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Abstract: After decades of research, automatic synthetic aperture radar (SAR)-optical registration
remains an unsolved problem. SAR and optical satellites utilize different imaging mechanisms,
resulting in imagery with dissimilar heterogeneous characteristics. Transforming and translating
these characteristics into a shared domain has been the main challenge in SAR-optical matching
for many years. Combining the two sensors will improve the quality of existing and future remote
sensing applications across multiple industries. Several approaches have emerged as promising
candidates in the search for combining SAR and optical imagery. In addition, recent research has
indicated that machine learning-based approaches have great potential for filling the information
gap posed by utilizing only one sensor type in Earth observation applications. However, several
challenges remain, and combining them is a multi-step process where no one-size-fits-all approach
is available. This article reviews traditional, state-of-the-art, and recent development trends in
SAR-optical co-registration methods.
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1. Introduction

In recent years, the number of Earth observation satellites orbiting the Earth has increased
rapidly [1]. As a result, remote sensing is the go-to tool for examining the Earth at various scales
due to the vast amount of data from different sensors in orbit. Satellite sensors observe specific
parts of the electromagnetic spectrum and are divided into mainly two categories: active and
passive. In short, passive sensors rely on reflected sunlight as their illumination source, while
active sensors have their own illumination source. The distinction is important because the
two sensor types produce different characteristics with complementary information.

Synthetic aperture radar (SAR) satellites are active sensors with an onboard microwave
energy source. The long wavelengths of microwave radiation are not affected by weather
conditions and can continuously provide images. SAR is excellent at characterizing the
structural properties of surface objects. However, the backscatter from the sensor is prone
to speckle noise, reducing clarity and detail. In addition, since the sensor only collects
the intensity of the backscatter, it provides no spectral information, resulting in noisy
black-and-white imagery. Many Earth observation applications rely on spectral data, which
renders SAR imagery at a significant disadvantage in real-world applications despite its
high-quality surface detail and robustness [2].

On the other hand, optical satellites rely on solar illumination as their energy source and
capture the reflected sunlight from objects. This reliance makes optical imagery prone to weather
conditions and time of day. In addition, optical satellites cover specific spectral bands of the
electromagnetic spectrum. The most common bands are red, green, blue, and near-infrared
(NIR). Information from different bands can be combined to create various imagery and land
cover indices. Land cover indices are widely used in terrain analysis applications such as
vegetation and forest monitoring [3], and power line monitoring [4]. These properties have
made optical satellite imagery the most commonly used sensor in remote sensing applications.
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The favorable aspects of SAR images, such as being “weatherproof” and having high sur-
face detail, when combined with the advantages of optical images, such as spectral characteristics
and undeniability for human eyes, would enhance the performance of remote sensing solutions.

The SAR and optical registration process are one of the most fundamental and chal-
lenging operations in remote sensing [5]. In other words, image registration is the process of
aligning two or more images (the reference andsensed images). The SAR-optical alignment
is especially tricky due to the radiometric and geometric differences. SAR and optical
images from the same area differ in spatial resolution, spatial alignment, satellite type,
and temporal dimensions. Moreover, imagery captured by different satellites introduces
several inconsistencies that need to be corrected in the image registration process. Irregu-
larities such as varying positioning of the sensors, object deformation, object movement,
and viewpoint mismatch emerge when superimposing two images from different satellites.
Temporal differences introduce further complexity to the image registration process. Sea-
sonal and urban changes drastically alter the Earth’s surface, resulting in scenarios where
satellite observations of the same area appear dissimilar, particularly in optical imagery.
Furthermore, imagery captured at various intervals may not share features due to changes
in the period between the sensed images.

The SAR-optical image registration process has four major steps: Feature detection
and extraction, feature matching, affine transformation, and image alignment. Figure 1
shows a step-by-step example of optical-optical image matching using the classical scale-
invariant-feature-transform (SIFT) algorithm [6]. In general, single-sensor image alignment
is a much simpler procedure than SAR-optical alignment and is here used to showcase the
different steps in the image registration process. Figure 1a shows an optical image from
the Sentinel-2 satellite with a 10 m resolution. A random affine transformation has been
applied to the sensed image to give a complete example of the image-matching problem.
The reference and sensed image contains 50% shared information. Figure 1b shows features
detected by the SIFT descriptor denoted by yellow circles in the reference and sensed
image, respectively. Figure 1c illustrates the remaining matched features after evaluating
feature correspondence and distance thresholding. Finally, Figure 1d presents the affine
correction and image alignment. Affine correction is performed manually by selecting
three non-collinear matched features as control points. Note the blurred appearance of the
overlapping regions of the reference and sensed image due to the slight misalignment.

