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PREFACE

The author of this thesis has worked as a Ph.D. research fellow in the Data Science
research group at the Department of Computer Science, Electrical Engineering, and
Mathematical Sciences at Western Norway University of Applied Sciences (HVL). The
position was funded by the Western Norway Regional Health Authority (Helse Vest
RHF), project F-12532. He has been enrolled in the Ph.D. program in Computer Science:
Software Engineering, Sensor Networks, and Engineering Computing.

The research presented in this thesis has been conducted at Mohn Medical Imaging
and Visualization Centre (MMIV), Department of Radiology, Haukeland University
Hospital, Bergen, Norway. Part of the research has been done in collaboration with the
Department of Medical Physics and Biomedical Engineering, Sahlgrenska University
Hospital, Sweden.

This thesis is organized into two parts. Part I provides an overview of the relevant
field and the background for the articles in the thesis, including a summary of the
works. Part II consists of a collection of published and peer-reviewed research papers
and a manuscript.

Paper A Kaliyugarasan, Satheshkumar and Lundervold, Alexander Selvikvåg. fast-
MONAI: a low-code deep learning library for medical image analysis. Manuscript,
April 2023

Paper B Kaliyugarasan, Satheshkumar, Kociński, Marek, Lundervold, Arvid and Lunder-
vold, Alexander Selvikvåg. 2D and 3D U-Nets for skull stripping in a large and
heterogeneous set of head MRI using fastai. In Proceedings of the of the 33rd
Norwegian Informatics Conference (NIK), 23 November 2020

Paper C Kaliyugarasan, Satheshkumar, Lundervold, Arvid and Lundervold, Alexander
Selvikvåg. Pulmonary nodule classification in lung cancer from 3D thoracic CT
scans using fastai and MONAI. In International Journal of Interactive Multimedia
and Artificial Intelligence (ĲIMAI), Volume 6, Number 7, 4 May 2021.

Paper D Hodneland, Erlend, Kaliyugarasan, Satheshkumar, Wagner-Larsen, Kari Strøno,
Lura, Njål, Andersen, Erling, Bartsch, Hauke, Smit, Noeska, Halle, Mari Kyllesø,
Krakstad, Camilla, Lundervold, Alexander Selvikvåg and Haldorsen, Ingfrid
Salvesen. Fully Automatic Whole-Volume Tumor Segmentation in Cervical
Cancer. In Cancers, Volume 14, Number 10, 11 May, 2022.

Paper E Kaliyugarasan, Satheshkumar, Dagestad, Magnhild H., Papalini, Evin I., An-
dersen, Erling, Zwart, John-Anker, Brisby, Helena, Hebelka, Hanna, Ansgar,
Espeland, Lagerstrand, Kerstin M. and Lundervold, Alexander Selvikvåg. Multi-
Center CNN-based spine segmentation from T2w MRI using small amounts
of data. To appear in the Proceedings of the of the 20th IEEE International
Symposium on Biomedical Imaging (ISBI), 18-21 April 2023.





ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor, Assoc Prof. Alexander Selvikvåg
Lundervold. Without your guidance and constant feedback this thesis would not
have been achievable. Our discussions were often filled with excitement, occasionally
leading us to get carried away. I truly appreciate the opportunity to have worked under
your mentorship and look forward to continuing our collaboration in the future.

I would also like to extend my thanks to my co-supervisors, Prof. Ingfrid S.
Haldorsen and Assoc. Prof. Erlend Hodneland.

Ingfrid, your insightful suggestions, and encouragement have been invaluable, and
I look forward to continuing as a researcher in your group, primarily focusing on
gynecological cancer.

Erlend, I’m grateful for the collaboration we shared during the cervical cancer
project, and for your valuable input during the finalization of my thesis.

To Assoc. Prof. Hauke Bartsch and Zhanbolat Satybaldinov, I look forward to
continuing our work on implementing deep learning applications into the hospital
infrastructure.

I would also like to express my gratitude to Prof. Emeritus Arvid Lundervold, for
fruitful and interesting discussions.

Thanks to all my colleagues at MMIV for creating such a joyful professional work
environment. A special thanks to Njål Lura and Heidi Espedal (even though you
moved to Australia), for the camaraderie, coffee chats, and wealth of wisdom you both
shared.

To my friends, thank you for your understanding and moral support throughout
this challenging yet rewarding journey. A special mention goes to Fredrik Mørk for the
epic bike rides we enjoyed together during the pandemic.

Finally, I would like to express my heartfelt gratitude to my family, especially
my parents, Kaliyugarasan Thirunavukkarasu and Jayanthi Kaliyugarasan, for their
unconditional love and encouragement. I am also grateful to my siblings, Thinesh
Kaliyugarasan and Jeelaja Kaliyugarasan, for their continuous support and motivation.





ABSTRACT

Deep learning (DL), a branch of artificial intelligence (AI), has experienced significant
growth and advancements over the past decade and has shown great potential in
various sectors, including the medical domain. The goal that drives deep learning
research for medical applications is the development of tools that can enhance the
accuracy and efficiency of diagnosis, reduce medical costs, and streamline and improve
diagnostic processes through a greater degree of precision medicine, with better
prognostics and stratification of therapy.

In modern medicine, radiology has become increasingly important, with medical
imaging playing a critical role in detecting, diagnosing, and treating various diseases.
Simultaneously, there is a shortage of qualified medical specialists, i.e., radiologists.

The potential of deep learning for medical image analysis is evident; however, much
of the excitement around the applications is rooted in retrospective studies. In practice,
only a limited number of deep learning-based studies have progressed to deployment
in clinical care. Moreover, at least part of the field seems to be facing a reproducibility
crisis.

The reasons for this are multiple, including technical debt, overfitting models,
selection bias, and heavy preprocessing of data sets in the scientific community,
not properly reflecting clinical diversity and local variations. These issues can be
attributed, in part, to the insufficient collaboration between the medical and data
science communities. To overcome these obstacles and fully realize the benefits of
data-driven medical imaging, it is crucial to foster interdisciplinary collaboration.

As one possible remedy, deep learning frameworks tailored to medical imaging can
help foster interdisciplinary collaboration, facilitate rapid iterative development, and
support reproducible research. Such frameworks can make it easier for domain experts
to join in on method development and for other researchers to verify the validity of the
reported results and build upon existing work. This can help accelerate the integration
of deep learning-based solutions into clinical practice.

To address these challenges and promote the integration of cutting-edge deep
learning-based solutions into clinical practice, Medical Open Network for Artificial In-
telligence (MONAI) provides an open-source PyTorch-based deep learning framework
to support medical data, with a particular focus on imaging applications. Following best
practices for software development, MONAI provides an easy-to-use, well-documented,
and well-tested software framework freely available to all interested researchers via
https://monai.io/.

In this thesis, we present fastMONAI, a low-code Python-based open-source deep
learning library built on frameworks from MONAI. The library incorporates several
best practices and state-of-the-art techniques by integrating capabilities from MONAI
with two other powerful libraries: fastai and TorchIO, along with custom-made
modules.

fastMONAI provides a high-level API that simplifies the process of data loading,
preprocessing, training, and result interpretation, allowing researchers to spend less
time on coding and focus more on the challenges within each project. Despite its

https://monai.io/


high-level interface, fastMONAI maintains the customization and flexibility of fastai,
enabling experienced practitioners to incorporate custom extensions when needed.

The development and evaluation of fastMONAI have been conducted using both
public and clinical study data involving multiple patient groups, radiological domains,
and organ systems, including identifying the brain from surrounding tissue and
structures (Paper B), lung cancer (Paper C), gynecological cancer (Paper D), and low
back pain (Paper E). Each patient group requires accurate and efficient medical imaging
analysis for diagnosis and treatment planning. Our results in this thesis demonstrate
promising improvements in diagnostic accuracy and streamlined workflows.

However, to thoroughly evaluate the models, it is crucial to integrate them into
real-world workflows and study their performance in realistic contexts. In this thesis,
we found that the flexibility and the user-friendly API of fastMONAI facilitate the
integration of trained models into clinical infrastructure (see Figure 4.5). This is
explored further in ongoing and future work building on the thesis results.



SAMMENDRAG

Dyplæring (DL), en underkategori av kunstig intelligens (KI), har opplevd betydelig
vekst og utvikling det siste tiåret. Dette har åpnet et stort potensial innen ulike sektorer,
inkludert i helsevesenet. Målet med dyplærings-forskning for medisinske applikasjoner
er å utvikle verktøy som kan forbedre nøyaktigheten og effektiviteten av diagnostisering,
redusere medisinske kostnader og effektivisere og forbedre diagnostiske prosesser
gjennom en større grad av presisjonsmedisin, med bedre prognostikk og stratifisering.

Radiologi har blitt stadig viktigere i moderne medisin, der medisinsk bildediag-
nostikk spiller en avgjørende rolle i deteksjon, diagnostisering og behandling av ulike
sykdommer. Samtidig er det en mangel på kvalifiserte medisinske spesialister, i.e.,
radiologer.

At det er et potensial for dyplæring innen medisinsk bildeanalyse er åpenbart.
Mye av entusiasmen rundt anvendelsene er imidlertid basert på retrospektive studier.
Kun et fåtall studier basert på dyplæring har handlet om løsninger innlemmet i
klinisk praksis og arbeidsflyt. I tillegg ser det ut til at deler av feltet står overfor en
reproduserbarhetskrise.

Årsakene til dette kan være mange, blant annet teknisk gjeld (technical debt), over-
tilpassede modeller, seleksjonsskjevhet og omfattende preprossesering av datasett
i det vitenskapelige miljøet som ikke gjenspeiler klinisk mangfold og lokale vari-
asjoner. Problemene kan delvis skyldes utilstrekkelig samarbeid mellom medisinske
og datavitenskapelige miljøer. For å takle disse utfordringene og fullt ut realisere forde-
lene med datadrevet medisinsk bildebehandling, er det viktig å fremme tverrfaglig
samarbeid.

Ett mulig middel er å utvikle dyplærings-rammeverk for medisinsk bildediagnostikk
som fremmer tverrfaglig samarbeid, legger til rette for rask iterativ utvikling og
støtter reproduserbar forskning. Dette gjør det enklere for domeneeksperter å delta
i metodeutvikling og for andre forskere å verifisere gyldigheten av de rapporterte
resultatene og bygge videre på eksisterende arbeid. Slikt kan bidra til å akselerere
integrasjonen av dyplæringsbaserte løsninger i klinisk praksis.

For å møte disse utfordringene og fremme integrasjonen av banebrytende
dyplærings-baserte løsninger i klinisk praksis, tilbyr Medical Open Network for Artificial
Intelligence (MONAI) et PyTorch-basert dyplærings-rammeverk med åpen kildekode
rettet mot medisinske data, med et spesielt fokus på bildebehandlingsapplikasjoner.
MONAI følger etablerte fremgangsmåter for programvareutvikling og tilbyr et bruker-
vennlig, godt dokumentert og grundig testet programvarerammeverk som er tilgjen-
gelig for alle interesserte forskere via https://monai.io/.

I denne oppgaven presenterer vi fastMONAI, et lavkode Python-basert dyp læring-
rammeverk med åpen kildekode bygget på rammeverket fra MONAI. Biblioteket
kombinerer flere moderne teknikker ved å integrere funksjoner fra MONAI med to
andre kraftige biblioteker: fastai og TorchIO, sammen med skreddersydde moduler.

fastMONAI tilbyr et høynivå-API som forenkler prosessen med datainnlasting,
preprosessering, trening og tolkning av resultater, slik at forskere kan bruke mindre
tid på koding og fokusere mer på særegne utfordringer i hvert prosjekt. Til tross
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for et høynivå grensesnitt, opprettholder fastMONAI muligheter for tilpasning og
tilbyr samme fleksibilitet som fastai. Erfarne utviklere kan derfor innlemme tilpassede
utvidelser ved behov.

Utviklingen og evalueringen av fastMONAI har blitt utført ved bruk av både offentlig
tilgjengelige og kliniske studiedata samlet inn fra flere pasientgrupper, radiologiske
domener og organer, inkludert identifikasjon av hjerne og omliggende vev og strukturer
(Paper B), lungekreft (Paper C), gynekologisk kreft (Paper D) og ryggsmerter (Paper
E). Hver av disse pasientgruppene krever nøyaktig og effektiv medisinsk bildeanalyse
for diagnose og behandlingsplanlegging. Resultatene våre i denne oppgaven viser
lovende forbedringer i diagnostisk nøyaktighet og mer strømlinjeformet arbeidsflyt.

For å grundig evaluere dyplæringsmodeller, er det imidlertid avgjørende å integrere
dem i arbeidsflyt slik de er i den virkelige verden og studere ytelsen deres i realistiske
sammenhenger. I denne oppgaven fant vi at fleksibiliteten og det brukervennlige
API-et til fastMONAI letter integreringen av trente modeller i klinisk infrastruktur
(se figur 4.5). Dette utforskes videre i pågående og fremtidig arbeid som bygger på
avhandlingens resultater.
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Part I

OVERVIEW





We are still in the earliest days of deep learning in medicine,
facing many challenges and opportunities as the field
evolves and matures.

—ChatGPT (Jan 30 version) CHAPTER 1
DEEP RADIOLOGY: AN INTRODUCTION

1.1 Background

Artificial intelligence (AI) has become a familiar term in today’s society, consistently
growing in popularity; see figure 1.1. John McCarthy, who coined the term in
1955, described artificial intelligence as "the science and engineering of making intelligent
machines" [136], and Russell and Norvig as "the study of agents that receive percepts from the
environment and perform actions" [197]. It is a vast field encompassing many technologies
and approaches, from cognitive sciences to search algorithms, knowledge-based agents,
and decision theory.

Machine learning (ML) is a subfield of artificial intelligence focusing on mathematical
models to recognize patterns in data or, in other words, models that can learn from
experience. Deep learning (DL) is a subfield of machine learning that is, in general,
based on a specific class of models called artificial neural networks [65]. Deep learning
has seen significant growth and advancements over the past decade [256], and it is the
main driver for the current interest in artificial intelligence.

One of the key advantages of deep learning is its ability to tackle highly complex
tasks such as image recognition and generation, natural language processing, speech
recognition and synthesis, and more (see Chapter 2). Traditional machine learning
models often rely on manual feature engineering, using domain knowledge to construct
suitable transformations of the original features. This can be a time-consuming and
challenging task for real-world problems. In contrast, deep learning models are
representation learners, able to extract useful features directly from raw–or close to
raw–input data while learning to solve a given task. They do this by employing
models known as artificial neural networks (ANN), consisting of multiple layers of
computational units loosely analogous to biological neurons, allowing them to learn
patterns in data through a hierarchical learning process. This is explained in detail in
Chapter 2.

Different types of ANN models have been successfully applied in various fields.
They have recently captured the public’s attention through applications in computer
vision (e.g., DALL·E 2 [183] and Stable Diffusion [190]), natural language processing
(e.g., InstructGPT [164], ChatGPT, GPT-4 [163], and Bard [223]), and speech recognition
(e.g., Whisper [180] and AssemblyAI’s Conformer-1). Although artificial neural
networks have been around for several decades [197], they have gained widespread
recognition as one of the best machine learning approaches to a variety of problems in
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recent years. The breakthrough and continued rapid development of deep learning are
mainly due to the availability of open-source projects, new techniques, large annotated
public datasets, and increased available computational power.

Fig. 1.1: Artificial intelligence is often in-
correctly and somewhat misleadingly used
as a synonym for machine learning and
sometimes even for deep learning. The
figure shows the Google Trends chart of
searches for the terms "artificial intelli-
gence," "machine learning," and "deep learn-
ing" over the past year. Note that the y-axis
shows relative popularity with the maxi-
mum value scaled to 100. Data provided on
GitHub: https://github.com/skaliy/
thesis_supplementary_materials

Deep learning has great potential in
medical research and clinical practice and
is behind a possible transformation of the
healthcare system [182, 225]. This is il-
lustrated by a large number of studies
from a wide range of clinical areas, such
as stroke diagnostics [58], chest X-ray [31],
dermatology [177], and in the analysis of
electronic medical records [210]. In partic-
ular, deep learning has shown to be well-
suited to tasks within image diagnostics
and image analysis [129]. The goal that
drives deep learning research for med-
ical applications is the development of
tools that can enhance the accuracy and
efficiency of diagnosis, reduce medical
costs, streamline, and improve diagnostic
processes through a greater degree of pre-
cision medicine, with better prognostics
and stratification of therapy [182]. This
integration of deep learning in medicine
is called "deep medicine" in this thesis,
following Eric Topol [224].

Recent developments of large-scale
foundation models [25] and multi-modal
models (handling both image and text in-
puts) make the field poised to conquer broader swathes of medicine, bringing us closer
to the ambition of deep medicine [1, 114, 150]1. The forthcoming book [115] by Lee
et al. will likely provide valuable perspectives on the opportunities and challenges
multi-modal models like GPT-4 present for medicine.

Paralleling the developments in deep learning, the past two decades have seen
advances in medical imaging technologies that have transformed the field of radiology,
leading to increasing use of radiological examinations for the purpose of diagnosis and
follow-up of various diseases [15, 209]. This brings with it several challenges. As an
example close to home, the Norwegian newspaper Bergens Tidende (BT) reported in
2016 that the Radiology department at Haukeland University Hospital had a backlog
of over 7.000 examinations due to a shortage of radiologists [169]. Dagens Medisin
reported in 2017 that over a four-year period, the reporting system of the Norwegian
Directorate of Health received 203 reports of unwanted events (e.g., deaths, worsening of

1One week before the submission of this thesis, Segment Anything Model (SAM) [105], a promptable
segmentation model, demonstrated remarkable zero-shot generalization capabilities for 2D images. It
will be interesting to explore this model’s usefulness for medical imaging and how similar medical
imaging-tailored models can be constructed.

4 Chapter 1
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1.1 Background

disease, over- or under-treatment), many of them directly or indirectly due to a shortage
of radiologists [156]. Diagnostic errors were most often caused by misinterpretation,
delayed diagnosis, and pathologic findings not noticed by the radiologists. For example,
Lauritzen et al. [111] conducted a prospective study involving 1071 CT examinations,
where they found that double reading resulted in clinically important changes in
14% of the cases. The shortage of radiologists is a worldwide phenomenon. For
instance, at Canberra Hospital in Australia, previous scans reportedly were ignored,
and radiologists were working unsupervised due to labor shortages [219]. In 2016
in the UK, most radiology departments paid radiologists to work overtime to cover
the backlog [187]. Since that time, the situation has not improved. The latest Royal
College of Radiologists radiology census report shows that NHS needs approximately
2000 additional radiologists to reduce the backlog of unread examinations [128]. These
global shortfalls are a cause of concern and directly impact patient safety while also
causing burnout among radiologists [255].

The limited resources in radiology emphasize the need for new technologies, and
there’s a hope that deep learning-based applications integrated into clinical workflows
can alleviate the issue. This is, together with the hope of improved diagnostics and
prognostics, the main reason for the immense interest in artificial intelligence in
radiology and other imaging diagnostic sectors and in medicine and healthcare more
broadly [149, 182, 225, 230].

It is clear that deep learning applications have the potential to mitigate the burden
on radiologists in tasks related to image analysis and provide support to make better
decisions. However, there has been a lot of hype surrounding the potential use of deep
learning for medical image analysis in recent years, based on results from retrospective
single-site studies [182]. Although deep learning models can be accurate during the
development phase, a major problem with this approach is that it fails to evaluate how
these tools will be used in production, while it is known that there can be a drastic
reduction in performance when such tools encounter real-world data [4, 104]. There
are few deep learning-based systems implemented in real-world clinical care [240]
with demonstrated clinical impact. For instance, in 2021, Leeuwen et al. looked at 100
CE-marked AI products from 54 different vendors and found that only 18 of these
products had the potential to produce clinical impact [231].

As Rajpurkar et al. [182] pointed out, standards for transparency in reporting and
validation are needed to build trust in deep learning-based systems. Sharing data from
clinical studies for research purposes can be difficult due to privacy, ethical, and legal
concerns that need to be taken into account [18, 232, 246].

However, sharing code and extensive documentation (both code and data) can
greatly contribute to research while protecting patient privacy. Unfortunately, many
researchers in the deep learning field focus on publishing their findings and neglect
to share the code, data, and documentation necessary for others to reproduce their
work [67, 122, 151]. Lack of transparency makes it difficult for others to verify the
validity of the results, validate with their own data, and build upon the research to make
advances in the field and deliver impact in real-world clinical care [67]. In addition,
the field may suffer from the widespread problem of publication bias [207], where
positive results are more likely to be favored for publication over negative results [233].
In general, it is a problem if the incentives are towards optimizing for publication

Chapter 1 5
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(intentionally or unintentionally) rather than the research’s real (and advertised) goals.
Most deep learning applications for medical image analysis are developed through

supervised learning, models trained based on input data with labels that describe the
desired output (e.g., malignant or benign tumor). To develop and evaluate such models,
significant amounts of accurate and diverse annotated data are required. Unfortunately,
obtaining annotated data in the medical field is often a complex, time- and cost-
consuming, and partly an unreliable process (e.g., high inter- and intra-operator
variability), particularly for 3D medical images. As a result, a number of important
areas within medical imaging and imaging diagnostics have not yet experienced the
impact of the latest developments in deep learning. This is because most researchers
focus on areas where large amounts of annotated data are already available or where
the annotation process is reasonable to carry out, which doesn’t necessarily capture
the areas of the greatest importance and surely doesn’t capture all areas [233]. It
is, therefore, important to develop new methods and strategies that enable effective
learning from limited amounts of data.

Three main factors impacting the performance of a deep learning system are the
network architecture, training methods, and data used for training [244]. Over the
past decade, lots of efforts in the field have focused on improving the performance of
benchmark datasets with a model-centric approach, looking at developing new model
architectures and training strategies. However, benchmark datasets often undergo
filtering and cleaning processes, failing to represent the real world [11]. Real-world
data are usually more complex, containing a number of data quality issues [199]. In
other words, the performance of deep learning systems based on supervised learning
is limited by the quality of annotated data, as human decisions serve as the standard of
truth. The well-known phrase "garbage in, garbage out," referring to how incorrect
input will produce faulty outputs, applies.

A framework championed by, among others, Andrew Ng [153], is to focus on
data-centric development, a discipline of systematically engineering the data used to train
and evaluate the models. A practical demonstration of the value of such an approach in
medical imaging is the nnU-Net ("no-new-Net") framework developed by Isensee et al.
in 2021 [91], which uses a model architecture introduced way back in 2015 (discussed
in Chapter 2) while still achieving top performance in a wide range of medical image
segmentation tasks.

To be able to focus on exploratory work and evaluate the quality of the data, you
need frameworks for rapid development using existing methods for various tasks
rather than "reinventing the wheel" for every project. As the field of deep learning
evolves in the medical domain, the community needs practical tools and recipes to
help researchers develop effective methods.

Recently, low-code deep learning frameworks, such as nnU-net [91] and
Auto3DSeg [33], have been developed to offer practical tools that enable researchers
to spend less time on coding and more time on experimentation. By providing a
high-level abstraction, these tools may accelerate the development process and make it
more accessible to a broader range of users, as developers do not need deep insight
into the underlying platform [116].

Moreover, computational notebooks, such as Jupyter [106], have become increasingly
popular among machine learning researchers to present research results, as text,
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illustrations, and executable code can be shared in the same document [172].
While computational notebooks and low-code libraries hold great potential, it is

important to mention that they also present challenges that can adversely affect the
quality and maintainability of the code and hinder reproducibility. For instance, com-
putational notebooks have been criticized for bad practices in naming files, versioning,
testing, and modularizing code [172]. Furthermore, in the case of low-code libraries de-
signed to facilitate rapid software development, complexity can quickly grow, making
the resulting software challenging to understand and maintain [116].

To ensure the quality and longevity of research conducted using low-code platforms
and computational notebooks, it is essential to support modern software engineering
practices (e.g., unit testing, documentation, modular design, etc.). These practices not
only improve the reproducibility and reliability of research but also make it easier for
other researchers to understand, reuse, and build upon the work.

This thesis aims to contribute in this context by presenting fastMONAI [96], a
low-code Python-based open-source deep learning library we have built on top of
fastai [79, 80], MONAI [33], and TorchIO [170]. We created fastMONAI to simplify
the use of modern deep learning techniques in 3D medical image analysis for solving
classification, regression, and segmentation tasks while still giving the users easy
access to lower-level functionality. fastMONAI provides users with functionalities to
step through data loading, preprocessing, training, and result interpretations.

We have created a set of tutorials showcasing the features and use cases of the
library. These tutorials and the fact that the library is low-code help ease the entry into
deep learning for medical imaging, making it more accessible to a broader range of
researchers, practitioners, and even clinicians.

To approach the ambitions of deep radiology–the integration and application of
deep learning at the heart of radiology–we need to integrate deep learning-based
applications into the clinical infrastructure and examine both the potential challenges
and opportunities in real-world settings. By doing so, we can better understand the
limitations of current methods, harness their potential, and work to construct the next
generation of methods.

This thesis aimed to contribute to the realization of this vision.

1.2 Research and motivation

Throughout the work reported in this thesis, the author has had the opportunity to
collaborate closely with radiologists, clinicians, and experts on healthcare IT infras-
tructure at the Mohn Medical Imaging and Visualization Center (MMIV), which is
part of the Department of Radiology at Haukeland University Hospital. The center’s
vision is to improve decision-making and patient care by developing new quantitive
methods for medical imaging in preclinical and clinical settings, which aligns well with
the objectives of the thesis work. Our work on the deep learning software framework
fastMONAI [96] has served as an organizing principle throughout the thesis work. The
aim was to contribute to further developing and evaluating deep learning in medical
imaging. The fastMONAI framework was developed through applications based on
both public and clinical study data and involving multiple patient groups, including
lung cancer [98], gynecological cancer [75], and low back pain [94]. For all of these
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groups, early detection and providing optimal therapy are crucial for a better quality
of life. Although different organs and pathological processes are involved, there are
compelling reasons to address these disease groups in the same project:

i) Quantitivate in vivo imaging techniques, such as magnetic resonance imaging
(MRI) and computerized tomography (CT), are important tools, as they enable
clinicians to perform a noninvasive examination of internal body structures.
These imaging techniques provide valuable information for diagnosing, planning,
and monitoring various medical conditions. For more information, see Chapter 3.

ii) For each organ, the challenge in data analysis is similar. For example, the
delineation of anatomical regions for analysis and extraction of regions of interest
(ROIs) that have diagnostic and predictive value.

iii The components used in deep learning for computer vision projects tend to be
quite similar from project to project (see Chapter 2). A common framework with
reusable program components that can be applied for various organs allows for
more efficient development processes, as researchers can focus on the challenges
within each project.

iv By facilitating and championing open science, we hope to contribute to more
widespread sharing of source code in the field of medical AI and in medical
imaging more broadly.

