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Abstract 

In this thesis we continue to work on a self-levelling platform that has been designed and from which 

small prototypes have been built. The platform is part of a bigger project, being a scale model self-

levelling crane based on the Offshore Passenger Transport System (OPTS) from the company Palfinger.  

Lukas Janssens worked mostly on the electrical part of the thesis, such as programming the gyroscope, 

the base with the first joint, and the movement of the arm. This is all programmed on Arduino(C++) and 

PLC(Tia Portal). A communication between Arduino and PLC has been established in order for this to 

work. After programming and testing everything, it was time to solder everything for a good and sturdy 

connection between the electronic components. 

Martijn Spaas worked mostly on the mechanical side of the project which included researching and 

designing a new levelling and rotating base. The platform is designed in Autodesk Inventor 2021. Some 

parts have been 3D-printed in PLA and others are made of aluminium. He redesigned and printed other 

parts for better tolerances and optimizing the actuator’s stroke length. This was necessary to reduce play 

and friction in the crane. There were also some problems with dimensions which needed to be fixed. 

Martijn Spaas also took care of programming the steppers, servo, second, third and fourth joint and he 

also cleaned up the PLC program at the end. 

We worked together and: 

• Welded and assembled the crane.  

• Learned about the previous designs. 

• Looked up missing information about electrical components. 

• Read the Arduino and PLC programs that were already made. 
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Sammendrag 

I dette prosjektet fortsetter vi arbeidet med en automatisk nivå regulerende plattform som har blitt 

designet og bygget. Plattformen er en del av et større prosjekt med mål om å bygge en skalert modell av 

en automatisk nivå regulerende kran basert på Palfinger’s «Offshore Passenger Transport System 

(OPTS)». 

Lukas Janssens har arbeidet med det elektriske delen av prosjektet. Programmeringen av gyroskopet, 

basen med det første leddet og bevegelsen av armen. Alt er programmert i Arduino (C++) og PLC (Tia 

Portal). Kommunikasjon har blitt etablert mellom Arduino og PLC for at dette skal fungere. Etter 

programmering og testing ble alle koblinger loddet sammen for god og solid kontakt mellom 

elektroniske komponenter. 

Martijn Spaas har jobbet med den mekaniske delen av prosjektet, noe som inkluderer undersøkelser og 

design av en ny nivå-regulerende or roterende base. Plattformen ble designet i Autodesk Inventor 2021. 

Noen deler er 3D-printet i PLA og andre er laget av aluminium. Noen deler ble redesignet for å minske 

friksjon og slark i kranen, i tillegg til noen dimensjoner som måtte fikses. Martijn Spaas programmerte 

stepper og servo motorene i tillegg til å renske opp i PLC programmet. 

Vi jobbet sammen og: 

• Sveiste og monterte kranen 

• Lærte om det tidligere designet 

• Fant manglende informasjon om elektriske komponenter 

• Leste de tidligere Arduino og PLC programmene som var laget. 
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1. Introduction 

1.1 Background 

In this Bachelor’s thesis, we built a scale model, named ‘RoboCrane’, of the Offshore Passenger 

Transfer System, OPTS for short. Palfinger took over the project from Lift2Work and they are now 

solving some flaws. The OPTS consists of two major parts, the base and the crane itself. The base is 

self-levelling and can counteract the pitch and the roll of the vessel. The crane is mounted on the base 

and counteracts the yaw, heave, surge, and sway. Although a lot of big ships have dynamic positioning 

nowadays, meaning they do not have to compensate for surge, sway, and yaw. (1) If they turn on the 

‘compensation mode’, the OPTS can keep the endpoint still within 10 centimetres of accuracy (use 

Figure 1 - Ship movements to comprehend the movements we discussed). There has already been 

research for this project in the previous year by Jasper Gielen and Bram Deboel (3). In their Bachelor’s 

thesis, they analysed the best way to make the base. They came up with an end solution. This solution 

was produced in the summer later that year. The result was a base with a few centimetres of play and a 

lot of information for components. We invested a lot of effort into learning and understanding the project 

and developments from the previous year. With the OPTS they can transfer passengers and cargo 

efficiently and safely from a moving ship to fixed or semi-floating offshore installations. 

 

Figure 1 - Ship movements (2) 

1.2 Problem statement 

A scale model of the crane with platform is available. However, there is a bit (too much) play on the 

platform that needs to be adjusted. Parts need to be made/adjusted to let the crane and platform move 

properly. If there is too much play, we cannot calculate the endpoint of the crane. The crane and platform 

are not yet connected and tested. As minimum delivery, we will have a crane with platform that works 

with switches. We can let the actuators move and read the data from the sensors properly. It is possible 

to let the crane move manually. As an extra, we would like to implement the dynamics equations, 
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decrease delay and reduce play as much as possible. This would mean that the OPTS could calculate 

and compensate for itself. 
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2. Method 

In this thesis a certain overall method is followed, named design thinking which consists of five steps 

(empathize, define, ideate, prototype, and test). These steps were not followed in a certain order as we 

went back and forth with the different steps throughout the thesis. Below is a more detailed description 

of examples on how we implemented these steps in the thesis (4). 

2.1 Empathize 

During the entirety of this Bachelor’s thesis, we tried to communicate and think about the actual needs 

of the RoboCrane. Back then it was said that the crane had to be sturdy with not much play anymore. 

The crane should be manually controllable and the place of each joint should be trackable at any time. 

While getting into the project, the principles of safety, user-friendliness, and writing clean programs,… 

also came to mind. 

2.2 Define 

While thinking about the needs for the RoboCrane, more practical ideas came to mind. Here are some 

examples: The RoboCrane needs to be sturdy since the previous base had 10 centimetres of play. It 

would have been too complicated and taken too much time if we tried to fix this. Therefore, a whole 

new base had to be designed and produced. The crane had to be manually controllable, so buttons or 

switches had to be implemented. The place of each joint should be trackable, so feedback from every 

actuator was needed. To control all aforementioned requirements we needed a controller that we could 

program, like Arduino, PLC,…. For safety reasons, the crane should be locked when an error occurs, to 

avoid hitting people standing around it. These are the big user statements that were important throughout 

the thesis.  

2.3 Ideate 

In this part of the five-step method, all the ideas that came to mind were located. We discussed how to 

make the base, which type of bearing to make for the turning mechanism, how to remake the parts, 

reprogram everything or build on what was built before. There were too many ideas throughout the 

thesis to discuss everything. 

2.4 Prototype 

After the initial theoretical thinking and internal discussion, the first digital and physical prototypes of 

the different crane parts(e.g. the base and the arm) were constructed. These prototypes were tiny steps 

in the right direction. If the subsequent testing of the prototypes failed, the prototypes needed to be 

adjusted accordingly. 

2.5 Test 

We tested the prototypes and if they were not good enough, adjustments were made. This loop kept on 

going till the prototype was good enough to meet the standards that were set in the ‘define’ step. These 

tests included theoretical calculations and practical testing. 
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3. Mechanical aspect 

3.1 Introduction 

Although the entire crane was designed and 3D-printed almost every part needed to be remade. There 

was too much play in the joints, they could not support their weight, or the dimensions were off. We 

noticed that all designs were scaled-down versions of the big crane with some added features. Editing 

dimensions in the designs was not easy as they were made by combining solid shapes derived from the 

original full-scale crane designs. This made adjustments difficult, as we could not easily alter the 

different dimensions. Editing the parts was sort of a cumbersome process.  

3.2 Summary crane parts 

In Figure 2 - RoboCrane: you can see the completed crane. 

