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Abstract—Accurate synthetic aperture radar-optical matching
is essential for combining the complementary information from
the two sensors. However, the main challenge is overcoming the
different heterogeneous characteristics of the two imaging sensors.
In this article, we propose an end-to-end machine learning pipeline
inspired by recent advances in image segmentation. We develop
a siamese multiscale attention-gated residual U-Net for feature
extraction from satellite images. The siamese architecture shares
weights and transforms the heterogeneous images into a homoge-
neous feature space. Fast Fourier transform is used to compute
the cross-correlation between the feature maps and produce a
similarity map. A contrastive loss is introduced to aid the training
procedure of the model and maximize the discriminability of the
model. The experimental results on a benchmark dataset show that
the proposed method has superior matching accuracy and precision
compared to other state-of-the-art methods.

Index Terms—Deep learning, optical, synthetic aperture radar
(SAR), template matching.

I. INTRODUCTION

IN RECENT years, the availability and accessibility of high-
quality remote sensing data have skyrocketed [1]. Numerous

sensors continuously monitoring the Earth unfold the possi-
bility of synergistic use of data in various applications, such
as disaster management (forest fires [2], hurricane impact [3],
flood and drought monitoring [4]), agriculture (soil moisture
monitoring [5], vegetation monitoring [6], [7], [8]), climate
monitoring (deforestation [9], pollution [10], weather forecast-
ing [11], ocean ecosystem [12]), urban planning [13], marine
traffic monitoring [12].

Optical and synthetic aperture radar (SAR) are some of the
most common sensors for Earth observation. Optical sensors
are passive sensors that measure the reflected sunlight from
objects on the Earth’s surface, making them susceptible to
atmospheric conditions, such as cloud coverage, time of day,
and other weather conditions, such as mist, fog, and smoke.
However, they provide useful multispectral information. Instead,
SAR is an active sensor that transmits radio wave pulses and
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measures the back-scattered signals, making them operational
without the sun needing to illuminate the surface and in every
weather condition. Furthermore, SAR can capture the surface
properties (such as roughness) of objects. However, it provides
no spectral information, resulting in noisy black-and-white im-
agery. Image matching is the process of aligning two or more
images. The SAR-optical matching is especially problematic
due to the significant radiometric and geometric differences and
the visual disparities introduced by different remote sensing sen-
sors. Consequently, combining data from various sensor types
remains one of the major challenges in remote sensing [14]. The
distinct characteristics of the different imaging principles cause
the imagery to reveal different aspects of the Earth’s surface.
As a result, objects on the surface appear inherently dissimilar
from active and passive sensors’ viewpoints. Therefore, locating
salient features in both images is complex, especially in areas
with fewer distinct features. Combining the two sensors will
increase the information content and possibly open new use
cases in remote sensing applications, given the complementary
information from SAR and optical imagery. However, the two
images must align accurately before combining them.

Traditionally, feature-based matching methods, such as
SIFT [15], SAR-SIFT [16], optical-to-SAR SIFT (OS-
SIFT) [17], and (RIFT) [18] have been used for SAR-optical
matching. These methods calculate feature descriptors from im-
ages and match them together, evaluating the feature correspon-
dence. Affine correction is performed by selecting noncollinear
matched features as control points. However, the extraction
of such features requires export knowledge and handcrafted
procedures. Furthermore, they cannot handle well the hetero-
geneous characteristics caused by the SAR and optical imag-
ing mechanisms on scenes with few salient features. Feature
similarity is calculated using the sum of squared differences
(SSD), normalized cross-correlation (NCC), or mutual infor-
mation (MI) [19], [20]. However, MI-based approaches suffer
from high computational costs.