1.3 Thesis outline

The thesis is structured into two parts (I and II). Part I consists of four chapters that are
organized as follows:

2. Deep learning in computer vision: A picture is worth a thousand layers

This chapter provides a brief overview of computer vision, followed by an introduc-
tion to deep learning and its impact on the field over the past decade. This exploration
sheds light on the ongoing progress in this rapidly evolving area of research.

3. The domain: radiology and imaging diagnostics

This chapter introduces the fundamentals of diagnostic radiology and imaging
methods alongside an exploration of the tools and technologies employed throughout
the development of this thesis.

4. From pixel to patient: conclusions, contributions, and continuations

In this chapter, we discuss important challenges and opportunities in the field of
diagnostic radiology. Along the way, we look at the contributions of the thesis, and
point to possible future work.
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5. Summary of papers

This chapter presents a summary of the various papers and research contributions
made during the development of this thesis.

Part II consists of one manuscript and four published papers [75, 94–96, 98], and is
organized as follows:

A. fastMONAI: a low-code deep learning library for medical image analysis

B. 2D and 3D U-Nets for skull stripping in a large and heterogeneous set of
head MRI using fastai

C. Pulmonary nodule classification in lung cancer from 3D thoracic CT scans
using fastai and MONAI

D. Fully Automatic Whole-Volume Tumor Segmentation in Cervical Cancer

E. Multi-Center CNN-based spine segmentation from T2w MRI using small
amounts of data
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The field of deep learning in computer vision offers exciting
opportunities for innovation and breakthroughs, but it also
requires careful consideration of the challenges it presents
in order to fully realize its potential.

—ChatGPT (Jan 30 version)
CHAPTER 2

DEEP LEARNING IN COMPUTER VISION: A
PICTURE IS WORTH A THOUSAND LAYERS

In this chapter, we will provide an introduction to the field of computer vision (CV)
and various core tasks within this field. Computer vision is a vast field with a long
history and consists of a range of approaches and algorithms. However, deep learning
has caused a major revolution in computer vision over the past decade, and it is now
the go-to approach for many core challenges in computer vision. After a broader look
at computer vision, the chapter briefly introduces deep learning before ending with a
review of some recent developments in deep learning for computer vision.

2.1 Computer vision

For centuries, researchers have been interested in visual perception, the ability of
humans and animals to interpret their surrounding environments from the information
received by the retina [133]. Biological visual perception systems are full of interesting,
evolved features and characteristics. For instance, frogs have a "bug perceiver" cell in
their retina known as net convexity detection cells that are capable of detecting small
dark objects [117]. Wiesel and Hubel had a number of groundbreaking discoveries on
how the visual systems work in cats and monkeys [85–87].

Computer vision (CV) is a subfield of artificial intelligence (AI) that seeks to replicate
biological visual perception in machines. It involves the use of mathematical techniques
to perceive and understand objects in images and videos [217]. Early attempts in image
understanding involved, among other techniques, edge detection [46], shape from
shading [76], stereo matching [134], image segmentation by tree traversal [78], and
optical flow [77].

Computer vision has undergone explosive growth over the recent decade (see
figure 2.1), caused by breakthroughs in deep learning that were achieved mainly due
to advancements in parallel processing on graphical processing units (GPUs) [166],
GPU-enabled deep learning models [108], and access to large labeled datasets (e.g.,
ImageNet [48], Microsoft COCO [121], etc.). These developments have resulted in
significant advancements in terms of performance and reliability in various domains,
including robotics [101], remote sensing [130], medical imaging [38, 129], and many
more [256].

Despite these developments, models based on deep learning are still error-prone
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and can’t compare to human visual perception and our ability to generalize. For
instance, such models can be biased in subtle ways: De Vries et al. [47] looked at six
publicly available object-recognition systems for household items and discovered a
decline in their performance when presented with data from low-income countries.
This was partly due to the appearance of objects in a different setting from the data
it was trained and evaluated on (e.g., toothbrushes outside bathrooms). As we can
see from this example, deep learning models lack the ability to learn abstractions as
humans do.

Fig. 2.1: Number of submitted papers for
computer vision and pattern recognition
conferences in the last decade. Source:
https://github.com/lixin4ever/
Conference-Acceptance-Rate

Computer vision is, in nature, an in-
verse problem, i.e., recovering informa-
tion about the three-dimensional struc-
ture of the world from images, including
shape, color, and illumination [217]. As
discussed in chapter 1, most deep learning
systems are developed using supervised
learning (see section 2.3). These models’
performance is highly dependent on the
data used to train and evaluate them in
terms of both quality and quantity (see
Chapter 4). As noted by Marcus [132],
deep learning models are, at the core, just
statistical methods, and like any statistical
method, they suffer from deviation from
their underlying assumptions.

Deep learning models have great po-
tential for solving complex tasks in a wide
range of domains. However, to ensure accurate and reliable tools, clear reporting stan-
dards are needed to understand the limitations and capabilities, as highlighted by
Riley [186].

2.2 Computer vision tasks

Humans can naturally perform various visual tasks without explicit instruction, which
stands in contrast to computer vision systems. In computer vision, we need to precisely
define the task to solve, and often we need to split a task into sub-tasks using individual
modules, each with explicit instructions. For this reason, there is a wide range of
computer vision tasks, and in this section, we explain three commonly used ones:
image classification, object detection, and semantic segmentation.

2.2.1 Image classification
Image classification refers to the ability of machines to categorize what they see in
images.

This task can be divided into two main cases [197]. In the first case, identify a single
object in an image, as illustrated in figure 2.2 a, where the image has been labeled as
"defected." Or figure 2.5, where we want to distinguish between blue and green bottles.
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In the second case of classification, the task is to identify multiple objects in an image
(known as multi-label classification). For instance, if an image contains both blue and
green bottles, the task is to label both of them correctly.

2.2.2 Object detection

Object detection, on the other hand, involves both the classification and localization of
objects. As shown in figure 2.2 b, this is usually done by using bounding boxes that
define the object(s) coordinates within an image. For an up-to-date survey of object
detection, see [263].

2.2.3 Semantic segmentation

Semantic segmentation is a challenging task that involves assigning a label to each
pixel (or voxel in 3D) within an image based on a pre-defined set of classes. The goal
is to accurately outline the shape of the object(s) of interest. Figure 2.2 c shows an
example of semantic segmentation. The boundary of the bottle was manually outlined
by the author.

Medical image segmentation involves precise delineation of regions of interest (e.g.,
organs and tumors) from their surroundings in image modalities such as computed
tomography (CT) and magnetic resonance imaging (MRI), see Chapter 3. Segmented
objects provide valuable insight into the characterization of the region of interest (e.g.,
tumor volume, shape, location, etc.) [64], and can be described as the "holy grail" of
medical image analysis [129].

Fig. 2.2: Illustration of various tasks in computer vision: (a) classification, (b) object
detection, and (c) semantic segmentation. The image is generated by the author using
Stable Diffusion 2.1. The source code to reproduce the original image is available on
GitHub: https://github.com/skaliy/thesis_supplementary_materials.
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2.3 Solving vision tasks by learning

Machine learning models learn from data and make decisions based on the acquired
knowledge without being explicitly programmed [66]. There are several ways these
models can learn. This section will focus on supervised learning, the learning approach
used in all the projects presented in this thesis.

As the name implies, supervised learning involves machine learning models
that learn under the guidance of feedback. A common supervised learning task is
classification, a topic already covered in section 2.2. Another typical task is solving
regression problems, the task of predicting continuous values, such as the bounding
box coordinates in figure 2.2 b.

Fig. 2.3: A simple overview of supervised
learning workflow. (a) An appropriate
model is trained to map inputs to outputs
by minimizing the loss function. (b) The
trained model is then applied to new, un-
seen data.

The general workflow of supervised
learning is shown in figure 2.3. For a
given task, a machine learning model is
presented with a number of labeled sam-
ples in the form of input data X with cor-
responding output labels Y, referred to as
training data. During the learning pro-
cess, the machine learning model learns
rules for the mapping function1 X→ Y by
iteratively minimizing the difference be-
tween the predicted output Ŷ and the true
label Y using loss function (also known as
cost function, see table 2.1). These rules–
for a given machine learning model–are
typically encoded in the parameters θ of
the model2. Mathematically, we can for-
mulate it as follows:

Ŷ = f(X, θ)

When the machine learning model has been trained, the goal is to accurately predict
the output Ŷ for new, unseen inputs X, referred to as test data. In practice, to get an
unbiased evaluation of how well the model generalizes, practitioners usually set aside
a portion of the labeled data, for example, 20% of the data, for testing. However, the
specific percentage may vary based on the amount of data you have available and the
complexity of the task. The work needed to obtain labels also depends on the task. For
instance, if you think about the task of labeling the bottle in figure 2.2, the labeling
process for image classification is quicker than for object detection, which in turn is
faster than the manual annotating process for semantic segmentation.

In addition to testing, people usually set aside a portion of the training data,
known as validation data, used to select the appropriate model for the given task.
An alternative approach is to partition the training data into k subsets, known as
k-fold cross-validation. This process is more computationally expensive and not

1Note that, for simplicity, we assume the existence of a functional relationship between the inputs
and outputs.

2Here, we exclusively discuss parametric models.
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always possible. A limiting factor with supervised learning is that the accuracy of the
predictions is highly dependent on the quality and representativeness of the labeled
data, a topic discussed in Chapter 4.

Some common machine learning models for supervised learning include linear
regression, support vector machines, decision trees, random forests, gradient boosting,
and artificial neural networks. Some of these models are restricted to either classification
or regression, like linear regression. Others, like neural networks that we will discuss
shortly, can be used for both tasks.

2.4 Deep supervised learning in computer vision

Artificial neural networks (ANNs) are a specific family of machine learning models
that form the core of deep learning, and they are typically trained using supervised
learning [3]. Neural networks are not a recent invention; the concept has been around
for several decades. They were first introduced by McCulloch and Pitts [138] back in
1943, where they presented a computational unit inspired by biological neurons, which
later became known as an artificial neuron. Since then, many scientists have been
contributing to this field: Minsky and Edmond’s SNARC from 1951 [197], Rosenblatt
and his perceptron [192], Minsky and Papert’s influential book on the limitations of
perceptrons [145], Fukushima and the neocognitron [61], Rumelhart et al. work on
learning representations by backpropagation algorithm [195], LeCun et al.’s CNN
trained by backpropagation (later known as LeNet) [113], Deep Belief Network proposed
by Hinton et al. [74], and many more. See [202] for a historical overview.

The basic concept of an artificial neuron, which is the computational unit in artificial
neural networks, is depicted in figure 2.4 a.

Fig. 2.4: Figure (a) shows the basic concept of an artificial neuron. First, the dot
product between the input data X and its corresponding parameters θ, called weights,
is calculated. The value is then passed through an activation function Φ to decide its
output (see table 2.1). Figure (b) illustrates a deep neural network with two hidden
layers. In this setup, all the neurons within a layer receive input from all units from the
previous layer.

Modern neural networks are composed of multiple artificial neurons stacked
together in layers. They typically consist of an input layer, one or more hidden layers,
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and an output layer, as shown in figure 2.4 b. Neural networks with a single hidden
layer are called shallow networks, while networks with multiple hidden layers are
called deep neural networks (hence the term "deep" in deep learning). Choosing the
optimal number of layers and neurons is a difficult task that highly depends on the
complexity of a given task and the number of training samples available for the learning
process [102]. A deep neural network can represent a higher level of complexity by
increasing the number of layers and units within each layer [65]. However, having
an excessive number of layers may result in overfitting-a phenomenon where models
become overly adapted to the training data and fail to generalize to new, unseen data.

To avoid overfitting, many methods can be applied. Collecting more data would
often help, but this is often practically impossible. Other options are to decrease
the complexity by reducing the number of hidden layers or/and applying various
regularization techniques (see table 2.1). However, before employing these methods,
one should confirm overfitting during the training process [79]. A general practice to
detect overfitting is to set aside validation data (see section 2.3) and monitor if, at any
point during the training process, the validation performance gets worse while the
training performance continues to improve. If so, it is an indication that the model is
overfitting.

The basic steps to train any deep learning models in a supervised fashion are as
follows:

1. Initialize the weights, either randomly or using weights from
an already trained model (pre-training)
2. Get predictions from a batch of data by feeding it to the model
3. Calculate the performance using a loss function
4. Calculate the gradient of the loss with respect to each parameter
using backpropagation. These gradients measure how changing each weight
would change the loss.
5. Move each weight a little bit in the opposite direction of
its gradient using gradient descent with a specified step size (called
the learning rate)
6. Go back to step 2 and repeat the process
7. Do this over and over until you meet some chosen stopping criteria

These seven steps of training a neural network are illustrated in Fig. 2.5a.
One of the benefits of neural networks is their capacity to automatically learn useful

representations from raw data without human interaction [112]. In the past decade,
different variants of deep neural networks have become the methods of choice for
a wide range of computer vision tasks. Image classification is a prime example. In
2012, Krizhevsky et al. [108] presented "AlexNet", a convolutional neural network
(CNN) [61, 113] that surpassed previous methods on the ImageNet dataset [48]. Since
then, various CNN architectures have attracted widespread attention and are currently
the core elements in many computer vision tasks (see section 2.5). CNNs play a crucial
role in all the work reported in this thesis, and therefore, we provide a short summary
of the main ideas behind CNNs as illustrated in figure 2.6.

Convolutional neural networks often consist of convolutional, pooling, and fully
connected layers. As the name implies, convolutional layers are the fundamental
building blocks of convolutional neural networks. These consist of a number of
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Fig. 2.5: (a) The training process for any deep learning models (adapted from Howard
and Gugger [79]), illustrated using a classification task of identifying green and blue
bottles. (b) The trained model is used to run inference on new, unseen images.

Fig. 2.6: An illustration demonstrating the information flow in a basic CNN architecture,
comprised of an input layer, a convolutional layer, a pooling layer, and a fully-connected
layer, designed to detect defective bottles in images.

learnable kernels (also called filters) that slide across an input tensor (e.g., 1D, 2D, 3D)
to calculate the dot product between the kernels and the inputs. This results in outputs
that form what are called activation maps (also known as feature maps). The sliding
size is determined by a hyperparameter called stride. Note that each neuron within
a convolutional layer is only connected to a specific region in the previous layer (the
local receptive field), enabling them to capture spatial information within an image
and automatically extract relevant features. As shown by Zeiler and Fergus [254], the
filters in the first layer of simple CNNs typically learn to detect simple features such
as edges, color, etc. As we move to deeper layers, they will learn to extract complex
task-specific features. The pooling layers are used to downsample activation maps
in order to reduce the number of parameters in the model, lowering computational
requirements and the risk of overfitting. Popular pooling methods include average
pooling [113] and max pooling [184], where the average and maximum value from
a pooling window is calculated, respectively. Note that these layers do not have any
learnable parameters, which can lead to the loss of important information. For this
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reason, many architectures include strided convolutions (i.e., increase the sliding size
to reduce the activation map), such as the ResNet model [72].

Fully connected layers can be added at the end of CNN architectures for classification
and regression tasks. These layers map the extracted high-level features from the final
convolutional or pooling layer into output for a given task 3. As we can see in figure
2.6, these layers work the same way as the feed-forward network shown in figure 2.4.
If fully connected layers are included in a CNN, it should be noted that they can easily
end up containing most of the parameters in the network [14].

Table 2.1 provides a glossary of some of the main concepts. Comprehensive
textbooks on deep learning include [3, 65, 197].

Table 2.1: Glossary of core terms, techniques, and concepts in deep learning.

Activation function A non-linear function applied after calculating the
weighted sum of inputs in a neuron to decide its
output. Some commonly used activation functions
include Sigmoid, Tanh, ReLU, and Leaky ReLU. [159].

Architecture Feedforward neural networks, convolutional neural
networks (CNNs) [61, 113], generative adversarial
networks (GANs) [66], transformers [234], etc. See
the review paper provided by Chai [35] et al. for
more architectures.

Backpropagation Calculate the gradients of the loss function with
respect to all the weights in the model.

Fully convolutional network A model composed of only convolutions and pool-
ing layers, without any fully-connected layers, thus
reducing the number of parameters. Typically used
for semantic-segmentation [127] and object detec-
tion [45] tasks.

Loss function (cost function) Evaluates the difference between predicted output
and the ground truth, providing a measure of how
well the model is performing on a given task. The
primary goal during model training is to minimize
the loss function.

Model Consists of a design architecture and a specific set of
parameters to map input data to output labels.

Optimizer Used to change the parameters during training to
minimize the loss. Gradient descent and variants of
this algorithm are the most common way to optimize
neural networks [193].

3Traditional machine learning models can also be applied directly to the output features from the
final convolutional or pooling layer.
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Parameters Weights and biases in neural network models that
define the connection between neurons. These pa-
rameters are adjusted during the training process to
optimize the performance of the model on a given
task. In the case of convolutions, the weights are rep-
resented as kernels.

Pre-trained model A model with trained parameters, usually using large
datasets (e.g., ImageNet [48], Microsoft COCO [121],
etc.).

Regularization Set of techniques applied during the training process
to reduce the risk of overfitting (e.g., data augmenta-
tion [205], dropout [211], early stopping [175], etc.).

Representation learning The ability to automatically learn to extract useful
features from raw input data needed for a given task
(classification, detection, etc.).

Self-supervised learning Self-supervised learning is a training technique
where we train a model without the need for human-
annotated labels by using labels that are part of the
input data. For example, feature learning by re-
moving pixels from an image and reconstructing
them [168]. In recent years, various self-supervised
learning methods have been successfully used for
pre-training models in multiple fields, including
natural language processing [49, 82] and computer
vision [36, 37, 71].

Transfer learning The ability of a model to reuse the knowledge learned
from tasks in a source domain and apply it to a
different task in a target domain during the training
process.

2.5 Some recent trends in deep learning architectures for computer
vision

As we have seen several examples up to now, deep learning has experienced explosive
growth in recent years. Numerous CNN architectures have been proposed following
the success of "AlexNet" [108]. The generic nature of deep learning methods makes
applying them to various domains feasible, and the knowledge and insights acquired
from one domain can be transferred to another domain [36] 4. In table 2.2, we highlight
some important and recent developments of deep learning architectures in computer
vision for classification and segmentation tasks.

4Also illustrated by our work on a remote sensing task [97] in which we used our experience from
medical imaging.
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Table 2.2: List of recent deep learning architectures and some high-level descriptions.
As is clear from their descriptions, the ideas behind the different architectures build
upon each other.

ResNet [72]

After the success of "AlexNet," deeper models demonstrated higher performance
on the ImageNet classification challenge [216]. However, training deep networks
is challenging, partly due to the vanishing gradient problem [17, 63]. In deep
models, the gradient may become smaller and smaller (close to zero) as it
backpropagates through the layers, resulting in poor convergence during
training. ResNet was introduced by He et al. to tackle this exact problem using
skip connections. These connections create an additional pathway between
different weight layers of the network, skipping one or more nonlinear activation
functions. The authors demonstrated the performance of ResNet by winning
ILSVRC [196] using models with up to 152-layers, as well as in the Microsoft
COCO [121] detection and segmentation challenge in 2015. In their work, they
also presented an analysis of using models with more than 1000 layers on the
CIFAR-10 dataset [107]. This was a major breakthrough. Before this point, the
deepest model was only 22 layers deep [216].

ResNeXt [249]

An extension of the ResNet architecture with an additional dimension called
cardinality, a split-transform-merge strategy that was introduced in the Inception
architecture used by GoogleLeNet [216] (the ILSVRC 2014 winning architecture).
This strategy splits the input data into multiple paths, each undergoing a
different transformation before being fused into a single output.

U-Net [191]

U-Net was developed by Ronneberger et al. in 2015 [191] for biomedical image
segmentation. The architecture is a U-shaped, fully convolutional network
consisting of two parts: an encoder (the contracting path) and a decoder (the
expansive path), with skip connections between them to preserve useful feature
information. The encoder part follows the typical CNN architecture shown
in figure 2.6 (excluding the fully connected layers), which is used to extract
relevant features from images. Nowadays, the encoder part is commonly an
ImageNet pre-trained classification model [89]. The decoder part upsamples
the extracted features using transposed convolutions (i.e., inverse convolution
operation) to reconstruct a segmentation mask with the same dimensions as the
input image. To improve the performance of the original U-Net architecture,
several adaptations have been proposed, including 3D U-Net [40], attention
U-Net [162], residual U-Net [258], and many others [32, 70, 260].
Moreover, in recent years, U-Net has been successfully applied in other domains
as well, e.g. [97, 103, 120]. As demonstrated by Kugelman et al. [109], the original
architecture is still a strong baseline model.

Vision transformers [54]
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The transformer architecture was introduced in 2017 to solve problems in the
field of natural language processing (NLP) [234]. The primary function of the
proposed encoder-decoder architecture was the self-attention mechanism used
to dynamically learn the relationships between different words in a sequence of
words, which allows the model to understand long-range dependencies. Well
known language models such as BERT [49], LaMDA [223], and various GPT
models [27, 181] are built based on this architecture. However, the performance
of these models highly depends on pre-training on large-scale datasets using a
self-supervised learning approach [49, 181].
The great success of employing transformers in NLP has sparked a growing
interest in applying the architecture for computer vision tasks. In 2020, Dosovit-
skiy et al. introduced Vision Transform (ViT) [54], a convolutional-free model
applying the encoder proposed in the original transformer paper [215] on im-
ages represented as a sequence of non-overlapping patches (like words) for
image classification tasks. Their model pre-trained on JFT-300M dataset [215]
(containing 300 million images) demonstrated better performance and effi-
ciency than ResNet-based models. However, the authors reported that ViTs
pre-trained on ImageNet (consisting of 1.2 million images) perform worse
than CNNs. In addition, the architecture was unsuitable for vision tasks with
high-resolution images due to its quadratic computational complexity with
respect to the input size. These challenges led to the development of several ar-
chitectures built upon the work of ViT. This includes DeiT [226] using training
strategies for ImageNet pre-training, and Swin Transformer [124, 125], applying
hierarchical architecture with a local attention structure, which is reminiscent
of convolutions, to serve as a vision backbone for existing models, such as
U-Net [191]. An overview of recent developments in vision transformers is
provided in [69].

ConvNext [126]

In 2022, Liu et al. [126] set out to explore whether models based entirely
on standard convolutional neural network components could compete with
Transformers by incorporating modern design decisions from recent work on
Transformers. Starting from a basic ResNet-50 model, they progressively added
modern model training techniques and network designs, partly based on the
ideas of the Swin Transformer [125] and DeiT [226]. The performance of the
initial model was greatly improved by just applying the training techniques
utilized in Swin Transformer. The performance was further improved by imple-
menting various design methods from Swin Transformer, including replacing
ResNet with ResNeXt. Their final model outperformed the Swin Transform
on ImageNet [48] classification, Microsoft COCO [121] object detection, and
ADEK20K [259] segmentation. In addition, the authors demonstrated that their
architectures, dubbed ConvNext, could be as scalable as vision transformers.
Recently, Woo et al. [244] introduced ConvNext V2, an architecture optimized
for self-supervised learning, resulting in improved results on the datasets re-
ported in the original ConvNext paper[126]. Their work has shown that the
jury is still out regarding Transformers versus ConvNets, that ideas from one
approach can be incorporated in others, and the importance of fair compar-
isons when evaluating design choices.

There is a constant influx of new models that outperform–or claim to outperform5–
the previous state-of-the-art in various benchmarks. After the tremendous progress
in the application of deep learning to computer vision starting around a decade ago,

5see Chapter 4 for a critical discussion about many such claims
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the field seemed for a few years to have settled on a relatively small set of models for
most computer vision tasks–for example, variants of ResNets for image classification
and variants of U-Nets for image segmentation. However, the recent trend with
vision transformers, a completely different network architecture design, combined
with self-supervised learning, hints at a possible new acceleration in the field, offering
a new set of tools in the toolkit (and new additional challenges to be overcome).

As we come to the end of this chapter, it is worth reflecting on Maslow’s famous
adage from 1966 - I suppose it is tempting, if the only tool you have is a hammer, to treat
everything as if it were a nail. [135]. While various deep learning approaches have made
significant advances in computer vision tasks (e.g., image classification, detection, and
semantic segmentation), traditional computer vision methods still have their place
in the field. Some computer vision problems do not require the complexity of deep
learning approaches, and more straightforward traditional methods can solve them
efficiently, robustly, and directly. As we saw at the beginning of this chapter, techniques
such as edge detection, thresholding, and many others have been around for several
decades. A key advantage of many traditional methods is that they do not require
large amounts of training data and can be more computationally efficient than deep
learning models. Therefore, when deciding between traditional methods and deep
learning models for solving a computer vision task, it is vital to consider the problem’s
complexity. When in doubt, always start with traditional methods (especially if you
have a limited amount of labeled data)6.

It is important to note that a hybrid approach that combines traditional computer
vision methods with deep learning techniques may be the best solution in some cases.
See [165] for a recent exploration of traditional versus deep learning-based methods in
computer vision. An area we would like to flag, albeit not explore, is the intriguing
ongoing work on combining artificial neural networks with more principled physical
and mathematical models, often dubbed Scientific ML [178, 179], and work done on
forcing artificial neural networks to produce outputs satisfying useful constraints, as
exemplified by [123].

