IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 30 March 2023, accepted 20 April 2023, date of publication 1 May 2023, date of current version 5 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3271864

== RESEARCH ARTICLE

Efficient Method for Mining High Utility
Occupancy Patterns Based on Indexed
List Structure

HYEONMO KIM!, TAEWOONG RYU', CHANHEE LEE!, SINYOUNG KIM!,
BAY V0“2, (Member, IEEE), JERRY CHUN-WEI LIN 3, (Senior Member, IEEE),
AND UNIL YUN“1

! Department of Computer Engineering, Sejong University, Seoul 05006, South Korea
2Faculty of Information Technology, Ho Chi Minh University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam
3Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5063 Bergen, Norway

Corresponding author: Unil Yun (yunei@sejong.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology under Grant 2021R1A2C1009388.

ABSTRACT High utility pattern mining has been proposed to improve the traditional support-based pattern
mining methods that process binary databases. High utility patterns are discovered by effectively considering
the quantity and importance of items. Recently, high utility occupancy pattern mining studies have been
conducted to extract high-quality patterns by utilizing both the occupancy utility and frequency measure.
Although the previous approaches provide worthy information in terms of utility occupancy, they require
time-consuming tasks because of numerous comparison operations in exploring entries in global data
structures. This results in significant performance degradation when the database is large, or a pre-defined
threshold is low. An indexed list structure improves the inefficiency of the list-based approach by structurally
connecting each tuple. In this paper, we propose an efficient high utility occupancy mining approach based
on novel indexed list-based structures. The two newly designed data structures maintain index information
on items or patterns and facilitate rapid pattern extension. Our approach improves the cost of generating long
patterns of list-based ones by reducing a large number of comparison overheads. In addition, we devise novel
constructing and mining methods that are suitable for the proposed data structures and utility occupancy
functions. To narrow the wide search space, efficient pruning techniques apply to the designed methods.
Thorough performance experiments using real and synthetic datasets show that our method is more efficient
than state-of-the-art methods in environments where given thresholds change.

INDEX TERMS Data mining, high-utility occupancy pattern, indexed list structure, pattern mining.

I. INTRODUCTION

Due to the development of information technology, many
applications generate and handle a lot of data. As a huge
amount of data accumulates, data analysis techniques that
discover meaningful knowledge, such as relations and asso-
ciation rules, from large data have been actively studied. Data
mining is one of the most promising data analysis techniques.
Pattern mining, which is a sub-area of data mining, discovers
a valuable set of items, called a pattern or an itemset, from
a given database. Frequent pattern mining [1], [2], [3] is a

The associate editor coordinating the review of this manuscript and

approving it for publication was Hong-Mei Zhang

fundamental subject in the field of pattern mining. It mines
a frequent pattern whose support, which means the number
of times a pattern occurs in the database, is greater than or
equal to a user-given threshold. Since frequent patterns can be
used to help the decision maker, studies on more efficient fre-
quent pattern mining have been conducted in various fields.
However, in the real world, there are applications that are
interested in a pattern that not only appears frequently but
also plays an important role in transactions containing the
pattern. In order to meet the requirements in the real world,
high occupancy pattern mining [4], [5], [6] was proposed.
High occupancy pattern mining discovers more representa-
tive and qualified patterns by considering the occupancy that

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

43140

VOLUME 11, 2023

https://orcid.org/0000-0002-9246-4587
https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0002-3720-0861
https://orcid.org/0000-0003-0608-4498

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

IEEE Access

represents a proportion of a pattern to the transaction. How-
ever, both frequent pattern mining and occupancy pattern
mining have limitation in that they ignore the implicit factors,
such as weight, profit, importance, and quantity.

High utility pattern mining [7], [8], [9] handles the quan-
titative transaction database where each item has a quantity
and relative profit, and extracts a pattern whose utility, which
is the product of a quantity and profit, is not less than a
user-specified threshold. Compared to the frequent pattern,
the high utility pattern has a high profit by processing more
factors, including the quantities and profits of items. There-
fore, high utility pattern mining is utilized in various appli-
cations [10]. Moreover, expanded research on high utility
pattern mining has been performed by combining the utility
concept with approaches based on other notions, such as
sequential pattern mining [11], maximal pattern mining [12],
fuzzy pattern mining [13], and non-redundant pattern min-
ing [14]. However, high utility pattern mining cannot fully
reflect the frequency of the pattern. This is because a pattern
that occurs once or rarely can be extracted as a high utility
pattern. Providing these patterns as result patterns to the deci-
sion maker can lead to poor decisions. In addition, as a pattern
appears frequently, the utility of the pattern increases. Hence,
although a pattern does not have any significant influence
on transactions, the pattern can be mined as a high utility
pattern and misleads users if the pattern occurs frequently in
the database.

To overcome the above problems, OCEAN [15], the high
utility occupancy pattern mining method, was first proposed.
High utility occupancy pattern mining considers not only the
quantity and relative profit but also the ratio of the utility of
the pattern in each transaction. Moreover, in high utility occu-
pancy pattern mining, support and utility occupancy are used
as measures. The two measures guarantee that the extracted
result patterns are frequent and highly qualified. OCEAN
adopts a list-based vertical data structure, named as a utility
list [16], for storing utility information of a pattern. The list
structure is accompanied by join-operations, which involve
vertical search to find identical transactions, consume signif-
icant costs. HUOPM [17] tried to improve the performance
by utilizing UO-list, which stores the utility occupancy infor-
mation, and the frequency-utility table (FU-Table). However,
since UO-list is also a list-based vertical data structure, it still
has the problem of computational costs for join-operations.
Additionally, in order to address the performance reduction
facing OCEAN, HUOPM adopts several pruning techniques
that actively utilize the properties of support and utility
occupancy. The previous utility occupancy pattern mining
methods offer interesting results to the users, but they still
have an excessive number of comparison operations in their
mining process. In addition, the consumption to calculate the
upper bound causes performance degradation. As the size of
the database increases, the list-based structures contain many
entries corresponding to the transactions. This may result in
considerable comparison operations, thereby it is inefficient

VOLUME 11, 2023

for processing large-scale databases. As a result, this prevents
users from making quick decisions. Meanwhile, an indexed
list structure improves the problem by keeping index infor-
mation of items or patterns. However, the current indexed lists
are not capable of solving the high utility occupancy pattern
mining problem.

Motivated and inspired by these challenges, we propose
an efficient high utility occupancy pattern mining approach,
named HUOMIL (High Utility Occupancy pattern Mining
with Indexed List), using an indexed list-based data structure.
HUOMIL reduces the computational costs in the mining pro-
cess by employing the indexed list structure and an additional
pruning strategy to narrow search space. Furthermore, the
methods capable of effectively addressing utility occupancy
functions are newly devised and included in the proposed
approach. To the best of our knowledge, this is the first
work that utilizes the indexed list structure in the high utility
occupancy pattern mining area. The main contributions of
this paper are as follows:

« We propose an efficient high utility occupancy pattern
mining approach utilizing the indexed list. The pro-
posed approach includes effective and efficient methods
that rely on an indexed list-based framework. Based
on these methods, we develop an algorithm to discover
high-quality patterns with efficiency.

« Two novel indexed list-based data structures, GUO-IL
and CUO-IL, are devised to maintain the essential infor-
mation required to mine high utility occupancy patterns.
They include quadruple entries that contain index infor-
mation of items or patterns.

o The mining method designed based on the proposed data
structures tracks all entries by accessing only relevant
entries. This leads to a reduction of the number of com-
parison operations while creating long patterns.

« We prove that the proposed algorithm outperforms
state-of-the-art high utility occupancy pattern mining
approaches in terms of runtime, peak memory usage, and
scalability using diverse real and synthetic datasets.

The rest of this paper is organized as follows. Section II
introduces the studies related to the suggested approach.
In Section III, preliminaries are given first. Then, the overall
process of the proposed method, the proposed indexed list
structure, and the mining process are described in detail.
Section IV analyzes performance evaluation results con-
ducted on various datasets against the latest algorithms.
In Section V, limitations and future directions are discussed.
Finally, the conclusions are presented in Section VI.

Il. RELATED WORK

A. UTILITY-DRIVEN PATTERN MINING

High utility pattern mining finds meaningful patterns from
the quantitative database consisting of quantity and profit.
Since the results provide users with set of items that yields
high profits. Therefore, high utility pattern mining is used

43141

IEEE Access

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

to analyze retail [18], IoT systems [19], [20], operation pat-
terns [21], and financial crises [22] where the quantity and
profit of items are considered important. Starting with a
traditional approach, various methods that leverage different
strategies for high efficiency were proposed. The two-phase
algorithm [23] is a fundamental algorithm that laid the foun-
dation for this field. In addition, it suggested TWU-model
satisfying anti-monotone property to prune unpromising pat-
terns in advance. Nevertheless, it has performance limita-
tions due to the huge number of candidate patterns and
database scans. Some tree-based algorithms effectively tackle
the problem by reducing the number of scans. IHUP [24]
utilizes a pattern growth method rather than the level-wise
manner. Moreover, the number of scans is considerably less
than that of two-phase, thereby they show better performance
in experiments. UP-Growth and UP-Growth+ [25] perform
the mining process with tight upper bounds rather than TWU
values. Meanwhile, when they generate a vast number of
candidate patterns, an additional scan for determining their
validity causes performance degradation. The use of a list
data structure can solve this problem without generating can-
didates because it stores the utility of items in the database.
HUI-Miner [16] used a vertical list structure, called a utility
list, and crucial definitions, including remaining utility or
sorting order. The method can report results with fewer scans.
On top of that, an upper bound tighter than those of the above
algorithms improves pruning efficiency. Since the introduc-
tion of HUI-Miner, several algorithms relying on a list struc-
ture have been developed and representative of them are
FHM [26], HUP-Miner [27], and HMiner [28]. Despite these
efforts, as the number of transactions to which items belong
increases, the volume of each list increasingly grows. In this
aspect, it is costly to traverse all entries in lists during the
pattern extension. The indexed list structure [29], [30], [31]
improves the previous list structure by storing the path to
the next items. They efficiently explore patterns through the
index of the next item and improve the runtime and memory
usage of high utility pattern mining.

High utility pattern mining has been evolved in a variety of
ways to reflect real world factor or scenarios. High average
utility pattern mining [32], [33], [34] considers the utility
and length of the pattern simultaneously. The pre-large con-
cept [35], [36] finds large and pre-large patterns to minimize
database scans. RUPM [37] extracts reliable high utility pat-
terns by adapting the concept of reliability. Closed high utility
pattern mining [38], [39] generates representative patterns
to simplify extracted high utility patterns. MCH-Miner [40]
efficiently extracts high utility patterns by applying a parallel
multi-core architecture. Correlated high utility pattern min-
ing [41], [42] extracts a high utility pattern considering the
correlation of items. RHUPS [43] adopts a sliding window
and list to find recent high utility patterns. EHMIN [44]
applies a list structure to efficiently find high utility pat-
terns with negative profits. DHUPL [45] finds damped utility
patterns that consider the order in which transactions occur.

43142

DHUP-Miner [46] extracts affinity utility patterns through a
list structure. MLHMiner [47] adopts the HMiner structure
to find multi-level high utility patterns. These approaches
provided more meaningful insight with practical analysis than
traditional ones. They, however, sometimes fail to meet the
needs of applications, such as recommendation-based sys-
tem. The measure, called occupancy, effectively considers
the proportion of importance that the pattern occupies, which
also applies to the approach proposed in this paper. On top of
that, despite the efficiency of the indexed list structure in the
high utility pattern mining, there is no research that considers
occupancy measure and utilizes the indexed list structure.

B. OCCUPANCY-DRIVEN PATTERN MINING

The challenge of pattern mining [48] involves finding a more
interesting pattern and speeding up the mining process. High
occupancy pattern mining is the practical research more use-
ful than the conventional ones that rely on frequent and utility
concepts. Occupancy pattern mining considers the ratio of a
pattern in a transaction, which is regarded as occupancy. Even
if a pattern appears frequently, it cannot be a result pattern if
the pattern has a low occupancy for its transactions. Thus,
by this measure, occupancy pattern mining is used to dis-
cover the intent or purpose of consumers from transactions.
DOFRA [6] finds patterns by considering the support and
average occupancy from transactions or sequences. HEP [5]
integrated two thresholds, support and occupancy. They pro-
pose an accumulated occupancy that includes the properties
of support instead of the average occupancy. HOIMTO [49]
suggests a high occupancy pattern mining technique that
considers transaction occupancy as well as pattern occupancy.
HOMI [50] extracts high occupancy patterns from an incre-
mental database using the list structure. CFBPP [51] proposes
tire-based occupancy pattern mining to discover licensed
empty spectrum patterns. QFWO algorithm [52] is a list-
based algorithm. The authors designed a new research prob-
lem with the concept of weight and occupancy and defined
a new measure called weight occupancy. It could solve the
new problem of high-quality patterns by utilizing using a
weight-list structure. Combining the occupancy measure with
frequency or weight has led to practical information. On the
other hand, research on utility-based occupancy has also been
steadily conducted.

