
Innovations in Systems and Software Engineering
https://doi.org/10.1007/s11334-023-00528-z

S . I . : VECOS 2021

Coverage visualization and analysis of net inscriptions in coloured
Petri net models

Faustin Ahishakiye1 · José Ignacio Requeno Jarabo1,2 · Lars Michael Kristensen1 · Volker Stolz1

Received: 12 April 2022 / Accepted: 15 March 2023
© The Author(s) 2023

Abstract
High-level Petri nets such as coloured Petri nets (CPNs) are characterized by the combination of Petri nets and a high-
level programming language. In CPNs and CPN Tools, the inscriptions (e.g. arc expressions and guards) are specified using
Standard ML. The application of simulation and state space exploration for validating CPN models traditionally focuses
on behavioural properties related to net structure, i.e. places and transitions. This means that the net inscriptions are only
implicitly validated, and the extent to which their sub-expressions have been covered is not made explicit. This paper extends
our previous work on coverage analysis of net inscriptions of CPN models. In particular, we improve the CPN Tools library
responsible for annotating, instrumenting and collecting the evaluation of Boolean conditions for determining the coverage
criteria based on model executions. The library now automates most of the instrumentation parts that were done manually
before and integrates the reports of the coverage analysis into the CPN Tools GUI. We evaluate our approach on new publicly
available CPN models.

Keywords Coverage analysis · MC/DC · CPN model · Testing

1 Introduction

Coverage analysis is important for programs in relation
to fault detection. Structural coverage criteria are required
for software safety and quality design assurance [1], and
low coverage indicates that the software product has not
been extensively tested. Two common metrics are statement

José Ignacio Requeno Jarabo, LarsMichael Kristensen andVolker Stolz
have contributed equally to this work.

B Faustin Ahishakiye
faahi7267@uib.no

José Ignacio Requeno Jarabo
jrequeno@ucm.es

Lars Michael Kristensen
lmkr@hvl.no

Volker Stolz
vsto@hvl.no

1 Department of Computer Science, Electrical Engineering, and
Mathematical Sciences, Western Norway University of
Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway

2 Information Systems and Computing, Complutense
University of Madrid, C/Prof. José García Santesmases, 9,
28040 Madrid, Spain

and branch coverage [2], where low coverage concretely
indicates that certain instructions have never actually been
executed. Coloured Petri nets [3] and CPN Tools [4] have
been widely used for constructing models of concurrent sys-
temswith simulation and state space exploration (SSE) being
the two main techniques for dynamic analysis. CPN model
analysis is generally concerned with behavioural properties
related to boundedness, reachability, liveness and fairness
properties. This means that the main focus is on structural
elements such as places, tokens, markings (states), transi-
tions and transition bindings. Arc expressions and guards
are only implicitly considered via the evaluation of these
net inscriptions taking place as part of the computation of
transition enabling and occurrence during model execution.
This means that design errors in net inscriptions may not
be detected as we do not obtain explicit information on for
instancewhether both branches of an if–then–else expression
on an arc have been covered.

We argue that from a software engineering perspective, it
is important to be explicitly concerned with quantitative and
qualitative analysis of the extent to which net inscriptions
have been covered. Our hypothesis is that the coverage cri-
teria used for traditional source code can also be applied to
the net inscriptions of CPNmodels. Specifically, we consider

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-023-00528-z&domain=pdf
http://orcid.org/0000-0003-1571-0964
http://orcid.org/0000-0001-5111-8357
http://orcid.org/0000-0002-1465-5791
http://orcid.org/0000-0002-1031-6936

F. Ahishakiye et al.

themodified condition decision coverage (MC/DC) criterion.
MC/DC is a well-established coverage criterion for safety-
critical systems and is required by certification standards,
such as the DO-178C [5] in the domain of avionic software
systems. In the context of MC/DC, a decision is a Boolean
expression composed of sub-expressions and Boolean con-
nectives (such as logical conjunction). A condition is an
atomic (Boolean) expression. According to the definition of
MC/DC [2, 6], each condition in a decision has to show an
independent effect on that decision’s outcome by: (1) varying
just that condition while holding fixed all other possible con-
ditions or (2) varying just that condition while holding fixed
all other possible conditions that could affect the outcome.
MC/DC is a coverage criterion at the condition level and is
recommended due to its advantages of being sensitive to code
structure, requiring few test cases (n + 1 for n conditions),
and it is the only criterion that considers the independence
effect of each condition.

Coverage analysis for software is usually provided through
dedicated instrumentation of the software under test, by
either the compiler or additional tooling, such as binary
instrumentation. Transferring this to a CPNmodel under test,
our aim is to combine the execution of a CPNmodel (by sim-
ulation or SSE) with coverage analysis of SML guard and arc
expressions.Within CPNTools, there is no coverage analysis
of the SML expressions in a CPN model. This means that to
record coverage data for a CPN model under test, it is neces-
sary to instrument the Boolean expressions such that the truth
values of individual conditions are logged in addition to the
overall outcome of the decision. Our approach to instrumen-
tation makes use of side effects by outputting intermediate
results of conditions and decisions, which we then process
to obtain the coverage verdict. No modifications to the net
structure of the CPN model are necessary. Furthermore, the
instrumentation has little impact on model execution so that
it does not delay the simulation and SSE.

In this article, we extend our approach for coverage anal-
ysis of net inscriptions in CPNmodels [7] with the following
new contributions:

1. We automate our instrumentation: it takes as input the
original CPNmodel and produces an instrumentedmodel
where the Boolean expressions in guards and arcs are
transformed into a form that emits log entries that are
collected for coverage analysis. The automatic instru-
mentation also processes the definition of auxiliary SML
functions, which were not considered in our manually
instrumented solution.

2. We integrated a coverage visualization in CPN model
such that a tester can observe which guard and arc
expressions are covered or not. The covered parts are
highlighted in green, whereas the uncovered parts are

shown in red with a possibility to see coverage percent-
age for each decision.

