
Citation: Alwidian, S.; Amyot, D.;

Lamo, Y. Union Models for Model

Families: Efficient Reasoning over

Space and Time. Algorithms 2023, 16,

105. https://doi.org/10.3390/

a16020105

Academic Editor: Roberto

Montemanni

Received: 28 December 2022

Revised: 8 February 2023

Accepted: 9 February 2023

Published: 11 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Union Models for Model Families: Efficient Reasoning over
Space and Time
Sanaa Alwidian 1 , Daniel Amyot 2,* and Yngve Lamo 3

1 Department of Electrical, Computer and Software Engineering, Ontario Tech University,
Oshawa, ON L1G 0C5, Canada

2 School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
3 Department of Computer Science, Electrical Engineering and Mathematical Sciences,

Western Norway University of Applied Sciences, 5020 Bergen, Norway
* Correspondence: damyot@uottawa.ca; Tel.: +1-613-562-5800 (ext. 6947)

Abstract: A model family is a set of related models in a given language, with commonalities and
variabilities that result from evolution of models over time and/or variation over intended usage
(the spatial dimension). As the family size increases, it becomes cumbersome to analyze models
individually. One solution is to represent a family using one global model that supports analysis.
In this paper, we propose the concept of union model as a complete and concise representation
of all members of a model family. We use graph theory to formalize a model family as a set of
attributed typed graphs in which all models are typed over the same metamodel. The union model
is formalized as the union of all graph elements in the family. These graph elements are annotated
with their corresponding model versions and configurations. This formalization is independent
from the modeling language used. We also demonstrate how union models can be used to perform
reasoning tasks on model families, e.g., trend analysis and property checking. Empirical results
suggest potential time-saving benefits when using union models for analysis and reasoning over a
set of models all at once as opposed to separately analyzing single models one at a time.

Keywords: model families; model evolution; union models; variability; analysis; graph theory;
type graphs

1. Introduction

Model-based Software Engineering (MBSE) is a software engineering paradigm that
endorses the use of models as first-class artifacts [1]. A model can be defined with a domain-
specific modeling language (DSML) [2], which provides modeling primitives to capture the
semantics of a specific application domain (such as web-based languages) or can be defined
using a general-purpose modeling language (such as the UML). The main goal of MBSE
is to enhance the development, maintenance, and evolution of complex software systems
by raising the level of abstraction from source code to models. In particular, the use of
DSMLs allows developers to focus on their essential tasks while the recurring engineering
tasks are lifted to higher abstraction levels and automatically generated by transformations
specified by domain experts [3]. The use of the MBSE paradigm is beneficial because it
allows engineers to focus on the product to be developed and on generic and reusable
assets that express problems and solutions. Other measured or claimed benefits of MBSE
include better communication, effectiveness, and quality compared to pure code-oriented
approaches [4,5].

In MBSE, models expressed using any modeling language often undergo continu-
ous evolution during their lifecycles. For example, such evolution can occur when new
requirements are added or existing requirements are changed as engineers gain better un-
derstanding of the domain to be modeled. Models can evolve over time, resulting in a family
of related models, which we refer to as a model family, with differences and similarities

Algorithms 2023, 16, 105. https://doi.org/10.3390/a16020105 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16020105
https://doi.org/10.3390/a16020105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4706-0134
https://orcid.org/0000-0003-2414-1791
https://orcid.org/0000-0001-9196-1779
https://doi.org/10.3390/a16020105
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16020105?type=check_update&version=2

Algorithms 2023, 16, 105 2 of 34

between family members. Another common source of model families is found in (software)
product lines, where different configurations of a product can exist simultaneously (i.e., in
the same space dimension) for different customers without necessarily being caused by
evolution over time. Model families can result from having several alternatives due to
design-time uncertainty or uncertainty at other stages of the development process. In such
cases, all models need to exist together (as a model family) to tolerate a certain level of
uncertainty until decisions absolutely need to be made [6]. Finally, a model family can
appear as a result of both evolution over time and variation over space, such in the case of a
set of software/product configurations that evolve over time [7].

The phenomenon of model families can be observed in several domains, including the
regulatory domain, where regulations evolve over time and have variations (e.g., for different
regulated parties or different versions of regulations) that need to be modeled using slightly
different individual models, resulting in a family of related regulatory models [8,9]. In
regulatory domains it is usually desirable to analyze models, for instance, for compliance
assessment by regulators. However, the existence of several versions/variations of models
makes it cumbersome and inefficient to analyze and reason about these models one at a
time. This challenge was observed in practice through our previous experience in modeling
and analyzing safety regulations at Transport Canada; the number of models in a model
family can be very large due to multiple versions and variations that nonetheless share
many elements in common. Exploiting this redundancy during analysis has the potential
to reduce the effort and time required for analysis.