OCEAN [15] proposed occupancy pattern mining
regarding the utility of patterns. It finds items with high
utility occupancy from the quantity database. Therefore,
utility occupancy pattern mining is useful for identifying the
purpose or habit of consumers from a database where the
utility of an item is important. HUOPM [17] is proposed to
improve the performance of OCEAN. Mining performance is
improved through new data structures, which are the utility
occupancy list and frequent occupancy table. In addition,
the pruning efficiency is increased by changing the sorting
order of the list structure. Next, utility occupancy pattern
mining has various application fields. SHUO-FI [53] finds

VOLUME 11, 2023

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

IEEE Access

utility occupancy patterns considering distance constraints.
UHUOPM [54] and HUOMI [55] adopt the list structure and
extract utility occupancy patterns from uncertain situations
and incremental environments, respectively. pnHUO [56] is
an algorithm of the research that defined a new problem by
integrating utility occupancy and negative utility concepts.
It incorporated two list-based structures inspired by HUOPM.
The above list-based methods can derive the result patterns
more high-quality than that of frequency-based methods.
However, none of the existing utility occupancy pattern
mining methods use the superior list structure, indexed list.
Therefore, we propose an indexed list-based utility occu-
pancy pattern mining method to improve the performance of
the previous methods.

IIl. PROPOSED APPROACH FOR MINING HIGH UTILITY
OCCUPANCY PATTERNS WITH INDEXED LIST

We propose an efficient approach that includes an improved
indexed list-based data structure and methods in this paper.
The novel data structure enables HUOMIL to realize the
reduction of comparison operations during the mining pro-
cess. This section consists of several subsections detailing
the fundamental definitions, the proposed data structure, and
how HUOMIL mines the results. In the last part of this
section, the operation of HUOMIL is precisely analyzed with
a description of the algorithms.

A. PRELIMINARIES

The preliminaries, which are closely related to high utility
occupancy pattern mining, are covered comprehensively in
this subsection. We specify the rudimentary terms and defini-
tions in this section by referring to the prior studies [15], [17]
on high utility occupancy pattern mining. A quantitative
database contains multiple transactions, and it is denoted as
ODB= {Ty, T, ..., Ty }. Each transaction is composed of
items and their quantities. When a set of all items in QDB
is represented by I and an item {i} ({i}€[) is in transaction
T(T€QDB), the quantity of {i} is expressed as g({i}, T).
Values in an external utility table mean the external utilities
of items (e.g., profit, importance, and weight). The external
utility of {i} is denoted as p({i}). The utility of {i} in T
is calculated by multiplying g({i}, T) and p({i}), and it is
denoted as u({i}, T). A pattern P is a set of several items.
This means that PC/. P is called k-itemset when the number
of items in P is k. For example, the quantitative database in
Fig. 1 has 7 unique items and 10 transactions. For an item
{A}, g({A}, T1) is 2, and p({A}) is 3. Therefore, u({A}, T1)
becomes 6. In addition, a pattern {A, B, C} is called 3-itemset
because the number of items in the pattern is 3.

Definition 1: The utility of a pattern X in a transaction T
is denoted as u(X, T'), and u(X) refers to the total sum of the
utilities of X in each transaction Ty in QDB. These two values
are formally defined as follows:

uX,T) = Zu(ix, T),i,€c0XNXCT (1)

VOLUME 11, 2023

Transaction A set of items (name, quantity) TU

Ty (4,2) (B,3) (C,1) 13

T, (D,2) (F,2) 20

T (8,4) (G,2) 14

Ty (A,3)(C,4) (E,2) (F,1) 21

Ts (8,2 (0,1 (E,1) 12

T (B,4)(C,1) (D,1) 15

T, (F,1)(G,2) 10

Ts (4,3) (B,1) (C,5) 16

To (F,1) (6.4 16

Tio (B,2) (C,5) (D,2) 21
Item A B C D E F G
EU 3 2 1 6 2 4 3

FIGURE 1. Example quantitative database and external utility table.

uX)=> u(X,To),X ST NT; €6QDB (2)

Definition 2: The transaction utility of a transaction 7 in
QDB is notated by tu(T'), which stands for the total sum of the
utilities of the items in 7. tu(T') is obtained by the following
formula:

(T = Z uliy, T), iy € 6T 3)
X) =|TX|=|{TIX CTNT €6QDB)| (4

Definition 3: In frequent pattern mining [2], [3], the support
of a pattern X refers to the number of transactions where X
appears in ODB, and the notation is sup(X). When a set of
transactions containing X is 7%, sup(X) is the cardinality of
TX. Thus, sup(X) is calculated as below:

Definition 4: The utility occupancy of a pattern X in a
transaction 7T indicates the ratio of u(X, T) to tu(T), which
is denoted as uo(X, T'). In addition, the utility occupancy of
X in ODB, expressed as uo(X), is the average of uo(X, T)
calculated per transaction. The following two formulas are
used to obtain uo(X, T) and uo(X).

wo(X, T) = u(X, T)/tu(T)(5) 5)
uo(X) = > uo(X, Ty)/sup(X), Ty € 6QDB (6)

For example, let us take an example database in Fig. 1
and consider the calculations of u({A, C}), uo({A, C}, Ty),
and uo({A, C}). A pattern {A, C} occurs in transactions
Ty, Ty, and Tg, so u({A, CH= u({A, C}, Ty) + u({A, C},
T4) + u({A, C}, Tg) =7+13414=34. uo({A,C}, Ty) is
calculated as 7/13, which is approximately 0.5384. Similarly,
uo({A, C}, Ty) and uo({A, C}, Tg) are roughly 0.6189 and
0.875, respectively. Based on these uo values, uo({A, C}) is
(0.5384+4-0.6189+0.875)/3, which is about 0.6774.

Definition 5: When two threshold ratios are specified by
the users, y (0 <y <1)and § (0 < § < 1), the minimum
support threshold and minimum utility occupancy threshold
are denoted by minSup(QDB, y) and minUtilOcc(§), and they
are obtained as follows:

minSup(QDB, y) = |ODB| x y @)
minUtilOcc(§) = & 8)
43143

IEEE Access

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

Definition 6: In high utility occupancy pattern min-
ing [15], [17], a pattern X in QDB is called a high utility
occupancy pattern if both sup(X) > minSup(QDB, y) and
uo(X) > minUtilOcc(5) are satisfied. The high utility occu-
pancy pattern implies that the pattern has a high occupancy
with respect to the utility as well as a high frequency in QDB.

For example, consider three patterns, {A, C}, {A, F'}, and
{C}, which can be generated in the example database. When
minSup(QDB, y) and minUtilOcc(8) are 3 and 0.3, {A, C}
becomes a high utility occupancy pattern because sup({A,
C}) = 3 and uo({A, C}) = 0.6775. Meanwhile, uo({A, F})
is 0.6190, but sup({A, F}) is less than 3. For the pattern {C},
sup({C}) =4 and uo({C}) = 0.1769, which is less than 0.3.
Since the patterns {A, F'} and {C} satisfy only one constraint,
they are not a high utility occupancy pattern.

Definition 7: Total order, denoted as <, refers to a specific
order in which an algorithm processes items in the database.
In the framework of the proposed approach, the total order on
a set of items, I ={i|sup(i)> minSup(QDB, y)}, is assumed
in support-ascending order of items in /.

The previously designed high utility occupancy pat-
tern mining approaches [15], [17] used the total order in
TWU-ascending order and support-ascending order, respec-
tively, for efficient mining. In the indexed list-based frame-
work, the total order follows the support-ascending order.

Definition 8: Let a revised transaction be T. The revised
transaction is a transaction that has items whose support
is not less than minSup(QDB, y), and the items are sorted
in the total order <. In utility occupancy concept [17], the
remaining utility occupancy of a pattern X (X< T) is denoted
as ruo(X, T). Furthermore, the remaining utility occupancy of
X throughout QDB is notated as ruo(X). When the last item
of X is represented by iy, let iy be an item located after iy.
Then, ruo(X, T) and ruo(X) are calculated as follows:

ruoX, T) = Zuo(iy, T), iy < iyNiy € 0T 9)
ruo(X) = Zruo(X, Ti)/sup(X), X € Ty N Ty € 60DB
(10)

Definition 9: Suppose that there is a pattern X. The upper
bound utility occupancy of X is expressed as ubuo(X). Let
topK be the largest top K elements in a set. For each
transaction T} including X, ubuo(X) is the average of the
top [minSup(QDB, y)] elements in a set of the sum of uo(X,
Ty) and ruo(X, Ty). It is formulated as follows.

Top[minSup(QDB, y)
ubuo(X) = > CPImISUPQ@PBIT, X Th) + ruo(X, To))

/ITminSup(QDB, y)],X C Tx N Ty € QDB (11)

When a pattern Y (X C Y) is a super pattern of X, ubuo(X)
is used for estimating the uo value of Y. No super pattern of
X has a utility occupancy greater than ubuo(X). Therefore,
if ubuo(X) is less than minUtilOcc(5), any pattern Y does not
become the high utility occupancy pattern [17]. Moreover,
high utility occupancy pattern mining algorithms insert the
sum of uo and ruo for each T} into a vector, and the elements
in the vector are sorted in descending order of their values.

43144

For example, given that the total order is alphabetical order
and minSup(QDB, y) is 3, ruo({ B}) is the average of ruo({ B},
Th), ruo({B}, T3), ruo({B}, Ts), ruo({B}, T¢), ruo({B},
T3), and ruo({B}, T1p). The set of items appearing after { B}
in T1 is {C}, so ruo({B}, T1) =1/130.0769. The remaining
ruo values are obtained in the same manner. As a result,
ruo({B})=(0.0769 + 0.4285 4 0.6666 + 0.4666 + 0.3125 +
0.8095) / 6 0.4601. Next, in order to compute ubuo({B}),
a vector (Vec) includes the sum of uo({B}, T}) and ruo({B},
Ty), where T contains {B}, in descending order. Thus, Vec=
{1, 1, 1, 1, 0.5384, 0.4375}. The top three elements are 1,1,
and 1, thus ubuo({B})=(1+1+1) /3 =1.

B. OVERALL PROCESS OF THE PROPOSED APPROACH
WITH INDEXED LIST

Fig. 2 shows the overall operational flow of the proposed
approach, HUOMIL, to extract high utility occupancy pat-
terns with efficient indexed list-based structures. HUOMIL
carries out three major processes: 1) A database scan to deter-
mine essential information, 2) A database scan to construct
efficient data structures, and 3) Combinations of patterns
to extract a set of high utility occupancy patterns. First,
the algorithm scans a quantitative database to investigate
the support of items and determines a total order. Then, the
database is scanned again to generate the proposed indexed
list-based data structures for each item. The constructed
indexed lists organize a global set. During the construction,
the utility occupancy and remaining utility occupancy of the
items are calculated. The indexed lists related to each other
are mutually connected by index information. An indexed
list-based structure, named GUO-IL, manages a series of
quadruple entries that store fundamental information. After
that, HUOMIL performs the mining process with the global
set. This process adopts a prefix-based pattern extension man-
ner, which first selects a prefix pattern and then recursively
extends the prefix in a DFS manner. HUOMIL combines
k-itemsets to completely explore all patterns without omis-
sion and generates (k + 1)-itemsets that conditionally have
the selected prefix in common. During this process, indexed
list-based conditional lists, called CUO-IL, are created for the
next mining step. After that, a new prefix is chosen from the
(k 4+ 1)-itemsets based on the DFS method. In this recursion,
several pruning strategies are deployed in order to efficiently
reduce unnecessary exploration.

