Production, assembly and
programming of a RoboCrane

Lukas Janssens

Martijn Spaas

Bachelor’s thesis in electromechanics

Bergen, Norway 2023

Hegskulen
paVestlandet ¥

\ Western Norway
University of
Applied Sciences

Production, assembly and programming of a
RoboCrane

Lukas Janssens

Martijn Spaas

Department of Mechanical- and Marine Engineering
Western Norway University of Applied Sciences

NO-5063 Bergen, Norway

IMM 2023-M55
Il

Hggskulen pa Vestlandet

Fakultet for Ingenigr- og Naturvitskap

Institutt for maskin- og marinfag

Inndalsveien 28

NO-5063 Bergen, Norge

Cover and backside images © Norbert Limmen

Norsk tittel:

Author(s), student number:

Study program:
Date:

Report number:
Supervisor at HHVL:
Assigned by:

Contact person:

Antall filer levert digitalt:

Produksjon, montering og programmering av en <<RoboCrane>>

Lukas Janssens, h673712

Martijn Spaas, h673704

Electromechanics

June 2023

IMM 2023-M55
Thorstein R. Rykkje
Hggskulen pa Vestlandet

Thorstein R. Rykkje

Production, assembly and programming of a RoboCrane

Preface

This thesis was for the most part written at the department of Mechanical- and marine engineering at the
Western University of Applied Sciences (HVL) in Bergen, Norway in conjunction with Thomas More
Kempen located in Geel, Belgium.

This thesis was supervised by Thorstein Ravneberg Rykkje, a doctoral student. We would like to thank
Erwin Van de Put for supporting us in this project. We also would like to express our gratitude to the
following engineers: Harald Moen, Frode Wessel Jansen, and Nafez Ardestani for helping us in ordering
parts, machine custom parts, but also for teaching us how to TIG weld aluminium and for assisting us
in general with our project.

Lukas Janssens, Martijn Spaas

VI

Production, assembly and programming of a RoboCrane

Abstract

In this thesis we continue to work on a self-levelling platform that has been designed and from which
small prototypes have been built. The platform is part of a bigger project, being a scale model self-
levelling crane based on the Offshore Passenger Transport System (OPTS) from the company Palfinger.

Lukas Janssens worked mostly on the electrical part of the thesis, such as programming the gyroscope,
the base with the first joint, and the movement of the arm. This is all programmed on Arduino(C++) and
PLC(Tia Portal). A communication between Arduino and PLC has been established in order for this to
work. After programming and testing everything, it was time to solder everything for a good and sturdy
connection between the electronic components.

Martijn Spaas worked mostly on the mechanical side of the project which included researching and
designing a new levelling and rotating base. The platform is designed in Autodesk Inventor 2021. Some
parts have been 3D-printed in PLA and others are made of aluminium. He redesigned and printed other
parts for better tolerances and optimizing the actuator’s stroke length. This was necessary to reduce play
and friction in the crane. There were also some problems with dimensions which needed to be fixed.
Martijn Spaas also took care of programming the steppers, servo, second, third and fourth joint and he
also cleaned up the PLC program at the end.

We worked together and:
e Welded and assembled the crane.
e Learned about the previous designs.
e Looked up missing information about electrical components.
¢ Read the Arduino and PLC programs that were already made.

Vil

Lukas Janssens, Martijn Spaas

\il

Production, assembly and programming of a RoboCrane

Sammendrag

| dette prosjektet fortsetter vi arbeidet med en automatisk niva regulerende plattform som har blitt
designet og bygget. Plattformen er en del av et starre prosjekt med mal om & bygge en skalert modell av

en automatisk niva regulerende kran basert pd Palfinger’s «Offshore Passenger Transport System
(OPTS)».

Lukas Janssens har arbeidet med det elektriske delen av prosjektet. Programmeringen av gyroskopet,
basen med det farste leddet og bevegelsen av armen. Alt er programmert i Arduino (C++) og PLC (Tia
Portal). Kommunikasjon har blitt etablert mellom Arduino og PLC for at dette skal fungere. Etter
programmering og testing ble alle koblinger loddet sammen for god og solid kontakt mellom
elektroniske komponenter.

Martijn Spaas har jobbet med den mekaniske delen av prosjektet, noe som inkluderer undersgkelser og
design av en ny niva-regulerende or roterende base. Plattformen ble designet i Autodesk Inventor 2021.
Noen deler er 3D-printet i PLA og andre er laget av aluminium. Noen deler ble redesignet for & minske
friksjon og slark i kranen, i tillegg til noen dimensjoner som matte fikses. Martijn Spaas programmerte
stepper og servo motorene i tillegg til & renske opp i PLC programmet.

Vi jobbet sammen og:

Sveiste og monterte kranen

Leerte om det tidligere designet

Fant manglende informasjon om elektriske komponenter

Leste de tidligere Arduino og PLC programmene som var laget.

Lukas Janssens, Martijn Spaas

Production, assembly and programming of a RoboCrane

Table of contents

PIETACE ... E Rt E e n e n e \%
AADSTIACT ...t VI
T 0] 1 TCT 0T [T TSP IX
NOMENCIALUIE ... bt bbbt b bbb e e ene s XV
Lo INEFOTUCTION L.ttt bbbt e ettt b b e nen s 1
O R =¥ ot (o (o1 o PR UTRSSN 1
1.2 ProbIem StAIEMENT ..o 1

2. IMIBENOM ...ttt n e 3
N A = 41011 4= OSSPSR 3
2.2 DEIINE ..t 3
2.3 FOBAEE ...ttt b a e n e 3
2.4 R 10]0011Y/ o= PP RR 3
S I 1 TP P ST P PP PRPR TN 3

3. IMECNANICAI BSPECT ...ttt bttt 4
3.1 INEFOAUCTION ...ttt bbbttt bttt b 4
3.2 SUMMANY CEANE PAITS ...eeevte it e it e sttt e stte e st e e stteesteeesteeessteeassseesseeeastaeesnteeesseeessaeessenesnseeensenans 4
321 BaSE GESIGN ...ttt 5
3.2.2 ANGIEd DASE UESIGN ...t 5
3.2.3 01 72T 0 =T [o PSR 6

3.3 TUINING MECHANISM ...ttt et ettt e e sbe e seeenes 7
3.3.1 CROICE TOF TESIGN. ...ttt bbbt 7
3.3.2 REAIISALION ...t 10
3.3.3 GBS, ...ttt n e 11

34 BASE TESIGN. ..ttt bbbttt bbbt n e 12
3.5 REMAKING TrUSS 2 ...ttt bbbttt bbbt 18
3.6 Remaking the SECONM JOINTooiiieieieee et nneas 19
3.7 INEW TFUSS 2.ttt et e Rt e b e e Rt e er st e r e nr e e e nreareenrenre s 20

Xl

Lukas Janssens, Martijn Spaas

3.8 New wrist, fifth joint and DasKELccciiii i 21
IR I 1 [Tt o1 [o3r T 1 SRRSO 21

4, EIECHICAI BSPECT........iitiieieeiee ettt bbbt 22
O o431 oo 1=] £ PP PR PRPR TN 22
4.1.1 (€Y (0 1SToTo] o 1< PSSR 22
41.2 Linear actuator base (EWEHTIX).........cuvriiiiiieieieeses s 23
413 HoDITOGE. et 23
4.1.4 Stepper MOLOr WIth ArIVET..........cooi i s 24
4.1.5 ADAC-CHCK MOUUIE........oiiiiiiiteiciee e 25
4.1.6 POWET SUPPIIES. ...ttt 26
4.1.7 Linear actuators Crane (ACIUONIX)c.ecverieieeierieseeriese s e stesteesteste e sresreesaestaeeesreenis 27
418 ATTUINO ..ttt b bbbt 28
419 o I O PP TR PSPPI 28

4.2 Electrical Wiring diagramc.coveiiiiiiiiisieieseeee e 30
4.2.1 Base and first JOINL........coccviiiiicc et st 30
422 LC Y (0 ol0] o1 TSP RP ST TR PPPRPRTPRPI 31
4.2.3 SEEPPENS + SEIVO DASKEL ...t 32
424 LiNEAr ACTUALOIS AIMN ...ttt ettt 33

4.3 Programming ASPECL.......cviiiiieeie ettt sttt be e s b e e ta e besaeerr e re e sreetes 34
431 ATTUINO. .ttt bbb bbbttt bbbt b 34
4.3.2 Base and first JOINT........ooiiiiiiee et e 34
433 (€Y (0L oTo] o1 TSP U TRV P PR ORTPUROUROT 34
4.3.4 SEEPPENS + SEIVO DASKEL ...t 35
4.35 LiNEAr ACTUALOIS ATiiiiieieieieeiee sttt ettt 35
4.3.6 o OO U VPR PRTPPRPTRTOT 36

ST O o1 [][] o FO USSP P ST PTPRT 40
B. RETEIBICES ... 41
LSE OF TADIES ...t 45

Xl

Production, assembly and programming of a RoboCrane

ATTACRMENTS. ...t bbb bbbt E bbbt bbb 46
Drawings PlaSmMa CUILEEcceoiiiiiiee ettt e e s be s te et e s beese e besneesbesteeeeneeenes 46
DIFBWING L.ttt bbbttt b bbbt b et h b b n e n e 46
DIFBWING 2.tttk b b bbbt b bR e Rttt b e r e n e 47
T\ o T OSSR 48
DIFBWING 4 ..ottt bbb s bRt E e bR bRttt bR n e 49
DIFBWING 5.t b et E bbb Rttt bR n e n e 50
DIAWING Bt sttt e e et e et e s b et e et e s be st e Ee e Rt e e reeteenbenbeere e besreereenreens 51
=\ o SRS 52
DIFAWING ...ttt bbb bbbt bt bbbttt h bbbt n e 53
=\ T o X SRS 54
=\ o T 0 SRS 55
DFBWING L1 ...ttt bbb bbb bbbt b bbbttt e bbbt bt nn e n e 56
DIFAWING L2tttk b bbbt h bbb bbbt bt bbb e e 57
=\ T o T OSSOSO 58
Drawing MaChiNEDoouoiiiiiiiiii ettt 59
Drawing asSeMBIY CIaNecoiiiiiiiii et 60
Drawing assemMbIY DASE.ccioiiiiii e e e eres 63
Crane limDS MEASUMBIMENTS..........uiiitiiiiiit ettt 65
ATTAUING PIOGIAMS ..tttk et bbb b s e st b e e bt bbb e e e e st e bt e bt et et e e n e 66
Arduingo 1: Base and FirSt JOINToo it s 66

F AN o [N g0 €Y a1 Tod o] oSS 68
ATAUINO 3: STEPPEIS F SEIVO ...ttt bbbttt bbbttt 70
Arduing 4: LiNear ACTUALOIS @IMN.........uiueruerieieieieeiesie sttt sttt sttt bbbt nb e enes 72
Table WIriNg CONNEBCTIONScouiiieiii ittt sttt st et esee s e tesse e aesaeeeeseeeneeneenneas 74

XM

Lukas Janssens, Martijn Spaas

XV

Production, assembly and programming of a RoboCrane

Nomenclature

HVL Western Norway University of Applied Sciences

OPTS

FL

FR

BL

BR

VDC

FB

FC

OB

PWM

DAC

ADC

TIG

PLC

Offshore Passenger Transfer System

Front Left

Front Right

Back Left

Back Right

Volts (direct current)
Function Block

Function

Organization Block

Pulse width Modulation
Digital-Analog-Converter
Analog-Digital-Converter

Tungsten Inert Gas

Programmable Logic Controller

XV

Lukas Janssens, Martijn Spaas

XVI

Production, assembly and programming of a RoboCrane

1. Introduction

1.1 Background

In this Bachelor’s thesis, we built a scale model, named ‘RoboCrane’, of the Offshore Passenger
Transfer System, OPTS for short. Palfinger took over the project from Lift2Work and they are now
solving some flaws. The OPTS consists of two major parts, the base and the crane itself. The base is
self-levelling and can counteract the pitch and the roll of the vessel. The crane is mounted on the base
and counteracts the yaw, heave, surge, and sway. Although a lot of big ships have dynamic positioning
nowadays, meaning they do not have to compensate for surge, sway, and yaw. (1) If they turn on the
‘compensation mode’, the OPTS can keep the endpoint still within 10 centimetres of accuracy (use
Figure 1 - Ship movements to comprehend the movements we discussed). There has already been
research for this project in the previous year by Jasper Gielen and Bram Deboel (3). In their Bachelor’s
thesis, they analysed the best way to make the base. They came up with an end solution. This solution
was produced in the summer later that year. The result was a base with a few centimetres of play and a
lot of information for components. We invested a lot of effort into learning and understanding the project
and developments from the previous year. With the OPTS they can transfer passengers and cargo
efficiently and safely from a moving ship to fixed or semi-floating offshore installations.

Heave

Figure 1 - Ship movements (2)

1.2 Problem statement

A scale model of the crane with platform is available. However, there is a bit (too much) play on the
platform that needs to be adjusted. Parts need to be made/adjusted to let the crane and platform move
properly. If there is too much play, we cannot calculate the endpoint of the crane. The crane and platform
are not yet connected and tested. As minimum delivery, we will have a crane with platform that works
with switches. We can let the actuators move and read the data from the sensors properly. It is possible
to let the crane move manually. As an extra, we would like to implement the dynamics equations,

Lukas Janssens, Martijn Spaas

decrease delay and reduce play as much as possible. This would mean that the OPTS could calculate
and compensate for itself.

Production, assembly and programming of a RoboCrane

2. Method

In this thesis a certain overall method is followed, named design thinking which consists of five steps
(empathize, define, ideate, prototype, and test). These steps were not followed in a certain order as we
went back and forth with the different steps throughout the thesis. Below is a more detailed description
of examples on how we implemented these steps in the thesis (4).