3. We test more CPN models and gather coverage statistics
for seven additional CPN models publicly available.

The remainder of this paper is organized as follows.
In Sect. 2, we introduce the MC/DC coverage criterion in
more detail. In Sect. 3, we present our approach to deriving
coverage data and show how to instrument guard and arc
expressions to collect the required coverage data. In Sect. 4
we consider the post-processing of coverage data.Wedemon-
strate the application of our library for coverage analysis on
publicly available CPN models in Sect. 5. In this section, we
also evaluate our approach with respect to overhead in exe-
cution and discuss our findings. Section6 discusses related
work, and we present our conclusions including directions
for future work in Sect. 7. Our coverage analysis library with
the instrumented example models, the Python code to instru-
ment and produce reports and graphs, and documentation is
available at https://github.com/selabhvl/cpnmcdctesting [8].

2 Coverage analysis andMC/DC

When considering CPN models, we will be concerned with
coverage analysis of guard and arc coverage of expressions.A
guard expression is a list of Boolean expressions all of which
are required to evaluate to true in a given transitionbinding for
the transition to be enabled.We refer to such Boolean expres-
sions as decisions. Similarly, an if–then–else expression on
an arc will have a decision determining whether the then or
the else branch will be taken. Decisions are constructed from
conditions and Boolean operators.

Definition 1 (Condition, Decision) A condition is a Boolean
expression containing no Boolean operators except for the
unary operator NOT.

A decision is a Boolean expression composed of condi-
tions and zero or more Boolean operators. It is denoted by
D(c1, c2, · · · , ci , · · · , cn), where ci , 1 ≤ i ≤ n are condi-
tions.

As an example,wemay have a guard (or an arc expression)
containing a decision of the form D = (a∧b)∨ c, where a, b
and c are conditions. These conditionsmay in turn refer to the
values bound to the variables of the transition. The evaluation
of a decision requires a test case assigning a value ∈ {0, 1, ?}
to the conditions of the decision, where ? means that a con-
dition was not evaluated due to short-circuiting. Short circuit
means that the right operand of the and-operator (&&/∧) is
not evaluated whether the left operand is false, and the right
operand of the or-operator (||/∨) is not evaluated whether the
left operand is true.

123

https://github.com/selabhvl/cpnmcdctesting

Coverage visualization and analysis of net…

Depending on the software safety level (A-D) which is
assessed by examining the effects of a failure in the system,
different structure coverage criteria are required: statement
coverage for software levels A-C, branch/decision coverage
for software levels A-B and MC/DC for software level A
[2]. Statement coverage is considered inadequate because
it is insensitive to some control structures. Both statement
and branch coverage are completely insensitive to the logical
operators (∨ and ∧) [9]. The criteria taking logical expres-
sions into consideration have been defined [1]. These are
condition coverage (CC), where each condition in a deci-
sion takes on each possible outcome at least once true and
once false during testing; decision coverage (DC) requiring
only each decision to be evaluated once true and once false;
and multiple condition coverage (MCC) which is an exhaus-
tive testing of all possible input combinations of conditions
to a decision. CC and DC are considered inadequate due to
ignorance of the independence effect of conditions on the
decision outcome. MCC requires 2n tests for a decision with
n inputs. This results in exponential growth in the number of
test cases and is therefore time-consuming and impractical
for many test cases.

To address the limitations of the coverage criteria dis-
cussed above, modified condition/decision coverage
(MC/DC) is considered and is required for safety-critical
systems such as in the avionics industry. MC/DC has been
chosen as the coverage criterion for the highest safety-
level software because it is sensitive to the complexity of
the decision structure [6] and requires only n + 1 test
cases for a decision with n conditions [1, 10]. In addition,
MC/DC coverage criterion is suggested as a good candidate
for model-based development (MBD) using tools such as
Simulink and SCADE [11]. Thus, our model coverage anal-
ysis is based on MC/DC criterion. The following MC/DC
definition is based on DO-178C [2]:

Definition 2 (Modified condition/decision coverage) A pro-
gram is MC/DC covered and satisfies the MC/DC criterion
if the following holds:

• Every point of entry and exit in the program has been
invoked at least once,

• Every condition in a decision in the program has taken
all possible outcomes at least once,

• Every decision in the program has taken all possible out-
comes at least once,

• Each condition in a decision has shown to independently
affect that decision’s outcome by: (1) varying just that
condition while holding fixed all other possible condi-
tions or (2) varying just that condition while holding
fixed all other possible conditions that could affect the
outcome.

Table 1 MCC and selected MC/DC test cases for decision
D = (a ∧ b) ∨ c

TC a b c D MC/DC pairs

(a) MCC test cases

1 0 0 0 0

2 0 0 1 1 c(1,2)

3 0 1 0 0

4 0 1 1 1 c(3,4)

5 1 0 0 0

6 1 0 1 1 c(5,6)

7 1 1 0 1 a(3,7), b(5,7)

8 1 1 1 1

(b) Selected MC/DC test cases

1 0 ? 0 0

2 1 1 ? 1 a(1,2)

3 1 0 0 0 b(2,3)

4 0 ? 1 1 c(1,4)

The coverage of program entry and exit in Definition 2 is
added to all control flow criteria and is not directly connected
with the main point of MC/DC [12]. The most challenging
and discussed part is showing the independent effect, which
demonstrates that each condition of the decision has a defined
purpose. The item (1) in the definition defines the unique
cause MC/DC and item (2) has been introduced in the DO-
178C to clarify that the so-calledMasked MC/DC is allowed
[5, 13].MaskedMC/DCmeans that it is sufficient to show the
independent effect of a condition by holding fixed only those
conditions that could actually influence the outcome. Thus,
in our analysis, we are interested in evaluation of expressions
by checking the independence effect of each condition.

Example 1 Consider the decision D = (a ∧ b) ∨ c. Table 1a
presents all eight possible test cases (combinations) forMCC.
The MC/DC pairs column for example, c(1, 2) specifies that
from test case 1 and 2 we can observe that changing the
truth value of c while keeping the values of a and b, we
can affect the outcome of the decision. Comparing MCC
to MC/DC in terms of the number of test cases, there are
seven possible MC/DC test cases (1 through 7) that are part
of an MC/DC pair, where condition c is represented by three
MC/DCpairs of test cases. However, for a decisionwith three
conditions, only four (i.e. n + 1) test cases are required to
achieve MC/DC coverage as shown in Table 1b, where ’?’
represents the condition that was not evaluated due to short-
circuiting.