Several studies have recently suggested deep learning meth-
ods to overcome the shortcomings of nonlearning methods. The
availability of paired SAR-optical datasets, such as SpaceNet-
6 [21] and SEN1-2 [22], help the development of machine
learning-based SAR-optical matching. Zhang et al. [23] and
Merkle et al. [24] proposed fully convolutional siamese networks
to extract features in SAR-optical imagery. Both methods rely
on a time-consuming pixel-by-pixel search to perform matching

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0759-4887
https://orcid.org/0009-0007-6056-8705
https://orcid.org/0000-0002-0691-5426
mailto:mgaz@hvl.no
mailto:scar.os@hotmail.com
mailto:arghandehr@gmail.com


4892 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

and use shallow convolutional neural networks (CNN) with few
parameters as feature extractors. Hughes et al. [25] implemented
a component-based framework using three separate networks to
extract patches suitable for matching, perform template match-
ing, and remove outliers, respectively. However, the framework
downsamples the produced feature maps due to time complexity
constraints, thus losing matching precision when interpolating
the similarity score. More recently, Zhou et al. [26] proposed a
machine learning modification of channel features of orientated
gradients (CFOG) proposed by [27] called multiscale convolu-
tional gradient features (MCGF). Like CFOG, MCGF achieves
fast matching since it also performs similarity evaluation in the
frequency domain using NCC. Zhang et al. [28] proposed the
deep dense feature network (DDFN), also inspired by the CFOG
method. DDFN extracts a 9-D feature vector for each pixel and
uses the SSD for similarity computation. The experiments show
that the deep siamese network outperforms the state-of-the-art
handcrafted CFOG descriptor. Fang et al. [29] introduced the fast
Fourier transform (FFT) U-Net, using the image segmentation
model U-Net [30] as a feature extractor with an FFT accelerated
NCC layer to perform matching. Similarly, [31] demonstrated
the superiority of using the U-Net as a feature extractor in SAR-
optical matching. However, SAR-optical matching remains a
challenging problem due to the inherent geometric and radio-
metric differences between the two sensors. A review on recent
methods and current research trends can be found in [32].

In this article, we tackle the problem of SAR-optical matching
as a multiclass classification task. We use a siamese architecture
to extract shared features, mapping different multimodal images
(e.g., optical and SAR into the same space) into a common
feature space. As the core of the model, we chose a UNet-based
architecture because it is one of the most effective deep learning
architectures for image classification and image segmentation.
We enhanced the classic architecture with additional compo-
nents, such as the attention mechanism and residual blocks,
which were initially developed for image semantic segmentation
tasks but not fully exploited yet in the context of SAR-optical
template matching. Moreover, we compute the feature maps at
different scales. Computing the features at different scales is a
well-known method that can improve the representation ability
of features in many tasks, such as standard object detection [33]
and image segmentation [34]. The multiscale feature map makes
the network more robust and improves the pixel-level matching
accuracy. At the same time, the attention mechanism helps the
model to locate and focus on salient regions in the SAR-optical
imagery. Furthermore, we combine the standard cross-entropy
with an additional contrastive loss to build a combined loss func-
tion tailored for the SAR-optical matching problem. The loss
function reduces false positive matching locations and increases
the discriminability of the proposed framework.

II. METHODOLOGY

The approach used in this work is based on template matching,
which consists of finding the most likely position of a small
image (template) within a larger image (reference). As such, the
starting point is acquiring an optical image (at this moment also

called reference) with dimensions Rx ×Ry and an SAR image
(at this moment also called template) with dimensions Tx × Ty .
Fig. 1 outlines the structure of the proposed pipeline. Details
of each component, including the architecture, FFT NCC layer,
and loss function, are described as follows.

A. MARU-Net Architecture

As a preprocessing step, the two input images (i.e., optical
and SAR) are downscaled, reducing their original size by half.
The resulting four images (optical, SAR, and their correspond-
ing downscaled versions) are passed through a siamese CNN
composed of four units. Each unit has the same architecture and
shares the same weights with the others. This way, they work in
tandem on different input vectors to compute comparable feature
maps [35].

Each unit is a CNN that consists of a U-Net backbone where
standard convolution blocks were replaced by residual convolu-
tion blocks [36]. The architecture has four layers with channel
dimensions of {32, 64, 128, 256} in the contracting path and
similarly four layers of {256, 128, 64, 32} in the expanding path.
We inserted attention gates [37] in the expanding path instead
of the standard direct skip-connections. Each residual block
consists of two iterations of 3× 3 2-D convolutions, followed by
batch normalization and an ELU activation. The shortcut path
consists of one convolutional layer. Instead of using traditional
transposed convolutions with learnable parameters to upscale the
encoded feature maps, we use upsampling layers with bilinear
interpolation to increase the resolution of the feature maps and
thus preserve the initial details of the encoded features. This
is because CNN architectures employing transposed convolu-
tions from lower to higher resolution are prone to checkerboard
artifacts [38].