 

Figure 2 - RoboCrane 
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Below are the names for the base axes (Figure 3 - Base axes) and crane parts (Figure 5 - Crane with 

crane parts) which are used throughout this thesis. The measurements from joint to joint are in “Crane 

limbs measurements”. 

3.2.1 Base design 

 

Figure 3 - Base axes 

In Figure 3 - Base axes, the axes of the base are represented. We use an outer ring which moves in 

relation to the baseplate around an axis Y and an inner ring which moves in relation to the outer ring 

around the X axis. These movements can compensate for the sway and roll movements of the ship 

(Figure 1 - Ship movements). 

3.2.2 Angled base design 

The angled base compensates for the yaw of the ship (Figure 1 - Ship movements), especially since this 

joint needs to be stable given the whole crane relies on it. In Figure 4 - Angled base, we can see the 

angled base with also a corner section view. 

 

Figure 4 - Angled base  
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3.2.3 Crane design 

 

Figure 5 - Crane with crane parts 

In Figure 5 - Crane with crane parts, you can see the completed crane. Number one refers to the base 

and rotating base. We will continue referring to different parts of this crane with these names. 
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3.3 Turning mechanism 

3.3.1 Choice for design 

During the inspection of the crane, a significant amount of play was observed at the turning mechanism. 

A collective decision was made to initiate research into alternative options and reconstruct this particular 

part of the crane.  

Option one: slew bearing 

 

 

The slew bearing is the general go-to solution for turning mechanisms of big structures. The big outer 

ring gives two points of contact to the steel balls in the channels and the smaller inner rings each give 

one point of contact. The inner plates are sandwiched together with bolts to keep the whole assembly 

together. The four points of contact ensure a big resistance to radial and axial forces. Reducing the price 

tag can be achieved by 3D printing the rings. This would increase friction and play and it will require 

some more design work. 

Option two: radial bearing 

 

 

This design of the radial bearing places the steel balls inside two rings. It can withstand great radial 

forces but no axial forces. If we want to use a radial bearing we will need to buy a bearing big enough 

to support the axial forces. To reduce cost, we can 3D print the rings which will increase friction and 

play. 

Figure 6 - Slew bearing (34) 

Figure 7 - Radial bearing (35) 
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Option three: special assembly 

 

 

In Figure 8 - Special assembly, you can see an example of such an assembly. This one has a small metal 

bearing on the bottom, a bolt to squeeze two 3D-printed plates together, and balls in between. The head 

of the bolt rotates freely inside the bearing. This design is more complex and needs more design work 

and more material to work properly. 

Choice matrix 

Table 1 - Choice matrix rotating base 

 Slew bearing 

(metal) 

Slew bearing 

(3D-printed) 

Radial bearing 

(metal) 

Radial bearing 

(3D-printed) 

Special 

assembly 

Price  1 5 2 5 4 

tolerance 5 4 4 1 4 

friction 5 4 4 2 4 

complexity 5 4 5 5 2 

Own opinion 3 5 2 2 3 

total 19 22 17 15 17 

Choice matrix Table 1, shows us that the 3D-printed slew bearing is the best option. The metal slew 

bearing gives the best movement but comes with a heavy price tag. Therefore we will 3D print the outer 

and inner rings and use metal balls in these rings. 3D printing the balls of the bearing would not be 

convenient since as 3D printing would not be dimensionally accurate, and they would not roll as 

smoothly as metal ones. This widely adopted design is commonly utilized in turning mechanisms for 

lifting solutions, establishing its reliability and effectiveness.  

 

  

Figure 8 - Special assembly 
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Figure 9 - Generated gears (5) 

Design choices 

The first step is including the outside gear in the design which is generated using an online tool to get 

the correct pressure angle (5). This can be seen in Figure 9 - Generated gears . The inside diameter is 

derived from the existing part: “angled base”, so as to not further change the design. With these 

measurements and knowing there are at least 17 teeth needed for the smallest gear (to not allow undercut 

gear tooth). The tooth count of the outer gear is calculated. For the big gear, the corresponding teeth 

number is 145. The holding torque of the stepper motor is 0,36 Nm. With these numbers, the calculated 

torque is: 0,36*145/17 = 3,07 Nm. To get the force exerted at the teeth we multiply this by the pitch 

radius of the big gear: 3,07 NM*0,072 m = 0,221 N. This works because this assembly is sitting on the 

base which keeps this part level. Theoretically, the only force that this stepper motor needs to overcome 

is friction from the slew bearing. The tolerances of the design were chosen using 3D printing tolerances 

obtained from an online article (6). 

 

Figure 10 - Slew bearing angled base 

Next up is designing the rest of this assembly represented in Figure 10. With the correct gear shape the 

sketch has been modified. The processing time needed when altering the involute sketch is remarkable. 

After designing the gear a slot is cut out as part of the bearing. These dimensions continue to the inner 

plates. A centre hole is added for future cables. The next task involves the motor mount, which is 

intended to be adjustable, enabling the assembly to fine-tune the play and height of the smaller gear in 

relation to the larger gear. Once all the parts were manufactured, the tolerance of the bearing was 

measured, and the inner plates were repeatedly 3D-printed. As a result, there is now virtually no play, 

allowing the assembly to rotate freely. 
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3.3.2 Realisation 

For 3D Printing the gears (Figure 12 - Big gear slicer settings) a Prusa mk3 printer (7) is used. The 

printer has a printing volume of 250mm x 210mm x 210mm and has a nozzle that can reach temperatures 

up to 300°C which makes it capable of printing materials including ABS, PETG, PLA, etc. For this 

project, PLA will be used. PLA is strong enough, it is also one of the easiest materials to work with. The 

previous experiences we have with CURA (8)( 3D print slicer software), made us decide to slice our 3D 

prints with CURA. We also have access to an adventurer 4 3D printer from FlashForge (9) with a build 

volume of 200mm x 220mm x 250mm. For this printer, a custom printer profile in CURA is required. 

A quick Google search led to the website of FlashForge (9). They give a step-by-step setup to use their 

printers with other 3D printing slices. By only using CURA, the learning curve associated with using 3 

different slicer software is reduced. The profile used for the adventurer 4 is in Figure 11 - 3D printer 

profile below. Note that there is a need to use a bit of startup G-code and end G-code. This is a specific 

code for the printer. This code initializes the printer, sets the correct position of the printhead with 

respect to the print bed, and safely shuts down the printer when a print is finished. These settings need 

to be corrected. If not, they could result in bad prints or at worst, the printer breaking itself. For example, 

because the machine thinks the build plate is located 20cm lower and thus the printhead assembly would 

collide with the print bed. 

 

Figure 11 - 3D printer profile 

 

Figure 12 - Big gear slicer settings  



  Production, assembly and programming of a RoboCrane 

11 

 

3.3.3 Gears 

The gears are printed with increased wall line counts, this influences the wall thickness which in turn 

greatly increases the strength of the part and makes sure there will not be any teeth breaking off. The 

inside discs are printed with the same settings. For the angled base, an adjustment was made. To make 

sure the long braces will not break next settings were altered: increased temperature (for better layer 

adhesion), increase infill density, infill line count, and wall line count. The end result, represented in 

Figure 13 - 3D printing the toothed ring with end result, meets our standards as everything moves with 

very little play and friction.  

 

 

Figure 13 - 3D printing the toothed ring with end result 
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3.4 Base design 

After taking a closer look, an excessive amount of play is observed in the base. Upon closer inspection, 

we discover that the base design is flawed and has too many ball joints, which gives too many degrees 

of freedom. The design of our scale model also does not match the design from Palfinger. We decide to 

start designing our own, more rigid base platform. Our preferred design is a similar design as the big 

crane from Palfinger. 3D-printed plastics in this part of the crane would not be efficient, thus the decision 

was made to use aluminium extrusions with aluminium reinforcing corners and welded subassemblies. 