3 Instrumentation of CPNmodels

In this section, we describe our instrumentation approach on
an example CPN model and highlight the salient features of

123

F. Ahishakiye et al.

our coverage analysis library. Our overall goal is that through
simulation or SSE, we instrument and (partially) fill a truth
table for each decision in the net inscriptions of the CPN
model. Then, for each of these tables, and hence the decisions
they are attached to, we determine whether the model execu-
tions that we have seen so far satisfy the MC/DC coverage
criteria. If MC/DC is not satisfied, either further simulations
are necessary, or if the state space is exhausted, developers
need to consider the reason for this shortcoming, which may
be related to insufficient exploration as per a limited set of
initial markings, or a conceptual problem in that certain con-
ditions indeed cannot contribute to the overall outcome of
the decision.

3.1 MC/DC coverage for CPNmodels

MC/DC coverage (or any other type of coverage) is com-
monly used with executable programs: which decisions and
conditions were evaluated by the test cases, and with which
result. Specifically, these are decisions from the source code
of the system (application) under test. Of course, a compiler
may introduce additional conditionals into the code during
code generation, but these are not of concern. CPN Tools
already reports a primitive type of coverage as part of simu-
lation (the transition and transition bindings that have been
executed) and the state space exploration (transitions that
have never occurred). These can be interpreted as variants of
state and branch coverage.

Hence, we first need to address what we want MC/DC
coverage to mean in the context of CPN models. If we first
consider guard expressions on transitions, then we have two
interesting questions related to coverage: if there is a guard,
we know from the state space (or simulation) report whether
the transition has occurred and hence whether the guard
expression has evaluated to true. However, we do not know
whether during the calculation of enabling by CPN Tools it
ever has been false. If the guard had never evaluated to false,
this may indicate a problem in the model or the requirements
it came from, since apparently that guard was not actually
necessary. Furthermore, if a decision in a guard is a com-
plex expression, then as per MC/DC, we would like to see
evidence that each condition contributed to the outcome.Nei-
ther case can be deduced from the state space report or via the
CTLmodel checker ofCPNTools as the executions only con-
tain transition bindings that have occurred and hence cases
where the guard has evaluated to true.

3.2 Automated instrumentation of net inscriptions

In the following, we describe how we instrument the guards
on transitions such that coverage data can be obtained. We
developed an automated instrumentation based on the .cpn
XML file of CPN Tools in combination with an SML parser.

Arc expressions are handled analogously. Guards in a CPN
model are written following the general form of a comma-
separated list of Boolean expressions (decisions):

[bExp0, . . . , bExpn]

A special case is the expression

var = exp

which may have two effects: if the variable var is bound
already via a pattern in another expression (arc or guard)
of the transition, then this is indeed a Boolean equality test
(decision). If, however, var is not bound via other expres-
sions, then this assigns the value of exp to the variable var
and does not contribute to any guarding effect.

We consider general Boolean expressions which may
make use of the full feature set of the SML language for
expressions, most importantly Boolean binary operations,
negation, conditional expressionswith if–then–else and func-
tion calls. Simplified, we handle:

Function symbols f cover user-defined functions as well as
(built-in) relational operators such as<,=; we do not detail
the overall nature of arbitrary SML expressions, but refer
the reader to [14] for a comprehensive discussion. The auto-
matic instrumentation also processes the definition of SML
functions in the body of the .cpnXML file, which were not
considered in our manually instrumented solution. We do
not provide instrumentation to measure coverage of pattern
matching in function definitions and case expressions.

SSE or simulation of the model is not in itself sufficient
to determine the outcome of the overall expression and its
sub-expressions: guards are not explicitly represented, and
we only have the event of taking the transition in the state
space, but no value of the guard expressions. Hence, we need
to rely on side effects during model execution to record the
intermediate results. Our key idea is to transform every sub-
expression and the overall decision into a form which will
use SML’s file input/output to emit a log entry that we can
collect and analyse. The coverage statistics is calculated from
the logged entries through a Python script that is easy to reuse
in other contexts.

Listing 1 Expressions
datatype condition =

AND of condition * condition
| OR of condition * condition
| NOT of condition
| ITE of condition * condition

* condition
| AP of string * bool;

123

Coverage visualization and analysis of net…

Listing 2 Evaluation function
fun eval (AP (cond ,v))=([(cond , SOME v)],v)

| eval (OR (a,b)) = let
val (ares ,a’) = eval a;
val (bres ,b’) = eval b;
in
(ares^^bres , a’ orelse b’)
end
...
fun EXPR (name ,expr) : bool = [...]

For the necessary instrumentation, a transformation of
guard and arc expressions,we essentially create an interpreter
forBoolean expressions:whenguards are checked (in a deter-
ministic order due to SML’s semantics from left to right), we
traverse a term representation of the Boolean expression and
output the intermediate results. The Boolean expressions that
are found in the definition of the SML functionswill also trig-
ger log messages during the SSE or simulation of the model.

We have designed a data type (see Listing 1) that can
capture the above constructs, and define an evaluation func-
tion (see Listing 2) on it. As we later need to map coverage
reports back to code, for overall expressions EXPR and atomic
proposition AP, we introduce a component of type string
that allows this identification. The evaluation function eval
collects the result of intermediate evaluations in a list data
structure, and the EXPR function (implementation not shown)
turns this result into a single Boolean value that is used
in the guard, and as a side effect outputs the truth value
outcome for individual conditions. As an example, if we con-
sider a guard: a>0 andalso (b orelse (c=42)); then we
can transform this guard in a straightforward manner into
EXPR(‘‘Gid’’, AND(AP(‘‘1’’, a>0), OR(AP(‘‘2’’,

b), AP(‘‘3’’, c=42)))). It is important to notice that this
does not give us the (symbolic) Boolean expressions, as we
still leave it to the standard SML semantics to evaluate the
a>0, while abstractly we refer to the AP as a condition named
“1.” We elide expression and proposition names for clarity
in the text when not needed.