C. CONSTRUCTION OF THE PROPOSED INDEXED
LIST-BASED DATA STRUCTURES

1) THE PROPOSED INDEXED LIST-BASED DATA
STRUCTURES

In this section, we introduce two types of new data
structures called global utility occupancy indexed list
(GUO-IL) and conditional utility occupancy indexed list
(CUO-IL). To quickly expand patterns into long patterns,
GUO-IL and CUO-IL employ index information. Fig. 3
expresses the structural form of GUO-IL and CUO-IL.

VOLUME 11, 2023

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

IEEE Access

New CUO-IL and Pruning strategies |

st]’ '[nd |
I 1* Scan 27 Scan J _l Reverse Scan transactions r —I GUO-IL for item { i, }
= =
= - - _r—)l Item,, Item,, ---, Item,,_;, Iteng (i} sumUQ | sumRUO
L w - Each transaction K01 woliy) | ruotiv)
_ .)] N. Item| Uo ruo | N. ldx
Quantitative EU-table Quantitative » Support ascending order i | mo(ix.T) |ruo(ix.T)| Noddx;y
Database Database) . is uo(iy, T) {ruo(iy,T)| N.1dx;,
Revise each transaction
| Ttem,, Item,, ---, Item, 1’8@ i i, ot) [ruoti)] N.tds,,
Each transaction sup(iten,)=|QDB[XT— v Create a new GUO-IL
. . v Insert a new entry into the GUO-IL
Investigate support on items ¥ : <iyep uo(iy, T), ruo(iy, T), Index >
'y, Itent', -+, Item’,,_;, Item'
b pl > n-1> . .
Determine total order (<) EU-table RevisediiransacHon v/ Update aggregated information
-{ l- Total order -
HUOQOPs T I A complete set of GUO-ILs | i
reshol Y
sup(X) 2 |QDB| Xy umUO I.meL'O M (A | sumvo [.\‘umRL’() MG | sumvo I.\'umRL'() M D sumU
&& uo(X) =4 Threshold 2 (&) 03571 | 16428 | LA [14526 | 13569 | | MO [17785 | 12214 | LARH [20mi
0 ruo | N.ldx || ||N. Item| uo ruo | N. Idx || ||N. Item| uo ruo | N.Idx || |N.Item| wo |
N 904 | 0.8095| 2 € 0.4615 | 0.5384 1 B [04285|05714| 2 F | o6
DFS-based Pattern ExtenS]()n]— 66608333 | 2 F 0428503809 2 F 0.6 04 3 B | 05
C [os625[04375[4 F o075 | 025 | 4 C | o4
C [os714

v’ Globally manage all GUO-ILs that mutually connected each other

[£niry o aprefic H Entry 2 |

Base-list

W | Prefix selection and search for new CUO-ILs

CUO-IL, C .

| sumUO [s‘ule"Ol

| _sumUO ‘snmklﬁ() | _sumU0]xule'o

New entry 1 New entry 2

[£niry o a prefi

oy | 1452

13569 | {G)] 1.7785 | 1.2214 {D’l 2.0714 | 17619

v’ Create a base-list of the prefix and CUO-ILs

[N Ttem[wo | ruo [Nk]|
04615 105384 1

Entry 1 H
) —I_

v’ Apply pruning strategies
v’ Identify the high utility occupancy patterns

v’ Select a prefix from GUO-ILs or CUO-ILs
v’ Search all entries connected to the entry of the prefix

H v’ Combine the prefix with other k-itemsets fo generate (k+I)-itemsets

with a pre
| C 0.4 06 | 3

C |05714|04285| 5

FIGURE 2. Overall process of HUOMIL.

(i} sumUO | sumRUO Aggregated
L uo(iy) ruo(iy) Information
N. Item| uo ruo | N. Idx
i uo(iy,T) {ruo(iy,T)| N.1dx;, A set of
iy |uo(ixT) |ruo(i,T)| N.ddx;; | P> Quadruple Entry
Information
i | uo(iy,T) ‘ruo(ik’T)| N.Idx;,

(a) Global Utility Occupancy Indexed List (GUO-IL)

P, | sumUO | sumRUO Aggregated
U lnd | yo(P) ruo(P) Information
N. Item| wuo ruo | N. Idx
P, uo(Py,T) |ruo(Py,T)| N.1dxp, A set of
P, |uo(P,T) |ruo(P, T)| N.ldxp; | P> Quadruple Entry
e Information
P, | uo(Py,T) ‘ruo(Pk,T)‘ N.Idxp,

(b) Conditional Utility Occupancy Indexed List (CUO-IL)

FIGURE 3. The structural form of the proposed indexed lists, GUO-IL and
CUO-IL.

As shown in Fig. 3 (a), GUO-IL includes two kinds of infor-
mation, called aggregated information and a set of entries.
The set of entries manages uo, ruo, next item (N.Item), and
next index (N.Idx) for an item {ir}. That is, each entry is
formed like < ixy1, uo(iy, T), ruo(ix, T), N.ldxjk41) >,
where {ix41} is an item after {i } in a revised transaction 7.

VOLUME 11, 2023

The sum of uo (sumUQ) and the sum of ruo (sumRUQ) are
independently managed in aggregated information. They are
used in the mining phase to determine the validity of patterns
and to prune useless patterns. The design of CUO-IL, shown
in Fig. 3 (b), is similar to that of GUO-IL. However, GUO-
IL stores only information about an item, while CUO-IL
contains information about a k-itemset (k > 2). Therefore,
it requires dissimilar methods different from that of GUO-IL
to calculate utility occupancy and set index information.
It will be explained later in the section describing the min-
ing process. The proposed data structures are clearly distin-
guished from the data structure of OCEAN [15] which is
derived from the utility list [16]. In addition, ours differs from
the UO-List and FU-table proposed by HUOPM [17]. The
previous structures manage the information that an item has in
a particular transaction as a triple entry (i.e., <tid, uo, ruo>),
whereas GUO-IL and CUO- IL have a quadruple entry which
includes the next item and next index information.

2) CONSTRUCTION OF THE GLOBAL UTILITY OCCUPANCY
INDEXED LIST STRUCTURE

HUOMIL scans a quantitative database twice to organize a
complete set of GUO-ILs. In this section, we describe each
database scan process with detailed examples. The support

43145

IEEE Access

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

of each item is investigated by scanning the database only
once. After that, a total order is determined to maximize
the mining efficiency by sorting the supports in ascending
order. Note that the total order contains only items whose
support is no less than the minimum support threshold. The
reason is that a pattern generated from an item with sup-
port less than minSup(QDB,y), never becomes a high utility
occupancy pattern due to the anti-monotone property [1].
It enables HUOMIL to create GUO-ILs for only promising
items that satisfy the minimum support constraint. In the
subsequent scan process, each revised transaction, which
eliminates unpromising items and arranges the remaining
items by the total order, is scanned in reverse order, and
GUO-ILs are generated at the same time. Whenever the item
is visited, the next item, next index, utility occupancy, and
remaining utility occupancy are stored in a new quadruple
entry.

Definition 10: A quadruple entry that constitutes a set of
entries in GUO-IL contains two significant elements. For an
item {ix}, the next item of {i} represents the item {ir41}
that is located immediately after {i; } in a revised transaction,
{..., ik, ik+1 , ... }. The next index of {i;} refers to the
current number of entries in GUO-IL of {ix41}. If {ir} is the
last item in the transaction, the next item and next index of
{ix } have NULL values and are marked with .

If an item {i;} in T is processed for the first time, a new
GUO-IL for {ir} is newly created and inserted into a set
of GUO-ILs. Then, a new quadruple entry stores informa-
tion about {ir} as follows: < ixy1, uo(ix, T), ruo(ix, T),
N.Idxig1) >, where N.ldx;i1) refers to the location of
the entry for {ix41}. We can simply calculate ruo(iy, T)
and N.Idx;q 1) because the revised transaction is scanned in
reverse order. If GUO-IL of {i;} already exists, an entry is
just added there. During the insertion of the entries, sumUQ
and sumRUQO are updated. After the construction of indexed
lists is finished, we finally obtain the aggregated information.
The following two running examples describe the processing
of HUOMIL in the database scans, respectively.

Items in each transaction are arranged according to A <
G < D < F < C < B, where {E} is removed because
sup({E'})<minSup(QDB, y). Concretely, a transaction 77,
{A, B, C}, is revised to {A, C, B}. A revised database com-
posed of revised transactions is shown in Fig. 4. The item
{B} in T is processed first. There is no GUO-IL({ B}), so it is
newly generated. The utility occupancy and remaining utility
occupancy of {B} in T} are obtained as follows: uo({B},
T1) =6/ 13 0 0.4615 and ruo({B}, T1) = 0. In addition,
N.Item and N.Idx of {B} in T1 become NULL(?) because {B}
is the last item in the revised transaction 77. Consequently,
the quadruple entry, < A,0.4615, 0, A >, is added to a set of
entries of GUO-IL({B}). After that, sumUQO and sumRUQO of
GUO-IL({B}) accumulate 0.4615 and 0, respectively. Next,
GUO-IL({C}) is then created, and uo({C }, T1) and ruo({C},
T)) are calculated as 0.0769 and 0.4615. Since the next item
is {B}, N.Item becomes {B}. Furthermore, N.Idx becomes
1 because the corresponding entry of GUO-IL({B}) is at the

43146

Transaction A revised set of items (name, utility) TU
Ty (4,6) (C,1) (B,6) 13
T, (D,12) (F,8) 20
T3 (G,6) (B,8) 14
T, (A,9)(F,4)(C,4) 21,
Ts (D,6) (B,4) 12
T (D,6) (C,1) (B,8) 15
T; G,6) (F,4) 10
Tg (4,9) (C,5) (B,2) 16
Ty (G,12) (F,4) 16
Tio (D,12) (C,5) (B,4) 21

FIGURE 4. Example revised quantitative database.

first position. Therefore, the entry, < B, 0.0769, 0.4615, 1 >,
is added to a set of entries of GUO-IL({C}). The remaining
item {A} is handled in the same manner. The process for T
is illustrated in Fig. 5 (a). Then, let us consider processing 73
after 71 and 7, are completely handled. Since GUO-IL({B})
already exists, information obtained in the same way as above
is stored in a new quadruple entry, which is inserted into
GUO-IL({B}) as the second entry. Hence, when the next item
{G} is read, N.item and N.Idx are set to {B} and 2. This
process is presented in Fig. 5 (b). The set of GUO-ILs con-
figured after scanning 10 transactions in the revised database
is shown in Fig. 6.

D. NOVEL METHOD FOR MINING HIGH UTILITY
OCCUPANCY PATTERNs WITH INDEXED LIST STRUCTURE
This subsection introduces novel mining techniques utilizing
the proposed GUO-IL and CUO-IL. The use of an upper
bound affects the efficiency of an algorithm because it allows
unnecessary pattern generation to be avoided. If a miner con-
siders all combinable patterns in a database, it is exceedingly
inefficient. For this reason, an upper bound, which allows
the generation of unpromising patterns to be skipped, is a
significant concern. We adopt several pruning strategies using
the established upper bounds [17], [50]. The first strategy is to
examine whether a pattern satisfies the constraint on support.
According to the anti-monotone property, we have that the
pattern whose support is not greater than a minimum support
threshold cannot be extended to a high utility occupancy
pattern. Then, a loose upper bound of the pattern is computed,
and it is compared to a minimum utility occupancy threshold.
Definition 11: Suppose that there is a pattern X in QDB, the
loose upper bound utility occupancy of X throughout QDB is
denoted as lubuo(X). The equation for lubuo(X) is as follows:

X) = > {uo(X, Tx) + ruo(X, Ty,)}
/[minSup(QDB, y)],X C Ty NTy € QDB (12)

In fraction (12), the numerator is obtained by adding the
aggregated information of X. If the sum of sumUO and sum-
RUO divided by [minSup (ODB, y)] is less than a minimum
utility occupancy threshold, any super patterns need not be
confirmed. Even if the strategy using lubuo value is passed,
it is finally checked if ubuo(X) is less than the threshold.

