added multiple clients to the cluster and published as many messages on various

topics as possible. The system peaked at 22,500 messages per second.

Test Result Comments

Cluster maximum incoming messages test1
Method: Use a single client to publish messages to the
clustered brokers
Expected: Record cluster maximum performance

24 500
msg/s

The ISP connection seems to be the limiting
factor since the brokers still have available
resources.

Cluster maximum incoming messages test2
Method: Use multiple clients to publish messages to the
clustered brokers
Expected: Record cluster maximum performance

22 500
msg/s

The ISP connection seems to be the limiting
factor since the brokers still have available
resources.

It's important to note that these results should be viewed cautiously, as our system was built on a

student-funded budget. The cluster performs poorly due to being built on Raspberry Pi’s. It was

observed that the laptop with AMD64 architecture, 16GB RAM, and 2.4 GHz Quad core, hosting the

factory broker outperformed our cluster. In addition, our school internet is subject to throttling and

bandwidth limitations, and we never managed to achieve a higher inbound speed than 2 MB/s.

Additionally, due to the restriction of having a trial license for HiveMQ, we cannot connect more than

25 clients at a time, so no mass client connection testing was possible.

In summary, we believe the main contributing factor to our poor test results is the internet

connection since our system never reached a higher load than 32% during testing on one cluster

node.

Figure 81 Inbound messages pr Second.
 x axis local time, y axis messages pr second Figure 82 Cluster statistics during load testing

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 87 of 150 19.05.2023

5.2.2 OPC UA server gateway loading

Tags are central in any project, making it simple to get statistics that can be used as a benchmark during

the OPC server load testing. It is common for a project of significant size to have 2000 tags, based on

a previous GoodTech project. It is also the recommended maximum for the 1516F CPU and is our target

during testing. OPC server tags have been configured to change randomly on every PLC cycle scan and

published on change. The minimum publish interval configured on the OPC server is 1000ms.

Figure 83 Connection statistics recorded by OPC gateway application

Test Result Comments

OPC Gateway monitored items test
Method: Subscribe gateway to 2000/s updating items
Expected: Record gateway performance

2000
item/s

Stable operation observed.
We successfully transmitted messages in
the reverse direction during this server load

Testing verifies that sending this amount of tags was not problematic, even under these somewhat

worst-case circumstances. Commands were also sent in the opposite direction during the load testing

to verify that the system was not overwhelmed. This amount of tags changing every cycle would be

unlikely in a real system where most of the tags are static, like parameter values, boolean alarm bits,

or states that do not change frequently. It must also be noted that all these tags have been handled as

individual tags, each sent in its individual message. Most systems of this size use more efficient

hardware with built-in communication processors than what we had available and are optimized to

pack data into larger packets to utilize available capacity better. The key takeaway is that mapping

between the OPC and MQTT interface has not been a bottleneck that would reduce the necessary

performance in an actual deployment.

5.2.3 Maximum storage rate in the database

During load testing, the Historian exhibited no bugs or errors. However, a rational database like

PostgreSQL is not designed to handle such a high load, as discussed in Chapter 6. The database quickly

reached its default limit of 100 concurrent client connections when 2000 messages/s were tested.

Test Result Comments

Database storage test
Method: Subscribe to 2000/s updating topics
Expected: Record database performance

Failed Messages are lost due to the database not
being able to process them at the same rate
as incoming messages

It does have to be mentioned that the Historian can fall behind in storing messages for a short time

without any grave consequences. Suppose the Historian experiences traffic that is moving too fast for

it to handle. In that case, it will start consuming memory to store these messages until they can be

pushed into the database. There would likely be intervals during which the information flow would

slow down, allowing the database to catch up.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 88 of 150 19.05.2023

5.3 Latency, how responsive is the system
Latency is a measure of the response time in a system. Different technologies are often categorized as

being suitable or not according to whether they satisfy requirements for latency and determinism. It

is therefore important to get some measures of what update times are expected for when commands

are sent, until they are executed, and how long it takes before feedback is received. These tests must

also be performed while the system throughput is being tested to verify response times in a system

under a heavy load.

5.3.1 Host-to-host delay

There are several different sources of transport delay in a system, which all add to the total transport

delay. It can be challenging to obtain accurate timestamps that indicate how long the transfer took

since timing has to be acquired in different devices. To better understand the source of delays, it is

therefore necessary to isolate individual components during testing to establish characteristics specific

to them. One simple yet important test is the host-to-host delay, which measures the time it takes for

a message to leave a host and arrive at the recipient, not including internal host processing. The test

will measure time in flight and the time brokers use for routing messages.

The test can be conducted by having the same client publish and receive the messages, which makes

timestamping more reliable. We have therefore created a console program that measures the time it

takes for messages to be published and received. The test has been conducted while deliberately

overwhelming the broker with a large volume of messages to simulate a realistic scenario. Various

results have been observed during the trials. We have therefore accumulated results and calculated

statistics such as min, max, average, variance, and skew.

The measured times also include delays occurring in routers and switches along the path between the

client and the broker cluster. The test results indicate that messages are sent and received with

minimal delay. These findings are not surprising, as storing messages is like a waiter collecting plates

on their lap without handing them over. If the waiter does not remove the plates promptly, the stack

will become overwhelming, eventually leading to a system breakdown. Similarly, brokers are intuitively

expected to dispose of messages as quickly as possible to prevent accumulation.

Similar latency tests were conducted during cluster maximum load testing. The latency is significantly

higher, but most are still within an acceptable range.

Test Result Comments

Host to Host latency test during medium cluster load

Method: Publish a message from a client and subscribe
to it as well. Record multiple tests to calculate statistics.

Expected: Record latency time and statistics

Min: 3ms
Max: 233ms
Avg: 9.18ms
Std: 5.516ms

Statistics calculated over 10.000
latency tested collected over 2 hours

Host to Host latency test during high cluster load

Method: Publish a message from a client and subscribe
to it as well. Record multiple tests to calculate statistics.
Cluster is spammed as in load test 5.2.1

Expected: Record latency time and statistics

Min: 5ms
Max: 5134ms
Avg: 37ms
Std: 50.51ms

Statistics calculated over 100 latency
tests.

Significant delays have been observed
for a few messages. Overall most of the
messages has an acceptable latency.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 89 of 150 19.05.2023

The majority of messages have a minimal delay. However, we do observe

delays of several seconds for a small number of messages meaning that the

results are skewed, caused by the minority outliers. This phenomenon is

typical for non-deterministic networks and should be considered when

assessing if the system is suitable for the task it is intended to solve. The

results have been varying depending on the network connection. We have

recorded average values of approximately 10ms latency and up to

approximately ≈100ms on a network with poor bandwidth. The results in the

report were during a day when the network activity was high at HVL.

Statistical properties are calculated over entire data sets. In practice, all

results must be stored before measures such as average, variance, and skew can be calculated. It is

often desirable to continuously update these variables as new data is produced to avoid memory

overflow or to obtain continuously updated performance statistics. Incremental results can be used to

detect failures or errors in the system, where a sudden increase in one of the statistical measures can

be a symptom. We have implemented incremental algorithms partly for the learning part, even if we

could have gotten away with accumulating results and then calculated statistics offline.

The disadvantage of online incremental updates is that rounding off small numbers can accumulate

inaccuracies over time, as directly implementing the variance formula would have done. Welford's

online algorithm [38] is designed to minimize rounding errors and is the one we have used to analyze

our results. There is also an algorithm for incrementally updating skew, which is better than the naive

method [38].

Sample variance: 𝑠2 =
∑ (𝑥𝑖−𝑥̅)

2𝑛
𝑖=1

𝑛−1
=

𝑀2,𝑛

𝑛−1
 where 𝑀2,𝑛 = 𝑀2,𝑛−1 + (𝑥𝑛 − 𝑥̅𝑛−1)(𝑥𝑛 − 𝑥̅𝑛)

Skew =
√𝑛𝑀3

𝑀2
3/2 where 𝑀2

′ = 𝑀2 + (𝑥 − 𝑥̅)2
𝑛−1

𝑛
 , 𝑀3

′ = 𝑀3 + (𝑥 − 𝑥̅)3
(𝑛−1)(𝑛−2)

𝑛2
−

3(𝑥−𝑥̅)𝑀2

𝑛

5.3.2 Delayed processing between hosts

The total latency is the sum of all the processing and transport delays along the path from the

transmitter to the receiver, including a round trip in the case of a command-to-feedback performance

test. It's difficult to measure this time delay accurately. Still, we intend to document this using

Wireshark (Network packet analyzer) to detect when packets leave the Ignition host and when the

feedback packet returns. It is reasonable to assume that internal processing inside the ignition host is

minimal, contributing negligibly to the overall latency. Encryption was disabled during this test.

Test Result Comments

Command-to-Feedback latency test
Method: Execute a command. Use Wireshark to monitor
the time until the host receives the feedback.
Expected: Record latency time

2035ms Online monitoring of the PLC estimates the
command to be executed with minimal
delay. Test result is from a single test.

Figure 84 Example of a skewed distribution

Figure 85 Timestamps from wireshark during the command-to-feedback test

Cmd

Resp

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 90 of 150 19.05.2023

The test results reveal a delay of approximately two

seconds between sending a command in TCP packet 56 and

when the feedback was received in TCP packet 69. This is

likely due to intentional delays introduced in the

transmission path to increase the upper limit on the

amount of information that can pass through the system.

For instance, the PLC is configured with a maximum poll

delay to ensure sufficient processing time between

requests. Additionally, Ignition gateways are configured

with a delay starting when the first tag is changed,

transmitting all changed tags within this interval in a

combined packet to save bandwidth. Theoretically, with

our configuration and without taking TCP/IP best effort into

account, the expected delay can be calculated to:

Latency = OPC server poll rate + Transmitter pacing period = 1000ms + 500ms ≈ 1500ms

This theoretical result agrees with the actual measurements carried out on the H LAN. Identical tests

have also been carried out on other networks with results that are slightly worse than these, especially

the worst-case transmission time was significantly higher.

It is important to note that when monitoring the PLC in TIA Portal during command requests, minimal

command delays were observed, suggesting that commands are transmitted almost instantly, and that

TCP/IP best effort determines the transmission time. Thus, it is likely that most of the delay in the

command-to-feedback test is incurred in the feedback part of the transmission.

5.4 Robustness, how will the system recover
Unforeseen events such as power outages or network failures must be anticipated. A system will have

to re-establish all previous connections and continue to function as before after the sources of failure

have disappeared without human intervention. The real-time status of the system is a critical

component of the system's robustness to ensure device status is known and that data is handled as

stale when devices are offline. Mechanisms to ensure that information or commands communicated

during the downtime and essential for the system's continued operation are transmitted when the

system is back online. Certain parts of a system are so critical that they cannot be allowed to fail. In

such systems, it is common to install components in parallel, where one takes over if the other should

fail.

5.4.1 Stale data

Tag quality and device online status should be marked on the HMI as is commonly done in existing

SCADA systems that communicate over stateful connections to OPC servers. MQTT has no such

connections between the producer and consumer of information. Stale data refers to data that is not

updated due to a device being offline. Our testing involves verifying the presence of such mechanisms

and tags in MQTT that are being updated to reflect the online state of the device, which can then be

used to accurately display tag quality values on the HMI.

The test is fairly simple. It involves alternating between taking the OPC server and gateway offline and

verifying in the engine tag provider and SCADA systems that the offline tags are properly marked.

Figure 86 Different delays contribution to latency

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 91 of 150 19.05.2023

5.4.1.1 OPC server offline test

The OPC session has parameters to monitor the connection quality. The most important of these being

“Request Timeout”. A client will set the connection as malfunctioning if no response to a request, such

as a subscription query, is received within this timeframe. The same timeout is also used during the

establishment of a session. The parameters must be set sufficiently to ensure that a connection

attempt is not aborted too early, typically in the range of 10-60

seconds. After the OPC server was taken offline, we verified that

this timeout governs when Ignition sets tags as stale, indicated by

black frames and dots. In summary, this test reveals a delay of

approximately 10 seconds (configured timeout) between when

the OPC server was lost and before tags were marked

appropriately on the HMI.

Figure 87 Ignition tags marked as uncertain when the OPC server is offline.

Test Result Comments

Stale data during OPC server offline period
Method: Remove power from the OPC server
Expected: Tags should be marked as bad quality on HMI

Passed Tags are marked uncertain after
configured OPC server timeout, set to
10 seconds in our system.

5.4.1.2 Gateway offline test

The time before tags are marked as faulty when the gateway is lost depends on how the disconnection

occurs. If the gateway manages to disconnect gracefully, the tags

are instantly marked as faulty and indicated with red squares and

dots. However, if the connection is lost abruptly and the gateway

did not manage to disconnect, then the Keep Alive time will

govern when tags are marked as faulty. Currently, we have set

the Keep Alive time to 5 seconds obtaining stable operations.

Figure 88 Ignition tags marked as faulty when the gateway is offline

Test Result Comments

Stale data during OPC server offline period
Method: Remove power from OPC server
Expected: Tags should be marked bad quality on HMI

Passed Tags are marked faulty after MQTT
broker Keep alive timeout, set to 5
seconds in our system.

State management tags are used to show the online status of nodes (gateways) devices (PLCs). During

testing, we observed that the tag holding the gateway’s online state changed and could be used on the

HMI. However, the online state of the PLC device did not change at all. Based on this observation, we

concluded that this is most likely a bug and not a limitation in the concept of device management.

To finalize the staleness test, we have verified that data is updated once the gateway, SCADA, or cluster

is back online after an offline period. Tags were manipulated in the PLC during the offline period to

ensure that the latest values were displayed on the SCADA system, even if the tags were no longer

changing after the system was restored to the online state. Our tests have shown that this is achieved

when using the Ignition modules, unlike our self-developed gateway, which requires a tag change or

the PLC/gateway to be restarted when the SCADA system is back online. While a workaround to this

issue is to publish tags as retain messages, we do not recommend it as a solution to prevent cluttering.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 92 of 150 19.05.2023

5.4.2 Redundancy

Redundancy tests are also straightforward to execute. They involve taking parallel devices offline and

determining if the system is still operating while verifying any unexpected results occurred during the

switch-over. In our system, it is mainly the brokers that are arranged in a redundant cluster. During

testing, we were able to disconnect the individual worker nodes, and the connection held by the

disconnected node was transferred to an available node seamlessly. Due to our limited hardware, our

cluster only contains one load balancer. This creates a single point of failure if the load balancer is

disconnected. In our testing, when the load balancer was taken offline, the connections held by an

offline node did not transfer. Our recommendation to ensure high availability is to have a minimum of

two load balancers for the cluster.

Test Result Comments

Loss of cluster node (not the load balancer)
Method: Switch of power to the worker node currently
holding the connection to the PLC OPC server
Expected: Connection is transferred to an alternative
worker node

Passed The connection was transferred. Nothing
was observed on the HMI during the
changeover.

Loss of the load balancer
Method: Switch of power to the load balancer
Expected: System failure

Failed No redundant load balancer in the system.

The possibility of registering several brokers or clusters in the gateway is not something that we have

intended for the system architecture in our thesis but is an option in Ignition and will be included for

completeness. HiveMQ is offering the possibility to launch a cloud broker for trial testing that we have

registered as an alternative route for the Transmitter and Engine gateways. No information is

communicated through the alternative path as long as the primary is operational. After taking down

the HVL cluster, which is the primary broker, we verified that the connection between the OPC server

and the ignition SCADA was still operational via the alternative route. On HMI, there was no marking

of stale tags as during the offline test above. Still, we assume that there has been a short offline period

in the time interval when the route was changed.

Test Result Comments

Loss factory and cluster broker
Method: Switch of power to the factory broker/cluster
Expected: Connection is transferred to the cloud broker

Passed The connection was transferred. Nothing
was observed on the HMI during the
changeover.

PLC, Gateways, and SCADA hosts can be set up as redundant components but have not been

accomplished because of hardware and time limitations during the thesis.