2.1 Empathize

During the entirety of this Bachelor’s thesis, we tried to communicate and think about the actual needs
of the RoboCrane. Back then it was said that the crane had to be sturdy with not much play anymore.
The crane should be manually controllable and the place of each joint should be trackable at any time.
While getting into the project, the principles of safety, user-friendliness, and writing clean programs,...
also came to mind.

2.2 Define

While thinking about the needs for the RoboCrane, more practical ideas came to mind. Here are some
examples: The RoboCrane needs to be sturdy since the previous base had 10 centimetres of play. It
would have been too complicated and taken too much time if we tried to fix this. Therefore, a whole
new base had to be designed and produced. The crane had to be manually controllable, so buttons or
switches had to be implemented. The place of each joint should be trackable, so feedback from every
actuator was needed. To control all aforementioned requirements we needed a controller that we could
program, like Arduino, PLC,.... For safety reasons, the crane should be locked when an error occurs, to
avoid hitting people standing around it. These are the big user statements that were important throughout
the thesis.

2.3 Ideate

In this part of the five-step method, all the ideas that came to mind were located. We discussed how to
make the base, which type of bearing to make for the turning mechanism, how to remake the parts,
reprogram everything or build on what was built before. There were too many ideas throughout the
thesis to discuss everything.

2.4 Prototype

After the initial theoretical thinking and internal discussion, the first digital and physical prototypes of
the different crane parts(e.g. the base and the arm) were constructed. These prototypes were tiny steps
in the right direction. If the subsequent testing of the prototypes failed, the prototypes needed to be
adjusted accordingly.

2.5 Test

We tested the prototypes and if they were not good enough, adjustments were made. This loop kept on
going till the prototype was good enough to meet the standards that were set in the ‘define’ step. These
tests included theoretical calculations and practical testing.

Lukas Janssens, Martijn Spaas

3. Mechanical aspect

3.1 Introduction

Although the entire crane was designed and 3D-printed almost every part needed to be remade. There
was too much play in the joints, they could not support their weight, or the dimensions were off. We
noticed that all designs were scaled-down versions of the big crane with some added features. Editing
dimensions in the designs was not easy as they were made by combining solid shapes derived from the
original full-scale crane designs. This made adjustments difficult, as we could not easily alter the
different dimensions. Editing the parts was sort of a cumbersome process.

3.2 Summary crane parts

In Figure 2 - RoboCrane: you can see the completed crane.

S '

Figure 2 - RoboCrane

Production, assembly and programming of a RoboCrane

Below are the names for the base axes (Figure 3 - Base axes) and crane parts (Figure 5 - Crane with
crane parts) which are used throughout this thesis. The measurements from joint to joint are in “Crane
limbs measurements”.

3.2.1 Base design

inner ring

baseplate

Figure 3 - Base axes

In Figure 3 - Base axes, the axes of the base are represented. We use an outer ring which moves in
relation to the baseplate around an axis Y and an inner ring which moves in relation to the outer ring
around the X axis. These movements can compensate for the sway and roll movements of the ship
(Figure 1 - Ship movements).

3.2.2 Angled base design

The angled base compensates for the yaw of the ship (Figure 1 - Ship movements), especially since this
joint needs to be stable given the whole crane relies on it. In Figure 4 - Angled base, we can see the
angled base with also a corner section view.

— A
angled base
stepper mount
big gear
stepper motor
slew bearing assembl small gear
t—\m) /— g Y g

[

Figure 4 - Angled base

Lukas Janssens, Martijn Spaas

3.2.3 Crane design

8
9 ITEM PART NUMBER
1 first joint

2 Outer_telescopic arm
0 3 Inner_telescopic_arm
4 second joint
@ 5 Trussl
6 third joint
7 Truss2
8 fourth joint4
9 basket
10 fift joint5 (rotation)
11 wrist

Figure 5 - Crane with crane parts

In Figure 5 - Crane with crane parts, you can see the completed crane. Number one refers to the base
and rotating base. We will continue referring to different parts of this crane with these names.

Production, assembly and programming of a RoboCrane

3.3 Turning mechanism

3.3.1 Choice for design

During the inspection of the crane, a significant amount of play was observed at the turning mechanism.
A collective decision was made to initiate research into alternative options and reconstruct this particular
part of the crane.

Option one: slew bearing

Figure 6 - Slew bearing (34)

The slew bearing is the general go-to solution for turning mechanisms of big structures. The big outer
ring gives two points of contact to the steel balls in the channels and the smaller inner rings each give
one point of contact. The inner plates are sandwiched together with bolts to keep the whole assembly
together. The four points of contact ensure a big resistance to radial and axial forces. Reducing the price
tag can be achieved by 3D printing the rings. This would increase friction and play and it will require
some more design work.

Option two: radial bearing

Figure 7 - Radial bearing (35)

This design of the radial bearing places the steel balls inside two rings. It can withstand great radial
forces but no axial forces. If we want to use a radial bearing we will need to buy a bearing big enough
to support the axial forces. To reduce cost, we can 3D print the rings which will increase friction and

play.

Lukas Janssens, Martijn Spaas

Option three: special assembly

Figure 8 - Special assembly

In Figure 8 - Special assembly, you can see an example of such an assembly. This one has a small metal
bearing on the bottom, a bolt to squeeze two 3D-printed plates together, and balls in between. The head
of the bolt rotates freely inside the bearing. This design is more complex and needs more design work
and more material to work properly.

Choice matrix

Table 1 - Choice matrix rotating base

Slew bearing | Slew bearing | Radial bearing | Radial bearing | Special
(metal) (3D-printed) (metal) (3D-printed) assembly
Price 1 5 2 5 4
tolerance 5 4 4 1 4
friction 5 4 4 2 4
complexity 5 4 5 5 2
Own opinion | 3 5 2 2 3
total 19 22 17 15 17

Choice matrix Table 1, shows us that the 3D-printed slew bearing is the best option. The metal slew
bearing gives the best movement but comes with a heavy price tag. Therefore we will 3D print the outer
and inner rings and use metal balls in these rings. 3D printing the balls of the bearing would not be
convenient since as 3D printing would not be dimensionally accurate, and they would not roll as
smoothly as metal ones. This widely adopted design is commonly utilized in turning mechanisms for
lifting solutions, establishing its reliability and effectiveness.

Production, assembly and programming of a RoboCrane

Figure 9 - Generated gears (5)

Design choices

The first step is including the outside gear in the design which is generated using an online tool to get
the correct pressure angle (5). This can be seen in Figure 9 - Generated gears . The inside diameter is
derived from the existing part: “angled base”, so as to not further change the design. With these
measurements and knowing there are at least 17 teeth needed for the smallest gear (to not allow undercut
gear tooth). The tooth count of the outer gear is calculated. For the big gear, the corresponding teeth
number is 145. The holding torque of the stepper motor is 0,36 Nm. With these numbers, the calculated
torque is: 0,36*145/17 = 3,07 Nm. To get the force exerted at the teeth we multiply this by the pitch
radius of the big gear: 3,07 NM*0,072 m = 0,221 N. This works because this assembly is sitting on the
base which keeps this part level. Theoretically, the only force that this stepper motor needs to overcome
is friction from the slew bearing. The tolerances of the design were chosen using 3D printing tolerances
obtained from an online article (6).

)

e

Figure 10 - Slew bearing angled base

Next up is designing the rest of this assembly represented in Figure 10. With the correct gear shape the
sketch has been modified. The processing time needed when altering the involute sketch is remarkable.
After designing the gear a slot is cut out as part of the bearing. These dimensions continue to the inner
plates. A centre hole is added for future cables. The next task involves the motor mount, which is
intended to be adjustable, enabling the assembly to fine-tune the play and height of the smaller gear in
relation to the larger gear. Once all the parts were manufactured, the tolerance of the bearing was
measured, and the inner plates were repeatedly 3D-printed. As a result, there is now virtually no play,
allowing the assembly to rotate freely.

Lukas Janssens, Martijn Spaas

3.3.2 Realisation

For 3D Printing the gears (Figure 12 - Big gear slicer settings) a Prusa mk3 printer (7) is used. The
printer has a printing volume of 250mm x 220mm x 210mm and has a nozzle that can reach temperatures
up to 300°C which makes it capable of printing materials including ABS, PETG, PLA, etc. For this
project, PLA will be used. PLA is strong enough, it is also one of the easiest materials to work with. The
previous experiences we have with CURA (8)(3D print slicer software), made us decide to slice our 3D
prints with CURA. We also have access to an adventurer 4 3D printer from FlashForge (9) with a build
volume of 200mm x 220mm x 250mm. For this printer, a custom printer profile in CURA is required.
A quick Google search led to the website of FlashForge (9). They give a step-by-step setup to use their
printers with other 3D printing slices. By only using CURA, the learning curve associated with using 3
different slicer software is reduced. The profile used for the adventurer 4 is in Figure 11 - 3D printer
profile below. Note that there is a need to use a bit of startup G-code and end G-code. This is a specific
code for the printer. This code initializes the printer, sets the correct position of the printhead with
respect to the print bed, and safely shuts down the printer when a print is finished. These settings need
to be corrected. If not, they could result in bad prints or at worst, the printer breaking itself. For example,
because the machine thinks the build plate is located 20cm lower and thus the printhead assembly would
collide with the print bed.

3 Machine Settings ®
adventured
Printer Extruder 1

Printer Settings Printhead Settings

X (Width) 2200 Xmin

¥ (Depth) 2000 ¥ min

Origin at canter v Gantry Height
Heated bed v Number of Extruders
Heated build volume: Apply Extruder offsets to GCode

Nozzle Settings

Start G-code End G-code Compatible material diameter 1.75 mim
MNozzle offset X 0.0 nm
® 2 as
et 5255 e Nozzle offset ¥ 0.0 nm
uis
Cooling Fan Number 0

Close

Figure 11 - 3D printer profile

PREPARE PREVIEW MONITOR

D Prusa i3 Mk3/Mk3s (D omeicra % Draft-0.2mm Biwox Qo on

»
S
5
1+

o®@OoBo

Figure 12 - Big gear slicer settings

10

Production, assembly and programming of a RoboCrane

3.3.3 Gears

The gears are printed with increased wall line counts, this influences the wall thickness which in turn
greatly increases the strength of the part and makes sure there will not be any teeth breaking off. The
inside discs are printed with the same settings. For the angled base, an adjustment was made. To make
sure the long braces will not break next settings were altered: increased temperature (for better layer
adhesion), increase infill density, infill line count, and wall line count. The end result, represented in
Figure 13 - 3D printing the toothed ring with end result, meets our standards as everything moves with
very little play and friction.

Ly\ 2 (:@ ORIGINAL PRU\

Figure 13 - 3D printing the toothed ring with end result

11

Lukas Janssens, Martijn Spaas

3.4 Base design

After taking a closer look, an excessive amount of play is observed in the base. Upon closer inspection,
we discover that the base design is flawed and has too many ball joints, which gives too many degrees
of freedom. The design of our scale model also does not match the design from Palfinger. We decide to
start designing our own, more rigid base platform. Our preferred design is a similar design as the big
crane from Palfinger. 3D-printed plastics in this part of the crane would not be efficient, thus the decision
was made to use aluminium extrusions with aluminium reinforcing corners and welded subassemblies.
This decision required welding aluminium which entails a challenge on its own. The design of the base
starts with the connection of the rotation base. This gives some measurements to start with. The next
step is measuring all the other actuators (Figure 14 - Linear actuator), these have a stroke length of 100
millimetres and a retracted length of 243 millimetres. All other measurements can be found in the
corresponding datasheet (10).

Figure 14 - Linear actuator

While designing, the choice was made to utilize all four actuators simultaneously, resulting in a closer
resemblance to a real crane. The new design incorporates a platform-mounted assembly that facilitates
the movement of an outer ring (left side Figure 15 - Outer and inner ring), subsequently rotating the
inner ring (Right side Figure 15 - Outer and inner ring). This approach ensures that each joint possesses
only one degree of freedom. The design of the base is progressing while taking into account the
dimensions of the actuators. Throughout this process, each component is placed within a large assembly
to enhance visualization and simplify collision-free design. The extrusions utilized are obtained from
Alu flex (11). The CAD file was conveniently acquired from their online CAD filer and seamlessly
imported into the drawing.

Figure 15 - Outer and inner ring

12

Production, assembly and programming of a RoboCrane

Initial standards (left side Figure 16 - Standards and actuator mount) were established at the beginning
of the design process. Tabs (right side Figure 16 - Standards and actuator mount) were incorporated to
ensure proper alignment with other components. These tabs are all made with the same dimensions
except the “tail”. The “tail”, with a measurement of 20 millimetres, keeps linking the subassemblies
with the corresponding actuator mount easier. They also give a clear physical aid for aligning the
assemblies for welding. Their dimensions can be seen in Figure 16 - Standards and actuator mount.

= — o o ut
O
-=r—m—~=:l' 2

Figure 16 - Standards and actuator mount
The options for how the axis will support the base are:

Bolts, which would cause the introduction of a lot of friction;

3D printing bearings, plastic bearings which would introduce a lot of play and friction;
3D printing the axis and hole, which would cause a lot of friction;

Using a metal axis and standard metal bearings.

The last option was the most preferable. The strength of steel is needed in this part of the base without
a lot of play. Therefore all the other options would not work. The axis (Figure 17 - Axis) is designed
with a square body to fasten to the rest of the assembly. The axis also includes a shoulder that presses
against the bearing and ensures no axial play. A 3D-printed pillow block (Figure 18 - Pillow block) is
made to press fit the bearings into. To make sure it is a press fit, the hole is designed on exactly the same
size as the bearing’s outer diameter. The axis is mounted in a slot to give the assembly adjustability and
reduce play, allowing us to jam the bearing and therefore the assembly tightens by clamping both axes
closer together. The other axis is not mounted in a slot but the adjustability comes from the mount at the
bottom which does allow movement. To try and make it a little easier to program, the x- and y-axis are
placed at the same height. This gives a point in the centre around which everything will rotate. This is
an easy thing to do in this part of the project but reduces complexity later on.