Each network produces a 4-channel feature tensor ψ with
the same dimensions (height and width) of the corresponding
input. The feature map extracted from the downscaled optical
and SAR images, ψd

opt and ψd
SAR, are upscaled and concatenated

with the corresponding feature map extracted from the original
images ψo

opt and ψo
SAR. Thus, ψopt = ψo

opt ⊗ ψd
opt and ψSAR =

ψo
SAR ⊗ ψd

SAR, resulting in a 8-channel feature tensor.

B. FFT NCC Layer

Comparing the feature maps pixelwise is time-consuming and
drastically increases the training and inference time of the model.
To speed up the process, we compute the NCC in the frequency
domain to evaluate the similarity map S of the derived feature
maps using the FFT as

S = F−1
2d [F2d (ψopt) · F2d (ψSAR)] (1)

where, S denotes the derived similarity map, ψopt and ψSAR

are the optical and SAR feature maps produced by the network
presented in the previous section, “·” is the elementwise product
operation, and F2d and F−1

2d denote the 2-D forward and inverse
FFT, respectively. In the FFT layer, the dimensions of S corre-
sponds to the dimensions of the search space and isSx × Sy × 8,
whereSx = Rx − Tx + 1, andSy = Ry − Ty + 1. The similar-
ity mapS is then normalized into S̃ according to [39]. As a result,
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Fig. 1. Overview of the proposed architecture. Optical and SAR images are downscaled, and their resolution is halved. The four images (e.g., optical and SAR
with original resolution and optical and SAT halved resolution) are fed into a 4-unit siamese neural network. Each unit has the same architecture and shares the
same weights. A feature map ψ is then produced for each image. The feature map computed from the original resolution and halved resolution are concatenated
together for both optical and SAR. These are then compared in the FFT NCC layer. The coordinates of the maximum value in the normalized similarity map are
the predicted shift of the smaller SAR template within the larger optical reference image.

every value in S̃ can be interpreted as the observed similarity of
the template (i.e., SAR image) within the reference (i.e., optical
image).

C. Loss Function

If a softmax function is applied to S̃ each value in the de-
rived similarity map can be interpreted as the probability of a
specific shift between the reference and the template. That is,
the coordinates in the similarity map S̃ corresponding to the
maximum value indicate the predicted shift of the template with
respect to the reference. Given the discrete dimensions of the
search space and having the ground truth with the correct shift,
locating the 2-D pixel shift between the reference (e.g., optical)
and the template (e.g., SAR) image can be formulated as a
multiclass classification problem, where the classes denote the
shift coordinates of the SAR template within the larger optical
image. As such, we adopt the cross-entropy loss function LCE

as

LCE = −
Sx∑
i

Sy∑
j

yi,j log (Si,j) + (1− yi,j) log (1− Si,j)

(2)

where, yi,j is the ground truth value at position (i, j), while S̃i,j

is the similarity score at position (i, j).
However, for such a classification task, the size of S̃ yields

S̃x × S̃y different classes where the correct matching location
(1 class) is considered as the correct class, while the all the
rest are considered wrong. Therefore, this formulation results in
a heavily imbalanced distribution of classes, which negatively
impacts the training. Inspired by [28], we include a new term
in the loss function to reduce the impact of the imbalanced
distribution of the classes and improve the discriminability of the
network. We apply the discrete approximation of the Gaussian
function G on the area around the correct matching position
(ci, cj) obtained from the ground truth to construct a soft ground
truth map as

Gij =

⎧⎨
⎩

1
2πσ · e−‖(i,j)−(ci,cj)‖22

2σ , if‖(i, j)− (ci, cj)‖2 < 2

0, otherwise

(3)

where, σ is set to 1, ‖ · ‖2 is the L2 (Euclidean) distance.
L1 normalization is applied to G to render it as a probability
distribution. G has the same size of the similarity map S̃.
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Fig. 2. Grid is the generated similarity map S̃. The hard label (red square) is
provided by the ground truth and corresponds to the correct match between the
satellite and SAR. The Gaussian weighting function G is applied to the hard
label to produce the soft labels (orange and yellow squares). The union of hard
and soft labels is called the matching region. Points outside the matching region
fall inside the nonmatching region. The Nhns points with the most negative
nonzeros values are selected within this region. These points are called hard
negative samples (gray squares).