This decision required welding aluminium which entails a challenge on its own. The design of the base 

starts with the connection of the rotation base. This gives some measurements to start with. The next 

step is measuring all the other actuators (Figure 14 - Linear actuator), these have a stroke length of 100 

millimetres and a retracted length of 243 millimetres. All other measurements can be found in the 

corresponding datasheet (10). 

 

Figure 14 - Linear actuator 

While designing, the choice was made to utilize all four actuators simultaneously, resulting in a closer 

resemblance to a real crane. The new design incorporates a platform-mounted assembly that facilitates 

the movement of an outer ring (left side Figure 15 - Outer and inner ring), subsequently rotating the 

inner ring (Right side Figure 15 - Outer and inner ring). This approach ensures that each joint possesses 

only one degree of freedom. The design of the base is progressing while taking into account the 

dimensions of the actuators. Throughout this process, each component is placed within a large assembly 

to enhance visualization and simplify collision-free design. The extrusions utilized are obtained from 

Alu flex (11). The CAD file was conveniently acquired from their online CAD filer and seamlessly 

imported into the drawing. 

 

Figure 15 - Outer and inner ring 
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Initial standards (left side Figure 16 - Standards and actuator mount) were established at the beginning 

of the design process. Tabs (right side Figure 16 - Standards and actuator mount) were incorporated to 

ensure proper alignment with other components. These tabs are all made with the same dimensions 

except the “tail”. The “tail”, with a measurement of 20 millimetres, keeps linking the subassemblies 

with the corresponding actuator mount easier. They also give a clear physical aid for aligning the 

assemblies for welding. Their dimensions can be seen in Figure 16 - Standards and actuator mount. 

 

Figure 16 - Standards and actuator mount 

The options for how the axis will support the base are:  

• Bolts, which would cause the introduction of a lot of friction; 

• 3D printing bearings, plastic bearings which would introduce a lot of play and friction; 

• 3D printing the axis and hole, which would cause a lot of friction; 

• Using a metal axis and standard metal bearings.  

The last option was the most preferable. The strength of steel is needed in this part of the base without 

a lot of play. Therefore all the other options would not work. The axis (Figure 17 - Axis) is designed 

with a square body to fasten to the rest of the assembly. The axis also includes a shoulder that presses 

against the bearing and ensures no axial play. A 3D-printed pillow block (Figure 18 - Pillow block) is 

made to press fit the bearings into. To make sure it is a press fit, the hole is designed on exactly the same 

size as the bearing’s outer diameter. The axis is mounted in a slot to give the assembly adjustability and 

reduce play, allowing us to jam the bearing and therefore the assembly tightens by clamping both axes 

closer together. The other axis is not mounted in a slot but the adjustability comes from the mount at the 

bottom which does allow movement. To try and make it a little easier to program, the x- and y-axis are 

placed at the same height. This gives a point in the centre around which everything will rotate. This is 

an easy thing to do in this part of the project but reduces complexity later on.  

 

 Figure 18 - Pillow block 

  

Figure 17 - Axis 
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While asking for some assistance with plasma cutting the design, we got some good advice. By making 

welded subassembly there will not be the chance of warping the main big plate which needs to be 

dimensionally accurate. The designs are edited to incorporate subassemblies (Figure 19) with bolted 

connections. This takes longer than expected because of the need to edit all the mounts, recalculate their 

lengths and remake the assembly. The recalculating consists of subtracting the length of tabs from the 

thickness of the aluminium plate which is 5mm. Before plasma cutting, everything is placed back into 

the assembly and checked for collisions and if it is possible to make/assemble everything. 

  

  

Figure 19 - Welded assemblies 
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Realisation 

Cutting parts. 

Plasma cutting the parts required a DXF file format (left side Figure 20). After exporting all needed 

faces in Inventor to a DXF file format, the number of parts was added behind each part name. This made 

ordering all parts in the Plasma cutter software a lot easier and clearer. Due to the structure, we only had 

to cut once. This can be seen in Figure 20. 

 

Figure 20 - Plasma DXF file 

The same plate thickness is used throughout the design. This reduces complexity and leads to easier 

designing. The 5mm thick aluminium plate is cut using the plasma cutter at HVL. It is an old machine 

therefore we assume that the cuts are not that accurate. The machine also centre punches the places 

where we need to drill holes. After restarting the machine a few times, all parts were cut (Figure 21).  

  

Figure 21 - Realisation with plasma cutter 

Cleaning parts 

The next step is cleaning all the parts. For this process, a belt grinder and file were used. The belt grinder 

speeds up the process, but some small pieces still need to be cleaned up by hand. When all the parts are 

cleaned the holes get drilled. After everything is cleaned up and drilled, we prepare for welding.  
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Welding 

After asking about welding the aluminium, we got the chance to do it ourselves. Without hesitation, we 

took this chance to learn how to TIG weld aluminium. TIG refers to the tungsten electrode used in the 

torch and the inert shielding gas used that protects the weld. Unlike welding metal, you need a rounded 

electrode tip instead of a sharp one. The material also needs a wire brush before starting the weld, since 

this process gets rid of the tough aluminium oxide on the surface and makes the process easier. We got 

the machine set up with the correct current, learned about the TIG welding technique with the filler rod, 

and started practicing. Welding aluminium turned out to be more difficult than welding steel. The 

conductivity of aluminium makes sure the whole piece heats up and once everything is hot you, can 

drop the current or speed up. After some practice (Figure 23 - First welds), we got the hang of it and 

started with the real deal. To ensure alignment and no warping two steel blocks were used (one of 40 

millimetres and one of 50 millimetres). These act as spacers and give a way to fix the assembly together 

without warping or moving.  

  

Figure 23 - First welds Figure 22 - Welding process 
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Assembling 

Assembling everything starts with fixing the subassemblies to their corresponding bigger plate (Figure 

24 - Base with outer ring). M6 bolts are used to accomplish this but are not fully tightened. After this, 

the aluminium extrusions are assembled in a rectangle with the correct corner pieces (Figure 25 - Base 

with welded assembly). The aluminium extrusions used are the 40 x 40 millimetre profile 8 from Alu 

flex (11). There were small pieces of aluminium used from different projects. There was enough for our 

project, this way we did not need to order any new extrusions. Using the slots from the extrusions to 

fasten everything together makes for a strong and ridged platform. T-slot nuts and M8 bolts are used in 

this part of the assembly.  

 

 Figure 25 - Base with welded assembly 

 

Next up is the centrepiece (Figure 26 - Centrepiece). This piece connects the rest of the crane with the 

base (Figure 27 - Crane with base). The base was assembled using the standard bolt sizes available to 

us and a few cut to size (again using M6 bolts). The tolerance of the pillow block and bearing is just 

right to be pressed together by hand which ensures a nice friction fit. When fitting the axes and bearings 

the axes are not up to spec and do not fit. When asked, a lab engineer used a belt grinder to remove 

excess material. While doing so, there was a small bevel introduced in the axis which actually increased 

the tightness. The axes are now not only clamped into each other but also wedged into the bearings. 

After installing the actuators, the space next to each joint was measured. With this information the 

spacers are made, which fixes the actuators in place and limits the side-to-side movement.  

 

Figure 27 - Crane with base 

  

Figure 24 - Base with outer ring 

Figure 26 - Centrepiece 
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3.5 Remaking truss 2 

Upon further inspection, additional problems arose. The first of which was truss 2 as this 3D-printed 

part was broken due to the scaling process and print orientation. The material around the pivot point 

was not strong enough. This can be fixed with a few alterations: 

1. Editing the design with more material around the pivot point. This is the most obvious solution, 

putting more material where the break happened. This option is limited to the other parts of the 

joint, which does not allow a lot of extra mass.  