VOLUME 11, 2023

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

IEEE Access

sumUQ | sumRUQO sumUQ | sumRUO sumUQ | sumRUO
{A} 0.4615 0.5384 e 0.0769 0.4615 L 0.4615 0
N. Item| uo ruo | N.Idx || ||N. Item| uo ruo | N. Idx || ||N. Item| uo ruo | N. Idx
C 0.4615 | 0.5384 1 B 0.0769 | 0.4615 1 A 0.4615 0 A
(a) GUO-ILs after T; is processed.
sumUQ | sumRUQ sumUQ | sumRUO sumUQ | sumRUO
1A 0.4615 0.5384 (G} 0.4286 0.5714 t} 0.6 0.4
N. Item| wuo ruo | N.Idx || ||N. Item| wuo ruo | N.Idx || ||N. Item| wuo ruo | N. Idx
C |0.4615|0.5384 1 B 0428605714 2 F 0.6 0.4 1
sumUQ | sumRUO sumUQ | sumRUO sumUQ | sumRUO
{F} 0.4 0 {c} 0.0769 0.4615 e 1.0329 0
N. Item| uo ruo | N.Idx || |N. Item| uo ruo | N.Idx || ||N. Item| wuo ruo | N. Idx
A 0.4 0 N B 0.0769 | 0.4615 1 A 0.4615 0 A
A 0.5714 0 A
A
(b) GUO-ILs after up to 75 is processed.
FIGURE 5. Generation of GUO-ILs from T; to T5.
sumUQ | sumRUO sumUQ | sumRUO sumUQ | sumRUO
ta} 1.4526 1.3569 {G} 1.7785 1.2214 L 2.0714 1.7619
N. Item| uo ruo | N. Idx N. Item| uo ruo | N. Idx N. Item| uo Ruo | N. Idx
C |04615[0.5384 | 1 B |04285(05714| 2 F 0.6 0.4 1
F 0.4285 | 0.3809 2 F 0.6 0.4 3 B 0.5 0.3333 3
C 0.5625 | 0.4375 4 F 0.75 0.25 4 C 0.4 0.6 3
G 0.5714 | 0.4285 5
sumUQ | sumRUQ sumUQ | sumRUO sumUQ | sumRUO
e 1.2404 0.1904 e 0.8846 1.3103 (B 2.2151 0
N. Item| wuo ruo | N. Idx N. Item| wuo ruo | N. Idx N. Item| wuo ruo | N. Idx
A 0.4 0 L B 0.0769 | 0.4615 1 n 0.4615 0 A
C 0.1904 | 0.1904 2 A 0.1904 0 A A 0.5714 0 A
A 0.4 0 a B 0.0666 | 0.5333 4 A 0.3333 0 A
A 0.25 0 A B 0.3125 | 0.1250 5 n 0.5333 0 A
B 0.2380 | 0.1904 6 N 0.1250 0 N
A 0.1904 0 A

FIGURE 6. A complete set of GUO-ILs.

The pruning techniques are applied in the above order, and
HUOMIL effectively avoids exhausting generation tasks by
the strategies. Note that the /ubuo value is the upper bound
first designed in [50], but the lubuo in the study considers
items in transactions to which support-based pruning is not
applied, rather than revised transactions.

Lemma 1: For two patterns that satisfy XCVY, if the
lubuo(X) is smaller than the minimum utility occupancy
threshold, any Y can be pruned without confirmation of
ubuo(X).

Rationale: Let y be a minimum support threshold, and
5 be a minimum utility occupancy threshold. lubuo(X),
the loose upper bound of X, is expressed as follows:
{sumUO(X)+ sumRUO(X)}/[y]. This formula is expanded
to [ZTkeTX {uo(X, Tr) + ruo(X, Ty)}1/Ty]. For any super

VOLUME 11, 2023

pattern Y of X, uo (Y) = ZTIGTY uo (Y, Ty) /sup(Y). Since
uo (Y, T)) < uo(X,T;) + ruo(X, T;) in each T; (T; € TY),
[7ery {uo (X, T)) + ruo (X, Tp)} 1/sup(Y) is greater than
or equal to uo(Y). When [y <sup(Y), we have:

> {uo (X, Ty) + ruo (X, Tp)}

T)eTY
sup(Y)
> {uo (X, Ty) + ruo (X, Tp)}
T;eTY
13

: T (13

2 ryery {uo (X, Tp) + ruo (X, Tp)}
= 71
- ZTkETX {uo (X,er}) + ruo (X, Ty)} ¥ < T5). (14)

14

43147

IEEE Access

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

D rierx {uo (X, Ty) + ruo (X, Ty)}
M1 '

Therefore, lubuo(X) is always greater than or equal to the
utility occupancy of Y. In addition, for VT} (e %), ubuo(X)
is calculated when the numerator of the middle term in (15)
is substituted to Z;i’; FTV)J {uo (X, Ty) + ruo (X, Ty)}, where
Top [y refers to the top [y] in the sum of uo (X, Tx) +
ruo (X, Ty). Because the numerator of ubuo(X) is not greater
than that of lubuo(X), they are expressed by the following

inequality.

— uo(Y) < (15)

S tuo (X, T) 4 ruo (X, Ti)
[v1

- ZTkGTX {uo (X, Ty) + ruo (X, Ty)}
- 71 '

According to the (16), if lubuo(X) is less than &, then
ubuo(X) is also always less than §. Therefore, no pattern loss
occurs even if any super pattern Y pruned by the loose upper
bound is not inspected by ubuo(X).

In the previous studies, the utility list-based vertical data
structure that manages tid for each transaction tries to find
identical transactions. This vertical search is quite inefficient
when there are many transactions where items appear and/or
the length of patterns is potentially long. On the other hand,
HUOMIL based on an indexed list can directly access the next
item and its entry index without unnecessary comparisons.
Therefore, it is possible to mine long patterns efficiently
because it significantly reduces the comparison overhead.

Lemma 2: During the mining process, the number of oper-
ations required by an indexed list-based algorithm, Alg/®List,
is always smaller than a list-based algorithm, Algr’.

Rationale: For a quantitative database with n distinct items,
let IL be a set of n global indexed lists for a 1-itemset, and
L be a set of n global utility lists for a 1-itemset. The two
sets are represented by {IL1, IL;, ..., IL,} and {Ly, Lo, ...,
L,}. The kth (1 < k< n) elements of IL and L have the same
number of entries because they are constructed by scanning
the identical quantitative database. Thus, it is expressed as
|ILx| = |Lg|. In addition, when IL; and Lj is selected as
a prefix for pattern extension, they create up to (n — k)
conditional data structures. We verify two possible cases by
comparing the operations of Alg!®Lis* and Algl™!. The first
case is when the kth elements of /L and L are prefix, and
the number of elements that can be combined with it is
(n—k). Algls! requires {2(|Lg|+|L;|)—1} x (n—k) operations
due to a two-way comparison method. On the other hand,
Algl®dList akes |Li|x(n — k) because it only accesses the
entry of connected IL;. The second case is that the number
of L; bondable to Ly is less than (n — k). No matter how
many L; are, Algm’ must navigate to L,. Hence, it needs
{2(|Lk| + |LiD—1} x (n — k). Alg"®List however, approaches
only combinable L; with its index information. Therefore,
Ly | xp (p< (n — k)) is taken. This is true even if a pattern
with a length of 2 or more is selected as a prefix in addition
to 1-itemset.

(16)

43148

{GUO-IL(i), ..., GUO-IL(ip), ..., GUO-IL(i,)}, which
is a set of GUO-ILs configured after database scans, becomes
a material performing the first mining. HUOMIL chooses a
prefix GUO-IL(i,) (1<p<n), then visits the entries, {el(i,,),
ez(ip), ..., €"(ip)}. In this step, if {i,} has less support than
minSup(QDB, y), the prefix is moved to {i,1}. Afterward,
the prefix is determined by comparing its uo and minU-
tilOcc. The remaining two upper bounds are calculated and
checked before {i,} is extended to longer ones. Starting with
el(ip), all entries associated with el(ip) are tracked, which
are assumed to be {el(ip), e(ipy1), ..., e(in—1), e(in)}. The
items, connected entries, are combined with {i,}, thereby
creating CUO-IL(i,Uip 1), . . . ,CUO-IL(ipUi,—1), and CUO-
IL(i,Ui,). Moreover, each new quadruple entry is inserted
into the corresponding CUO-IL(i,Uix) (p < k=<n) as fol-
lows: < i,Uigq1, el(ip).uo—i— e(iy).uo, e(iy).ruo, | CUO-
IL(GpUig11)| >. In the case of the aggregated informa-
tion, el(ip).u0+e(ik).u0 and e(ix).ruo are added to the pre-
vious aggregated information of CUO-IL(i,Uiy). Note that
{ipUip11} is chosen as a prefix for the next mining process
using the above CUO-ILs.

For example, Fig. 7 shows an example mining process to
generate 2-itemsets from a set of GUO-ILs. It is assumed
that {A} is selected as a prefix, and the two thresholds are
2 and 0.65, respectively. Since sup({A}) is 3, the mining
continues. The uo({A})=1.4526/30.4842, so it is a high util-
ity occupancy pattern. In addition, both (1.4526+1.3569)/3
and ubuo({A}) are greater than minUtilOcc. First, e'({A})
is chosen, which is < C, 0.4615, 0.5384, 1 >. Then, base-
list for prefix {A}, denoted as CUO-IL({A_}), is generated,
and 0.4615 is stored in the base-list. After that, starting
with e'({A}), another connected entry el({C)) is found.
Thus, the created CUO-IL({_C}) includes < B, 0.5384,
0.4615, 1>. The sumUO and sumRUO of CUO-IL({_C})
accumulate 0.5384 and 0.4615, respectively. Note that the
first entry of the base-list points e'({_C}). Next, {B} is
combined with {A} because {B} is connected to e!({C}).
This process is performed in the same manner. If this
task is completed, ¢>({A}) and ¢>({A}) are also processed
next.

However, when k-itemset (k>3) is generated in this way,
we obtain an inaccurate utility occupancy. The reason is that
the prefix utility occupancy was duplicated when combining
k-itemsets with the same prefix. To accurately compute util-
ity occupancy, an indexed list, called a base-list, is created
for each mining step. It then stores prefix utility occupancy
and is connected to the corresponding entry. The connected
entries correspond to a particular transaction, which means
that the utility occupancy of the prefix is different for each
transaction. Therefore, HUOMIL calculates uo of {P{UP;}
by subtracting the prefix utility occupancy from the sum of
the uo values of P| and P,, where P and P, are prefix pattern
and a pattern to be combined with Py, respectively. In this
way, CUO-IL operates on a method that interacts with a base-
list for accurate calculation. Thus, it is clearly distinguished
from GUO-IL.

VOLUME 11, 2023

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

IEEE Access

[sumUo | sumRUO [sumUO | sumRUO [sumUO | sumRUO [sumUO | sumRUO
tA} | 14526 [1.3569 tF} | 12404 | 0.1904 ey | 08846 [13103 Bl [22151 [0
N. Item| uo ruo | N. Idx N. Item| uo ruo | N.Idx || ||N. Item| uo ruo | N.Idx || ||N. Item| uo ruo | N. Idx
C 0.4615 | 0.5384 1 N 0.4000 0 A B 0.0769 | 0.4615 1 o 0.4615 0 A
F 0.4285 | 0.3809 2 C 0.1904 | 0.1904 2 N 0.1904 0 n N 0.5714 0 n
C 0562504375 | 4 A 04000 0 A B |0.0666 | 0.5333 | 4 A 03333 0 A
Prefix N 0.2500 0 ~ B 0.3125 | 0.1250 9 n 0.5333 0 n
B 0.2380 | 0.1904 6 N 0.1250 0 A
Search the linked entries A foa904]| o R
[N.Jtem] wo | ruo | N.Idx| [N ttem] wo | ruo [N.Idx| [N.Item| wo | ruo | N.Idx]|
| C [o4615|05384] 1 | » B |00769]04615| 1 A loasis| o | A |
[N. Item| uo I ruo | N. Idx | |N. It¢m| uo I ruo | N. Idx | |N. Item| uo I ruo | N. Idx |
| F Jo428s]o3809] 2 [C [o0a904[0.1904] 2 ¥ A Joavo4| o [A |
\N. lrem| uo | ruo | N. Idx | |N. Item| uo | ruo | N. Idx | |N. Il¢m| uo | ruo | N. Idx |

1

A

>
»

| C [os62s|04375] 4 |

Create a set of CUO-ILs

{ B |o03125]0.1250] 5 ¥ loa2s0[o |

FIGURE 7. Construction of CUO-ILs when a prefix is {A}.