This paper is based on the first author’s PhD thesis [10], and proposes union models
as first-class generic artifacts to: (1) support the representation of model families (for time
and space dimensions) using one generic model; (2) achieve performance gains during
analysis of model families all at once, compared to analysis of individual models, one model
at a time; and (3) support types of analyses that are more easily feasible with union models
compared with individual models.

The use of union models is challenging and non-trivial. At the model level, the chal-
lenges stem mainly from the following requirements:

Req. 1 Models in a family shall be captured (in both dimensions of variability) in a complete
and exact way such that all and only individual members of a family are included in
one union model.

Req. 2 The resulting union model shall be as compact as possible, in the sense that it should
not contain redundant elements, especially when there are many elements in common
between models.

Req. 3 The union model shall be self-explanatory, i.e., it should be supported with a mecha-
nism that distinguishes which elements belong to which models.

There are other challenges at the metamodel level associated with the use of union mod-
els. In particular, a union model may not be a valid instance of the language’s metamodel,
and the latter might need to have its constraints relaxed accordingly. The metamodel-level
challenges have been already discussed in our previous work [11], and are outside the
scope of this paper.

This paper extends previous work in [12] with a complete formalization of union
models, including annotations, and enhanced experiments with a deeper analysis, and
empirically demonstrates the usefulness of union models for analyzing a family of models
all at once compared to individual models one model at a time. The main contributions of this
paper are:

1. A language-independent graph-based formalization of model families and union models;
2. A generic language-independent algorithm to produce a union model from a set of

models (in a compact and exact manner) in a given language (satisfying Req. 1 and
Req. 2);

Algorithms 2023, 16, 105 3 of 34

3. A Spatio-Temporal Annotation Language (STAL) to support the representation of vari-
ability in model families in the space and time dimensions and to facilitate reasoning
about union models (satisfying Req. 3); and

4. Improved efficiency of analysis and reasoning over a set of models all at once using
union models, compared to reasoning on single models one model at a time.

As our approach starts with existing models as input, how such models are constructed
in general is beyond the scope of this paper.

From a methodological perspective, this paper first presents the motivation behind
this work in Section 2. Then, the theoretical and algorithmic foundations of our work are
presented in the next three chapters, specifically, a graph-based formalization of model
families (Section 3), a complementary Spatio-Temporal Annotation Language (Section 4),
and the propositional encoding of models (Section 5). To determine how efficient and
beneficial the reasoning and analysis with union models are, reasoning tasks and the
experimental setup are first presented in Section 6, whereas empirical results and threats
to validity are reported in Section 7. A discussion of closely related works is covered in
Section 8. Finally, Section 9 concludes the paper.

2. Motivation

This work was inspired by issues faced previously with regulation modeling in col-
laboration with Transport Canada, where there are regulations that evolve over time and
that apply to different types of organizations (i.e., spaces). We explain the challenges
associated with regulatory model families and motivate our proposed solution using a
running example from this domain, namely, airports regulated by Transport Canada, where
we use the Goal-oriented Requirement Language (GRL) as a modeling language. GRL is a
part of the User Requirements Notation (URN) standard [13].

Without loss of generality, the subsequent discussion about GRL model families
in regulatory domains and their challenges is applicable to other model families from
modeling languages other than the GRL. Therefore, we posit that our approach is feasible
for any metamodel-based modeling languages and their model families.

At Transport Canada there are many regulations that need to be modeled by regulators,
for example, to enable compliance and performance assessments. These regulations evolve
over time, and apply to multiple types of organizations (such as aerodromes and airlines)
of different sizes [8,9]. For example, as Figure 1 shows, certain rules/regulations apply
differently depending on the targeted aerodrome type (configurations modeled abstractly
here as TYPE1, TYPE2, and TYPE3), while other regulations are only applicable to specific
aerodrome types. In Figure 1, regulations related to Fence rule 3 are only applicable to
aerodrome TYPE1, Access Control System (ACS) rule 2 is applicable to all aerodrome types,
and ACS rule 1 is applicable to TYPE1 and TYPE2 aerodromes but not to TYPE3 ones.

Goal model for TYPE1 Goal model for TYPE2 Goal model for TYPE3

Perimeter

Security

Signs

Rules
Fence

Rules

ACS

Rules

ACS

rule 1

Fence

rule 2 ACS

rule 2

Perimeter

Security

Signs

Rules Fence

Rules

ACS

Rules

Fence

rule 1

ACS

rule 2

Perimeter

Security

Signs

Rules
Fence

Rules

ACS

Rules

ACS

rule 1

Fence

rule 3 ACS

rule 2

Figure 1. Goal model family of regulations.