2. Printing the part in a horizontal configuration. This solution will result in better print quality 

and a more optimal print efficiency. The need for a good layer adhesion will be less important 

as the whole outline of the wall will be printed in one layer. Printing the part in this orientation 

will increase the support desired. 

3. Using a different material. ABS and PETG are two materials that have better mechanical 

properties. The downside will be the 3D printer itself, since the Prusa printer we have access to, 

is technically capable of printing with these materials but will struggle to achieve a good result. 

We could outsource this part to be made somewhere else or use a lot of time getting the correct 

settings for this printer with these materials. 

 

Figure 28 - Cura settings 

 

In the end, the part was 3D-printed with PLA in the horizontal configuration with added material 

around the pivot area. A support roof and base were used with 5% support density to speed up the 

cleaning process and support material used. The wall line count and infill were also altered: infill 

was increased by 10% and wall line count was increased from two to six, as this change gives more 

material at the very bottom of the part where compression is the highest, and at the very top where 

tension will be the highest. The rest of the settings are strong enough for this part. The added material 

in the top and bottom results in a structure with a mass distribution close to an I-beam. This will be 

more optimal considering strength and weight in one direction. Changed support settings can be 

seen in Figure 28 - Cura settings.  
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3.6 Remaking the second joint 

Joint 2 (bottom of Figure 29 - Second joint) also has a lot of play. After closer inspection, approximately 

50° of movement was observed. When the crane is loaded, the joint will normally be at the lowest point 

due to gravity. The problem is more prevalent when side-loading this joint. The up-and-down movement 

can be plotted with the pot meter input. There are a few options for solving this problem: 

1. Making a new joint design. This would require us to redesign the joint from scratch, which 

would result in more work and a lot of PLA waste. 

2. Fully adjusting the old design and reprinting. This would mean adjusting hole and pin tolerances 

and reprinting the second joint and truss2. The needed design time would be less compared to 

adjusting the old one. The downside would be the way previous designs are made and the used 

materials. 

3. Drilling out the holes and printing bigger pins where possible. 

4. Remodelling the truss connections and plastic welding the pins to the other connection. Plastic 

welding would result in a strong connection. The downside would be that we cannot disassemble 

the joint. 

The truss connection is 3D-printed with smaller hole sizes (top of Figure 29 - Second joint). This way 

the pins can be reused. 3D printing only the connections will not take a long time and will only use a 

little bit of material. In the top holes of the inner boom, tip bushings are used to adjust the hole size. 

They press fit in the holes and make for a play-free connection. They are printed with increased 

bottom/top thickness and wall line count to increase the strength of these small components.  

 

Figure 29 - Second joint  
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3.7 New truss 2 

Previous designs did not use the measurements of the actuators correctly. Therefore the range of motion 

of the third and fourth joints was limited. The different options for solving these problems are: 

1. Redesigning both joints from scratch.  

2. Drilling new attachment holes inside truss 1 and truss 2, which is not preferable. We need the 

exact measurements of the crane, in order to use these in the program codes of the crane. 

3. Moving the joint connections. This will allow only a small amount of correction. 

Both problems are fixed by altering truss 2. To fix the motion of the third joint the connection hole 

shown on the left side of Figure 31 was moved down with the same distance from the pivot point. This 

moves the joint 43,4° from the original position. A cut-out was made at the bottom (middle Figure 30 - 

New truss 2) to allow truss connection two enough space to move freely. The third joint is fixed by 

extending the entire truss (left image of Figure 30 - New truss 2). This solution was not easy, because 

of the way the old design was made, the old design just scales down the original drawings from Palfinger 

and adds some shapes. To extend truss 2, the truss is cut in half, one part moved and then a new extrusion 

was made to fill in the gap(using the function “extend” did not work with this design). 

 

Figure 30 - New truss 2 
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3.8 New wrist, fifth joint and basket 

Originally the fifth joint was moved with a stepper motor. When inspecting the design, there were only 

technical drawings and no electrical components or code for it. Making the fifth joint with the small 

stepper motor would introduce a lot of weight to the furthest joint of the crane. An additional encoder 

and driver would also be needed, which would increase the cost and would also increase the complexity 

of the code. A preferable option would be redesigning this joint and using a small sg90 micro servo. 

These servo motors can be controlled straight from an Arduino and only weighs 9 grams, given this will 

be the final joint, it needs to be lightweight. The basket (left of Figure 31 - Basket and fifth joint) will 

be placed straight on top of the servo’s axis and printed with a special profile. The profile used is 

‘spiralize outer contour’. This setting spiralizes the print. Spiralizing the print means it is printed in one 

continuous line. This way the print will be light and strong. The bottom thickness is also increased. With 

these settings, the part will be only 40 grams and will be printed in only 3 hours and 16 minutes (right 

side Figure 31 - Basket and fifth joint). 

  

Figure 31 - Basket and fifth joint 

3.9 Telescopic arm 

The telescopic arm did not work due to friction, bad tolerances, and an overall bad design. The design 

had bad tolerances and a bad finish on the 3D-printed parts. The inner telescopic arm bends and is not 

straight while the outer telescopic arm is. There is also no practical way to assemble the stepper motor. 
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4. Electrical aspect 

All datasheets can be found on our github page (12) 

4.1 Components 

The results from the Bachelor’s thesis from the previous year (3) show us a lot of components that we 

can use. To use these components, we have to do research about them and get to know them thoroughly. 

This is what we did in our first weeks of research. Here you will see the components that we received 

from the previous year together with the components that we ordered this year. Sometimes we use other 

components than those that were initially at our disposal. There are different reasons for this, which will 

all be explained later on in this research. 

4.1.1 Gyroscope 

The gyroscope gives information about the angle and acceleration of the boat at a specific time. The 

information from the gyroscope is important. First, the gyroscope gives information about how many 

degrees the crane has to compensate for the tilt of the ship (roll, pitch, and yaw, Figure 1 - Ship 

movements). Secondly, it sends information about how much the crane has to go up and down (heave). 

In February, gyroscope type ‘BNO055’(left side Figure 32 - Gyroscopes BNO055 and LSM9DS1) from 

the previous year was been used, but it was already a few years old and did not work properly. After 

testing, the conclusion was that the magnetometer and the accelerometer on the z-axis worked, but the 

x- and y-axis accelerometers did not work. With this issue, a new gyroscope was ordered: ‘LSM9DS1’ 

on the right side Figure 32 - Gyroscopes BNO055 and LSM9DS1. While testing the new gyroscope, it 

was clear that there were still some flaws. Thankfully the accelerometers worked, but there were still 

some problems with the magnetometer. Another problem is accuracy. If the gyroscope is laying still, 

the PLC gives values from -10° to +10°. This leads to a deviation of 20°. The transformation of the data 

from the Arduino to the PLC is probably the cause. Due to lack of time, this issue unfortunately has not 

been resolved. 

In Figure 33 - Gyroscope signal you can see the graph that shows the values of each direction (x, y, z) 

of the gyroscope ‘BNO055’. At that moment the gyroscope was tilted in each direction, but only the z-

axis reacted. The red and blue lines at the bottom are the x- and y-axis. There is a little offset between 

those two. The dipping of the signal from the z-axis to the ground is also due to the fact that the 

gyroscope is not working properly anymore. 

 

Figure 32 - Gyroscopes BNO055 and LSM9DS1 
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Figure 33 - Gyroscope signal 

4.1.2 Linear actuator base (Ewellix) 
To tilt the base, we need actuators. These actuators are very sturdy and stable and therefore perfectly fit 

for this job. Inside is a powerful DC motor with an absolute analog output, which is used to find the 

position of the motor at all times. You can compare the absolute analog output with the output that you 

get from a potentiometer. 