For example, Consider the generation 3-itemsets with pre-
fix {A, F}. For an easy explanation, {A, F'} is expressed as
{AF}. sup({AC}) is 1, which is less than 3, so it is pruned.
Fig. 8 illustrates that {ACB} is generated by combining {AC}
and {AB}. Thus, CUO-IL({_C}), whose name is {AC}, is a
prefix. It can be seen that e!({_C}) points e!({_B}), CUO-
IL(_C) with prefix {AC} is generated and inserted into a set
of CUO-ILs for the next mining level. A new quadruple entry
to be added to the new CUO-IL(_B) includes the information
as follows: <”, 0.5384+0.9230—0.4615, 0, ~>. The prefix
utility occupancy, 0.4615, is referred from the base-list of
CUO-IL(A_) at the previous mining level. In the same man-
ner, CUO-IL(_B) with prefix {AC_} has thus two quadruple
entries. Moreover, CUO-IL(AC_) is presented at the bottom
of Fig. 8.

E. DESCRIPTION OF THE PROPOSED ALGORITHM

In this part, we detail the proposed HUOMIL algorithm,
which employs the two efficient indexed list structures
(GUO-IL and CUO-IL). HUOMIL performs three major pro-
cedures to discover high utility occupancy patterns. Algo-
rithm 1 describes the main algorithm that finally returns the
resulting patterns to a user, including the first database scan.
Transactions in a quantitative database, QDB, are sequentially
processed, and the items in each transaction are also scanned
(Lines 01-06). In this process, support for all items existing
in QDB is investigated (Lines 03—04). Two predefined thresh-
old ratios are converted into minimum support and utility
occupancy thresholds, which are denoted as minSup(QDB,
y) and minUtilOcc(§) (Lines 07 and 08). Among all items,
19 jtems whose sup(i) (i € 1 ally g greater than or equal to

VOLUME 11, 2023

sumUQ | sumRUO sumUQ | sumRUO sumUQ | sumRUO sumUOQ | sumRUO
{A—}} —: I — {—F}I 0.6189 I 0.1904 {—C}I 2.0323 I 0.5865 {—B}I 1.6105 I 0
N. Item| uo ruo | N. Idx JN. Item | uo I ruo | N. Idx N. Item| uo ruo | N. Idx N. Item| uo ruo | N. Idx
C |o46l5| - 1 [C Joseisofo1004] 2 | B |05384]04615| 1 A 09230 o0 A
F 0.4285 = 1 & 0.6189 0 a N 0.6875 0 A
C 0.5625 = 3 B 0.8750 | 0.1250 2

Algorithm 1 HUOMIL
Input: A quantitative database, QDB; an external utility
table, EU-table; a support threshold, y; a utility
occupancy threshold, §
Output: A set of resulting patterns, ResultSet
Variable: A set of items in the database, I a set of items
satisfying support constraint, /; a set of GUO-
ILs, GUO

01. for each transaction Ty €QDB do

02. for each item ie T} do

03. 79l i

04. Increase Sup(i) by 1 ;

0s. end for

06. end for

07. minSup < |QODB| X y ;

08. minUtilOcc < 6§ ;

09. [<« {i|iel A Sup(i) =minSup} ;
10. Sort I in support-ascending order ;

11. GUO <« Construct (QDB, EU-table, I) ;
12. ResultSet<— Mine (9, GUO, minUtilOcc);
13. Return ResultSet;

minSup(QDB, y) are included in I (Line 09). After that, the
total order is decided by sorting / in support-ascending order
(Line 10). The database is scanned again by Algorithm 2,
Construct, and a set of GUO-ILs of items in I is acquired
(Line 11). The set is passed to Algorithm 3, Mine, which
returns a set of resulting patterns (Line 12). Finally, we return
the high utility occupancy patterns (Line 13).

43149

IEEE Access

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

N [Pruned | e
sumUQ | sumRUO sumUQO | pemRUO | sumUQO |sumRUO | sumUO |sumRUO

e - - L jgﬂL 0.1904 {—C}I 2.0323 | 0.5865 {—B}I 16105 | 0
N. Item| uo ruo | N. Idx N.Iteml |N.1dx N. Item| uo ruo | N. Idx N. Item| uo ruo | N. ldx

C |ode1s| - 1 | C_tOois9 090N 2 |i| B 05384 [04615] 1 A fo9230] o A

F |04285| - 1 ~ ~N ~ loes1so| o A ~ 06875 o0 ~

C |05625| — 3 B 08750 [0.1250 | 2

Prefix
Search the linked entries

fac) tas)

|N.Item| uo | ruo |N.Idx|
| Cc [oae1s|os384| 1 |}

|N.ltem| uo | ruo]N.Idx|
[¢ Joass| — | 2

1
I
|N.ltem| uo | ruo |N.Idx|
| c Jose2s| = | 3 }

|N. Item| uo | ruo | N. Idx | |N. Item] uo] ruo | N. Idx]
» B |o05384(04615] 1 ¥ A [os230] o | ~ |
[N ttem] _wo | ruo | N. Idx |
» ~ loeiso| o | A |

\N. lteml uo | ruo | N. Idx | |N. Irem| uo | ruo | N. Idx |
» B [o0s750]01250] 2 [A [oe87s| o | A |

Create a set of CUO-ILs

tac_y

[sumUO | sumRUO [sumUO [sumRUO

{B}

| 20000 [0
N. Item| uo ruo | N. Idx N. Item| uo ruo | N. Idx
B |05384| -— 1 A 1.0000| 0 n
B |08750| - 2 A [1.0000] 0 A

FIGURE 8. Construction of CUO-ILs when a prefix is {AF}.

The details of organizing a complete set of GUO-ILs with a
database scan are shown in Algorithm 2. A set for managing
GUO-IL for each item is initialized (Line 01). All transac-
tions in the database are sequentially traversed once again
(Lines 02—18). Each transaction is sorted in reverse of the
total order (Line 03). At this time, variables related to index
information and ruo value are defined. Especially the initial
values of the index information, N.Iltem and N.Idx, are NULL
(Lines 04 and 05). Only items included in / are visited in
reverse order (Lines 06—17). If there is no GUO-IL of i, a new
one is created and inserted into the global set (Lines 07-09).
Otherwise, a new quadruple entry is added to GUO-IL of
i (Line 10). The utility occupancy of i, uo, is obtained by
using item and transaction utilities (Line 11). Eventually,
the entry includes quadruple one: <N.Item, uo, ruo, N.Idx>
(Line 12). After that, the uo value is accumulated in the ruo
(Line 13). In addition, N.ltem and N.Idx are changed to the
identifier of i and the number of entries in GUO-IL(i) for
the next item to be processed (Lines 14 and 15). At last, the
aggregated information, sumUO and sumRUO, is updated by
adding uo and ruo (Line 16). The complete set of GUO-ILs
is transferred to the main algorithm (Line 19).

Algorithm 3 illustrates the mining method of HUOMIL,
which adopts a prefix selection and extension manner to
generate k-itemsets (k>2). The set CUO; generated in the
mining step for k-itemsets is used to make CUOy 1, a set of
CUO-ILs of (k + 1)-itemsets (Line 01). Each CUO-IL(P),
the CUO-IL of a pattern P, in CUOy is selected as a prefix
(Lines 02-31). If the support of the prefix is greater than
or equal to minSup(QDB, y), the following processes are
conducted (Line 03-27). It is identified whether P is a high

43150

utility occupancy pattern (Line 04—-06). Separately, to apply
the rest of the pruning strategies, it is confirmed that both
(sumUO~+sumRUO)/ [minSup(QDB, y)| > minUtilOcc(8)
and ubuo(P) > minUtilOcc are satisfied (Lines 07-26 and
09-25). Note that the calculation of ubuo(P) follows def-
inition 9. Each entry of CUO-IL(P), e, is visited in turn
(Lines 11-24). In the process of CUOg generation, a base-
list is first generated, and it stores the utility of P as a prefix
utility (Line 12). Then, the other entries connected to e, ce,
are tracked until it no longer exists, and combined with e
(Lines 13-23). A new CUO-IL of a pattern extended from
P is generated if it does not exist in CUOx4; (Lines 14-16),
and a new quadruple entry, ne, is inserted into there (Line 17).
To accurately calculate utility occupancy, approach the uo of
the prefix from the base-list of CUOg (Line 18). The sum
of uo values of e and ce is reduced by the uo of the prefix,
and it becomes uo of ne (Line 19). The ruo of ne is ruo
of ce(Line 20). The aggregated information of the CUO-IL
is then updated (Line 21). At last, the previously generated
entry and the currently processed entry are connected based
on index information (Lines 21 and 22). The mining process
is repeatedly called in the DFS-based manner if the size of
CUOk+41 is not zero (Line 28). In this process, the set of
results is continuously accumulated (Line 29).

Let the database size and the number of unique items
in the database be m and n, respectively. It costs O(mn)
to calculate the support of all items and O(nlog,n) to sort
items in support ascending order. Thus, Ist database scan
consumes O(mn-+nlogyn) to compute its own total order.
It costs O(nlog,n) to sort items in each transaction and O(n)
to insert all items into the GUO-ILs. Since m transactions are

VOLUME 11, 2023

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

IEEE Access

Algorithm 2 Construct

Algorithm 3 Mine

Input: A quantitative database, QDB; an external utility
table, EU-table; a set of items according to
total order, /

Output A set of GUO-ILs, GUO

01. Initialize GUO ;

02. for each transaction Ty €QDB do

03. Revise Ty to T ;

04. ruo <0 ;

05. N.Item, N.Idx < 0 ;

06. for each item ic I and ic T} do

07. if GUOC(i) does not exist in GUOthen

08. Create GUOC(i) and insert into GUO ;
09. end if

10. Create a new quadruple entry e in GUOC() ;
11. uo <—u (i, Ty) / tu (Ty) ;

12. e < < N.Item, uo, ruo, N.Idx > ;

13. ruo <— ruo + uo;

14. N.Item < i

15. N.Idx < | GUO() | ;

16. Update sumUO and sumRUO of GUO() ;
17. end for

18. end for

19. Return GUO;

processed, 2nd database scan spends O(mnlog,n) to construct
GUO-ILs for all items. It costs O(m) to construct a CUO-IL
for an itemset, and there can be at most 2" —1 possible item-
sets. Thus, the pattern extension process consumes O(m2")
to create CUO-ILs for all itemsets and extract all high utility
occupancy patterns.

IV. PERFORMANCE EVALUATION

A. EXPERIMENTAL CONDITIONS AND DATASETS

We conducted extensive experiments to evaluate the effi-
ciency of our algorithm. The comparison algorithms are
HUOPM [17] and OCEAN [15]. These are state-of-the-
art approaches that discover high utility occupancy patterns
from a quantitative database. This means that the proposed
HUOMIL algorithm and two comparison algorithms belong
to the high utility occupancy pattern mining equally. OCEAN
uses not only ascending order according to TWU, but also
several pruning techniques. Meanwhile, HUOPM applies
more efficient pruning strategies that are not used in OCEAN
as well as adapts support-ascending order as a total order.
HUOMIL leverages indexed list-based data structure, so that
it efficiently performs the pattern extension during the mining
process. In addition, it uses a strategy with aggregated infor-
mation. We measured the runtime and peak memory usage of
the above algorithms to evaluate the efficiency of HUOMIL
by changing the pre-defined thresholds. All the above algo-
rithms were implemented in C/C++ language. The runtime
and memory tests were conducted on a PC with the following
specifications: Intel Core i17-6700K CPU @ 4.00GHz, 32GB

VOLUME 11, 2023

Input: A prefix in the previous mining level, prefix; a set of
CUO-ILs for k-itemsets, CUOy; a minimum utility
occupancy threshold, minUtilOcc; a minimum
support threshold, minSup

Output: A set of resulting patterns, ResultSet

Variable: A set of CUO-ILs for (k+1)-itemsets, CUOj41; a

CUO-IL of a pattern P, CUO(P); a loose upper
bound of a pattern P, lubuo(P); an upper bound of
a pattern P, ubuo(P)

01. Initialize CUOj41

02. for each CUO-IL CUO(P) € CUOy do

03. if sup(P) > minSup then

04. if (CUO(P).sumUQO/sup(P) > minUtilOcc)then

05. ResultSet < {ResultSet } U {Prefix UP } ;

06. end if

07. if (lubuo(P) > minUtilOcc)then

08. ubuo(P) < UpperBound (CUO(P), minSup);

09. if (ubuo(P) > minUtilOcc) then

10. Prefix < {PrefixU P};

11. for each entry ee CUO(P) do

12. Create Base-list for Prefix in CUOy1 and

Insert a new entry ;

13. for each entry ce connected with e do

14. if CUO-IL does not exist in CUOy 41 then

15. Create a new CUO-IL, newCUO, in CUOj41 ;

16. end if

17. Create a new entry ne in newCUO;

18. Find the entry pe of Base-list in CUOy ;

19. ne.uo<— e.uo + ce.uo — pe.uo ;

20. ne.ruo < e.ruo ;

21. Update sumUQ and sumRUO of newCUQO;

22. Connect ne to the previous entry ;

23 end for

24 end for

25 end if

26. end if

27. end if

28. if (| CUOk41 | #0) then

20. ResultSet <— {ResultSet } U {Mine (Prefix, CUO41,
minUtilOcc, minSup) } ;

30. end if

31. end for

32. Return ResultSet;

TABLE 1. Features of Real Datasets.