Figure 17 - Axis Figure 18 - Pillow block

13

Lukas Janssens, Martijn Spaas

While asking for some assistance with plasma cutting the design, we got some good advice. By making
welded subassembly there will not be the chance of warping the main big plate which needs to be
dimensionally accurate. The designs are edited to incorporate subassemblies (Figure 19) with bolted
connections. This takes longer than expected because of the need to edit all the mounts, recalculate their
lengths and remake the assembly. The recalculating consists of subtracting the length of tabs from the
thickness of the aluminium plate which is 5mm. Before plasma cutting, everything is placed back into
the assembly and checked for collisions and if it is possible to make/assemble everything.

e

Figure 19 - Welded assemblies

14

Production, assembly and programming of a RoboCrane

Realisation
Cutting parts.

Plasma cutting the parts required a DXF file format (left side Figure 20). After exporting all needed
faces in Inventor to a DXF file format, the number of parts was added behind each part name. This made
ordering all parts in the Plasma cutter software a lot easier and clearer. Due to the structure, we only had
to cut once. This can be seen in Figure 20.

actuator mount inside corner x2.dxf 13/03/2023 15:07 AutoCAD Drawing... 263 kB

actuator welded mount long x 4.dxf 13/03/2023 15:12 AutoCAD Drawing... 262 kB

actuator welded mount outside x4.dxf 13/03/2023 15:15 AutoCAD Drawing... 263 kB

actuator welded mount x4.dxf 13/03/2023 15:10 AutoCAD Drawing... 262 kB

base post sub assembly x2.dxf 14/03/2023 11:07 AutoCAD Drawing... 264 kB

base post support x4.dxf 13/03/2023 15:13 AutoCAD Drawing... 263 kB

baseplate x1.dxf 14/03/2023 11:27 AutoCAD Drawing... 297 kB

O 0 O centerplate x1.dxf 14/03/2023 10:33 AutoCAD Drawing... 264 kB
corner axis+outside mount x2.dxf 14/03/2023 10:26 AutaCAD Drawing... 265 kB

O ouside bearing corner x2.dxf 13/03/2023 15:11 AutoCAD Drawing... 262 kB
outside actuator base mount x4.dxf 13/03/2023 15:14 AutoCAD Drawing... 262 kB

o pivot base plate x2.dxf 14/03/2023 11:28 AutoCAD Drawing... 263 kB
welded mount inside plate x2.dxf 14/03/2023 10:34 AutoCAD Drawing... 263 kB

Figure 20 - Plasma DXF file

The same plate thickness is used throughout the design. This reduces complexity and leads to easier
designing. The 5mm thick aluminium plate is cut using the plasma cutter at HVL. It is an old machine
therefore we assume that the cuts are not that accurate. The machine also centre punches the places
where we need to drill holes. After restarting the machine a few times, all parts were cut (Figure 21).

Figure 21 - Realisation with plasma cutter

Cleaning parts
The next step is cleaning all the parts. For this process, a belt grinder and file were used. The belt grinder

speeds up the process, but some small pieces still need to be cleaned up by hand. When all the parts are
cleaned the holes get drilled. After everything is cleaned up and drilled, we prepare for welding.

15

Lukas Janssens, Martijn Spaas

Welding

After asking about welding the aluminium, we got the chance to do it ourselves. Without hesitation, we
took this chance to learn how to TIG weld aluminium. TIG refers to the tungsten electrode used in the
torch and the inert shielding gas used that protects the weld. Unlike welding metal, you need a rounded
electrode tip instead of a sharp one. The material also needs a wire brush before starting the weld, since
this process gets rid of the tough aluminium oxide on the surface and makes the process easier. We got
the machine set up with the correct current, learned about the TIG welding technique with the filler rod,
and started practicing. Welding aluminium turned out to be more difficult than welding steel. The
conductivity of aluminium makes sure the whole piece heats up and once everything is hot you, can
drop the current or speed up. After some practice (Figure 23 - First welds), we got the hang of it and
started with the real deal. To ensure alignment and no warping two steel blocks were used (one of 40
millimetres and one of 50 millimetres). These act as spacers and give a way to fix the assembly together
without warping or moving.

Figure 23 - First welds Figure 22 - Welding process

16

Production, assembly and programming of a RoboCrane

Assembling

Assembling everything starts with fixing the subassemblies to their corresponding bigger plate (Figure
24 - Base with outer ring). M6 bolts are used to accomplish this but are not fully tightened. After this,
the aluminium extrusions are assembled in a rectangle with the correct corner pieces (Figure 25 - Base
with welded assembly). The aluminium extrusions used are the 40 x 40 millimetre profile 8 from Alu
flex (11). There were small pieces of aluminium used from different projects. There was enough for our
project, this way we did not need to order any new extrusions. Using the slots from the extrusions to
fasten everything together makes for a strong and ridged platform. T-slot nuts and M8 bolts are used in
this part of the assembly.

Figure 24 - Base with outer ring Figure 25 - Base with welded assembly

Next up is the centrepiece (Figure 26 - Centrepiece). This piece connects the rest of the crane with the
base (Figure 27 - Crane with base). The base was assembled using the standard bolt sizes available to
us and a few cut to size (again using M6 bolts). The tolerance of the pillow block and bearing is just
right to be pressed together by hand which ensures a nice friction fit. When fitting the axes and bearings
the axes are not up to spec and do not fit. When asked, a lab engineer used a belt grinder to remove
excess material. While doing so, there was a small bevel introduced in the axis which actually increased
the tightness. The axes are now not only clamped into each other but also wedged into the bearings.
After installing the actuators, the space next to each joint was measured. With this information the
spacers are made, which fixes the actuators in place and limits the side-to-side movement.

Figure 26 - Centrepiece Figure 27 - Crane with base

17

Lukas Janssens, Martijn Spaas

3.5 Remaking truss 2

Upon further inspection, additional problems arose. The first of which was truss 2 as this 3D-printed
part was broken due to the scaling process and print orientation. The material around the pivot point
was not strong enough. This can be fixed with a few alterations:

1. Editing the design with more material around the pivot point. This is the most obvious solution,
putting more material where the break happened. This option is limited to the other parts of the
joint, which does not allow a lot of extra mass.

2. Printing the part in a horizontal configuration. This solution will result in better print quality
and a more optimal print efficiency. The need for a good layer adhesion will be less important
as the whole outline of the wall will be printed in one layer. Printing the part in this orientation
will increase the support desired.

3. Using a different material. ABS and PETG are two materials that have better mechanical
properties. The downside will be the 3D printer itself, since the Prusa printer we have access to,
is technically capable of printing with these materials but will struggle to achieve a good result.
We could outsource this part to be made somewhere else or use a lot of time getting the correct
settings for this printer with these materials.

Qi support N
Generate Support CD D ~
Support Structure CD Normal v
Support Placement c3 Everywhere v
Support Overhang Angle & | s00 -
Support Pattern CD
Support Wall Line Count CD o]
Connect Support ZigZags @9 Enable Support Roof 2 H £~
Support Density e 9H f |50 % Enable Support Floor 2 H £~
Support Line Distance & B8O am Support Roof Thickness & 10
Initial Layer Support Line Distance c3 8.0 . Support Floor Thickness CD 1.0
support Infill Line Directions & n Support Roof Density @ H f 200
Enable Support Brim I f, \/ Support Roof Line Distance & a0
Support Brim Width CD D 20 nm Suppeort Floor Density CD D){, 200
Support Brim Line Count & |5 Support Floor Line Distance & a0
Support Z Distance @ H o2 nm Support Roof Pattern & D f,(Grid v
Support Top Distance & 02 m Support Floor Pattern IS f,(Grid v

Figure 28 - Cura settings

In the end, the part was 3D-printed with PLA in the horizontal configuration with added material
around the pivot area. A support roof and base were used with 5% support density to speed up the
cleaning process and support material used. The wall line count and infill were also altered: infill
was increased by 10% and wall line count was increased from two to six, as this change gives more
material at the very bottom of the part where compression is the highest, and at the very top where
tension will be the highest. The rest of the settings are strong enough for this part. The added material
in the top and bottom results in a structure with a mass distribution close to an I-beam. This will be
more optimal considering strength and weight in one direction. Changed support settings can be
seen in Figure 28 - Cura settings.

18

Production, assembly and programming of a RoboCrane

3.6 Remaking the second joint

Joint 2 (bottom of Figure 29 - Second joint) also has a lot of play. After closer inspection, approximately
50° of movement was observed. When the crane is loaded, the joint will normally be at the lowest point
due to gravity. The problem is more prevalent when side-loading this joint. The up-and-down movement
can be plotted with the pot meter input. There are a few options for solving this problem:

1. Making a new joint design. This would require us to redesign the joint from scratch, which
would result in more work and a lot of PLA waste.

2. Fully adjusting the old design and reprinting. This would mean adjusting hole and pin tolerances

and reprinting the second joint and truss2. The needed design time would be less compared to

adjusting the old one. The downside would be the way previous designs are made and the used

materials.

Drilling out the holes and printing bigger pins where possible.

Remodelling the truss connections and plastic welding the pins to the other connection. Plastic

welding would result in a strong connection. The downside would be that we cannot disassemble

the joint.

~w

The truss connection is 3D-printed with smaller hole sizes (top of Figure 29 - Second joint). This way
the pins can be reused. 3D printing only the connections will not take a long time and will only use a
little bit of material. In the top holes of the inner boom, tip bushings are used to adjust the hole size.
They press fit in the holes and make for a play-free connection. They are printed with increased
bottom/top thickness and wall line count to increase the strength of these small components.

(<]

Ultimaker Cura

o®Oo0Bo >

Figure 29 - Second joint

19

Lukas Janssens, Martijn Spaas

3.7 New truss 2

Previous designs did not use the measurements of the actuators correctly. Therefore the range of motion
of the third and fourth joints was limited. The different options for solving these problems are:

1. Redesigning both joints from scratch.

2. Drilling new attachment holes inside truss 1 and truss 2, which is not preferable. We need the
exact measurements of the crane, in order to use these in the program codes of the crane.

3. Moving the joint connections. This will allow only a small amount of correction.

Both problems are fixed by altering truss 2. To fix the motion of the third joint the connection hole
shown on the left side of Figure 31 was moved down with the same distance from the pivot point. This
moves the joint 43,4° from the original position. A cut-out was made at the bottom (middle Figure 30 -
New truss 2) to allow truss connection two enough space to move freely. The third joint is fixed by
extending the entire truss (left image of Figure 30 - New truss 2). This solution was not easy, because
of the way the old design was made, the old design just scales down the original drawings from Palfinger
and adds some shapes. To extend truss 2, the truss is cut in half, one part moved and then a new extrusion
was made to fill in the gap(using the function “extend” did not work with this design).

+ _ Work Flanel4
_'; Split2
'E' Move Bodyl
Sketchd2
= M Extrusion3:
+ Sketch43

Figure 30 - New truss 2

20

Production, assembly and programming of a RoboCrane

3.8 New wrist, fifth joint and basket

Originally the fifth joint was moved with a stepper motor. When inspecting the design, there were only
technical drawings and no electrical components or code for it. Making the fifth joint with the small
stepper motor would introduce a lot of weight to the furthest joint of the crane. An additional encoder
and driver would also be needed, which would increase the cost and would also increase the complexity
of the code. A preferable option would be redesigning this joint and using a small sg90 micro servo.
These servo motors can be controlled straight from an Arduino and only weighs 9 grams, given this will
be the final joint, it needs to be lightweight. The basket (left of Figure 31 - Basket and fifth joint) will
be placed straight on top of the servo’s axis and printed with a special profile. The profile used is
‘spiralize outer contour’. This setting spiralizes the print. Spiralizing the print means it is printed in one
continuous line. This way the print will be light and strong. The bottom thickness is also increased. With
these settings, the part will be only 40 grams and will be printed in only 3 hours and 16 minutes (right
side Figure 31 - Basket and fifth joint).

¥ Special Modes v

Print Sequence & | Allatonce v

Mold

Surface Mode Normal W

Spiralize Outer Contour CJ D ~

Smooth Spiralized Contours & | v

Relative Extrusion &

[Experimental < (

< Recommended

C'-) 3 hours 16 minutes @
40g-1331m

Figure 31 - Basket and fifth joint
3.9 Telescopic arm
The telescopic arm did not work due to friction, bad tolerances, and an overall bad design. The design

had bad tolerances and a bad finish on the 3D-printed parts. The inner telescopic arm bends and is not
straight while the outer telescopic arm is. There is also no practical way to assemble the stepper motor.

21

Lukas Janssens, Martijn Spaas

4. Electrical aspect

All datasheets can be found on our github page (12)
4.1 Components

The results from the Bachelor’s thesis from the previous year (3) show us a lot of components that we
can use. To use these components, we have to do research about them and get to know them thoroughly.
This is what we did in our first weeks of research. Here you will see the components that we received
from the previous year together with the components that we ordered this year. Sometimes we use other
components than those that were initially at our disposal. There are different reasons for this, which will
all be explained later on in this research.

4.1.1 Gyroscope

The gyroscope gives information about the angle and acceleration of the boat at a specific time. The
information from the gyroscope is important. First, the gyroscope gives information about how many
degrees the crane has to compensate for the tilt of the ship (roll, pitch, and yaw, Figure 1 - Ship
movements). Secondly, it sends information about how much the crane has to go up and down (heave).
In February, gyroscope type ‘BNO055’(left side Figure 32 - Gyroscopes BNO055 and LSM9DS1) from
the previous year was been used, but it was already a few years old and did not work properly. After
testing, the conclusion was that the magnetometer and the accelerometer on the z-axis worked, but the
x- and y-axis accelerometers did not work. With this issue, a new gyroscope was ordered: ‘LSM9DS1’
on the right side Figure 32 - Gyroscopes BNO055 and LSM9DS1. While testing the new gyroscope, it
was clear that there were still some flaws. Thankfully the accelerometers worked, but there were still
some problems with the magnetometer. Another problem is accuracy. If the gyroscope is laying still,
the PLC gives values from -10° to +10°. This leads to a deviation of 20°. The transformation of the data
from the Arduino to the PLC is probably the cause. Due to lack of time, this issue unfortunately has not
been resolved.