Figure 1. Step-by-step example of optical-optical image matching. (a) two optical images; (b) features
detected by the SIFT descriptor on each image separately; (c) features are matched between the
two images after evaluating the feature correspondence; (d) affine correction and image alignment.
The image is taken from the SEN1-2 dataset [7], which is a benchmark dataset for SAR-optimal
co-registration, sampled around the world and in all meteorological seasons. Images are acquired
from Sentinel-1 (SAR) and Sentinel-2 (optical) with a 10 m/pixel resolution.
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The paper structure is as follows. First, we overview the state-of-the-art approaches for
SAR-optical image registration. Then, we introduce four common approaches that have been
used to address this task more comprehensively. Finally, we discuss the practical challenges.

2. State-of-the-Art Approaches

Available approaches in the literature for SAR-optical image registration problems are
classified into two major categories: area-based approaches and feature-based approaches.
Features, in particular, can be extracted and calculated using handcrafted methods (which
are non-learning methods), or extracted automatically using a neural network (thus via deep
learning techniques). In each sub-section, we overview each category mentioned above.

2.1. Area-Based Methods

Area-based methods are often called template matching. The idea is to find the location
of a smaller image (the template) in a larger image (the reference image). Here, the template
image can be thought of as the sensed image in the image registration process. Template
matching is commonly used in object detection, face recognition, motion tracking, medical
image analysis, and image registration [8]. As shown in Figure 2, matching the template
to the reference image is traditionally done by sliding the template across the reference
image and calculating the image similarity using a suitable similarity metric. This approach
is especially suited for image alignment. However, it is susceptible to scale and rotation
differences, so it is a prerequisite that the template and reference image have the same
affine relationship.

Several metrics are used to evaluate the similarity between SAR and optical images.
These metrics are mostly intensity-based metrics that exploit pixel-wise intensity patterns
present in both types of imagery. A widely used metric is the Normalized Cross Correlation
(NCC). The main advantages of NCC are its speed and invariance to linear deviations in
brightness and contrast. It is relatively straightforward to implement and is especially
suited for template matching scenarios [9]. However, NCC is sensitive to scale, rotation,
radiometric, and geometric differences in SAR-optical images. The Sum of Squared Differ-
ences (SSD) is another fast but unstable metric. SSD directly compares the image intensity
values between the images; consequently, it is susceptible to image intensity variations.
Structural Similarity Index Measure (SSIM) [10] is traditionally used to assess image quality
and degradation after passing an image through a transformer or filter. SSIM is a weighted
measurement of the difference between two images’ structure, contrast, and luminance
discrepancies. SSIM considers image degradation as changes in the structural information
of the image. Hence, in the context of SAR-optical matching, the difference between the
two sensors can be simplified to changes in structure, contrast, and luminance, where
the SSIM would be a suitable metric. Mutual Information (MI) is a notable exception
to the intensity-based approach. MI is a traditional measure of the shared information
between two random variables. In the 90s, the concept of MI was extended to perform
multi-modal medical image registration [11,12]. This inspired the adaptation of MI-based
SAR-optical image registration, cumulating in the Compressed And Segmented Mutual
Information technique published in 2009, achieving state-of-the-art performance for its
time [13]. The main drawback of such a method is the amount of computing required to
perform the registration.
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Figure 2. Computing image similarity between the smaller SAR template (T) and the larger optical
reference image (R) by iteratively moving the template across the reference image. Although precise,
the sliding window technique is a computationally expensive method. With a 256 × 256 refer-
ence image and a 192 × 192 template, the resulting similarity map requires 4225 comparisons of
192 × 192 images. The image example is taken from the SEN1-2 dataset.

2.2. Features Extraction via Hand-Crafted Methods

Feature-based approaches are traditionally used in computer vision areas such as
object recognition, camera calibration, and image registration [14]. This type of approach
aims to exploit the distinctive features of an image. In this context, a feature is a geometric
or contrasting characteristic easily detected in both the reference and sensed images. It
is vital that the selected features are salient in both images, resulting in features typically
being either closed boundary regions in the form of polygons (lakes, forests) [15] or salient
points (corners, intersections, edges, roads) [16,17]. The selected features are then translated
into vector representations by a feature descriptor before their correspondence is evaluated
in the feature-matching step. Finally, features are matched using various similarity metrics
and feature descriptors, combined with the spatial relationship of the selected features [18].

A complete step-by-step example of this process is shown in Figure 1, and as illus-
trated, the mismatching of features is inevitable. Therefore, effective removal of mismatched
features is essential to achieve an accurate alignment [19]. In SAR-optical matching, align-
ment is generally achieved by affine transformation of the sensed image by selecting three
candidate feature points. Eventual differences in spatial resolution are corrected using
interpolation, where bilinear interpolation is among the most commonly used methods
due to its balance between computational complexity and performance [18].