Any sub-expression must be total and not crash and
abort the model execution. A short-circuiting evaluation
needs to explicitly incorporate the andalso or orelse

operator and becomes more verbose; hence, for example,
x=0 orelse (y/x >0.0) becomes
OR (AP(‘‘O1’’, x=0)) (AP(‘‘O2’’, y/x > 0.0)).

We can likewise apply the transformation to Boolean
expressions in arc expressions: any Boolean expression is
transformed into EXPR(. . .(AP ("An",bExp)). . .) , resulting
for example in the transformation of
if bexp1 orelse bexp2 then e1 else e2 into
if EXPR(‘‘E1’’,OR(AP (‘‘1’’,bexp1), AP

(‘‘2’’,bexp2))) then e1 else e2.
Figure1 shows the sub-modules contained in the Paxos

CPN model [15] called the initial Proposer and it is associ-
ated to the InitProposer substitution transition. It initializes
Proposers to obtain a new leader and receive a client request

for consensus. Then, the value of the current round number
of the leader and the value of the received client request will
be presented on the port places as tokens, respectively [15].

The ”InitProposer” module is one of several modules of
the Paxos model, and the arc and guard expressions in the
other modules were transformed in a similar manner. The
figure also illustrates how, after evaluating coverage data, we
indicate full coverage by colouring the guard green, other-
wise red.

4 Post-processing of coverage data

We now discuss the coverage analysis which is performed
via post-processing of the coverage data recorded through
the instrumentation. We did not implement the MC/DC cov-
erage analysis in SML directly. Rather, we feed individual
observations about decision outcomes and their constituent
conditions into a Python tool that computes the coverage
results. This allows us to reuse the back end in other situa-
tions, without being SML or CPN specific.

4.1 Coverage analysis

The general format from the instrumentation step is a
sequence of colon-delimited rows, where each triple in a row
captures a single decision with the truth values of all condi-
tions in a fixed order and the outcome. As an example, see
Script 4.1. The name (stemming from the first argument to
an EXPR above) is configurable and should be unique in the
model; and derived from the name of the element (guard or
arc) the expression is attached to. This makes it easy to later
trace coverage results for this name back to the element in
the model. We recommend to derive the name from the ele-
ment (guard or arc) the expression is attached to. This makes
it easy to later trace coverage results for this name back to
the element in the model, and for the user to navigate to the
sub-module containing the element should they desire to do
so.
Script 4.1: Log deci-
sions

...
a3:01:0
t42:01110:0
t42:01011:1
...

Script 4.2: Decisions evaluation
table
…
Returna19
0001 0
0010 0
0101 0
0110 0
1001 1
1101 1
1110 1
…

MCDC covered? False

R{1:[(0001, 1001), (0101,

1101), (0110, 1110)], 2:[],

3:[], 4:[]}

123

F. Ahishakiye et al.

Fig. 1 Paxos [15]: Guard and
arc expressions before and after
instrumentation

Script 4.1 shows that the decision “t42” was triggered twice,
possibly on a guard which did not enable the transition (out-
come indicating false), after which the exploration choose
different transition bindings which resulted in a changed out-
come of the 3rd and 5th condition in this decision and an
overall outcome of true. We chose to print the binary repre-
sentation instead of, for example, a slightly shorter integer
value to facilitate casual reading of the trace.Also, this allows
us to enforce the correct number of bits that we expect per
observation, corresponding to the number of conditions in the
decision, which mitigates against instrumentation or naming
mistakes.

Our Python tool parses the log file and calculates coverage
information. It prints the percentage of decisions that are
MC/DC and branch covered in textualmode and inGNUPlot
syntax (see charts in Fig. 3). The output contains individual
reports in the form of the truth tables for each decision, which

summarizes the conditions that are fired during the execution
of the CPNmodel, and sets of pairs of test cases per condition
that show the independence effect of that condition.

In the case that the decision is not MC/DC covered, the
information provided by the Python script helps to infer the
remaining valuations of the truth tables that should be evalu-
ated in order to fulfil this criteria. In the example in Script 4.2,
the first condition (leftmost column in the table) has multiple
complementary entries where the expression only varies in
one bit (e.g. rows 0001 and 1001) and the output changes (0
to 1). The R set shows three such pairs for condition 1, but
no complementary entries at all are found in the truth table
for conditions 2, 3 and 4, and hence indicated as empty sets
[] by Python. This information can then be used by devel-
opers to drill down into parts of their model, e.g. through
simulation, that have not been covered adequately yet.

123

Coverage visualization and analysis of net…

4.2 Combining coverage data frommultiple runs

Coverage or testing frameworks rely on their correct use by
the operator, only a sub-class of tools such as fuzzers are
completely automated. Our central mcdcgen() function
only explores the state space for the current configuration
as determined by the initial markings. Compared to regular
testing of software, this corresponds to providing a single
input to the system under test.

It is straightforward to capture executions of multiple runs
of the Petri net: our API supports passing initialization func-
tions that reconfigure the net between runs. However, as there
is no standardizedwayof configuring alternative initialmark-
ings or configurations in CPN Tools, the user has to actively
make use of this API. In the default configuration, only the
immediate net given in the model is evaluated, and no further
alternative configurations are explored.

As an example, we show in Listing 3 how we make use
of this feature in the MQTT model, where alternative con-
figurations were easily discoverable for us: the signature of
MC/DC generation with a simple test-driver is
mcdcgenConfig = fn: int*(’a→’b)*’a

list*string→unit, where the
first argument is a timeout for the SSE, the second is a
functionwith side effects thatmanipulates the global configu-
rations that are commonly used inCPNTools to parameterize
models, the next argument is a list of different configurations,
followed by the filename for writing results to.

Listing 3 MC/DC tool invocation

use(cpnmcdclibpath^"config/simrun.sml");
(* Invocation with default settings
(no timeout) *)
mcdcgen("path/to/mqtt.log");
(* Invocation without timeout; base
model + 2 configurations *)
mcdcgenConfig(0, applyConfig ,[co1 ,co2],
"path/to/mqtt3.log");

This function will always first evaluate the initial model
configuration and thenhave additional runs for every configu-
ration. Internally, it calls into CPN Tools’
CalculateOccGraph() function for the actual SSE. Hence
the first mcdcgen-invocation in Listing 3 will execute a full
SSE without timeout, whereas the second mcdcgenConfig-
invocation would produce three subsequent runs logged into
the same file, again without a default timeout. The test-driver
can easily be adapted to different scenarios or ways of recon-
figuring a model. Alternatively, traces can also be produced
in separate files that are then concatenated for the coverage
analysis.