Type Dataset (QDB) |QDB| [1] | T Y6
(Dense) Mushroom 8,124 119 23

Real Accidents 340,183 942 33.808
(Sparse) Retail 88,162 16,469 10.3

Real Kosarak 36,869 41,270 7.2

memory, and Windows 10 operating system, and we per-
formed these experiments in Visual Studio.

To conduct rigorous performance evaluation, we used real
datasets, which have different characteristics. Table 1 and
Table 2 indicate real datasets and synthetic datasets that are
used in the experiments. The real datasets are benchmark

43151

IEEE Access

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

21 SO R
-+-HOUMIL

g0 |-=HUOPM | -~
-+-0CEAN

Runtime (sec)
8

20
0 : :) :
24% 21% 18% 15% 12%
Minimum support threshold
(a) Mushroom
700
~+-HOUMIL
600 || = HUOPM

500 -+ OCEAN

400

300

Runtime (sec)

200

100

0.20% 0.18% 0.16% 0.14% 0.12%

Minimum support threshold

(c) Kosarak

1400

—+-HOUMIL

12007 - =-HUOPM |

1000 -a-OCEAN

Runtime (sec)

44% 42% 40% 38% 36%
Minimum support threshold

(b) Accidents

180 [
160 |*+HOUMIL

1a0 | HUOPM
120 |+ OCEAN

100
80
T

Runtime (sec)

40
20

P Py P
0 *— 2 T ¢ >—9

0.05% 0.04% 0.03% 0.02% 0.01%

Minimum support threshold

(d) Retail

FIGURE 9. Runtime results on real datasets at varying minimum support thresholds (§ =0.3).

TABLE 2. Features of Synthetic Datasets.

Type Dataset(QDB) x |QDB| TS
200 200,000
400 400,000
(Sparse) 870 10
Synthetic T1OMDIK 600 600,000 (¢ (sep)

800 800,000
1,000 1,000,000

datasets that are frequently used in pattern mining and are
classified into two types, Dense and Sparse. The dense dataset
contains a small number of definite items, while the average
length of transactions is relatively long. This implies that
items tend to appear in the same transaction. In contrast, the
sparse dataset has a lot of distinct items and long transactions.
Thus, there is a high probability that items appear in different
transactions. Table 1 states the key characteristics of each real
dataset, which includes the number of transactions (| QDB]),
the number of items (|I|), and the average length of transac-
tions (|T|AV6). Meanwhile, in order for real datasets to fit the
experiments, the internal and external utilities of items were
randomly generated for each transaction, which was refer-
enced from former utility-driven pattern mining studies [16],
[17], [22], [44]. The ranges for internal and external utilities

43152

are 1 to 10 and 0.01 to 10.00, respectively. These datasets
are available in FIMI repository (http://fimi.ua.ac.be/data/).
Table 2 describes the features of the synthetic datasets that we
used in the scalability test. They are grouped into T10I4DxK,
where xK stands for the number of transactions. In other
words, T10I4D200K has 200,000 transactions. The reason
we used T10I4DxK is that it is suitable for assessing the
scalability of algorithms because all features are the same
except for the number of transactions.

B. TEST FOR VARIOUS MINIMUM SUPPORT THRESHOLDS
In order to confirm the efficiency of the algorithms as the sup-
port threshold, y varies, and the utility occupancy threshold,
8, of all datasets was fixed at 0.3. Therefore, in this section,
we assess their efficiency by comparing their execution time
and memory usage of them by gradually decreasing y .

In Figs. 9 (a) to (d), the runtime results are presented
at varying support thresholds. As shown in Fig.9 (a), the
execution time of the three algorithms is found to be similar to
less than 10 seconds when y is 24%. This is because a small
number of patterns are processed from Mushroom dataset
to the corresponding threshold. However, considering the
runtime when y is lowered to 12%, we can see that HUOMIL
needs less time than others to handle many patterns. In detail,

VOLUME 11, 2023

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

IEEE Access

25 e
ZHOUMIL ZHUOPM &OCEAN
~ 20 e e R 00 AT
= =
g 7 :
@ 15 Ao o
. i
=] z: B 7
T8 P r 1y
E B :
S s ,, e .
E /%- : E 7
i :
0 é%}' | ' L "
24% 21% 18% 15% 12%
Minimum support threshold
(a) Mushroom
450
400
& 350
<300
%"zso
=]
E}200
150
E
g 100
50
o

0.20% 0.18% ; 5 0.12%
Minimum support threshold

(c) Kosarak

1200

=
(=]
(=]
(=]

Memory Usage (MB)

N
o
o

(=]

44% 42% 40% 38% 36%
Minimum support threshold

(b) Accidents

1
| ZHOUMIL ZHUOPM & OCEAN |
60 ————
) 7
S s0 7k
Sg0 BBl BB :
> 30 ke e
é ?Z::. 2
20 -7 R {7 H
= i %:‘ ,,,,, N 3
ok :
o 7z 7 =B

0.05% 0.04% 0.03% 0.02% 0.01%
Minimum support threshold

(d) Retail

FIGURE 10. Memory usage results on real datasets at varying minimum support thresholds (§ =0.3).

it is approximately 3 and 2 orders of magnitude faster than
OCEAN and HUOPM. In Accidents dataset, most algorithms
spend quite a lot of time, and it is observed in Fig. 9 (b).
OCEAN and HUOPM are greatly affected by y in this situ-
ation. HUOMIL, on the other hand, is relatively stable to the
reduction of y, as opposed to others in the predefined ranges.
InFig. 9 (c) for Kosarak dataset, it can be seen that the runtime
of OCEAN increases significantly after the 0.16% point, but
at the same point, HUOPM has a rise smaller than that of
OCEAN. However, HUOMIL increases slowly, and has a
lower runtime than others. At last, Fig. 9 (d) indicates the
results for Retail dataset. While the measurements of OCEAN
and HUOPM increase steadily, HUOMIL performs mining
with the least time. Although not identified in the graph, about
3.5 seconds were consumed at 0.05%, and about 6 seconds
were measured at 0.01%. As a result, it is revealed that
HUOMIL is more efficient than the comparative algorithms
under the condition where the support threshold changes.
Figs. 10 (a) to (d) are the result of memory usage for
each dataset captured in the tests performed in the previous
runtime tests. In general, the lower the support threshold,
the less the pruning effect can result in more pattern exten-
sion. This is why memory usage increases. In Fig. 10 (a),
which shows the memory results for Mushroom dataset,
the difference between OCEAN and HUOPM is slight, but

VOLUME 11, 2023

they generally require about 50% more memory space than
HUOMIL. This tendency similarly appears in Fig. 10 (b)
for Accidents dataset. In Accidents, the memory usage of
HUOMIL is half that of OCEAN and HUOPM. Fig. 10 (c)
presents the results for Kosarak dataset. According to the
memory usage on the graph, HUOPM uses less memory than
OCEAN unlike the results on dense datasets due to the dif-
ferences in the search space. Nevertheless, it is observed that
HUOMIL has better memory efficiency. The size of Retail is
smaller than that of Kosarak, it seems that memory usage is
generally smaller than the figures shown in Fig. 10 (c). Based
on Fig. 10 (d), HUOMIL always occupies less than 100MB in
the given threshold range. HUOMIL includes quadruple entry
with greater cardinality than the triple entry in OCEAN and
HUOPM. However, we effectively addressed it by exploiting
a sequence container, vector structure. Additionally, a spe-
cific structure for calculating ubuo value is situationally omit-
ted because HUOMIL adopts a pruning technique based on
the aggregated information.

C. TEST FOR VARIOUS MINIMUM UTILITY OCCUPANCY
THRESHOLDS

In this subsection, we evaluate the efficiency of the algo-
rithms under the condition where the occupancy threshold,

43153

IEEE Access

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

120

~-HOUMIL
100 {|--HUQPM [~y
-+ OCEAN

80

60

40

Runtime (sec)

20

0.45 0.4 0.35 0.3 0.25
Minimum utility occupancy threshold

(a) Mushroom (y = 12%)

Runtime (sec)

04 0.35 0.3 0.25 0.2
Minimum utility occupancy threshold

(c) Kosarak (y = 0.12%)

2000 —-oooooroor
--HOUMIL
1600 |®*HUOPM | . [
N -+ OCEAN
21200
]
£
‘S 800 -
=
=
~
400 -
0

0.35 0.325 0.3 0.275 0.25

Minimum utility occupancy threshold

(b) Accidents (y =40%)

180

160
140 -|——HOUMIL |-
120 {B-HUOPM [
100 |-+ OCEAN

Runtime (sec)
() 0
o (=]

N b
o O
T

r——¢—0—¢
04 0.35 0.3 0.25 0.2
Minimum utility occupancy threshold

o

(d) Retail (y=0.01%)

FIGURE 11. Runtime results on real datasets at varying minimum utility occupancy threshold.

8, decreases. Note that the support threshold, y, was fixed for
each dataset, as shown in Figs. 12 (a)—(d).

As & is lowered, the algorithms explore a wider search
space. In experimental tests, the runtime of HUOMIL,
measured from real datasets, is less than the comparative
algorithms in all cases. This is caused by an efficient pat-
tern extension method based on index information, even if
patterns with long lengths occur. According to the results of
Mushroom dataset in Fig. 11 (a), HUOPM is more quickly
performed than OCEAN. The runtime of HUOMIL is also
increasing, but it is quicker than the others. In Accidents
dataset, the performance of the algorithms decreased rapidly
because they react sensitively to varying 6. We can see this
remarkable trend in Fig. 11 (b). Nonetheless, it is not only
the fastest in all sections but also has the lowest growth
rate. Fig. 11 (c) shows the runtime results for Kosarak dataset.
In the graph, the runtime of HUOMIL is 4 and 7 times faster
than HUOPM and OCEAN. As shown in Fig. 11. (d) for
Retail dataset, the execution times of HUOPM and OCEAN
are almost similar, and there are sometimes overlapping
points. In addition, the runtime of the algorithms is mostly
constant regardless of §, and it indicates that they are not
significantly affected by §. However, HUOMIL is the fastest
to mine the patterns, and the runtime is always less than

43154

20 seconds in the range. Consequently, based on the above
results, the runtime performance of HUOMIL can be seen
that it is always quicker than the comparative algorithms in
any interval.

The memory efficiency of each algorithm is evaluated
in this paragraph through tests measuring peak memory
usage. Fig. 12 (a), where Mushroom dataset is a target,
shows that each algorithm uses a certain level of memory
space for all §. Despite the similarity between OCEAN and
HUOPM, HUOMIL uses less than half of that of others.
In Fig. 12 (b), we can visually confirm that memory usage
tends to rise gradually. This suggests that there is a lot of
pattern extensions occur in the experimental setting. At that
time, the specific measurements were as follows: HUOMIL
was 410.848MB, HUOPM was 857.77MB, and OCEAN
was 880.422MB. That is, HUOPM and OCEAN represent
comparable performance, but HUOMIL is relatively better
than them. Figs. 12 (¢) and (d) demonstrate the difference
between HUOPM and OCEAN in Kosarak and Retail. The
memory usage of HUOPM and OCEAN is over 300 MB
and 50 MB, while the memory usage of HUOMIL is half of
that of the comparison algorithms. According to the previous
results, it can be seen that the difference between HUOPM
and OCEAN is clear. This is the result of efficient pruning

VOLUME 11, 2023

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

IEEE Access

10

N !