5.4.3 Automatic system recovery

Various errors can be the reason why a system stops working, like getting trapped in an infinite loop

or operating with illegal parameters that makes the connection malfunction. These kinds of errors

should be avoided but are not something we can thoroughly test in released software. What we will

verify is that the systems automatically start up in an operational state after power outages. Only

binary yes or no results will be recorded depending on whether the system restarted successfully. No

other measures that could have been used to compare systems against each other are emphasized,

since the offline period is the majority of the time interval. Comparative results are also determined

mainly by the host startup time.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 93 of 150 19.05.2023

The test was to power cycle the devices one after the other. We verified that the system returned to

a working state between each test. After carrying out the single tests, we switched off the power on

all the devices and verified that they could be switched on again in any order.

Test Result Comments

OPC server automatic restart
Method: Power cycle OPC server
Expected: Tags are marked as stale in Ignition during
server offline period. System automatically resumes
normal operation when the server is back online.

Passed Tags are set stale according to 5.3.1
OPC server restart is slow (≈70s)
Finally, the entire system resumes the
online state after server startup.

Ignition transmitter gateway automatic restart
Method: Power cycle the host hosting the transmitter
Expected: Tags are marked as stale in Ignition during
gateway offline period. System automatically resumes
normal operation when the gateway is back online.

Passed Tags are set stale according to 5.3.1
Ignition gateway startup time is dependent
on gateway host startup time.
Finally, the entire system resumes the
online state after gateway startup.

Ignition engine gateway automatic restart
Method: Power cycle the host hosting the engine
Expected: Tags are marked as stale in Ignition during
gateway offline period. System automatically resumes
normal operation when the gateway is back online.

Passed Tags are set stale according to 5.3.1
Ignition gateway startup time is dependent
on gateway host startup time.
Finally, the entire system resumes the
online state after server startup.

Cluster automatic restart
Method: Power cycle the local broker and cluster
Expected: Tags are marked as stale in Ignition during
server offline period. System automatically resumes
normal operation when brokers are back online.

Passed After the complete disconnect of all cluster
nodes and load-balancers. The system used
approx. 1min to reestablish all connections
and resume traffic after reconnection.

Test Result Comments

Verify arbitrary startup order
Method: Power of OPC/Gateway. Startup in order:

1. OPC server
2. Gateways

Expected: System successfully restarted

Passed None

Verify arbitrary startup order
Method: Power of OPC/Gateway. Startup in order:

1. Gateways
2. OPC server

Expected: System successfully restarted

Passed None

Verify cluster startup after edge devices
Method: Power up broker when OPC/Gateway is online
Expected: System successfully restarted

Passed None

Our test concludes that startup can be performed in arbitrary order.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 94 of 150 19.05.2023

5.5 Reliability, can the system be trusted
The system's performance can be degraded by interference from internal or external parties. Malicious

external intervention is partially resolved using encryption and authentication, preventing outsiders

from manipulating the system. On the other hand, interference from actors on the inside can be

unintentional transmittals of data to unintended and unexpected topics, thereby malfunctioning the

system. Such incidents should be prevented by establishing access control that minimizes the

possibility of these situations occurring.

5.5.1 Read-only access

It would be most optimal for edge devices to set authorization restrictions since then they can restrict

tags that should not be manipulated externally without being dependent on a system administrator

having performed as intended.

Test Result Comments

Read-only access inside edge device (PLC)
Method: Attempt to write to a tag configured as read-
only in the PLC
Expected: Tag should not change. Error message
presented

Passed Error message given to the user on the HMI.

It’s not possible to write to any tag, even if
the tag is configured as write in the PLC if it
is in the same structure as read-only tags.

Unfortunately, during testing we experienced problems when restricting individual tags in more

complex data types from being written to. We believe the issue is that the entire complex structure is

sent as one entity in a Sparkplug message and must have the same access level. A possible workaround

would be to map variables individually or in smaller groups. It can be simplified to some extent by

splitting complex data structures into smaller groups and reusing the templates. It should be

considered since the system's integrity is so important.

Fortunately, sending the same tag provider on different topics is possible. Any of the Ignition modules

can make the tag provider read-only, making it possible to create a read-only provider for systems that

should not have the option of sending commands. Then, the SCADA system that sends commands and

setpoints has its own topic that other devices cannot access. The disadvantage is that data are sent

twice.

Encryption and authentication are considered secure technologies where most weaknesses are due to

human errors. We assume that the system has been correctly configured when assessed as a viable

solution and therefore do not see it as appropriate to carry out encryption tests. We do not intend to

suggest that encryption or secure storage of certificates is unimportant. However, it can only be tested

by personnel with in-depth knowledge of cybersecurity.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 95 of 150 19.05.2023

6 Discussion

6.1 Systems interoperability
The process of sharing information can be roughly divided into three levels: Physical, Transportation,

and Representation, defined by the thesis authors. TCP/IP stack protocols have essentially

standardized the physical and transport layers into the Ethernet and TCP/IP standards. Consequently,

getting the information to the correct receiver is therefore trivial in most modern systems, as long as

security or authorization does not prevent this.

Effective use of the information by the recipient is a much bigger problem. Since MQTT does not define

a payload, anything can be packaged and transmitted through the broker cluster, making publishing

information as simple as knowing the address of the recipient. Compared to the configuration of the

transport parameters, most of the time in setting up a system today is spent on mapping inputs and

outputs, generating data structures for storing data and creating interfaces towards other systems to

exchange data. A big challenge in making data plug-and-play is that manufacturers with different

requirements need a different set of models and attributes. Changing requirements demanding

revised models is another obstacle making cross-vendor interoperability challenging.

Often, information is structured so that it is easy to visualize and interpret for humans making it easier

for them to do manual system integration. On the other hand, the machine depends on a recognizable

format for efficient and robust processing of incoming data. Most industrial systems usually require

performance guarantees and often do not have any margin for an algorithm to search through data to

predict the most optimal action. It will be necessary also to standardize encoding and structure for

systems to interoperate more efficiently and safe.

SparkplugB attempts to resolve the interoperability issue by defining a generic Protobuf model that

allows for nested structures enabling it to package and publish essentially any information model. The

technic depends on the model blueprint being distributed to the recipients, which can be done using

the SparkplugB birth message. It works well between the various modules made by Cirrus Link for

Ignition, but one has to remember that these are made by the same suppliers who ensure both the

sending and receiving of the information. Other manufacturers must familiarize themselves with Cirrus

Link's philosophy of using SparkplugB when developing their own system, creating them to expect data

in the same format. It must also be noted that although SparkplugB provides the opportunity to define

a complex model's blueprint in the birth message, the user is still free to choose how the content inside

the message is structured.

Definitions summarize the OPC UA standard, which is also a major disadvantage. Defining too many

choices, including information models geared towards different industries, makes the standard

complex and consequently reduces interoperability. The standard emphasizes developers' ability to

define custom models. The disadvantage is the potential for an overwhelming number of models,

which could easily end up in the thousands due to revisions and because of the fact that users can

define any information structure they desire. One method of mitigating the downside of having many

different models is that systems connected to the internet could automatically poll public repositories

for the models' blueprint. Unconnected systems could depend on local servers containing public and

company-specific models. One way or another, model blueprints should be distributed automatically

to achieve efficiency interoperability.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 96 of 150 19.05.2023

A proposed solution compatible with some of the systems in production today, and between the two

previously mentioned strategies could be to emphasize standardizing attribute names, functions, and

object hierarchies. Data transmitted by the MQTT protocol are byte arrays, regardless of encoding or

structure. After serialization and deserialization, it ends up as a long string of bits representing

underlying variables encoded as Ints, Floats, ASCII characters, or any other defined datatype. Pointers

to fixed positions inside this sequence or searching for key-value pairs are needed to extract the

desired information. There is great flexibility in choosing what is included in a message when key-value

pairs are used. The Ignition project, which has been part of this thesis, is an example where not all the

attributes an object contains are utilized. Object in the Ignition Tag provider is received as document

types containing a list of all the key-value pairs. Variables are extracted using Json parsers. Adding or

removing attributes would not have affected the parsing. What is essential is that the path to the

individual attribute is in a reproducible format, e.g., …ObjectName.Parameters.PYHR for a parameter

(P) determining the output (Y) high (H) range (R). Changing the path would make it impossible to

address before data has been received.

Resolving the address of a variable nested inside a potentially complex model can be seen as intuitive,

at least to humans glossing over the Json structure. On the other hand, decoding a compressed

message using aliases, fixed positions, and datatypes defined in model blueprints assumed to have

been distributed to the recipient before message transfer can be quite more challenging without prior

knowledge. Data encoding can be valuable, especially in memory-saving situations such as real

numbers, which can be effectively compressed down to 8 bytes achieving a range of ≈ ±10308 and

with a precision of 10−16 [39]. But it depends on a common agreement of serialization and formatting

of data types. It must otherwise be balanced between size, making own definitions, and the simplicity

of other systems to make sense of the information being transferred. Such encoding may have

potential when used in connection with publicly agreed standards such as SparkplugB or when data is

communicated between familiar devices, but it is another major obstacle that opposes a common

platform for sharing information.

It has always been a guiding principle in the OPC UA standard not to specify the actual protocol

implementations to make it more future-proof. MQTT seems to be increasingly used in the latest

revisions of the specification. OPC traffic wrapped in MQTT data packets is still an independent

language, meaning that not everyone can interface with this traffic. The IT system often has the most

value in the data produced on the edge and commonly has better functionality for decoding different

message formats than non OPC compatible automation systems, which may not have as much value

from this data. OPC data in the cloud is definitely a step in the right direction, enabling IT systems to

eavesdrop on the control signals.

The problem of being locked to certain manufacturers due to protocols not being compatible with each

other has always been and still is the biggest challenge today. Although we have a well-functioning

system using Ignition and SparkplugB, having shown that adding arbitrary topic sources like the IIoT

device is simple, its effectiveness strongly depends on the Cirrus link modules, becoming somehow

locked to the protocol. It is a significant drawback since few providers currently support the SparkplugB

specification. It is worth mentioning that the system works very well and the way to get more people

to adapt is perhaps to put it into use so that it gets better traction.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 97 of 150 19.05.2023

6.2 Implementation strategies
UNS intends to establish an architecture for sharing data in an enterprise with the idea that future

devices will be connected requiring minimal integration time and without regard for the existing

topology. This idea implies that the system should be planned and realized based on where the

company wants to end up and not by considering existing networks and devices, which can result in

the system being developed with compromises that will not work in the long run. Fortunately, the

MQTT protocol is compatible with such a problem. It can easily be realized on existing TCP/IP and

Ethernet networks. These networks are based on a client-server architecture where messages are

addressed to specific devices. There is no single master controlling or dictating how communication

flows. Different protocols can therefore coexist on the same network. Alternatively, a completely new

network can be created. The advantage is the possibility of gradually building up the system without

consideration of the existing system. The disadvantage is that tightly coupled devices on the existing

network must be transferred simultaneously to the new architecture requiring more extensive

planning and cost.

A broker is comparable to a router only implemented in software. Analogous to choosing the type of

routers, e.g., Cisco, and designing the physical network between the devices, the first thing that should

be decided is what types of brokers, e.g., HiveMQ, and to determine between which devices data will

flow. Based on this initial study, the necessary technology to achieve message flow can be

implemented in suitable locations. Downtime is costly and can negatively affect a company's

reputation, and as a result, redundancy is an essential aspect of all systems. It is achieved in UNS by

extensions for broker-to-broker communication, which can be used not only to create redundant

systems but as a tool to expand the system when the enterprise grows. It allows for starting locally

with brokers run on private servers not connected to the internet. Bridge extensions ensure that

expanding the system to include traffic on the internet is not problematic since there are no

modifications to the local structure. There are obvious advantages to starting small, such as better

control over your own system, reduced initial cost, and the fact that you have not exposed your entire

system to hackers on the internet in the initial phase where you are learning and setting up the

structure. Broker implementations are based on security protocols like TLS and are commonly

developed by companies taking care of all the complex functionally required, like redundancy and

reliability. Configuring these products does not require the same level of technical understanding,

making them suitable for local deployments by your own personnel.

Successful implementation and the principle behind UNS is the decoupling of devices in the system,

thus becoming the strategy for connecting new units. The same strategy can be used as a basis when

existing devices are connected to the newly established structure. It is possible to selectively choose

which devices are gradually moved over to MQTT structure based on the cost and the value data from

these devices have to supervisory or analytical systems by having implemented the broker in its

entirety without affecting the existing system. In this way, the parallel system can be maintained as

long as it is appropriate, possibly indefinitely.

Not all devices are compatible with MQTT or the publish and subscribe architecture and cannot be

integrated directly. These must therefore be connected using intermediary nodes, often called

gateways. Gateways are often software modules installed on hosts on the same local network as the

edge device. Alternatively, newer PLCs with integrated MQTT drivers can be used as a hub to collect

information from various legacy devices and publish on behalf of everyone else to UNS. This is a widely

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 98 of 150 19.05.2023

used solution for connecting systems today where a PLC is the single point of communication to a

SCADA host interfacing with other PLCs and legacy systems such as ModBus, Profibus, etc. A weakness

that we have seen with some of the devices with built-in MQTT drivers is how data sometimes has to

be flattened and thus loses some of its value. Consequently, the sender and the receiver have to

develop together to agree on a common structure for the communicated data, which is not true to the

decoupling principle. An advantage when using purpose-built gateways is that they can structure the

information and add scaling or new attributes such as units and ranges, before publishing it to the UNS.

Gateways can increase data quality while being faithful to the single source of truth principle by adding

the metadata before data is distributed, thereby avoiding the risk of duplicated or inconsistent data

due to other systems like data hubs, described shortly, attempting to perform this task.

Data will most likely not become plug-and-play for a long time due to the individual requirements or

initiatives of manufacturers and active community individuals. Much of the time to connect systems is

often spent on addressing and setting the communication parameters. It is not unreasonable to claim

that the most valuable tool for reducing integration costs is online tools such as auto-discovery,

browsing, and configuration. It can be achieved with measures such as connection to an endpoint

being continuous online, such as a data broker in the cloud.

OPC has attempted to simplify the process by allowing clients to go online on OPC server endpoints to

do the configuration while browsing the address space. Consequently, it is common to send fully

configured equipment between suppliers so that it can be connected in the lab for online configuration

and troubleshooting data sharing before finally being deployed in the field. SparkplugB has attempted

to develop plug-and-play for communication over MQTT. Based on information in BIRTH messages,

achieving the same structure on the address space while browsing as OPC UA devices is possible. The

downside as of now is that few implement the standard. The fact that MQTT devices only connect to

the data broker, a common endpoint for all clients, means that communication parameters do not vary

to the same extent as before. The broker can be publicly hosted during development at one of the

parties or in the cloud, always online, making it possible for the parties to connect with each other

from their locations. Another advantage is that the systems are decoupled in time, meaning they can

be unit commissioned in any order. It is then of course an advantage if the device producing data is

commissioned before the data consumer. Based on this, knowledge and setting up a data broker is

something everyone who wants to bet on MQTT as a solution for UNS should set up at their location.

6.3 Security
The security of encryption and authentication algorithms is in itself very secure. It is based on

cryptographic keys with a length that is extended to achieve the desired security level or to keep up

with developments in computing efficiency and improved algorithms used in brute-force attacks on

encrypted messages. The biggest weakness, however, is the human factors that can create security

holes, providing hackers access to the systems. The risk of someone accidentally having caused a

security weakness will increase as the system gets larger because more people get involved, which is

the whole idea behind the UNS. This argues that it is appropriate for brokers to be managed by a small

number of qualified personnel, as is the norm in most companies. Alternatively, it can be outsourced

to external cloud providers with advantages and disadvantages like trust issues that this entails.

Accidental errors during handshake procedures, storing sensitive information in memory, or

irresponsible storage and distribution of certificates can easily happen without a solid understanding

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 99 of 150 19.05.2023

of cyber security. Since a lack of understanding is the most common reason for security compromises,

not everyone should be able to implement functionality directly related to cybersecurity. Using

standardized and proven protocols such as TLS, which the MQTT architecture is based on, and software

developed by companies with this sole purpose is an efficient method of minimizing such risk and,

thereby the recommended strategy.