Non-learning feature-based methods for SAR-optical matching are mostly determinis-
tic algorithms. The SIFT algorithm is among the most influential methods in traditional
feature matching. It works by creating a Gaussian scale space where feature points are
extracted by calculating the Difference of Gaussian between two consecutive scales. Orien-
tation and magnitude gradients are then calculated for pixels surrounding the extracted
feature points. These gradient directions are placed in a histogram with 36 bins representing
360 degrees, where the peak determines the rotation angle. Yet, SIFT could perform better
on the SAR-optical matching problem due to the noisy nature of the SAR imagery and the
radiometric differences between the two sensors [20,21]. As a result, numerous extensions
of SIFT, such as speeded-up robust features (SURF) [22], principal component analysis SIFT
(PCA-SIFT) [23], affine SIFT (ASIFT) [24], ORB (Oriented FAST and Rotated BRIEF) [25],
uniform robust SIFT (UR-SIFT) [26], etc., have been devised to extend the functionality and
improve performance of the original SIFT algorithm.
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Notable variations relevant to SAR-optical image matching are the SAR-SIFT [27]
and radiation-variation insensitive feature transform (RIFT) algorithms [21]. SAR-SIFT
introduced domain-specific gradients based on the noisy characteristic of SAR imagery,
making it more robust to speckle noise. RIFT addressed the challenge of radiometric
differences in multi-modal imagery, such as SAR-optical, by exploiting a phase congruency-
based feature descriptor in 2020. Since then, non-learning feature-based SAR-optical image
matching has been a hot research topic.

Yu et al. computed optical flow fields from SIFT and phase congruency descriptors
to achieve dense feature-based matching at the cost of increased time complexity [28].
Xiong et al. introduced the Adjacent Self-Similarity (ASS) feature using offset mean filtering,
yielding robust state-of-the-art performance [29]. Computational cost is the Achilles heel
of non-learning methods. Most state-of-the-art techniques take anywhere from roughly 15
to 200 s to perform a single instance of SAR-optical matching, depending on the image
dimensions and algorithm used [28,29]. That is to say, only some non-learning methods are
slow. The Channel Features of Orientated Gradients (CFOG) is a fast state-of-the-art feature
descriptor that uses oriented gradients and a gaussian kernel to build multiple feature vectors
for each pixel [30]. Ye et al. proposed an extension of the CFOG descriptor by extracting CFOG
feature maps across multiple resolutions before employing a SAR image masking technique
to create an edge map and thus achieve more fine-grained matching results [31].

Nonetheless, handcrafted feature descriptors have one major inherent disadvantage.
They assume the presence of salient and distinct features. This is not a given in remote
sensing imagery, especially in SAR imagery. For example, imagery of forests and rural
areas contain few features, and thus the presented non-learning methods can only produce
stable results in more urban areas. As a result, current non-learning feature-based methods
are not viable solutions for big data SAR-optical image matching or real-time applications,
where efficiency and robustness are of utmost importance.

2.3. Features Extraction via Deep Learning

The current state of non-learning handcrafted feature methods cannot meet the require-
ments of efficient, automatic SAR-optical registration. For many years, the need for publicly
available remote sensing data limited the usability of machine learning methods in the SAR-
optical domain. This changed with the launch of the SpaceNet program in 2016 [32]. A year
later, Google made the Google Earth Engine and its extensive remote sensing data catalog
available to the public [33]. Subsequently, in 2019 Schmitt et al. [7] published the SEN1-2
dataset for SAR-optical data fusion, combining imagery from the Sentinel-1 and Sentinel-2
satellites. As such, machine-learning methods suddenly became viable, and a surge of research
in machine-learning-based SAR-optical image matching followed in the coming years. Neural
networks have been used to extract features automatically from the SAR-optical image pair,
as opposed to the handcrafted feature methods (e.g., SIFT, SURF, etc.).