 

Figure 34 - Wiring diagram absolute analog output (10) 

4.1.3 H-bridge 
To move the linear actuators, the DC motors need to be controlled with an H-bridge. An H-bridge is an 

electronic component that can switch the polarity of the applied voltage. In this thesis, there are two 

types of H-bridges. The first one is the HW-039. It is built for 24VDC and it is used for the actuators of 

the base and the first joint. The other type is the L298N, which is a dual H-bridge. This means that it 

can control two motors at the same time. This dual H-bridge is built for 12VDC and is used for the 2nd, 

3rd,and 4th joints. These linear actuators need 12VDC. An important thing to know is that there is a 

maximum PWM frequency that the H-bridges can handle. The maximum PWM frequency can be looked 

up in the data sheets (13) (14). The two different types of H-bridges do not work totally the same. HW-

039 can send different PWM signals for the in-and-out movement of the actuators. The L298N H-Bridge 
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has to change its PWM signal in order to accomplish the same result. The HW-039 can work with the 

same program as the L298N if we connect the PWM signals to one output on the Arduino. The L298N 

cannot work with dual PWM output. 

 

Figure 35 - H-Bridge HW-039 (13) and L298N (15) 

4.1.4 Stepper motor with driver 

In this project, we need two stepper motors. One will be used for the telescopic movement of the arm 

and the other one is for the rotation of the crane around the ‘heave axis’ from Figure 1 - Ship movements. 

The drivers that are used are the TB6600 and the geckodrive G201X. The driver TB6600 is used because 

it was already at our disposal. The Geckodrive was ordered later on because the TB6600 could not be 

ordered. 

 

Figure 36 - Stepper motor (16) 

 

Figure 37 - Driver, TB 6600 + Geckodrive G201X38 (17) (18) 
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4.1.5 ADAC-Click module 

The ADAC-Click module is made to convert analog signals to digital signals or the other way around. 

With the ADAC Click module, we can convert the data of the gyroscope to an analog signal and connect 

it to an input of the PLC. This way, we can read the data on the PLC. Its job is to convert the signal from 

I²C to analog, hence (A)DAC. This stands for Digital to Analog Converter. In the end, we could just 

connect the Arduino directly to the PLC and we did not need this ADAC module. The calculations show 

that using the ADAC is faster. 

 

Figure 39 - ADAC Click (19) 

Calculations: 

Is the ADAC click really the best solution to convert the data from I²C to an analog signal? We did some 

tests with the ADAC click and saw that we always got a dip back to ground, the PLC took averages 

from these values, making it incorrect. This is an issue since the values were corrupted. 

Resolution 

- The gyroscope has 32 slots of 16-bit data for each of the gyroscope’s three output channels 

(yaw, pitch, and roll). The ADAC Click gives an analog signal that has a resolution of 12 bits. 

The PLC can read an analog value of 16-bits. This makes the ADAC Click the ‘bottleneck’ for 

the resolution. The 12-bit is still better than the 8-bit of the ‘AnalogWrite’ function embedded 

in the Arduino. 

Speed 

- The function ‘AnalogWrite’ needs 3.4 milliseconds. That is about 290 times per second. (20) 

- I²C can send 100k bits/s, meaning it can send 1 bit about 100 000 times per second. However, 

take into account that the signal has to go through the ADAC click now. The ADAC click has 

a conversion time of 2 microseconds. This means that it takes 2 microseconds to transform a 

digital signal from the I²C to a 12-bit analog signal. So the gyroscope sends its 16-bit data to the 

ADAC and then it converts the signal with 2 microseconds latency. 

First get the number of packages of data it can send without delay: 

100𝑘 𝑏𝑖𝑡𝑠/𝑠

16 𝑏𝑖𝑡
=

6250

𝑠
 

This is how many times the PLC could theoretically get a value from the gyroscope per second, but 

there is also a two microsecond latency after each time the ADAC click converts data. Then you get: 

0.000002 𝑠 ∗ 6250 = 0.0125𝑠. 

This is the maximum latency of the ADAC click per second. 
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The total latency is then: 

6250

1.0125
=

6172

𝑠
 

This method is faster than the AnalogWrite function. It comes down to 6172 times per second. In 

comparison with the AnalogWrite, 290 times per second. (21). 

Conclusion: 

The ADAC click is 21,3 times faster and yet we choose not to use it.  

Do we really need so much data? No, we do not. 

1) It is a component less to worry about for the wiring and for possible failures. 

2) The ADAC click gives a high signal but goes back to ground after the signal because the 

integrated reference is turned off by default. The PLC is fast enough to keep up and so it takes 

the average of the signal. It is certain that you can work around this, but due to lack of time we 

could not do it. 

4.1.6 Power supplies 

In total, we have three power supplies. The power supplies convert the 230V to voltages that we need 

for the electronics. We have: 

- 5 VDC for the control circuit and communication with the PLC; 

- 12 VDC for the linear actuators of the crane from Actuonix; 

- 24 VDC for the big linear actuators of the base and the big arm (first joint) of the crane. It is 

also used for the drivers of the stepper motors. 

 

Figure 40 - 24V, 12V and 5V power supply (22) (23) (24) 

Table 2 - Power supplies 

Power supply 

input(V) 

Power supply 

output(V) 

Current(A) Nominal Power(W) 

230V 5V 3 15 

230V 12V 5 60 

230V 24V 10.42(or 16.7 with fan) 250(or 400 with fan) 
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4.1.7 Linear actuators crane (Actuonix) 

For tilting the three last joints of the crane, these actuators are used. The 3 last joints are the 2nd, 3rd, and 

4th joints from Figure 41 - Linear actuator Actuonix. These actuators are crucial for the compensation 

of the waves. They help primarily with the compensation of the up and down movement and a little bit 

for the tilt, as the base already compensates for a lot of tilt. In the linear actuator is a DC motor that 

provides the power. The actuator is a p-type and has built-in limit switches. The P stands for 

‘potentiometer’, the potentiometer will get us the position of the actuator at any time. 

The characteristics of Figure 42 - L12 specifications (gear ratio 100, 12V) show that the speed will drop 

when there is more force acting on the actuator. Notice how the current drops when the applied voltage 

is doubled. After some tests on the second joint with this actuator, it was noticeable that it could not 

hold the weight. There was also an actuator missing in the beginning. When new parts were ordered, a 

linear actuator with a higher gear ratio was chosen. Now there is an actuator with a 150:1 gear ratio 

instead of 100:1. 

 

Figure 41 - Linear actuator Actuonix (25) 

 

Figure 42 - L12 specifications (gear ratio 100, 12V) 

 

Table 3 - Actuonix specs 

 Stroke length(mm) Gear ratio Max load(N) No load speed 

(mm/s) 

2nd joint 

(type L16) 

50 150:1 200 8 

3rd and 4th joint 

(type L12) 

50 100:1 42 13 
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4.1.8 Arduino 

The Arduino uno and Arduino uno wifi rev 2 were used. These are the Arduinos that were ordered last 

year. An Arduino is a microcontroller that can be used for a lot of things. In our case, we use it as a 

translator to send PWM signals to the actuators and to transform the data of the gyroscope into 

something readable for the PLC. The PLC can also send PWM signals, but the frequency is not fast 

enough for the motor controllers. (3) There are PLC modules that can produce a quicker PWM signal, 

but the ones from school cannot. This is the reason that the decision is made for using Arduinos as a 

translator. You could say that in a way the Arduino functions as a slave of the PLC. We use a normal 

Arduino uno for the stepper motors because the library for the stepper doesn’t work so well on the wifi 

rev 2. 