Fortunately, the UNS architecture is flexible, allowing the system designer to implement an

architecture that considers cyber security challenges. The principle of isolating the system by having

no physical link to the internet can be achieved with an MQTT broker architecture. Brokers can be

contained to local networks, only enabling internal data sharing within the company. Expanding the

network between different sites can be achieved using VPNs connecting brokers to brokers. VPNs have

been deployed for site-to-site communications for decades and are a well-tested and trusted

technology. The advantages of a VPN are the simplicity of encrypting all traffic at the IP level, being

transparent to layers higher up in the OSI model resulting in application data being encrypted without

these protocols implementing cryptographic algorithms themselves. Another advantage is that VPNs

can be administered by dedicated personnel with a high level of training in cyber security, minimizing

the risk of unidentified or unintended security weaknesses.

A good practice is to start with the least amount of access if the architecture is exposed on the internet.

In practice, it means that everything is initially locked down, avoiding unknown entry points that

hackers can exploit. It is then simpler to create and manage client certificates and open ports and IPs

on a need-to basis. The creation and distribution of certificates is a particularly important source of

compromise. It can often be cumbersome to distribute certificates, and simple solutions such as

someone sending the certificate unsecured by e-mail must be expected. Because certificates are not

restricted from being used by several clients, a hacker might gain access to the system by

eavesdropping or by a man-in-the-middle attack intercepting and manipulating the email. Although

in principle it can easily be detected by keeping track of the IP addresses using specific certificates, it

is not something that we see implemented regularly. A solution to minimize the risk is for each site to

establish its own root CA that can generate certificates that are verified by the counterpart via the CA

chain. Only the root CA certificate needs to be distributed remotely. Then all the client certificates can

be created and distributed locally, avoiding the risk when transferring over a global network.

Authentication is an effective tool to prevent outsiders from accessing the system. But as the system

grows, gaining more users, it can become problematic if all the users have access to all the data that

flows through the network. Therefore, access control by authorization is absolutely necessary and

should be implemented at most levels in the hierarchy. PLCs at the lowest level in the architectures

are configured according to what is necessary and safe to expose by implementing appropriate read

and write protections limiting unauthorized access. Intermediary devices like gateways can further

restrict access to variables by setting read and write protections on Tag sets, never violating what has

been configured on the edge devices. Role-based authorization to restrict access to selected topics is

often implemented in brokers efficiently disclosing information only to intended clients. Finally,

physical access to the network can be restricted by routers, switches, and firewalls implementing

filtering based on white-listing of allowed addresses or complete isolation. It must be emphasized the

ability to individually set access levels without controlling the overarching system that routes data is a

necessity for the feasibility of connecting edge devices to the architecture.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 100 of 150 19.05.2023

6.4 Databases optimization
Initially, we set up a simple and user-friendly database solution. PostgreSQL was an obvious choice for

us, as we had experience with it from previous courses. While it was suitable for testing and our specific

use case, it is generally not recommended to be used with something as information-heavy as storing

everything in the UNS due to its limited scalability. Our database could have been improved by

implementing connection pooling to optimize performance and reduce the number of connections

needed. This would maintain a set of open connections to our database rather than destroying and

creating new ones for each request. Nonetheless, this would only serve as a temporary solution until

the number of messages received per second further increased. Multiple databases and filtering that

limits the amount of data to each database are necessary when the systems become as large as UNS.

Relational databases like PostgreSQL face various challenges and limitations when storing large

amounts of data. These databases must be scaled vertically, requiring more powerful hardware to

handle increased data volume and concurrent requests. In contrast, NoSQL databases like MongoDB

achieve better scalability through parallel scaling with replication and data distribution. Replication

ensures that multiple nodes are available for data access, preventing a single overloaded node from

causing extended wait times. Distributing data across multiple nodes allows these databases to

accommodate a higher number of requests and concurrent users.

Databases and the amount of information they can hold vary significantly. Vertically scaling databases

can only handle so much data before their performance is affected, as increasing the hardware

capacity has its limitations. Horizontally scaling databases can generally hold more data as they can

distribute it across multiple nodes. However, even these databases may eventually experience

performance issues if they grow too large. Every sort of database system has a tolerance that should

not be exceeded, and in the case of our project and PostgreSQL, that tolerance is too low if it were to

be used in a real production environment.

This would be clearly visible when receiving high rates of incoming messages. After only a short time,

the database would hold millions of entries. Even with proper optimization and indexing, the search

times for a single entry in this database would be considerably longer than a MongoDB database that

uses the same optimization techniques. MongoDB also has multiple procedures that may be employed

to further optimize the database.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 101 of 150 19.05.2023

6.5 Unified namespace possibilities
Much of the motivation behind UNS is to establish connectivity between IT and OT systems, allowing

cloud-based applications to access data from the factory floor. Although this chapter does not directly

elaborate on the findings of our bachelor's thesis, it is relevant to include it as a feasibility study to

showcase the potential opportunities that UNS can enable.

6.5.1 Machine learning

Machine learning truly shines when dealing with massive amounts of data or complex relationships

that are difficult to detect or exploit through explicit programming. For instance, ML can be leveraged

to optimize controller parameters using time-series data from the dynamic response in the water rig

simulator at HVL. The availability of real-time data also allows for continuous monitoring of controller

performance, which could degrade because of changing process dynamics caused by component wear.

An ML algorithm can then indicate a warning or online adapt the parameters as needed. Moreover,

ML can identify hidden patterns that may serve as early signs of wear and the subsequent need for

maintenance. Automatic trend monitoring and detecting patterns involving the interplay of several

variables are more complex than traditional methods, such as evaluating single measurements, e.g.

vibration measurements against predetermined alarm limits can be exploited by ML. The wealth of

data made available by UNS serves as both the motivation for implementing and the opportunity to

exploit ML's potential.

Common in UNS, data context plays a crucial role in the effectiveness of these systems. In industrial

applications, good data is characterized by its relevance, accuracy, consistency, completeness,

timeliness, and granularity. Ensuring that data meets these criteria will also significantly enhance the

accuracy of machine learning and AI models in generating reliable forecasts and valuable insights.

The field of machine learning is extensive and requires a deep understanding to fully harness its

potential. Hence, it is advantageous that providers like Microsoft Azure offer solutions that can be used

to implement machine learning or AI algorithms. Like most other platforms, whether it is AWS

SageMaker or Google Cloud Platform, Microsoft ML integrates seamlessly with other Azure services,

such as Azure IoT Hub and Azure Stream Analytics. It has a wide range of pre-built ML models, pipelines

and AI services already available for building, training and supports various deployment methods. The

first point of integration would involve connecting the MQTT data to Azure IoT Hub, which can handle

large-scale ingestion of device-to-cloud telemetry data. This connection will enable the collection and

preprocessing of data from PLCs and other devices within UNS. Azure IoT Hub can then forward the

preprocessed data to Azure ML for further analysis.

Azure Stream Analytics, an event processing engine, can analyze real-time device data. It can filter,

aggregate and transform the incoming data, allowing us to focus on relevant information and minimize

noise in our dataset. Integrating Azure Stream Analytics with Azure Machine Learning enables the use

of machine learning models in real-time, potentially predicting errors or anomalies before they occur.

Overall, by integrating Microsoft Azure Machine Learning, IoT Hub, Stream Analytics and integrated

with a database like Azure Cosmos DB provides a robust and scalable system that leverages machine

learning and AI to analyze UNS data, predict errors and provide valuable insights into our connected

devices and processes. However, like most cloud platforms, it can become expensive depending on

the scale and complexity of the project.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 102 of 150 19.05.2023

6.5.2 Information hubs

Data has little value if it is not adequately structured or labeled according to its production. Within a

UNS architecture, numerous devices connected to the cluster may generate vast amounts of data that

need to be managed, processed, and analyzed effectively. One key challenge is the process of

standardizing and contextualizing the data to provide the best possible understanding and visualization

for future decision-making dependent on the data.

Information hubs serve as middleware solutions that connect to various data sources, including PLCs,

sensors, and other IIoT devices. These hubs can receive messages in various formats and process the

data to generate a standardized and contextualized format before it is published or stored in a

database. By doing so, they enable seamless data integration, facilitate advanced analytics, and

provide real-time analytics support. Information hubs play a crucial role in addressing these challenges

by providing a centralized data collection, management and processing platform.

HighByte is a solution aiming to standardize and contextualize industrial data. It is comparable to

Ignition Gateway, except that HighByte works with data from a collection of PLCs and other data-

producing devices. It is a central hub for transforming data into specific data-modeling schemas for all

other consuming applications. Standardization reduces the time and effort required by other systems

to preprocess the data. Unlike being focused solely on MQTT as a means for data sharing, HighByte

integrates with various servers and APIs, truly making it a solution for the concept of a unified

namespace.

6.5.3 MES

In today's business landscape, where time-to-delivery must be minimized and companies strive to

avoid excess inventory to save cost and avoid product expiration, the ability to adapt quickly is crucial.

To be able to make quick but wise decisions, one is dependent on good information. An overview of

the plant's overall status, or the status of multiple plants, is often necessary for effective resource and

manufacturing schedule planning. Manufacturing and Execution Systems (MES) are systems developed

to centralize the entire production at the management levels. These systems utilize planning tools that

integrate production resources, vendor deliveries, and customer demands to optimize the production

schedule. Information from MES systems is also valuable for strategic decision-making, such as

investment considerations by enterprise owners. Traksys is a MES system that intends to deliver real-

time actionable productivity intelligence which can be used to rapidly adapt based on the overall status

of the enterprise and external demand.

6.6 Future work
The UNS poses a challenge to the well-established security concepts companies have implemented to

secure their data. To further explore this topic, it would be beneficial to examine best practices in the

cybersecurity domain when transitioning from segmented architectures to a more open architecture,

having a larger attack surface and an increased number of connected users.

In addition, it may be valuable to explore the topics of auto-discovery and online tools like reflection

or inference [40], as they can significantly reduce integration times and increase profitability.

Redeploying the UNS broker solution on an AMD hardware infrastructure capable of supporting

Kubernetes with DNS discovery will enable the cluster broker to become a highly scalable solution,

similar to our desired solution described in Chapter 4.1.1.6.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 103 of 150 19.05.2023

7 Conclusion
During our thesis, we have developed a system that utilizes redundant HiveMQ brokers hosted both

locally and in the cloud to connect a wide range of IT and OT clients, including PLCs, OPC server

gateways, smart sensors, SCADA systems, databases, and a dashboard. These clients serve different

purposes, but they all communicate through event-based publishing and subscribing to minimize

traffic while maintaining device state awareness in the system. We see few alternatives apart from

MQTT when looking for technologies that can be used to implement the concept of a Unified

Namespace. At this point, it seems to be more of a question of implementing the MQTT architecture

or not transitioning to UNS at all. One major advantage of MQTT is that it can coexist on the same

networks as all other devices in the enterprise, not requiring all devices to support its technology.

Consequently, adopting a UNS strategy realized with the MQTT broker architecture does not require

an all-or-nothing investment since it can be implemented on existing Ethernet infrastructure.

The advantages of MQTT include its flexibility and high scalability, which make it ideal for integrating

new devices under the Industrial Internet of Things (IoT) category. As demonstrated in our thesis,

MQTT provides a relatively simple way to integrate these devices. While ad hoc integrations may not

always be the most effective, MQTT also enables solutions for optimized channels between different

systems, such as a SCADA system and an OPC server, using technologies like SparkplugB. Although our

tests generally show fast response times, we have encountered incidents where latency was high.

These results are typical for Ethernet, which is a best-effort protocol. While SCADA may accept this

variability as a supervisory system, not all industrial controllers can, and they need to be located in

deterministic networks. However, this does not mean that these controllers cannot share relevant data

with a UNS architecture.

Data organization is more crucial than ever when gathering everything in a unified namespace. A

practical method of naming objects is to use physical location, considered safe and scalable since two

things cannot occupy the same space. It is crucial to have a sufficiently deep hierarchy like ISA-95,

which is publicly accepted and can accommodate enterprises spread out over multiple locations. In

addition to hierarchical naming, standardized metadata is tremendously valuable, providing context

that enables automatic scaling, alarming, and other processing functions by the receiving systems.

Alternatively, to standardized metadata is to infer the information structure during operation,

commonly called reflection in IT systems. Plug-and-play data integration may still be challenging, but

online tools such as auto-discovery and browsing can undoubtedly help minimize integration times by

online inference. It is partially the success behind the OPC UA standard and something that MQTT is

trying to add to networks where both IT and OT devices are connected, helped along the way by

initiatives such as SparkplugB. Although these initiatives are still in their early stages and require a

commitment to specific protocols or vendors, they can potentially become the new norm for

automatic sharing in industrial networks.

The consequences of losing control of one's data can be catastrophic since then others can manipulate

the system, sensitive company secrets can be compromised, or the systems can be locked using

encryption by hackers. It is therefore understandable that owners may be reluctant to connect their

entire company infrastructure to the Internet. It is then an advantage that MQTT brokers work just as

well on local networks and can easily be expanded later, e.g., bridged between sites using VPNs

without unnecessary and avoidable costs.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 104 of 150 19.05.2023

APPENDIX A - Reference list

[1] HiveMQ GmbH, "HiveMQ Documentation," 2023. [Online]. Available:
[Accessed: Feb.5, 2023].

[2] A. Noah, "Vector Logo Zone - Gorgeous SVG logos," 2023. [Online].
Available: https://www.vectorlogo.zone/. [Accessed: Apr. 3, 2023].

[3] ChatGPT, "chatGPT logo," 2023. [Online]. Available:
https://en.wikipedia.org/wiki/ChatGPT#/media/File:ChatGPT_logo.s
vg [Accessed: Apr. 23, 2023].

[4] Siemens, "OPC UA PubSub with SIMATIC S7-1500 based on MQTT"
2021. [Online]. Available:
https://cache.industry.siemens.com/dl/files/826/109797826/att_10
85877/v3/109797826_OPC_UA_PubSub_MQTT_DOC_V1_0_en.pdf[Ac
cessed: Mar. 03, 2023].

[5] Vonnegut, "The CIA information security triad," 2016. [Online].
Available: https://devopedia.org/information-security-principles
[Accessed: Jan. 23, 2023].

[6] Sparkplug Specification Project Team, "Sparkplug 3.0.0: Sparkplug
Specification," Eclipse Foundation, 2022 [Online]. Available:
https://sparkplug.eclipse.org/specification/ [Accessed: Nov. 16, 2022.].

[7] P. Schume, "What is Industry 4.0 and how does it work? | IBM," 2023
[Online]. Available: https://www.ibm.com/topics/industry-4-0
[Accessed: Jan. 28, 2023].

[8] M. Sen Gupta, "What is Digitization, Digitalization, and Digital
Transformation?," ARC Advisory group, 2020 [Online]. Available:
https://www.arcweb.com/blog/what-digitization-digitalization-
digital-transformation [Accessed: Jan. 23, 2023].

[9] Skai, "How to Use Customer Behavior Data to Improve Your
Marketing Strategy," Mar. 24, 2022 [Online]. Available:
https://skai.io/blog/customer-behavior-data/ [Accessed: Jan. 25,
2023].

[10] F. Sofio, "How Machine Learning is Helping Engineers with Predictive
Maintenance and Prevent Equipment Failures | Valispace,"
@vali_space, Jan. 31, 2023 [Online]. Available:
https://www.valispace.com/how-machine-learning-is-helping-
engineers-with-predictive-maintenance-and-prevent-equipment-
failures/ [Accessed: Feb. 18, 2023].

[11] Cisco, "How Is OT Different From IT? OT vs. IT," 2023. [Online].
Available: https://www.cisco.com/c/en/us/solutions/internet-of-
things/what-is-ot-vs-it.html [Accessed: Jan. 20, 2023].