In Figure 33 - Gyroscope signal you can see the graph that shows the values of each direction (X, y, z)
of the gyroscope ‘BNOO055°. At that moment the gyroscope was tilted in each direction, but only the z-
axis reacted. The red and blue lines at the bottom are the x- and y-axis. There is a little offset between
those two. The dipping of the signal from the z-axis to the ground is also due to the fact that the
gyroscope is not working properly anymore.

Figure 32 - Gyroscopes BNOOQ55 and LSM9DS1

22

Production, assembly and programming of a RoboCrane

Figure 33 - Gyroscope signal

4.1.2 Linear actuator base (Ewellix)

To tilt the base, we need actuators. These actuators are very sturdy and stable and therefore perfectly fit
for this job. Inside is a powerful DC motor with an absolute analog output, which is used to find the
position of the motor at all times. You can compare the absolute analog output with the output that you
get from a potentiometer.

Absolute analog output
12/24 Vv DC

Output @
GND g

Figure 34 - Wiring diagram absolute analog output (10)

4.1.3 H-bridge

To move the linear actuators, the DC motors need to be controlled with an H-bridge. An H-bridge is an
electronic component that can switch the polarity of the applied voltage. In this thesis, there are two
types of H-bridges. The first one is the HW-039. It is built for 24VDC and it is used for the actuators of
the base and the first joint. The other type is the L298N, which is a dual H-bridge. This means that it
can control two motors at the same time. This dual H-bridge is built for 12VDC and is used for the 2",
3dand 4" joints. These linear actuators need 12VDC. An important thing to know is that there is a
maximum PWM frequency that the H-bridges can handle. The maximum PWM frequency can be looked
up in the data sheets (13) (14). The two different types of H-bridges do not work totally the same. HW-
039 can send different PWM signals for the in-and-out movement of the actuators. The L298N H-Bridge

23

Lukas Janssens, Martijn Spaas

has to change its PWM signal in order to accomplish the same result. The HW-039 can work with the
same program as the L298N if we connect the PWM signals to one output on the Arduino. The L298N
cannot work with dual PWM output.

43mm

Figure 35 - H-Bridge HW-039 (13) and L298N (15)
4.1.4 Stepper motor with driver

In this project, we need two stepper motors. One will be used for the telescopic movement of the arm
and the other one is for the rotation of the crane around the ‘heave axis’ from Figure 1 - Ship movements.
The drivers that are used are the TB6600 and the geckodrive G201X. The driver TB6600 is used because
it was already at our disposal. The Geckodrive was ordered later on because the TB6600 could not be

ordered.

Figure 37 - Driver, TB 6600 + Geckodrive G201X38 (17) (18)

24

Production, assembly and programming of a RoboCrane

4.1.5 ADAC-Click module

The ADAC-Click module is made to convert analog signals to digital signals or the other way around.
With the ADAC Click module, we can convert the data of the gyroscope to an analog signal and connect
it to an input of the PLC. This way, we can read the data on the PLC. Its job is to convert the signal from
I2C to analog, hence (A)DAC. This stands for Digital to Analog Converter. In the end, we could just
connect the Arduino directly to the PLC and we did not need this ADAC module. The calculations show
that using the ADAC is faster.

CCCICC OGO

R) R4 RS RE R RS RS RIO

1 00|
1 i
(] J

o
G
¥
e

G

&
6
5

Figure 39 - ADAC Click (19)

Calculations:

Is the ADAC click really the best solution to convert the data from I12C to an analog signal? We did some
tests with the ADAC click and saw that we always got a dip back to ground, the PLC took averages
from these values, making it incorrect. This is an issue since the values were corrupted.

Resolution

- The gyroscope has 32 slots of 16-bit data for each of the gyroscope’s three output channels
(yaw, pitch, and roll). The ADAC Click gives an analog signal that has a resolution of 12 bits.
The PLC can read an analog value of 16-bits. This makes the ADAC Click the ‘bottleneck’ for
the resolution. The 12-bit is still better than the 8-bit of the ‘AnalogWrite’ function embedded
in the Arduino.

Speed

- The function ‘AnalogWrite’ needs 3.4 milliseconds. That is about 290 times per second. (20)

- 12C can send 100k bits/s, meaning it can send 1 bit about 100 000 times per second. However,
take into account that the signal has to go through the ADAC click now. The ADAC click has
a conversion time of 2 microseconds. This means that it takes 2 microseconds to transform a
digital signal from the I2C to a 12-bit analog signal. So the gyroscope sends its 16-bit data to the
ADAC and then it converts the signal with 2 microseconds latency.

First get the number of packages of data it can send without delay:

100k bits/s _ 6250
16 bit s

This is how many times the PLC could theoretically get a value from the gyroscope per second, but
there is also a two microsecond latency after each time the ADAC click converts data. Then you get:

0.000002 s * 6250 = 0.0125s.

This is the maximum latency of the ADAC click per second.

25

Lukas Janssens, Martijn Spaas

The total latency is then:

6250 6172
1.0125 s

This method is faster than the AnalogWrite function. It comes down to 6172 times per second. In
comparison with the AnalogWrite, 290 times per second. (21).

Conclusion:
The ADAC click is 21,3 times faster and yet we choose not to use it.
Do we really need so much data? No, we do not.

1) Itis acomponent less to worry about for the wiring and for possible failures.

2) The ADAC click gives a high signal but goes back to ground after the signal because the
integrated reference is turned off by default. The PLC is fast enough to keep up and so it takes
the average of the signal. It is certain that you can work around this, but due to lack of time we
could not do it.

4.1.6 Power supplies

In total, we have three power supplies. The power supplies convert the 230V to voltages that we need
for the electronics. We have:

- 5VDC for the control circuit and communication with the PLC;

- 12 VDC for the linear actuators of the crane from Actuonix;

- 24 VDC for the big linear actuators of the base and the big arm (first joint) of the crane. It is
also used for the drivers of the stepper motors.

Figure 40 - 24V, 12V and 5V power supply (22) (23) (24)

Table 2 - Power supplies

Power supply Power supply Current(A) Nominal Power(W)
input(V) output(V)

230V 5V 3 15

230V 12V 5 60

230V 24V 10.42(or 16.7 with fan) = 250(or 400 with fan)

26

Production, assembly and programming of a RoboCrane

4.1.7 Linear actuators crane (Actuonix)

For tilting the three last joints of the crane, these actuators are used. The 3 last joints are the 2", 3 and
4" joints from Figure 41 - Linear actuator Actuonix. These actuators are crucial for the compensation
of the waves. They help primarily with the compensation of the up and down movement and a little bit
for the tilt, as the base already compensates for a lot of tilt. In the linear actuator is a DC motor that
provides the power. The actuator is a p-type and has built-in limit switches. The P stands for
‘potentiometer’, the potentiometer will get us the position of the actuator at any time.

The characteristics of Figure 42 - L12 specifications (gear ratio 100, 12V) show that the speed will drop
when there is more force acting on the actuator. Notice how the current drops when the applied voltage
is doubled. After some tests on the second joint with this actuator, it was noticeable that it could not
hold the weight. There was also an actuator missing in the beginning. When new parts were ordered, a
linear actuator with a higher gear ratio was chosen. Now there is an actuator with a 150:1 gear ratio

instead of 100:1.
a

Figure 41 - Linear actuator Actuonix (25)

L12 Specifications

Load Curves Current Curves
30 - 400
— 501 - 6V
e 100:1 - 6V
Y z
£ —210:1 - 6V £
E 154 =
- N - = =501 -12V g
[M) 3
§.‘ o - 1001 - 12V
s - = ===
i e - = 2101-12V
0 1 L} ' 1
0 20 40 60 80 100 100
Force (N) Force (N)
Figure 42 - L12 specifications (gear ratio 100, 12V)
Table 3 - Actuonix specs
Stroke length(mm) Gear ratio Max load(N) No load speed
(mm/s)
2" joint 50 150:1 200 8
(type L16)
39 and 4™ joint 50 100:1 42 13
(type L12)

27

Lukas Janssens, Martijn Spaas

4.1.8 Arduino

The Arduino uno and Arduino uno wifi rev 2 were used. These are the Arduinos that were ordered last
year. An Arduino is a microcontroller that can be used for a lot of things. In our case, we use it as a
translator to send PWM signals to the actuators and to transform the data of the gyroscope into
something readable for the PLC. The PLC can also send PWM signals, but the frequency is not fast
enough for the motor controllers. (3) There are PLC modules that can produce a quicker PWM signal,
but the ones from school cannot. This is the reason that the decision is made for using Arduinos as a
translator. You could say that in a way the Arduino functions as a slave of the PLC. We use a normal
Arduino uno for the stepper motors because the library for the stepper doesn’t work so well on the wifi
rev 2.

419 PLC

The PLC (Programmable Logic Controller) is a computer that is built for the industry. We use the PLC
to run the main program. It is a very robust computer that can handle a lot of data. We have a learning
PLC at our disposal. That means that there are some restrictions on it. For example, this PLC doesn’t
use all of its IO’s: only half of the 1I0’s are usable. After communicating back and forth, we had 3
options.

e The first one is to take a second learning PLC and connect them via an Ethernet cable.

e The second option is to get a few modules from the first PLC and put them on the other one.

e The third option is to buy screw connection modules that can be implemented. After
communicating back and forth, it was not allowed to take apart the PLC, so the second option
is not a possibility.

The choice is pretty clear to us. The third option is the best one because we do not have to try to let the
two PLC’s communicate via Ethernet. You also would not need to carry 2 PLC’s while moving the
RoboCrane. Fewer components make it easier.

Figure 43 - PLC S7-1500 (26)

28

Production, assembly and programming of a RoboCrane

Voltage Divider
Vin 0—_L
Z
Vout

Zy

I T

Figure 44 - Voltage Divider

The digital output signal of the PLC is 24VDC. The Arduino works on 5VDC, so a voltage divider is
needed. Due to lack of space on the soldering boards, it is best to just have 2 resistors and not a few
resistors in series. The standard resistors that were on disposal were the E12 resistors. This means that
1.0,1.2,15,18,2.2,2.7,33,3.9,4.7,5.6, 6.8, and 8.2 times 10, 100 and 1000 ohm were available in
the lab. To minimalize the quantity of the resistors, the formula is best used with a fixed value of one of
the above. Afterwards, the result can be compared to the available resistors. They also need to be big
enough to limit the amount of current flowing from the PLC. A simple example of a voltage divider is
two resistors connected in series, with the input voltage applied across the resistor pair and the output
voltage emerging from the connection between them. The formula that is been used is based on Ohm’s
law (27).

- 7y Value of the first resistor [Q]
- 7y Value of the second resistor [Q]
- Vin Voltage input [V]
- Vour Votage output [V]
Zy = TinZ Z, 1)
Vout

Fill Z, =1000Q into (1):

_ 241000

Z, = c — 1000 = 38000

To get 5VDC, Z; needs to be 3800Q2. This resistor is not available at the lab, the closest value is
3900Q. Let’s see how much V,,; is when Z; is 3900Q.

Z
Vout = Z1+ZZz * Vin 2)
Fill Z, = 3900Q and Z, =1000% into (2):
1000
Vout = To00+3000 * 24 = #897V

Conclusion, this value is high enough for the Arduino to detect it and not too high to break the digital
pin.

29

Lukas Janssens, Martijn Spaas

4.2 Electrical wiring diagram
For the exact connections between PLC and Arduino we refer to Table wiring connections
Legend:
- Red: power supplies
Black: Ground

- Blue: Communication from and to PLC
- Data communication from Arduino

4.2.1 Base and first joint

In this wiring diagram, the first Arduino is visible, together with the three H-bridges and the five linear
actuators. The power supply of the 24VDC is directly connected to the H-bridges. The ground of the
24VDC supply is not connected to the ground of the 5VDC circuit. There are two analog inputs coming
from the PLC, which are the switches for the base. The other two digital inputs are the two switches for
moving the first joint.

Power supply
L %

Arduino 1 base + first joint ‘

]

motor FL BR and FR BL = base

PLE DO

PLC DO H_bridge1 ggwer Supply
[
— F_PWM __/__’__f
- P BAT

! WM #— AEN BAT +
1. ——\\%r
ETS 7960 Maotor FL Maotor BR
PLC AQ W —RIs
PLC AQ | W - L5 LOAD - =
Arduino k WK LOAD +
Ling NI
{RCU’]J L GND
IC5P
PLC AT
H_bridge2
8
— H_FW
—1 L PN BAT - :
R_EN BAT + |
LEM
£l I BTS7960 Motor FR Maotor BL
— L LOAD
C LOAD +
—] GHD
PLC AT
H_bridge3
]
—] A_FWM
=1 L_PWHM BAT- =
R_EN BAT + |
LEN
BTS7960 Motor first joint
—_— s e
— Lis LOAD - [
s LOAD + e
GND

Figure 45 - Electrical diagram base and first joint

30

Production, assembly and programming of a RoboCrane

4.2.2 Gyroscope

The second Arduino is visible together with the gyroscope (LSM9DS1). The gyroscope needs 3,3V or
5VDC and two cables for the data and scale of the 12C. There are three analog outputs from the Arduino

to the PLC. One for each direction, namely the X, y, and z-axis.