The different aerodrome types (i.e., TYPE1, TYPE2, and TYPE3) can be considered
as different configurations (or spaces) that are available at the same time for different
aerodromes. This means that the three goal model variations depicted in Figure 1 represent
a goal model family along the space dimension, where each space has different regulations.

Algorithms 2023, 16, 105 4 of 34

Goal models in this family can evolve over time, e.g., when the regulatory context evolves,
resulting in several versions of the same model. Evolution of goal models can involve the
addition/deletion of goals and/or links or modifications to attributes of goals and/or links,
as illustrated in each row of Figure 2. In this figure, the time-related changes across each of
the initial configuration models (from Figure 1) are highlighted in Yellow.

Perimeter

Security

Signs

Rules
Fence

Rules

ACS

Rules

ACS

rule 1
Fence

rule 3

ACS

rule 2

TYPE1

TYPE2

TYPE3

V
a

ri
a

b
il

it
y

 i
n

 s
p

a
ce

 (
co

n
fi

g
u

ra
ti

o
n

)

Perimeter

Security

Signs

Rules
Fence

Rules

ACS

Rules

ACS

rule 1
Fence

rule 4

ACS

rule 2

Perimeter

Security

Signs

Rules

Fence

Rules

ACS

Rules

ACS

rule 1

Fence

rule 2 ACS

rule 2

50

Perimeter

Security

Fence

Rules

ACS

Rules

ACS

rule 1

Fence

rule 2
ACS

rule 2

Variability in time (evolution)
t1 t2 time

Perimeter

Security

Signs

Rules
Fence

Rules

ACS

Rules

Fence

rule 1

ACS

rule 2

100

Perimeter

Security

Signs

Rules
Fence

Rules
ACS

Rules

Fence

rule 1

80

Perimeter

Security

Signs

Rules

Fence

Rules

ACS

Rules

Fence

rule2

ACS

rule 2

45

t3

space

20 20

70

Figure 2. Goal model family of regulations with variability in space and time.

Analyzing the different versions/variations of models in Figure 2 individually using
one goal model per type of aerodrome and at each time instance is impractical for the
following reasons:

1. If a modeler plans to conduct goal satisfaction analysis (using some GRL forward
propagation algorithm [13]) on each individual model by running a strategy that
initially assigns ACS rule 2 to study the impact of its satisfaction on the satisfaction of
other goals, she would end up running the same evaluation algorithm six times for this
example, even though there are several common elements among the seven models.
Intuitively, if there are M individual models in a model family and each model has
E elements, then the complexity of running a satisfaction propagation algorithm on
all models would be on the order of O(M × E). Such complexity becomes more
significant if there are hundreds of models with hundreds of elements in each model,
which is not an atypical situation.

2. Each individual model (e.g., goal model for TYPE1 at time t1) does not represent the
whole set of regulations per se. Hence, a regulator who wishes to reason about all
regulations (e.g., to study the evolution trend of regulations over time) would have
to check all models one model at a time and reason about each one separately. This
process becomes inefficient and time consuming as the number of models increases.

3. Models in a model family are subject to frequent evolution over time that are asyn-
chronous by nature. Such asynchronous evolution sometimes requires that older
versions of models (which represent legacy models) need to be maintained, as they
may remain in use even after being superseded by newer versions. This is an is-
sue over the time dimension, and can be witnessed in the space dimension as well
(i.e., along configurations). In this scenario, legacy models and new models need to
co-exist together in one model in order to be analyzed together.

Similar challenges exist in the software engineering field, particularly in the Software
Product Line (SPL) domain, where products vary over the space dimension and may
evolve over time as well. By nature, an SPL encodes a set of related product variants; thus,
dealing with the evolution of multiple products over time means that developers should

Algorithms 2023, 16, 105 5 of 34

consider an additional dimension of variability by reasoning about sets of products. This
combination of variation and evolution is not well supported by existing SPL engineering
techniques, and only a few recent approaches in the literature have tried to address this
issue. For example, Seidl et al. [14] and Lity et al. [15] considered variation of SPLs in space
and time and proposed a so-called 175% modeling formalism to allow for the development
and documentation of evolving product lines. In their paper, they urged the community
to extend annotative variability modeling to tackle evolution and variation by the same
means. Famelis et al. [16] proposed an approach for combining SPLs with partial models
to represent design-time uncertainty. The resulting artifact, called Software Product Lines
with Design Choices (SPLDCs), integrates variability and design-time uncertainty in a
common formalism to help developers differentiate between the kinds of decisions that are
relevant during the design and configuration stages of the SPL lifecycle.