6The first rule of machine learning is "Don’t be afraid to launch a product without machine learning" [262].
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The application of deep learning in radiology is only as
good as the understanding of the field it is based upon.
Without sufficient domain knowledge, the results will be
superficial at best.

—ChatGPT (Jan 30 version)
CHAPTER 3

THE DOMAIN: RADIOLOGY AND IMAGING
DIAGNOSTICS

Diagnostic imaging is a crucial part of modern medicine [53]. A radiologist, a physician
specializing in diagnostic imaging, uses various medical imaging techniques to get
insight into the structure and function of organs and tissues in the body that can be used
to diagnose, treat, and monitor a wide range of medical conditions [19]. Since Roentgen
introduced X-rays in 1895, there have been remarkable advancements in medical
imaging [214], and many new imaging modalities have been developed, including
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) (see Section 3.1
below). In parallel, a transforming healthcare technology called Picture Archiving and
Communication System (PACS) was introduced [39]. PACS systems enabled clinicians
to shift from analog films to digital images, resulting in better storage and access to
patients’ medical images and records [213]. Today, radiologists can import patient
studies, interpret them, and make decisions based on the findings in the images using
the PACS display workstation component, regardless of their locations [83].

Fig. 3.1: A simplified overview of the di-
agnostic radiology workflow. Images are
recorded by imaging modalities, sent to
PACS servers, and inspected by medical
specialists using dedicated PACS viewers.

As discussed in Chapter 1, these tech-
nological advancements have increased
the use of radiological examinations [15,
209]. Unfortunately, the number of prac-
ticing radiologists is not growing as fast as
the demand for their expertise [128]. This
development is a concern as it directly
impacts patient safety and may lead to
burnout among radiologists [255]. The
limited resources of radiologists empha-
size the need for new technologies, such
as computer-aided diagnosis (CADx). In
recent years, tools based on deep learning have shown great promise in radiology
and imaging diagnostics [129, 149], but, as described in the previous chapter and will
discuss further in Chapter 4, they also come with a significant set of challenges and
drawbacks [8, 60, 151, 188, 194, 220, 222, 248].

To develop tools that will benefit radiologists, it is essential to understand their
existing clinical workflow and the tools they rely on. Figure 3.1 shows a simplified
overview of the major components needed in diagnostic radiology workflow, which
consists of diagnostic imaging devices (imaging modalities), image archive servers,
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and display stations. In this chapter, we will have a closer look at these components
and examine the tools and technologies used in this thesis.

3.1 Imaging modalities

Imaging modalities refer to various methods used to acquire images of the internal
body. Some well-known modalities developed in the last fifty years include CT,
MRI, ultrasound, positron emission tomography (PET), and single-photon emission
computed tomography (SPECT) [19]. The choice of modality depends on the clinical
question and the suspected medical conditions [68, 241], and sometimes multiple
imaging modalities may be combined to achieve a more comprehensive assessment [44].

In my thesis, I have exclusively used imaging data from CT and MRI examinations.
Therefore, I will limit the discussion to brief explanations of these two imaging
modalities.

3.1.1 Computed tomography (CT)
A CT scan uses a beam of X-rays around the body and computer processing to create
detailed cross-sectional image slices of various internal structures (e.g., bones, blood
vessels, and organs) [214]. As a non-invasive method, CT is well-suited for diagnosing
many medical conditions. For example, it is the primary imaging modality used
for diagnosing patients with lung cancer [176] and acute stroke [174]. Figure 3.2
depicts sections of a lung CT image from the Lung Image Database Consortium image
collection (LIDC-IDRI) dataset [10] in three different anatomical planes: axial, sagittal,
and coronal.

While CT is considered safe, it is important to note that patients are exposed to a
small dose of ionizing radiation during scans. Technological advancements in recent
years have led to the development of CT machines that can produce high-quality
images while reducing radiation doses to patients. However, as emphasized by
McCollough [137], CT scans should only be requested when needed, as with any other
medical procedure.

Fig. 3.2: Image slices showing axial, sagittal, and coronal planes of a chest CT from
LIDC-IDRI lung nodule dataset [10].
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3.1.2 Magnetic resonance imaging (MRI)

MRI technology and scanner availability have also progressed remarkably over the
last 20 years [229]. Today, MRI is an essential tool for diagnosing various diseases
such as brain tumors [118] and multiple sclerosis (MS) [59]. In contrast to CT, MRI
does not expose patients to ionizing radiation. Instead, MRI uses a high-strength
magnetic field, radio-frequency pulses, and gradient waveforms to construct images
of the internal body. A pulse sequence is a set of instructions determining how
radio-frequency pulses and gradient waveforms are used during an MRI scan [20].
In clinical practice, multiple pulse sequences are needed to evaluate different tissues
and organs, each designed to highlight various properties (e.g., fat, fluid, etc.). For
example, the T1-weighted sequence is a fundamental pulse sequence in MRI, where
fat tissue appears bright, while regions with fluid appear dark. Other widely used
sequences include T2-weighted, Fluid-Attenuated Inversion Recovery (FLAIR), and
contrast-enhanced T1-weighted (T1ce). See Figure 3.3 for an illustration of the different
properties highlighted by these sequences.

Fig. 3.3: Axial slice samples of FLAIR, T1, T1ce and T2 sequences from the Multimodal
Brain Tumor Segmentation Challenge (BraTS) [12, 13, 143] provided in the Medical
Segmentation Decathlon challenge [7]. The different sequences highlight various
characteristics of the brain tumors located in the left frontoparietal region.

The image resolution and scanning time for a given task depend on the magnetic
field strength measured in Tesla (T). With higher magnetic field strengths, the MRI
images’ signal-to-noise ratio (SNR) increases, resulting in higher-resolution images or
faster scanning with the same resolution [158]. As MRI technology has evolved, there
has been a trend towards higher magnetic field strengths [218].

Most clinical scanners today have magnetic field strengths of either 1.5T or 3T [201].
In some research and clinical settings, ultra-high-field MRI with magnetic field strengths
of 7T or higher is used to achieve even higher resolution [158, 229]. This increase in
magnetic field strength allows more detailed visualization of anatomical structures.
Figure 3.4 shows an ex-vivo human brain acquired over 100 hours of scan time [55]. De-
spite the potential advantages, ultra-high-field MRI poses several challenges, including
non-uniform radiofrequency fields (e.g., anatomically irrelevant intensity variation)
and tissue heating [110].

It is important to note that although MRI is a powerful non-invasive diagnostic
tool, it is more time-consuming, expensive, and complex compared to other imaging
modalities such as CT [93].
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Fig. 3.4: (a) An ex vivo brain MRI of a 58-year-old woman with no history of neurological
disease acquired over 100 hours of scan time [55]. (b) A magnified view of the
highlighted region within the brain showcases the high-resolution details captured by
the scanner.

3.2 Digitial Imaging and Communications in Medicine (DICOM)

In clinical settings, DICOM is the standard image format and protocol to store and
transfer image data and health-related information [22]. Today’s digital image acquisi-
tion devices, such as CT and MRI scanners, produce DICOM images [171]. DICOM
does not only store the pixel data; it also maps related metadata information such as
patient information(e.g., name, sex, age, etc.) and image acquisition parameters (slice
thickness, pixel spacing, orientation, etc.). The DICOM protocol has entries for more
than 2000 elements1. Each element is numbered with a unique group and element
(tag) and organized in a four-layer hierarchical structure in the following order: patient
(Patient ID), study (Study Instance UID), series (Series Instance UID), and image (Im-
age SOP Instance UID). Figure 3.5 shows selected tags, elements, and values from a
DICOM file in the LIDC-IDRI dataset [10]. As we can see, some attribute values (e.g.,
patient name, birth date, sex, etc.) do not have any data, as they have been removed in
an anonymization process to protect the sensitive health information about the partici-
pants. For research purposes, the DICOM model is extended to include project and
scanning event information (DICOM group 0012).

Although DICOM is a powerful and reliable tool, its complexity makes it challenging.
In addition, it is not designed for efficient data manipulation and image processing [239].
For example, volumetric images are divided into slices. Each slice is stored as a separate
file with its own DICOM tags that provide information about the image and its position
and orientation in space. Attempts to store multiple slice data as frames or enhanced
DICOM exist but are not widely used and supported across vendors [6]. Consequently,
using DICOM for large-scale studies can be cumbersome, as a single visit can contain a
large number of individual files.

Due to the complexity of DICOMs, in medical image research, they are often
converted to simpler image formats such as Neuroimaging Informatics Technology
Initiative (NIfTI) that can store multidimensional data [119]. However, note that these

1See https://dicom.nema.org/medical/dicom/current/output/html/part06.html
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simpler formats retain only a small set of image metadata from DICOM files, making it
challenging to correctly convert them back to DICOMs.

Fig. 3.5: Example of some tags, elements, and values from a DICOM file in the LIDC-
IDRI dataset [10].

3.3 Picture Archive and Communication System (PACS)

PACS are DICOM-driven medical systems with hardware and software built to facilitate
digital imaging in clinical settings [171]. As mentioned earlier in this chapter, the major
components of a diagnostic radiology workflow consist of imaging modalities, storage
servers, and display stations. In a PACS system, these components are integrated
by communication networks [83] and a viewing component supporting worklists for
radiographers and radiologists. In addition, as illustrated in figure 3.6, PACS can
further be connected with other information systems such as radiological information
systems (RIS), an electronic medical records system designed to keep track of patient
data and scan requests within radiology workflow [42].

The integration of PACS in radiology workflow has resolved many problems
associated with traditional film-based diagnostic imaging. For example, Strickland [213]
reported that radiology films were regularly unavailable when needed, with some
hospitals reporting up to 20% of films being missing. With the PACS systems, patient
studies can be safely stored in a server and accessed simultaneously by authorized
physicians and radiological technologists from any authorized workstation [83].

The improved efficiency of diagnostic radiological workflow has allowed a higher
volume of examinations to be requested, performed, and interpreted [161]. However, as
discussed at the beginning of this chapter, the growth in the number of radiologists has
not kept pace with the demand for their expertise [128]. In addition, the rising demand
may also bring some technical challenges, such as image transmission problems, issues
in data backup, and limited storage capacity issues [5].

3.4 Example of deep learning in radiological workflow

The shortage of radiologists and the increasing number of examinations requiring
interpretation highlight the urgent need for new technologies. There’s hope that deep
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learning-based applications integrated into clinical workflows can solve or at least
alleviate these challenges. This is, together with the hope of improved diagnostic and
prognostic accuracy based on individual characteristics of patients, the main reason
for the immense interest in deep learning in radiology [149, 182, 230].

As we have discussed earlier in this thesis, it is clear that deep learning models
show great potential in radiology, demonstrated by various applications [31, 58, 129],
including those explored in this thesis. Moreover, collaborative setups including both
humans and deep learning applications seem to yield even better performance and
may reflect how radiologists work in clinical settings (e.g., the double reading process
discussed in Chapter 1) [206, 247]. Figure 3.6 illustrates how deep learning applications
can be applied at different stages of the diagnostic radiology workflow for patients
with lung cancer.

Although deep learning applications show great potential in a wide range of medical
imaging tasks, most of these studies are conducted in computer science laboratories
using retrospective data [182, 230]. Retrospective data can be valuable for initial
research. However, a significant problem with this approach is that it fails to evaluate
how these tools will be used in clinical practice, potentially leading to inaccurate
performance when encountering real-world data [4, 104].

Only a limited number of applications have been successfully deployed into existing
radiology workflow [230]. For example, as discussed in Chapter 1, Leeuwen et al. [231]
looked at 100 CE-marked AI products from 54 different vendors in 2020 and found that
only 18 of these products had the potential to produce clinical impact. As of March
2023, over 200 CE marked deep learning applications are available on the market2.
Yet, at the time of writing, only 44 of these applications have been approved under
the new EU Medical Device Regulations (MDR) [167], for a total of 12 MRI- and 12
CT-based applications. To conform with MDR, AI applications must be thoroughly
tested and validated in clinical studies, hopefully improving the quality of applications
on the European market [155]. However, although MDR certification imposes stricter
requirements for clinical applications, it does not necessarily imply clinical value (e.g.,
efficiency, costs, etc.).

In other words, to evaluate deep learning systems thoroughly, we need to integrate
these applications into the real-world clinical workflow or as close as possible to the
workflow where they will be utilized. As the field matures, more applications will
likely be developed and evaluated in clinical practice.

We will discuss such opportunities and challenges further in Chapter 4.

2confer https://grand-challenge.org/aiforradiology/ for a continuously updated list of deep
learning-based products in radiology
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Fig. 3.6: Some potential use cases of deep learning applications for enhancing diagnostic
radiology workflows. (1) Radiology information systems (RIS): Optimizing imaging
appointment scheduling based on cancer-risk [84]. (2) Imaging modalities: Reducing
radiation exposure and improving image quality through noise and artifact reduction
methods in low-dose CT [251]. (3) PACS server: Employing applications to automatically
detect potential cancer regions and calculate malignancy probabilities [9]. (4) PACS
viewer: Utilizing segmentation tools [228] to efficiently evaluate the volume and
appearance of regions of interest and further estimate lung cancer risk by integrating
screening results with clinical data [84].

Chapter 3 29





Code should be treated as a readable and executable form
of literature, making the research process transparent and
reproducible.

—ChatGPT (Jan 30 version)
CHAPTER 4

FROM PIXEL TO PATIENT: CONCLUSIONS,
CONTRIBUTIONS, AND CONTINUATIONS

There is no doubt that deep learning has the potential to play an important role in
the future of medicine [182, 225]. Deep learning models, especially convolutional
neural networks (CNNs) and transformers, hold great potential for transforming
medical imaging domains due to their remarkable performance on various computer
vision tasks compared to traditional methods (see Chapter 2). Diagnostic radiology, in
particular, has drawn special interest in the application of AI. However, as highlighted
in Chapter 3, the field is still in the early phase: great promise but short on real-world
clinical evaluation.

In discussing AI’s role in medicine, it is crucial to differentiate between applying AI
methodologies to medical data and what can properly be called "medical AI," namely
the development, evaluation, and deployment of AI-based solutions in healthcare.
For example, applying deep learning techniques to medical image data-based tasks
can be relatively simple as long as you have access to data. This is exemplified by
our one-click tutorials in fastMONAI [96] running MedMnist v2 [250] and Medical
Segmentation Decathlon challenge [7] datasets. Such simple benchmark datasets
play an essential role in the development of methods in various domains [221].
However, it is important to note that benchmark datasets often undergo extensive
preprocessing and may not capture the complexity of real-world data [182], such as
different imaging protocols, manufacturers, scanners, demographics, and many other
factors. Furthermore, in practical settings, obtaining access to large amounts of labeled
data, as seen in benchmark datasets, can be challenging due to the high cost of data
annotation [242], which often requires domain experts. In other words, while these
benchmark datasets can be valuable for initial research, they may not capture all the
challenges in clinical settings.

Imaging-based medical AI is not really about images or the pixels within those
images but about improving patient care. Therefore, researchers need to consider
factors beyond model performance on benchmark datasets to develop medical AI tools
and systems that can be valuable in clinical settings for both clinicians and patients.
These factors include problem understanding, data understanding, and integration of
AI systems with existing workflows (see figure 4.1). Each of these components consists
of many practical, technical, and ethical challenges [30, 73, 148]. Interdisciplinary
collaboration is critical to addressing these challenges. In this thesis, I have had
the opportunity to ensure greater clinical relevance through close collaboration with
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radiologists and healthcare IT infrastructure experts at Mohn Medical Imaging and
Visualization Center (MMIV) at Haukeland University Hospital (HUH).

This chapter will draw some conclusions from earlier chapters’ considerations and
discuss important challenges and opportunities in the field. Along the way, we will
look at the contributions from my thesis and point to possible future work.

Fig. 4.1: A diagram highlighting the different stages in a deep learning lifecycle:
(1) Problem understanding: identifying the intended use and clinical role of the
deep learning application, defining data sources, and establishing guidelines for
annotation; (2) Data preparation: data collection, labeling, and data preprocessing; (3)
Model development: selection of appropriate model, training strategies, and model
evaluation; (4) Deployment: integrating the trained model into existing infrastructure
and monitoring its performance. These stages form an iterative process, ensuring that
the models remain up-to-date. See Table 4.1 for a thorough description.

4.1 Data-centric AI: Deep learning = data + models

A supervised deep learning system’s performance is determined and limited by the
models, data, and corresponding labels used to train and evaluate them. However,
as highlighted in Chapter 2, over the past decade, the research focus in the field
has primarily revolved around model-centric developments. New architectures and
training strategies have constantly been proposed and reported to outperform the prior
state-of-the-art on a wide range of large benchmark datasets (e.g., the ImageNet dataset,
Microsoft COCO [121], CIFAR-100, etc.). There is no doubt that this model-centric
approach has driven the field forward. This progress has led to the introduction of
new architectures such as ResNet [72] and U-Net [191], and more recently, Swin
Transformer [125] and ConvNext [126]. Additionally, several training strategies
have also emerged, including data augmentation techniques like CutMix [253] and
MixUp [257], Batch Normalization [90], Dropout [211], and many others.

However, as the field matures, we observe a shift in focus toward data-centric
development, driven by various important concerns. These include issues like bias
and fairness [3, 47], privacy [200], and label quality [43]. As reported in [157], many
commonly used benchmark datasets contain label errors in both training and validation
sets due to the inherent construction process, which often involves some degree of
automatic labeling or crowd-sourcing.

Some studies have shown that label noise is not a major problem in the training set,
as deep learning methods are believed to be inherently robust to label noise when a
large amount of data is available [131, 189, 215]. However, as highlighted by Rolnick
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et al. [189], clean labels lead to better performance than noisy labels, given the same
quantity of training data.

Fig. 4.2: Some examples from the Ima-
geNet validation set with their correspond-
ing labels that our ResNet34 models were
uncertain about. As we can see, these
images should ideally have multiple la-
bels assigned to them. We have provided
source code to find similar examples on
GitHub: https://github.com/skaliy/
thesis_supplementary_materials.

The presence of label noise in valida-
tion data may lead to unreliable model
evaluation and inaccurate estimation of a
model’s performance. For example, mul-
tiple studies in recent years have high-
lighted label issues in the ImageNet val-
idation set [21, 185, 227]. According to
Northcutt et al. [157], about 6% of the val-
idation set is incorrectly labeled, which
makes models able to perform with an
error rate of less than 6% inherently suspi-
cious. In figure 4.2, we present examples
of label noise from the ImageNet vali-
dation set. It is essential to address the
issue of incorrect labeling in validation
and test sets, as it could potentially lead
to incorrect conclusions about model per-
formance in the real world.

We have had to deal with this also in our own work. In our brain extraction
study [95], label noise was observed in the training/validation set, as we used labels
automatically generated by Brain Extraction Tool (BET) [208] of the FMRIB Software
Library (FSL) [245].

To cope with this issue, we trained a model on the entire training set (training and
validation) for a few epochs. We then manually inspected the images that the model
was most uncertain about. By applying this approach, we ended up removing 14
images from the training set before training our final model. Finally, when we evaluated
the performance of our model on the test data, we found 12 additional images that
were clear FSL failures, not prediction failures, as confirmed by visual inspection.

In medical imaging diagnostics, the stakes are exceptionally high, as model perfor-
mance could directly impact patient care and clinical decision-making. Unfortunately,
as reported in [100, 149, 154], developing high-quality labeled data in the medical
field can be challenging and expensive due to factors such as difficulty in acquir-
ing data, the need for manual annotation by radiologists, and the lack of efficient
labeling frameworks. Medical image datasets typically end up being very small,
particularly 3D medical datasets, ranging from a few hundred to a few thousand
images [2, 7, 10, 12, 13, 143, 198]1.

Moreover, there is often significant inter- and intraoperator variability between
radiologists, which can lead to inconsistencies in the labeling process [142, 143, 238].
The issue is demonstrated in figure 4.3, using the bottle segmentation example from
Chapter 2. Even such a simple task can expose label discrepancies between raters,
emphasizing the complexity of the real world. In the context of medical image
diagnostics tasks, such as brain tumor segmentation (figure 3.3), the process is prone

1A list of public datasets used in this thesis can be found at https://github.com/skaliy/thesis_
supplementary_materials
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to subjectivity [142, 143, 238]. In cases where multiple raters provide labels, simple
voting methods, such as majority voting or more advanced weighting methods like
STAPLE (Simultaneous Truth and Performance Level Estimation) [236] can be employed
to generate consensus-based ground-truth. However, as highlighted by Warfield
et al. [236], issues caused by rater-specific bias may remain. Consequently, prior
to initiating the manual annotation process for a new dataset for deep learning
purposes, establishing well-defined and consistent guidelines can help address potential
challenges and improve the quality of the labels.

Fig. 4.3: Illustration demonstrating inter-
rater variability in the segmentation of the
same bottle by two different raters when con-
ducted without carefully designed guide-
lines.

A number of important areas within
medical imaging and imaging diagnos-
tics have not yet experienced the impact of
the latest developments in deep learning.
This is often because most researchers fo-
cus on areas where large amounts of anno-
tated data are already available or where
the annotation process is reasonably easy
to carry out, which does not necessarily
capture the areas of the greatest impor-
tance and surely does not capture them
all [233].

Willemink et al. [242] emphasize that,
in research settings, a limited amount
of data could be adequate for training
models. As showcased in our clinical
studies on cervical cancer [75] and spine
segmentation [94], the number of examples needed to learn a new task is highly
dependent on the complexity of the task, with the first one requiring many more
labeled instances than the latter.

Considering the high costs associated with label processing, there are several
human-in-the-loop methods and strategies to reduce annotation time and enlarge
training datasets, including semi-automatic labeling and active learning.

Semi-automatic labeling can involve using an initially trained model to predict
labels for a larger, unlabeled dataset. Experts can further examine and adjust these
suggested labels as needed and iteratively update the model by incorporating them
into the training set.

Once some manually or semi-automatically labeled examples exist, active learning
can be applied to further train the model. Active learning is a set of iterative techniques
that focus on identifying and prioritizing the most informative samples from unlabeled
datasets for human annotators to label [28, 204]. Several query methods have been
developed to efficiently identify these informative samples. Uncertainty sampling is
one of the most popular strategies, which aims to select samples that the current model
is most uncertain about to maximize model improvement [16, 92, 235].

Once a dataset has been created and the model has been fully trained, sharing
the data and trained weights within the research community can be highly valuable
for other researchers and developers. However, when it comes to medical data,
privacy, ethical, and legal concerns need to be taken into account, making data sharing
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challenging [18, 232, 246].
A solution to overcome this obstacle is to share the code and trained model weights,

along with comprehensive documentation about the dataset. As emphasized by
Aggarwal [4], the lack of external validation in many studies is a significant concern.
Sharing code and trained weights can promote external validation and transparency in
research, enabling other researchers to evaluate the model’s performance using their
own data.

Moreover, transfer learning enables other researchers to build on the knowledge
acquired from the pre-trained model by fine-tuning it for their specific tasks using
a smaller dataset [237, 252, 261]. This approach minimizes the number of labeled
examples required in the target domain and could also improve learning performance.
This may bridge the gap between researchers with access to vast computational
resources and those who may be limited by hardware or sample size.

Fig. 4.4: Human-in-the-loop pipeline for deep learning model development. The
process begins with training a model using available data (and utilizing transfer
learning with a pre-trained model, if available). After training, the model is deployed
to generate predictions for new, unlabeled data. An active learning approach can be
applied here to identify the most informative samples, which an expert then refines.
These data are then used to retrain the model, enabling continuous improvement of
the model’s performance through iterative expert feedback.

4.2 State-of-the-art-mania

As we have seen in Chapter 2, there is a constant influx of new models claiming to
outperform the previous state-of-the-art in various benchmarks. However, the field of
deep learning suffers from what are often unfair comparisons between existing models
and methods and new ones. The research by Liu et al. [126] on ConvNext emphasizes
the importance of fair comparison. Their work demonstrated that vision transformers
believed to outperform CNNs failed to do so when evaluated under fair conditions
(i.e., applying the same training techniques and design methods).

The publication trend (as shown in table 2.2) is to report better results with larger
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and more scalable models. There are some concerns with this that we want to highlight
in this section.

To add novelty to their research, scientists may incorporate unnecessary complexity
into their methods [233]. However, this complexity may not necessarily enhance
model performance, but instead, contributes to technical debt, making systems more
challenging to deploy and maintain [203]2.

This observation is supported by the success of the nnU-Net ("no-new-Net")
framework from 2021 [91], which uses a model architecture from 2015 (discussed in
Chapter 2). The nnU-Net framework achieved leading performance in a wide range of
medical image segmentation tasks and is widely used in medical imaging research.

Focusing on larger and more scalable models results in an increased demand for
computational infrastructure, which is rarely reported in the literature. Although the
source code could be made available, there is no guarantee to reproduce the results
due to the cost of reproducing the research. Some of these large computer vision
models cost millions of dollars to train and use immense amounts of resources [50, 222].
Moreover, the rising cost associated with these models may restrict cutting-edge
technology development and availability to a few organizations (e.g., Microsoft,
Google, OpenAI, Meta, etc.). This trend is reflected in the large-scale models published
today [25, 105, 163, 223]. However, there are exceptions. For example, the Computer
Vision Group and Learning research group at the Ludwig Maximilian University of
Munich developed Stable Diffusion [190] as an alternative to DALL-E 2 [183], making
their trained model and source code openly available. Consequently, several new
ideas, improvements, and insights have emerged from the community [24, 26, 34],
demonstrating the positive impact of open science.

The research community must recognize that the push for larger and scalable
models is highly resource-intensive, and deploying these models in the real world may
pose significant challenges. The severity of this problem is well illustrated by the case
of OpenAI’s decision not to correct a mistake implemented in GPT-3 due to the vast
resource requirements [222]. This is particularly relevant in deploying models in the
field of medicine, as model performance could directly impact patient care and clinical
decision-making.

4.3 From model to deployment: Navigating through the minefield

As we discussed in Chapter 3, although deep learning models developed in computer
science laboratories can be accurate on retrospective data, a major problem with this
approach is that it fails to evaluate how these tools will be used, potentially leading to
suboptimal performance when applied to real-world clinical data.