The similarity map space is then divided into two nonoverlap-
ping regions, namely the matching region MR = S̃ ×G and the
nonmatching region NMR = S̃ × (1− �G�), where �G� is the
ceiling function applied toG (nonzeros values are mapped into 1,
zeros values remain zero). The matching region consists of pixels
corresponding to the true class provided by the ground truth
(hard label) and the nearby classes, weighted by the Gaussian
function G (soft labels). We denote the number of these classes
by Nps. Inside the NMR region, we select the Nhns pixels with
the lowest nonzero values in the similarity map (hard negative
samples). Fig. 2 shows the two regions and the different types
of labels graphically.

We define a new termΩ, formulated as the difference between
the observed similarity scores within the two regions, which we
aim to maximize. Mathematically

Ω =
1

Nps

Nps∑
k=1

MR(k)− 1

Nhns

Nhns∑
k=1

NMR(k) + 1. (4)

Like in [28], we add a margin of 1 to prevent significantly
low values in Ω and increase the separability of the positive and
negative samples. Experimentally, we find that settingNhns = 16
yields the best results. Finally, the contrastive loss LΩ is defined
as LΩ = −Ω to make it compatible with the cross-entropy term
LCE (e.g., minimize −Ω is equivalent to maximize Ω). We
construct the combined loss function, which is the sum of the
cross-entropy term and the contrastive term

L = LCE + LΩ. (5)

The training process aims to minimize (5) through back-
propagation. In practice, without the contrastive termΩ, we note
that the simple cross-entropy loss LCE does not distinguish well
between a mismatch close to the ground truth or far from it. With
the term Ω, the model is penalized less if the maximum value
in S̃ is close to the ground truth. At the same time, the model is

Fig. 3. Sample images taken from the SEN1-2 dataset. First row: images taken
from Sentinel-2 (optical). Second row: images taken from Sentinel-1 (SAR).

trained to distinguish better between positive samples and hard
negative samples.

III. EXPERIMENTS

A. Dataset

We use the SEN1-2 open benchmark dataset [22] to examine
the performance of our approach. The dataset consists of 282 384
coregistered SAR-optical image patches, including all four sea-
sons and environments (e.g., urban, rural, deserts, mountains,
etc.). The image patches are 256 × 256 pixels in size and have
a 10-m spatial resolution. Fig. 3 shows some examples of the
images taken from the SEN1-2 dataset.

We select 100 random patches from every folder in the dataset
across all four seasons. The selected subsection of the dataset is
then split into training and test sets with a ratio of 70:30, yielding
18.060 image pairs as our training data and 7.740 for testing.
To generate the ground truth, the SAR patches are randomly
cropped to a size of 192 × 192, where the row and column offset
is stored as the ground truth value. The RGB optical images are
converted to grayscale, and the SAR images are denoised using
the Lee filter [40].

B. Evaluation Metrics and Implementation Details

The L2 distance between the peak of the generated similarity
map S̃ and the ground truth is used to determine the matching
accuracy. With a 256 × 256 reference image and a 192 × 192
template, the resulting similarity map is a 65 × 65 matrix. We
select MI, siamese CNN, DDFN, and FFT U-Net to compare
against our proposed MARU-Net method. Models are trained
for five epochs with a batch size of 4 using the Adam optimizer
with a learning rate of 5e−4. All methods are implemented using
the Keras API of TensorFlow 2, and training is performed on a
machine with an Intel Core i5-7600 k CPU and a GeForce GTX
1080 GPU.
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TABLE I
MATCHING RESULTS ON THE SEN1-2 DATASET

C. SAR and Optical Matching Performance Validation

We compute the results using our proposed approach as well
selected state-of-the-art methods [32]. The obtained results of
the testing dataset are shown in Table I. Besides the more
advanced learning methods, we also evaluate the standard cross-
correlation method, using the implementation provided by [41].
To evaluate the performance, we select the percentage of image
pairs with aL2 pixel distance from the ground truth smaller than
a given threshold as the correct matching rate (CMR). We also
compare the averageL2 distance value as a measure of precision
and the time complexity, measuring the average time to perform
a single matching.