Arduino 2 gyroscope
8

|

Arduino
Uno
(Rev3)
ICSP

Gyroscope:
Adafruit LSM9DS1

Adafruit
L5MEDST

[

DEM

[TTT1

Figure 46 - Electrical diagram Gyroscope

31

Lukas Janssens, Martijn Spaas

4.2.3 Steppers + servo basket

The electrical diagram (Figure 47 - Electrical diagram steppers + servo basket), wich is made for the
‘steppers + servo basket’ program, shows the third Arduino, together with two drivers, two steppers,
and a servo. There is a 24VDC power supply needed for the stepper motors. The power supply is not
connected to the control circuit of 5VDC. The 5VDC is connected to the ‘enable’ pin of the drivers.
This is because of security, this causes the stepper motor to stay powered and stand still. This is
important because, if the base is tilted, the end of the arm is leaning down due to gravity. This force
needs to be held back by the stepper. The same goes for the other stepper motor. The telescopic arm
can’t go in when the stepper motor stops rotating.

Power Supply
29V

Driver 1 —

Power supply !
5V

Arduino 3 Steppers + Servo

L

Stepper turning crane
ROB-08420
Qur type driver is TB 6600 ; O
Servo basket]I
Arduing 1
Uno
(Rev3)
Driver 2 Stepper telecopic arm
ROB-08420
DMBE0A } O

— L

L pLC D

Our type driver is TB 6600

Figure 47 - Electrical diagram steppers + servo basket

32

Production, assembly and programming of a RoboCrane

4.2.4 Linear actuators arm

In this last diagram, a fourth Arduino is used, together with two dual H-bridges. The BTS7960 on the
diagram is not the right one. It is not possible to put the dual H-bridge (L298N) into the diagram, so for
simplification, a third H-bridge is used in the diagram. The difference is in the PWM inputs of the dual
H-bridge. The dual H-bridge only has one PWM input for every motor whereas the single H-bridge has
one for each direction. The third and the fourth linear actuator are together on one dual H-bridge, while
the second has its own. The second and third will be controlled with an analog input while the third will
be controlled with two digital ones.

FPower Supplyl
—I 24
o
PLC A H-bridga 2nd jaint
Prower supplyl
o 1
i i Mator 2nd joint
i e il B -
| I
Arduing 4 Linaar actuators arm | -
H-bridge 3th joint
- | Matar 3th joint
plc j—— H BAT +
plc Arduing " arsTeen
| 1] o - =l
|l [1-53TE | | |] L " |
H-bridge 4th joint
I I 1 Mater 4th joint
™ wrsrsen

Figure 48 - Electrical diagram linear actuators arm

33

Lukas Janssens, Martijn Spaas

4.3 Programming aspect

All drafts can be found on our GitHub page. Final programs are attached, and on the GitHub page.

4.3.1 Arduino

As you can see from Figure 45 - Electrical diagram base and first joint - Figure 48 - Electrical diagram
linear actuators arm there are four Arduinos used in this project. Each one of the Arduinos with its own
unique code. The code is made to control the machine manually with feedback from the sensors. With
this feedback, it is possible to calculate where the endpoint of the arm is. It is also possible to read this
data from the gyroscope.

4.3.2 Base and first joint

The process

At the beginning of the process of writing the end program, a program was written to only move one
actuator with an H-bridge. The 24VDC supply of the PLC was used to move the motors. After
connecting a second motor in reverse to the H-bridge, it was clear that the PLC supply could not handle
it. The 24VDC supply is meant for electrical steering and not for electrical power. Afterwards, the power
supply was connected and programmed into the PLC for testing. When this was done, the program of
the first joint was written into the Arduino and PLC.

End result

The Arduino reads the analog and digital data that comes from the PLC. The data is simply the input of
the switches from the PLC. There are switches for moving every joint. In this program, only the switches
for moving the base and the first joint are read by the Arduino. The two switches for the base are analog
signals and the two switches for the first joint are digital signals. The reason that the switches of the
base are analog is to minimalize the number of switches. If it was a digital signal, four switches were
needed, two for each direction. Now there are two analog signals, which are each separated into two
parts. For the up-and-down movement of the first joint, there are two switches, one to go up and one to
go down. The only thing that this Arduino does, is read the data from the PLC and then send a PWM
signal to the correct motors. At the same time, the PLC reads the position of the actuators of the base
and first joint (reference Arduino 1: Base and first joint).

4.3.3 Gyroscope
The process

In the process of getting the right angles of the gyroscope, we had a few milestones. In the beginning,
we had the gyroscope type ‘BNOO055’ at our disposal. A lot of time went into researching how to
program the gyroscope. The temperature was the first element that got displayed, which was just for
testing and getting to know the library. After this, the accelerometer and the magnetometer were
programmed. The accelerometer did not work properly, but the magnetometer worked. The decision
was made to buy a new one. It was another type, the‘LSM9DS1’. This type had other libraries, so we
had to start over for the biggest part. In the end, the Arduino could read the values of the accelerometer
and the magnetometer in the end. We followed the research from the previous year (3), and used the
ADAC Click to convert the signal from I12C to digital for the PLC. After testing, the problem was that
the signal always dipped to the ground. The graph showed that there were spikes for every signal, but
after every signal, it dipped back to the ground. After testing with sending the data over the analog port
of the Arduino, the decision was made to send the data through the analog port. When the connection

34

Production, assembly and programming of a RoboCrane

with the PLC was made, it was noticeable that the signal fluctuated a lot. It came down to 20° of
deviation. Due to lack of time, we didn’t come to a conclusion and therefore we have no solution.

End result

The Arduino reads the data from the gyroscope and converts the signal to a 0-255 signal with a little
calculation. It is possible to just use an easy map function for this. The problem is that it will round the
numbers and therefore the accuracy lowers tremendously. To fix this, a function is written to calculate
with floats that you can see in Figure 49 - Map float function. After this, the 0-5VDC signal that comes
out of the analog output of the Arduino is sent to the PLC.

void mapfloatx(float x, float in min, fleat in max, float out min, float out max)
I
L
rollv = (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
1
J

Figure 49 - Map float function

4.3.4 Steppers + servo basket

Full program in Attachments : Arduino 3: Steppers + servo

The process

The process started with writing a program to control one stepper motor with analog input. The stepper
drivers, in between the Arduino and the stepper motor, need a 5V direction and a pulse, which the
Arduino provides. The analog input from the PLC controls direction and speed. The first program
written worked for one stepper motor, it uses delays to write a pulse to the driver. This delay is in direct
control over the speed. If we wanted to connect another motor, this way of programming would become
a complicated mess. That is why a library was used to drive them. The library (28) uses the hardware
interrupt timer, controlling the drivers in the background, leaving the sketch free for other programs.
Using this library, a speed and direction are needed. There also needs to be a dead zone set in the middle
of the signal, to make sure interference doesn’t drive the motors. In this program a basic servo control
program is added and controlled by digital inputs. We did not have enough analog outputs on our PLC,
therefore we changed all the inputs to digital. We didn’t have the speed control but we can alter the
speed manually in the program. The program with speed control can be found on GitHub (12) and it is
included in this thesis to facilitate future progress.

End result

In the end, the Arduino gets 6 digital inputs, two for every actuator. You can adjust the speed of the
steppers by adjusting the variable: “speed”. The speed of the servo can be changed by changing the
delay in the program. The limit points of the servo are programmed in the Arduino as we do not have
another analog input module for the PLC. The steppers are controlled by the drivers which are controlled
by the Arduino. The Arduino gives a digital step pulse signal and a digital direction signal.

4.3.5 Linear actuators arm

Full program in Attachments: Arduino 4: Linear actuators arm

35

Lukas Janssens, Martijn Spaas

The process

For the program of the linear actuators of the arm, there was first a program written for one actuator.
The L298N dual H-Bridge needed different inputs than the HW-039. The program written for the dual
H-bridge used one PWM signal to control the speed of one actuator while the other H-bridge used two.
With this H-bridge, we need two digital pins and one PWM pin for every motor. By writing one of the
digital pins high, we set a speed. When the PWM pin is given an analog value of 0-255, then it adjusts
the voltage from 0V-5V. This variable controls the speed of the motor. An analog input is linked to the
direction as well as the speed. There was not enough space to put the fourth joint on the analog pins.
Therefore two digital pins were used to control the fourth joint.

End result

The program uses ‘if statements’ to write the different direction inputs high or low. Two of the motors
get controlled by an analog input, which controls direction and also speed. The third motor gets
controlled by two digital inputs which only control direction.

4.3.6 PLC
Programs can be found on GitHub (12).
preparations

At the beginning of the project, a server was set up to make programming more streamlined. It started
with research (29) (30) (31) (32) about how to set up and where we could run the server. The server
could not be set up through OneDrive. After some more trial and error, a server was set up on a personal
laptop (Figure 51). Every user needs their own account on the pc which hosts the server. After the setup
is made, we need to meet some requirements:

Connect to the same network;

Host laptop can be detected on network (settings on “private”);
Server start up: startup in “TIA Project Server V16-Configuration”;
Login with username.

N S

With this server, we get three different flags: blue means that you are working on this program block
alone, yellow means another person is working on this, and red means you are both working on this
program block (Figure 50 - Map structure). The flags appear automatically when you make a change or
when you set them manually. To get rid of the flags, synchronize your program. After some tests, it
worked like it should. This will make programming simultaneous more streamlined.

B MUY T UIULR
P & Main [OB1]
Startup [OB100]
4 ValueToAngle [FC1]
SensorProcessing [F...
T : 3 TargetinDistance [FB...
—— @ SensorProcessing_D..

emermeie.s @ TargetinDistance_DB..
@ TargetinDistance_DB..
@ TargetinDistance_DB..
@ TargetinDistance_DB..

P g System blocks

36 h ‘-u Tarhnalanm: aliarces

Figure 51 - Server setup Figure 50 - Map structure

Production, assembly and programming of a RoboCrane

The process

The process of making the PLC program itself was very gradual. It is built parallel with designing the
base and reducing the play of each joint.

Step 1:

In the beginning, the focus was more on the gyroscope. The reason that the focus was on the gyroscope
is because the base was being rebuilt at the same time. It was not sure yet how the base would be
designed and so it would have been a bit difficult to make a program for it at that time. When the Arduino
program for the gyroscope was ready, a connection was made with the PLC. After getting the values
from the gyroscope through the ADAC click module, it was clear that it would not work. The ADAC
click converts the 12C to an analog signal that the PLC can read. While doing so, it dips after every signal
to the ground. The PLC can read the values more quickly than the Arduino can send them, so the PLC
got wrong values continuously. After this, we tried it with the analog output of the Arduino and it worked
well. Another problem with the gyroscope is that the accuracy, after the readings on the PLC, was not
so good. The PLC gives a deviation of 20° when the gyroscope is laying still. Due to a lack of time and
putting the priority on making an overall program with readings from each joint, the gyroscope could
not be finished.

Step 2:

After the gyroscope, the design of the base was ready and so a program for the base could be written.
Making the base (welding, drilling, filing,...) and writing the program for it went parallel. At this
moment the PLC program was as follows: There are four switches. Each switch is for one direction of
the base. The PLC reads the digital input from the switch and converts this signal to an analog signal.
In this case, the analog signal is a fixed value. A digital signal is a lot easier, so why did we not use a
digital signal to send to the Arduino? This is because we already thought about the speed control when
the machine has to compensate for itself. In this case, the machine needs to send analog values to the
Arduino, so that the speed of the actuators can change, otherwise it will be a bumpy ride. On the left of
Figure 52, you can see that, when you press the button to go up, it will send an analog value of 27648.
When you press the button to go down, the PLC sends an analog value of 10368. At this moment the
PLC could read in the position of the actuators from the base and move them while pressing the buttons.
The next step was to put virtual end switches on the actuators. The actuators have ‘built in” end switches,
but they do not stop at the same time, which could cause the base to pull itself crooked. On the right,
you see that when the actuator has reached 8000 or less, that it cannot move down anymore. In the
hardware, only the connection of the front left and right are connected to the PLC. This is enough
information because the other two actuators are just following the front two (due to hardware connection
via the H-bridges).

After the base was programmed, the first joint needed to be programmed. This happened at the same
time that the slew bearing was installed onto the base. The first joint is not a part of the automatic wave
compensation and there was not enough space on the analog ports of the PLC. The decision was quickly
made to put the first joint on digital signals. When you press the button to go ‘up’, the PLC sends a
digital ‘1’ to the Arduino. The Arduino than controls the H-bridge of the actuator. The first joint also
needed virtual endpoints.

37

Lukas Janssens, Martijn Spaas

Base Up(Analog)

#buttonBaseUp —

#buttonBaseDow nm #doNotMoveFront
n—o Int LeftDown
#doNotMoveFront MOVE s
LeftUp —o8 e #frontLeft IN1 —
 oum —stezeuy 3000 — IN2 —_— -
IN —
Network 2: Net rk 2:
Base Down(Analog) .
&
#buttonBaseUp =0
:buttnnEa:eD::\.; >= #doMotMoveFront
Int LeftUp

#doNotMoveFront MOVE

LeftDown —o 5% —EN 7 #frontLeft IN1 =

,‘ oum #baseUp

IN2 — =

IN
Figure 52 - ‘Movement analog’ and ‘motor_position’
Step 3:

After the base and first joint was programmed and wired, it was time for the steppers and servo. The
steppers and servo both need digital outputs on the PLC. Therefore, the same program as the first joint
can be used. Cleaning up the program and giving it some more structure proved to be easier. A basic
digital control program was made (Figure 53) and was placed in a FC (right side Figure 53) for each
digital input that needed to be controlled. The limit variable can be connected. If we have the value, it
doesn’t need to be connected, so we will leave it in the program making future additions of encoders
easier. For now we use the buttons to control the motor.