Researchers should also consider other factors beyond model performance, such as
speed, efficiency, and cost reduction [4]. Moreover, there are various ethical concerns
that need to be addressed when implementing deep learning models in radiology,
including fairness, accountability, and transparency [152].

To thoroughly evaluate deep learning models, it is crucial to integrate them into
real-world workflows and study the aforementioned factors in prospective studies [104].

2The fourth rule of machine learning is "Keep the first model simple and get the infrastructure right" [262].
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This allows researchers and clinicians to identify potential pitfalls and opportunities
for improvement before deploying such systems in real clinical settings.

Fig. 4.5: Our spine segmentation applica-
tion deployed in the research PACS system.
Given a compatible spinal MRI recording, a
single button click runs our deep learning-
based segmentation model, and the results
are displayed to the user inside the PACS
workstation.

Despite its importance, deploying
deep learning models into radiology work-
flow continues to be a challenge [149, 230].
One contributing factor is the technical
obstacles encountered when attempting
to seamlessly integrate these models into
the existing infrastructure, such as con-
tainerizing models and orchestrating with
other systems (e.g., Docker [144] or Ku-
bernetes [29]) and reading and storing
DICOMs correctly in PACS.

To address these integration chal-
lenges, we have been working closely
with researchers from the Workflow-
Integrated Machine Learning (WIML) [147]
project at MMIV, aiming to implement
deep learning projects in the Western Nor-
way Regional Health Authorities (Helse
Vest RHF), a network of four major hos-
pitals and about 30 healthcare institutions. A significant component in the WIML
infrastructure is the research PACS.

As the name implies, the research PACS is explicitly designed to house research
project data imported as pseudonymized scans from the clinical PACS3. The data in
research PACS are stored as DICOM with an enhanced DICOM data model, including
the project name and data collection visit information.

The first deep learning-based workflow in the system was created by Digernes and
Ditlev-Simonsen [51], applying an early version of fastMONAI [96]. They used the
BraTS brain tumor segmentation dataset [12, 13, 143] to construct a tumor segmentation
model to assess the workflow’s obstacles and possibilities. We have built upon this
work and added functionalities for running models automatically using APIs from
research PACS for projects within Western Norway Regional Health Authorities. Figure
4.5 displays a screenshot of our spine segmentation model [94] applied to an unseen
subject from the clinical trial AIM (Antibiotics In Modic Changes) [212].

As discussed in the study, we observed some performance variability among
subjects. A natural next step would involve assessing the model’s performance on a
larger cohort within this system and investigating the causes of this variability (e.g.,
differences in scanner settings, anatomical variation, and other factors). To label a more
extensive dataset in future studies, we plan to implement an active learning setup in
research PACS that identifies and prioritizes the most informative samples for human
experts to label (see Section 4.1).

Moreover, in future work, we aim to compare our current solution with MONAI
Deploy [33], designed for deploying deep learning-based applications into clinical

3The hospitals in Helse Vest RHF utilize Sectra IDS7 as their PACS solution.
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workflows 4.

4.4 Publishing, open science, and reproducibility

The number of AI publications over the past decade has been rising rapidly, resembling
an exponential growth curve [256]. However, machine learning-based science is faced
with major reproducibility issues. In [99], the authors analyzed 20 review papers
across 17 different research fields, focusing on errors when applying machine learning,
and found that a total of 329 research papers were not fully reproducible due to how
machine learning was implemented in their work. In some cases, this resulted in
overoptimistic performance claims. Huston [88] reported a similar concern when
attempting to compare their model against what was reported to be state-of-the-art.
Since the source code for the project they wanted to compare with was not published,
the researchers had to write their own code based on the description in the paper.
However, even after two months of work, they could not get close to the reported
results5.

This example shows the importance of transparency in machine learning research.
When source code and data are not openly shared, it becomes challenging for other
researchers to verify the validity of the reported results or build upon existing work to
make progress in the field. The lack of transparency can lead to wasted time, effort,
and resources as researchers attempt to replicate findings based on limited information.
Moreover, the lack of transparency hinders the scientific community’s ability to identify
potential flaws, biases, and inconsistencies in the reported results [99].

Although sharing source code and data is widely acknowledged as a crucial
component of scientific research, over the years, many researchers in the deep learning
field seem to have prioritized getting their findings published and neglected to share
their code, data, and documentation that is necessary for others to reproduce their
work. This is perhaps especially true for many industry researchers [41, 67, 122, 151].

For example, three years ago, a group of researchers from Google Health demon-
strated the potential use of deep learning models for breast cancer screening [141].
However, despite the promising results, an investigation by Haibe-Kains et al. [67]
revealed that the study was missing crucial details about the data processing, model
development, and training pipelines, making it difficult to reproduce their work.
As highlighted in their report, this restricts the scientific impact and hinders other
researchers from building upon it in future studies.

In response to this critique, Google Health researchers acknowledged the importance
of transparency and reproducibility in scientific research [139]. As a result, they
provided additional methodological details in an addendum to the original article [140].
A noteworthy point in their response was that most of their work builds on open-source
software implementations.

4This video gives an overview and demonstration of MONAI Deploy, recorded during the MONAI
Bootcamp 2023: https://youtu.be/mpVEiNW9qtw. In the video, the presenter discusses plans to create
short tutorials for the various elements of the deployment process, aiming to help users better understand
the framework

5This is something I, and likely most other machine learning researchers [62], have experienced many
times.
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In Chapter 3, we discussed the rapid emergence of commercial AI applications in
diagnostic radiology. Despite this growth, only a few applications have till now shown
clinical value. Moreover, to the author’s knowledge, most of these applications are
closed source and provide limited information on product specifications (some refer to
peer-reviewed papers on performance, but these are short on implementation details).
For instance, in one MDR-approved breast cancer detection application, the vendor
describes the application as suitable for women at any age but fails to provide further
details.

Understandably, vendors might be unable or unwilling to disclose all the information
about their applications due to various reasonable concerns, including competition in
the market. However, as emphasized by Varoquaux [233], models in medicine should
document their limitations and the choices made during their training process. One
way to provide more information could be to adopt the concept of model cards [146].
Model cards provide short documentation of a model’s strengths and limitations (e.g.,
performance, potential biases, etc.), allowing researchers and developers to understand
the application better. Note that the proposed EU Artificial Intelligence Act is relevant
to these issues. However, the details remain ambiguous [56, 57].

Such transparency would build trust in the application’s validity, potentially
accelerating the adoption in clinical settings and ultimately improving patient outcomes.

This is, of course, also true for research-oriented work. For example, Rajpurkar et
al. [182] emphasize that standards for transparency in reporting and validation are
needed to build trust in deep learning-based research. Luckily, numerous platforms
exist to make deep learning research more transparent and reproducible, including
code-sharing platforms and tools for sharing trained models.

In recent years, many AI conferences and journals have encouraged authors to
share code and details about the data used to construct their methods by implementing
reproducibility checklists [73, 148, 173]. In table 4.1, we re-print a valuable guide for
the development of deep learning models for medical image analysis (Checklist for
Artificial Intelligence in Medical Imaging, CLAIM), developed by Mongan et al. [148].

Table 4.1: Checklist for Artificial Intelligence in Medical Imaging (CLAIM) Mongan J,
Moy L, Kahn C E. Checklist for Artificial Intelligence in Medical Imaging (CLAIM):
A Guide for Authors and Reviewers [148]. Radiology: Artificial Intelligence 2020.
Published online on March 25, 2020. DOI: 10.1148/ryai.2020200029. Table reproduced
as originally published with permission from ©Radiological Society of North America.

Section/Topic No. Item

TITLE or ABSTRACT

1 Identification as a study of AI methodology, specifying the cate-
gory of technology used (e.g., deep learning)

ABSTRACT

Continued on next page
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Section/Topic No. Item

2 Structured summary of study design, methods, results, and con-
clusions

INTRODUCTION

3 Scientific and clinical background, including the intended use and
clinical role of the AI approach

4 Study objectives and hypotheses

METHODS

Study Design 5 Prospective or retrospective study

6 Study goal, such as model creation, exploratory study, feasibility
study, noninferiority trial

Data 7 Data sources

8 Eligibility criteria: how, where, and when potentially eligible
participants or studies were identified (e.g., symptoms, results
from previous tests, inclusion in registry, patient-care setting,
location, dates)

9 Data preprocessing steps

10 Selection of data subsets, if applicable

11 Definitions of data elements, with references to common data
elements

12 De-identification methods

13 How missing data were handled

Ground Truth 14 Definition of ground truth reference standard, in sufficient detail
to allow replication

15 Rationale for choosing the reference standard (if alternatives exist)

16 Source of ground truth annotations; qualifications and preparation
of annotators

17 Annotation tools

18 Measurement of inter- and intrarater variability; methods to miti-
gate variability and/or resolve discrepancies

Data Partitions 19 Intended sample size and how it was determined

Continued on next page
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Section/Topic No. Item

20 How data were assigned to partitions; specify proportions

21 Level at which partitions are disjoint (e.g., image, study, patient,
institution)

Model 22 Detailed description of model, including inputs, outputs, all
intermediate layers and connections

23 Software libraries, frameworks, and packages

24 Initialization of model parameters (e.g., randomization, transfer
learning)

Training 25 Details of training approach, including data augmentation, hyper-
parameters, number of models trained

26 Method of selecting the final model

27 Ensembling techniques, if applicable

Evaluation 28 Metrics of model performance

29 Statistical measures of significance and uncertainty (e.g., confi-
dence intervals)

30 Robustness or sensitivity analysis

31 Methods for explainability or interpretability (e.g., saliency maps)
and how they were validated

32 Validation or testing on external data

RESULTS

Data 33 Flow of participants or cases, using a diagram to indicate inclusion
and exclusion

34 Demographic and clinical characteristics of cases in each partition

Model performance 35 Performance metrics for optimal model(s) on all data partitions

36 Estimates of diagnostic accuracy and their precision (such as 95%
confidence intervals)

37 Failure analysis of incorrectly classified cases

DISCUSSION

Continued on next page
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Section/Topic No. Item

38 Study limitations, including potential bias, statistical uncertainty,
and generalizability

39 Implications for practice, including the intended use and/or
clinical role

OTHER INFORMATION

40 Registration number and name of registry

41 Where the full study protocol can be accessed

42 Sources of funding and other support; role of funders

A report [173] from the NeurIPS 2019 reproducibility program revealed that when
NeurIPS introduced a reproducibility checklist, the number of papers with code
submitted increased from <50% to 75%. Moreover, many reviewers explored the code
when evaluating submissions.

While sharing source code is crucial for reproducibility, it is not enough. To
reproduce and validate an experiment, you need the exact data used to train and
evaluate the reported model. Unfortunately, as discussed earlier in this thesis, this is not
always possible in domains such as medicine for various reasons (e.g., patient privacy,
laws, etc.). To address this limitation, the above-mentioned report [173] suggests that
researchers should provide complementary empirical results on an open-source dataset
alongside the results from any confidential dataset.

In this thesis, we have strived to take steps toward making the included publications
reproducible and transparent through sharing code, applying open-source data for
evaluation, and describing datasets in detail in cases where we could not share or find
open-source datasets6. In our spine segmentation study [94], we share not only the
source code but also the trained weights and a model card, enabling other researchers
to understand the model and its limitations better, validate the reported results and
generate segmentation masks for their own data.

Furthermore, our fastMONAI article is provided as a computational essay [52, 160,
243]. In short, an essay that combines text and illustrations with executable code.
Computational essays enable readers to explore and validate ideas by rerunning
computations themselves. We use Jupyter Notebook [106] (described in Chapter 1)
to achieve this integration. Furthermore, the paper is made available on Google
Colab [23], enabling users to run the notebook on the cloud using free GPU instances
and effortlessly install the required libraries with one click using any computing device
with a web browser (including smartphones).

6To the best of the author’s knowledge, there are no open-source data available with similar sequences
for cervical cancer as used in our study [75]. We looked for prostate cancer datasets with similar MRI
sequences, but none with labels were found at the time of conducting the study. In future research, we
plan to examine the Prostate158 [2] and PI-CAI (Prostate Imaging: Cancer AI) [198] datasets (published
after our study) for a potential transfer learning-based study.
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Using Jupyter Notebook and cloud computing services for writing articles gives
readers an interactive and dynamic platform for engaging with the content, gaining a
deeper understanding of the concepts presented in the article, and exploring related
ideas. In future work, we plan to use this setup for other research articles in cases
where it is feasible and useful and encourage other researchers to do the same.
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CHAPTER 5
SUMMARY OF PAPERS

This chapter contains a summary of the articles produced during the development
of this thesis. The main contribution of the thesis is paper A, which introduces our
library, fastMONAI. In all our other work (B, C, D, E), we used fastMONAI and our
precursors that culminated in fastMONAI. In addition, the author of this thesis has
published a paper related to remote sensing [97]. This work is not included in the
thesis, but it serves as a demonstration of the generic nature of deep learning methods.

Figure 5.1 provides an overview of all the articles included in this thesis.

Fig. 5.1: The illustration gives an overview of the thesis. Paper A presents our
fastMONAI library. The library was constructed as a result of the research projects
reported in Papers B to E and forms a core methodological component of these projects.



Summary of papers

5.1 Paper A: fastMONAI: a low-code deep learning library for
medical image analysis

In paper A [96], we present fastMONAI, a low-code Python-based open-source deep
learning library built on top of fastai [80], MONAI [33], and TorchIO [170]. We
created the library to simplify the use of state-of-the-art deep learning techniques in
3D medical image analysis for solving classification, regression, and segmentation
tasks. fastMONAI provides users with functionalities to step through data loading,
preprocessing, training, and result interpretations. The entire library is developed
using nbdev [81], a tool for exploratory programming that allows you to write test and
document a Python library in Jupyter Notebooks [106].

The paper was automatically generated from a Jupyter Notebook available in the
fastMONAI GitHub repo: https://github.com/MMIV-ML/fastMONAI. By using the
notebook version of the paper, the reader can step through the paper’s content and
reproduce all the text, computations, figures, and results.

5.2 Paper B: 2D and 3D U-Nets for skull stripping in a large and
heterogeneous set of head MRI using fastai

Skull stripping in brain imaging is the removal of the parts of images corresponding
to non-brain tissue. Fast and accurate skull stripping is crucial for numerous medical
brain imaging applications, e.g., registration, segmentation, and feature extraction, as
it eases subsequent image processing steps. In paper B [95], we propose and compare
two novel skull stripping methods based on 2D and 3D convolutional neural networks
trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted MRI
images from 1681 healthy subjects. We investigated the performance of the models by
testing them on 927 images from 324 subjects set aside from our collection of data, in
addition to images from an independent, large brain imaging study: the IXI dataset (n
= 556). Our models achieved mean Dice scores higher than 0.978 and Jaccard indices
higher than 0.957 on all test sets, making predictions on new unseen brain MR images
in approximately 1.4s for the 3D model and 12.4s for the 2D model. In addition, a
preliminary exploration of the model’s robustness to variation in the input data showed
favorable results when compared to a traditional, well-established skull stripping
method. With further research to increase the models’ robustness, such accurate and
fast skull stripping methods can potentially form a valuable component of brain MRI
analysis pipelines. A list of all the data sources used in our study is available on
GitHub: https://github.com/MMIV-ML/Skull-stripping-NIK20201.

5.3 Paper C: Pulmonary nodule classification in lung cancer from
3D thoracic CT scans using fastai and MONAI

In paper C [98], we construct a convolutional neural network to classify pulmonary
nodules as malignant or benign in the context of lung cancer. To build and train

1A tutorial for constructing a skull-stripping model is provided in paper A
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5.4 Paper D: Fully automatic whole-volume tumor segmentation in cervical cancer

our model, we use our novel extension of the fastai deep learning framework to 3D
medical imaging tasks combined with the MONAI deep learning library. We train
and evaluate the model using an extensive, openly available annotated thoracic CT
scan data set. Our model achieves a nodule classification accuracy of 92.4% and a
ROC AUC of 97% when compared to a “ground truth” based on multiple human
raters’ subjective assessment of malignancy. We further evaluate our approach by
predicting patient-level cancer diagnoses, achieving a test set accuracy of 75%. This is
higher than the 70% obtained by aggregating the human raters’ assessments. Finally,
class activation maps are applied to investigate the features used by our classifier,
enabling a rudimentary level of explainability for what is otherwise close to “black box”
predictions. As the classification of structures in chest CT scans is useful across various
diagnostic and prognostic tasks in radiology, our approach has broad applicability.
We aimed to construct a fully reproducible system that can be compared to newly
proposed methods and easily be adapted and extended; the complete source code of
our work is available at https://github.com/MMIV-ML/Lung-CT-fastai-2020.

5.4 Paper D: Fully automatic whole-volume tumor segmentation
in cervical cancer

Uterine cervical cancer (CC) is the most common gynecologic malignancy worldwide.
Whole-volume radiomic profiling from pelvic MRI may yield prognostic markers for
tailoring treatment in cervical cancer. However, radiomic profiling relies on manual
tumor segmentation, which is unfeasible in the clinic. In paper D [75], we present a
fully automatic method for the 3D segmentation of primary cervical cancer lesions
using state-of-the-art deep learning techniques.

In 131 cervical cancer patients, the primary tumor was manually segmented
on T2-weighted MRI by two radiologists (R1, R2). The patients were split into a
training/validation (n = 105) and a test- (n = 26) cohort. The deep learning model’s
segmentation performance, when compared with R1/R2, was lower in terms of both
median Dice coefficients (DSCs) (DL-R1 = 0.60, DL-R2 = 0.58, R1-R2 = 0.78) and median
Hausdorff distances (DL-R1 = 29.2 mm; DL-R2 = 30.2 mm, R1-R2 = 14.6 mm) in the test
cohort.

Although the achieved segmentation performance of the trained deep learning
model is slightly lower than that for radiologists, this study demonstrates its po-
tential to enable automated estimation of tumor size and primary cervical cancer
tumor segmentation. The source code is available at https://github.com/MMIV-ML/
cervical-cancer-segmentation-2022.

5.5 Paper E: Multi-Center CNN-based spine segmentation from
T2w MRI using small amounts of data

Segmentation of the spinal tissues on MRI is the basis for quantitative analyses,
but time-consuming if done manually. In paper E [94], we construct a pipeline
for automatic vertebrae segmentation from T2w MRI scans, assessing performance
and generalizability by external validation. Our study used 15 scans from one site
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(Haukeland University Hospital, HUH) and 10 scans from another (Sahlgrenska
University Hospital, SUH). MRI experts manually delineated the vertebral bodies
Th12-L5 on all the HUH data and a subset of six scans from SUH. We trained multiple
convolutional neural networks, assessing the performance in an experimental design
tailored to small-data contexts and also on external data. Our best model achieved
a mean Dice score of 0.899. This is comparable to results in the literature, but our
system required much less training data. Furthermore, the trained model can form a
component in an active learning setup to lower the time needed for manual delineation.
The source code is available at https://github.com/MMIV-ML/fastMONAI/tree/
master/research.
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Summary
“Let us change our traditional attitude to the construction of programs: Instead of imagining that our
main task is to instruct a computer what to do, let us concentrate rather on explaining to human beings
what we want a computer to do.”(Knuth 1984)

In this work, we present fastMONAI, a low-code Python-based open source deep learning library built on top of
fastai (Howard and Gugger 2020b, 2020a), MONAI (Cardoso et al. 2022), and TorchIO (Pérez-García, Sparks,
and Ourselin 2021). We created the library to simplify the use of state-of-the-art deep learning techniques in 3D
medical image analysis for solving classification, regression, and segmentation tasks. fastMONAI provides users
with functionalities to step through data loading, preprocessing, training, and result interpretations.

We’ve structured the paper as follows: it first discusses the need for the research, then showcases various applications
and the library’s user-friendliness, followed by a discussion about documentation, usability, and maintainability.

Note that this paper is automatically generated from a Jupyter Notebook available in the fastMONAI GitHub repo:
https://github.com/MMIV-ML/fastMONAI. Using the notebook makes it possible to step through the paper’s
content and reproduce all the text, computations, figures, and results.

Statement of need
Deep learning develops at breakneck speed, with new models, techniques, and tricks constantly appearing. As a
result, it is easy to get stuck on something less-than-optimal when using deep learning to solve a particular set of
problems while also being in danger of getting lost in minor technical details when constructing models for concrete
tasks. Therefore, the fastai deep learning library (Howard and Gugger 2020b, 2020a) provides both a high-level
API that automatically incorporates many established best practices and a low-level API in which one can modify
details related to model architectures, training strategies, data augmentation, and more.

fastai is a general deep learning library built on top of PyTorch. However, medical imaging has a variety of
domain-specific demands, including medical imaging formats, data storage and transfer, data labeling procedures,
domain-specific data augmentation, and evaluation methods. MONAI Core (Cardoso et al. 2022) and TorchIO
(Pérez-García, Sparks, and Ourselin 2021) target deep learning in healthcare imaging, incorporating multiple best
practices. MONAI Core, the primary library of Project MONAI, is built on top of PyTorch and provides domain-
specific functionalities for medical imaging, including network architectures, metrics, and loss functions. TorchIO
is a Python-based open-source library for efficiently loading, preprocessing, and augmenting 3D medical images.

Three key features impacting the performance of a deep learning system are the network architecture, training
methods, and data (Woo et al. 2023). Our combination of fastai, MONAI Core, and TorchIO into fastMONAI,
together with custom-made modules like our MedDataset, makes it possible to easily construct, train, and use
powerful models with a range of different architectures for a variety of medical imaging tasks, while using established
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best practices for training, for reading data, for performing data augmentation, and for other domain-specific
capabilities incorporated into these three libraries.

The library is developed at The Mohn Medical Imaging and Visualization Centre (MMIV), which is part of the
Department of Radiology at Haukeland University Hospital. One of the center’s key objectives is to develop
new quantitative methods for high-field MRI, CT, and hybrid PET/CT/MR in preclinical and clinical settings,
aiming to improve decision-making and patient care. fastMONAI supports such efforts by easing the entry for new
practitioners into medical AI and making it possible to quickly construct good baseline models while still being
flexible enough to enable further optimizations.

Using fastMONAI
In this section, we will explore how to use our library. In fastMONAI’s online documentation https://fastmonai.no,
multiple tutorials cover classification, regression, and segmentation tasks.

Classification
After installing the library, the first step is to import the necessary functions and classes. For example, the following
line imports all of the functions and classes from the fastMONAI library:
from fastMONAI.vision_all import *

Downloading external data

To demonstrate the use of fastMONAI. we download the NoduleMNIST3D dataset from MedMNIST v2 (Yang et
al. 2023), a dataset containing lung nodules with labels indicating whether the nodules are benign (b) or malignant
(m):
df, _ = download_NoduleMNIST3D(max_workers = 8)

Inspecting the data

Let’s look at how the processed DataFrame is formatted:
print(df.head(1).to_markdown())

img_path labels is_val
../data/NoduleMNIST3D/train_images/0_nodule.nii.gz b False

In fastMONAI, various data augmentation techniques are available for training vision models, and they can also
optionally be applied during inference. The following code cell specifies a list of transformations to be applied
to the items in the training set. The complete list of available transformations in the library can be found at
https://fastmonai.no/vision_augment.
item_tfms = [PadOrCrop(size = 28), RandomAffine(degrees = 35, isotropic = True),

ZNormalization()]

Before feeding the data into a model, we must create a DataLoaders object for our dataset. There are several ways
to get the data in DataLoaders. In the following line, we call the ImageDataLoaders.from_df factory method,
which is the most basic way of building a DataLoaders.

Here, we pass the processed DataFrame, define the columns for the images fn_col and the labels label_col, some
transforms item_tfms, voxel spacing resample, and the batch size bs.
dls = MedImageDataLoaders.from_df(df, fn_col = 'img_path', label_col = 'labels',

item_tfms = item_tfms, resample = 1, bs = 64)

We can now take a look at a batch of images in the training set using show_batch :
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dls.show_batch(max_n = 2, anatomical_plane = 2)

Choosing a loss function

Class imbalance is a common challenge in medical datasets, and it is something we’re facing in our example dataset:
print(df.labels.value_counts())

b 986
m 337

There are multiple ways to deal with class imbalance. A straightforward technique is to use balancing weights in the
model’s loss function, i.e., penalizing misclassifications for instances belonging to the minority class more heavily
than those of the majority class.
train_labels = df.loc[~df.is_val]['labels'].tolist()
class_weights = get_class_weights(train_labels)
print(class_weights)

tensor([0.6709, 1.9627])
loss_func = CrossEntropyLossFlat(weight = class_weights)

We’re now ready to construct a deep learning classification model.

Create and train a 3D deep learning model

We import a classification network from MONAI and configure it based on our task, including defining the input
image size, the number of classes to predict, channels, etc.
from monai.networks.nets import Classifier

model = Classifier(in_shape = [1, 28, 28, 28], classes = 2,
channels = (8, 16, 32, 64), strides=(2, 2, 2))

Then we create a Learner, which is a fastai object that combines the data and our defined model for training.
learn = Learner(dls, model, loss_func = loss_func, metrics = accuracy)

learn.fit_one_cycle(4)

epoch train_loss valid_loss accuracy time
0 0.568710 0.464355 0.780303 00:02
1 0.532495 0.512985 0.818182 00:02
2 0.480088 0.471735 0.829545 00:02
3 0.438136 0.436847 0.825758 00:02

Note: Small random variations are involved in training CNN models. Hence, when running the notebook, you may
see different results.