The above-mentioned three challenges (especially the first one) and the gaps identified
in the literature motivate the need to find a way to represent model families other than
using separate individual models. This paper proposes union models (MU) as a generic
modeling artifact to capture all model elements in all members of a model family MF,
aggregated in a compact and exact way such that analysis of a group of models is faster
than for individual models and where members of a family can be extracted and analyzed.
Generally speaking, a union model MU of any potential model family would be the union
of all elements e in all individual models Mi of the family MF; that is,

MU = (
|MF|⋃
i=1

|Mi |⋃
j=1

ei,j) (1)

In addition, the elements of the resulting union model need to be annotated in a way
that enables the identification of variants. For illustration purposes, an MU that captures
the model family shown in Figure 1 is represented in Figure 3, with all elements (i.e., goal
and links) of the union model included and annotated with space information (TYPES in
this example) to distinguish which element belongs to which model variant.

<TYPE1>

Perimeter

Security

Signs

Rules
Fences

Rules

ACS

Rules

ACS

rule 1

Fence

rule 2

ACS

rule 2Fence

rule 3

Fence

rule 1

<TYPE2> <TYPE3>

<[TYPE1-TYPE2]>

<[TYPE1-TYPE3]>

<[TYPE1-TYPE3]>

<[TYPE1-TYPE3]>
<[TYPE1-TYPE3]>

<[TYPE1-TYPE3]>

Figure 3. A union model for the model family in Figure 1.

Note that each member of the model family is embedded in the union model, i.e., for
each Mi ∈ MF there exists an embedding i : Mi → MU defined by i(e) = e. Moreover,
we can retract any model Mi in the family from the union model by the partial mapping
ri : MU → Mi, where ri(e) = e if e is annotated with Mi and is undefined otherwise. Hence,
the union model is complete in the sense that it includes all information available in any
member of the modeling family, and is complete in the sense that we can reconstruct each
member of modeling family from it.

3. Formalization of Model Families

This section illustrates the use of graphs and type(d) graphs to formalize basic
(meta)modeling concepts. Figure 4 illustrates the basic relationships between models and

Algorithms 2023, 16, 105 6 of 34

metamodels and their graphical representation. The definitions of graphs and type/typed
graphs are then used as a basis for further formal definitions of model families and their
union models. To model more detailed aspects of model families, we extend the definitions
of basic type(d) graphs with attributes (i.e., attributed type graphs, or E-graphs [17]). The
definitions that follow are based on [18–20].

Metamodel

ModelTyped Graph

Type Graph
represents

represents

typed by conforms to

Figure 4. Relationship between models and their graphical representation.

Definition 1. Graph: A graph is a tuple G = (NG, EG, srcG, tgtG), where NG is a set of graph
nodes (or vertices), EG is a set of graph edges, and functions srcG, tgtG: EG → NG associate to each
edge a source and a target node, respectively, such that e: x→ y denotes an edge e with srcG(e) = x
and tgtG(e) = y.

Definition 2. Graph morphism: Let G and H be two graphs. A graph morphism f: G → H
consists of a pair of functions (fN, fE) with fN: NG → NH and fE: EG → EH that preserves sources
and targets of edges when composed (◦), i.e., fN ◦ srcG = srcH ◦ fE and fN ◦ tgtG = tgtH ◦ fE. In
other words, for each edge eG ∈ EG there is a corresponding edge eH = fE(eG) ∈ EH such that
srcG(eG) is mapped to srcH(eH) and tgtG(eG) is mapped to tgtH(eH). This is illustrated in Figure 5.

NG
fN // NH NG

fN // NH

EG fE

//

srcG

OO
=

EH

srcH

OO

EG fE

//

tgtG

OO
=

EH

tgtH

OO

Figure 5. Graph morphism between (directed) graphs.

3.1. Type Graphs and Typed Graphs

In graph theory (such as in strongly-typed programming languages, where each
constant or variable is assigned a data type), it is often useful to determine the well-
formedness of a graph by checking whether it conforms to a so-called type graph. A type
graph is a distinguished graph containing all the relevant types and their interrelations [21].
This is analogous to the relationship between models and metamodels in the model-driven
engineering world, where each model (e.g., a UML design model) needs to conform to
a metamodel (e.g., of the UML language). The correspondence between both ideas is
depicted in Figure 4.

Definition 3. Type graph (metamodel): A type graph TG is a distinguished graph, where
TG = (NTG, ETG, srcTG, tgtTG), and NTG and ETG are types of nodes and edges, respectively.