[12] S. J. Bigelow and B. Lutkevich, "What is IT/OT convergence?
Everything you need to know," TechTarget, Aug. 2021. [Online].
Available:

https://en.wikipedia.org/wiki/ChatGPT#/media/File:ChatGPT_logo.svg
https://en.wikipedia.org/wiki/ChatGPT#/media/File:ChatGPT_logo.svg
https://cache.industry.siemens.com/dl/files/826/109797826/att_1085877/v3/109797826_OPC_UA_PubSub_MQTT_DOC_V1_0_en.pdf
https://cache.industry.siemens.com/dl/files/826/109797826/att_1085877/v3/109797826_OPC_UA_PubSub_MQTT_DOC_V1_0_en.pdf
https://devopedia.org/information-security-principles
https://sparkplug.eclipse.org/specification/
https://www.ibm.com/topics/industry-4-0
https://www.arcweb.com/blog/what-digitization-digitalization-digital-transformation
https://www.arcweb.com/blog/what-digitization-digitalization-digital-transformation
https://skai.io/blog/customer-behavior-data/
https://www.valispace.com/how-machine-learning-is-helping-engineers-with-predictive-maintenance-and-prevent-equipment-failures/
https://www.valispace.com/how-machine-learning-is-helping-engineers-with-predictive-maintenance-and-prevent-equipment-failures/
https://www.valispace.com/how-machine-learning-is-helping-engineers-with-predictive-maintenance-and-prevent-equipment-failures/
https://www.cisco.com/c/en/us/solutions/internet-of-things/what-is-ot-vs-it.html
https://www.cisco.com/c/en/us/solutions/internet-of-things/what-is-ot-vs-it.html

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 105 of 150 19.05.2023

https://www.techtarget.com/searchitoperations/definition/IT-OT-
convergence [Accessed: May. 12, 2023].

[13] S. Gannu, "Standardize OT Device Drivers At The Edge," Forbes, Jan.
13, 2020 [Online]. Available:
https://www.forbes.com/sites/forbestechcouncil/2020/01/13/stan
dardize-ot-device-drivers-at-the-edge/ [Accessed: Feb. 1, 2023].

[14] M. Widjaja, "Decoupling Architecture," @InfoItArch, 2023. [Online].
Available:https://www.itarch.info/2020/05/decoupling-
architecture.html [Accessed: Jan. 12, 2023].

[15] M. Parris, "How all protocols fail at data access interoperability,"
Industrial Ethernet Book, vol. November, p.34-45, 2022. [Online].
Available: https://iebmedia.com/ebooks/november-2022-industrial-
ethernet-book/ [Accessed: Jan. 3, 2023].

[16] N. Yau, "Understanding Data - Context," Big Think, 2013. [Online].
Available: https://bigthink.com/articles/understanding-data-
context/ [Accessed: Jan. 6, 2023].

[17] Microsoft, "Namespaces (C++)," 2021 [Online]. Available:
https://learn.microsoft.com/en-us/cpp/cpp/namespaces-
cpp?view=msvc-170 [Accessed: Jan. 10, 2023].

[18] J. Hottell, "Efficient IIoT Communications," Cirrus link, pp. 48, 2019.
[Online]. Available: https://cirrus-link.com/wp-
content/uploads/2019/12/Efficient-IIoT-Communications.pdf
[Accessed: Jan.10, 2023].

[19] Tripwire, "Cybersecurity," TripWire's Editorial Staff, 2019. [Online].
Available: https://www.tripwire.com/state-of-security/air-gap-
industrial-control-networks [Accessed: Jun. 17, 2023].

[20] OPC Unified Architecture, IEC62541, O. Foundation, 2020.
[21] MQTT Version 5.0, ISO/IEC 20922, O. Standard, 2019. [Online].

Available: Latest version: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[22] ISA95, Enterprise-Control System Integration, IEC/ISO 62264, ISA,
2016.

[23] W. Stallings, Cryptography and Network Security Principles and
Practice, 7 ed. Global edition: Pearson Education Limited, 2016.

[24] "Virtual private network - Wikipedia," 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Virtual_private_network [Accessed:
Feb. 5, 2023].

[25] GeeksForGeeks, "Web Technology," 2023. [Online]. Available:
https://www.geeksforgeeks.org/web-technology/ [Accessed: Jan.
22, 2023].

[26] A. M. Kurian, "Understanding Protocol Buffers," in Better
programming, 2020. [Online]. Available:

https://www.techtarget.com/searchitoperations/definition/IT-OT-convergence
https://www.techtarget.com/searchitoperations/definition/IT-OT-convergence
https://www.forbes.com/sites/forbestechcouncil/2020/01/13/standardize-ot-device-drivers-at-the-edge/
https://www.forbes.com/sites/forbestechcouncil/2020/01/13/standardize-ot-device-drivers-at-the-edge/
https://www.itarch.info/2020/05/decoupling-architecture.html
https://www.itarch.info/2020/05/decoupling-architecture.html
https://iebmedia.com/ebooks/november-2022-industrial-ethernet-book/
https://iebmedia.com/ebooks/november-2022-industrial-ethernet-book/
https://bigthink.com/articles/understanding-data-context/
https://bigthink.com/articles/understanding-data-context/
https://learn.microsoft.com/en-us/cpp/cpp/namespaces-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/namespaces-cpp?view=msvc-170
https://cirrus-link.com/wp-content/uploads/2019/12/Efficient-IIoT-Communications.pdf
https://cirrus-link.com/wp-content/uploads/2019/12/Efficient-IIoT-Communications.pdf
https://www.tripwire.com/state-of-security/air-gap-industrial-control-networks
https://www.tripwire.com/state-of-security/air-gap-industrial-control-networks
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://en.wikipedia.org/wiki/Virtual_private_network
https://www.geeksforgeeks.org/web-technology/

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 106 of 150 19.05.2023

https://betterprogramming.pub/understanding-protocol-buffers-
43c5bced0d47 [Accessed: Apr.22, 2023].

[27] N. Ramirez, "Load Balance Your Servers - HAProxy Technologies" Jun.
05, 2021. [Online] Available:
https://www.haproxy.com/blog/haproxy-configuration-basics-load-
balance-your-servers/ [Accessed: Feb. 04, 2023]

[28] The Linux Foundation, "Kubernetes Overview," 2023 [Online].
Available: https://kubernetes.io/docs/concepts/overview/
[Accessed: Feb. 21, 2023].

[29] Docker Inc., "Docker containers," Nov. 11, 2021. [Online]. Available:
https://www.docker.com/resources/what-container/ [Accessed:
Feb. 7, 2023].

[30] HiveMQ, "HiveMQ Media Kit - High Resolution Logo Downloads,"
2023. [Online]. Available: https://www.hivemq.com/logos-and-
media-kit/ [Accessed: Apr. 19, 2023].

[31] Standards Norway, "NORSOK," I-005, 2021. [Online]. Available:
https://www.standard.no/en/sectors/energi-og-
klima/petroleum/norsok-standards/#.Y_cw72nMK3A [Accessed:
Feb. 19, 2023].

[32] O. Sande, “Sikkerhet, Styring/regulering og Overvåkning”, Western
University of Applied Science: Olav Sande, 2020, p. 79.

[33] OPC Foundation, "UA Companion Specifications," 2023. [Online].
Available: https://opcfoundation.org/about/opc-technologies/opc-
ua/ua-companion-specifications/ [Accessed: Feb. 12, 2023].

[34] Espressif Systems, "ESP32-Ethernet-Kit V1.2 Getting Started Guide -
ESP32 - ESP-IDF Programming Guide latest documentation" Online].
Available: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/hw-reference/esp32/get-started-ethernet-
kit.html [Accessed: JFebn. 10 6, 2023].

[35] Espressif Systems, "ESP32-DevKitC V4 Getting Started Guide - ESP32 -
ESP-IDF Programming Guide latest documentation”. 2023 [Online].
Available: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
[Accessed: Jan. 10, 2023].

[36] P. Van Oosterwijck, "wESP32: Wired ESP32 with Ethernet and PoE,"
hackadayio, Sept. 30, 2021. [Online]. Available:
https://hackaday.io/project/85389-wesp32-wired-esp32-with-
ethernet-and-poe [Accessed: Jan. 6 2023].

[37] Sonatype, "Maven central library," Sonatype, Inc., Available:
https://central.sonatype.com [Accessed: Feb. 2, 2023].

[38] Wikipedia Foundation, "Algorithms for calculating variance," [Online].
Available:

https://betterprogramming.pub/understanding-protocol-buffers-43c5bced0d47
https://betterprogramming.pub/understanding-protocol-buffers-43c5bced0d47
https://www.haproxy.com/blog/haproxy-configuration-basics-load-balance-your-servers/
https://www.haproxy.com/blog/haproxy-configuration-basics-load-balance-your-servers/
https://kubernetes.io/docs/concepts/overview/
https://www.docker.com/resources/what-container/
https://www.hivemq.com/logos-and-media-kit/
https://www.hivemq.com/logos-and-media-kit/
https://www.standard.no/en/sectors/energi-og-klima/petroleum/norsok-standards/#.Y_cw72nMK3A
https://www.standard.no/en/sectors/energi-og-klima/petroleum/norsok-standards/#.Y_cw72nMK3A
https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/
https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-ethernet-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-ethernet-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-ethernet-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://hackaday.io/project/85389-wesp32-wired-esp32-with-ethernet-and-poe
https://hackaday.io/project/85389-wesp32-wired-esp32-with-ethernet-and-poe
https://central.sonatype.com/

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 107 of 150 19.05.2023

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
[Accessed: Feb. 2, 2023].

[39] IBM, "Numbers - IBM Documentation," Feb. 7, 2023. [Online].
Available: http://www.ibm.com/docs/en/idr/11.4.0?topic=types-
numbers [Accessed: Feb. 13, 2023].

[40] Microsoft, "Reflection in .NET," Sept. 15, 2021. [Online]. Available:
https://learn.microsoft.com/en-us/dotnet/framework/reflection-
and-codedom/reflection [Accessed: Feb. 3, 2023].

[41] E. Systems. "ESP32­WROVER­E & ESP32­WROVER­IE Datasheet."
[Online]. Available:
https://www.espressif.com/sites/default/files/documentation/esp3
2-wrover-e_esp32-wrover-ie_datasheet_en.pdf [Accessed: Jan 10,
2023].

[42] L. Technologies. "LTC4267 Power over Ethernet IEEE 802.3af PD
Interface with Integrated Switching Regulator DATASHEET." [Online].
Available: https://www.analog.com/media/en/technical-
documentation/data-sheets/4267fc.pdf [Accessed: Jan 7, 2023].

[43] L. Woodahl. "Ethernet PHY PCB Desgin Guidelines." [Online].
Available: https://www.ti.com/lit/an/snla387/snla387.pdf
[Accessed: Jan 6, 2023].

[44] Microchip. "LAN8720A Datasheet." [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/8720a.pdf
[Accessed: Jan 6, 2023].

[45] S. LABS. "SINGLE-CHIP USB-TO-UART BRIDGE CP2102/9 Datasheet."
https://www.silabs.com/documents/public/data-sheets/CP2102-
9.pdf [Accessed: Jan 6, 2023].

[46] A. LaMothe, "Crash Course Electronics and PCB Design," Udemy, pp.
[Online]. Available: https://www.udemy.com/course/crash-course-
electronics-and-pcb-design/ [Accessed: Dec 12. 2021].

[47] P. Salmony, "Phil's Labs Videos," [Online]. Available:
https://www.phils-lab.net/videos [Accessed: Jan 3, 2023].

[48] R. Feranec, "How to Decide on Your PCB Layer Ordering, Pouring and
Stackup (with Rick Hartley)," Mar. 4, 2021. [Online]. Available:
https://www.youtube.com/watch?v=52fxuRGifLU [Accessed: Jan. 8,
2023].

[49] B. Suppanz, "Printed Circuit Board Trace Width Tool | Advanced
Circuits," [Online] . https://www.4pcb.com/trace-width-
calculator.html [Accessed: Jan 8. 2023].

[50] Siemens, "Programming an OPC UA .NET Client with C#" [Online].
https://support.industry.siemens.com/cs/document/42014088/pro
gramming-an-opc-ua-net-client-with-c-for-the-simatic-net-opc-ua-
server?dti=0&lc=en-DZ [Accessed: Jan 20. 2023].

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
http://www.ibm.com/docs/en/idr/11.4.0?topic=types-numbers
http://www.ibm.com/docs/en/idr/11.4.0?topic=types-numbers
https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/4267fc.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/4267fc.pdf
https://www.ti.com/lit/an/snla387/snla387.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/8720a.pdf
https://www.silabs.com/documents/public/data-sheets/CP2102-9.pdf
https://www.silabs.com/documents/public/data-sheets/CP2102-9.pdf
https://www.udemy.com/course/crash-course-electronics-and-pcb-design/
https://www.udemy.com/course/crash-course-electronics-and-pcb-design/
https://www.phils-lab.net/videos
https://www.youtube.com/watch?v=52fxuRGifLU
https://www.4pcb.com/trace-width-calculator.html
https://www.4pcb.com/trace-width-calculator.html
https://support.industry.siemens.com/cs/document/42014088/programming-an-opc-ua-net-client-with-c-for-the-simatic-net-opc-ua-server?dti=0&lc=en-DZ
https://support.industry.siemens.com/cs/document/42014088/programming-an-opc-ua-net-client-with-c-for-the-simatic-net-opc-ua-server?dti=0&lc=en-DZ
https://support.industry.siemens.com/cs/document/42014088/programming-an-opc-ua-net-client-with-c-for-the-simatic-net-opc-ua-server?dti=0&lc=en-DZ

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 108 of 150 19.05.2023

APPENDIX B - Project organization

The project group consists of three students from Western University of Applied Science and are

under the supervision of college lecture Adis Hodzic.

Work tasks are clearly divided between the group members. Cross-coordination to integrate

subsystems are done by weekly meeting and when the need arises.

We have established weekly coordination meetings which are conducted over microsoft teams:

• Week start - Monday 10:00 (every week)

• Internal coordination - Thursday 1100 (every two weeks)

• Supervisor coordination - Thursday 11:00 (every two weeks)

Task tracking, document control and project organization are administered through teams. Source

control is by GitHub.

Responsibilities for external coordination has been distributed to ensure continuity.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 109 of 150 19.05.2023

8 APPENDIX C - Design and manufacture of UNS printed circuit board
For our thesis, we wanted to apply our knowledge of electrical engineering disciplines as well. Therefor

we designed, built, and tested two PCBs during the course of this thesis. This appendix will cover these

aspects.

8.1 Overarching design philosophy
The entire PCB is divided into four quadrants. The philosophy

behind this idea is to enable independent debugging of each

section. Each section is separated by a jumper bridge, which

acts as a quadrant isolator. As the PCB can have multiple

potential power sources, we incorporated an onboard voltage

regulator and used diodes to isolate each supplier, considering

the voltage span of 5V to 12V from the various sources. This

regulator provides the PCB with 3.3V DC and a built-in LED for

easy determination of power status.

8.1.1 ECAD

ECAD, or Electronic Computer-Aided Design, is a crucial

component of modern electronic design and engineering. It

encompasses the use of software tools to create, design, simulate, and analyze electronic circuits and

systems. ECAD software allows engineers to efficiently design printed circuit boards (PCBs),

schematics, and various electronic components.

The software we used to design the PCB is EASYEDA,

primarily because of previous experience with the

software. Although Altium Designer is considered the best

software for PCB design, it was not chosen due to its high

subscription fees. As a result, we had to manually route all

the individual traces on the board, with limited

automation available for tasks like IC fan-out and auto

tracing.

EASYEDA consists of two designers. The first designer is

used to create the actual circuit we intend to build in a

schematic format, as shown in Figure 88. The second

designer is utilized for tracing the individual traces on the

PCB based on the circuit schematic drawn, as depicted in

Figure 87.

Figure 89 Segregated PCB Quadrants

Figure 90 prototype trace layout without ground-
planes, red toplayer, blue bottomlayer

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 110 of 150 19.05.2023

8.1.2 MCU

The initial component chosen was the MCU (Microcontroller Unit), which needed to support multiple

programming languages such as C++, Python, and C# if possible. We decided to base our design on the

ESP32 WROVER-E System on Chip (SoC). This particular SoC has the potential to run micropython,

nanoFramework (C#), and C++. Additionally, it offers built-in Bluetooth and Wi-Fi capabilities. We

selected the WROVER N16R8-E due to its ability to run two threads in parallel and its built-in 16MB

flash memory and 8MB usable PSRAM. Design reference found in datasheet [41]

8.1.3 Power over Ethernet

The module should have the capability to run on the industry-standard Power over Ethernet (PoE),

which enables powering the entire PCB through the supplied current via an Ethernet cable. Currently,

there are multiple PoE protocols available that can deliver power ranging from 15.4W to 100W. For

our purposes, we will focus on the 15.4W protocol for two reasons. Firstly, it simplifies the PCB build

by requiring fewer components, and secondly, it prioritizes safety.