With the model trained, let’s look at some predictions on the validation data. The show_results method plots
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instances, their target values, and their corresponding predictions from the model.
learn.show_results(max_n = 2, anatomical_plane = 2)

Model evaluation and interpretation

Let’s look at how often and for what instances our trained model becomes confused while making predictions on
the validation data:
interp = ClassificationInterpretation.from_learner(learn)

interp.plot_confusion_matrix()

Here are the two instances our model was most confused about (in other words, most confident but wrong):
interp.plot_top_losses(k = 2, anatomical_plane = 2)

Improving results using test-time augmentation

Test-time augmentation (TTA) is a technique where you apply data augmentation transforms when making predic-
tions to produce average output. In addition to often yielding better performance, the variation in the output of
the TTA runs can provide some measure of its robustness and sensitivity to augmentations.
preds, targs = learn.tta(n = 4);
print(accuracy(preds, targs))

TensorBase(0.8371)
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Semantic segmentation
In the following, we look at another computer vision task while also taking a closer look at the fastMONAI library.
Our task will be semantic segmentation, and we’ll use the IXI Tiny dataset provided by TorchIO (a small version
of the IXI dataset (Alansary et al., n.d.)) with 566 3D brain MRI scans. In semantic segmentation, a class label
is assigned to each pixel or voxel in an image, in this case, distinguishing brain tissue from non-brain tissue, i.e.,
skull-stripping or brain extraction.
STUDY_DIR = download_ixi_tiny(path = '../data')

df = pd.read_csv(STUDY_DIR/'dataset.csv')

Inspecting the data

The fastMONAI class MedDataset can automatically extract and present valuable information about your dataset:
med_dataset = MedDataset(path = STUDY_DIR/'image', reorder = True, max_workers = 6)

data_info_df = med_dataset.summary()
print(data_info_df.head().to_markdown())

dim0 dim1 dim2 vx0 vx1 vx2 orient example_path total
0 44 55 83 4.13 3.95 2.18 RAS+ ../data/..IXI002.. 566

resample, reorder = med_dataset.suggestion()
print(resample, reorder)

[4.13, 3.95, 2.18] True

We can get the largest image size in the dataset with the recommended resampling:
img_size = med_dataset.get_largest_img_size(resample)
print(img_size)

[44.0, 55.0, 83.0]

In this case, we choose the following size as some network architectues requires the tensor to be divisible by 16.
size = [48, 48, 96]

item_tfms = [PadOrCrop(size),
RandomAffine(scales = 0.1, degrees = 5, p = 0.5), RandomFlip(p = 0.5),
ZNormalization()]

Loading the data

As we mentioned earlier, there are several ways to get the data in DataLoaders. In this section, let’s build the data
loaders using DataBlock. Here we need to define what our input and target should be (MedImage and MedMaskBlock
for segmentation), how to get the images and the labels, how to split the data, item transforms that should be
applied during training, reorder voxel orientations, and voxel spacing. Take a look at fastai’s documentation for
DataBlock for further information: https://docs.fast.ai/data.block.html#DataBlock.

NB: It is crucial to select an appropriate splitting strategy. For example, one should typically avoid having data
from the same patient in both the training and the validation or test set. However, in the IXI data set this is not
an issue, as there is only one image per patient.
dblock = MedDataBlock(blocks=(ImageBlock(cls = MedImage), MedMaskBlock),

splitter=RandomSplitter(valid_pct = 0.2, seed = 42),
get_x = ColReader('t1_path'), get_y = ColReader('labels'),
item_tfms = item_tfms, reorder = reorder, resample = resample)
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Now we pass our processed DataFrame and the batch size (bs) to create a DataLoaders object:
dls = dblock.dataloaders(df, bs = 8)

dls.show_batch(max_n = 2, anatomical_plane = 2)

Network architectures and loss functions

You can import various models and loss functions directly from MONAI Core, as shown below:
from monai.networks.nets import UNet, AttentionUnet
from monai.losses import DiceLoss, DiceFocalLoss

loss_func = CustomLoss(loss_func=DiceFocalLoss(sigmoid = True))

model = AttentionUnet(spatial_dims = 3, in_channels = 1, out_channels = 1,
channels = (16, 32, 64, 128), strides = (2, 2, 2))

In this task, we use the Ranger optimizer (Wright 2019), a optimization algorithm that combines RAdam and
Lookahead.
learn = Learner(dls, model, loss_func = loss_func, opt_func = ranger,

metrics = [binary_dice_score, binary_hausdorff_distance])

Finding a good learning rate

We used the default learning rate before, but we might want to find a better value. For this, we can use the learning
rate finder of fastai:
lr = learn.lr_find()
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Training the model

Now we can train the model. This time we use fit_flat_cos method, which is a better learning rate policy for
the Ranger optimzer:
learn.fit_flat_cos(2, lr.valley)
learn.save('model-1')

epoch train_loss valid_loss dice_score hausdorff_distance time
0 0.448831 0.355411 0.932139 7.755924 00:16
1 0.337796 0.278777 0.959338 5.635414 00:15

Exporting and sharing models

We can export the model and share both the trained weights and the learner on HuggingFace and use tagging for
marked version release. Version control for shared models is essential for tracking changes and being able to roll
back to previous versions if there are any issues with the latest model in production.
learn.export('models/export.pkl')
store_variables('models/vars.pkl', size, reorder, resample)

Documentation, usability, and maintainability
We have written the entire fastMONAI library using nbdev, a tool for exploratory programming that allows you to
write, test, and document a Python library in Jupyter Notebooks. fastMONAI contains several practical tools to
ensure the software’s user-friendliness.

fastMONAI comes with a documentation page https://fastmonai.no and step-by-step tutorials on how to use
the software for various medical imaging tasks (e.g., classification, regression, and segmentation). Tests are written
directly in notebooks, and continuous integration with GitHub Actions runs the tests on each push, making software
development easier with multiple collaborators.

To ease further extensions of our library through contributions, we have added a short guide on how to contribute
to the project. As mentioned, this paper is written as a notebook and automatically converted to a markdown file.
The latest version is always available on GitHub.

Research projects using fastMONAI
The fastMONAI library has been used for various medical imaging tasks, including predicting brain age using
T1-weighted scans in (Kaliyugarasan, Lundervold, and Lundervold 2020), skull-stripping in (Kaliyugarasan et al.
2020), pulmonary nodule classification from CT images in (Kaliyugarasan, Lundervold, and Lundervold 2021),
and tumor segmentation in cervical cancer from multi-parametric pelvic MRI in (Hodneland, Kaliyugarasan, et al.
2022). Recently, it was also used for vertebra segmentation in a multi-center study (Kaliyugarasan, Lundervold, et
al. 2023).
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Selvikvåg Lundervold1,2,*, for the Alzheimer’s Disease Neuroimaging Initiative**, and for the

Australian Imaging Biomarkers and Lifestyle flagship study of ageing***

1Mohn Medical Imaging and Visualization Centre, Dept. of Radiology, Haukeland University Hospital, Bergen, Norway
2Dept. of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied

Sciences, Bergen, Norway
3Dept. of Biomedicine, University of Bergen, Norway

4Institute of Electronics, Lodz University of Technology, Poland
*All authors contributed equally to the work

**Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation

of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI
investigators can be found at:

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
***Data used in the preparation of this article was obtained from the Australian Imaging Biomarkers and Lifestyle flagship
study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which was
made available at the ADNI database. The AIBL researchers contributed data but did not participate in analysis or writing

of this report. AIBL researchers are listed at www.aibl.csiro.au.

Abstract
Skull stripping in brain imaging is the removal of the parts of images
corresponding to non-brain tissue. Fast and accurate skull stripping
is a crucial step for numerous medical brain imaging applications, e.g.
registration, segmentation and feature extraction, as it eases subsequent
image processing steps. In this work, we propose and compare two novel
skull stripping methods based on 2D and 3D convolutional neural networks
trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted
MRI images from 1681 healthy subjects. We investigated the performance of
the models by testing them on 927 images from 324 subjects set aside from
our collection of data, in addition to images from an independent, large brain
imaging study: the IXI dataset (n = 556). Our models achieved mean Dice
scores higher than 0.978 and Jaccard indices higher than 0.957 on all tests
sets, making predictions on new unseen brain MR images in approximately
1.4s for the 3D model and 12.4s for the 2D model. A preliminary exploration
of the models’ robustness to variation in the input data showed favourable
results when compared to a traditional, well-established skull stripping
method. With further research aimed at increasing the models’ robustness,
such accurate and fast skull stripping methods can potentially form a useful
component of brain MRI analysis pipelines.

1 Introduction
Magnetic resonance imaging of the brain
Magnetic resonance imaging (MRI) is a medical imaging technology (modality) used
in radiology to acquire information in space and time about structure (anatomy) and

This paper was presented at the NIK-2020 conference; see http: // www. nik. no .
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function (physiology) of tissues and organs in the body. MRI scanners use a combination
of strong magnetic fields, magnetic field gradients for spatial encoding and decoding
of nuclear spin populations, typically protons (e.g. water) in different chemical and
microstructural environments, radio waves, and image reconstruction algorithms working
in complex-valued Fourier space. This is used to generate 2D, 3D, 3D+time, or even
higher dimensional images of organs, providing information about tissue states and
physiological and biochemical processes. Among the most frequent organs subject to
MRI examinations is the brain. There are several reasons for this: (i) MRI measurements
can collect unsurpassed rich and detailed soft tissue information from the living brain in
health and disease with little risk for the patient, and at multiple times during a disease
process; (ii) compared to most other parts of the body the brain is an organ for which
invasive biopsies (tissue samples) are rarely indicated, for obvious reasons; (iii) the brain
within the skull can be kept rather stationary in the head coil during MR measurement
time (total examination time is usually 15 - 45 min) in contrast to e.g. the beating heart
or abdominal organs that move due to respiration and pulsations causing displacements
and movement artifacts that are challenging to correct for, and finally (iv) most of the new
MRI measurement techniques (e.g. high resolution structural MRI, diffusion MRI and
functional MRI) and advanced image analysis developments tend to first enter the brain
and neuro-imaging field before being adapted and applied to other organs.

Deep learning in brain imaging
Recent years’ surge of interest in image analysis approaches based on deep learning is a
case in point [1]. Considerable advances in computers’ ability to extract meaningful,
actionable information from complicated and heterogeneous datasets have resulted in
remarkable achievements in general computer vision, natural language processing, data
synthesis, sequence analysis, robotics, the analysis of tabular structured datasets, and
more. Driven by these advances, the field of artificial intelligence is experiencing a
tremendous amount of attention from researchers, industry, funding agencies, government
and entrepreneurs, leading to rapid progress in methods, applications and products.
Artificial intelligence in medicine has a long history, dating back to at least the early
1970s1, but the field hasn’t yet had a broad impact on medical practice [3]. Recently,
the possibilities of using deep learning on medical data has proven to be highly potent,
leading to a torrent of publications across many medical disciplines: radiology, psychiatry,
dermatology, pathology, ophthalmology, cardiology, electronic health records, drug
discovery, genome sequencing, and much more. See the continuously updated review
https://greenelab.github.io/deep-review.2

What is skull stripping?
Skull stripping, also called brain extraction, is the task of extracting the cerebrum and the
cerebellum, including cerebrospinal fluid (CSF) in the subarachnoid space from a given
3D MRI head acquisition (cf. Fig. 1). The brainstem is cut according to a specified level
(e.g. distal part of medulla oblongata), assuming this level of the central nervous system
is located within the field of view of the image. See the white arrow in Fig. 2 d) for an
illustration. Inclusion of extra-dural tissue, e.g. skull, scalp, muscle or fat, or exclusion of
brain parenchyma proper, e.g. cuts into gray matter or white matter, are considered skull
stripping failures.

1e.g. the Mycin system of [2] aimed at identifying bacterial infections and recommending antibiotics
2A soon-to-be-updated published version of the survey from 2018 is available in [4]
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Figure 1: Anatomy of the head related to the brain extraction task. A coronal slice from a 3D
T1-weighted (T1w) MRI recording from the head showing the different anatomical structures
relevant to the segmentation task of skull stripping or brain extraction (data from [5]). Fully
automated segmentation of brain (ribbon) including gray matter (gm) and white matter (wm) of
the left and right hemisphere and the outer pial boundary of the brain (white continuous tracing
and the surface rendering in the small insert) was performed using Freesurfer v.7.1.1. CFS
= cerebrospinal fluid. A color version of the image is available here: https://tinyurl.com/
skull-NIK2020-figure1.

Skull stripping is important
Skull stripping is essentially a region of interest (ROI) segmentation procedure for
subsequent analysis of structural and functional image-derived properties, spatially
restricted to the brain, the brainstem (midbrain, pons, medulla oblongata) and the
cerebellum. Considering signal intensities, several tissues outside the skull will have
intensity distributions that overlap with principal tissue types within the brain. E.g.
skeletal muscle in the head have very similar signal intensities in T1w MRI acquisitions
to those observed in cerebral gray matter, and blood perfusion time courses or water
diffusion properties outside the skull might have similar shape or characteristics as
observed within the brain. Thus, for visualization purposes and for quantification (e.g.
mean value of an imaging-derived parameter with in the brain) a skull stripping procedure
is essential. Moreover, a spatially meaningful restriction of a 2D, 3D or 4D (multispectral
3D or 3D+time) image will help subsequent segmentation algorithms in further spatial
refinement and increased anatomical and functional granularity within the brain (e.g.
tissue classification in health and disease, or functional connectivity analysis from fMRI
recordings assuming all nodes in a network graph are located within the brain, or a sub-
region of the brain).

Skull stripping is difficult
There are many sources of difficulty for brain MRI image analysis methods, ranging from
scanner and acquisition protocol variation, to subject motion and varying head position
in the coil. One important challenge is the presence of a bias field. This is is usually
perceived as a low-frequency, smooth variation of intensities across a slice image that
degrades the MRI recording. The same tissue occurring at different locations within the
image can have different signal intensity, invalidating the piecewise constant property of
ideal images. Such MRI bias field is caused by an improper image acquisition process,
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such as radio frequency coil (B1) non-uniformity or inhomogeneity of the main magnetic
field (B0), this being more prevalent in older MRI scanners or in ultra high-field (B0≥ 7 T)
scanners. Trained radiologist are hardly influenced by this, as they easily compensate for
this non-biological intensity variation in image regions. However, the bias field can pose a
difficulty for quantitative image analysis algorithms assuming a spatially invariant relation
between signal intensity (gray level) distribution and underlying tissue type or state. In
the context of skull stripping and brain segmentation, a bias field correcting algorithm is
therefore typically applied as a preprocessing step. See Fig. 2 for an example.

Figure 2: Bias field correction and skull stripping using fsl_anat (same subject as in Fig. 1). a)
Original acquisition with substantial signal intensity inhomogeneity due to the presence of a bias
field. b) The bias field estimate (low-frequency and smooth intensity variation across the image).
c) Bias field corrected (i.e. suppressed) image. d) Skull stripping of the bias field corrected image.
Arrow indicate the cut of the brainstem, defining the lower boundary of the brain.

Related work
As it is such a fundamental task in brain image analysis there has been a lot of
research into skull stripping since the advent of brain MRI image analysis, leading to
many proposed methods. These can be roughly categorized into machine learning- and
conventional non-machine learning-based approaches. Among conventional methods
there’s a wide variety of approaches, based on surfaces, morphology, image intensity,
templates, or hybrids of these, resulting in a number of well-established, frequently used
skull stripping tools in brain image analysis pipelines [6], e.g. the Brain Extraction Tool
(BET) [7] of the FMRIB Software Library (FSL), v.6.0 [8], antsBrainExtraction
from Advanced Normalization Tools (ANTs) [9] and the 3dSkullStrip tool in AFNI
[10]. The machine learning approaches are either based on “classical" machine learning
models, e.g. SVMs, region growing, active contours, or based on deep neural networks.
It is the latter category that our own work belongs. Two recent illustrative examples of
related approaches are presented below.

In [11] the authors developed an automated skull stripping algorithm called HD-
BET that works for pre-contrast T1w, post-contrast T1w, T2w and FLAIR sequences.
Their three-dimensional U-Net-like CNN was trained on 6.586 MR images from 1568
exams of 372 patients collected at 25 different institutions in the EORTC-2610 study.
As ground truth brain masks they used BET as a starting point then had a radiologist do
visual inspection and corrections (i.e. a single rater). During training, the images were
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resampled to isotropic spacing of 1.5mm3 and patches of size 1283 voxels were randomly
sampled from the four different input modalities before being fed to the model. They
used a relatively large set of data augmentation techniques: randomly mirroring the image
patches along all axes, scaling, rotation and elastic deformations, gamma augmentation,
adding additive Gaussian noise, and Gaussian blurring. They scored their model on five
independent test sets: one created using the data from 12 institutions in the EORTC-2610
study not present in their training data, and the three openly available datasets LPBA40
from LONI, NFBS and CC-359, for which manually constructed ground truth masks are
available. On T1w images from the EORTC-2610 study, their model had a median Dice
score of 97.6 (97.0-98.0 IQR) and a median Hausdorff distance of 3.3 (2.2-3.3 IQR). On
the three openly available datasets their model obtained a Dice score of 97.5 (17.4-97.7),
98.2 (98.0-98.4), 96.9 (96.7-97.1), respectively, when compared to the provided ground
truth reference masks.

The CompNets of [12] are multi-pathway two-dimensional U-Net-like models with
an embedded W-Net-like component [13], tasked with extracting information from both
the brain and non-brain tissue in the input images. Their models were trained on T1w
images from 406 subjects aged 18-96 from the OASIS dataset, using the brain masks
provided with the OASIS dataset release as ground truth labels. All images were of
size 2563, and their models were trained using 2D slices of the 3D images, with no
data augmentation. After making predictions, the masks for each slice were stacked into
3D images. No postprocessing of the resulting predicted brain masked was performed.
In a two-fold cross-validation setup were the OASIS subjects are equally divided into
two chunks for training and testing, their best model achieved an average Dice score of
98.27±0.30.

Main contributions of our work
1. We construct high-performing skull-strip models from a large, heterogeneous

dataset sourced from seven different brain imaging studies. Our results compare
favourably with other state-of-the-art models based on deep learning, although
direct comparisons between methods are difficult because of the lack of an agreed
upon ground truth. This is an issue we discuss in our work.

2. With a novel combination of the MONAI deep learning library and our own extension
of the fastai library to 3D problems, we are able to use multiple interesting state-
of-the-art techniques for the construction and training of models.

3. We evaluate the performance of our models on data completely unseen during
model construction. Some of which were gathered by a brain imaging study using
different combinations of scanners and scanning protocols than those represented
in the training data.

4. Once a skull stripping approach reaches a certain average performance level, then
arguably the robustness to variation in the input data becomes more important than
increased average performance. Our work indicates that CNN-based approaches to
skull stripping have some robustness advantages over traditional methods.

5. The data used in our study is available to researchers through various project
websites (linked below), easing reproductions and comparisons with other skull
stripping methods.
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2 Methods and materials
Image datasets
We compiled a large collection of T1w images of healthy volunteers from a number of
different data sources3: ADNI, AIBL, IXI, PPMI, SLIM, Calgary-Campinas and SALD.
This is a highly heterogeneous collection, involving a large number of subjects, scanners
and scanner protocols, image sizes and voxel spacings, making it a challenge for any
model to make predictions, but also leading to models that are more robustness to such
variation. The studies were approved by the relevant Institutional Review Boards at each
site and informed consent was obtained from all subjects prior to enrollment. All methods
were carried out in accordance with relevant guidelines and regulation. Part of the data
material used was sourced from the ADNI database. The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI, positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of Mild Cognitive Impairment (MCI) and early
Alzheimer’s Disease (AD) [14]. We also used data collected by the AIBL study group.
AIBL study methodology has been reported previously [15].

Note that we selected the subjects that were marked as healthy throughout all these
longitudinal studies.

Image preprocessing and label generation
The steps used to automatically construct ground truth labels were performed using a set
of well-established, validated tools. There are no manual steps in this process, making it
easy to scale our approach to a large number of images. The DICOM recordings were first
converted to NIfTI data format using dicom2niix (v1.0.20190902, [16]). To reduce the
effect of scanner variation, we performed bias field correction, before producing masks
indicating the location of the brain. These last two steps were done using a combination
of multiple tools from the FMRIB Software Library (FSL) v.6.0 [8], collected in the
fsl_anat pipeline4: (i) reorientation to match the MNI152 standard template orientation
using reorient2std in FSL, (ii) bias field correction using FAST [17], (iii) linear and
nonlinear registration to standard MNI152 space using FLIRT and FNIRT [18, 19], from
which the brain was extracted [7]. The entire set of preprocessing steps takes on average
less than 10 minutes per volume on a standard workstation computer (e.g. on an Intel Core
i7-7700K CPU running Ubuntu 18.04 GNU/Linux). Finally, all volumes were resampled
to isotropic 1.0×1.0×1.0 mm3 voxel size with the use of the Convert3D Tool.

The preprocessed images and ground truth masks were used to create training and
testing datasets. Our 2D and 3D setups were based on exactly the same underlying
subjects and images, placed in common training and test sets. The training dataset for
our 3D model contained 2791 NIfTI files, while the two test sets, tes and IXI, consisted
of 934 and 561 images, respectively. For the 2D approach, each 3D volume (∼ 170 axial
slices) was split into a set of 2D axial cross-sections. The total number of image files used
to train the 2D model was then 469.116, while the two test datasets contained 157.036
and 95.520 image files, respectively.

3Links to all the data sources used in this work can be found here: https://github.com/MMIV-ML/
Skull-stripping-NIK2020

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat

Paper B 89



2D U-Net 3D U-Net

Optimizer Adam Adam

Base learning rate 0.0001 0.01

Loss function Binary Cross-Entropy Based on the Jaccard Index

Image size 128 x 128 160 x 160 x 92

Data augmentation Random rotation [−15°, 15°] and scaling [1.0, 1.05] Random rotation [−10°, 10°] and scaling [1.0, 1.1]

Dropout 0.5 0.5

Weight decay 0.01 0.01

Batch size 128 8

GPU NVIDIA Titan RTX 24GB 4 x NVIDIA Tesla V 1000 32GB

Table 1: Experimental settings for our 2D and 3D U-Net models.

Constructing and training the 2D and 3D models
We used two different U-Net models in this work: (i) A dynamic 2D U-Net using
a ResNet-34 model pre-trained on the ImageNet dataset for image feature extraction
(encoder) and PixelShuffle [20] with ICNR initalization [21] for upsampling (decoder),
implemented in the PyTorch-based fastai v1; (ii) a 3D U-Net implemented using
MONAI, a PyTorch based library for deep learning in healthcare imaging, and trained
using our own extension of the fastai library. The computer vision implementations
of the fastai library are mostly tailored to 2D imaging. We adapted the library to 3D
MR images by constructing new data loaders and data augmentation capabilities, as well
as adapting various 2D-specific functionality in the fastai library. This enables the use
of custom 3D CNNs while still supporting the highly impactful training techniques of
fastai. This includes the learning rate finder to find the optimum learning rate and the
one-cycle policy (e.g., learning rate changes during the training, related to what is called
superconvergence [22]). See Table 1 for details about experimental settings.

Performance evaluation
We evaluated the models using the two different test sets described above: (i) data put
aside from the training data repositories, 10% of each, making sure there were no subjects
appearing in both training and test and controlling for age by stratification over age
groups; (ii) the IXI dataset, i.e. data from a completely independent study of 561 subjects,
simulating a more realistic use-case for the models. For the hold-out set in (i), we report
both the overall results and the results on each repository.

As performance metrics we used the Sørensen-Dice similarity coefficient (DSC) and
the Jaccard index (Jacc), measuring the degree of overlap between the ground truth masks
generated by FSL and the model predictions. We also used the Hausdorff distance (Haus)
between the two masks as a metric. The DSC is the mean overlap of the masks, while
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Jacc is the union overlap, and Haus is a measure of extreme deviation between the masks:

DSC =
2|X ∩Y |
|X |+ |Y | , Jacc =

|X ∩Y |
|X |+ |Y |− |X ∩Y | , Haus = max{(h(X ,Y ),h(Y,X)}

where h(X ,Y ) identifies the voxel x ∈ X that is farthest from any voxel of Y and measures
the distance from x to its nearest neighbor in Y . This means that h(X ,Y ) first looks for
the nearest voxel in Y for every voxel in X , and then the largest of these values are taken
as the distance, which is the most mismatched point of X . Similarly for h(Y,X), meaning
that Haus(X ,Y ) is able to measure the degree of mismatch between ground truth X and
prediction Y from the distance of the point of X that is farthest from any point of Y , and
vice versa.

A data filter
While looking at some training images and their corresponding ground truth labels,
we observed a few images that were incorrectly labeled as shown in Fig. 3.

Figure 3: Three instances of fsl_anat seg-
mentation failure observed in our dataset.

In order to cope with this issue, we trained
a model on the entire training set (training
and validation) for a few epochs, and
manually looked at the data having DSC
< 0.8.

By applying this approach we ended up
removing 14 images from the training set
before training our final model. Note that
we used the same Dice threshold to look at
predictions made on test data and IXI with
our final model, which led to removing
additional 12 images (7 test + 5 IXI). Note
also that all images that were removed were clear FSL failures, not prediction failures,
confirmed by visual inspection.

3 Results
Figure 4 depicts pair-wise 2D/3D comparative violin plots with jittering showing the
distribution of the Dice coefficient for all MRI examinations across the collection of
test data cohorts. From this, we observe close to negligible differences in performance
between our 2D and 3D models. This is further illustrated by the results in Table 2,
showing only small differences in the performance metrics.
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Figure 4: Violin plot of the Dice scores obtained by our models on the test dataset. Column
names at the bottom of the plot refer to their database sources. The dots along the lower
tail of the DSC distributions indicate outliers. A color version of the image is available here:
https://tinyurl.com/skull-NIK2020-figure4.

Test IXI

Dice Jaccard Hausdorff Dice Jaccard Hausdorff

2D U-Net 0.9778 (0.0131) 0.9569 (0.024) 5.6711 (4.7215) 0.9791 (0.0076) 0.9591 (0.0140) 5.7811 (5.4826)

3D U-Net 0.9781 (0.0133) 0.9574 (0.024) 5.0558 (6.4009) 0.9796 (0.0077) 0.9601 (0.0140) 5.9220 (2.7330)

Table 2: The average (SD) values of Dice score, Jaccard Index and Hausdorff distance on the test
datasets (Test and IXI) for our 2D U-Net and 3D U-Net models.