As shown in Table I, the proposed MARU-Net method obtains
the best accuracy across all CMR thresholds. In addition, it
exhibits the best precision compared to the usual methods. We
note that the standard NCC, although faster than the more ad-
vanced methods, shows very poor performance. This is because
the similarity map is performed directly on the input images,
which are too diverse. MI shows acceptable results on the coarse
10 m/px resolution imagery (which is the resolution of the
SEN1-2 dataset used in this study), although other studies have
shown that MI performs noticeably worse when it comes to
pixel-level accuracy on very high-resolution imagery [29], [43].
Nevertheless, it is also the most time-consuming among the
tested methods. The DDFN achieves the fastest performance
due to its shallow seven-layer CNN structure with only 300 000
parameters. However, the shallow nature of DDFN yields low
precision scores due to poor matching accuracy on imagery with
few salient features. The siamese CNN is also a shallow network
with few parameters but employs a new architecture with shared
weights and cross-entropy as a loss function, yielding consider-
ably better performance compared to DDFN. Still, the Siamese
CNN is the slowest among the machine learning methods due
to a time-consuming dot-product computation of the extracted
feature vectors. The state-of-the-art FFT U-Net utilizes a deep
classic U-Net with cross-entropy as a loss function, producing
the best results among the selected methods, as shown in Table I.
The experimental results show that the proposed MARU-Net
architecture yields significant improvements in matching perfor-
mance compared to other state-of-the-art methods. In addition,
our method is also computationally efficient, in line with the
other methods.

The approach used in this work, and the other cited works,
is based on template matching. However, this approach will

TABLE II
ABLATION STUDY: COMPONENTWISE COMPARISON

lead to difficulties when the two images are heavily warped one
with respect to the other. Most of the presented methods cannot
effectively deal with significant rotation and scale differences
between the two image and further research is needed to address
these issues.

D. Visual Comparison of Matching Results

In Fig. 4, we show qualitatively two samples and the produced
similarity maps using different methods. The chosen scenes
consist of a nonurban and an urban image pair. Low response
values in the similarity map are represented by a dark blue
color, while high values are bright yellow. Ideally, an optimal
matching result would be a single sharp yellow peak overlapping
the ground truth value (red dot).

In the first scene, a snowy mountain scene, we observe no
distinct features and few details, making the SAR-optical match-
ing a challenging task. As such, the selected methods exhibit an
unfocused response pattern with a low response in the correct
matching region. MI, DDFN, and Siamese CNN particularly fail,
with numerous peaks in incorrect areas. The FFT U-Net also
yields an unfocused similarity map with a moderate response in
the matching area. The proposed method shows a comparable
similarity map with a singular sharp peak close to the red dot.
The attention gates and combined loss function encourage the
network to focus on a single region resulting in more focused
similarity maps with sharper peaks.

The second scene depicts an urban area with detailed struc-
tures (river, buildings). Compared to the first scene, the matching
is considerably more manageable, and all methods increase
the matching performance since features, such as the river, are
salient in both images. Still, the siamese CNN appears relatively
unfocused. The main benefit of our proposed method is a more
robust matching performance in scenes like in S1 where the
level of details is low and few features are present.

E. Ablation Study

We perform an ablation study to verify how the components
in the proposed method contribute to increasing the matching
performance. The FFT U-Net method serves as a baseline, and
the different components of our method are gradually added to
verify the performance gain. The experimental results of the
componentwise comparison are shown in Table II.

Including contrastive loss improves the matching precision,
ensuring improved training compared to solely cross-entropy.
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Fig. 4. Matching results for different methods on two sample scenes in the SEN1-2 dataset: S1 (rural area), S2 (urban area). The generated similarity heatmap is
color coded from blue to yellow. Low values are represented by a dark blue color, while high values are bright yellow. The red dot denotes the true ground truth
offset coordinates. Qualitatively, a better performance corresponds to having a single yellow peak around the red dot.