Earlier research on single-modal image matching by Fischer et al. [34] showed that
Convolutional Neural Networks (CNNs) outperformed traditional non-learning feature
descriptors such as SIFT. This outcome inspired the use of CNNs with shared weights
(Siamese architecture) to extract features in SAR and optical imagery. A Siamese Neural
Network is a particular architecture that contains two or more identical subnetworks,
mirrored with respect to the others. Merkle et al. [35] proposed the first notable example
of a Siamese machine learning architecture to perform SAR-optical image registration.
The advantage of such an architecture with shared weights is that the features are mapped
into the same latent space. This leads to an efficient calculation of the similarity between
feature vectors. The main limitation is that the overall architecture complexity is doubled,
resulting in more trainable parameters and a longer training time than standard networks.
The machine learning method proposed by Merkle extracted features using stacked dilated
convolutions. The similarity was assessed by convolving the two feature maps from each
sensor and computing the dot product. An overview of the proposed architecture is out-
lined in Figure 3. In Figure 3, the blue CNN modules detect and extract features, and the
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green similarity module assesses the similarity of the feature maps, that is, feature matching.
Finally, the peak of the resulting similarity heatmap determines the predicted offset and
alignment of the template within the reference image. Due to their high performance,
Siamese architecture has become the standard scheme for image registration. While the
architecture remains similar, more models have been implemented, mainly to increase
performance and optimize the computational burden. The SFcNet, described in Ref. [36],
introduced a novel loss function that maximizes the distance between positive and negative
samples. Traditionally, negative sampling is used in classification tasks to reduce significant
false positive rates between similar classes. SFcNet utilizes this strategy by selecting the
negative sample as the area with the largest mismatch and the positive sample as the
correct matching point. The proposed negative sampling strategy in SFcNet increases the
discriminability of the model. Hughes et al. proposed a novel component-based frame-
work using three separate networks [37]. The framework consists of a goodness network,
a correspondence network, and an outlier removal network. The main advantage of this
approach is that the framework can determine the matching quality via its outlier removal
network, acknowledging the problem of high false positive rates. A major drawback of the
traditional Siamese CNNs is that they rely on the pixel-wise sliding window technique to
compute similarity heatmaps. This operation is computationally intensive, especially for
large images. To solve this limitation, Zhang et al. bypassed the sliding window approach
by accelerating the SSD computation in the frequency domain in Ref. [30] and introducing
the Deep Dense Feature Network (DDFN) in 2022 [38]. Skipping the sliding window
method is possible by exploiting the Fast Fourier Transform (FFT) and the convolution
theorem. The inverse FFT of pointwise multiplication in the frequency domain is equivalent
to the convolution with a sliding window while being magnitudes faster to compute for
large images. Fang et al. [39] used the same FFT method to implement the NCC simi-
larity metric in the frequency domain and used the popular image segmentation model
U-Net [40] as a feature extractor. It is worth mentioning that a similar Siamese U-Net archi-
tecture combined with NCC was also proposed in Ref. [41], but without the FFT accelerated
implementation. Thus practically, the FFT U-Net is preferred. Cui et al. [42] proposed
an architecture (MAP-net) augmented with an attention mechanism and spatial pyramid
aggregated pooling (SPAP). According to the authors, the adoption of the SPAP module
makes the network more capable of integrating global and local contextual information.
The attention block weights the dense features generated from the network to extract more
invariant and distinguishable key features.

Differently from the Siamese models early presented, Zhou et al. [43] extract multi-
orientated gradient features using the CFOG descriptors (initially tested in Ref. [30]) to
depict the structure properties of images. Then, they implement a shallow pseudo-Siamese
network to convolve the gradient feature maps in a multiscale manner, which produces
the Multiscale Convolutional Gradient Features (MCGFs). In addition, MCGF employed
both negative samples and an FFT-accelerated cross-correlation similarity metric to achieve
satisfactory matching performance and computational efficiency.
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Figure 3. A general Siamese template matches architecture. The red arrow indicates the possible
weight-sharing between the two CNN-based feature extractors. Since the CNN translates the images
into a homogeneous space, similarity metrics previously demonstrated to be inadequate, such as
SSIM and NCC, can now be used to assess the similarity between the CNN feature maps. The satellite
images are taken from the SEN1-2 dataset.

2.4. Recent Trends

Generative Adversarial Networks (GANs) [44] is a relatively recent branch of machine
learning that generates synthetic images. As a result, researchers began exploring the
potential use cases of generating SAR images from optical imagery [45]. The same study
noted that generated imagery could help improve existing non-learning SAR-optical image-
matching techniques. Ref. [46] used GAN to improve SAR-Optical matching accuracy.
More recently, using GANs to translate SAR images into pseudo-optical directly has been
explored in Ref. [47,48], showing great promise. Combining unsupervised and supervised
machine learning models is a natural next step in the field.

A primary shortcoming of all the models mentioned above is that they are not robust
to scale and rotation differences. As such, recent research has focused on making models
robust to scale and rotation changes. In Ref. [49] Markiewicz et al. present a new approach
to the estimation of shift and rotation between two images from different sensors using the
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ASIFT feature descriptor and Structure from Motion (SfM) technique. Hybrid approaches
such as in Ref. [50] have previously been proposed, but recently machine learning models
based on semantic segmentation methods have appeared. In particular, Li et al. [50]
proposed a possible two-step framework for rotation-invariant matching, consisting of a
machine-learning module and a novel non-learning module. The machine learning module,
called RotNET, is trained to classify the rotation relationship between the reference- and
template images. Furthermore, Li et al. [51] stated that semantic-dependent self-attention
layers could effectively handle minor affine irregularities present in SAR-optical imagery
while achieving state-of-the-art matching accuracy. Nevertheless, more research is needed
into developing independent scale and rotation invariant machine learning modules.

3. Survey of the Most Common Methods

The main categories of methods for the SAR-optical matching problem are described in
the previous section. This section provides a more extensive explanation of four powerful
methods for SAR-optical matching.