The 15.4W protocol can be further categorized into passive and active components. The active

components are controlled by the PoE injector, which supplies power through the Ethernet cable. The

PCB must support both passive and active protocols, which is why the IC LTC 4267 [42] was chosen to

accommodate the active protocol for receiving PoE. Passive support does not require any power

handshake to initiate power delivery.

Initially, there was consideration to layout the PoE module on a separate PCB. However, due to the

cost-effectiveness of ordering a PCB with a small size, we opted to integrate it into the main board with

a separate ground. For the final design, we will reassess the separation of the PoE module, ensuring a

Figure 91 Initial protoype schematic design

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 111 of 150 19.05.2023

minimum of 2.54mm space between the transformer and neighboring ICs on the board, in accordance

with Texas Industries PCB guidelines [43].

8.1.4 LAN

Since our goal was to incorporate PoE capability into the PCB, it made logical sense to include Ethernet

LAN support as well, since we needed the ethernet jack for PoE. Initially, we opted for the LAN8720A

due to its usage in another design alongside the ESP32 WROVER (https://github.com/c-/ESP32-

Ethgate), which intrigued us because of its minimal component requirements. However, upon closer

examination of the LAN8720A datasheet [44], we discovered that the manufacturer recommended

additional resistors and capacitors to be added to the IC. For the prototype, we decided to follow the

manufacturer's recommendations. However, we will utilize the prototype to assess the feasibility of

removing some of these resistors without experiencing packet loss in TCP/IP traffic.

8.1.5 Programmer

The module should be programable without using external Programmer hardware, it should also be

connectable by the EU standard USB-C. In order to achieve this, we chose the CP2102 USB to UART

bridge. Initially FT2232H was chosen, but due to no need for the onboard debugger JTAG, it was

discarded due to higher cost than the CP2102. Datasheet used during the design phase to ensure

values for RC delay on data lines other various design criteria [45].

8.1.6 Debugging

In order to increase our success rate with

the prototype, due to our limited PCB

manufacturing experience. We attempted

to identify the areas in the circuit design

that may have uncertainties. This is where

the different datasheets come into play, as

each one provides a recommended circuit

application for the interconnected ICs in the build. To avoid being locked into a single solution, we

added several pin headers to the design. This allows us to reconfigure the board using wires during the

testing phase of the manufactured board. However, it's important to note that certain critical data

lines are protected from this practice to ensure their integrity. The impact of adding pin headers to the

traces, which can alter the trace impedance, will be discussed in Chapter 10.2.4 Trace routing.

Additionally, we took the step of separating the various ICs on the board so that not all modules will

be operational when the card is connected, unless a jumper is added to the pin header to supply power

to the specific IC.

Figure 92 Example of the use of pinheader on strapping pins

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 112 of 150 19.05.2023

8.2 PCB layout design criteria’s of prototype
One of the most important elements when designing a PCB is the always striving for reduction of

electromagnetic interference. In this design we have followed multiple guidelines for ensuring as best

results as possible, the routing of Ethernet on the PCB is heavily influenced by Texas instruments

ethernet PHY PCB design layout checklist [43]. These guidelines give directions on how magnetic

isolation, earth ground isolation, differential pair tracing and differential pair should be done.

The design and routing of the PCB is also based on the advices gives trough the e-course Crash Course

Electronics and PCB Design [46] and the YouTube channel Phil’s lab [47]

8.2.1 Units

In this appendix the unit mil will be used which refers to one thousandth of an inch, this is due to all

documentation used in this build have been using this unit, including EASYEDA. Therefore, it was

advantageous for us to change from metric, rather than converting all units. For reference 1mil =

0.0254, 10mil = 0.254mm, 50mil 1.27mm, 100 mil = 2.54mm.

8.2.2 PCB layer stack up and size

A very important step in PCB design is always to try to reduce EMI. One key decision is what layer stack

up to choose, this means in practice how many layers should the board consist off and what should be

on the different layers. One of the primary drivers of PCB layer stack-up has been price. The rule of

thumb is the more layers a board has the more expensive it is. The manufacturer we have chosen to

use is JLCPCB, and with a 2-4 layer board the price is 7$, with a 6 layer board the price is 63$. Therefor

a 4 layer board has been chosen. We wanted to get the test board as big as possible without major

price changes to accommodate as many build possibilities on one board. Therefore a max-limit was set

to 95mm x 95mm, as this size will still give a board for 7$

The recommended stack-up is widely debated, one of the more popular 4-layer board stack-up is

signal-signal-ground-power. This is a stack we do not wish to use, the reasoning behind is our own

intuition on how the electromagnetic field works and the detailed PCB ground plane seminar of Rick

Hartley (Principal Engineer at RHartley Enterprises, and pcb designer for last 40 years) [48]

As signal paths will be based on a positive current, the magnetic field will need a return path to the

ground plane, this means if we have multiple signal layers stacked on top of each other, the signal

layers will reference the ground plane thro the other signal layer. Therefore, we chose to use a

signal/power-ground, ground-signal/power that will have a ground reference plane straight under the

trace strip. This also has the added benefit of reducing crosstalk between traces on the board as we at

certain places have to traces underneath another.

Figure 93 Optimal layer stackup to reduce EMI
propegation

Figure 94 Bad layer stackup, that increases
EMI propagation between traces.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 113 of 150 19.05.2023

The reduction comes from the dual grounding planes in the PCB, making both signal planes reference

each other. In order to equalize the 2 ground planes as much as possible we have stitched them

together with VIAs(trace tunnel through PCB to connect two traces) the stitching vias are placed with

300 mil spacing where possible trough out the PCB.

8.2.3 Magnetic isolation

When utilizing PoE, two different ground connections will be present on the card. This distinction arises

from a variance in ground references between the PoE injector and the PCB, where each may have

their own respective ground references. As a result, these two ground planes are separated by a

minimum distance of 200 mils. While the TI guidelines [43] recommend a minimum separation of 20

mils, we have incorporated a larger tolerance due to the size of the test PCB.

Furthermore, the guidelines suggest establishing a connection between earth ground and ground using

a capacitor and a high-value resistor of 1M ohm. After evaluating various designs, we have opted for a

parallel configuration with a 4700pF capacitor, which aligns with our chosen approach as well.

In terms of transformer placement, the guidelines dictate that it should be positioned no less than

2.54 mm away from any other IC on the board. In our design, we have two transformers: one located

at TR1 and the second situated within the Ethernet connector.

Figure 95 Protype magnetic isolation bridge in groundingplane

8.2.4 Trace routing

The main philosophy when hand routing the traces on the board is to start with component placement.

After the components have been placed out with the magnetic specifications distance and components

like coupling capacitors for ICs are placed, the first traces are routed. The first to be traced are critical

data-lines where differential pairs need to be no more than. In this design the critical data-lines are.

- Differential pair from Ethernet-jack to LAN IC (TXN/TXP and RXN/RXP)

o Maximum 50mil in difference between differential pair

o TXN/TXP pair has a total of 3 mil difference.

o RXN/RXP pair also 3 mil in difference.

- Differential pair LAN IC to ESP32 (TX0/TX1 and RXD0/RXD1)

o Maximum 50mil in difference between differential pair

o TX0/TX1 pair has 1 mil difference

o RXD0/RXD1 pair has 1 mil difference

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 114 of 150 19.05.2023

In accordance with the TI ethernet guidelines [43] the differential impedance of TXN/TXP and RXN/RXP

should be 100 ohm, these are called the MDI traces in the guideline. We used EASYEDA impedance

calculator and to get the differential impedance at 100 ohm and the traces width must be 6.89mil.

TX0/TX1 and RXD0/RXD1 are called MII traces and should have a single ended 50 ohm impedance.

This gives us a recommended trace-width of 11.55mil.

Its recommended to only cross signal paths diagonally when routing PCB. This is ignored due to the

stackup of this PCB with double ground layer in 2 center layers. When routing return path should

always be considered, when placing a VIA through the board, if possible a ground via should

accompany it to reduce EMI. For powerlines we have assumed a maximum of 1 A traveling in the 3.3V

powerline. The pcb copper pour is from the manufacturer set to 1 oz/ft. Using the online trace width

calculator [49] it will give us a raise of 2.92 celcius at an ambient temperature at 25 celcius using a

tracewidth of 25 mils.

8.2.5 Component packages

When building the PCB, the mounted IC’s comes in different packages and have 2 over arching

charactertics, mainly Surface mounted devices(SMD) the IC only have connection points on one

surface, trough hole components that pierces all layers of the board. Using SMD components will

greatly reduce the amount of handsoldering needed due to the Reflow soldering technique we will be

applying to the PCB.

As previous mentions the IC’s comes in different packages. These have specific designators like QFN,

SOP, SOT which indicates what type of package they have. We will avoid the BGA package at all costs

as this package have leads where we connect to the IC underneath it. This will make it practically

impossible for us to detect and correct any soldering flaws on that particular IC.

https://www.electronicsforu.com/wp-contents/uploads/2019/12/1-1.jpg

8.2.6 Soldering techniques

The main soldering technique we will be using is Reflow,

this technique is done by applying solder paste with pre-

manufactured solder stencil to apply the solder paste to the

PCB. Then we will add the components by hand onto the

PCB and using a Reflow oven to bake the PCB. The

temperature set on the oven follows the particular reflow

curve specified in the datasheet of the used solderpaste.

Since we are not using additional framework on the SMD

stencil, we will accidentally add more solder paste than necessary. Therefor the PCBs will need to be

inspected and corrected by hand using heat gun and microscope in combination with solder flux,

Figure 97 Solder paste reflow curve

Figure 96 Different IC packages

https://www.electronicsforu.com/wp-contents/uploads/2019/12/1-1.jpg

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 115 of 150 19.05.2023

where the flux is added to ensure no additional oxidation of the solderpaste when remelting with

heatgun. We have observed that this phenomena has a tendency to happened with QFN packages.

8.3 Testing regime of prototype
After the soldering of the board, we need to perform a series of tests on the board. We have

determined that PoE section have the highest risk of potential destroying the prototype and will

therefore be tested last. During the testing a pre-written test program will be used that asks the MCU

to send a few characters over the serial link such that we may determine 2 way connection to MCU via

UART. Underneath we will list in what order we are to test the prototype board.

1. Evaluate ESP32

a. Program ESP32 using offboard programmer ESP-PROG device using test program. The

offboard programmer will supply the card with power through the 1.27mm header.

b. no additional power to be added to the card at this point.

c. blue led onboard should indicate power on board.

d. if no response from MCU check strapping pins on H3 in accordance with datasheet

i. ground MTDI.

2. Evaluate onboard USB-UART IC by using onboard USB-C connection from computer.

a. Ensure pin-headers H1 are jumped before testing.

b. Load test program from USB-C to determine connection

3. Evaluate LAN module

a. Add jumper to pinheader H6, H9 and H10 before testing.

i. H10 ETH_CLK to be connected to ETH_CLK_IO33 at initial try.

ii. H6 3v3_LAN to be connected to ferrite bead.

iii. H9 to be connected to capacitor to GND.

b. Loading a program on MCU, that will try to establish LAN connectivity using ethernet.

c. Test for packetloss over ethernet to ensure stable connection.

4. Replace R12/R13/R14/R15/R31/R32 with 0 ohm resistor, retest for package loss.

5. Test of PoE.

a. Ensure board is disconnected from all power sources.

b. Add jumpers to pinheaders

i. H2 straight bridge jumpers

ii. H5 straight bridge jumpers

c. insert a non-connected ethernet cable to PCB.

d. BEFORE ADDING POWER. Ensure PCB isolation, as PCB will receive up to 57 volts and

due to the voltage, electrical transfer via skin-contact is possible.

e. Insert PoE injector between LAN switch and PCB ethernet connector.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 116 of 150 19.05.2023

8.3.1 Prototype 1 Build phase

After receiving the components, we promptly began assembling

our PCB design. First, we secured the PCB to the table using

tape. Then, we placed the SMD stencil onto the PCB and applied

solder paste. Using a plastic card, we carefully spread the paste

evenly over the stencil. After a few attempts, we achieved a

highly satisfactory result with the solder paste uniformly

applied to the PCB.

With the solder paste in place, we proceeded to manually add

all the various components to the board. During this process,

we encountered our first design mistake. We had mistakenly

acquired a MID USB-C connector that had pins located 2mm

above the PCB. To address this issue, we bent the connectors at

an angle so that they could properly connect with the pads on

the PCB.

Next, we placed the PCB in the school reflow oven, which was

set to match the reflow profile of the solder paste. However, due

to our previous makeshift fix, the USB-C connector did not

attach itself correctly to the pads. Consequently, we had to

resort to hand soldering the USB-C connector. This presented a

significant challenge, as the small size of the USB-C connector's

pads (0.2mm spacing) made it impossible to solder them

without the aid of a microscope. Fortunately, we were able to

utilize the microscope available at the university to assist us. This

enabled us to identify any potential short circuits while

soldering. After numerous attempts, we successfully soldered

the USB-C connector to the PCB.

8.3.2 Initial Power testing

To ensure that our PCB was powered, we began by connecting a 5V source to the power circuit. We

immediately noticed that our Blue LED illuminated, indicating that the regulator was functioning

properly. To conduct a safe and thorough test, we measured the voltage output from the voltage

regulator and confirmed that it measured 3.3V, aligning with the specified value.

8.3.3 Test of ESP32 MCU quadrant

We initially focused on testing the ESP32 quadrant since it was crucial for the operation of the other

quadrants. As the other quadrants were disconnected at this stage, we didn't have access to an

onboard programmer. Instead, we utilized an offboard programmer, specifically the ESP-PROG with

an FT2232HL USB-UART bridge. This choice was primarily based on the group's experience with this

particular debugging tool.

We programmed the ESP32 with a small code that would transmit a string through the UART

connection. Once the MCU was successfully loaded, no further modifications were required to the

quadrant for it to function. The ESP32 promptly began publishing the designated string on the UART

connection. No adjustments to the strapping pins were necessary.

Figure 98 SMD stencil

Figure 99 Components placed on solder paste

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 117 of 150 19.05.2023

8.3.4 Test of USB programmer quadrant

After ensuring that the MCU quadrant was operational, we

proceeded to connect the on-board USB programmer

quadrant to the MCU quadrant and plugged in a USB-C

cable to the PCB. However, initially, nothing happened. We

were unable to establish a connection with the CP2102

module from a computer, leading us to believe that the

module was not receiving power. Normally, we should be

able to detect the module as a COM port on a computer.

Since we had confirmed the functionality of the 3.3V

circuit on the board during the previous MCU testing, we

investigated further. Upon reviewing our design, we

discovered that we had missed a connection from the

USB-C 5V line to the VBUS pin.

We resolved the issue temporarily by hand soldering a

cable from the 5V output of the regulator. However, it's

important to note that this solution will not be

implemented in the final design. This is because there

may be situations where the input voltage to the

regulator exceeds 5V. After implementing this temporary

fix, the module powered on successfully, and we were able to detect the CP2102 on our computer as

a COM port.

When attempting to load the program onto the ESP32

quadrant using the CP2102, we encountered an error stating

that the ESP32 was not in download mode. This indicated a

problem with our auto-configure circuit, which was based on

the recommended schematic for the CP2102. This circuit is

responsible for switching the EN and IO0 pins on the ESP32

module to enable download mode.

During the design phase, the

datasheet recommended using a

10k resistor and a 0.1uF capacitor in the RC delay circuit. However, after

facing this issue, we conducted further investigation into the power

schemas for the module. We discovered that the manufacturer considers

the 10k resistor and 0.1uF capacitor as a baseline and suggests the

possibility of requiring additional capacitance in the RC delay circuit. As a

result, we added an additional 10uF capacitor between the EN line and GND.

This fix immediately resolved the programming issue, allowing us to

successfully program the ESP32 with our program. We were able to receive a

reply over the USB-C connection, confirming the successful operation of the

module.

Figure 100 Design recommendation of power on CP2102

Figure 101 5V to VBUS cable.

Figure 102 Auto configure circuit with RC delay.

Figure 103 10uf EN FIX blue purple
gray wire

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 118 of 150 19.05.2023

Figure 106 Wireshark network packet analyser data

8.3.5 Test of LAN quadrant

During the design phase, it was noticed that many designs

using the LAN module LAN8720 did not incorporate the

required inline reflection inhibit resistors on the data lines,

that was recommended in the datasheet. We wanted to

evaluate the feasibility of omitting these resistors by

conducting measurements with and without them. However,

before proceeding with these measurements, it was crucial

to ensure that the LAN module was functioning properly.