4.3 Coverage visualization in CPNmodel

To visualize the coverage information in a graphical CPN
model, we provide another Python script which parses the

CPN model and changes the colour of guards in the CPN
model based on coverage data. We take both the original
model under test and the coverage results as input arguments
and produce a new model where covered arcs and transitions
are highlighted in green, whereas the uncovered parts are
highlighted in red.

5 Evaluation on example models

In this section, we provide experimental results from an
evaluation of our approach to model coverage for CPNs.
We present the results of examining eleven (11) non-trivial
CPN models from the literature that are freely available as
part of scientific publications: a model of the Paxos dis-
tributed consensus algorithm [15], a model of the MQTT
publish–subscribe protocol [16], three models for distributed
constraint satisfaction problem (DisCSP): weak commit-
ment search (WCS), asynchronous backtracking (ABT) and
synchronous backtracking (SBT) algorithms [17], a com-
plex model of the runtime environment of an actor-based
model (CPNABS) [18], a reactor control system for a nuclear
power plant (RCS-NPP) model and Niki T34 Syringe driver
model [19]. In addition, we have tested four CPN models
for test case generation from natural language requirements
(NatCPN) [20]: nuclear power plant (NPP) model, turn indi-
cator system (TIS)model, priority command (PC)model and
vending machine (VM) model. All models come with initial
markings that allow state space generation, in the case of
MQTT, T34PIM and DisCSP complete, and incomplete in
the case of Paxos, NatCPN and CPNABS.

5.1 Experimental setup

Figure 2 gives an overview of our experimental setup. Ini-
tially, we have the original CPN model under test and we
instrument it by transforming SML expressions into a form
that as a side effect prints how conditions were evaluated and
the overall outcome of the decision (cf. Section3). Second,
we run the SSE on the instrumented model and then recon-
figure the configuration (initial marking) with any additional
initial configurations if they are obvious from the model. As
the side effect of SSE, we run the MC/DC generation which
gives as output a log file containing the information of eval-
uations of conditions in arcs expressions and guards and the
decision outcome. Finally, we run the MC/DC analyser (cf.
Sect. 4) that determines whether each decision is MC/DC
covered or not. In addition, it reports the branch coverage
(BC), by checking whether each of the possible branches in
each decision has been taken at least once.

Furthermore, we visualize the coverage information in the
CPNs models taking as input the original CPN model and
the results of how conditions and decisions are MC/DC eval-

123

F. Ahishakiye et al.

Fig. 2 Experimental setup for Coverage analysis for CPN models

Table 2 MC/DC coverage results for example CPN models

CPN model Executed decisions Model decisions Non- trivial decisions MC/DC (%) BC (%) Simulation status

Paxos 2,281,466 27 11 37.03 40.74 Incomplete

MQTT timeout 3654 18 14 11.11 22.22 Incomplete

MQTT notimeout 1,828,751 23 19 21.73 65.22 Complete

CPNABS 1,386,642 32 13 59.37 88.88 Incomplete

DisCSP WCS 140680 9(2) 5 57.14 57.14 Complete

DisCSP SBT 7686 7 3 57.14 57.14 Complete

DisCSP ABT 604055 7 5 57.14 57.14 Complete

NPP 194,481 13 13 53.84 92.3 Incomplete

PC 8,677,800 10 9 90 90 Incomplete

TIS 10,789,149 19 19 52.94 73.68 Incomplete

VM 4444 8 7 25 50 Incomplete

T34PIM 3,644,768 23 8 69.56 82.6 Complete

uated. This results in the coloured CPN model where the
covered parts are coloured in green and the uncovered parts
are presented in red. Figure1a shows a CPN model structure
of an originalmodel and Fig. 1b shows the instrumentedCPN
model after coverage analysis where covered and uncovered
parts are highlighted. Table 2 presents the summary of the
percentage of how much the tested CPN models are MC/DC
and BC covered. The percentage is calculated as the number
of covered conditions over the total number of conditions in
case of MC/DC and the ratio of covered decisions/branches
to the total number of decisions/branches.

5.2 Experimental results

Table 2 presents the experimental results for the eleven exam-
plemodels [15–20]. For eachmodel, we consider the number
of executed decisions (second column) in arcs and guards.
Column Model decisions refers to the number of decisions
that have been instrumented in the model. The number of
decisions observed in the model and in the log file may devi-
ate in case some of the decisions are never executed, in which
case they will not appear in the log file. We indicate them
in brackets if during our exploration we did not visit, and

123

Coverage visualization and analysis of net…

hence log, each decision at least once. In the case of DisCSP,
there are two guard decisions which were never executed.
The column Non-trivial decisions gives the number of the
decisions (out of all decisions) that have at least two con-
ditions in the model, as they are the interesting ones while
checking independence effect. If a decision has only one con-
dition, it is not possible to differentiate MC/DC from DC.
Columns MC/DC(%) and BC(%) present the coverage per-
centage for the CPN models under test. We record the ratio
of covered decisions to the total number of decisions. Due to
the large (maybe infinite) state space, we set the timeout to
600s: inmostmodels, running longer SSEdo not increase the
coverage metrics in terms of the number of arcs and guards
expression executed.

5.3 Discussion of results

MC/DC is covered if all the conditions show the indepen-
dence effect on the outcome. BC is covered if all the branches
are taken at least once. This makes MC/DC a stronger cover-
age criterion compared to BC, which we will also see in the
following graphs. Figure3 shows the coverage results as the
ratio of covered decisions to the number of executed deci-
sions in guards and arcs for both MC/DC and BC. The plots
show that the covered decisions increase as the model (and
hence the decisions) is being executed. Note that the x-axis
does not directly represent execution time of the model: the
state space explorer prunes states that have been already vis-
ited (which takes time), and hence, as the SSE progresses the
number of expressions evaluated per time unit will decrease.
In case an expression was executed with the same outcome,
the coverage results do not increase, since those test cases
have already been explored. Our instrumentation does not
have a significant impact on the execution time of the model.
Considering the time taken for the full SSE of the finite state
models, for instance DisCSP model, both without and with
instrumentation, it takes 212 seconds versus 214 seconds,
respectively. It is around 1% of overhead which is the cost
for the instrumentation.