3.1. Mutual Information

The Mutual Information (MI) similarity-based method is a non-learning approach.
MI is able to handle the non-linear intensity variations between SAR and optical imagery.
This is because MI does not rely on pixel intensity. Instead, MI assumes a statistical
relationship between the two sensors that can be captured by exploiting the entropy and
joint entropy of the images. To compute entropy on an image, the pixel values are binned
into histograms. The joint entropy, given SAR image S and optical image O, can be derived
from the following equation:

H(S, O) = −∑
s,o

pSO(s, o) log pSO(s, o) (1)

where pSO denotes the joint probability mass function of S and O. The entropy of a single
image is given by

H(X) = −∑
x

pX(x) log pX(x) (2)

MI can then be calculated as:

MI(S, O) = H(S) + H(O)− H(S, O) (3)

Using MI to perform template matching, the most overlapping region is interpreted as
the point maximizing the MI value. Specifically, the point where the individual entropies
are maximized and the joint entropy is minimized.

3.2. Siamese CNN

The Siamese Convolutional Neural Network (Siamese-CNN) proposed by Merkle [35]
was one of the first notable methods published in the context of SAR-optical image match-
ing. Merkle proposed the general architecture depicted in Figure 3 and evaluated the
performance of both Siamese and pseudo-Siamese CNNs. The results deemed the Siamese
model superior and, consequently, is the primary strategy adopted by later methods.
The similarity heatmap is generated using the time-consuming sliding window technique
shown in Figure 2, and similarity is evaluated from the dot product of the output feature
vectors. The Siamese-CNN consists of several stacked layers of dilated convolutions with
5× 5 filters to achieve a feature extractor with the desired receptive field size. The complete
architecture of the feature extraction network is outlined in Figure 4. The dilated convo-
lutions allow for the exponential growth of the receptive without reducing the resolution
of the images [35]. The authors also utilized a soft ground truth distribution by using the
discrete approximation of the Gaussian function to blur the region surrounding the correct
matching position.
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Figure 4. Siamese-CNN architecture. The dilation rate of the dilated convolutions is denoted along the
z-axis. Abbreviations: Convolution (Conv), Batch Normalization (BN), Rectified Linear Unit (ReLU).

3.3. Deep Dense Feature Network

Zhang et al. propose several improvements, such as pixel-wise deep dense features,
FFT accelerated SSD computation, negative mining, and stacked convolutional layers
with small 3 × 3 filters [38]. For each pixel, the network produces a 9-D feature vector,
an approach inspired by the CFOG feature descriptor [30]. The structure of the network
is shown in Figure 5. Different from other state-of-the-art machine learning approaches,
the DDFN use convolutional layers with no padding and instead apply a symmetric
pad of 1 for each convolutional layer. Compared to the traditional sliding window SSD
computation, the FFT accelerated approach is 14 times faster [38]. Similar to MCGF [43] and
SFcNet [36], DDFN employs negative mining to increase the discriminability of the network.
Negative mining is used because the machine learning approach essentially transforms
the SAR-optical image-matching problem into a classification problem. Individual pixels
in the ground truth offset space are interpreted as categories. Following the example of
Figure 2, this produces 4225 categories where only one is interpreted as the correct matching
position. As a result, negative mining can be utilized to accelerate training and help guide
the network in the direction of the correct matching position. Zhang et al. proposed a novel
loss function aimed at maximizing the disparity between the correct matching point and
the hardest negative sample. The study showed that the proposed DDFN outperformed
previous state-of-the-art models, such as SFcNet.

3.4. FFT U-Net

The final selected method is the FFT NCC U-Net proposed by Fang et al. [39]. They
argue that the U-Net, a classic image segmentation model, is well-suited for the SAR-
optical image-matching problem. The encoder-decoder architecture of the U-Net enables
the extraction of both high- and low-level features in the image. The details of the adopted
U-Net are shown in Figure 6. Similar to many other state-of-the-art approaches, an FFT
accelerated similarity metric is adopted. The authors evaluate the performance of cross cor-
relation (CC) and NCC in the frequency domain, showing that CC yields better pixel-level
accuracy while NCC produces the best average precision at the cost of slightly increased
computational complexity. Similar to the Siamese-CNN [35], the FFT U-Net utilizes the
cross-entropy as the loss function, but here without a soft ground truth distribution. The au-
thors also compared the matching performance against the Siamese-CNN, where the FFT
U-Net yielded improved matching accuracy, precision, and time complexity. Compared to
the other selected methods, the FFT U-Net is a considerably deeper model with a larger
parameter size.
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Figure 5. CNN architecture of the Deep Dense Feature Network.

Figure 6. The U-Net architecture adopted in the FFT U-Net paper, here shown in a more shallow
configuration for the sake of illustration. The actual network has four encoder-decoder stages.

4. Practical Challenges

Although significant advances have been made toward automatic SAR-optical regis-
tration, several challenges remain. Handcrafted state-of-the-art feature descriptors such as
SIFT and CFOG cannot reliably handle satellite imagery of homogeneous areas with few
salient features. Recent approaches such as SAR masking proposed in Ref. [31] attempt to
solve the problem. However, methods able to extract salient features across both sensors
are a prerequisite for stable and robust performance. Thus, developing robust feature
extractors across a wide class of remote sensing imagery remains a challenge to solve.