4.1.9 PLC 

The PLC (Programmable Logic Controller) is a computer that is built for the industry. We use the PLC 

to run the main program. It is a very robust computer that can handle a lot of data. We have a learning 

PLC at our disposal. That means that there are some restrictions on it. For example, this PLC doesn’t 

use all of its IO’s: only half of the IO’s are usable. After communicating back and forth, we had 3 

options. 

• The first one is to take a second learning PLC and connect them via an Ethernet cable. 

• The second option is to get a few modules from the first PLC and put them on the other one. 

• The third option is to buy screw connection modules that can be implemented. After 

communicating back and forth, it was not allowed to take apart the PLC, so the second option 

is not a possibility. 

The choice is pretty clear to us. The third option is the best one because we do not have to try to let the 

two PLC’s communicate via Ethernet. You also would not need to carry 2 PLC’s while moving the 

RoboCrane. Fewer components make it easier. 

 

Figure 43 - PLC S7-1500 (26) 
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Voltage Divider 

 

Figure 44 - Voltage Divider 

The digital output signal of the PLC is 24VDC. The Arduino works on 5VDC, so a voltage divider is 

needed. Due to lack of space on the soldering boards, it is best to just have 2 resistors and not a few 

resistors in series. The standard resistors that were on disposal were the E12 resistors. This means that 

1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, and 8.2 times 10, 100 and 1000 ohm were available in 

the lab. To minimalize the quantity of the resistors, the formula is best used with a fixed value of one of 

the above. Afterwards, the result can be compared to the available resistors. They also need to be big 

enough to limit the amount of current flowing from the PLC. A simple example of a voltage divider is 

two resistors connected in series, with the input voltage applied across the resistor pair and the output 

voltage emerging from the connection between them. The formula that is been used is based on Ohm’s 

law (27). 

- 𝑍1 Value of the first resistor [Ω] 

- 𝑍2 Value of the second resistor [Ω] 

- 𝑉𝑖𝑛 Voltage input   [V] 

- 𝑉𝑜𝑢𝑡 Votage output   [V] 

𝑍1 =
𝑉𝑖𝑛∗𝑍2

𝑉𝑜𝑢𝑡
− 𝑍2 (1) 

Fill 𝑍2 =1000Ω into (1): 

𝑍1 =
24 ∗ 1000

5
− 1000 = 3800Ω 

To get 5VDC, 𝑍1 needs to be 3800Ω. This resistor is not available at the lab, the closest value is 

3900Ω. Let’s see how much 𝑉𝑜𝑢𝑡 is when 𝑍1 is 3900Ω. 

𝑉𝑜𝑢𝑡 =
𝑍2

𝑍1+𝑍2
∗ 𝑉𝑖𝑛 (2) 

Fill 𝑍1 = 3900Ω and 𝑍2 =1000Ω into (2): 

𝑉𝑜𝑢𝑡 =
1000

1000+3900
∗ 24 = 4,897V 

Conclusion, this value is high enough for the Arduino to detect it and not too high to break the digital 

pin. 
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4.2 Electrical wiring diagram 

For the exact connections between PLC and Arduino we refer to Table wiring connections 

Legend: 

- Red: power supplies 

- Black: Ground 

- Blue: Communication from and to PLC 

- Yellow: Data communication from Arduino 

 

4.2.1 Base and first joint 

In this wiring diagram, the first Arduino is visible, together with the three H-bridges and the five linear 

actuators. The power supply of the 24VDC is directly connected to the H-bridges. The ground of the 

24VDC supply is not connected to the ground of the 5VDC circuit. There are two analog inputs coming 

from the PLC, which are the switches for the base. The other two digital inputs are the two switches for 

moving the first joint. 

 

Figure 45 - Electrical diagram base and first joint 
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4.2.2 Gyroscope  

The second Arduino is visible together with the gyroscope (LSM9DS1). The gyroscope needs 3,3V or 

5VDC and two cables for the data and scale of the I²C. There are three analog outputs from the Arduino 

to the PLC. One for each direction, namely the x, y, and z-axis. 

 

Figure 46 - Electrical diagram Gyroscope 
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4.2.3 Steppers + servo basket 

The electrical diagram (Figure 47 - Electrical diagram steppers + servo basket), wich is made for the 

‘steppers + servo basket’ program, shows the third Arduino, together with two drivers, two steppers, 

and a servo. There is a 24VDC power supply needed for the stepper motors. The power supply is not 

connected to the control circuit of 5VDC. The 5VDC is connected to the ‘enable’ pin of the drivers. 

This is because of security, this causes the stepper motor to stay powered and stand still. This is 

important because, if the base is tilted, the end of the arm is leaning down due to gravity. This force 

needs to be held back by the stepper. The same goes for the other stepper motor. The telescopic arm 

can’t go in when the stepper motor stops rotating. 

 

Figure 47 - Electrical diagram steppers + servo basket 
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4.2.4 Linear actuators arm 

In this last diagram, a fourth Arduino is used, together with two dual H-bridges. The BTS7960 on the 

diagram is not the right one. It is not possible to put the dual H-bridge (L298N) into the diagram, so for 

simplification, a third H-bridge is used in the diagram. The difference is in the PWM inputs of the dual 

H-bridge. The dual H-bridge only has one PWM input for every motor whereas the single H-bridge has 

one for each direction. The third and the fourth linear actuator are together on one dual H-bridge, while 

the second has its own. The second and third will be controlled with an analog input while the third will 

be controlled with two digital ones. 

 

Figure 48 - Electrical diagram linear actuators arm 
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4.3 Programming aspect 

All drafts can be found on our GitHub page. Final programs are attached, and on the GitHub page. 

4.3.1 Arduino 

As you can see from Figure 45 - Electrical diagram base and first joint - Figure 48 - Electrical diagram 

linear actuators arm there are four Arduinos used in this project. Each one of the Arduinos with its own 

unique code. The code is made to control the machine manually with feedback from the sensors. With 

this feedback, it is possible to calculate where the endpoint of the arm is. It is also possible to read this 

data from the gyroscope. 

4.3.2 Base and first joint 

The process 

At the beginning of the process of writing the end program, a program was written to only move one 

actuator with an H-bridge. The 24VDC supply of the PLC was used to move the motors. After 

connecting a second motor in reverse to the H-bridge, it was clear that the PLC supply could not handle 

it. The 24VDC supply is meant for electrical steering and not for electrical power. Afterwards, the power 

supply was connected and programmed into the PLC for testing. When this was done, the program of 

the first joint was written into the Arduino and PLC. 

 

End result 

The Arduino reads the analog and digital data that comes from the PLC. The data is simply the input of 

the switches from the PLC. There are switches for moving every joint. In this program, only the switches 

for moving the base and the first joint are read by the Arduino. The two switches for the base are analog 

signals and the two switches for the first joint are digital signals. The reason that the switches of the 

base are analog is to minimalize the number of switches. If it was a digital signal, four switches were 

needed, two for each direction. Now there are two analog signals, which are each separated into two 

parts. For the up-and-down movement of the first joint, there are two switches, one to go up and one to 

go down. The only thing that this Arduino does, is read the data from the PLC and then send a PWM 

signal to the correct motors. At the same time, the PLC reads the position of the actuators of the base 

and first joint (reference Arduino 1: Base and first joint). 