Initially, when connecting the LAN8720 quadrant, we

attempted to establish communication between the ESP32

and the LAN8720 module by retrieving the module's MAC

address using the ESP ETH.H library. However, the LAN8720

module did not respond to any calls from the MCU.

Although we confirmed that the module was powered on

as we had connected two LEDs to it, this discrepancy

prompted us to conduct a thorough investigation of our

design.

Upon examination, we discovered that we had

inadvertently set one of the strapping pins, nINTSEL, to a

low state when it should have been set to high. After

reconfiguring the PCB to set nINTSEL = 1, the LAN module

powered on successfully, and we obtained the MAC

address as intended.

With the MAC address in hand, we proceeded to develop a small program to ping the IP address

8.8.8.8, resulting in our first successful internet connection over an Ethernet cable.

To assess the stability of the Ethernet connection and detect any potential packet losses, we employed

the Wireshark application on a computer within the network where the ESP32 was situated. Our

testing involved sending a 512-byte ping packet every second for 145 seconds to measure packet loss.

Figure 104 Recommended strapping pin config

Figure 105 Serial output from ESP32 on internet test

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 119 of 150 19.05.2023

Unfortunately, these tests revealed a significant issue with our module, as we experienced a high rate

of network packet loss.

Considering the extensive investigation we had previously

conducted, we were confident that our design adhered to the

recommended reference design. Consequently, we proceeded to

measure all the lines between the ESP32 and the LAN module.

Throughout these measurements, we continuously monitored

packet loss between the ESP32 and a computer. It was during the

measurement of the CLK line that we observed a sudden,

uninterrupted stream of packets. This observation indicated a

problem with our CLK line on the PCB.

To further analyze and resolve this issue, we introduced a

measurement probe to the CLK line, which introduced a 10M ohm

resistor and 12pF capacitance between the CLK line and GND, as

specified by the probe. This probing helped us identify a potential

solution. We began by adding various capacitor values in the range

of 12pF to 1nF between the CLK line and GND, attempting to

reproduce the effect observed with the probe attached. However,

these tests yielded no significant results. Subsequently, we

introduced a 1M ohm resistor between the CLK line and GND,

resulting in a reduction of packet loss over the network. Further

improvement was achieved by adding a 10k resistor between the CLK line and GND, which ultimately

eliminated packet loss entirely.

Now that the module was operating satisfactorily, we proceeded with testing the reflection resistors.

Firstly, we measured the signal of the data lines using an oscilloscope connected to them before and

after the modification. We found no signal degradation before or after removing the reflection

Figure 108 CLK line wired out of PCB for
testing

Figure 107 CLK line fix yellow, green, orange
wire

Figure 109 measured packetloss before and after modification

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 120 of 150 19.05.2023

inhibit resistors. Therefor we replaced them with 0 Ohm resistors, and after the replacement, no

packet loss was measured.

Figure 110 Connected to internet with IOTT device

Figure 111 Measurement of datalines with and without reflection resistors

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 121 of 150 19.05.2023

8.3.6 Test of Power over ethernet quadrant(PoE)

Upon thorough testing, the group encountered

difficulties in getting the PoE quadrant of the PCB to

function properly. This quadrant was the last one

tested due to the potential risk of damaging the

entire PCB. To test the PoE functionality, an active

PoE injector was acquired and connected between

the WAN outlet and the PCB's Ethernet cable. The

injector followed the IEEE 802.3af standard and

delivered up to 12.95W of power over Ethernet.

The PoE injector used a pulse to detect PoE

consumers, and a handshake was required from the

PoE consumer for the injector to supply power

above 10mA on the cable. This ensured that non-

PoE devices did not receive power over Ethernet.

While the group could measure the signature from

the injector at the inputs of the LTC4267 PoE

module, no handshake response was detected with

oscilloscope.

Extensive investigation of the PoE circuit was

conducted, comparing it to the recommended

circuit, and some flaws were identified. To address

these issues, the circuit was modified using a

breadboard and DuPont cables for rewiring.

Despite these modifications, the handshake still

could not be detected. The main issue discovered

was that the measured voltage from the PoE

injector was only 1.2 volts, whereas the LTC4267

module required a minimum peak voltage of 2.8

volts to respond to the signature.

Further investigation revealed that Analog Devices, the supplier of the LTC4267 module, did not use

the recommended circuit from the datasheet in any of their reference designs involving the module.

The group reached out to Analog Devices for support, but unfortunately, the company was unable to

investigate the issue. They suggested posting the problem on their engineering zone forums, though

no solutions have been found so far.

Considering the challenges faced and the fact that the PoE module was always intended as an

attachable component, the group made the decision not to implement the attachable board for PoE

on the final design. However, they kept the pin headers open on the final design, allowing for the

possibility of adding a PoE device directly to the PCB as a module in future experimentation.

Figure 112 Debugging PoE section

Figure 113 Reply from analog devices

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 122 of 150 19.05.2023

8.3.7 Overview of reworks done

After rigorously testing our PCB a total of 9 reworks was done, including the failure of the entire PoE

section. These reworks will be included in the final design of our PCB microcontroller.

Figure 114 IIOT Schematic, all reworks marked in red

8.4 Final design
Final design worked satisfactory, we added some additional components, a sensor and a microSD card

holder to increase complexity. The sensor was a barometric sensor and used I2C protocol. This was

tested and found satisfactory. The entire POE section was redesigned as mentioned in chapter 4.3,

however due to time constraints in this project, the new POE section never got tested. Since the PoE

section was a module to the main PCB it was not necessary for the main PCB to operate.

Figure 115 Final PoE design. Not manufactured

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 123 of 150 19.05.2023

9 APPENDIX D – Historian JSON parsing code from 4.4
FlattenHashMap starts off with taking a HashMap and sending it off to FlatMapper.

FlatMapper takes a Map.Entry object as input and retrieves the value of the current set. If the value

within the key-value set is a HashMap, the method recursively calls itself and appends the key of the

list to each value. After it has done this for every single nested map, it returns the new HashMap as a

Stream of Stringbuilder objects, containing the entrySet as a String, one set at a time.

Figure 116 FlatMapper method for finding the innermost HashMap in the JSON string

FlattenHashMap then takes the sets it receives and flattens them into a single string, which is delimited

by a newline character. This string then gets put into an array based on these newline characters. We

iterate through the array, splitting each item at the equal sign and putting the key-value pairs into the

temporary HashMap that the method creates. Then finally we return the temporary HashMap.

Figure 117 The FlattenHashMap method

CreateNewTopicTableString is one of two methods that is responsible for taking the HashMap's and

creating SQL queries for inserting them into our database. Firstly, it initializes three different strings

which are called InjectionString, TableString and InsertString. InjectionString creates a new schema

with the correct topic ID. TableString creates a table within the schema, calls it RecordedValues and

sets the timestamp for when this information was received as a primary key. Lastly, the InsertString

gets all the values from the HashMap. After this is done, we have a full SQL query that holds our latest

payload which is now ready for storage. This query gets sent off to R2DBC.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 124 of 150 19.05.2023

Figure 118 CreateNewTopicTableString method responsible for creating SQL strings.

Now that all values and their names from the JSON string were de-nested and put into a HashMap in

a timely manner, we could move on to inserting this information into the database. The next two

methods that were written take the HashMap passed to them and create SQL queries for inserting this

information into our database. The difference between them is that “CreateNewTopicTableString”

creates a new schema for the table which holds the information. While “InsertTopicTableString” inserts

the data into an already existing schema and table. In short, “CreateNewTopicTableString” is used

when the topic and message arrive for the first time, while the other method is used if it’s a topic that

already has been received before. In addition, every parameter passed into the SQL query is checked

by FloatCheck, to see if it’s a number than can be stored as a float or not.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 125 of 150 19.05.2023

10 APPENDIX E - PLC OPC server configuration
The PLC logic and the OPC server have been programmed using TIA portal, a software package provided

by Siemens for the development of automation systems.

10.1 Setting up CA management in TIA portal
TIA portal can function as a certification authority, creating certificates for subjects needing them for

authentication and security. The advantage of using certificates signed by TIA portal is that other

clients must import only the CA certificate. Then any number of certificates can be created for any

number of devices, automatically trusted by anyone that has imported the TIA certificate. Two types

of certificates can be created.

• Self-signed certificates must be imported or trusted by the communicating party before

secure communication can be established. Used cases are primarily for topologies with very

few devices.

• Certificates signed by CA (TIA portal). Only the CA certificate must be imported by the

communicating party before secure communication can be established.

Figure 119 Configuration setup of TIA portal as CA and S7-1500 as an OPC UA Server

After project creation, the first step is to enable “Project protection” to enable CA management.

Figure 120 Enabling the certificate store in TIA portal

Then TIA portal will create a certificate store and three root certificates that will be used to sign and

issue other certificates. The root certificates have different levels of security that can be chosen

dependent on the desired protection, the effort needed to encrypt and sign packets, or backward

compatibility for devices that have not yet implemented the most recent version of the security

protocols.

Enable Certificate manager

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 126 of 150 19.05.2023

• RSA-SHA1 is due to be replaced by newer hashing algorithms.

• RSA-SHA256 is the most common security setting in use today.

• ECDSA-with-SHA256 has improved security at an additional computational cost. Elliptic curve

cryptography is a relatively new technology and has not yet been implemented by all suppliers.

Figure 121 TIA certificates and client certificates signed by TIA root certificate

Self-signed certificates from devices or external communication parties can be imported and managed

in the TIA portal. These certificates can then be assigned to devices or PLCs' trust lists to enable

authentication and secure communication.

Figure 122 Imported certificates added to PLCs' trust lists.

Timing is an important attribute in secure communication. Most cyber security protocols include

timestamps inside the messages to prevent replay attacks. Therefore, ensuring that the internal clocks

on the devices are synchronized is important. A robust solution commonly implemented is to set up a

Network Time Protocol (NTP) server that all other devices poll to synchronize. The alternative is to

manually set the system clock. The disadvantage is that the clock might deviate over time, suddenly

making the communication fail because of timestamp differences. An encrypted packet will be

discarded if the timestamp exceeds the defined timestamp limit.

10.2 Enabling of OPC UA server
Each device needs to have a certificate assigned to it. In TIA portal it is possible to link the certificate

manager to the project PLCs inside the device configuration. Then a certificate can be assigned to the

device. It will be the same certificate that communicating parties need to import and trust.

Figure 123 Certificate manager enabled for project devices

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 127 of 150 19.05.2023

A check box inside the device configuration enables the server. A license is needed for the server to

function and needs to be assigned during configuration. The most important parameters of the server

are:

Server Addresses: url of the server endpoint: opc.tcp://192.168.1.10:4840

Namespace uri: used to organize variables in groups: WaterControllerInterface

Port: application port: 4840

Min/Max parameters: limits number of sessions, timeout, request intervals, etc.

10.3 Configuring Authentication and Security
The server's certificate needs to be created with the necessary subject details. The subject name is the

most critical attribute that needs to include the URI, IP addresses, and possibly the DNS name that

translates to the same IP address. The name will be verified by the client and rejected if coincidental

with the communicating party. The other attributes affect the security level of the key and can be

selected according to requirements. The certificate is signed by the root CA (TIA) so that we can avoid

importing it to every client communicating with the server.

Figure 124 S7-1500 server certificate

The main security settings are the type of authentication and security during the communication

session. Most OPC UA devices support Basic256Sha256 – Sign and Encrypt. It should therefore be set

as the default security level during configuration. A lower level of security should only be chosen if the

communication party is not supporting the default. The configuration of the server has all other

options turned off.

Authentication is primarily as anonymous, with username and password or by certificates. Siemens S7-

1500 does not support certificate authentication and is therefore configured with a password. The

security during session communication is signed with the client and server certificates and will not

function without the certificate being trusted by both parties. In that way, it is also authentication

using certificates, even though it is not performed during session authentication.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 128 of 150 19.05.2023

10.4 OPC UA gateway client configuration
OPC UA gateway is a client developed for mapping data between the OPC and MQTT interfaces. The

certificate of the client has already been imported into the server. To enable secure communication

with the server, we must also import the PLC server certificate into the client, which can be done

through a dialog during session establishment. The client will verify the subject name against a DNS

server. Since we have not registered our PLC with a DNS, it is possible to add PLC_2’s IP address to the

windows hosts file. It will still work without registering, but then we will have to click past a security

warning every time we connect the client to the server. Another possibility is to export the TIA root

certificate and add it to windows certificate store, thereby authenticating the PLC during session

establishment.

10.5 Structuring data
The OPC UA specification provides a valuable prerequisite with the browse service, which enables

the integrators to connect to the server to browse its address space and then determine the correct

node address for the variable. Those who will connect to the server to retrieve data are most likely

not the same ones who configured it. Adding context to the data is essential to make this job more

manageable. Browsing has been made intuitive by comments and organizing data in the object-

oriented and hierarchical structure inspired by how the physical process is laid out. An advantage of

this is that it can easily be extended outside our small example process by adding an extra prefix to

the symbol names when publishing on topics so that the hierarchy becomes a little deeper.

Information on OPC UA servers is organized in namespaces. Namespaces 0 and 1 are predefined by

the OPC Foundation for storing data types and metadata needed for handling the data. Every OPC

server needs to implement these. The process data has been organized on namespace 4, named

“WaterControllerInterface”. It only contains relevant data to the process.

Figure 125 S7-1500 Upc Ua server interface

Manipulating variables on the OPC server should not be possible for anyone. A false and possibly

unrealistic view of the process can occur if changed uncritically. Changing commands or setpoints can

be even more devastating. Separate Read, Write, or Read/Write access can be configured individually

for each variable and is part of the authorization system needed to prevent unauthorized manipulation

of the variables and a potentially dangerous process state. All statuses are set to read-only. More fine-

grained access control for commands is configured in the MQTT data broker, restricting access to topics

for unauthorized clients.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 129 of 150 19.05.2023

11 APPENDIX F - OPC to MQTT gateway

11.1 Conceptual design
The gateway is created in C# using .NET 6.0 standard, which has many built-in libraries and distributed

Nuget packages for common services. Considerable emphasis has been put on the user experience and

UI. A well-designed user interface is essential to make the application intuitive and to reduce the

engineer's integration time and cost. Therefore, it was decided to create it as a Windows Presentation

Forms (WPF) application which has a particularly nice-looking User Interface and scales well to

different resolutions and window sizes. The application also has the function to be minimized to the

taskbar. It can run in the background after the configuration of data exchange between the OPC and

MQTT interfaces has been configured. On the taskbar, it will not be distracting to the user and requires

fewer resources from the operating system because a graphical user interface does not need to be

rendered. The application is set to launch in the taskbar upon start-up, and the option for it to be

included in the list of windows startup applications can be enabled in the configuration menu within

the application.

The Siemens OPC client tutorial[50] has been used to learn how sessions work and as inspiration during

the application development. The tutorial is using NetStandard.Opc.UA distributed by the OPC

Foundation, a library available as a NuGet package for handling services defined in the specification. It

will be added to the project in visual studio. It includes classes for handling communication between

the client in the gateway and the OPC server that resides in the PLC. The library is under General Public

License (GPL) 2.0 license making it available to anybody, however, it requires the user to disclose the

application code if the user is not a member of the OPC Foundation. Even when using a distributed

library, it requires detailed knowledge of how services are used inside OPC sessions and how data is

structured on a server address space to be able to retrieve it efficiently. Online debugging in Visual

Studio has been an invaluable tool for understanding results retrieved from the functions defined in

the NetStandard.Opc.UA library. Knowledge about the structure of cryptographic certificates and how

certificate stores are managed has also been essential since communication security relies heavily on

these technologies.

The idea behind Appendix F is to describe the overall structure, how the gateway protocol mapper is

intended to work, and what design choices have been made. Small extracts of the code have been

included when it makes sense to gain a better understanding of the gateway structure. It is not

sufficient to or the intent that the reader has a complete understanding of the entire application, which

is attached as an appendix to the thesis.