Even though machine learning approaches have emerged as the preferred method,
they have some shortcomings. In contrast to their non-learning counterparts, state-of-the-
art machine learning models often need to be more robust to affine deformations in remote
sensing imagery. Making models scale- and rotation-invariant is still a challenge. In addition,
there is room for improvement regarding the accuracy and precision of the matching.
Another remaining challenge is the reliance on large amounts of preprocessed data. As a
result, machine learning models risk overfitting the specific data. This is particularly
unwanted in the context of SAR-optical image matching because sensors of the same
type can differ in spatial resolution and, consequently, image characteristics. As a result,
developing robust machine learning models that are able to generalize well on unseen data
from unseen sensors is an imminent challenge in automatic SAR-optical image matching.
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Finally, there are intrinsic challenges due to the different radiometric and geometric
properties in both optical and SAR imagery. The methods presented in this review have
been implemented and tested on various benchmarking datasets, spanning different spatial
resolutions: 10 m/px from the SEN1-2 dataset ([7]), the 3 m/px used in Ref. [43], and
1 m/px (as in Ref. [42]). The optical images are generally ortho-photos consisting of three
channels RGB. However, one direction of research can be to perform a sensitivity analysis
investigating the effects of having multiple spectral channels in the performances of the
different methods. Although SAR consists of complex signals (having both amplitude and
phase), most of the works deal with only amplitude. Because of the radar speckle noise,
the multi-looking technique is used [52]. Multi-look is a technique to reduce speckle noise
by processing the image in sections (looks) and later combining them back together. More
looks reduce more speckle but at the same time lead to a decrease in the resolution and
loss of information in the process. Differently from optical images, which work best with
a down-looking view, SAR is intrinsically a side-looking sensor capturing information
in varied, rugged terrain. This leads to geometric distortions in slant range, foreshort-
ening, layover, and shadowing. To remove or reduce the distortions arising from these
effects, the application of image preprocessing procedures is necessary. Procedures for
preprocessing SAR images in terms of the radiometric corrections and calibration are pre-
sented in Ref. [53]. In rugged terrain, the changing local imaging geometry may result in
backscatter changes up to ±5 dB [54]. Radiometric terrain correction corrects the backscat-
ter intensity of pixels that are distorted by the local incidence angle. Terrain correction can
be performed using available tools such as the SNAP toolbox [55] with high-resolution
Digital Terrain Models (DTMs) available for the considered area of interest.

5. Conclusions

SAR-optical image registration is a rapidly evolving topic in the remote sensing
industry. Early research focused on a purely algorithmic approach with feature-based
methods. Feature-based methods developed from the traditional SIFT algorithm to SAR-
optical specific techniques, including SAR-SIFT and RIFT. The lack of robustness was
addressed with the introduction of state-of-the-art methods such as CFOG and the ASS
features. Nevertheless, further research is required to overcome the inherent shortcomings
of handcrafted feature descriptors, namely the inability to detect and extract high-level and
more abstract features present in SAR-optical imagery.

The public release of large quantities of remote sensing data in the late 2010s enabled
the development of machine learning-based SAR-optical matching. Since then, research
in the field has been dominated by machine learning techniques. Employing the innate
feature extraction capabilities of CNNs, the proposed models build on principles from the
traditional feature and template matching methods discussed in this article. State-of-the-art
models such as DDFN and FFT U-Net show that machine-learning models perform fast
and accurate SAR-optical matching. Nevertheless, this branch of SAR-optical matching
is still in its early phase, and several shortcomings highlighted in this article need to be
addressed in further work.

Author Contributions: Conceptualization, M.G. and R.A.; investigation, O.S. and M.G.;
writing—original draft preparation, O.S. and M.G.; writing—review and editing, M.G. and R.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: This research didn’t use any data.

Acknowledgments: The authors would like to thank Andreas Hay Kaljord and Charlotte Bishop
from Kongsberg Satellite Services AS (KSAT), Norway, for their insight and discussion.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 850 12 of 13

References
1. Liu, P. A survey of remote-sensing big data. Front. Environ. Sci. 2015, 3, 45. [CrossRef]
2. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review.

ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]
3. Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017,

2017, 1353691. [CrossRef]
4. Gazzea, M.; Pacevicius, M.; Dammann, D.O.; Sapronova, A.; Lunde, T.M.; Arghandeh, R. Automated Power Lines Vegetation

Monitoring Using High-Resolution Satellite Imagery. IEEE Trans. Power Deliv. 2022, 37, 308–316. [CrossRef]
5. Wu, Y.; Liu, J.W.; Zhu, C.Z.; Bai, Z.F.; Miao, Q.G.; Ma, W.P.; Gong, M.G. Computational Intelligence in Remote Sensing Image

Registration: A survey. Int. J. Autom. Comput. 2021, 18, 1–17. [CrossRef]
6. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
7. Schmitt, M.; Hughes, L.H.; Zhu, X.X. The SEN1-2 Dataset for Deep Learning in SAR-Optical Data Fusion. arXiv 2018,

arXiv:1807.01569.
8. Hashemi, N.S.; Aghdam, R.B.; Ghiasi, A.S.B.; Fatemi, P. Template Matching Advances and Applications in Image Analysis. arXiv