Memory Usage (MB)

u

R

AR

K. b4 4... £t |
0.45 0.4 0.35 0.3 0.25
Minimum utility occupancy threshold

Y : -
w!-_______________

(a) Mushroom (y = 12%)

850 e

400

& 350
~ 300
D
& 250
=
%200
-
2 150
= 100
50 :
0 = Tk | 2 A
0.4 0.35 0.3 0.25 0.2
Minimum utility occupancy threshold

(c) Kosarak (y = 0.12%)

1200 o
‘ ZHOUMIL ZHUOPM EOCEAN‘

1000
=]
= -
C 800 o - [
g 5 o
g ! % " %. %)
5600 B A
g i i "
S 400 ,,,,, rrrrr %,%/ .
Ny

ol B 8 ég’:: ég:

.l A AR
0.35 0.325 0.3 0.275 0.25

Minimum utility occupancy threshold

(b) Accidents (y =40%)

70

(2]
o

(%]
o

D
o

w
o

N
o

7
i
%1:
|
B
;

Memory Usage (MB)

5

R

o

Minimum utility occupancy threshold

(d) Retail (y=0.01%)

FIGURE 12. Memory usage results on real datasets at varying minimum utility occupancy thresholds.

strategies of HUOPM and the effect of the sorting order.
HUOMIL is effectively treated with the vector-based data
structure for efficient memory usage, even though it has
entries whose cardinality is larger than HUOPM. Addition-
ally, lubuo is applied before the application of ubuo, which
is tighter but involves unnecessary storage space. As a result,
the proposed HUOMIL uses memory space more efficiently
than comparative algorithms in an experimental environment
where § changes.

D. SCALABILITY TEST

In this experiment, we evaluate the effect of the number of
transactions on the efficiency of HUOMIL and compare ours
with the comparative algorithms. To observe the scalability
for increasing the number of transactions, the remaining char-
acteristics of the synthetic datasets, except for the number of
transactions, were fixed with the same number. Moreover,
two thresholds, y, and §, were also set to 0.05% and 0.25.
This test targeted five synthetic datasets whose database size
increases from 200K to 1000K, with each dataset increasing
in size by 200K. In general, as the number of transactions
grows, the resource consumption of the algorithms becomes
large. The reason is that runtime and memory usage rely
on the amount of data to be processed. Although HUOMIL,

VOLUME 11, 2023

HUOPM, and OCEAN tend to follow this trend, the results
in Fig. 13 (a) show that the growth rate of HUOMIL is the
gentlest. When the value of the x-axis is 1000K, HUOMIL
is about 13 times faster than HUOPM, and about 16 times
faster than OCEAN. In Fig. 13 (b), the memory usage of each
algorithm always increases as the volume of the dataset grows
by 200K, among which HUOMIL has a relatively small
variation. According to the results of runtime and memory
footprint tests, the proposed algorithm is more stable than the
latest algorithms in terms of scalability.

V. DISCUSSION

In this section, we discuss the limitations of the pro-
posed HUOMIL approach and future directions. The pro-
posed approach, HUOMIL, processes a given database and
mines high utility occupancy patterns with efficient indexed
list-based data structures. By maintaining index informa-
tion on associated itemsets, HUOMIL only explores entries
of the indexed lists connected to each other. We observed
that the efficiency of HUOMIL is better than the list-based
approaches, HUOPM and OCEAN, in terms of runtime,
memory usage, and scalability. This was demonstrated by
experimental results on real and synthetic datasets regardless
of the given thresholds and the size of the datasets.

43155

IEEE Access

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

700 o
--HOUMIL
|-=-HUOPM |
500 [|-=~OCEAN

600

300 |-

Runtime (sec)

200

100

0l o —e—o—*
200K 400K 600K 800K 1000K

The number of transactions

(a) Runtime

600 e eSS R
ZHOUMIL
a500 | ZHUOPM
= 2 OCEAN
400
@
)
b
£300 -
'
S200 -
£
L
=100 - I% - % :
0 7. % W7 W7 =7 W

200K 400K 600K 800K 1000K
The number of transactions

(b) Memory usage

FIGURE 13. Runtime and Memory performance for synthetic datasets, T1014DxK.

Despite the advantages of HUOMIL, there are several limi-
tations. HUOMIL accesses the stacked data twice to consider
only a set of optimized items. This can lead to a fatal problem
for certain real-world applications, such as stream processing
applications whose data incrementally occur. Furthermore,
various types of data in the real world have some factors
to be considered, but HUOMIL does not take into account
them, such as noisy data [57], dynamic data [58], or temporal
factors [33], [43]. On top of these limitations, the explosive
increase in mining time interferes with the quick decision-
making. For this reason, the mining performance needs to be
improved, which is one of the main concerns in the pattern
mining field.

The further directions based on the above limitations are as
follows. Research, which covers effective responses to incre-
mental data in dynamic databases, has been being studied.
The approaches that have been proposed to process incre-
mental data with a single scan or a small number of scans
are still developing to improve their efficiency. Regarding
the consideration of various types of data, a reasonable mea-
sure can be established in addition to utility and occupancy.
For example, in study [56], a new measure provides useful
insight by considering weight and occupancy. Finally, the
mining efficiency can be improved by using an efficient
data structure, changing sorting order, and applying pruning
techniques to narrow wide search space. Apart from these, the
combination with deep learning can also be one way, and the
attempts have been studied [59], [60].

VI. CONCLUSION

In this paper, we proposed a novel approach called HUOMIL
for efficiently extracting complete high utility occupancy
patterns from a recorded quantitative database. The newly
designed data structures, named GUO-IL and CUO-IL, retain
index information of patterns in the form of a quadruple entry.
According to the framework, each structure is connected to
quickly perform the combination without a time-consuming
search during the mining process. We addressed the limita-
tions of the latest list-based approaches with efficient data

43156

structures and mining techniques. In addition, support and
utility occupancy-driven upper bounds were used to reduce
the search space of HUOMIL. We also adopted a loose upper
bound pruning technique in order to avoid the computa-
tion required by the previous upper bound. To evaluate the
efficiency of our method, we conducted performance tests
with various real and synthetic datasets. The experimental
results showed that our approach outperforms state-of-the-
art methods in terms of execution time, memory usage, and
scalability as two thresholds change

Meanwhile, data in the real world is accompanied by
diverse factors depending on the collection environment. For
example, there are temporal properties and data noise. This
implies that various measurements can be combined with
the occupancy concept to find valuable information. There-
fore, in our future work, we plan to devise an approach to
discover potentially significant patterns utilizing the existing
occupancy-driven methods. In addition, we are scheduled
to research the approach to dealing with incremental data
in a dynamic database with novel indexed list-based data
structures.

REFERENCES

[1] R.Agrawal and R. Srikant, “Fast algorithms for mining association rules,”
in Proc. 20th Int. Conf. Very Large Data Bases, 1994, pp. 487-499.

[2] W. Thurachon and W. Kreesuradej, “‘Incremental association rule mining
with a fast incremental updating frequent pattern growth algorithm,” JEEE
Access, vol. 9, pp. 55726-55741, 2021.

[3] Y. Xun, X. Cui, J. Zhang, and Q. Yin, “Incremental frequent itemsets

mining based on frequent pattern tree and multi-scale,” Exp. Syst. Appl.,

vol. 163, Jan. 2021, Art. no. 113805.

J. Adhikari, “Occupancy based pattern mining: Current status and future

directions,” Int. J. Next Gener. Comput., vol. 11, no. 1, pp. 36-51, 2020.

[5] Z.-H. Deng, “Mining high occupancy itemsets,” Future Gener. Comput.

Syst., vol. 102, pp. 222-229, Jan. 2020.

L. Zhang, P. Luo, L. Tang, E. Chen, Q. Liu, M. Wang, and H. Xiong,

“Occupancy-based frequent pattern mining,” ACM Trans. Knowl. Discov.

Data, vol. 10, no. 2, pp. 1-33, 2015.

H. Cheng, M. Han, N. Zhang, X. Li, and L. Wang, “A survey of incremental

high-utility pattern mining based on storage structure,” J. Intell. Fuzzy

Syst., vol. 41, no. 1, pp. 841-866, Aug. 2021.

[8] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, V. S. Tseng, and
P. S. Yu, “A survey of utility-oriented pattern mining,” IEEE Trans. Knowl.
Data Eng., vol. 33, no. 4, pp. 1306-1327, Apr. 2021.

[4

=

[6

—

[7

—

VOLUME 11, 2023

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

IEEE Access

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

S. Zida, P. Fournier-Viger, J. C.-W. Lin, C.-W. Wu, and V. S. Tseng,
“EFIM: A fast and memory efficient algorithm for high-utility itemset
mining,” Knowl. Inf. Syst., vol. 51, no. 2, pp. 595-625, 2017.

J. C.-W. Lin, P. Fournier-Viger, V. S. Tseng, and P. S. Yu, “IEEE access
special section editorial: Utility-pattern mining: Theoretical analytics and
applications,” IEEE Access, vol. 9, pp. 16604-16607, 2021.

J. C. Lin, Y. Li, P. Fournier-Viger, Y. Djenouri, and J. Zhang, “Efficient
chain structure for high-utility sequential pattern mining,” IEEE Access,
vol. 8, pp. 40714-40722, 2020.

L. T. T. Nguyen, D.-B. Vu, T. D. D. Nguyen, and B. Vo, “Mining maximal
high utility itemsets on dynamic profit databases,” Cybern. Syst., vol. 51,
no. 2, pp. 140-160, Feb. 2020.

J.M.-T. Wu, G. Srivastava, M. Wei, U. Yun, and J. C.-W. Lin, “Fuzzy high-
utility pattern mining in parallel and distributed Hadoop framework,” Inf.
Sci., vol. 553, pp. 31-48, Apr. 2021.

T. Mai, L. T. T. Nguyen, B. Vo, U. Yun, and T.-P. Hong, “Efficient algo-
rithm for mining non-redundant high-utility association rules,” Sensors,
vol. 20, no. 4, p. 1078, Feb. 2020.

B. Shen, Z. Wen, Y. Zhao, D. Zhou, and W. Zheng, “OCEAN: Fast
discovery of high utility occupancy itemsets,” in Proc. Pacific—Asia Conf.
Knowl. Discovery Data Mining, 2016, pp. 354-365.

M. Liu and J.-F. Qu, “Mining high utility itemsets without candidate
generation,” in Proc. 21st ACM Int. Conf. Inf. Knowl. Manag., 2012,
pp. 55-64.

W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, and P. S. Yu,
“HUOPM: High-utility occupancy pattern mining,” IEEE Trans. Cybern.,
vol. 50, no. 3, pp. 1195-1208, Mar. 2020.

L. T. T. Nguyen, P. Nguyen, T. D. D. Nguyen, B. Vo, P. Fournier-Viger, and
V. S. Tseng, “Mining high-utility itemsets in dynamic profit databases,”
Knowl.-Based Syst., vol. 175, pp. 130-144, Jul. 2019.

J.M.-T. Wu, G. Srivastava, J. C.-W. Lin, Y. Djenouri, M. Wei, R. M. Parizi,
and M. S. Khan, “Mining of high-utility patterns in big IoT-based
databases,” Mobile Netw. Appl., vol. 26, no. 1, pp. 216-233, Feb. 2021.
U. Yun, H. Kim, T. Ryu, Y. Baek, H. Nam, J. Lee, B. Vo, and W. Pedrycz,
“Prelarge-based utility-oriented data analytics for transaction modifica-
tions in Internet of Things,” IEEE Internet Things J., vol. 8, no. 24,
pp. 17333-17344, Dec. 2021.

C. Liu and C. Guo, “Mining top-N high-utility operation patterns for taxi
drivers,” Exp. Syst. Appl., vol. 170, May 2021, Art. no. 114546.

C. Lee, Y. Baek, T. Ryu, H. Kim, H. Kim, J. Chun-Wei Lin, B. Vo, and
U. Yun, “An efficient approach for mining maximized erasable utility
patterns,” Inf. Sci., vol. 609, pp. 1288-1308, Sep. 2022.

Y. Liu, W. Liao, and A. Choudhary, “A two-phase algorithm for fast
discovery of high utility itemsets,” in Proc. Pacific-Asia Conf. Knowl.
Discovery Data Mining, 2005, pp. 689-695.

C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Y. K. Lee, “Effi-
cient tree structures for high utility pattern mining in incremental
databases,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 12, pp. 1708-1721,
Dec. 2009.