The words items, nodes and variables are often used interchangeably. To summarize, data is

structured as nodes in the OPC server. A node is either a variable with attached metadata or a kind of

bucket without a value but with references to organize the address space. An item in the OPC

specification is often used to describe variables configured in a monitoring list. The word item is further

used as an expression for variables that are configured/mapped between the two interfaces.

A description of common design technics and principles like Dependency Injection can be found at the

end of Appendix F.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 130 of 150 19.05.2023

11.2 Overall application structure

Figure 126 Overview of OPC Gateway classes and relationships

Application functionality has been organized into different classes based on similarity, making it easier
to expand, replace individual modules, or move the entire application to a different user interface.

Views and ViewModels contain the properties and methods needed to interact with the user. These
classes will call on services and library classes that handle communications and translator logic.

Business logic is implemented in UI-independent service classes like DataAccess and is instantiated

and added to dependency injection at application startup. These classes implement logic to handle

specific functions like communication to the OPC server endpoint. They are designed to be easily

interchangeable with other classes for the same functionality or to move the application to a different

user interface.

Helper classes and services implement methods for basic functionality like reading to and from the

application configuration, encoding messages before transmission, or checking certificates. The caller

class provides the required parameters and fetches the result of these operations with no

considerations for internal processing within the helper class.

Stores are used for variables that several classes in the app domain need to access. Using stores
guarantees consistency and makes adding, updating, or deleting global application data more robust
by enforcing restrictions and implementing events to notify subscribers when data changes.

Information models are separated into a class library to maintain independence from the gateway

project and to enable easy distribution to others.

External libraries like NetStandard.Opc.Ua and M2MqttDotnetCore are included in the project to

handle complex logic associated with the OPC and MQTT standards.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 131 of 150 19.05.2023

11.3 Project organization
The Gateway application is divided into two projects in Visual Studio. The

most comprehensive is a WPF project containing all the classes that make

up the graphical interface and data access to the two endpoints. The second

project is a NetStandard class library that stores the information models.

The code is modularized in classes to make it easier to maintain and

simplifies changes without redesigning the entire framework. The WPF

project is further divided into 12 folders to structure the various classes

according to their function.

1. Commands: Commands linked to buttons on the UI with a global scope

2. Components: Graphical user controls, one for each information model

3. Converters: Transform Boolean/Int variables to UI visibility properties

4. DataAccess: Handles communication interfaces

5. Helpers: Static methods to execute subfunctions

6. Models: Organize data in structures internal to the application

7. Resources: Graphics used on the UI

8. Services: Mapping data and read/write to appsettings, included in DI

9. Stores: Provides access to global variables through DI

10. ViewModels: Code behind the different Views

11. Views: Graphical user interfaces separated into pages

12. Windows: Dialogs or UI components used inside pages

Separating the information models into a different library forces loose couplings to the GUI project

since references to components inside the WPF application or use of dependencies injection is

impossible. The library consists essentially of models used to structure data.

1. MqttPublishModels: Defines data formats of information published to the MQTT cluster

2. OpcDataTypeModels: OPC data type definitions to guarantee compatible commands from MQTT

3. ProtoFiles: Protobuf contracts for distribution but not used in the project

11.4 Logger
Logging can provide valuable information during development or after the application is released. A

good log will provide a chronological list of configured log events, including timestamps when they

occurred. These events can provide valuable information for identifying and correcting errors that are

not discovered until the application is in production. Serilog, a well-developed and maintained Nuget

library, has been included in the gateway application to create a log file. Any event, including additional

information, can be passed to the Serilog logger based on application triggers, etc. try-catch

statements.

Figure 128 Example of logging exceptions with additional information using Serilog.

Figure 127 OPC Gateway project organization

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 132 of 150 19.05.2023

11.5 Graphical user interface

11.5.1 Shell view

Figure 129 Gateway application shell view

The graphical user interface is designed with a frame common to all the different views. Common

content is located on this shell, having a separate View-ViewModel to avoid recreating it on all the

pages. Navigation is located in the top right corner enabling to switch between most of the pages in

the application, except for some settings menus. In the top left is the connection status of the two

interfaces shown. The text will change to red if the connection to one of the servers has failed. The

lower part of the UI contains the page content for the various Views and will vary as the user navigates

the application. The ViewModels are instantiated as Singleton objects to store the content until the

application is closed. The previous configuration will be present when a user return to the page.

11.5.2 Home page

Figure 130 Gateway application home view

The home page has been designed to give an overview of the connection status and to provide overall

statistics of the communication. It also includes a section with a debugger function that can be used

for reading or writing to single nodes in the OPC server or to publish or subscribe to topics in the MQTT

broker. It has been split in the middle to separate the two communication interfaces.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 133 of 150 19.05.2023

11.5.3 OPC page

Figure 131 Gateway application OPC view

The shown page is for connecting and browsing the OPC server address space. Each node expands into

a tree view, which you can browse through. Selecting a node will show additional node information

and display it in the “attributes list view” on the top right. New mappings are configured online by

dragging and dropping the nodes onto the lower right corner of the page, it is then possible to select

between publishing or subscribing the node to UNS. Additional metadata is provided depending on the

type of model chosen. Available types vary depending on the data type of the node. MQTT settings

like the Topic, QoS, and Retain are set before the configuration is implemented. The topic prefix will

be fixed to guarantee a relationship to the device on which the OPC server is running on. The MetaData

tab has been included for publishing single retain messages consisting of key-value pairs intended to

simplify integration for consumers subscribing to data from the device.

On the top right is a button for navigating to the OPC settings tabs for changing the security settings

of the OPC session or exporting the client certificate so that it can be imported into the server.

Figure 132 Gateway application OPC Settings view

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 134 of 150 19.05.2023

11.5.4 Monitor page

Figure 133 Gateway application Monitoring view

The page's top part displays the most recent values of monitored items in the OPC server. The list is

implemented with an observable collection to make it dynamic on the UI. The drawback is that it is not

possible to search it using hash values. Searching the entire list is required when updating values in the

code behind based on recently received messages from the OPC server. It is not a problem as long as

the total number of nodes changing every second doesn’t exceed approximately 1000 nodes.

Monitoring is not essential for mapping between the interfaces and can be switched off if the number

increases beyond this limit.

All configured items are listed in the “list view” on the monitoring page. All configured items will be

loaded during application startup and added to the list. New configurations made online will also be

added. The list can be searched using the toolbar at the bottom of the page. All matches will be

highlighted with a yellow background. It is possible to edit or delete existing configurations by selecting

them in the list view and using the associated button on the toolbar. A complete list of all configured

items can be exported to a .csv file to easily distribute it outside of the application.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 135 of 150 19.05.2023

11.5.5 MQTT page

Figure 134 Gateway application MQTT view

Browsing of TLS certificates used by the client when connecting to the MQTT broker is conducted on

the MQTT page. Certificates are verified as valid certificate files before being accepted. The broker

address, port number, and the option to connect using TLS are chosen before a connection to the

broker is attempted. All settings changed are written to the offline configuration and load when the

application restarts.

11.5.6 Settings page

Figure 135 Gateway application settings view

Global application settings are changed on this page and will be stored in the offline configuration.

The Device name and Device location is dictating the topic prefix and the last will topic. These

changes will not alter already configured items. All other settings on this page can be changed while

the gateway is in operation and will take effect immediately.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 136 of 150 19.05.2023

11.6 App.cs
WPF applications are controlled from App.cs, the

entry point where classes are instantiated when

the app is launched. Here, application services are

instantiated before being added to dependency

injection. Global application settings like the logger

and adding an offline settings file are configured in

this class. Objects holding global data that multiple

classes need access to are organized into stores.

These stores are instantiated as singleton objects

(all requesters receive the same object) and added

to DI. ViewModels are instantiated as singletons to

hold data when the user navigates to a different

page. The alternative is to define them as

Transients which will provide a fresh ViewModel

every time through DI. Instances where it is desired

to get clean pages without old settings or search

history are examples of when ViewModels should

be Transients.

After settings and dependency injection have been configured, the application itself is started. A

Shell window with a Home page is displayed to the user and a tray icon is placed on the task bar so

that the application can be minimized when the UI is not in use. The DataAccess services are

configured to connect at startup and are executed on a different thread. DataAccess is not awaited

since it will halt the application startup if the connection to the endpoint is down.

App.cs is also the place where the application is terminated. Various services and ViewModels have

subscribed to events during the application's lifetime and must be cleaned up to prevent memory

leaks. The Dispose method in classes which subscribe to events has been overridden to unsubscribe

the event handlers. Then the OnExit method in App.cs is overridden to dispose of the objects.

Figure 136 App.cs including dependency injection

Figure 137 Starting the application and services asynchronously.

Figure 138 Terminating the application and disposing of services.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 137 of 150 19.05.2023

11.7 OpcDataAccess class
The class has been implemented without any dependencies and with

the interface IOpcDataAccess to achieve loose coupling. It makes the

class easily replaceable or reused in other projects. In essence, the

class encapsulates OPC UA Services defined by the OPC Foundation

into usable methods inside the application. All communication to the

OPC server endpoint is performed inside the class and protected from

outside interference. All session and subscription variables are

inaccessible to outside classes.

The class extensively uses events to communicate back to the caller

class, which is unknown until the application is built. Communication

between the internal functions of the NetStandard.Opc.Ua library

and OpcDataAccess is also dependent on events. Event handlers must

be attached to the required events when the class is utilized. The

events will relay relevant information to listeners, who will then

handle the situation based on what is coded in the event handler.

The garbage collector in C# does not automatically clean up event

handlers. The application has been designed and tested for 2000+

monitored items, each attached to a separate event handler. These

handlers can remain and take up resources until Windows is

restarted, which is unacceptable. It is essential to unregister all the

handlers when the class is disposed of. The consequence of not

performing event clean-up is that the memory of the host gets

exhausted, and it can be problematic to register new handlers when

the application has been restarted. Overriding the Dispose method

to unregister all events and making sure it is called when the class is

disposed of are efficiently solving the issue of dangling events in the

operating system.

Figure 140 Disposing event handlers in OpcDataAccess

Connecting and maintaining the connection to the OPC server is fundamental to reliable data transfer.

It is essential that the gateway has functionality for connection evaluation and can handle a connection

that is broken without intervention by the user. The application is configured to connect to the OPC

server on startup. An async task will initiate a connection attempt to avoid locking the UI or delaying

the application's startup. A spinner on the OPC page will be visible as long as the application is

attempting to connect. A new connection attempt is initiated every 10 seconds.

Figure 139 OpcDataAccess class diagram

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 138 of 150 19.05.2023

Figure 141 Connecting to OPC and MQTT endpoint at application startup

Canceling the connection attempt can be done with a cancellation token which throws an exception

inside the connect method. The exception is caught, and no further connection attempts are initiated.

Figure 142 Cancelling current OPC re-connect cycle

The NetStandard.Opc.Ua library periodically fires an event carrying connection status, which can be

evaluated. A reconnect event handler also included in the library is fired if the connection is deemed

bad. The handler will continuously attempt to re-establish the previous session if not canceled by the

user. A faulty connection is indicated on the UI, and the spinner is turned on as long as the handler

attempts to reconnect. The handler must be disposed of when the connection is re-established to

avoid additional reconnect requests.

Figure 143 Periodic OPC server connection status evaluation

Logic for keeping track of the connection status and data transfer is included inside the class. The

interface defines what statistics are expected to be provided by the DataAccess class. These statistics

are read from the client and displayed on the Main page mostly for debugging purposes.

Figure 144 Connection statistics displayed on the home page

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 139 of 150 19.05.2023

11.8 MqttDataAccess class
The MqttDataAccess class is equivalent to OpcDataAccess and

contains all the logic for establishing sessions and transmitting

publish and subscribe messages on the MQTT interface of the

gateway. Statistics are recorded and displayed on the Main page.

The class only has one event for all the topics that will be fired

whenever new messages from the broker are received. Another

event routes these messages to outside listeners in the application.

In addition, the class has an event sent every time the connection

status changes. It is used to notify listeners that they must check and

update the UI or take action as a result of the connection status being

changed.

Almost no restrictions exist on what can be sent in an MQTT message.

Any text can be encapsulated. It is up to the receiver to decode it

correctly. It can be an advantage that provides flexibility, and a

drawback since integration between systems can become more

demanding without a locked message format. MqttDataAccess is

implementing methods that serialize messages as Json key-value

pairs maintaining the flexibility, and other methods which serialized

into protobuf encoding based on predefined models. The serialization

methods are implemented with generics types to enable any object

of type class to be serialized using the same method. The resulting

byte array after serialization is handled equally when packed into an

MQTT message and published to a topic. A separate class

EncodingHelpers is implemented to manage all serialization.

Setting the client parameters is important to get the most out of the client and

what the MQTT protocol offers. The ClientId and the cleanSession parameters

are used to re-establish an old connection. All the session parameters are

stored in the broker, and the session is resumed having all configured topics

and previous configurations. A will message is communicated to the broker

during session establishment. It is used to notify about the device status and

will be transmitted to all subscribers if the client goes offline beyond the

configured keepAlivePeriod of 10 seconds. The will messages should always be

sent as retain messages with a quality of service level of 2 to guarantee that it

will be received. The broker will not transmit the last will messages if a client

actively disconnects. Therefore, the client must transmit a message to the will

topic before disconnection. When the client connects, a message with “Online”

status is sent to the will topic to notify subscribers that the device is available.

Figure 146 MqttDataAccess class diagram

Figure 145 Methods for encoding and serialize messages into Json or protobuf

Figure 147 MQTT client parameters

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 140 of 150 19.05.2023

The same requirements of having a reliable and robust connection also apply to the MQTT client.

Continuous connection attempts will be made until the client is connected or canceled by the user.

The exception is if there is a TLS certificate error which will not disappear without user intervention.

Then the connection attempts will be interrupted, and an error will be visible on the UI. The connection

status handler is slightly different than for the OPC class. It will only fire if the event that the connection

to the broker has been absent beyond the configured keepAlivePeriod. The event is routed to listeners

outside the class that update the UI or perform necessary actions. Internally in MqttDataAccess, the

event is used to initiate reconnect attempts which can be aborted at any time using the cancellation

token.

Figure 148 Cancelling current MQTT re-connect cycle

11.9 Async wrapping
Connections to remote endpoints can have unpredictable processing times and are often executed

asynchronously on separate threads to avoid locking the UI or halting the application. For example,

the application processing will freeze until the configured timeout has elapsed if a communication

request is sent before a faulty connection is detected by the periodic connection status event

handler. Locking the application can be avoided by processing these requests on separate threads.

The NetStandard.Opc.Ua has some async methods that can be awaited while a response is pending,

but others need to be wrapped as async tasks to ensure the application is never halted.

Any segment of code can be wrapped inside a task for async processing. But an important

consideration when tasks are processed on different threads is exceptions thrown inside those tasks

which are not caught by the originating thread. Also wrapping these tasks inside try-catch statements

and using variables to communicate cross-thread exceptions to enable handling of the exception in

the originating thread is essential. Some methods already implement exception handling, but since

we have no control or possibility to alter library classes, it is a good practice to wrap all methods on

separate threads in try-catch statements.

Figure 149 Async wrapping of methods into Tasks.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 141 of 150 19.05.2023

11.10 Cryptography
The UNS architecture is configured only to allow encrypted connections between clients and the MQTT

broker cluster. The only OPC server interface at the local network at Hvl is configured with

Basic256Sha256 using Sign&Encrypt. Both connections require X509 certificates to authenticate and

encrypt messages. It is Therefore required that the application can import, store, and verify X509

certificates.

The clients need to know about the server's certificate, which is loaded into the client during

initialization and used when a session is established. In addition, certain installations of Windows can

refuse the connection if the certificate does not have a trusted root. The same warning appears on

HTTPS pages if the certificate has expired or lacks a signature from a trusted CA. To prevent windows

from closing the connections, the gateway application will prompt the user to add the server certificate

to windows certificate store if it does not already exist there. The result is the same as if the user had

found the certificate in windows explorer, opened it, and selected to install the certificate.

Figure 150 Locating OPC server certificate in windows certificate store

A new certificate will trigger a window where details are shown to the user, who then has the choice

to approve or reject the certificate. The certificate is stored permanently in the Windows Store if the

user selects "Accept certificate permanently." If the certificate has been added to Windows Store, it

has been trusted, and future connections will be considered authenticated.