* Network 7:

* Network1: HFTIONT(sERVO)
C EnN %812
“movemen it
digital_DB-
WB5
& “movement digital”
FUp =— #movelp . —
#buttonFiftiointle
#down —0 - f—up
#buttonFiftiointRi
#limitTop —0 3¢ S - oht— down moveUp — #fiointln

false — limitTop moveDown — #fiftiointDown
zl:¢ — limitBottom END —

¥ Network 8:

e - *WDB11
“movement

digital_DB_
rotate_base"
& WBS
“movement digital"
Eup —0 #moveDown —en
#buttonRotateLeft — up
#d':"‘"n = #buttonRotateRig
f— ht — down moveUp — #rotateleft
2k — —

#limitBottom —0 2 folse — fimitTop moveDown — #rotateRight

zl:¢ — limitBottom END —

Figure 53 - ‘Movement digital’ and ‘movement’
Step 4:

As last step, three joints of the crane needed to be programmed. Ideally the three joints should be analog
(left side Figure 52), but because there is not enough place on the analog PLC ports, the last joint needed
to be digital (left side Figure 53). This means that joint four can not change its speed. This means that
there are two analog and one digital actuator. Which is exactly the same as the program for the base and
first joint.

38

Production, assembly and programming of a RoboCrane

End result

The end result consists of cleaning up the program. Because the Arduino takes care of the “translation”
we only need two types of output programs to move the entire crane. Those two programs: “movement
analog” and “movement digital”, are then called upon in the FC: “movement”. In this program the links
between the actuators and PLC are created. Some of the actuators give their position through a
potentiometer, which will be processed in the “motor_position” FB. This function block takes care of
the limit of the different actuators. Manually putting joints at their outer limits, the potentiometer values
can be linked to the positions. These will be implemented in the “motor_position” FB to ensure the crane
does not tear itself to pieces. The FC “movement” and FB “motor_position” get called upon in the Main
OB and linked to their corresponding connections. For the connections between PLC and Arduino, we
refer to the attachment Table wiring connections.

arduino

buttons

Potentiometers

Figure 54 - PLC program diagram (33)

39

Lukas Janssens, Martijn Spaas

5. Conclusion

As a conclusion of this thesis, we can say that there is a sturdy base and crane with not much play. Tests
have proven that the crane with the base can be moved manually with switches from the PLC. The
position of the actuators can be read on TIA Portal in real-time. This can be used to determine the end
position of the crane. As a translator for the PWM signals, an Arduino is used to control the actuators.
There are programs written for the Arduinos in C++ and for the PLC on TIA Portal in FBD.

As for the future, some more thought needs to be put into the gyroscope together with the dynamics
equations. For the crane to counteract the waves on its own, the dynamics equations need to be
implemented into the program of the PLC. The program of the gyroscope is written and implemented
into the PLC program, but not yet connected.

40

Production, assembly and programming of a RoboCrane

6. References

1. Dynamic positioning. Wikipedia. [Online] https://en.wikipedia.org/wiki/Dynamic_positioning.

2. ResearchGate. [Online] https://www.researchgate.net/figure/Definition-and-directions-of-
motions-of-ship-in-the-previously-defined-body-fixed-steady_fig8 303299722.

3. Gielen, Bram Deboel & Jasper. Design and production of a RoboCrane. NO-5063 Bergen,
Norway : Western Norway University of Applied Sciences, 2022.

4. Design thinking. IDEO designthinking. [Online] https://designthinking.ideo.com/.
5. evolventdesign. [Online] https://evolventdesign.com/pages/spur-gear-generator.

6. 3D PRINTING TOLERANCES & FITS. 3dchimera. [Online] 14 January 2019.
https://3dchimera.com/blogs/connecting-the-dots/3d-printing-tolerances-fits.

7. original Prusa i3 MK3S+. Prusa3d. [Online] https://www.prusa3d.com/category/original-
prusa-i3-mka3s/.

8. ultimaker Cura. ultimaker. [Online] https://ultimaker.com/software/ultimaker-
cura/?gad=1&gclid=CjwKCAjwggejBhBAEiwAuUWHIiolFbLmMYihVIGE_Uin6TilUDzIgR20
PYGRP1j-TMuZ2j3wT55SPnQFxoCIXwQAvVD_BWwE.

9. Cura Setup for Flashforge Adventurer 4 Series. FlashForge. [Online]
https://en.fss.flashforge.com/10000/software/22be928feb149fb5d89206912b4e6350.pdf.

10. Datasheet Ewellix linear actuator. [Online] https://medialibrary.ewellix.com/asset/16184.
11. aluflex. [Online] https://www.aluflex.no/.
12. githubOPTS. github. [Online] may 2023. https://github.com/MartijnSpaas/OPTS.

13. Datasheet H-bridge BTS7960. [Online]
https://www.handsontec.com/dataspecs/module/BTS7960%20Motor%20Driver.pdf.

14. L298N datasheet. L298N datasheet. [Online] https://docs.rs-
online.com/d24b/0900766b8135f847.pdf.

15. Handson technology. Datasheet L298N. [Online]
https://components101.com/sites/default/files/component_datasheet/L298N-Motor-Driver-
Datasheet.pdf.

16. RS components. Stepper. [Online] https://no.rs-online.com/web/p/stepper-motors/5350401.

17. Farnell. Stepper motor driver. [Online] https://no.farnell.com/dfrobot/dri0043/stepper-motor-
driver-arduino-board/dp/3517878.

18. Geckodrive. Datasheet Geckodrive. [Online] https://www.farnell.com/datasheets/1496194.pdf.
19. Mikroe. ADAC Click. [Online] https://www.mikroe.com/adac-click-click.

20. RoboticsBackend. [Online] https://roboticsbackend.com/arduino-fast-
digitalwrite/#:~:text=We%20have%20the%20answer%3A%20a,have%20a%20much%20b
etter%?20precision.

21. Datasheet ADAC Click. [Online] https://docs.rs-online.com/3c57/0900766b8161be99.pdf.

22. Datasheet 24V supply. [Online] https://www.meanwell-
web.com/content/files/pdfs/productPdfs/MW/RPS-400/RPS-400-spec.pdf.

23. Datasheet 5V supply. [Online] https://docs.rs-online.com/c33b/A700000007001402.pdf.
24. Datasheet 12V supply. [Online] https://docs.rs-online.com/df40/0900766b816ed486.pdf.

25. Actuonix. Linear actuator. [Online] https://www.actuonix.com/l16-50-150-12-s.

41

Lukas Janssens, Martijn Spaas

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

Siemens. [Online]
https://new.siemens.com/it/it/prodotti/automazione/systems/industrial/simatic-
controller/simatic-s7-1500.html.

Voltage divider. Wikipedia. [Online] https://en.wikipedia.org/wiki/Voltage divider.

github. hobby components / HCMotor. [Online] july 2015.
https://github.com/HobbyComponents/HCMotor.

Setting Up a Project Server within TIA Portal V16. YouTube. [Online] 9 July 2020.
https://www.youtube.com/watch?v=EvyPXrQbNYE.

Tia Portal: Multiuser Projects Partl. YouTube. [Online]
https://www.youtube.com/watch?v=SHhlzdR-DMw.

Tia portal: multiuser Projects Part2. [Online]
https://www.youtube.com/watch?v=1maSjWBdqY0.

multiuser engineering with tia portal server. Support.industry.siemens. [Online] 09 08 2021.
https://support.industry.siemens.com/cs/document/109740141/multiuser-engineering-with-
tia-project-server?dti=0&Ic=en-SE.

lucidchart. [Online] https://lucid.app/lucidchart/810aa529-af5a-4650-93c8-
d9a2802551e2/edit?invitationld=inv_024dd4ee-1327-4df0-b116-81d926326d3f&page=0_0#.

kaydonbearings. [Online] https://www.kaydonbearings.com/white_papers_15.htm.

grainger. [Online] https://www.grainger.com/product/SKF-Radial-Ball-Bearing-6028-
36MC76.

42

Production, assembly and programming of a RoboCrane

Figure 1 - Ship MOVEMENTS (3)...cuiiieiieieeie sttt ettt re e e s besreesbesneeneenre e 1
T U A = o] o0 1O - o - OSSPSR 4
FIQUIE 3 = BASE BXESviuveeeueesieieeiestest sttt etttk b bbbt e e bt bbb et b et et b e bt b nn e n e r e 5
FIQUIE 4 - ANGIEA DASE ...t 5
Figure 5 - Crane With CranNe PAILSccveieie ettt e et e et be e e sa e re e e saesre e besreeneenre e 6
Figure 6 - SIEW DEAMNNG (34).... ittt 7
Figure 7 - Radial DEAITNG (35)voeiiiririiiieiieieieeees st 7
Figure 8 - SPecial @SSEMBIY........ccviiviiiiece e e re et be e e re e 8
Figure 9 - GEnerated GEAIS (5)....ciuivueieieeie i et et sttt e te s st este e e s e s e e be s re b e besaeesbesbeesbesbeeteesbesneeneenreans 9
Figure 10 - Slew bearing angled DASEccooeiiiiiiiii s 9
Figure 11 - 3D printer Profile ... e e e 10
Figure 12 - Big gear SHCEr SBILINGS.....cviieiitiiieie ettt sttt st re s te e s reeba e besre e e e besneesreares 10
Figure 13 - 3D printing the toothed ring with end result..............cccooiiiiiiii s 11
FIQUIE 14 - LINEAI ACIUALONeiveetiitieieieeete sttt bbbttt b et nn e 12
Figure 15 - OULEr and INNEE FING.......ciiiieiie ettt s re et st esteebe s beete e besae e e e steeeesreers 12
Figure 16 - Standards and aCtuator MOUNT...........cceiuiiiiiiie e 13
FRQUIE L7 = AXIS. .ttt bbbt bt h bbb bbb e bt h bbb b n e 13
Figure 18 - PIHHOW BIOCK ... sttt e 13
Figure 19 - Welded aSSEMBIIESc..ciiiiiiiie ettt st s re e be e sreers 14
Figure 20 - PIasma DXF FIle ..ot 15
Figure 21 - Realisation With plasma CULLENooii i 15
FIQUIE 22 - WEIING PIOCESSeeveeeie ettt ettt sttt sttt et seeete e e seeese e beaneeeesaeaneeseeenes 16
FIQUIE 23 - FIrSTWEIUS. ...t ettt 16
Figure 24 - Base With OULET TING.......ciiiiiiiiieeees st 17
Figure 25 - Base with welded assembBIyo s 17
T O T =T o1 (=] o =T oL 17
Figure 27 - Crane With DASEccuvcie ettt sreeres 17
FIQUIE 28 - CUIA SEEINGS ...ttt bbbt n e nn e 18

43

https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652818
https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652819
https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652820
https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652829
https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652834
https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652835
https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652836
https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652838

Lukas Janssens, Martijn Spaas

T O A I = Toto) Vo I T 11 | PSS 19
FIGUIE 30 = INBW TTUSS 2 ...ttt sttt sttt ettt et et e s te s et e e st e s teeta e st e s beete e besneetesteennenreares 20
Figure 31 - Basket and fifth JOINT ..o 21
Figure 32 - Gyroscopes BNOO55 and LSMODSL.........cccuoiiiiiieieiesesesesie e 22
Figure 33 - GYr0OSCOPE SIGNALccveiieiieiicie st be et be s e et te e e nreeres 23
Figure 34 - Wiring diagram absolute analog output (10)ccceieiiiniinineieneeeeees e 23
Figure 35 - H-Bridge HW-039 (13) and L298N (15)............mvveereeeemereessseseseeessseeessseesessse s 24
Figure 36 - StepPPer MOTOE (16).......ccueiiiieeitiie ettt s be e be e e e te e e s beebe e besreeseeste e e e sreares 24
Figure 37 - Driver, TB 6600 + Geckodrive G201X38 (17) (18)....ccecvviveiieeiiiierie e 24
Figure 39 < ADAC CHCK (19)......vveevveeeeeeeeseeeeseseessseeeeseeeessseesesesesessses s eesese e esssesessses e 25
Figure 40 - 24V, 12V and 5V power supply (22) (23) (24)ccccoevveieiieeie e 26
Figure 41 - Linear actuator ACTUONIX (25) ...cvciviiiiiieiiieeiese st sre et ste et te e s re et sreesaeste e sreens 27
Figure 42 - L12 specifications (gear ratio 100, 12V)ccccoiiiireieiiniinisesie s 27
FIQUIE 43 = PLC ST-1500 (26)........coevveeeeeeeeseeeesesesessseessseessssseeessssesessse s eessseaseseesssesessses e 28
Figure 44 - VOIAGE DIVIGELcouviieie ettt sttt s be e re et s beeteste e e e sreers 29
Figure 45 - Electrical diagram base and first JOINTccccoiiiiiiiiiininr e 30
Figure 46 - Electrical diagram GYIOSCOPE.c.eviiiuirieriiiteiieieieeee sttt sttt ne e 31
Figure 47 - Electrical diagram steppers + SErvo Basket...........cccociiveiiiiiic i 32
Figure 48 - Electrical diagram linear aCtUators armc.ccceevveiiiieriinecie et 33
Figure 49 - Map FlOat TUNCLIONoiiiiiiieice e 35
FIQUIE 50 = IMAD SEIUCTUI ...ttt sttt sttt sttt e neeete et e seeene e beeneeeeseeaneeseeenes 36
T O e S T=T T =) (o SRS 36
Figure 52 - ‘Movement analog’ and “MOtOr POSItION’cverueieieiriniisenie e 38
Figure 53 - ‘Movement digital” and “MOVEMENT’ccoeiriiiiiieieiiise e 38
Figure 54 - PLC program diagram (33)....c.eieereieieerieeieeieseeeeesiesieeeesteaeeseesteeeeseeeseesnesneeeesneaneeseesees 39

44

https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652861
https://hvl365-my.sharepoint.com/personal/673712_stud_hvl_no/Documents/Bachelorproef/Bachelor%20Thesis.docx#_Toc135652862

Production, assembly and programming of a RoboCrane

List of tables

Table 1 - Choice MatrixX rotating DASEcrirreiieiiieisere e 8
Table 2 - POWET SUPPIIESottt 26
I Lo LI AN wd (110 T DS oot SO 27

45

Lukas Janssens, Martijn Spaas

Attachments

Drawings plasma cutter

This contains the plasma cutted 5millimetre aluminium plate.