The CPNABS model and T34PIM model have many
single condition (trivial) decisions, and their coverage per-
centage is higher compared to othermodels. ThePaxosmodel
has less than a half of its decisions covered for both BC and
MC/DC with a small percentage difference. The VM model
and MQTT with timeout have also less percentage in cov-
erage and both have a high number of non-trivial decisions,
which puts more weight on having a suitable test suite to
achieve good MC/DC coverage. In addition, we considered
additional configurations without timeout for the SSE in the
MQTT model and compared the coverage metrics when the
configurations are set to timeout. As shown in Fig. 3a, b, the
MC/DC andBC percentage increased from 11.11 to 21% and
22.22% to 65.22%, respectively. It is interesting to observe

the quality differences of the curves for the tested models.
Some of the tested models have less than half of their deci-
sions covered. This should attract the attention of developers
and they should assess whether they have tested their mod-
els enough, as these results indicate that there is something
that might be considered doubtful and require to revisit their
test suite. Two factors affect the coverage percentage results
presented for these models:

1. The tested models had no clear test suites; they might
be lacking test cases to cover the remaining conditions.
Depending on the purpose of each model, some of the
test cases may not be relevant for the model or the model
may not even have been intended for testing. This could
be solved by using test case generation for uncovered
decisions (see our future work).

2. The models might be erroneous in the sense that some
parts (conditions) in the model are never or only par-
tially executed due to a modelling issue, e.g. if the model
evolved and a condition no longer serves any purpose
or is subsumed by other conditions. For example in the
DisCSPmodel, there are two decisions which were never
executed, and we cannot tell whether this was intention-
ally or not without knowing the goal of the developers.

A main result of our analysis of the example models is that
none of the models (including those for which the state space
could be fully explored) have full MC/DC or BC. This con-
firms our hypothesis that code coverage of net inscriptions of
CPN models can be of interest to developers, such as reveal-
ing not taken branches of the if–then–else arc expressions,
never executed guard decisions, conditions that do not inde-
pendently affect the outcome and some model design errors.
Our results show that even for full SSE, we may still find
expressions that are not MC/DC covered. Assuming that the
model is correct, improving coverage then requires improv-
ing the test suite. This confirms the relevance and added value
of performing coverage analysis of net inscriptions of CPN
models over the dead places/transitions report as part of the
state space generation. A natural next step in a model devel-
opment process would be for the developers to revisit the
decisions that are not MC/DC covered and understand the
underlying reason. For themodels thatwe have co-published,
we can indeed confirm that the original models were not
designed with a full test suite in mind, neither from the ini-
tial configuration, nor through embedded configurations like
for example the MQTT model.

6 Related work

Coverage analysis has attracted attention in both academic
and industrial research. In particular, the MC/DC criterion is

123

F. Ahishakiye et al.

Fig. 3 MC/DC and BC versus number of executed decisions: finite models

highly recommended and commonly used in safety-critical
systems, including avionic systems [5]. However, there is a
limited number of research addressingmodel-based coverage
analysis. Ghosh [21] expresses test adequacy criteria in terms

of model coverage and explicitly lists condition coverage
and full predicate coverage criterion for OCL predicates on
UML interaction diagrams, which are semantically related to
CPNs in that they express (possible) interactions. Test cases

123

Coverage visualization and analysis of net…

Fig. 4 MC/DC & BC versus number of executed decisions: incomplete models

were not automatically generated. In [22], the authors present
an automated test generation technique, MISTA (model-
based integration and system test automation) for integrated
functional and security testing of software systems using

high-level Petri nets as finite state test models. None of the
above works addressed structural coverage analysis such as
MC/DC or BC on CPN models.

123

F. Ahishakiye et al.

MC/DC is not a new coverage criterion. Chilenski [10]
investigated three forms of MC/DC including Unique-Cause
(UC)MC/DC, Unique-Cause +MaskingMC/DC andMask-
ing MC/DC. Moreover, other forms of MC/DC have been
discussed in [23]. More than 70 papers were reviewed and
54 of them discussed MC/DC definitions and the remaining
were only focusing on the use of MC/DC in faults detection.
We presented in [24], a tool that measures MC/DC based on
traces of C programs without instrumentation.

Simulink [25] supports recording and visualizing various
coverage criteria including MC/DC from simulations via the
Simulink Design Verifier. It also has two options for cre-
ating test cases to account for the missing coverage in the
design. Test coverage criteria for autonomous mobile sys-
tems based on CPNs were presented by Lill et al. in [26].
Their model-based testing approach is based on the use of
CPNs to provide a compact and scalable representation of
behavioural multiplicity to be covered by an appropriate
selection of representative test scenarios fulfilling net-based
coverage criteria. Simão et al. [27] provide definitions of
structural coverage criteria family for CPNs, named CPN
Coverage Criteria Family. These coverage criteria are based
on checkingwhether allmarkings, all transitions, all bindings
and all paths are tested at least once. Our work is different
from the above presented work in that we are analysing the
coverage of net inscriptions (conditionals in SML decisions)
in CPN models based on structure coverage criteria defined
by certification standards, such as DO-178C [2].

7 Summary and outlook

We have extended our earlier proof of concept [7] and the
supporting software tool tomeasureMC/DC and branch cov-
erage (BC) of SMLdecisions in CPNmodels. There are three
main contributions in this paper: (1)We provide a library and
automated annotation mechanism that intercept evaluation
of Boolean conditions in guards and arcs in SML decisions
in CPN models, and record how they were evaluated; (2)
we compute the conditions’ truth assignments and check
whether or not particular decisions are MC/DC covered in
the recorded executions of the model; and (3) we collect
coverage data using our library from eleven publicly avail-
able CPN models and report whether they are MC/DC and
BC covered.