4.3.3 Gyroscope 

The process 

In the process of getting the right angles of the gyroscope, we had a few milestones. In the beginning, 

we had the gyroscope type ‘BNO055’ at our disposal. A lot of time went into researching how to 

program the gyroscope. The temperature was the first element that got displayed, which was just for 

testing and getting to know the library. After this, the accelerometer and the magnetometer were 

programmed. The accelerometer did not work properly, but the magnetometer worked. The decision 

was made to buy a new one. It was another type, the‘LSM9DS1’. This type had other libraries, so we 

had to start over for the biggest part. In the end, the Arduino could read the values of the accelerometer 

and the magnetometer in the end. We followed the research from the previous year (3), and used the 

ADAC Click to convert the signal from I²C to digital for the PLC. After testing, the problem was that 

the signal always dipped to the ground. The graph showed that there were spikes for every signal, but 

after every signal, it dipped back to the ground. After testing with sending the data over the analog port 

of the Arduino, the decision was made to send the data through the analog port. When the connection 
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with the PLC was made, it was noticeable that the signal fluctuated a lot. It came down to 20° of 

deviation. Due to lack of time, we didn’t come to a conclusion and therefore we have no solution. 

 

End result 

The Arduino reads the data from the gyroscope and converts the signal to a 0-255 signal with a little 

calculation. It is possible to just use an easy map function for this. The problem is that it will round the 

numbers and therefore the accuracy lowers tremendously. To fix this, a function is written to calculate 

with floats that you can see in Figure 49 - Map float function. After this, the 0-5VDC signal that comes 

out of the analog output of the Arduino is sent to the PLC. 

 

Figure 49 - Map float function 

4.3.4 Steppers + servo basket 

Full program in Attachments : Arduino 3: Steppers + servo 

The process 

The process started with writing a program to control one stepper motor with analog input. The stepper 

drivers, in between the Arduino and the stepper motor, need a 5V direction and a pulse, which the 

Arduino provides. The analog input from the PLC controls direction and speed. The first program 

written worked for one stepper motor, it uses delays to write a pulse to the driver. This delay is in direct 

control over the speed. If we wanted to connect another motor, this way of programming would become 

a complicated mess. That is why a library was used to drive them. The library (28) uses the hardware 

interrupt timer, controlling the drivers in the background, leaving the sketch free for other programs. 

Using this library, a speed and direction are needed. There also needs to be a dead zone set in the middle 

of the signal, to make sure interference doesn’t drive the motors. In this program a basic servo control 

program is added and controlled by digital inputs. We did not have enough analog outputs on our PLC, 

therefore we changed all the inputs to digital. We didn’t have the speed control but we can alter the 

speed manually in the program. The program with speed control can be found on GitHub (12) and it is 

included in this thesis to facilitate future progress. 

End result 

In the end, the Arduino gets 6 digital inputs, two for every actuator. You can adjust the speed of the 

steppers by adjusting the variable: “speed”. The speed of the servo can be changed by changing the 

delay in the program. The limit points of the servo are programmed in the Arduino as we do not have 

another analog input module for the PLC. The steppers are controlled by the drivers which are controlled 

by the Arduino. The Arduino gives a digital step pulse signal and a digital direction signal. 

4.3.5 Linear actuators arm 

Full program in Attachments: Arduino 4: Linear actuators arm 
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The process 

For the program of the linear actuators of the arm, there was first a program written for one actuator. 

The L298N dual H-Bridge needed different inputs than the HW-039. The program written for the dual 

H-bridge used one PWM signal to control the speed of one actuator while the other H-bridge used two. 

With this H-bridge, we need two digital pins and one PWM pin for every motor. By writing one of the 

digital pins high, we set a speed. When the PWM pin is given an analog value of 0-255, then it adjusts 

the voltage from 0V-5V. This variable controls the speed of the motor. An analog input is linked to the 

direction as well as the speed. There was not enough space to put the fourth joint on the analog pins. 

Therefore two digital pins were used to control the fourth joint. 

 

End result 

The program uses ‘if statements’ to write the different direction inputs high or low. Two of the motors 

get controlled by an analog input, which controls direction and also speed. The third motor gets 

controlled by two digital inputs which only control direction.  

4.3.6 PLC 

Programs can be found on GitHub (12). 

preparations 

At the beginning of the project, a server was set up to make programming more streamlined. It started 

with research (29) (30) (31) (32) about how to set up and where we could run the server. The server 

could not be set up through OneDrive. After some more trial and error, a server was set up on a personal 

laptop (Figure 51). Every user needs their own account on the pc which hosts the server. After the setup 

is made, we need to meet some requirements: 

1. Connect to the same network; 

2. Host laptop can be detected on network (settings on “private”); 

3. Server start up: startup in “TIA Project Server V16-Configuration”; 

4. Login with username. 

With this server, we get three different flags: blue means that you are working on this program block 

alone, yellow means another person is working on this, and red means you are both working on this 

program block (Figure 50 - Map structure). The flags appear automatically when you make a change or 

when you set them manually. To get rid of the flags, synchronize your program. After some tests, it 

worked like it should. This will make programming simultaneous more streamlined. 

  

Figure 51 - Server setup Figure 50 - Map structure 
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The process 

The process of making the PLC program itself was very gradual. It is built parallel with designing the 

base and reducing the play of each joint. 

Step 1: 

In the beginning, the focus was more on the gyroscope. The reason that the focus was on the gyroscope 

is because the base was being rebuilt at the same time. It was not sure yet how the base would be 

designed and so it would have been a bit difficult to make a program for it at that time. When the Arduino 

program for the gyroscope was ready, a connection was made with the PLC. After getting the values 

from the gyroscope through the ADAC click module, it was clear that it would not work. The ADAC 

click converts the I²C to an analog signal that the PLC can read. While doing so, it dips after every signal 

to the ground. The PLC can read the values more quickly than the Arduino can send them, so the PLC 

got wrong values continuously. After this, we tried it with the analog output of the Arduino and it worked 

well. Another problem with the gyroscope is that the accuracy, after the readings on the PLC, was not 

so good. The PLC gives a deviation of 20° when the gyroscope is laying still. Due to a lack of time and 

putting the priority on making an overall program with readings from each joint, the gyroscope could 

not be finished. 

Step 2: 

After the gyroscope, the design of the base was ready and so a program for the base could be written. 

Making the base (welding, drilling, filing,…) and writing the program for it went parallel. At this 

moment the PLC program was as follows: There are four switches. Each switch is for one direction of 

the base. The PLC reads the digital input from the switch and converts this signal to an analog signal. 

In this case, the analog signal is a fixed value. A digital signal is a lot easier, so why did we not use a 

digital signal to send to the Arduino? This is because we already thought about the speed control when 

the machine has to compensate for itself. In this case, the machine needs to send analog values to the 

Arduino, so that the speed of the actuators can change, otherwise it will be a bumpy ride. On the left of 

Figure 52, you can see that, when you press the button to go up, it will send an analog value of 27648. 

When you press the button to go down, the PLC sends an analog value of 10368. At this moment the 

PLC could read in the position of the actuators from the base and move them while pressing the buttons. 

The next step was to put virtual end switches on the actuators. The actuators have ‘built in’ end switches, 

but they do not stop at the same time, which could cause the base to pull itself crooked. On the right, 

you see that when the actuator has reached 8000 or less, that it cannot move down anymore. In the 

hardware, only the connection of the front left and right are connected to the PLC. This is enough 

information because the other two actuators are just following the front two (due to hardware connection 

via the H-bridges). 