On a standard CPU, making predictions, including loading the image data into
memory, on the two test datasets (test and IXI) took 1.38± 0.05 s and 1.37± 0.02 s
for the 3D model and 12.36±0.57 s and 11.82±0.54 s for the 2D model5.

4 Discussion
Using a large collection of T1w MR images sourced from a variety of openly available
datasets and a well-established set of FSL tools for automated generation of “ground
truth" brain masks, we have constructed 2D and 3D models for fast and accurate skull
stripping. On independent test sets our models were able to produce brain masks that
are very close to those produced by the much slower FSL-based process (∼ 10 mins
per volume), and even in some cases demonstrating higher robustness than the slower
approach (Fig. 5).

5On a single GPU the time for inference for the 3D model was 0.59± 0.05 s and 0.57± 0.01 s on the
two test datasets
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Figure 5: Comparison of (a) the brain mask produced by our 3D U-Net model on a dataset
from ADNI achieving a poor Dice score, DSC < 0.9, and the corresponding ground truth FSL
mask, and (b) the same comparison of the HD-BET model from [11]. Note the large amount
of misclassification (extra-cerebral detection) of brain tissue by the “ground truth" FSL skull
stripping procedure. This indicate that CNN-models may have some robustness advantages over
FSL and perhaps also other traditional skull stripping . A color version of the image is available
here: https://tinyurl.com/skull-NIK2020-figure5.

In our comparisons between the 2D and 3D approaches we found similar performance
as measured by Dice scores, Jaccard Index and Hausdorff distance, but also that the slice-
by-slice based predictions necessary for the 2D approach made it significantly slower.

To decrease the variation in the training data images we performed bias-field
correction before the images were fed to the network. This means that the networks
have seen less bias than naturally occurs. To investigate the impact of this design decision
we evaluated the trained models on the non-bias field corrected test images, reoriented to
the standard MNI152 orientation, and also on and image with a high bias field shown in
Fig. 2. Our 3D model had a Dice score of 0.978±0.014 on the test set and 0.979±0.008
on the IXI dataset when fed the uncorrected images. On the single high-bias field image
displayed in Fig. 2, the model had a Dice score of 0.956 on the bias-field corrected image
and a Dice score of 0.955 on the uncorrected image (Fig. 6).

Figure 6: Predicition on a T1w image recorded at our own institution [5]. A color version of the
image is available here: https://tinyurl.com/skull-NIK2020-figure6.

Having a fast and accurate skull stripping method can have practical utility as it
can speed up larger image processing pipelines, e.g. for subcortical segmentation or
segmentation of other regions of interest like brain tumors or lesions. Once the accuracy
reaches a certain threshold, issues related to defining the ground truth becomes more
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important than increased accuracy at reproducing said ground truth labels. This can be
illustrated by the different labels used in our work and in the HD-BET work of [11]
described above. Feeding our test images through the trained HD-BET model results in
an average Dice score of 0.9615±0.0295. This does not mean that their model performs
worse than ours at skull stripping, only that the ground truth labels used when training the
models differs. Robustness also becomes more important than increasing the accuracy.
As indicated in Fig. 5, CNN-based models may have an advantage here, but this requires
further investigation.

Using our approach in a setting with various pathologies will require further
investigations of its robustness to such variation in the images, and also clarification of
“ground truth" consensus. Training the models on datasets that includes images with
pathologies, and also adding an automized MRI quality control system based on e.g.
MRIQC [23], would be natural next steps.

For thorough validation in a realistic setting, embedding the models in established
workflows is key. At our hospital we have recently established a PACS, RIS and EDC
system for research that integrates with the clinical systems. This enables real-world
testing of this and other image processing methods, a crucial step for bringing deep
learning research into practice [24].
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Abstract

We construct a convolutional neural network to classify pulmonary nodules as malignant or benign in the 
context of lung cancer. To construct and train our model, we use our novel extension of the fastai deep 
learning framework to 3D medical imaging tasks, combined with the MONAI deep learning library. We train and 
evaluate the model using a large, openly available data set of annotated thoracic CT scans. Our model achieves 
a nodule classification accuracy of 92.4% and a ROC AUC of 97% when compared to a “ground truth” based on 
multiple human raters subjective assessment of malignancy. We further evaluate our approach by predicting 
patient-level diagnoses of cancer, achieving a test set accuracy of 75%. This is higher than the 70% obtained 
by aggregating the human raters assessments. Class activation maps are applied to investigate the features 
used by our classifier, enabling a rudimentary level of explainability for what is otherwise close to “black 
box” predictions. As the classification of structures in chest CT scans is useful across a variety of diagnostic 
and prognostic tasks in radiology, our approach has broad applicability. As we aimed to construct a fully 
reproducible system that can be compared to new proposed methods and easily be adapted and extended, the 
full source code of our work is available at https://github.com/MMIV-ML/Lung-CT-fastai-2020.
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I.	 Introduction

Using convolutional neural networks is well-known to result 
in powerful tools to analyse medical images, across a variety 

of important applications [1], [2]. This approach to medical image 
analysis can lead to valuable insights and assistance in imaging 
diagnostics. The path from research to clinical practice is however 
slow and arduous, perhaps more so than is generally thought [2], [3]. 
But the number of software solutions on the market, with regulatory 
approval and aimed at diagnostic support, is growing, along with their 
adoption in hospital workflows.

In radiology, the computed tomography (CT) imaging modal-
ity is currently experiencing the highest impact of deep learning-
based solutions. CT uses computer-processed combinations of many 
X-ray measurements taken from different angles to produce cross-
sectional digital images (virtual slices) of specific regions or organs 
within the human body. This allows for non-invasive inspection of 

disease processes or lesions. Another prominent and widespread 
imaging modality is magnetic resonance imaging (MRI). It is based on 
quite different physical principles (nuclear spins in magnetic fields, 
spin excitation by application of radio-frequency pulses, magnetic 
resonance, and tissue specific and disease-related magnetization and 
relaxation phenomena) and enables exploitation of a large collection 
of measurement techniques and contrast mechanisms. Compared 
to CT, MRI examinations are generally more expensive, more time-
consuming and less available. The signal properties are also more 
complex and typically multi-parametric, and proper interpretation 
puts high demands on radiologists’ specialized training and experience. 
This partly explain why CT is more heavily used in daily routine 
radiology, and also why it is a popular target for the med-ical machine 
learning community [4].

Identifying and assessing structures in the lung from thoracic CT 
scans (chest CT) is a crucial task across multiple diseases involving the 
lungs and upper abdomen, e.g. lung cancer, chronic lung disease and 
pneumonia. Computer-aided diagnostic tools addressing chest CT is 
therefore an important area in medical imaging1.

The diagnosis and follow-up of lung cancer patients using chest 
CT requires the identification of malignant tumors appearing as 

1 An area of particular relevance at the time of writing is the viral pneumonia 
caused by SARS-CoV-2 ( [5], [6]).
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pulmonary nodules (i.e. spots on the lungs). Distinguishing benign 
and malignant nodules is difficult, as the differences can be subtle and 
the malignancy potential is highly variable [7], but such assessment 
forms an important source of information for diagnosis and evaluation 
of progression and treatment responses. Indications of lung cancer 
can also appear as incidental findings on CT scans. As chest CT is 
widely used across a range of diseases and injuries, this represents an 
additional challenge for radiologists.

II.	 Related Work

Multiple studies have investigated how CNNs can be used in the 
context of lung cancer. Two recent and quite comprehensive reviews 
are [8], [9]. Below we highlight two illustrative examples of recent, 
related work.

In [10], the authors constructed an end-to-end system based on 
three 3D CNNs for the localization and categorization of lung cancer 
risk, using low-dose CT images as inputs. They achieved a test set ROC 
AUC of 94.4% using data from the National Lung Cancer Screening 
Trial (NLST), and a ROC AUC of 95.5% on an independent data set 
collected at Northwestern Medicine. A retrospective reader study was 
conducted, in which their model outperformed six experienced US 
board-certified radiologists. Their system had four main components: 
(i) a Mask R-CNN for instance segmentation used to produce lung 
segmentation masks; (ii) a 3D RetinaNet CNN trained to output ROIs 
around possible cancer lesions; (iii) a 3D version of Inception V1 
trained to predict cancer diagnosis within one year directly from CT 
volumes; (iii) a CNN classifier trained on features extracted from the 
detected ROIs as well as features extracted from the volume model, 
outputting malignancy scores for each ROI. Their study was based on 
a combination of publicly available data from LUNA, LIDC and NLST, 
in combination with a large data set sourced from Northwestern 
Medicine that is not publicly available. The source code used in their 
work is not publicly available.

In [11], the authors construct DeepLung, a “cancer diagnosis 
system” based on two 3D CNNs that perform lung nodule detection 
and binary classification (benign vs. malign), respectively. For nodule 
detection they constructed a 3D Faster R-CNN with dual-path blocks 
and a similar encoder-decoder structure to the U-Net of [12], obtaining 
a FROC (Free Response Operating Characteristic) score of 84.2% on 
the LUNA16 data set [13] using a 10-fold patient-level cross-validation 
split. Their nodule classification model consisted of a 3D dual-path 
network extracting classification features, and a gradient boosting 
machine trained on the extracted features combined with raw nodule 
CT pixels and nodule size. They achieved a classification accuracy 
of 90.44%on the LIDC-IDRI data set using the same cross-validation 
approach as in LUNA16. The source code is available at https: //github.
com/wentaozhu/DeepLung.

III.	Main Contributions

Motivated by a lack of a common set of training data for machine 
learning models for lesion malignancy classification in the literature 
and what we see as important missing elements in how most CNNs for 
3D medical imaging tasks are trained, our objectives are the following: 
(i) bring a set of techniques for training CNNs that have been shown 
to be highly impactful for 2D image classification to 3D by extending 
and incorporating ideas from the popular fastai library, and (ii) to 
provide a reproducible setup of data and model evaluation that can 
be used by other researchers aiming to train models to perform lung 
nodule classification. Our main contributions are:

1.	 We preprocessed and prepared the comparably large and well-
annotated LIDC-IDRI data set (Section IV) for use in a binary 

malignancy prediction task, taking care to set aside a separate test 
set consisting of particularly well-characterized patients.

2.	 We constructed and trained a three-dimensional CNN using our 
novel extension to 3D of the fastai [14] deep learning library, 
combining it with features from MONAI (https://github.com/
Project-MONAI/MONAI2), obtaining results comparable to the 
state-of-the-art in nodule classification and patient-level cancer 
diagnoses for the LIDC-IDRI data set.

3.	 We investigated the malignancy predictions by integrating a 3D 
version of gradient-weighted class activation mapping (Grad-
CAM) [16] in our framework, enabling some element of explainable 
AI [17].

4.	 To ensure reproducibility and to ease further extensions or 
adaptions of our approach, we have made the source code openly 
available under a permissive open source license at https://github.
com/MMIV-ML/Lung-CT-fastai-2020, in a tutorial-like Jupyter 
Notebook [18] that step through the process from data loading to 
result interpretations.

IV.	Methods and Materials

A.	Data Set
Using supervised learning with CNN models requires large amounts 

of labelled training data. For pulmonary nodule analysis, the data is 
typically obtained by manually labelling nodule locations and outlining 
lesions on CT images, a costly and hard to scale process hampered 
by intra- and inter-rater variability. Nevertheless, reasonably large 
annotated data sets with benign and malignant pulmonary nodules 
have been made openly available for researchers, reducing the entry 
price and increasing the pace of new research.

We used the Lung Image Database Consortium image collection 
(LIDC-IDRI), consisting of diagnostic and clinical lung cancer screening 
thoracic computed tomography (CT) scans with marked-up annotated 
lesions [19]3. The images were extracted from the picture archiving 
and communication systems (PACS) of seven different institutions 
and anonymized in accordance with HIPAA guidelines. The data 
collection was approved by the local IRBs of the seven participating 
LIDC-IDRI institutions. To each image there is associated the results 
of a two-stage anno-tation process involving four experienced 
thoracic radiologists. First, in a blinded-read phase, each radiologist 
independently reviewed the CT scans, marking lesions belonging to 
one of three categories (nodule ≥ 3 mm, nodule < 3 mm, and non-nodule 
≥ 3 mm), where the concept of “nodule” refers to a focal abnormality4. 
Then each radiologist (among a total of 12 radiologists coming from 
altogether five LIDC-IDRI institutions) assessed independently and 
subjectively each nodule ≥ 3 mm for characteristics such as subtlety, 
internal structure, spiculation, lobulation, shape (sphericity), solidity, 
margin, and likelihood of malignancy. Each such nodule, having (by 
its size) a greater probability of malignancy than lesions in the other 
two categories, was marked regardless of presumed histology, e.g. a 
primary lung cancer, metastatic disease, a noncancerous process, or 
indeterminate in nature.

By design, reader consistency studies are not possible with the 
LIDC-IDRI data set as the order of the readers varies from instance 
to instance. However, the marks from up to four readers for a given 

2 Originally, we developed our extension of fastai and MONAI for 3D MRI 
of the head, as a tool for the estimation of brain age from MRI recordings 
(unpublished work and [15]) indicating our framework’s general utility.
3 See also https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
4 Some radiologists will argue that these three lesion categories could be 
somewhat artificial relative to clinical practice.
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lesion, using a five-point scale (a low score denoted likely benign 
nodule, a high score likely malignant), makes it possible to assess 
different degrees of reader agreement. Assessing inter-rater variability 
is very important to gauge the performance of systems aiming to 
automate the process. We therefore made an analysis of inter-rater 
variability regarding the “likelihood of malignancy” characteristic 
using the Krippendorff’s alpha coefficient [20].

In our study, we have used a total of 2662 annotated nodules 
that were annotated as nodule ≥ 3 mm by at least one radiologists, 
collected from clinical thoracic CT scans of 1018 patients in the LIDC-
IDRI data set.

B.	Preprocessing
The voxels in a 3D CT recording are displayed in terms of relative 

radiodensity. More specifically, the signal intensities or attenuations 
in CT are expressed in Hounsfield units (HU). This is based on a linear 
transformation of the original attenuation coefficients in which the 
radiodensity of distilled water has HU = 0 and the radiodensity of air is 
set to HU = −1000. According to this HU scale, lung parenchyma is in 
the range [−700, −600], fat is [−120, −90], lymph nodes [+10, +20], 
and blood [+13, +50], to mention a few relevant tissue types. In our 
CT data we considered voxels within a HU-range of [−1200, +600], 
and voxel values were normalized to the interval [0, 1] according to 
the transformation x'' ↦ x'' : x' = (x + 1200)/(1200 + 600);  x'' = 0 if 
x' < 0, x'' = 1 if x' >… 1, else x'' = x'.

For each CT scan of a subject, we collected all the radiologists 
segmentation masks. To ensure that we captured entire nodules we took 
the union of the masks. To make some of the surrounding context of each 
nodule available for the classification model, we dilated the resulting 
mask by adding 3 voxels to its boundary. The data set used to construct 
and evaluate our models was the constructed by applying the masks to 
the corresponding normalized CT and cropping to a cube containing the 
nodules. This gave us a total of 2662 3D images containing nodules. See 
Fig. 1 for an illustration of the preprocessing process.

We extracted each of the radiologists’ subjective assessments of 
malignancy likelihood and computed the median scores across the 
readers for each nodule. If the median score for a nodule was < 3 we 
marked it as benign, if > … 3 as malignant. The nodules with median 
score 3 (indeterminant) were dropped from our data set. This gave us 
a total of 1106 benign nodules and 525 malignant.

C.	Our fastai Extension and the 3D CNN Architecture
Our work is based on a combination of the MONAI deep learning 

framework and our own extension of the powerful fastai library 
built on top of PyTorch [14]. We have added functionality to support 
the construction, training and evaluation of three-dimensional 
convolutional neural networks, tailored for medical imaging-specific 
problems and file formats. In short, we have extended fastai to 
support 2D and 3D MRI and CT images by constructing new data 
loaders and data augmentation capabilities, and enabled the use of 
custom 3D CNNs while still supporting the highly impactful training 
techniques of fastai. This includes the learning rate finder [21] to 
find the optimum learning rate and the one-cycle learning rate policy 
(i.e. specific learning rate changes during the training, related to the 
concept of super-convergence [22], [23]).

The architecture of our 3D CNN is shown in Fig. 1. Each con-
volutional layer in our network consists of 3 × 3 × 3 convolutions, 
followed by a batch normalization layer [24] and a rectified linear 
unit (ReLU) layer [25]. We add residual connections after each second 
convolutional layer. Each down-sampling block has a two-stride 2 × 2 × 2 
max-pooling layer.

To enable discriminative learning rates, i.e. different learning rates 
for different parts of the network, we divide the network into two layer 
groups: convolutional layers and additional layers. This also allow us 
to do gradual unfreezing, and eases the potential re-use of trained 
weights from the early layers for other tasks (i.e. transfer learning).
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Fig. 1. The annotated images from our data source, LIDC-IDRI, are preprocessed by extracting 3D regions of interests around each of the nodules by taking the 
union of all the masks provided by expert annotations (e.g. A1−A4), before dilating the image slightly to capture some of the nodule surroundings. Using the 
expert assessment of malignancy, the resulting nodule images are used to train a 3D CNN model. This results in a nodule classification model with binary output: 
malignant (M) or benign (B). Our 3D implementation of class activation maps provides a visual explanation, here shown as a pair of 2D slices, indicating areas 
impacting our model’s nodule classification decision. For further details, see the text and the accompanying code repository: https://github.com/MMIV-ML/
Lung-CT-fastai-2020
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D.	Training and Evaulation
To evaluate and get a robust estimate of our model’s performance, 

we selected all the subjects in the LIDC-IDRI data set that have 
corresponding patient-level diagnoses as our test set (99 subjects, 238 
nodules). The remaining data were divided into a training set (526 
subjects, 1140 nodules) and a validation set (90 subjects, 255 nodules), 
using stratified sampling and no patient overlap between the sets. In 
order to deal with imbalanced classes in the training set (802 benign, 
338 malignant), we over-sampled the malignant class by duplicating 
each sample.

Before feeding the images into the network, each image was 
padded to have the same volume dimension as the largest volume data 
× a scaling factor. We used data parallelism to train our model on four 
NVIDIA Tesla V100 32GB GPUs. Our training process was composed 
of two phases:

•	 Training a model on 44 × 46 × 31 volumes, with weights randomly 
initialized (He initialization [26]).

•	 Training a final model on 88 × 91 × 62 volumes, with weights 
initialized by copying the weights of the previous model.

This approach is known as progressive image resizing [27], a 
technique used to both reduce training time and to increase model 
performance. In our case, we found that it improved the accuracy on 
the validation set by almost two percentage points.

Our model was trained end-to-end in mixed precision [28] using 
the Adam optimizer [29]. The base value for the cyclic learning rate 
in the final model was set to 6 × 10−4 for frozen layers and 5 × 10−5 

after unfreezing the layers, with learning rates for earlier layers scaled 
down by a factor of 20. We trained the model using a batch size of 
128. For data augmentation we used random scaling with a factor 
from 1.0 to 1.1 and random rotation by an angle in the range [-35, 
35]. As the geometry of the nodules can contain information about 
their malignancy, we only used shape-preserving morphisms. For 
regularization, we used a weight decay rate of 0.01 and a dropout ratio 
of 0.4, selected based on the performance on the validation data. Our 
final model was trained on the combined training and validation data 
for a few epochs, with a small cyclic learning rate, to also make use of 
the information contained in the validation data and its labels during 
model training.

E.	 Explainable AI and Class Activation Maps
As deep learning models are highly complex hierarchical objects 

with enormous amounts of parameters, there is an inherent “black-
boxiness” to them. As they are increasingly being implemented 
across the medical imaging and decision making domains, this raises 
both technical challenges (how to open the black box?) and ethical 
conundrums (when is it OK to use predictions you cannot fully 
understand?). Using our extension of fastai we can produce what 
are called class activation maps (CAM) [30] and gradient-weighted 
class activation mapping (Grad-CAM) [16]. These are heat maps that 
can be used to indicate the importance of regions of an image for the 
model’s classification, providing a relatively simple way to gain some 
explainability for image classification models, and potentially also to 
gain useful insights into the data used to construct the model.

CAM generates heat maps from the adaptive pooling layer, where 
the average of each cell across every channel is calculated. On the 
other hand, Grad-CAM uses the gradient information flowing into the 
last convolutional layer to produce heat maps, making it applicable to 
any CNN architecture.

A problem with these methods is that the resolution of the heat 
maps are the same size as the final convolutional layer. This means 
that we have to upsample them to the same size as the input images 
to highlight class-specific image regions. To mitigate this problem one 

can remove the pooling layers, but this will require more computational 
power due to larger spatial dimensions. In addition, overfitting is more 
likely to occur, which might reduce the performance of the network.

V.	 Experimental Results

Our test set consisted of 238 nodules from 99 subjects, 146 benign 
and 92 malignant. There were no overlap among train and test subjects. 
In addition to predicting nodule malignancy, we further investigated 
the models predictive capabilities by using the ground truth labels of 
patient diagnosis available in the LIDC-IDRI data set. The 99 patients 
in our test set were all diagnosed as either malignant or having benign 
or non-malignant disease. If one or more nodules from a patient was 
predicted to be malignant, we predicted malignant, else benign or non-
malignant disease.

The results are displayed in Table I, Fig. 2 and Fig. 3.

TABLE I. Performance Metrics of Our Binary Classifier Predicting 
Single Nodules (N=238) and Patient Cases (N=99) in the Test Data Set: 

Accuracy (ACC), Precision (PREC) and Recall (REC). For the Patient 
Predictions We Give Performance Values Separately for Those 

Obtained by Our Model (CNN) and for Those Obtained by the Median 
Radiologist Assessments (Rad)

Classification task

Nodule classification (%) Patient classification (%)

ACC PREC REC Source ACC PREC REC

92.4 85.6 96.7 CNN 75 86.8 78.7

Rad 70 88.1 69.3
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Fig. 2. Predicting the “likelihood of malignancy” in the test set of 238 nodules. 
(a) Confusion matrix. (b) ROC curve.
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Fig. 3. Confusion matrices: (a) for the CNN predictions, (b) for the 
median malignancy scores by the radiologists. Note the additional cancer 
diagnoses captured by our CNN.

The mean score assigned to each nodule classified correctly as 
benign was 1.91 (SD 0.56) and as malignant 4.18 (SD 0.56). The nodules 
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misclassified as benign had a mean score of 3.5 (SD 0.0) and those 
misclassified as malignant had a mean score of 2.23 (SD 0.4).

To assess the inter-rater variability and how the model compares 
to the human raters, we calculated the Krippendorff’s alpha 
coefficient [20] for the 238 nodules. Krippendorff’s alpha applies to 
any measurement level, can handle various number of raters and is 
invariant to the permutation and selective participation of raters. It also 
ignores missing data entirely. The independent and interchangeable 
rater panel per unit consisted of one to five radiologists using scores  
s ∈ {1 (most likely benign), 2, . . . , 5 (most likely malignant)}.5 We note 
that the agreement on these subjective assessments were not very 
high. For the Krippendor’s α ∈ [0, 1], α  = 0 is absence of agreement, 
and α = 1 is perfect agreement. For the “likelihood of malignancy” 
we found Krippendorff’s α = 0.49, CI.025,.975 = [0.43, 0.54] (obtained by 
bootstrapping), indicating poor agreement among the raters.

The Krippendorff’s alpha coefficient (in this case equivalent to 
Cohen’s Kappa score) comparing the model’s rating to the ground 
truth (determined by the median radiologist rating) was 0.84, 
CI.025,.975 = [0.78, 0.91].

The Krippendorff’s alpha of the binary assessments of malignancy 
among the radiologists was α = 0.58. By including the independent, 
CNN-based rater we obtained an increased alpha score to 0.68, 
indicating the usefulness of including this rater in the assessment of 
each nodule.

We applied our class-activation map approach described in Section 
IV.E to a selection of test nodules and CNN predictions. In general, 
getting better insight into CNN behavior and model predictions, both 
in cases where it classifies correctly and in cases where it fails, is of 
interest for several reasons. The class activation maps can provide 
discriminative information in image regions or part of the lesion 
being used by the model to predict the class label for the particular 
instance. This ability can at best introduce interpretability and trust 
in the model, or facilitate exploration and discovery of new features 
(image biomarkers) that might have a mechanistic relation to the 
disease process or disease state. In the present study, we did not fully 
explore the CAM approach or its potential by involving radiologists 
or pathologists, and the CAM results are anecdotal and not rigorously 
validated.

Some of the generated heat maps from our CNN model are presented 
in Fig. 4. By examining the malignant nodules (nodule 1 and nodule 2) 
and their corresponding heat maps, we can see that the lesion brims 
are highlighted, indicating that these regions are most important for 
the predictions. This might reflect typical malignant tumor growth 
characterized by central necrosis and viable tumor cells in a well-
vascularized periphery. Another interesting finding was nodule 
4, a nodule rated benign but classified as malignant by our model. 
This nodule was assessed by two radiologists deciding malignancy 
likelihood 2 and 3, respectively (i.e. towards benign), whereas the 
biopsy done on this nodule concluded that it was a malignant primary 
lung tumor.

VI.	Discussion and Perspectives

We have addressed an important field of oncological radiology: the 
use of 3D CT scans to characterize focal lung lesions as benign or 
malignant. Using a large multi-center collection of well-organized CT 
examinations we constructed and trained a 3D CNN model to perform 
nodule malignancy classification.

5  The “likelihood of malignancy” characteristic is particularly subjective since the 
radiologists were not provided with any clinical information about the patients. 
As a general scaling guide, the likelihood of malignancy was rated under the 
assumption that the lesion was associated with a 60‐year‐old male smoker.

Because CNNs automatically extract features from data, both 
interpretation and troubleshooting are more difficult compared 
to traditional machine learning models. For domains like medical 
diagnosis, where decision confidence is crucial, it is important to make 
sure that the results make sense. Otherwise, these models can easily 
end up performing worse than expected when used for real-world 
decision making. CAMs and Grad-CAMs generated from CNN models 
can be valuable for developers to gain some visual insights into models 
decision processes, helpful to identify data leakage, structural bias and 
for more comprehensive performance evaluation. In addition, the 
heat maps have the potential to detect local features that can be used 
as a biomarker for identifying malignant nodules. We implemented 
and explored these simple “explainable AI” techniques, assessing 
successful and unsuccessful nodule predictions.