We have tested more CPN models and have improved the
usability of our instrumentation with respect to the previous
release. Firstly, we automate the annotation mechanism that
intercepts evaluation of Boolean conditions, which had to be
donemanually before.Wealso support the instrumentation of
Booleandecisionnot only in the arcs andguards ofCPNmod-
els, but also in any SMLdecision (e.g. function declarations).
Secondly, the new release better integrates the coverage anal-

ysis tool with the graphical user interface CPN Tools, which
supports a broad palette of visual options to indicate suc-
cessful coverage of guards through colour based on different
coverage criteria (MC/DC, BC,…).We leave the encoding of
partial functions into delayed evaluation using the so-called
thunks in SML as future work since it did not pose a problem
yet in our example models. Thunks wrap expressions into a
constant function that needs to be called to trigger evalua-
tion, and can hence be passed around safely as arguments.
As an example, consider [List.length xs > 0, hd xs],
which is a valid chain of guards, but will crash in our instru-
mentation when the list xs is empty.

Our experimental results show that our library and post-
processing tool can find how conditions were evaluated in
all the net inscriptions in CPN models and measure MC/DC
and BC. Results reveal that the MC/DC coverage percentage
is quite low for the CPN models tested. This is interesting
because it indicates that developers may have had different
goals when they designed the model, and that the model only
reflects a single starting configuration. We can compare this
with the coverage of regular software: running a programwill
yield some coverage data, yet most programs will have to be
run with many different inputs to achieve adequate coverage.

To the best of our knowledge, our approach is the first
work on coverage analysis of CPN models based on BC and
MC/DC criteria. This work highlighted that coverage anal-
ysis is interesting for CPN models, not only in the context
of showing the covered guard and arcs SML decisions, but
also the effect of conditionals in SML decisions on themodel
outcome and related potential problems.

7.1 Outlook

Our general approach to coverage analysis presents several
directions forward which would help developers get a better
understanding of their models: firstly, while generating the
full state space is certainly the preferred approach, this is not
feasible if the state space is inherently infinite or too large.
Simulation of particular executions could then be guided by
results from the coverage and try to achieve higher cover-
age in parts of the model that have not been explored yet.
However, while selecting particular transitions to follow in
a simulation is straightforward, manipulating the data space
for bindings used in guards is a much harder problem and
closely related to test case generation (recall the CPNs also
rely on suitable initial states, which are currently given by
developers). Making use of feedback between the state of
the simulation and the state of the coverage would, however,
require much tighter integration of the tools.

As for the measured coverage results, it would be interest-
ing to discusswith the original developers of themodels if the
coverage is within their expectations. While on the one hand
low coverage could indicate design flaws, on the other hand

123

Coverage visualization and analysis of net…

our testingmay not have exercised the same state space as the
original developers did: they may have used their model in
various configurations, whereof the state of the git repos-
itory just represents a snapshot, or we did not discover all
possible configurations in the model. In the future, we may
also try to generate test cases specifically with the aim to
increase coverage.

Acknowledgements This work has been partially supported by the
Spanish Ministry of Science and Innovation (AwESOMe [PID2021-
122215NB-C31]), theComunidaddeMadrid (FORTE-CM[S2018/TCS-
4314]) co-funded by EIE Funds of the European Union, EU H2020
project 732016 Continuous Observation of Embedded Multicore Sys-
tems COEMS and the SFI Smart Ocean NFR Project 309612/F40.

Funding Open access funding provided byWestern NorwayUniversity
Of Applied Sciences

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Hayhurst KJ, Veerhusen DS, Chilenski JJ, Rierson LK (2001) A
practical tutorial on modified condition/decision coverage. Tech-
nical Report NASA/TM-2001-210876, NASA Langley Server.
https://dl.acm.org/doi/book/10.5555/886632

2. Rierson L (2013) Developing safety-critical software: a practical
guide for aviation software and DO-178C compliance, 1st edn.
CRC Press, Boca Raton, pp 13–46

3. Jensen K, Kristensen LM (2015) Colored petri nets: a graphical
language for formalmodeling andvalidationof concurrent systems.
Commun ACM 58:61–70. https://doi.org/10.1145/2663340

4. Jensen K, Christensen S, Kristensen LM, Michael W (2010) CPN
tools. http://cpntools.org/

5. Pothon F (2012) DO-178C/ED-12C versus DO-178B/ED-12B:
changes and improvements. Technical report, AdaCore

6. John JC, Steven PM (1994)Applicability ofmodified condition/de-
cision coverage to software testing. Softw Eng J 9(5):193–200

7. Ahishakiye F, Jarabo JR, Kristensen LM, Stolz V (2020) Cover-
age analysis of net inscriptions in Coloured Petri Net models. In:
Hedia BB, Chen Y, Liu G, Yu Z (eds) 14th International conference
on verification and evaluation of computer and communication
systems (VECOS). LNCS, vol 12519, Springer, Cham, pp 68–83.
https://doi.org/10.1007/978-3-030-65955-4_6

8. StolzV, Jarabo JR,AhishakiyeF,KristensenLM(2023)Data set for
“coverage visualization and analysis of net inscriptions in coloured
petri net models” https://doi.org/10.5281/zenodo.7957119

9. Cornett S (1996–2014) Code coverage analysis. Available at
https://www.bullseye.com/coverage.html, Accessed 20 Mar 2023

10. John JC (2001) An investigation of three forms of the modified
condition decision coverage (MC/DC) criterion. Technical report,
Office of Aviation Research

11. Heimdahl MPE, Whalen MW, Rajan A, Staats M (2008) On
MC/DC and implementation structure: an empirical study. In: Pro-
ceedings of IEEE/AIAA 27th digital avionics systems conference,
pp 5–315. https://doi.org/10.1109/DASC.2008.4702848

12. Vilkomir S, Bowen J (2002) Reinforced condition/decision cover-
age (RC/DC): a new criterion for software testing. In: Proceedings
of ZB 2002: formal specification and development in Z and
B. LNCS, vol 2272, Springer, Berlin, Heidelberg, pp 291–308.
https://doi.org/10.1007/3-540-45648-1_15