Drawing 1

Actuator welded mount. Used to move the inside ring of the base.

50

[[T 1 [
ooy
%\ \:D
o [
A ?30
" V
™
30 L
40 IIJF 1GF
80
PARTS LIST
ITEM QTY PART NUMBER ROUGH MEASUREMENT
1 4 actuator welded mount B0x50x5
Designed by Cheec ke Ery Approved by Cate Date Ra3.2
Martijn Spaas 16/05/2023 ’
general Tolerance ISO 2768-v
OPTS ign
scale 1/1 T

i

46

Production, assembly and programming of a RoboCrane

Drawing 2

Baseplate. The base of the crane.

494,97
1
C
~
2
3
-
=T
-
[32]
= B
s
PARTS LIST
ITEM Qry PART NUMBER ROUGH MEASUREMENT
2 1 baseplate 500X500X5
Designed by [Checked by [Approved by Date Date A
Martijn Spaas | l I 17/05/2023 |R3312
general Tolerance I1SO 2768-v
OPTS
baseplate | BV

[T 5 T 4 4& 3 T . I

47

Lukas Janssens, Martijn Spaas

Drawing 3

Pivot base plate. Attachment for “actuator base mount” . will be bolted to the baseplate with M6 bolts

15

- - 5
_'1[).-: - -

= L 1 |

Rip % ~N

-‘-‘-‘""—-___" Y_' 9 -
—Y D - 1

um : |

10
o

E — e . — S—— — — -

]]

30
PARTS LIST
ITEM qQTY PART NUMBER ROUGH MEASUREMENT
3 2 pivot base plate 100x30x5
Designed by Cheched by Approved by Davte Date R:a3 2
Martijn Spaas 17/05/2023 '
General Tolerance 1SO 2768-v
QPTS -
scale 1/1 Y

48

Production, assembly and programming of a RoboCrane

Drawing 4

Base post sub assembly. Will connect the aluminium post by welding it to “base post support”. And gets
bolted to the base

90

T . T T T L] I T T T T . T

i Ir i i i i I i i i i : i
I
I
i 20
i 5| 10
—
| o

D - %=
e
i Pt
B © Vi o &
N ~vh W
i Toa
= \ |
|
%
PARTS LIST
ITEM QY FART NUMBER ROUGH MEASUREMENT
4 Z base post sub assembly G090
T grmnl by Funboed by [Ty T r:: Rai 2
Martijr Spaas | FJOSFI023 !
— General Tolerance 150 2768-v
'5‘:* 1||r1 Leilor li}ﬂi

49

Lukas Janssens, Martijn Spaas

Drawing 5

Corner reinforcement for axis. This part will keep the extrusions in please with T-shape spring ball nuts
and bolts. It also contains an adjustable mount for the axis. Which slides inside the slot. And rectangular
slots to weld the “actuator welded mount outside” to.

124,85

20

104,85
PARTS LIST
ROUGH
ITEM qQry PART NUMBER MEASUREMENT
5 2 corner reinforcement for axis |125X125X5
pesgned by Charkod by Agpreed by Cate Date Ra3.2
Martijn Spaas 17/05/2023 J
general Tolerance IS0 2768-v
OPTS =
scale 1/1 e f""i

i

50

Production, assembly and programming of a RoboCrane

Drawing 6

Welded mount Inside plate. This piece bolts to the “mounting plate bearing” and will be welded to
“actuator welded mount”.

40
|
—
10, 10 10
al
[ol
= 8| 1Pt~ <
a5
= \’(“‘ "%
]
PARTS LIST
ITEM qQry PART NUMBER ROUGH MEASUREMENT
& 2 |welded mount inside plate |60x40x5
I'bnhn.,-ﬂr Tkt by Wt Iy Tt . al,l
Martijn Spazs 17/05/2023 F !
- general Tolerance ISO 2768-v
scale 1/1 el

LN

51

Lukas Janssens, Martijn Spaas

Drawing7

Mountingplate bearing. Place where the “angled base” will be mounted to, bearing “pillow block” , and
bolted to welded mount inside plate.

270

R

~

—B I
B
PARTS LIST
ITEM ary PART NUMBER ROUGH MEASUREMENT
7 1 mountingplate bearing | 270x270x5
g o] ey e b by FpPTRnC Cate [=11]
anh Spaas 1705/ 2023
general Tolerance 150 2768-v
OPTS —

scale 1/2 b :“l'i

EF.

52

Production, assembly and programming of a RoboCrane

Drawing 8

Actuator mount inside cornerl. Wil hold the aluminium extrusions in place like “corner reinforcement
for axis”. And will be welded to “actuator inside corner2”

120
| I
w1 M L) | [
T T
20
#
g—‘ 17,17 7 o
v4 Rk
/ R 0
7 W ps
& £ -
4 %
20 o
B 8 O <
FARTS LIST
ITEM |QT‘|’ FART NUMBER ROUGH MEASUREMENT
8 2 |actuator mount inside comerl |120x120x5
Diemiagreed by P v vy Approed by [3 ate Ra3.2
Martijn Spaas 17/05/2023 d
general Tolerance 150 2768-v
OPTS —
scale 1/1 B

53

Lukas Janssens, Martijn Spaas

Drawing 9

Actuator inside corner 2. Will be welded to “actuator mount inside corner.

% 8
o
~
—
s
12| |
22
48
88
PARTS LIST
ITEM qQTY PART NUMBER ROUGH MEASUREMENT
9 4 |actuator inside corner2 210x88x5
Dwrsigreed by Checkied by Aporoved by Tiote Diake Ra3 2
Martijn Spaas 17/05/2023 !
General Tolerance ISO 2768-v
OPTS - Edition Sheet
actuator inside corner2 1/1

i

54

Production, assembly and programming of a RoboCrane

Drawing 10

Actuator welded mount outside. Will be welded to “corner reinforcement for axis”.

55
| i
[- i
I
40 N
o /3'-‘}
b
£ "'_\
LS
Rs
2
— 2 <
-4
=
=
|
& \
10 ‘%’
PARTS LIST
ITEM| QTY PART NUMBER ROUGH MEASUREMENT
10 4 |actuator welded mount outside 93x55x5
D e g [Approved by Dot Dabe Rﬂ3 2
Martijn Spaas 17/05/2023] !
general Tolerance 1S0 2768-v
OPTS
actuator welded mount out%i:i::-m fﬁ

55

Lukas Janssens, Martijn Spaas

Drawing 11

Base post support. Welds to base post sub assembly. Connects the post with adjustable slots.

v

55
! | I
R 40
% b
el
\ < ¥
)
— N
Ly
R3
I
~
i
7.5 10| 10
1 55
PARTS LIST
ITEM QTy PART NUMBER ROUGH MEASUREMENT
11 4 base post support 55x74x5
Deessigred bry Cheched by Appiowed by Cate (=] Rﬂ3 2
Martijn Spaas 17/0572023 !
general Tolerance 1SO 2768-v
OPTS
scale 1/1 e 1“1

in

56

Production, assembly and programming of a RoboCrane

Drawing 12

Actuator base mount. Will be welded to: “Pivot base plate”.

20
|
| | wn
T i
J’i’fa ‘
&
1 o= ﬂ
(|
—B a ‘
5 _.10
PARTS LIST
ITEM qQTY PART NUMBER ROUGH MEASUREMENT
12 4 |actuator mount base [35x20x5
Desigred by Chraschnd by ppearved by Dt Cate Ra3l.?
Martijn Spaas 17/06/2023 !
general Tolerance 1SO 2768-v
OPTS
scale 1/1 - f}"i

57

Lukas Janssens, Martijn Spaas

Drawing 13

Corner reinforcement outside axis. Keeps the aluminium extrusions together. Connects with “axis”
through threaded holes.

130
40
ol |
\"r"\
S
20
z s
-'--'-.-.
. y
i 3{‘* .f, <
.f
b s
5
i
o] (% e '$A '$' v
\r-.
~
PARTS LIST
TEM|OTY PART NUMBER ROUGH MEASUREMENT

H 2 |corner reinforcement outside s 13he] 305
u.“:'r.;ﬂ. r-u-"- Iuln—ll- F-m;l] PAJ'J

general Tolerance 150 J768-v
OPTS T

‘F*m 1/1

58

Production, assembly and programming of a RoboCrane

Drawing machined

Axis. Will be used as axis together with metal ball bearings. Bolt to “Corner reinforcement outside axis”
and “Corner reinforcement for axis”.

i
il]
2 T—1A-—==—+ FF—1—-—F —
i 1k
50

12 26 ~

= =

8

Fan ol _ T]
=3 e |
o
\T@/ 15 |10
PARTS LIST
ITEM Qry PART NUMBER general measurment
14 4 anis 75x 2020
D gnex] by b by Tre T Tats Ra3.?
Maitijn Spass 170672023 i
general Tolerance 1S0 2768-v
oPTS =
scale 1/1 -]!:F"]

59

Lukas Janssens, Martijn Spaas

Drawing assembly crane

PARTS LIST
ITEM qQTy PART NUMBER DESCRIPTION
1 1 base with turn
mechanism
2 1 N_Outer_telescop SPAJ]
A
3 1 N_Inner_telescopic_pini
on_splitl_SPAJA
4 1 N_Inner_telescopic_pini
on_split2_SPAJA
5 1 N_Inner_telescopic_pini
on_split3_SPAJA
6 1 Truss1_small_wall_origin
alSPAJA v2
7 1 Truss2_small_wall_exten
dedSPAJA
8 1 basket
9 1 Actuator_longSPAJA CAHB-10
Series-b-Linear Actuator
10 1 Long_actuator_joint2SP
AJA
11 1 Inner_boom_tipSPAJA_V
2
12 1 Truss_Connection 2 new
13 1 Truss_Connection 1 new
14 1 L12Actuators100mmSPA [STEP AP242
JA
15 2 L12ActuatorsS50mmSPA] |STEP AP242
A
16 1 Truss_Connection2_smal
ISPAJA
17 1 Truss_Connection2_1_s
mallSPAJA
18 1 Truss_Connection3_1_s
mallSPAJA
19 1 SG90 - Micro Servo 99 -
Tower Pro.1
20 1 Truss_Connection3_2_s
mallSPAJA
21 1 basket mount

60

Production, assembly and programming of a RoboCrane

ONONOROOFHOREGNO

61

Lukas Janssens, Martijn Spaas

62

Production, assembly and programming of a RoboCrane

Drawing assembly base.

PARTS LIST
ITEM QTY PART NUMBER DESCRIPTION
1 2 pivot base plate
2 4 actuator mount base
3 4 actuator CAHB-10
Series-b-Linea
r Actuator
4 2 bearing 608 pillow block
5 4 actuator welded mount
6 4 alu extrusion
7 2 base bearing support
8 2 actuator mount inside
cornerl
9 2 extrusion base support
10 4 actuator inside corner2
11 4 base post support
12 2 base post sub assembly
13 2 adapter
14 4 actuator welded mount
outside
15 1 baseplate
16 4 axis
17 2 corner reinforcement
for axis
18 2 welded mount inside
plate
19 2 corner reinforcement
outside axis
20 1 mountingplate bearing

63

Lukas Janssens, Martijn Spaas

Production, assembly and programming of a RoboCrane

Crane limbs measurements

*&@ <
225
128,75
|

| |
N |
Q" ®
(@] CEQ ’
==

65

Lukas Janssens, Martijn Spaas

Arduino programs

Arduino 1: Base and first joint

1 const int Speed = 255; //©-255 to ajust the speed of the motors, needs to be variable in the future
2 int ReadButtonx = @;
3 int ReadButtony = @;
4 int Delay = 1@@;
5
6 bool Firstlointup = false;
7 bool FirstJointDown = false;
8
9 void setup() {
10 analoglirite(10,0);
11 analoghirite(11,0);
12 Serial.begin(9660);
13 FirstJointDown = digitalRead(4);
14 FirstJointUp = digitalRead(2);
15 delay(1000);
16
17}
18
19 void loop() {
20 delay(Delay);
21
22 ReadButtonx = analogRead(A®@);
23
24 Serial.print("Button x =");
25 Serial.println(ReadButtonx);
26 Serial.print("Button y =");
27 Serial.println(ReadButtony);
28 serial.print("Button First Joint =");
29 Serial.println(digitalread(2));
30
31 | //x direction
32 if (ReadButtonx »= 9@@) //Up,RPWM
33 {
34 analoglirite(6, Speed);
35 ReadButtony = analogRead(Al);
26 1
37 else if (ReadButtonx > 450 and ReadButtonx < 9@@) //Down,LPWM
a8 {
39 analoghirite(9, Speed);
40 ReadButtony = analogRead(Al);
a1 1
42 else
43 {
44 analoglirite(6, @);
45 analoglrite(9,0);
46 ReadButtony = analogRead(Al);
a7 //digitalwrite(R1 Enable, LOW); //Hardware HIGH
48 //digitalwrite(L1 Enable, LOW);
49 }
5@
51
52 //y-direction
53 if (ReadButtony »= 9@e) //Up,RPWM
54 {
55 analoghirite(3, Speed);
56 ReadButtonx = analogRead(A@);
57 1
58 else if (ReadButtony > 450 and ReadButtony < 9@@) //Down,LPWM
59 {
60 analoglirite(5, Speed);
61 ReadButtonx = analogRead(A@);
62 }

66

Production, assembly and programming of a RoboCrane

63 else

64 {

65 analoglrite(3, @);

66 analoglirite(5s,0);

67 ReadButtonx = analogRead(A®);

68 ReadButtony = analogRead(Al);

69 1

78

71

72 FirstJointUp = digitalRead(2);

73 FirstJointDown = digitalRead(4);

74

75 Serial.print(FirstJointup);

76 Serial.println(FirstJointDown);

77 //First Joint up

78 if (FirstJointuUp == true && FirstJointDown == false)
79 {

20 analogwrite(1e, Speed);