2016, arXiv:1610.07231.
9. Sarvaiya, J.; Patnaik, S.; Bombaywala, S. Image Registration by Template Matching Using Normalized Cross-Correlation. In

Proceedings of the 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies,
Bangalore, India, 28–29 December 2009; pp. 819–822. [CrossRef]

10. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans.
Image Process. 2004, 13, 600–612. [CrossRef]

11. Collignon, A.; Maes, F.; Delaere, D.; Vandermeulen, D.; Suetens, P.; Marchal, G. Automated multi-modality image registration
based on information theory. In Proceedings of the Information Processing in Medical Imaging; Citeseer: Princeton, NJ, USA, 1995;
Volume 3, pp. 263–274.

12. Wells, W.M., III; Viola, P.; Atsumi, H.; Nakajima, S.; Kikinis, R. Multi-modal volume registration by maximization of mutual
information. Med. Image Anal. 1996, 1, 35–51. [CrossRef]

13. Suri, S.; Reinartz, P. Mutual-Information-Based Registration of TerraSAR-X and Ikonos Imagery in Urban Areas. IEEE Trans.
Geosci. Remote Sens. 2010, 48, 939–949. [CrossRef]

14. Wang, Z.; Kieu, H.; Nguyen, H.; Le, M. Digital image correlation in experimental mechanics and image registration in computer
vision: Similarities, differences and complements. Opt. Lasers Eng. 2015, 65, 18–27. [CrossRef]

15. Goncalves, H.; Corte-Real, L.; Goncalves, J.A. Automatic Image Registration Through Image Segmentation and SIFT. IEEE Trans.
Geosci. Remote Sens. 2011, 49, 2589–2600. [CrossRef]

16. Huo, C.; Pan, C.; Huo, L.; Zhou, Z. Multilevel SIFT Matching for Large-Size VHR Image Registration. IEEE Geosci. Remote Sens.
Lett. 2012, 9, 171–175. [CrossRef]

17. Yu, L.; Zhang, D.; Holden, E.J. A fast and fully automatic registration approach based on point features for multi-source
remote-sensing images. Comput. Geosci. 2008, 34, 838–848. [CrossRef]

18. Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [CrossRef]
19. Feng, R.; Shen, H.; Bai, J.; Li, X. Advances and Opportunities in Remote Sensing Image Geometric Registration: A systematic

review of state-of-the-art approaches and future research directions. IEEE Geosci. Remote Sens. Mag. 2021, 9, 120–142. [CrossRef]
20. Hughes, L.H.; Merkle, N.; Bürgmann, T.; Auer, S.; Schmitt, M. Deep Learning for SAR-Optical Image Matching. In Proceedings

of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August
2019; pp. 4877–4880. [CrossRef]

21. Li, J.; Hu, Q.; Ai, M. RIFT: Multi-Modal Image Matching Based on Radiation-Variation Insensitive Feature Transform. IEEE Trans.
Image Process. 2020, 29, 3296–3310. [CrossRef] [PubMed]

22. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [CrossRef]
23. Ke, Y.; Sukthankar, R. PCA-SIFT: A more distinctive representation for local image descriptors. In Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 27 June–2 July
2004; Volume 2, p. II. [CrossRef]

24. Morel, J.M.; Yu, G. ASIFT: A New Framework for Fully Affine Invariant Image Comparison. SIAM J. Imaging Sci. 2009, 2, 438–469.
25. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011

International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [CrossRef]
26. Sedaghat, A.; Mokhtarzade, M.; Ebadi, H. Uniform Robust Scale-Invariant Feature Matching for Optical Remote Sensing Images.

IEEE Trans. Geosci. Remote Sens. 2011, 49, 4516–4527. [CrossRef]
27. Dellinger, F.; Delon, J.; Gousseau, Y.; Michel, J.; Tupin, F. SAR-SIFT: A SIFT-Like Algorithm for SAR Images. IEEE Trans. Geosci.

Remote Sens. 2015, 53, 453–466. [CrossRef]
28. Yu, Q.; Jiang, Y.; Zhao, W.; Sun, T. High-Precision Pixelwise SAR–Optical Image Registration via Flow Fusion Estimation Based

on an Attention Mechanism. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3958–3971. [CrossRef]
29. Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.; Wang, L.; Wu, K. Robust Registration Algorithm for Optical and SAR Images Based on