13. Certification authorities software team (CAST): rationale for
accepting masking MC/DC in certification projects. Technical
report, Position Paper CAST-6 (2001)

14. Tofte M (2009) Standard ML language. Scholarpedia 4(2):7515.
https://doi.org/10.4249/scholarpedia.7515

15. Wang R, Kristensen LM, Meling H, Stolz V (2019) Automated
test case generation for the Paxos single-decree protocol using
a Coloured Petri Net model. J Log Algebraic Methods Program
104:254–273. https://doi.org/10.1016/j.jlamp.2019.02.004

16. Rodríguez A, Kristensen L.M, Rutle A (2019) Formal mod-
elling and incremental verification of the MQTT IoT protocol.
In: Proceedings of transaction on Petri Nets and other models of
concurrency. LNCS, vol 11790, pp 126–145. Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-60651-3_5

17. Pascal C, Panescu D (2017) A Colored Petri Net model for DisCSP
algorithms. Concurr Comput Pract Exp 29(18):1–23

18. Gkolfi A, Din CC, Johnsen EB, Kristensen LM, Steffen M, Yu
IC (2019) Translating active objects into Colored Petri Nets for
communication analysis. Sci Comput Program 181:1–26. https://
doi.org/10.1016/j.scico.2019.04.002

19. Caesarea Medical Electronics: Niki T34 syringe pump instruction
manual (2008) https://manuals.plus/cme/cme-niki-t34-stringe-
pump-manual-pdf

20. Silva BCF, Carvalho G, Sampaio A (2015) Test case genera-
tion from natural language requirements using CPN simulation.
In: Proceedings of 19th Brazilian symposium on formal meth-
ods. LNCS, vol 9526. Springer, Berlin, Heidelberg. pp 178–193.
https://doi.org/10.1007/978-3-319-29473-5_11

21. Ghosh S, France R, Braganza C, Kawane N, Andrews A (2003)
Orest Pilskalns: test adequacy assessment for UML design model
testing. In: Proceedings of 14th international symposium on soft-
ware reliability engineering, ISSRE’03., pp 332–343. https://doi.
org/10.1109/ISSRE.2003.1251054

22. XuD, XuW,KentM, Thomas L,Wang L (2015) An automated test
generation technique for software quality assurance. IEEE Reliabil
64(1):247–268. https://doi.org/10.1109/TR.2014.2354172

23. Paul TK, Lau MF (2014) A systematic literature review on modi-
fied condition and decision coverage. In: Proceedings of the 29th
annual ACM symposium on applied computing. SAC ’14, Associ-
ation for Computing Machinery, New York, USA, pp 1301–1308.
https://doi.org/10.1145/2554850.2555004

24. Ahishakiye F, Jakšić S, Stolz V, Lange FD, Schmitz M, Thoma
D (2019) Non-intrusive MC/DC measurement based on traces.
In: Méry D, Qin S (eds) Intlernational symposium on theoretical
aspects of software engineering, IEEE, Guilin, China, pp 86–92
https://doi.org/10.1109/TASE.2019.00-15

25. Simulink: types of model coverage. https://se.mathworks.com/
help/slcoverage/ug/types-of-model-coverage.html Accessed 06
Apr 2022

26. Lill R, Saglietti F (2013) Model-based Testing of cooperating
robotic systems using Coloured Petri Nets. In: Proceedings of
SAFECOMP 2013 - Workshop DECS (ERCIM/EWICS Work-
shop on Dependable Embedded and Cyber-physical Systems) of
the 32nd international conference on computer safety, reliabil-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://dl.acm.org/doi/book/10.5555/886632
https://doi.org/10.1145/2663340
http://cpntools.org/
https://doi.org/10.1007/978-3-030-65955-4_6
https://doi.org/10.5281/zenodo.7957119
https://www.bullseye.com/coverage.html
https://doi.org/10.1109/DASC.2008.4702848
https://doi.org/10.1007/3-540-45648-1_15
https://doi.org/10.4249/scholarpedia.7515
https://doi.org/10.1016/j.jlamp.2019.02.004
https://doi.org/10.1007/978-3-662-60651-3_5
https://doi.org/10.1016/j.scico.2019.04.002
https://doi.org/10.1016/j.scico.2019.04.002
https://manuals.plus/cme/cme-niki-t34-stringe-pump-manual-pdf
https://manuals.plus/cme/cme-niki-t34-stringe-pump-manual-pdf
https://doi.org/10.1007/978-3-319-29473-5_11
https://doi.org/10.1109/ISSRE.2003.1251054
https://doi.org/10.1109/ISSRE.2003.1251054
https://doi.org/10.1109/TR.2014.2354172
https://doi.org/10.1145/2554850.2555004
https://doi.org/10.1109/TASE.2019.00-15
https://se.mathworks.com/help/slcoverage/ug/types-of-model-coverage.html
https://se.mathworks.com/help/slcoverage/ug/types-of-model-coverage.html

F. Ahishakiye et al.

ity and security, Toulouse, France. https://hal.archives-ouvertes.
fr/hal-00848597

27. SimãoA, Do S, Souza S,Maldonado J (2003) A family of coverage
testing criteria for Coloured Petri Nets. In: Proceedings of 17th
Brazilian symposium on software engineering (SBES’2003), pp
209–224

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://hal.archives-ouvertes.fr/hal-00848597
https://hal.archives-ouvertes.fr/hal-00848597

	Coverage visualization and analysis of net inscriptions in coloured Petri net models
	Abstract
	1 Introduction
	2 Coverage analysis and MC/DC
	3 Instrumentation of CPN models
	3.1 MC/DC coverage for CPN models
	3.2 Automated instrumentation of net inscriptions

	4 Post-processing of coverage data
	4.1 Coverage analysis
	4.2 Combining coverage data from multiple runs
	4.3 Coverage visualization in CPN model

	5 Evaluation on example models
	5.1 Experimental setup
	5.2 Experimental results
	5.3 Discussion of results

	6 Related work
	7 Summary and outlook
	7.1 Outlook

	Acknowledgements
	References