81 FirstJointuUp = digitalRead(2);
82 FirstJointDown = digitalRead(4);
23 +

84 //First Joint Down

85 else if (FirstJointDown == true && FirstlointUp == false)
86 {

87 analoglirite(11, Speed);

88 FirstJointuUp = digitalRead(2);
89 FirstJointDown = digitalRead(4);
%0 1

o1 //if both are on or both are off, don’'t move
92 else

93 {

94 analoghrite(11,0);

95 analoghrite(1e,0);

96 FirstJointUp = digitalRead(2);
97 FirstJointDown = digitalRead(4);
98 1

99

100 }

181

67

Lukas Janssens, Martijn Spaas

Arduino 2: Gyroscope

1 #include <Wire.h>

2 d#tinclude <SPI.h>

3 #include <SparkFunLSMoDS1.h>

4 #include <math.h>

5 #include "AD5593R.h"

6

7 //configuring the ADAC module

8 AD5593R AD5593R(23);

9 bool my DACs[8] = {1,1,1,1,1,1,1,1}; //Choose which channels need to be configured as Digital Analog Convertors(l is select)
16

11 LSMIDS1 imuj;

12

3 SN

14 // Example I2C Setup //
5 JIHEIE R
16 // SDO_XM and SDO_G are both pulled high, so our addresses are:
17 #define LSM9DS1 M @x1E // Would be @xiC if SDO M is LOW
18 #define LSMODS1 AG ©x6B // Would be ex6A if SDO AG is LOW
19 #define SAMPLERATE_DELAY MS (3@0)
20
21 static unsigned long lastPrint = @; // Keep track of print time
22 float roll = @;
23 float pitch = @;
24 float rollv = @;
25 float pitchv = @;
26
27 void mapfloatx(float x, float in min, float in_max, float out_min, float out max); //void for converting the signal from radians to 5v signal.
28 void mapfloaty(float y, float in_min, float in_max, float out_min, float out_max); //map function from arduino is only int, so I made a float mapping function.
29

30 void setup()

31

32 Serial.begin(960@);

33

34 Wire.begin();

35

36 if (imu.begin() == false) // with no arguments, this uses default addresses (AG:@x6B, M:@x1E) and i2c port (Wire).
37

38 Serial.println("Failed to communicate with LSM9DS1.");

39 serial.println("Double-check wiring.");

49 Serial.println("Default settings in this sketch will " \

41 "work for an out of the box LSMODS1 " \
a2 "Breakout, but may need to be modified " \
43 "if the board jumpers are.");
44 while (1);
45 }
46 delay(1000);
a7
48
49 AD5593R.enable internal vref();

58 AD5593R.set_DAC_max_2x_Vref(); //set the max channel voltage to 2 times the internal voltage
51 AD5593R. configure _DACs{my DACs); //Configure chosen channels to Digitial Analog Convertors
52 //AD5593R.set_vref(5);
53 }
54

68

Production, assembly and programming of a RoboCrane

void loop()
{

imu.readAccel();

roll = atan2(imu.ay, imu.az);

//pitch = atan2(-imu.ax, sqrt(imu.ay * imu.ay + imu.az * imu.az));
pitch = atan2(imu.ax, imu.az);

//Serial.print(imu.ax);

mapfloatx(roll, -e.45, ©.45, @, 255); // do the map functions
mapfloaty(pitch, -8.45, ©.45, @, 255);

Serial.print(rollv);serial.print(",");
Serial.println(pitchv);

analoghirite(3, rollv);
analoghirite(s, pitchv);

//AD5593R.write DAC(®, rollv); //with ADAC click module
//AD5593R.write DAC(2, pitchv);

//delay(SAMPLERATE DELAY MS);

}

void mapfloatx(float x, float in_min, float in_max, float out min, float out _max)

{

rollv = (x - in_min) * (out_max - out min) / (in_max - in_min) + out_min;

i

void mapfloaty(float y, float in_min, float in_max, float out min, float out max)

{

pitchv = (y - in_min) * (out_max - out min) / (in_max - in_min) + out_min;

¥

69

Lukas Janssens, Martijn Spaas

Arduino 3: Steppers + servo

1 #include "HCMotor.h™ //library stepper motors
2 #include <Servo.h> //1library servo

3

4 #define dirPin_stepl 3

5 #define stepPin_stepl 2

6 #define dirPin_step2 5

7 #define stepPin_step2 4

8 #define servo 6

9
10 //inputs
11 int upl = 7; //stepperi
12 int Downl = 8;
13 int Up2 = 9; //stepper2
14 int Down2 = 10;
15 int Up3 = 11; //servo
16 int Down3 = 12;
17
18 bool upl = ©; //stepperi
19 bool downl = @;
20 bool up2 = @; //stepper2
21 bool down2 = @;
22 bool up3 = ©; //servo
23 bool down3 = @;
24
25 Servo servol; //servo speed and starting angle
26 int angle = 9@;
27 int angleStep = 1;
28 HCMotor HCMotor;
29

3e void setup() {

31 Serial.begin(9600);

32 HCMotor.Init();

33 // put your setup code here, to run once:

34 HCMotor.attach(e, STEPPER, stepPin stepl, dirPin_stepl);
35 HCMotor.attach(1, STEPPER, stepPin step2, dirPin_step2);
36

37 HCMotor.Steps(@,CONTINUOUS);
38 HCMotor.Steps(1,CONTINUOUS);

39

49 pinMode(7, INPUT_PULLUP);
a1 pinMode(8, INPUT_PULLUP);
42 pinMode(9, INPUT PULLUP);
43 pinMode(1@, INPUT PULLUP);
a4 pinMode(11, INPUT_PULLUP);
45 pinMode(12, INPUT_PULLUP);
46 servol.attach(6);

a7}

48

49 void loop() {

50 Serial.print (Up2);

51 serial.println (Down2);

52 int Speed = 1024;

53 upl = digitalRead(Upl);

54 downl = digitalRead(Downl);
55 up2 = digitalRead(Up2);

56 down2 = digitalRead(Down2);
57 up3 = digitalRead(Up3);

58 down3 = digitalRead(Down3);

59

Production, assembly and programming of a RoboCrane

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
91
92
93
94
a5

Speed = ©;
servol.write (angle);

it (up3 == @ && down3 == 1 && angle
{

angle = angle + angleStep;

delay (50);

¥

else if (up3 == 1 && down3 == @ && angle > 9) {

angle = angle - angleStep;

delay (50);

}

if (upl == HIGH && downl == LOW)
HCMotor.Direction(®, REVERSE);
Speed = 100;

¥

else if (upl == LOW && downl ==
HCMotor.Direction(@, FORWARD);
Speed = 100;

¥

HCMotor.Direction(1, REVERSE);
Speed = 100;

¥

else if (up2 == LOW && down2 ==
HCMotor.Direction(1l, FORWARD);
Speed = 100;

HCMotor.DutyCycle(@, Speed);
HCMotor.DutyCycle(1, Speed);

< 180)

{

HIGH) {

else if (up2 == HIGH && down2 == LOW) {

HIGH) {

71

Lukas Janssens, Martijn Spaas

Arduino 4: Linear actuators arm

1 int motorlpinl = 4;

2 int motorilpin2 = 7;

3 int motor2pinl = 8;

4 int motor2pin2 = 10;

5 int motor3pini = 11;

6 int motor3pin2 = 12;

7

8

9

10 int ReadButtonSecondJoint;

11 int ReadButtonThirdJloint;

12

13 bool ForthJointup ;

14 bool ForthJointDown ;

15

16 const int Speed = 255;

17

18

19 void setup() {

20 // define outputs

21

22 pinMode(motorlpinl, OUTPUT);

23 pinMode(motorlpin2, OUTPUT);

24 pinMode (motor2pinl, OUTPUT);

25 pinMode(motor2pin2, OUTPUT);

26 pinMode(motor3pinl, OUTPUT);

27 pinMode(motor3pin2, OUTPUT);

28

29 pinMode(3, OUTPUT);

30 pinMode(5, OUTPUT);

31 pinMode(6, OUTPUT);

32

33 //deftine digital inputs with internal pullup resistor.
34

35 pinMode (2, INPUT PULLUP);
36 pinvMode (13, INPUT PULLUP);

37

38 delay (1000);

39 }

40

41 void loop() {

42

43

a4 //reading plc controls

45 ReadButtonsecondJoint = analogRead(A@); //second joint
46

a7 ReadButtonThirdJoint = analogRead(A1); //third joint
48

49 ForthJointUp = digitalRead(2); //fourthjoint
50 ForthJointDown = digitalRead(13);

51

52 if (ReadButtonSecondJoint »>= 9e@) //Up,RPWM

53 {

54 analoghirite(3, Speed); //write pwm signal to pin 3.
55 digitalWrite(motorlpinl, HIGH); //setting the direction
56 digitalwrite(motoripin2, LOW);

57 1

58 else if (ReadButtonsecondJoint > 450 and ReadButtonSecondJoint < 9ee@) //Down,LPulM
59 {

60 analoghirite(3, Speed);

61 digitalWrite(motoripini, LOW);

62 digitalWrite(motoripin2, HIGH);

63

64

65 else (ReadButtonsecondloint < 45@)

66 {

67 analoghirite(3, @);

68 digitalWrite(4, LOW);

69 digitalwrite(7, LOW);

72

Production, assembly and programming of a RoboCrane

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
a8
89
90
91
92
93
94
95
96
97
98
99
100
101
102
1e3
104
185
186
1e7
108
189
110
111
112
113
114
115
116
117
118
119

}

//ThirdJoint
if (ReadButtonThirdJoint »>= 9e@)
{
analoghrite(5, Speed);
digitalwrite(8, HIGH);
digitalwrite(1@, LOW);

}

else if (ReadButtonThirdJoint > 45@ and ReadButtonThirdJoint < 9e@)

{
analoglirite(5, Speed);
digitalwrite(8, LOW);
digitalwrite(1e, HIGH);

else

{
analoghrite(s, @);
digitalwrite(8, LOW);
digitalWrite(1@, LOW);
}

//Forthloint

//Forth Joint up

if (ForthJointUp == true && ForthJointDown == false)

{
analoghirite(6, Speed);
digitalwrite(11, HIGH);
digitalwrite(12, LOW);
h
//Forth Joint Down

else if (ForthJointDown == true &% ForthJointup == false)

{
analoglirite(6, Speed);
digitalwrite(11, LOW);
digitalwrite(12, HIGH);

}

//if both are on or both are off, don't move

else
{
analoghirite(6,0);
digitalwrite(11, LOW);
digitalWrite(12, LOW);
}

73

Lukas Janssens, Martijn Spaas

Table wiring connections

Module PLC Arduino
DQ FirstJointUp(Q10.0) Arduino 1: pin 2
DQ FirstJointDown(Q10.1) Arduino 1: pin 4
DQ StepperRotCW(Q10.2) Arduino 3: pin 7
DQ StepperRotCCW(Q10.3) Arduino 3: pin 8
DQ StepperTelescCW (10.4) Arduino 3: pin 9
DQ StepperTelescCCW (10.5) Arduino 3: pin 10
DQ ServoCW(Q10.6) Arduino 3: pin 11
DQ ServoCCW(Q10.7) Arduino 3: pin 12
DQ FourthJointUp(11.0) Arduino 4. pin 2
DQ FourthJointDown(11.1) Arduino 4: pin 13
AQ BaseUp(QW4) Arduino 1: A0
AQ BaseL eft(QW6) Arduino 1: Al
AQ SecondJoint(QWO0) Arduino 4: A0
AQ ThirdJoint(QW2) Arduino 4: Al
DQ FourthJointUp() Arduino 4: pin 2
DQ FourthJointDown () Arduino 4: pin 13
Al FL_PositionSensor(1W126) (Directly from actuator)
Al FR_PositionSensor(IW128) (Directly from actuator)
Al FirstJoint_PositionSensor(1W130) (Directly from actuator)
Al SecondJoint_PositionSensor(1IW132) (Directly from actuator)
Al ThirdJoint_PositionSensor(1W134) (Directly from actuator)
Al FourthJoint_PositionSensor(IW136) (Directly from actuator)
Al SensorXValue(1W138) Arduino 2: pin
Al SensorYValue(1W140) Arduino 2: pin
DI ButtonServoCCW (13.7) (From manual control panel)
DI ButtonServoCW (13.6) (From manual control panel)
DI ButtonStepperRotCCW (13.5) (From manual control panel)

74

Production, assembly and programming of a RoboCrane

DI ButtonStepperRotCW (13.4) From

DI ButtonFourthJointDown (13.3) (From manual control panel)
DI ButtonFourthJointUp (13.2) (From manual control panel)
DI ButtonThirdJointDown (13.1) (From manual control panel)
DI ButtonThirdJointUp (13.0) (From manual control panel)
DI ButtonSecondJointDown (12.7) (From manual control panel)
DI ButtonSecondJointUp (12.6) (From manual control panel)
DI ButtonFirstJointDown (12.5) (From manual control panel)
DI ButtonFirstJointUp (12.4) (From manual control panel)
DI ButtonBaseRight (12.3) (From manual control panel)
DI ButtonBaseL eft (12.2) (From manual control panel)
DI ButtonBaseDown (12.1) (From manual control panel)
DI ButtonBatoseUp (12.0) (From manual control panel)
Dl StepperTelescoCW (/) (From manual control panel)
DI StepperTelescoCCW (/) (From manual control panel)

75

Lukas Janssens, Martijn Spaas

76

assembly and programming of a RoboCrane

c
o
=
(&)
>
o
o
| —
[a

D.u 2 ,_«-; 4 .ll‘h’t:’“* -
A S e
0% .

Pty Uy e WA AT