Our model had a test set accuracy of 92.4% on the per-nodule 
malignancy classification task. On the patient-level malignancy 
classification task, our model had an accuracy of 75%. This gave an 
indication of the network’s ability to pick up patterns corresponding to 
real nodule malignancy. As shown in Fig. 4, class activation maps can 
highlight regions of particular relevance for the nodule classifications, 
further indicating that the reasonableness of the features picked up by 
our CNN model.

In further work we will use the present system as a component 
in a detection + classification framework, obviating the need for 
manual annotation steps. We will test the system in the established 
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Scan

Input shape
88 x 91 x 62

Resize from
5 x 5 x 3

Resize from
5 x 5 x 3

CAM Grad-CAM

Predicted class [Malignant], sigmoid output = 0.93

Predicted class [Malignant], sigmoid output = 0.99

Predicted class [Malignant], sigmoid output = 0.97

Predicted class [Bening], sigmoid output = 0.99

Fig. 4. Examples of CAMs and Grad-CAMs for our model and the corresponding 
predictions and sigmoid outputs for the respective classes on a selection of 
four test set nodules.
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radiology research workflow at our hospital, through our “research 
PACS and RIS” system, enabling us to run arbitrary algorithms on 
locally recorded images. Such real-world testing is crucial to uncover 
and surmount the many technical obstacles faced when attempting 
to bring deep learning-based systems into practice [3]. Especially as 
it facilitates prospective investigations of the effect of combining the 
algorithm’s predictions with radiologists’ expertise, arguably the most 
interesting next step for research into applications of deep learning in 
medicine.
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Simple Summary: Uterine cervical cancer (CC) is a leading cause of cancer-related deaths in women
worldwide. Pelvic magnetic resonance imaging (MRI) allows the assessment of local tumor extent and
guides the choice of primary treatment. MRI tumor segmentation enables whole-volume radiomic
tumor profiling, which is potentially useful for prognostication and individualization of therapy in
CC. Manual tumor segmentation is, however, labor intensive and thus not part of routine clinical
workflow. In the current work, we trained a deep learning (DL) algorithm to automatically segment
the primary tumor in CC patients. Although the achieved segmentation performance of the trained
DL algorithm is slightly lower than that for human experts, it is still relatively good. This study
suggests that automated MRI primary tumor segmentations by DL algorithms without any human
interaction is possible in patients with CC.

Abstract: Uterine cervical cancer (CC) is the most common gynecologic malignancy worldwide.
Whole-volume radiomic profiling from pelvic MRI may yield prognostic markers for tailoring treat-
ment in CC. However, radiomic profiling relies on manual tumor segmentation which is unfeasible
in the clinic. We present a fully automatic method for the 3D segmentation of primary CC lesions
using state-of-the-art deep learning (DL) techniques. In 131 CC patients, the primary tumor was
manually segmented on T2-weighted MRI by two radiologists (R1, R2). Patients were separated into
a train/validation (n = 105) and a test- (n = 26) cohort. The segmentation performance of the DL
algorithm compared with R1/R2 was assessed with Dice coefficients (DSCs) and Hausdorff distances
(HDs) in the test cohort. The trained DL network retrieved whole-volume tumor segmentations
yielding median DSCs of 0.60 and 0.58 for DL compared with R1 (DL-R1) and R2 (DL-R2), respectively,
whereas DSC for R1-R2 was 0.78. Agreement for primary tumor volumes was excellent between
raters (R1-R2: intraclass correlation coefficient (ICC) = 0.93), but lower for the DL algorithm and the
raters (DL-R1: ICC = 0.43; DL-R2: ICC = 0.44). The developed DL algorithm enables the automated
estimation of tumor size and primary CC tumor segmentation. However, segmentation agreement
between raters is better than that between DL algorithm and raters.

Cancers 2022, 14, 2372. https://doi.org/10.3390/cancers14102372 https://www.mdpi.com/journal/cancers
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1. Introduction

Uterine cervical cancer is one of the leading causes of cancer-related deaths in women,
particularly in developing countries [1]. For local staging, magnetic resonance imaging
(MRI) is the preferred imaging modality due to its high soft-tissue resolution, conspicuously
depicting the tumor and its boundaries to the surrounding tissue. Routine diagnostic work-
up at many centers includes multiparametric MRI with diffusion weighted imaging (DWI),
allowing the assessment of local tumor extent and maximum tumor diameter.

MRI radiomic tumor profiling involves the extraction of quantitative imaging in-
formation from segmented tumor masks using mathematical descriptors [2]. Radiomic
tumor profiles have been linked to clinical phenotypes and prognosis for several cancers.
Currently, there is a growing body of literature suggesting that the radiomic profile in
CC is associated with prognostic factors [3–5], and predicts therapeutic response [6] and
outcome [7–9].

Accurate tumor segmentation is a critical step in radiomic profiling since the radiomic
data is specifically extracted from the segmented tumor volumes. Manual tumor seg-
mentation in 3D by experts is, however, very labor intensive, making it unfeasible in
routine clinical practice. Thus, a seamless clinical integration of whole-volume radiomic
tumor profiling requires the development of robust platforms for accurate automated
tumor segmentation. Previous CC studies applying deep learning (DL) networks for
automated primary tumor segmentation on MRI data report highly variable Dice scores
(Dice scores: 0.44-0.93) between DL segmentation and tumor segmentation derived by
radiologists [10–13]. Furthermore, poor reproducibility of certain radiomic parameters
derived from automatic tumor segmentations have been reported [12].

Traditional methods for medical image segmentation have relied upon techniques
such as thresholding, edge detection, region-growing, clustering, or they have been based
on the evolution of partial differential equations. However, over the past decade, DL-based
segmentation methods have been shown to outperform classical segmentation methods,
and have become state-of-the-art for complex segmentation tasks [14–17]. A common
approach is to use models based on the U-Net architecture [18], which is an encoder-
decoder convolutional neural network (CNN). U-Net-based models have been successfully
employed in a wide range of medical imaging applications, including multi-parametric
MRI tumor segmentation. The segmentation algorithm applied in the present work is an
enhanced residual U-Net model [19].

This study aimed to use state-of-the-art DL libraries for automated CC segmenta-
tion. By training the platform on multiparametric pelvic MRI data in patients diagnosed
with uterine CC we aimed to evaluate a DL algorithm for automated primary tumor
segmentation in CC.

2. Methods
2.1. MRI Acquisitions

A total of 135 uterine CC patients diagnosed during 2009–2017 who underwent pre-
treatment pelvic MRI (including DWI) and had visible tumors at MRI when assessed by
two radiologists (hereafter referred to as Rater 1 and 2) were included in this study. Two of
the patients were excluded due to poor image quality, and two patients with very large
primary tumors (>1000 mL) were excluded, since more than two patients would be needed
to be able to train a robust model on very large tumors. Thus, a total of 131 CC patients
comprised the final study cohort.

The MRI examinations consisted of T2-weighted sequences and DWI with either two,
three or four b-values. Apparent diffusion coefficient (ADC) maps were generated from
mono-exponential fits to the DWI, using vendor-provided software at the scanner. T2-
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weighted images, high b-value images and ADC-maps were all available when the raters
manually segmented whole-volume tumor masks on the T2-weighted images. The MRI
examinations were performed at multiple hospitals using different MRI scanners and
protocols (see Table 1 for details).

The three imaging channels (T2-weighted, high b-value and ADC maps) were sub-
sequently used in separate data sets for training (n = 90), validation (n = 15) and testing
(n = 26) of the hlDL segmentation network.

Table 1. Summary of MRI protocols used in the study cohort (n = 131). The MRI data were acquired
using different protocols, field strength and vendors. T2-weighted and diffusion-weighted imaging
(DWI) acquisition parameters are reported as median values. FA = flip angle; FOV = field of view;
mm = millimeters; ms = milliseconds; NA = not available; n = Number of patients in each category
in terms of field-strength and vendor; s = seconds; T2 = T2-weighted; T = Tesla; TE = echo time;
TR = repetition time. * Available b-values are reported, but not all b-values were available after export
of the image data from the scanner.

Parameter Siemens 1.5T GE 1.5T Philips 1.5 Siemens 3T Philips 3T

T2 Pixel spacing [mm] (inplane) (0.39, 0.39) (0.35, 0.35) (0.40, 0.40) (0.52, 0.52) (0.35, 0.35)
Matrix (x, y) (512, 512) (512, 512) (512, 512) (384, 384) (512, 512)
FOV [mm] (x, y) (180, 180) (180, 180) (205, 205) (200, 200) (180, 180)
TR [ms] 4790 3157 5362 4610 4074
TE [ms] 100 81 100 94 110
FA [degrees] 150 160 90 148 90
Slice thickness [mm] 3.00 3.00 3.00 3.00 2.50
Number of averages 2 2 6 2 2
Interslice gap [mm] 0.50 0.00 0.30 0.30 0.25
Number of slices 25 30 26 24 35

DWI Pixel spacing [mm] (x, y) (1.56, 1.56) (1.37, 1.37) (1.46, 1.46) (1.43, 1.43) (0.80, 0.80)
Matrix (x, y) (144, 144) (256, 256) (256, 256) (144, 144) (352, 352)
FOV [mm] (x, y) (250, 250) (350, 350) (375, 375) (200, 200) (280, 280)
TR [ms] 3200 4000 1716.30 5640 3280
TE [ms] 82 52 69.18 63 85
FA [degrees] 90 90 90 180 90
Slice thickness [mm] 4.00 5.00 5.00 3.00 4.00
Number of averages 10 2 3 2 2
Interslice gap [mm] 0.60 0.50 1.00 0.40 0.40
Number of slices 22 25 30 25 33
b-values [s/mm2] [0/50, 800/1000] NA * [0, 1000] [0/50, 800/1000] NA *

N Number of patients 51 9 27 27 9

2.2. Inclusion Criteria

This retrospective study was conducted under Institutional Review Board (IRB)-
approved protocols (2015/2333/REK vest) with written informed consent from all patients
at primary diagnosis. All patients were diagnosed and treated at Haukeland University
Hospital, Bergen, Norway. A total of 131 patients with histologically verified uterine
cervical cancer who underwent pretreatment MRI between 2009 and 2017 were included.
The patients were selected from a larger CC patient cohort scanned during 2002–2017
based on the following inclusion criteria for imaging data: (i) visible tumor on pelvic MRI
confirmed by both radiologists; (ii) axial/axial oblique (relative to the long axis of the
cervix) T2-weighted images; and (iii) axial/axial oblique DWI. An overview of patient
characteristics in the training/validation and test cohorts is provided in Table 2.
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Table 2. Patient characteristics of the training/validation cohort (n = 105) and the test cohort
(n = 26). The two patient cohorts have similar clinicopathological characteristics. 1 Mann–Whitney
U test. 2 Pearson’s chi-square test. 3 Fisher exact test. 4 n = 97 for training/validation cohort
and n = 25 for the test cohort. * Adenosquamous, neuroendocrine, and undifferentiated carcino-
mas; FIGO = International Federation of Gynecology and Obstetrics; IQR = Interquartile range;
w/o = with and without.

Variable Train (n = 90) and
Validation (n = 15) Data

Test Data
(n = 26) p

Age (yrs.) 0.73 1

Median (IQR) 48 (37–60) 49 (41–59)
FIGO (2009) stage 0.21 2

I 52 (49%) 14 (54%)
II 27 (26%) 6 (23%)
III 18 (17%) 5 (19%)
IV 8 (8%) 1 (4%)
MRI-assessed
maximum tumor size (cm) 0.24 1

Median (IQR) 4.6 (3.0–5.6) 3.9 (2.5–5.1)
Primary treatment 0.21 2

Surgery only 26 (25%) 9 (34%)
Surgery and adjuvant therapy 63 (60%) 15 (58%)
Primary radiotherapy w/o
chemotherapy 12 (11%) 2 (8%)

Palliative treatment 4 (4%) 0
Histologic subtype 0.19 2

Squamous cell carcinoma 82 (78%) 21 (81%)
Adenocarcinoma 18 (17%) 3 (11%)
Other * 5 (5%) 2 (8%)
Histologic grade 4 0.76 3

Low/medium 80 (82%) 22 (88%)
High 17 (18%) 3 (12%)

2.3. Manual Tumor Segmentation

We used the open-source software ITK-SNAP (v. 3.6.0; www.itksnap.org, accessed on
16 June 2020) [20] for manual 3D tumor segmentation. The primary uterine cervical tumor
was manually segmented on T2-weighted images, using axial oblique (when available) or
axial images. Segmentations were performed by one radiologist in 105 patients (Rater 1
[K.W.L.]: n = 58; Rater 2 [N.L.]: n = 47) or both radiologists in 26 patients (comprising the test
cohort). Rater 1 (R1) and Rater 2 (R2) had 12 and 7 years of experience in reading pelvic MRI,
respectively. The radiologists were blinded to clinicopathologic patient information but had
the DWI images available to support placement of tumor segmentations. The extracted 3D
image mask was exported in the Neuroimaging Informatics Technology Initiative (NIfTI)
file format [21].

2.4. Major Processing Steps

A flow chart of major processing steps is illustrated in Figure 1. The train and vali-
dation cohort comprised 105 randomly chosen patients used for training and validation
of the 3D U-Net. Within this cohort, 90/105 sets went into training by stratified sampling
based on tumor volume. The remaining 15/105 went into the validation data set and were
used for reporting validation parameters during training. For a total of three times during
the development period, the training and validation cohorts were selected at random from
the set of 105 patients in order to increase the robustness of the algorithm and to avoid
over-optimistic or over-pessimistic test results. The test cohort comprised 26 patients who
had primary tumors manually segmented by both raters, serving as an unbiased test set for
the evaluation of segmentation performance and inter-rater agreement.
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Raw prediction

D. Prediction
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Object selection 
from largest mean 
activation value
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R1 R2

Figure 1. Graphical illustration of DL (deep learning) workflow and study setup. MRI data included
T2-weighted images and diffusion weighted images (DWI), using high b-value images and apparent
diffusion coefficient (ADC) maps at primary diagnostic work-up in 131 CC patients. (A) In the train
and validation cohort (n = 105), primary tumor was segmented by one of the two expert raters (R1:
n = 58, R2: n = 47). (B) The test cohort (n = 26), with primary tumor segmentations by both expert
raters (R1 and R2), served as an unbiased test set for evaluating performance of the DL algorithm
and inter-rater agreement. (C) The train and validation cohort (n = 105) was used to train a 3D U-Net
using 90/105 (86%) cases for training and 15/105 (14%) cases for validation. (D) The trained network
predicted raw tumor masks in the test data set (n = 26), identifying multiple regions in 23/26 cases.
The object with the largest mean activation value was selected as primary tumor (yellow object).
Other objects with lower mean activation values (red object) were removed from further analysis
(indicated by a black cross). (E) DL-derived tumor masks were compared with manually segmented
masks from R1 and R2, using Dice score and Hausdorff distances. R1 = Rater 1, R2 = Rater 2.

A sigmoid transformation was applied to the activation map compiled in the DL
algorithm, providing a smooth function between zero and one. A final binary model
prediction was derived by thresholding this function at a value of 0.5 [22]. However,
thresholding leads to a binary map potentially containing multiple objects. In order to
select the most probable mask object representing the primary tumor, we computed mean
activation values within each individual object in the binary model prediction, with a
neighborhood stencil size of 3. The object with the highest mean activation value was
automatically chosen to represent the primary tumor. The activation map superimposed on
a T2-weighted image of one patient is shown in Figure 2, generated using a 3D Slicer [23].
In this example, two potential tumor objects were identified. The object with the largest
mean activation value was finally selected as a primary tumor. Segmentation performance
was assessed in terms of DL-based tumor volumes and tumor masks’ location compared
with the R1 and R2 tumor segmentations.
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Figure 2. A visualization of the activation map (colored regions) from the DL (deep learning)
segmentation superimposed on T2-weighted MRI (grayscale colormap) for three orthogonal planes
and using 3D volume rendering. The activation map was later transformed with a sigmoid function
and then thresholded, resulting in a binary prediction map. Two objects were identified in this patient:
The object positioned in the uterine cervix (yellow arrows) had the largest mean activation value
and was thus automatically selected to represent primary tumor. The object positioned in the uterine
cavity/body (red arrows) had lower mean activation value and was thus excluded.

2.5. Evaluation of Segmentation Performance

To compare segmentation performance metrics, we used the Dice-Sørensen similarity
coefficient (DSC) [24], measuring the degree of regional overlap between two segmentations.
We also used the Hausdorff distance (HD) as a measure of maximum distance between
segmented contours, as this is more sensitive to outliers in the segmentation shape, not
sufficiently captured by DSC. The parameters are defined as

DSC =
2|X ∩Y|
|X|+ |Y| , HD(x, y) = max

{
δ(x, y), δ(x, y)

}

where | · | is the cardinality and δ(x, y) := supx∈X infy∈Y d(x, y)[25] for the Euclidean
distance d(x, y) between x and y. As a metric for segmentation performance, we also
compare the estimated tumor volume between the hlDL algorithm and R1/R2.

The comparison of segmentation performance between R1 and R2 is referred to as inter-
rater agreement. Similarly, the comparison of performance between the DL algorithm and
R1 and R2 is referred to as DL-R1 and DL-R2, respectively. Median DSC and HD reported
in Table 3 were adjusted to inter-rater agreement according to the formulas DSC(DL,R1/R2)
← DSC(DL,R1/R2) + (1-DSC(R1,R2) and HD(DL, R1/R2)← HD(DL,R1/R2) − HD(R1,R2).

Patient characteristics for the training/validation and test data sets were compared
using the Mann–Whitney U test for continuous variables and Pearson’s chi-square test
(n > 5 in any group) or Fisher exact test (n ≤ 5 in any group) for categorical variables.
Differences in median DSC and HD between DL and raters (DL-R1/R2), and between
raters (R1-R2) were assessed using the Wilcoxon rank test. The agreement for primary tumor
volumes between raters (R1-R2) and between DL and raters (DL-R1/R2) was reported using
Bland–Altman plots and intraclass correlation coefficient (ICC). The difference in median
tumor volume between raters and DL was assessed using Friedman’s test. Correlations
between tumor volumes and DSC or HD were tested using the Spearman correlation with
H0 of zero Spearman’s ρ. Multiple linear regression was used to investigate statistical
relations between T2- and DWI field-of-view (FOV) (defined as FOVx×FOVy), T2- and
DWI anisotropy (defined as slice thickness/max(pixel spacing x, pixel spacing y)), and field
strength (1.5T or 3.0T) with DSC as the response variable. p-values below 0.05 are considered
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statistically significant. The statistical analyses were carried out in MATLAB using the
Statistics and the Machine Learning Toolbox Version 12.0 (R2020b).

Table 3. Median (IQR = interquartile range) Dice score (DSC) and Hausdorff distance (HD) for tumor
masks derived from DL (deep learning) segmentation compared to manual tumor segmentations
by R1/R2. I: DL yields tumor masks with lower DSC and higher HD for DL-R1/R2 than that for
R1-R2 (Wilcoxon rank sum, p ≤ 0.01 and p ≤ 0.01, respectively). II: Performance metrics of tumor
masks after adjusting for median R1-R2 disagreement. The adjusted values yield higher DSCs and
lower HDs for DL-R1/R2 when using DSC = 1 and HD = 0 as reference values for R1-R2 (ref. values).
* Statistically significant; 1 Statistical testing and difference in estimates do not change from I to II;
R1 = rater 1; R2 = rater 2.

Measure Median Value of Estimate (IQR) Absolute Difference (p-Value)

A. (DL, R1) B. (DL, R2) C. (R1, R2) |A− C| (p) |B− C| (p)

I. Unadjusted DSC 0.60 (0.05, 0.78) 0.58 (0.09, 0.76) 0.78 (0.60, 0.83) 0.19 (0.01 *) 0.21 (0.005 *)
HD [mm] 29.2 (14.5, 57.5) 30.2 (17.1, 55.9) 14.6 (9.80, 30.7) 14.6 (0.01 *) 15.5 (0.003 *)

II. Adjusted for R1-R2
disagreement

DSC 0.81 0.79 1 (ref.) - 1 - 1

HD [mm] 3.73 9.10 0 (ref.) - 1 - 1

2.6. Implementation Details

Data sets were manipulated using the open-source, Python-based package Image-
data [26] for the reading and writing of image data between DICOM (https://dicomstandard.
org, (accessed on 1 March 2018)) or NIfTI file format and NumPy arrays [27]. An in-house
developed algorithm applying the geometric coordinate transformation specified within the
DICOM image header was used for spatial alignment of the DWI data (ADC map and high
b-value image) with the T2-weighted image using trilinear interpolation. After transforma-
tion, image voxel data for each patient was specified on the same spatial grid. Out-of-grid
extrapolation values were set to zero.

We implemented our segmentation model using the 3D U-Net architecture from the
MONAI framework (https://monai.io, [19], accessed on 17 December 2021), with 5 layers
of 16, 32, 64, 128, 256 channels, respectively, each with downsampling and upsampling by a
factor of 2, and a skip connection between them. The training was performed using our own
extension of the fastai library [28,29], which simplifies training of three-dimensional convo-
lutional neural networks using modern best-practices for training deep neural networks.

Before training, all MRI volumes were resampled to isotropic (0.7× 0.7× 0.7) mm3

voxel size using RegularGridInterpolator from SciPy [30]. The interpolation method
was ‘trilinear’ for the MRI data, and ‘nearest neighbor’ for the binary mask data. They
were channel-wise normalized using z-normalization (i.e., zero mean and unit standard
deviation), and resized to 304 × 304 × 144 dimensions using either cropping or zero
padding. The image data were of different matrix sizes, and the amount of cropping
and padding was therefore different between data sets. We used data parallelism in
PyTorch to train our model, a batch size of 4, and trained the model for 60 epochs using
Dice loss function [31] on four NVIDIA Tesla V100 32 GB GPUs. We employed a Ranger
optimizer [32] with an initial learning rate of 0.1, rapidly decreasing during the final few
epochs using a cosine annealing scheduler, an idea that is related to the concept of super-
convergence [33]. For data augmentation, we used random zooming by a factor in the range
[1, 1.2], and random elastic deformations with 5 control points along each dimension of the
coarse grid with a maximum displacement set f to 4 along each direction at each control
point. The transformations were performed on the fly during training, with a probability
set to 0.2 for each transformation. The weights of our final model were selected based
on a callback that monitored the DSC on the validation data after each epoch, with the
condition of saving the model if the performance of the validation data was improved by
at least 0.005× DSC from the currently best model. Source code used in this work is openly
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available via GitHub (https://github.com/MMIV-DL/cervical-cancer-segmentation-2022,
accessed on 21 March 2022).

3. Results
3.1. Train and Validation Metrics

Train and validation losses, as well as the DSC of the validation data set, are reported
in Figure 3 as a function of epoch number. The train loss is steadily decreasing, indicating
numerical stability of the optimization algorithm. Epoch number 55 (highlighted with bold
in the figure) represented the optimal stopping point, when the validation DSC reaches
a plateau and before it starts decreasing due to the effect of over-training. This approach
minimizes the risk of over-training, potentially lowering general performance on unseen
data sets. The Dice score in the validation data set reached a value of 0.52 when using this
optimal stopping point (Epoch number 55) (Figure 3).

0 10 20 30 40 50 60

Epoch number

0.4

0.5

0.6

0.7

0.8

0.9

1

L
o

s
s
 f

u
n

c
ti
o

n
 (

a
.u

.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
S

C

Train loss=0.54

Validation loss=0.48

DSC=0.52

Train loss

Validation loss

Validation DSC

Figure 3. Train and validation losses (left axis) and Dice scores (DSC) (right axis) depicted as a
function of epoch number. The train loss is smoothly decreasing, indicating numerical stability of the
algorithm. The Dice score reaches a plateau, suggesting an optimal epoch number of 55 (black, solid
dots). This epoch number yields optimal training performance of the network while minimizing the
risk of over-training. a.u. = arbitrary units.

A histogram depicting the distribution of predicted objects in the test cohort (n = 26) is
shown in Figure 4. The median (min, max) number of objects per patient was 7 (1.28). Only
12% (3/26) of the patients had one DL mask object, by definition representing the predicted
primary tumor. For the vast majority (88%; 23/26), the predicted mask image contained
multiple objects. For these patients, the object expressing the highest mean activation value
was automatically selected to represent primary tumor.
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Two predicted objects Suggested tumor object

Figure 4. (Left): Histogram depicting number of objects in the prediction maps for the test cohort
(n = 26) using a sigmoid-transformed activation map with a threshold of 0.5. In only 3/26 patients
a single object was identified, whereas in 23/26 patients multiple mask objects were suggested.
(Middle): Surface rendering depicting two objects (in red and yellow) in one of the patients having
two predicted objects (grey box in histogram). The surface colors red/yellow indicate corresponding
low/high mean activation values for the two objects (a.u. = arbitrarily units). (Right): In this patient
with two suggested objects, the yellow mask with highest mean activation value was automatically
selected as primary tumor.

3.2. Performance in Terms of DSC and HD

A summary of segmentation performance metrics in terms of DSC and HD for DL-
and R1/R2 segmented primary tumor masks is given in Table 3. Segmentation performance
of the DL algorithm is lower than that for the raters both in terms of median DSC (DL-R1:
DSC = 0.60, DL-R2: DSC = 0.58, R1-R2: DSC = 0.78; Wilcoxon rank sum test, p ≤ 0.01) and
median HD (DL-R1: HD = 29.2 mm; DL-R2: HD = 30.2 mm, HD = 14.6 mm; Wilcoxon rank
sum test, p ≤ 0.01).

Box plots of DSC and HD for DL segmentation compared with that of R1 and R2 are
depicted in Figure 5, reflecting the reported performance values in Table 3, I.