Securing the traffic on the HVL LAN will be independent of the broker connection. Separate certificates

are used for the different connections to further increase security by adding defense in depth. The two

clients are based on two different libraries providing separate levels of security. M2MqttDotNetCore

library is lightweight, providing only core services to handle the broker connection, publish, and

subscribe requests. There is the possibility to use X509 certificates for TLS connections, but all logic

must be programmed outside of the library. NetStandard.OPC.UA library is a comprehensive library

with many service functions, including handling of certificates and interaction with windows certificate

store. Consequently, the two clients handle certificates differently.

Figure 151 Accepting and adding server certificate into windows certificate store (right side)

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 142 of 150 19.05.2023

11.10.1 Certificate handling in OpcDataAccess

The NetStandard.OPC.UA library depends on Windows certificate store to handle all certificates. The

different sub-stores are referenced by the OPC client during instantiation. This way of handling

certificates provides a great advantage since the exposure of certificates by untested third-party code

is avoided, and security is based on Microsoft's well-proven code. Three stores are used to validate

certificates during runtime.

• Personal stores are used to store the client certificate. A new client certificate will be created

and put into this store if the client has no certificate on instantiation.

• Trusted root certification authorities are used to store the certificates of trusted devices like

the server certificate.

• Untrusted Certificates maintains a list of certificates for devices not trusted. A device

certificate can end up in this store if the authentication process fails during session

establishment. If so, it then has to be removed manually.

Personal directory inside windows certificate store is checked for a certificate with the subject name

"UA Client 1500" as part of the client configuration and will be imported to the client if it exists. If it

does not exist, a new certificate will be created by reading the IP addresses and DNS names of the host

which the client is running on. These subject names will be used together with the security parameter

to generate a new certificate stored in the windows store. The certificate must be exported from the

client and imported into the OPC UA server in the TIA portal as a trusted device certificate before

communication will be accepted by the server.

Figure 152 Certificate stores used in the gateway Opc client

Figure 153 Creating a new certificate for the Gateway Opc client

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 143 of 150 19.05.2023

Exporting the client certificate can be done on the OpcSettings page by pressing

Then the certificate will be retrieved from the windows store and written to a .cer file which can be

imported directly into the TIA portal. The result is the same as going into mmc.exe and manually

exporting the certificate in windows.

Figure 154 Exporting Gateway OPC client certificate

The server certificate can either be imported on the OpcSettings page or received during session

establishment and accepted, thereby adding it to the windows store for future use. A handler method

needs to be attached to a CertificateValidation event before the sessions are created. It will fire in the

event of an unknown server certificate and prompt the user. One must be aware that if the certificate

is not trusted, it will end up in the untrusted store and must be manually deleted from there before a

new prompt is given to the user.

The OpcDataAccess class is intended to be a generic library class and should not include hardcoded

handling of the certificate event. The event is therefore routed to listeners outside of OpcDataAccess

class.

Mandatory OPC security settings are set through the OpcSettings page and stored in appsettings.json

to maintain the configurations when the application restarts. When a new session is established, these

settings are passed to the connect method.

The Siemens PLC is not implementing authentication by certificates. The option to browse these

certificates has been templated on the UI, but the logic for passing them to the connect method does

not exist since it requires an OPC server endpoint to test against.

Figure 156 OPC settings view for configuring Opc security

Figure 155 OPC client certificate handler used to fetch server certificate

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 144 of 150 19.05.2023

11.10.2 Certificates handling in MqttDataAccess

All handling of certificates is done outside of MqttDataAccess class. Certificates are browsed and

validated to ensure they are in a legal file format before being stored in local variables inside the client

class. The class CertificateHelpers has been implemented to load the certificates and validate different

file formats. These are then passed to the connect method if TLS is selected for the MQTT client.

Figure 157 Browsing for MQTT certificates

The broker certificate is verified to ensure that it is trusted by windows. The same prompt as

OpcDataAccess class with the option of adding it to windows store will be presented to the user if an

unknown certificate is loaded.

Client certificates are checked for a private key or combined with one to create a file format compatible

with the method of connection. Client certificate chains are not verified since it is the server that needs

to trust these. Private keys and combined certificates can be password protected. The

CertificateHelper methods will prompt the user for a password if required and store it in

appsettings.json to enable automatic connection during application startup.

Figure 158 Verifying MQTT client certificates with passwords from storage or user input

Storing the private key passwords in app settings compromises security because it becomes visible to

anyone with access to the application directory. This decision has been made on the assumption that

the host where the gateway is running will not be accessible to people who should not have access to

the private key password. When the program is distributed, stored passwords will be specific to the

certificate being imported and only within reach of those with local access to the host, which should

be protected by windows login.

Figure 159 Storing MQTT client certificate into application configuration

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 145 of 150 19.05.2023

11.11 OpcToMqttMapperService
The mapper service is not implemented as a library function. It requires

dependencies to the DataAccess classes and global application storage

to route messages between the two interfaces.

The purpose of the class is to subscribe to monitored items and

subscribed topics events and do a filtering of what messages to pass

between the interfaces according to a list of configured items. Additional

metadata is added to the messages according to the stored

configuration.

The list of configured items needs to be searched every time a new message or monitored event is

fired to determine if it should be mapped to the other interface. The searching through the configured

items needs to be fast to guarantee a high throughput. A dictionary object is therefore used to store

the runtime configuration. The key is the same as the topic for subscribed items and the node id for

monitored items to avoid extra conversions.

Figure 161 Dictionaries with hash keys used for efficient lookups.

The reference to the configured object will be determined with O(1)

lookups. The configured object class is designed to hold all the

additional information except for what is provided in the event

required to publish a new message on one of the interfaces.

Organizing data in one object enables all metadata to be obtained

using O(1) operations. The amount of metadata is therefore not the

determining factor that will limit the throughput. Updating the

metadata is also done once and then published every time with the

object.

The gateway has two interfaces that can be connected independently of each other. Messages defined

as retain by the MQTT protocol will be seen as delivered as long as confirmation is received from the

MQTT client and OPC monitored items have no delivery guarantee. Internal logic to set up a queue for

messages when one of the interfaces is offline has therefore been implemented. The client connection

status is evaluated, and the retain messages are queued if one of the clients are not connected.

Figure 163 Temporary storing MQTT messages while endpoint connection is offline.

Figure 160 OpcToMqtt mapper class diagram

Figure 162 meta data stored on the objects.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 146 of 150 19.05.2023

11.12 Information modeling
The MQTT standard does not enforce restrictions on the information contained inside messages which

can be a drawback since no contract between sender and receiver guarantees recognizable data

structures or compatible data types. Information has been modeled as objects with predefined

attributes and data types to overcome this shortcoming. These models can then be serialized as Json

or Protobuf encoded messages. Protobuf has the advantage of putting strict enforcement on order

and the type of attributes, making it possible to distribute the model blueprint to the receiver

beforehand. Then only values can be transmitted with a fixed length int identifier for each attribute. A

string identifier requires 8 bits per char in comparison. Protobuf also binary encodes the values since

the blueprint dictates the data type. Alternatively, Json key-value pairs can be used to provide the

flexibility of not enforcing the data structure by transmitting all messages as strings but at an increased

cost of bandwidth and predictability.

One of the application's predefined models must be used when new

mappings between the OPC interface and the MQTT broker are to be

configured. There are models made with few attributes and minimal

metadata well suited for data that is updated and transmitted frequently.

And others have extended metadata to provide increased context and are

well suited for data such as parameters which are only updated and sent

when the user manually makes changes. Using the models guarantees that

the values are in the expected and compatible format. The fields the user

is allowed to fill in are mostly for metadata having the same datatype as

the value attribute or strings, which only adds to the context.

A base class is defined, which all other information models inherit from, and all models are given an

enum represented by an int number to identify the InformationModelType inside the application. The

base class defines attributes required by all models and required methods. The methods are not

required and are transparent to the receiver at

the other end. These methods strictly make the

models compatible with the gateway

application by guaranteeing the necessary

methods to load and store models from the

offline storage and move data internally inside

the application. It is essential, and it has been

verified that there is no added size when the

models are serialized before data transfer.

The property Value is defined as type object since it must be able to take

any type dictated by the deriving class. It requires some clever tricks to

override the property with a different data type, but then it is possible

to achieve maximum flexibility while still adhering to the base class.

There is a need to include a try-catch statement when setting the value.

It is essentially a measure that will never occur since the configuration

of new mappings inside the application makes it impossible for the

exception to occur. Still, it is good to include it for additional robustness.

Figure 164 Predefined information models

Figure 165 Base class for information models

Figure 166 Overriding Value property of Base class

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 147 of 150 19.05.2023

The Protobuf-net Nuget package is included to serialize models. It puts restrictions on the properties

defined in the information models. Models that are to be compatible with Protobuf are declared with

the header . And all the properties are assigned an int identifier used

to optimally compress the data during serialization. The same models can pass data internally in the

application or be serialized using Json encoding. Then these restrictions on the attributes are ignored.

Information models integrated into the application require a class

that defines the structure of the model and a UI component for

display to the user. Then an object that holds the ongoing runtime

configuration of a new mapping must be instantiated in

ConfigureItemViewModel. The object is the binding between the

View and the ViewModel behind it.

The models defined for the application are meant to be proof of concept models. Input should be

collected from different stakeholders before a company commits to the system and deploys it fully.

These inputs should be the basis for including attributes and choosing data types. And hopefully, it will

reduce the risk of having to redesign the information. It will probably lead to fewer models overall.

11.13 TreeViewNode
The data's structuring and context are central to handling information in the

unified namespace. The OPC Foundation has defined services in the specification

for browsing nodes. On the OPC UA server, every node has a reference attribute

pointing to the parent node and the nodes below it in the hierarchy. These

references are used to dig down easily into the information hierarchy and

contribute to the data context. The client will send a series of request-response

operations to the server, which then responds by sending the nodes' information

on one level down. These references can then be used to search even further

down the hierarchy.

A WPF application is built on the principle that the UI should only be used for

displaying data. All processing must take place in the code behind. It provides complete control over

the data but requires a system for storage and organization in the ViewModel. A solution is to create

a structure where each node is an instance of the same class and has an attribute

that is a list of child objects from this same class. The list can either be empty or

contain an unlimited number of children. In addition, the class has attributes to

hold the information itself, which is the justification of the node`s existence, and

methods to handle the further expansion of the structure.

An address space on an OPC server can be significant. Browsing all of the space

is unneeded and will contribute to unnecessary traffic on the network. The most

sensible and what people do is only to read one node at a time and let the user

manually maneuver down the hierarchy. The class has the attribute IsExpanded

to handle the expansion of the tree structure. It will initially be set to false. When

a node is expanded in the UI, it will send a browse request forwarded to the OPC

server to get information about the nodes below it in the hierarchy. A node must

Figure 168 TreeViewNode class diagram

Figure 169 TreeViewNode Hierarchy

Figure 167 UI component for information model

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 148 of 150 19.05.2023

have children in the list to get the symbol and the function to browse in the UI. Therefore, when

instantiated, all nodes obtain a DummyChild to achieve this function and simultaneously avoid

browsing the node`s children. The DummyChild is deleted when the node is further expanded.

The attribute IsSelected is used to send node read requests to the server when the node is selected in

the UI. A browse request only provides information necessary to search further down the hierarchy,

typically browse name and node Id. It may be of interest to see extended details of the nodes while

browsing, but unconditionally retrieving it for all the nodes should be avoided. The extended

information about the node is displayed on the right side of the UI.

A node will send events for browsing or reading. The code behind the view will have to subscribe to

these events to forward them to the server. The reference to the sending node needs to be attached

to the event handler to respond to these events. Subscribing to all the nodes in the hierarchy could

cause memory leaks if not disposed of properly. Therefore, a node will attach its reference and send

its requests up the hierarchy to the root node. Only the root will fire events. The method to read or

browse will check whether the node has a parent node before an event is fired. If it has a parent, the

request is sent to this parent, who will perform the same check. In this way, we have achieved that the

ViewModel only needs to subscribe to events from the root node.

The nodes only hold references between each other. A TreeName is therefore built up consisting of

five subsequent nodes to display which node is selected on the UI clearly. The name could have been

longer, but five is chosen to have a name that gives enough information and is not too long so that it

doesn’t look good on the UI. It is after all the node Id that will uniquely identify the node.

Figure 170 Different components of the TreeViewNode class displayed on the UI

Node selected

Tree structure

Nodes expanded

TreeName

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 149 of 150 19.05.2023

11.14 .Net design principles

11.14.1 MVVM

The Model-View-ViewModel (MVVM) design architecture was developed to decouple the View from

the code behind, allowing for benefits like development to be distributed among individuals. For

example, it is possible for a designer who may not be a skilled programmer to design the visual user

interface without concern for the application logic. It also makes it easier to structure the code behind

a specific view, as developers can focus on the code for a single view in isolation, and variable names

can be reused for different views.

Figure 171 MVVM principle

11.14.2 Dependency Injection

In DOT NET 6.0, Dependency Injection (DI) is a standard feature. DI architecture involves instantiating

objects like communication services outside the classes that will use them. Classes requiring objects

from DI will receive them through the constructor. This approach reduces the coupling between

classes. Additionally, some classes are implemented and registered with an interface in DI, allowing for

the replacement of the underlying class with no concerns for the rest of the application logic. For

example, replacing the module that communicates with the OPC interface with another module is

possible as long as it implements the methods and properties defined in the interface.

11.14.3 Bindings

Bindings are the connections between objects in ViewModels and Views when using the MVVM

architecture. When set up correctly, they establish a relationship between the graphical user interface

(GUI) and the code behind. The DataContext which can be seen as the root address, is typically set to

the ShellView in the App.xaml.cs file. All bindings to ViewModels further down the hierarchy are

configured inside the ShellView.xaml file. This ensures that the different View only has access to the

properties on the associated ViewModel. Proper bindings configuration is crucial for establishing

seamless communication between ViewModels and Views in MVVM.

11.14.4 Event-based

The principle of only performing certain actions when an event occurs is also commonly used when

programming in the .NET environment. Event-based conceptually resembles the publish-and-subscribe

communication pattern used to exchange data in UNS (Unified Namespace System). In this pattern,

different code modules can be programmed to wait or subscribe to events from other modules, and

then execute their code when the event is triggered. It is also possible to send arguments in these

events, allowing for dynamic updates such as updates to the GUI interface or arrival of new data on

communication interfaces that cannot be predicted in advance. This event-driven approach provides

flexibility and modularity in the software design, allowing different modules to communicate and react

to changes or events as needed.

 BO23EB-11 Unified Namespace

Rev: 0.10 Page 150 of 150 19.05.2023

11.14.5 Asynchronous programming

Tasks can require varying amounts of processing and occur at unpredictable times in a program that

actively interacts with its surroundings. Asynchronous programming is a technique that prevents tasks

from getting in each other's way. For example, it can effectively prevent modules waiting for a

response to a network request from causing others to wait. It can also be useful for computationally

heavy tasks where overall processing can be improved by spawning the task on a new thread.

11.14.6 Stores

Some variables need to be accessible anywhere in the program. These variables or objects are created

as "stores" registered as Singletons in DI (Dependency Injection) and injected via constructors into the

classes that require them.

11.14.7 Services

Service-oriented programming (SOP) is a design approach focusing on defining tasks or services that

other parts of an application can request. These services are encapsulated as separate modules or

components that can be invoked or utilized by other parts of the application without knowing the

implementation details. An example of this is a navigation service, where the user can request to

change the current window by requesting the new window as an argument to the navigation service.

Service orientation is particularly useful in scenarios where different parts of a system may be written

in different programming languages, or when there is a need for loose coupling between components

to enable flexibility. By encapsulating functionalities as services with well-defined interfaces, the focus

can be shifted from implementation details to how services are processed, allowing for easier

integration and interoperability in complex software systems.

11.14.8 Interfaces

Interfaces can be seen as a contract that all classes that implement the interface must adhere to. The

advantage is that other classes that interact with this class know that it has a minimum level of

functionality through the implemented interface. Interfaces make it easier to replace classes or change

the class's internal code without affecting other parts of the application.

11.14.9 App settings

Settings inside the application are stored in the 'appsettings.json' file, a common location that can be

accessed via the IConfiguration object. In DOT NET 6.0, IConfiguration is included in Dependency

Injection.