Adjacent Self-Similarity Feature. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–17. [CrossRef]

http://doi.org/10.3389/fenvs.2015.00045
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
http://dx.doi.org/10.1155/2017/1353691
http://dx.doi.org/10.1109/TPWRD.2021.3059307
http://dx.doi.org/10.1007/s11633-020-1248-x
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/ACT.2009.207
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1016/S1361-8415(01)80004-9
http://dx.doi.org/10.1109/TGRS.2009.2034842
http://dx.doi.org/10.1016/j.optlaseng.2014.04.002
http://dx.doi.org/10.1109/TGRS.2011.2109389
http://dx.doi.org/10.1109/LGRS.2011.2163491
http://dx.doi.org/10.1016/j.cageo.2007.10.005
http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.1109/MGRS.2021.3081763
http://dx.doi.org/10.1109/IGARSS.2019.8898635
http://dx.doi.org/10.1109/TIP.2019.2959244
http://www.ncbi.nlm.nih.gov/pubmed/31869789
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1109/CVPR.2004.1315206
http://dx.doi.org/10.1109/ICCV.2011.6126544
http://dx.doi.org/10.1109/TGRS.2011.2144607
http://dx.doi.org/10.1109/TGRS.2014.2323552
http://dx.doi.org/10.1109/JSTARS.2022.3172449
http://dx.doi.org/10.1109/TGRS.2022.3197357


Remote Sens. 2023, 15, 850 13 of 13

30. Ye, Y.; Bruzzone, L.; Shan, J.; Bovolo, F.; Zhu, Q. Fast and Robust Matching for Multimodal Remote Sensing Image Registration.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 9059–9070. [CrossRef]

31. Ye, Y.; Yang, C.; Zhang, J.; Fan, J.; Feng, R.; Qin, Y. Optical-to-SAR Image Matching Using Multiscale Masked Structure Features.
IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

32. Van Etten, A.; Lindenbaum, D.; Bacastow, T.M. SpaceNet: A Remote Sensing Dataset and Challenge Series. arXiv 2018,
arXiv:1807.01232.

33. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis
for everyone. Remote Sens. Environ. 2017, 202, 18–27. Big Remotely Sensed Data: Tools, applications and experiences. [CrossRef]

34. Fischer, P.; Dosovitskiy, A.; Brox, T. Descriptor Matching with Convolutional Neural Networks: A Comparison to SIFT. arXiv
2014, arXiv:1405.5769,

35. Merkle, N.; Luo, W.; Auer, S.; Müller, R.; Urtasun, R. Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy
Improvement of Optical Satellite Images. Remote Sens. 2017, 9, 586. [CrossRef]

36. Zhang, H.; Ni, W.; Yan, W.; Xiang, D.; Wu, J.; Yang, X.; Bian, H. Registration of Multimodal Remote Sensing Image Based on Deep
Fully Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3028–3042. [CrossRef]

37. Hughes, L.H.; Marcos, D.; Lobry, S.; Tuia, D.; Schmitt, M. A deep learning framework for matching of SAR and optical imagery.
ISPRS J. Photogramm. Remote Sens. 2020, 169, 166–179. [CrossRef]

38. Zhang, H.; Lei, L.; Ni, W.; Tang, T.; Wu, J.; Xiang, D.; Kuang, G. Optical and SAR Image Matching Using Pixelwise Deep Dense
Features. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

39. Fang, Y.; Hu, J.; Du, C.; Liu, Z.; Zhang, L. SAR-Optical Image Matching by Integrating Siamese U-Net With FFT Correlation.
IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

40. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab,
N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

41. Wu, W.; Xian, Y.; Su, J.; Ren, L. A Siamese Template Matching Method for SAR and Optical Image. IEEE Geosci. Remote Sens. Lett.
2022, 19, 1–5. [CrossRef]

42. Cui, S.; Ma, A.; Zhang, L.; Xu, M.; Zhong, Y. MAP-Net: SAR and Optical Image Matching via Image-Based Convolutional Network
With Attention Mechanism and Spatial Pyramid Aggregated Pooling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

43. Zhou, L.; Ye, Y.; Tang, T.; Nan, K.; Qin, Y. Robust Matching for SAR and Optical Images Using Multiscale Convolutional Gradient
Features. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

44. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets.
In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, USA, 8–13 December 2014; Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27.

45. Merkle, N.; Auer, S.; Müller, R.; Reinartz, P. Exploring the Potential of Conditional Adversarial Networks for Optical and SAR
Image Matching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1811–1820. [CrossRef]

46. Hughes, L.H.; Schmitt, M.; Zhu, X.X. Mining Hard Negative Samples for SAR-Optical Image Matching Using Generative
Adversarial Networks. Remote Sens. 2018, 10, 1552. [CrossRef]

47. Yang, X.; Wang, Z.; Zhao, J.; Yang, D. FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical
Image Translation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [CrossRef]

48. Nie, H.; Fu, Z.; Tang, B.H.; Li, Z.; Chen, S.; Wang, L. A Dual-Generator Translation Network Fusing Texture and Structure
Features for SAR and Optical Image Matching. Remote Sens. 2022, 14, 2946. [CrossRef]

49. Markiewicz, J.; Abratkiewicz, K.; Gromek, A.; Ostrowski, W.; Samczyński, P.; Gromek, D. Geometrical Matching of SAR and
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