Fig. 5. Learned feature mapsψo
opt, ψ

o
SAR, ψ

d
opt, ψ

d
SAR. The feature maps are extracted from the MARU-Net network before calculating the cross-correlation block.

Fig. 5 shows the feature maps extracted from the feature
extractor. For clarity, the feature extractor from Fig. 1 is vi-
sualized here in the left part. The learned feature maps are
ψo

opt, ψ
o
SAR, ψ

d
opt, ψ

d
SAR. We notice that the downscale feature

maps ψd
opt, psi

d
SAR, differently from the original resolution fea-

ture maps ψo
opt, ψ

o
SAR suppress the details, keeping only the most

significant features and thus making the match more robust. On

the other hand, due to the decreased resolution, small details
are canceled out. Such missing information is retrieved by
combining the feature maps from the original resolution, which
improves the pixel-level matching accuracy. In our study, we
select two scales (original resolution and halved). Testing with
more scales did not improve the results, as further decreasing
the resolution would delete too much information and details,



GAZZEA et al.: MARU-NET: MULTISCALE ATTENTION GATED RESIDUAL U-NET WITH CONTRASTIVE LOSS 4897

Fig. 6. Comparison of the learned feature maps with and without attention
mechanism.

while making the model even more difficult to train (due to more
parameters). However, choosing multiple scales, for example,
pyramidal approaches [44], can be implemented when dealing
with larger images and a finer resolution.

Fig. 6 shows the difference in the feature maps with and
without the attention mechanism. Adding the attention mech-
anism yields much sharper and more focused feature maps.
This is because, as presented in [37], the attention mechanism
calculates attention coefficients that are multiplied during the
concatenation in the expanding path of the architecture (de-
coder), identifying salient image regions, and prune feature
responses to preserve only the relevant activations.

Finally, we present some limitations in the dataset that sig-
nificantly affect the model’s performance, and in general, all
remote sensing-based approaches. Fig. 7 shows some problem-
atic scenes with the dataset we used. A scene can be ambiguous,
for example, if there are straight lines and the template can match
all the positions along the line. In Fig. 7, first column, we notice
that the regular patterns of the fields in the SAR image can be
matched in different locations. Another example is when the
scenes are unclear, such as in the middle of the ocean (7, second
column). Finally, there might be temporal differences between
optical and SAR acquisition times. Even if the difference is
small, this can be significant if moving objects are in the scene,
as are the boats in Fig. 7, third column.

Finally, when we plot the distribution of the error (see Fig.
8), we notice a large peak around the 0- and 1-pixel error
with few outliers with a very high pixel error. These outliers
are due to difficult scenes present in the dataset, as described
in Fig. 7.

Fig. 7. Practical limitations in the dataset that affects the model performances.
A scene can be ambiguous, not clear scenes (for example, in the middle of the
ocean), or there might be temporal differences between the acquisition times of
optical and SAR.

Fig. 8. Error distribution for the SAR-optical matching using our dataset and
the proposed model.

Our approach falls in the category of template matching.
Therefore, it does not work well if the images are warped
(i.e., involving a nonaffine transformation) one to the other or
if significant rotations are involved. Future works are toward
addressing these challenges. We clarified this better in the results
section and in the conclusions.

IV. CONCLUSION

In this article, we propose an SAR-optical image matching
method to increase the matching accuracy and precision at
the pixel-level. We extend the classical U-Net with attention
mechanisms to improve the feature extraction capabilities of
the encoded–decoder architecture. We incorporate a multiscale
strategy to produce feature maps from original and downscaled
imagery to increase robustness. In addition, we propose a loss
function consisting of the combination of cross-entropy and a
contrastive loss, tailored particularly to the SAR-optical match-
ing problem. Experiments show that our method outperforms
other state-of-the-art methods while still being computationally
efficient. Future works are toward exploring the potential of
unsupervised or semisupervised methods in SAR-optical match-
ing to overcome the inherent shortcomings of relying on large
datasets. Also, another direction is to research how to make the
network more robust to scales and rotations.
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