(a) (b)

Figure 5. Comparison of (a) Median Dice coefficient (DSC) and (b) Median Hausdorff distance (HD)
for segmentations by DL-R1, DL-R2, and R1-R2. Agreement between R1-R2 is significantly better
than between DL and R1/R2 in terms of DSC and HD (Wilcoxon rank sum test, p ≤ 0.01). The central
line indicates the median, and the upper and edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers indicate the most extreme data points not considered to be outliers, while
outliers are plotted individually using a ‘+’ symbol. R1 = rater 1; R2 = rater 2.
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After adjusting for R1-R2 disagreement, estimates of segmentation performance are
significantly higher both in terms of median DSCs (DL-R1: DSC = 0.81, DL-R2: DSC = 0.79)
and median HDs (DL-R1: HD = 3.73 mm, DL-R2: HD = 9.10 mm).

3.3. Performance in Terms of Reported Tumor Volume

Bland–Altman plots comparing reported primary tumor volumes based on segmenta-
tions by DL and R1/R2 and R1 and R2 are shown in Figure 6. The mean difference in tumor
volume between DL-R1/R2 and R1-R2 was low for all comparisons (≤0.94 mL), suggesting
high agreement in mean tumor volume. However, higher LoA of ±60/75 mL were found
for DL-R1/R2 compared to R1-R2 with LoA of ±24 mL. There was no difference in median
DL/R1/R2 tumor volumes (Friedman’s test, p = 0.10). Agreement in terms of ICCs for log
tumor volume for DL-R1 and DL-R2 was lower (ICCDL,R1 = 0.43 with 95% CI = (0.07, 0.70),
p = 0.01, and ICCDL,R2 = 0.44 with 95% CI = (0.08, 0.70), p = 0.01, respectively) than that for
R1-R2 (ICCR1,R2 = 0.93 with 95% CI = (0.85, 0.97), p < 0.001).
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Figure 6. Bland–Altman plots comparing tumor volumes V [mL] from (a) DL (deep learning) and R1,
(b) DL and R2 and (c) R1 and R2. Red lines indicate mean difference of the estimate, and dashed lines
represent lower and upper limits-of-agreement (LoA). Mean difference in estimated tumor volumes is
low for all comparisons, indicating a high agreement in mean primary tumor volume by all methods.
However, LoA is higher for DL-R1/R2 than for R1-R2, indicating a higher individual disagreement
for tumor measurements by DL-R1/R2 than by R1-R2. R1 = rater 1; R2 = rater 2.

A relatively weak but significant dependency of tumor volume on segmentation
performance was observed for the DL algorithm (DL-R1: ρ = 0.40, p = 0.046; DL-R2: ρ = 0.41,
p = 0.039, Spearman rank correlation) (Figure 7, upper row, left and middle panel). For R1-
R2, large tumor size only tended to be positively correlated with segmentation performance
(R1-R2: ρ = 0.31, p = 0.12; Spearman rank correlation) (Figure 7, upper row, right panel).
All plots suggest a log-like relationship between increasing tumor size and DSC. We found
no significant correlation between tumor volume and HD (ρ ≤ 0.24, p ≥ 0.24, Spearman
rank correlation) (Figure 7, lower row). Patients with a low DSC < 0.2 and a small tumor
volume < 50 mL are pairwise indicated in the upper and lower rows. For the ML-R1/R2
relation (Figure 7, left and middle columns), these cases (n = 6) had large HDs, whereas for
the R1-R2 relation, similar cases (n = 2) had relatively low HDs (Figure 7, right column).
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Figure 7. Tumor volume in relation to segmentation performance. (Left): R1 tumor volume. (Middle):
R2 tumor volume. (Right): Mean tumor volume for R1- and R2 masks. (Upper row): Tumor volume
against Dice coefficient (DSC). There is a weak but significant correlation between primary tumor
volume and DSC for DL (deep learning)-R1/R2 (left and middle panel, p ≤ 0.046). R1-R2 DSC only
tended to be associated with tumor volume (right panel, p = 0.12). (Lower row): Plots of tumor
volume against Hausdorff distance (HD). We found no significant correlation between primary tumor
volume and HD for any of the associations DL-R1/R2 or R1-R2 (p ≥ 0.24). Both rows: The same
patients with (i) low DSC < 0.2 and (ii) a small tumor volume < 50 mL (estimated tumor volume for this
condition is either R1 (left), R2 (middle), or mean (R1, R2) tumor volume) are simultaneously marked
in blue in upper and lower panels, suggesting that patients experiencing a low DSC are normally high
in HD for ML-R1/R2 (left and middle panels, the same n = 6 patients were identified). For R1-R2,
patients with low DSC also have low HD (right panel, n = 2 patients). R1 = rater 1; R2 = rater 2;
V = tumor volume, {ρ, p} = Spearman rank correlation coefficient with associated p-value.

The multiple linear regression model reported in Table 4 revealed no linear relationship
between field strength, T2/DWI anisotropy, and T2/DWI FOV as explanatory variables
and DSC as response variable.

Table 4. Association between field strength, anisotropy T2 and DWI, field-of-view (FOV) T2 and DWI,
and DSC using multiple linear regression. None for the MRI acquisition features had a statistical
assocation to segmentation performance (p ≥ 0.33, multiple linear regression).

Estimate SE p

(Intercept) 0.08 0.36 0.82
Field strength −0.06 0.15 0.71
Anisotropy T2 0.04 0.04 0.33
FOV T2 1.77 23.69 0.94
Anisotropy DWI 0.04 0.07 0.54
FOV DWI 4.10 6.11 0.51

4. Discussion

Patients diagnosed with uterine cervical cancer (CC) in high-income countries rou-
tinely undergo imaging by pelvic MRI, allowing the assessment of primary tumor extent
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and tumor invasion to surrounding tissue or pelvic lymph nodes. MRI-based whole-volume
radiomic tumor profiling is promising for prognostication [3–5] and tailoring of cancer
treatment [6–9]. However, the clinical utility of CC radiomic profiling is hampered by
labor intensive manual tumor segmentations. In the current work based on 131 manually
segmented primary CC lesions, we present a deep learning based algorithm for tumor seg-
mentation yielding a fully automatic prediction of primary tumor position and boundaries.

This DL-based fully automatic approach for primary CC segmentations yielded rela-
tively high segmentation performance (DL-R1: median DSC = 0.60, DL-R2: DSC = 0.58),
although still lower than that for the expert raters (R1-R2: DSC = 0.78) (Table 3). Impor-
tantly, with a DSC of 0.78 for R1-R2, it is evident that substantial disagreement also exists
when human experts define primary tumor boundaries in CC. Without using consensus
segmentations across multiple raters, it seems inherently impossible to train a DL algo-
rithm to yield better segmentation performance than that achieved for the raters involved
in training the model. Thus, in an attempt to adjust for disagreement across raters we
also report adjusted DSCs and HDs for the DL segmentation (Table 3). These adjusted
performance metrics (DL-R1/R2: DSC = 0.81/0.79; HD = 3.73/9.10) are as expected better
than the corresponding crude estimates (DL-R1/R2: DSC = 0.60/0.58; HD = 29.2/30.2) and
may be considered as relatively good.

In the present study, the crude performance estimates are lower than that reported in
some previous studies of CC tumor segmentation [10–13]. Bnouni et al. reported a DSC of
0.93 (using T2-weighed MRI) [13] (n = 15), Kano et al. reported a DSC score of 0.83 (using
diffusion-weighted MRI) [11] (n = 98), and Lin et al. reported a DSC score of 0.82 (using
multiparametric MRI) [12] (n = 169). However, these studies all used k-fold cross-validation
applied to a train/validation data set for performance estimation and hyperparameter
tuning. This setup is unfortunately not directly comparable to the present study since they
did not estimate the performance of their DL algorithm in a separate and unbiased test
data set [34].

Lin et al. presented a DL algorithm for automated tumor segmentations in CC using
T2-weighted 3T MRI with DWI [12] (n = 169). Similar to our study, they used a separate
test set to assess the performance of their DL algorithm, and report a DSC of 0.82. However,
Lin et al. did not report inter-rater agreement as their manual tumor segmentations used
for training of the DL network were by a single radiologist, however, with subsequent
verification by a second radiologist. Thus, although the crude performance estimates of
our DL algorithm (median DSCs of 0.60/0.58) seems inferior to that of the DL algorithm by
Lin et al. (DSC of 0.82), the adjusted performance estimates for our DL algorithm (DSCs of
0.81/0.79) are quite comparable to that of their DL algorithm.

Interestingly, recent studies presenting DL algorithms for automated MRI tumor
segmentations of other pelvic malignancies report performance metrics with DSCs in the
range of 0.52–0.84 [35–39], i.e., prostate cancer (DSC of 0.52 using k-fold cross-validation [35]
[n = 204]), endometrial cancer (DSC of 0.77/0.84 using a test set [36] [n = 139] and DSC
of 0.81 using k-fold cross-validation [37] [n = 200]), and rectal cancer (DSC of 0.68/0.70
using a test set [38] [n = 140] and DSC of 0.70 using a test set [39] [n = 300]). Hence, our
DSCs for the DL algorithm in CC (DL-R1: median DSC = 0.60, DL-R2: DSC = 0.58) are quite
comparable to that of other pelvic malignancies. Similarly, inter-rater agreement in our
study (R1-R2: DSC = 0.78) compares well with that reported in prostate cancer (DSC of
0.57, n = 78) [40] and rectal cancer (DSC of 0.83, n = 140) [38].

The use of one or multiple raters for the annotation of data sets may influence the
segmentation performance of the DL algorithm. Interestingly, the study of Ji et al. [41]
report higher performance of the DL algorithm when the algorithm utilizes the rich annota-
tion information derived from manual segmentations from multiple raters. We included
annotated data sets from two raters in the training data, however, with segmentations by a
single rater for each patient in the training/validation set. Future work in CC segmentation
should explore the value of rigorously incorporating information from multiple raters in
order to maximize performance [41,42].
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A further possible reason for variable segmentation performance for DL algorithms
may be related to the extent of harmonization of input data. Although previous studies have
identified dependencies of image resolution and noise characteristics on the reproducibility
of radiomic features [43], we found no direct association between FOV, voxel anisotropy,
and field strength on segmentation performance (cfr. Table 4). Still, the importance of
using homogeneous imaging data in terms of standardized MR protocols for successfully
training and applying a DL algorithm is not fully known. Despite z-normalization of the
data prior to feeding the algorithm, variations in site, hardware and acquisition parameters
in our study may have influenced the data in a way that has increased the complexity of
the segmentation task. On the contrary, it is also possible that the algorithm becomes more
robust by being exposed to variation in the training process, and that this may increase
the performance of the algorithm when faced with new challenging segmentation tasks on
images acquired at different sites and MRI scanners [44].

A majority of the raw predicted mask images contained multiple separate objects in
3D (23/26), with many of these being outside the uterine cervix. Although some of these
additional objects could potentially represent extrauterine tumor tissue or metastases, they
could not by definition represent primary tumor, and most of these objects were due to
noise. A commonly used approach to handle multiple output regions is to threshold the
predicted mask objects based on expected size [36,45], often in combination with various
morphological operations [46]. We pursued an automatic approach that selected the most
probable mask object based on maximum value of the average activation within the mask
object. This approach attempts to take advantage of the inherent certainty built into the
hlDL network, being expressed as high activation values whenever the network has high
certainty for a tumor prediction, and oppositely expressing low activation values in the
presence of low certainty.

The estimated tumor volume revealed no difference in median values between DL/
R1/R2 (Friedman test, p = 0.10, and Bland–Altman plots, Figure 6). However, larger LoA
for DL-R1/R2 compared to that of R1/R2 and higher ICC for R1-R2 (ICC = 0.93) than
for DL-R1/R2 (ICC = 0.43/0.44) suggests that human experts reach a higher accuracy for
tumor segmentation than the DL network. Future work must clarify how this observed
difference in segmentation accuracy may influence radiomic feature extraction and potential
prognostic modeling from corresponding radiomic signatures.

Interestingly, there was a positive, significant correlation between DSC and tumor
volume for DL-R1/R2 (ρ ≥ 0.40, p ≤ 0.046) but only a tendency for R1-R2 (ρ = 0.31, p = 0.12)
(Figure 7). This finding indicates that accurate tumor segmentation by the DL algorithm or
even by human experts is easier to achieve if the tumors are relatively large. Our findings
further support that whenever the DL method is failing in the presence of small tumors,
the DL-suggested tumor mask is either very large or located far from the cervical lesion
(Figure 7). Cases with inter-rater disagreement for small tumors had masks that were closer
in space. This observed difference is probably because human experts have been trained to
differentiate the uterine cervix from other organs.

Notably, similar findings with better segmentation accuracy in larger tumors have
been reported in CC [12] (n = 169), and brain tumors [47] (n = 69). Identifying small
tumors in CC can be a challenging task also for trained raters due to lack of contrast
and inherent difficulties in distinguishing between normal and pathological tissue. Still,
the weak relationship observed suggests that the challenges in retrieving accurate manual
and automatic CC segmentations are only partly related to tumor size.

This study has several limitations. Our imaging data were acquired at different
scanners with large variations in field-of-view, pixel size and field strength, leaving many
images prone to substantial padding-/cropping effects and resizing in the preprocessing
steps prior to feeding the network with data. The use of more standardized imaging
protocols would potentially reduce the need for post-processing steps that are known to
reduce data quality. However, it may be argued that this setup using imaging data derived
from different scanners with their variable protocols, more truly reflects the standard
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imaging work-up that CC patients in general undergo. Furthermore, we excluded two
patients with a tumor size > 1000 mL due to this small number being insufficient to train a
model for large tumors. Thus, our findings in terms of performance in relation to tumor
size may not be extrapolated to patients with extremely large tumors.

In conclusion, we have developed a DL algorithm for fully automatic primary tumor
segmentation in CC that yields highly promising segmentation performance, although not
yet reaching the same segmentation performance as human raters. With likely break-
throughs in DL technologies in the near future, this should motivate further development
of similar DL platforms to enable automated radiomic tumor profiling in CC.
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ABSTRACT

Segmentation of the spinal tissues on MRI is the basis for
quantitative analyses, but time-consuming if done manually.
In this work, we construct a pipeline for automatic vertebrae
segmentation from T2w MRI scans, assessing performance
and generalizability by external validation. Our study used
15 scans from one site (Haukeland University Hospital, HUH)
and 10 scans from another (Sahlgrenska University Hospital,
SUH). MRI experts manually delineated the vertebral bodies
Th12-L5 on all the HUH data and a subset of six scans from
SUH. We trained multiple convolutional neural networks, as-
sessing the performance in an experimental design tailored to
small-data contexts and also on external data. Our best model
achieved a mean Dice score of 0.899. This is comparable to
results in the literature, but our system required much less
training data. 1.

Index Terms— Deep learning, image segmentation,
MRI, lumbar and thoracic vertebrae

1. INTRODUCTION

Spine-related diseases have a massive impact on social costs
and the health and quality of life for young and elderly peo-
ple worldwide. The most common source of chronic disabil-
ity for both sexes during the working years is low back pain.
Magnetic resonance imaging (MRI) is an essential modality
for clinicians to noninvasively assess the health status of the
spine and visualize any pathology[1]. Some abnormalities

⋆ Corresponding author: skka@hvl.no
1The source code is available at https://github.com/MMIV-ML/

fastMONAI/tree/master/research

in spinal tissues have been demonstrated to occur more fre-
quently in patients with low back pain, including neoplastic,
inflammatory, infectious, degenerative, and metabolic disor-
ders. Therefore, objective evaluation of the vertebral tissue is
warranted to monitor changes over time and enable compar-
isons between sites. Segmentation of the individual vertebrae
is the basis for such quantitative analysis, but manual delin-
eation is time-consuming. Hence, there is a need for auto-
matic segmentation methods.

Deep learning models are extremely powerful for such au-
tomation tasks [2] but typically rely on humans to provide a
large number of annotations. Deep learning approaches have
been successfully applied to spine segmentation tasks using
large annotated Computed Tomography (CT) datasets [3, 4].
For example, the multi-stage vertebra segmentation model for
CT images by MONAI Label [5].

However, MRI is often the preferred modality for exam-
ining spinal diseases in clinical settings and is increasingly
requested for patients with low back pain due to less radiation
exposure and better soft-tissue visualization [1].

A few previous studies have investigated the use of
deep learning for MRI-based vertebrae segmentation. Lu
et al. [6] constructed ground truth annotations based on cre-
ating bounding boxes on the central slices of the sagittal T2w
images (n=1000). The authors reported an average Dice score
(DSC) of 0.93 (SD 0.02) using a 2D U-Net approach for the
segmentation. In comparison, the delineated masks in our
study are more detailed, making the segmentation task more
complex. Furthermore, Lu et al. evaluated the performance
on data from the same source as the training data, and they did
not make their source code available. Zhou et al. [7] reported
a mean DSC of 0.849 (SD 0.091) on their 2D U-Net approach
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using a dataset (n=57) with mid-sagittal slices derived from
iterative decomposition of water and fat with echo asymmet-
ric and least-squares estimation (IDEAL) spine MR images
and annotated masks for L1-L5. The performance was eval-
uated on data from the same source as the training data. The
trained model and the source code were made available at
https://github.com/zhoji/verteseg. Recently,
Gao et al. [8] trained a 2D U-Net model that achieved an
average DSC of 0.882 (SD 0.018) based on T1w and T2w
slices with manually annotated masks (n=40). The perfor-
mance was evaluated on data from the same source as the
training data, and the authors did not make their source code
available. Lessman et al. [9] trained a 3D U-net-based CNN
that achieved an average DSC of 0.944 (SD 0.033) using a
three-fold cross-validation approach on an open lumbar spine
MRI dataset [10] (n=23). The source code was not shared,
making direct comparisons challenging2.

In the present work, we train a 3D segmentation model in
a setting with small amounts of data and evaluate the perfor-
mance on external data. Furthermore, we share the complete
source code to construct and train our models and the learned
weights, enabling other researchers to produce segmentation
masks for new T2w MR images.

3

2. METHODS AND MATERIALS

2.1. Data

We used 25 T2-weighted MRI scans of unique patients from
Haukeland University Hospital (HUH) (n=15) and Sahlgren-
ska University Hospital (SUH) (n=10).

The data from HUH were part of the AIM-study (Antibi-
otics In Modic changes) [11], where all images were acquired
on a Siemens MAGNETOM Avanto 1.5 T MRI scanner (slice
thickness = 4 mm, FOV 300x300 mm2, 384x269 matrix, in-
terslice gap = 0.4 mm, repetition time = 3700 ms, echo time
= 87 ms, number of acquisitions = 2) [12].

The data from SUH were acquired on a Siemens MAG-
NETOM Aera 1.5 T MRI scanner (slice thickness = 3.5 mm,
FOV 300x300 mm2, 384x384 matrix, interslice gap = 0.7
mm, repetition time = 3500 ms, echo time = 95 ms, number
of acquisitions = 1) [13].

An MRI expert conducted the manual segmentation of the
vertebrae with consensus from a senior radiologist using the
open-source software ITK-SNAP [14]. The vertebrae were
segmented on all slices in the image volume, visualizing the
vertebral body. The annotations included the vertebral body

2We did, however, use our methods in a three-fold cross-validation based
on the same data as in [9] and achieved an average DSC of 0.94 (SD 0.01),
indicating similar performance for the two approaches.

3https://github.com/MMIV-ML/fastMONAI/tree/
master/research

bone marrow but not the vertebral cortex. Figure 1 shows an
example of the annotated data.

To evaluate our model on an external dataset, we used the
data from Chu et al. [10], consisting of 23 scans acquired at
1.5 T in sagittal orientation. Seven vertebrae are manually
segmented on each image (Th11–L5). We manually removed
Th11 to be consistent with the above data sets.

2.2. Methods

To construct our pipeline shown in Fig. 1, we used our open
source fastMONAI library4, used in previous studies [16, 17,
18]. fastMONAI is a low-code library built on top of fas-
tai [19], MONAI [20], and TorchIO [21], making it easier to
construct, use and train powerful deep-learning models for
various medical imaging tasks.

The neural network architecture used in this study was
an enhanced 3D U-Net[22] as implemented by the MONAI
library[20], with layers of 16, 32, 64, 128, 256 channels, each
with downsampling and upsampling by a factor of 2 and a
residual connection between them. Based on inspection of
the variation in the HUH training data, we decided to resam-
ple all volumes to 4.4 x 0.78 x 0.78 mm3 voxel size, do z-
normalization (i.e., zero mean and unit standard deviation),
and resizing to 16 x 400 x 400 using zero-padding or crop-
ping.

We set the number of epochs to 150 and used a batch size
of 4. The models were trained using the Ranger optimizer [23,
19] with an initial learning rate of 0.01 that was decayed using
flat-cosine-annealing where the last 25% of the training fol-
lows a cosine function as it slows down [24, 19]. We imple-
mented Focal Tversky loss function, a generalized Focal loss
function based on Tversky [25]. These choices were made
based on experiments conducted in our cross-validation ex-
periment (Experiment 1 below).

All our models were trained using data augmentation. We
used data augmentation random gamma correction with log
gamma value of -0.2 to 0.2, random scale factor from 0.9 to
1.1, random rotation [−5◦, 5◦], and random elastic deforma-
tion with five control points and max displacement of 5.5 to
simulate anatomical variations. The augmentations were ap-
plied on-the-fly during training.

Each model’s training took approximately 25 minutes
on an NVIDIA Titan RTX GPU, consuming roughly 4.5GB
VRAM during training.

In a postprocessing step, we extracted three-dimensional
connected components. We used them to remove small false
positives (defined as <= 20% of the average vertebral bodies
in the dataset) and calculate each vertebral body’s volume.

See the accompanying source code for additional details.

4fastMONAI is available at https://fastmonai.no
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Fig. 1: The figure illustrates our proposed preprocessing, training, and evaluation pipeline. First, the T2w MRI scans and the corresponding
labels were preprocessed by resampling, z-normalization, and zero-padding or cropping. Next, we expanded the training data set using
data augmentation strategies and trained multiple U-Net-based segmentation models in two K-fold cross-validation setups. The results were
evaluated on test data using the Dice coefficient and the resulting vertebrae volumes. In the first experiment, we used five-fold cross-validation
based on only the data from HUH, evaluated the generalization ability on all the labeled SUH data. In the second experiment, we added data
from SUH to the training set in a three-fold cross-validation setup, again evaluated the results using the Dice coefficients and the volumes. In
our final set of experiments, we used an ensemble of the three models from the previous experiment to produce predicted labels on unlabeled
data from SUH, first directly and then via a semi-supervised setup based on pseudo-labeling [15]. Finally, we evaluated the results using
external data.

3. EXPERIMENTS AND RESULTS

We used K-fold cross-validation to estimate the generalizabil-
ity of the models before applying them to unseen test data.
For each validation image in a fold, we compared the pre-
dicted mask with the ground truth in terms of Sørensen-Dice
similarity coefficient (DSC) and Hausdorff distance (HD). We
performed the following experiments:
1. External validation, train on data from one site, assess per-

formance on data from another
2. An approach for fine-tuning on target data
3. Semi-supervised learning using pseudo labeling
4. External evaluation on an open, annotated dataset [10]

The results are reported, and the experiments are ex-
plained further in Table 1 and in the Bland-Altman plots of
Figure 2.

4. DISCUSSION

We presented an approach to vertebral body segmentation
from T2w MRI scans using two independent sources. We

designed and investigated a training setup tailored for con-
texts with limited data, evaluating our models’ performance
on external data. The average performance across the test set
subjects indicated that it is possible to construct useful mod-
els from limited amounts of manually segmented vertebrae
images, which is promising for future implementation in a
clinical workflow. However, we observe some performance
variability among the subjects. A further investigation into
the sources of this variability–scanner settings, ground truth
labeling, anatomical variation, etc., is warranted. Before such
a system can be implemented, additional hurdles must be
overcome. A natural next step is to incorporate the model in
an active learning setup and use it to label a larger dataset
(e.g., [26]). This will reduce the time needed for manual
delineation while simultaneously training the model on more
data. We plan to deploy such a setup in the research PACS
infrastructure of our health region5, where we can evaluate its
clinical usefulness in a context that is familiar to radiologists.

5See https://mmiv.no/wiml
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Experiment 1

Dataset Cases raw DSC post-processed DSC raw HD post-processed HD

HUH 15 0.894 ± 0.034 0.896 ± 0.033 51.605 ± 51.737 45.629 ± 59.750
SUH 6 0.855 ± 0.036 0.859 ± 0.035 28.257 ± 15.002 19.221 ± 17.586

Experiment 2

SUH 6 0.886 ± 0.025 0.890 ± 0.025 31.504 ± 4.384 15.332 ± 12.927

Experiment 3

SUH 6 0.896 ± 0.034 0.898 ± 0.031 25.993 ± 25.889 16.329 ± 15.141

Experiment 4

Public dataset [10] 23 0.896 ± 0.021 0.899 ± 0.02 53.4 ± 39.733 12.052 ± 11.6195

Table 1: Experiment 1: models trained on HUH data using five-fold cross-validation and assessed on SUH data. Experiment 2:
trained on all HUH data and some SUH data using three-fold cross-validation with SUH data in the validation folds. Experiment
3: an ensemble of the models from Experiment 2 was applied to the unlabeled data from SUH, and the generated labels for the
unlabeled data were used as pseudo labels in the same three-fold cross-validation training process as above. Experiment 4: the
ensemble from experiment 2 was used to produce labels for the unseen dataset provided by [10].

Fig. 2: Bland-Altman plots from Experiment 1 (a) and 2 (b) showing differences in measurements between MRI experts and
deep learning (DL) ensembles on SUH data. Each color of the markers represents a unique study subject.

5. DATA AND METHOD AVAILABILITY

The source code is available at https://github.com/
MMIV-ML/fastMONAI/research. We’ve shared the
weights of our final neural network, enabling the application
of our model to produce vertebrae masks in T2w MRI scans.
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the Helsinki Declaration. The study was approved by the Re-
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ence number 2017/2450) and the Regionala Etikprövningsnämnden
i Göteborg (reference numbers 888-14/483-17).
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