After the base was programmed, the first joint needed to be programmed. This happened at the same 

time that the slew bearing was installed onto the base. The first joint is not a part of the automatic wave 

compensation and there was not enough space on the analog ports of the PLC. The decision was quickly 

made to put the first joint on digital signals. When you press the button to go ‘up’, the PLC sends a 

digital ‘1’ to the Arduino. The Arduino than controls the H-bridge of the actuator. The first joint also 

needed virtual endpoints. 
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Figure 52 - ‘Movement analog’ and ‘motor_position’ 

Step 3: 

After the base and first joint was programmed and wired, it was time for the steppers and servo. The 

steppers and servo both need digital outputs on the PLC. Therefore, the same program as the first joint 

can be used. Cleaning up the program and giving it some more structure proved to be easier. A basic 

digital control program was made (Figure 53) and was placed in a FC (right side Figure 53) for each 

digital input that needed to be controlled. The limit variable can be connected. If we have the value, it 

doesn’t need to be connected, so we will leave it in the program making future additions of encoders 

easier. For now we use the buttons to control the motor. 

 

Figure 53 - ‘Movement digital’ and ‘movement’ 

Step 4: 

As last step, three joints of the crane needed to be programmed. Ideally the three joints should be analog 

(left side Figure 52), but because there is not enough place on the analog PLC ports, the last joint needed 

to be digital (left side Figure 53). This means that joint four can not change its speed. This means that 

there are two analog and one digital actuator. Which is exactly the same as the program for the base and 

first joint. 
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End result 

The end result consists of cleaning up the program. Because the Arduino takes care of the “translation” 

we only need two types of output programs to move the entire crane. Those two programs: “movement 

analog” and “movement digital”, are then called upon in the FC: “movement”. In this program the links 

between the actuators and PLC are created. Some of the actuators give their position through a 

potentiometer, which will be processed in the “motor_position” FB. This function block takes care of 

the limit of the different actuators. Manually putting joints at their outer limits, the potentiometer values 

can be linked to the positions. These will be implemented in the “motor_position” FB to ensure the crane 

does not tear itself to pieces. The FC “movement” and FB “motor_position” get called upon in the Main 

OB and linked to their corresponding connections. For the connections between PLC and Arduino, we 

refer to the attachment Table wiring connections. 

 

Figure 54 - PLC program diagram (33) 
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5. Conclusion 

As a conclusion of this thesis, we can say that there is a sturdy base and crane with not much play. Tests 

have proven that the crane with the base can be moved manually with switches from the PLC. The 

position of the actuators can be read on TIA Portal in real-time. This can be used to determine the end 

position of the crane. As a translator for the PWM signals, an Arduino is used to control the actuators. 

There are programs written for the Arduinos in C++ and for the PLC on TIA Portal in FBD.  

As for the future, some more thought needs to be put into the gyroscope together with the dynamics 

equations. For the crane to counteract the waves on its own, the dynamics equations need to be 

implemented into the program of the PLC. The program of the gyroscope is written and implemented 

into the PLC program, but not yet connected. 
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Attachments 

Drawings plasma cutter  

This contains the plasma cutted 5millimetre aluminium plate.  

Drawing 1 

Actuator welded mount. Used to move the inside ring of the base. 
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Drawing 2 

Baseplate. The base of the crane. 
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Drawing 3 

Pivot base plate. Attachment for “actuator base mount” . will be bolted to the baseplate with M6 bolts 
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Drawing 4 

Base post sub assembly. Will connect the aluminium post by welding it to “base post support”. And gets 

bolted to the base 
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Drawing 5 

Corner reinforcement for axis. This part will keep the extrusions in please with T-shape spring ball nuts 

and bolts. It also contains an adjustable mount for the axis. Which slides inside the slot. And rectangular 

slots to weld the “actuator welded mount outside” to. 
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Drawing 6 

Welded mount Inside plate. This piece bolts to the “mounting plate bearing” and will be welded to 

“actuator welded mount”. 
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Drawing7 

Mountingplate bearing. Place where the “angled base” will be mounted to, bearing “pillow block” , and 

bolted to welded mount inside plate. 
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Drawing 8 

Actuator mount inside corner1. Wil hold the aluminium extrusions in place like “corner reinforcement 

for axis”. And will be welded to “actuator inside corner2” 
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Drawing 9 

Actuator inside corner 2. Will be welded to “actuator mount inside corner.  
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Drawing 10 

Actuator welded mount outside. Will be welded to “corner reinforcement for axis”. 
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Drawing 11 

Base post support. Welds to base post sub assembly. Connects the post with adjustable slots. 
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Drawing 12 

Actuator base mount. Will be welded to: “Pivot base plate”. 
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Drawing 13 

Corner reinforcement outside axis. Keeps the aluminium extrusions together. Connects with “axis” 

through threaded holes. 
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Drawing machined  

Axis. Will be used as axis together with metal ball bearings. Bolt to “Corner reinforcement outside axis” 

and “Corner reinforcement for axis”. 
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Drawing assembly crane 
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Drawing assembly base. 
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Crane limbs measurements 
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Arduino programs 

Arduino 1: Base and first joint 
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Arduino 2: Gyroscope 
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Arduino 3: Steppers + servo 
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Arduino 4: Linear actuators arm 
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Table wiring connections 

Module PLC Arduino 

DQ FirstJointUp(Q10.0) Arduino 1: pin 2 

DQ FirstJointDown(Q10.1) Arduino 1: pin 4 

DQ StepperRotCW(Q10.2) Arduino 3: pin 7 

DQ StepperRotCCW(Q10.3) Arduino 3: pin 8 

DQ StepperTelescCW (10.4) Arduino 3: pin 9 

DQ StepperTelescCCW (10.5) Arduino 3: pin 10 

DQ ServoCW(Q10.6) Arduino 3: pin 11 

DQ ServoCCW(Q10.7) Arduino 3: pin 12 

DQ FourthJointUp(11.0) Arduino 4: pin 2 

DQ FourthJointDown(11.1) Arduino 4: pin 13 

AQ BaseUp(QW4) Arduino 1: A0 

AQ BaseLeft(QW6) Arduino 1: A1 

AQ SecondJoint(QW0) Arduino 4: A0 

AQ ThirdJoint(QW2) Arduino 4: A1 

DQ FourthJointUp() Arduino 4: pin 2 

DQ FourthJointDown () Arduino 4: pin 13 

AI FL_PositionSensor(IW126) (Directly from actuator) 

AI FR_PositionSensor(IW128) (Directly from actuator) 

AI FirstJoint_PositionSensor(IW130) (Directly from actuator) 

AI SecondJoint_PositionSensor(IW132) (Directly from actuator) 

AI ThirdJoint_PositionSensor(IW134) (Directly from actuator) 

AI FourthJoint_PositionSensor(IW136) (Directly from actuator) 

AI SensorXValue(IW138) Arduino 2: pin  

AI SensorYValue(IW140) Arduino 2: pin  

DI ButtonServoCCW (I3.7) (From manual control panel) 

DI ButtonServoCW (I3.6) (From manual control panel) 

DI ButtonStepperRotCCW (I3.5) (From manual control panel) 
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DI ButtonStepperRotCW (I3.4) From  

DI ButtonFourthJointDown (I3.3) (From manual control panel) 

DI ButtonFourthJointUp (I3.2) (From manual control panel) 

DI ButtonThirdJointDown (I3.1) (From manual control panel) 

DI ButtonThirdJointUp (I3.0) (From manual control panel) 

DI ButtonSecondJointDown (I2.7) (From manual control panel) 

DI ButtonSecondJointUp (I2.6) (From manual control panel) 

DI ButtonFirstJointDown (I2.5) (From manual control panel) 

DI ButtonFirstJointUp (I2.4) (From manual control panel) 

DI ButtonBaseRight (I2.3) (From manual control panel) 

DI ButtonBaseLeft (I2.2) (From manual control panel) 

DI ButtonBaseDown (I2.1) (From manual control panel) 

DI ButtonBatoseUp (I2.0) (From manual control panel) 

DI StepperTelescoCW ( / ) (From manual control panel) 

DI StepperTelescoCCW ( / ) (From manual control panel) 
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