V. S. Tseng, B.-E. Shie, C.-W. Wu, and P. S. Yu, “Efficient algorithms for
mining high utility itemsets from transactional databases,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 8, pp. 1772-1786, Aug. 2013.

P. Fournier-Viger, C. Wu, S. Zida, and V. S. Tseng, “FHM: Faster high-
utility itemset mining using estimated utility co-occurrence pruning,” in
Proc. Int. Symp. Methodologies Intell. Syst., 2014, pp. 83-92.

S. Krishnamoorthy, ‘“‘Pruning strategies for mining high utility itemsets,”
Exp. Syst. Appl., vol. 42, no. 5, pp. 2371-2381, 2015.

S. Krishnamoorthy, “HMiner: Efficiently mining high utility itemsets,”
Exp. Syst. Appl., vol. 90, pp. 168-183, Dec. 2017.

H. Ryang and U. Yun, “Indexed list-based high utility pattern mining
with utility upper-bound reduction and pattern combination techniques,”
Knowl. Inf. Syst., vol. 51, no. 2, pp. 627-659, 2017.

U. Yun, H. Nam, G. Lee, and E. Yoon, “Efficient approach for incremental
high utility pattern mining with indexed list structure,” Future Gener.
Comput. Syst., vol. 95, pp. 221-239, Jun. 2019.

H. Nam, U. Yun, E. Yoon, and J. C. W. Lin, “Efficient approach of recent
high utility stream pattern mining with indexed list structure and pruning
strategy considering arrival times of transactions,” Inf. Sci., vol. 529,
pp. 1-27, Aug. 2020.

H. Kim, U. Yun, Y. Baek, J. Kim, B. Vo, E. Yoon, and H. Fujita, “Efficient
list based mining of high average utility patterns with maximum average
pruning strategies,” Inf. Sci., vol. 543, pp. 85-105, Jan. 2021.

VOLUME 11, 2023

(33]

(34]

[35]

(36]

(371

(38]

(391

[40]

[41]

(42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

(54]

J. Kim, U. Yun, H. Kim, T. Ryu, J. C. Lin, P. Fournier-Vier, and W. Pedrycz,
“Average utility driven data analytics on damped windows for intelli-
gent systems with data streams,” Int. J. Intell. Syst., vol. 36, no. 10,
pp. 5741-5769, Oct. 2021.

J. M.-T. Wu, Q. Teng, J. C.-W. Lin, and C.-F. Cheng, ‘“Incrementally
updating the discovered high average-utility patterns with the pre-large
concept,” IEEE Access, vol. 8, pp. 66788—66798, 2020.

J. C.-W. Lin, M. Pirouz, Y. Djenouri, C.-F. Cheng, and U. Ahmed, “Incre-
mentally updating the high average-utility patterns with pre-large con-
cept,” Int. J. Speech Technol., vol. 50, no. 11, pp. 3788-3807, Nov. 2020.
U. Yun, H. Nam, J. Kim, H. Kim, Y. Baek, J. Lee, E. Yoon, T. Truong,
B. Vo, and W. Pedrycz, “Efficient transaction deleting approach of pre-
large based high utility pattern mining in dynamic databases,” Future
Gener. Comput. Syst., vol. 103, pp. 58-78, Feb. 2020.

M. A. Fouad, W. Hussein, S. Rady, P. S. Yu, and T. F. Gharib, “An efficient
approach for mining reliable high utility patterns,” IEEE Access, vol. 10,
pp. 1419-1431, 2022.

T. Wei, B. Wang, Y. Zhang, K. Hu, Y. Yao, and H. Liu, “FCHUIM: Efficient
frequent and closed high-utility itemsets mining,” IEEE Access, vol. 8,
pp. 109928-109939, 2020.

T. D. D. Nguyen, L. T. T. Nguyen, L. Vu, B. Vo, and W. Pedrycz, “Effi-
cient algorithms for mining closed high utility itemsets in dynamic profit
databases,” Exp. Syst. Appl., vol. 186, Dec. 2021, Art. no. 115741.

B. Vo, L. T. T. Nguyen, T. D. D. Nguyen, P. Fournier-Viger, and U. Yun,
“A multi-core approach to efficiently mining high-utility itemsets in
dynamic profit databases,” IEEE Access, vol. 8, pp. 85890-85899, 2020.

B. Vo, L. V. Nguyen, V. V. Vu, M. T. H. Lam, T. T. M. Duong, L. T. Manh,
T. T. T. Nguyen, L. T. T. Nguyen, and T.-P. Hong, “Mining correlated
high utility itemsets in one phase,” IEEE Access, vol. 8, pp. 90465-90477,
2020.

R. S. Almoqbily, A. Rauf, and F. H. Quradaa, “A survey of correlated high
utility pattern mining,” IEEE Access, vol. 9, pp. 42786—42800, 2021.

Y. Baek, U. Yun, H. Kim, H. Nam, H. Kim, J. C.-W. Lin, B. Vo, and
W. Pedrycz, “RHUPS: Mining recent high utility patterns with sliding
Window-based arrival time control over data streams,” ACM Trans. Intell.
Syst. Technol., vol. 12, no. 2, pp. 1-27, Apr. 2021.

H. Kim, T. Ryu, C. Lee, H. Kim, E. Yoon, B. Vo, J. C. W. Lin, and
U. Yun, “EHMIN: Efficient approach of list based high-utility pattern
mining with negative unit profits,” Exp. Syst. Appl., vol. 209, Dec. 2022,
Art. no. 118214.

H. Nam, U. Yun, B. Vo, T. Truong, Z.-H. Deng, and E. Yoon, “Efficient
approach for damped window-based high utility pattern mining with list
structure,” IEEE Access, vol. 8, pp. 50958-50968, 2020.

N. Vuong, B. Le, T. Truong, and D.-P. Nguyen, “Efficient algorithms for
discovering high-utility patterns with strong frequency affinities,” Exp.
Syst. Appl., vol. 169, May 2021, Art. no. 114464.

N. T. Tung, L. T. T. Nguyen, T. D. D. Nguyen, and B. Vo, “An efficient
method for mining multi-level high utility itemsets,” Int. J. Speech Tech-
nol., vol. 52, no. 5, pp. 5475-5496, Mar. 2022.

P. Fournier-Viger, W. Gan, Y. Wu, M. Nouioua, W. Song, T. C. Truong, and
H. V. Duong, “Pattern mining: Current challenges and opportunities,” in
Proc. Int. Conf. Database Syst. Advanced Appl., 2022, pp. 34—49.

S. Datta, K. Mali, and U. Ghosh, “High occupancy itemset mining with
consideration of transaction occupancy,” Arabian J. Sci. Eng., vol. 47,
no. 2, pp. 2061-2075, Feb. 2022.

H. Kim, T. Ryu, C. Lee, H. Kim, T. Truong, P. Fournier-Viger, W. Pedrycz,
and U. Yun, “Mining high occupancy patterns to analyze incremental data
in intelligent systems,” ISA Trans., vol. 131, pp. 460-475, Dec. 2022.

G. M. Karthik, M. Sayeekumar, R. Kumaravel, and T. Aravind, “‘Finding
spectrum occupancy pattern using CBFPP mining technique,” J. Intell.
Fuzzy Syst., vol. 39, no. 3, pp. 4361-4368, Oct. 2020.

J. Sun, W. Gan, J. C.-W. Lin, and H.-C. Chao, “Pattern discovery
with utility occupancy,” in Proc. IEEE Int. Conf. Big Data, Dec. 2022,
pp. 6261-6270.

X.Dong, M. Wang, Y. Liu, G. Xiao, D. Huang, and G. Wang, “An efficient
spatial high-utility occupancy frequent item mining algorithm for mission
system integration architecture design using the MBSE method,” Aerosp.
Syst., vol. 5, no. 3, pp. 377-392, Sep. 2022.

C.-M. Chen, L. Chen, W. Gan, L. Qiu, and W. Ding, ‘“Discovering
high utility-occupancy patterns from uncertain data,” Inf. Sci., vol. 546,
pp. 1208-1229, Feb. 2021.

43157

IEEE Access

H. Kim et al.: Efficient Method for Mining High Utility Occupancy Patterns Based on Indexed List Structure

[55]

[56]

[57]

[58]

[59]

[60]

T. Ryu, U. Yun, C. Lee, J. C. Lin, and W. Pedrycz, “Occupancy-based
utility pattern mining in dynamic environments of intelligent systems,” Int.
J. Intell. Syst., vol. 37, no. 9, pp. 5477-5507, Sep. 2022.

W. Gan, J. Lin, P. Fournier-Viger, H. Chao, J. Zhan, and J. Zhang, “Exploit-
ing highly qualified pattern with frequency and weight occupancy,” Knowl.
Inf. Syst., vol. 56, no. 1, pp. 165-196, Jul. 2018.

Y. Baek, U. Yun, H. Kim, J. Kim, B. Vo, T. Truong, and Z.-H. Deng,
“Approximate high utility itemset mining in noisy environments,” Knowl.-
Based Syst., vol. 212, Jan. 2021, Art. no. 106596.

J. Kim, U. Yun, E. Yoon, J. C.-W. Lin, and P. Fournier-Viger, ‘“One scan
based high average-utility pattern mining in static and dynamic databases,”
Future Gener. Comput. Syst., vol. 111, pp. 143-158, Oct. 2020.

A. Jamshed, B. Mallick, and P. Kumar, “Deep learning-based sequential
pattern mining for progressive database,” Soft Comput., vol. 24, no. 22,
pp. 17233-17246, Nov. 2020.

J.Zhang, Y. Zhao, F. Shone, Z. Li, A. F. Frangi, S. Q. Xie, and Z.-Q. Zhang,
“Physics-informed deep learning for musculoskeletal modeling: Predict-
ing muscle forces and joint kinematics from surface EMG,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 31, pp. 484-493, 2023.

HYEONMO KIM received the B.S. degree in
computer engineering from Sejong University,
Seoul, South Korea, in 2022, where he is cur-
rently pursuing the M.S. degree. His research inter-
ests include data mining, information retrieval,
database systems, and artificial intelligence.

TAEWOONG RYU received the B.S. degree in
computer engineering from Sejong University,
Seoul, South Korea, in 2022, where he is cur-
rently pursuing the M.S. degree. His research inter-
ests include data mining, information retrieval,
database systems, and artificial intelligence.

CHANHEE LEE received the B.S. degree in com-
puter engineering from Sejong University, Seoul,
South Korea, in 2021, where he is currently pursu-
ing the M.S. degree. His research interests include
data mining, information retrieval, database sys-
tems, and artificial intelligence.

43158

~———

" T'm

SINYOUNG KIM received the B.S. degree in
computer engineering from Sejong University,
Seoul, South Korea, in 2023, where he is cur-
rently pursuing the M.S. degree. His research inter-
ests include data mining, information retrieval,
database systems, and artificial intelligence.

BAY VO (Member, IEEE) received the B.Sc.,
M.Sc., and Ph.D. degrees in computer science
from the University of Science, Vietnam National
University, Ho Chi Minh City, in 2002, 2005, and
2011, respectively. He is currently an Associate
Professor and the Dean of the Faculty of Infor-
mation Technology, Ho Chi Minh University of
Technology (HUTECH), Ho Chi Minh City. His
research interests include association rules, classi-
fication, and mining in incremental database.

JERRY CHUN-WEI LIN (Senior Member, IEEE)
received the Ph.D. degree from the Department of
Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan,
in 2010. He is currently a Full Professor with
the Department of Computer Science, Electrical
Engineering and Mathematical Sciences, Western
Norway University of Applied Sciences, Bergen,
Norway. He has published more than 400 research
articles in journals, and international conferences.

His research interests include data mining, soft computing, and artificial
intelligence/machine learning. He is the Guest Editor/an Associate Editor
of several IEEE/ACM journals.

UNIL YUN received the Ph.D. degree in computer
science from Texas A&M University, College Sta-
tion, TX, USA, in 2005. He is currently a Full
Professor with the Department of Computer Engi-
neering, Sejong University, Seoul, South Korea.
He has published more than 200 research articles
in refereed journals, and international conferences.
His research interests include data mining, infor-
mation retrieval, database systems, artificial intel-
ligence, and digital libraries. He is an Associate

Editor (Edltorlal Board Member) of Knowledge-Based Systems, PLoS ONE,

and Electronics.

VOLUME 11, 2023