Definition 4. Typed graph (model): A typed graph is a triple Gtyped = (G, type, TG) such that G
is a graph (Definition 1) and type: G→ TG is a graph morphism (Definition 2) called the typing
morphism. The typed graph Gtyped is called an instance (graph) of (the graph) TG, and we denote
the set of all instance graphs of TG as Inst[TG].

Algorithms 2023, 16, 105 7 of 34

Figure 6b shows an example of a typed graph typed over the type graph to its left
(Figure 6a). The type graph in Figure 6a represents the types of nodes and edges. There are
two types of nodes here, namely, State and Transition, and two types of association edges,
namely, source and target. Node names and types in the typed graph are depicted inside
the nodes as name: type. For instance, in the node labeled with S1: State, S1 is the name
of a node and State is the type of that node. For the edges, names and types of edges are
represented in the same way.

State Transition
*

*

1 source

1 target

(a)

L1: source
S2:State

L2: target
S1:State T1:Transition

(b)

Figure 6. Type graph (a) and Typed graph (b). The star (*) indicates that zero or more instances of the
class “Transition” are associated with one instance of the class “State”.

Definition 5. Typed graph morphism: Given a type graph TG, and two typed graphs Gtyped and
Htyped (typed over TG), a typed graph morphism g: (Gtyped, tG: Gtyped→ TG)→ (Htyped, tH: Htyped
→ TG) is a graph morphism g: Gtyped → Htyped that also preserves typing, i.e., g ◦ tH = tG, as

illustrated in Figure 7.

TG

=

Gtyped

tG

<<

g
// Htyped

tH

cc

Figure 7. Typed graph morphism.

3.2. Attributed Type(d) Graphs as E-Graphs

Given a typed graph (i.e., a model), it is useful in practice to attach additional informa-
tion to nodes and edges by attributing them, such that each node and/or edge can contain
zero or more attributes. In this case, we refer to typed attributed graphs, where attributes are
typically a name:value pair that allows to attach a specific value to each attribute name. In
addition, given a typed attributed graph that is typed over some TG (i.e., a metamodel), that
TG needs to constrain the names and types of attributes that are allowed for certain types
of nodes and edges. In this context, we refer to an Attributed Type Graph (ATG), as shown in
Figure 8, which extends the type graph illustrated in Figure 6a with node attributes.

As an example of a typed attributed graph, reconsider the typed graph in Figure 6b
extended with attributes as in Figure 9, where nodes have attributes with names tname,
sname.

State

sname: String

Transition

tname: String

*

*

1 source

1

target

Figure 8. An attributed type graph (ATG). The star (*) indicates that zero or more instances of the
class “Transition” are associated with one instance of the class “State”.

L1: source S2:StateL2: targetS1:State T1:Transition

sname =“S1” tname =“T1”

Figure 9. A typed attributed graph, typed over the ATG in Figure 8.

In this paper, we adopt the definition of Ehrig et al. [22] for E-graphs to represent
ATGs (note that from now on in this paper, the concept of ATG implicitly means an

Algorithms 2023, 16, 105 8 of 34

attributed type graph that is represented as an E-graph), which allows attribution for both
nodes and edges, where attributes of nodes (resp. edges) are represented as special edges
between graph nodes (resp. graph edges) and data nodes that represent the data types of
these attributes. Figure 10 visualizes the concept of E-graphs.

Definition 6. E-graph: An E-graph is a tuple EG = (NG, ND, EG, ENA, EEA, (srcj, tgtj) j ∈ {G,
NA, EA}) where:

• NG and ND are graph nodes and data nodes, respectively;
• EG, ENA, and EEA are graph edges, node attribute edges, and edge attribute edges, respectively;
• srcj and tgtj, where j ∈ {G, NA, EA} are source and target functions that assign to each of the

three categories of edges (i.e., EG, ENA, and EEA) a source and a target, as follows:

– srcG: EG → NG, tgtG: EG → NG for graph edges;
– srcNA: ENA → NG, tgtNA: ENA → ND for node attribute edges;
– srcEA: EEA → EG, tgtEA: EEA → ND for edge attribute edges.

EG

tgtG

33

srcG

++ NG

EEA tgtEA

//

srcEA

OO

ND ENA

srcNA

OO

tgtNA

oo

Figure 10. A visualization of an E-graph.

Example: The ATG in Figure 8 is represented as the E-graph illustrated in Figure 11. The
figure shows the different categories of nodes and edges defined in Definition 6, namely:

• Graph nodes (NG): State, Transition
• Data nodes (ND): String
• Graph edges (EG): source, target
• Node attribute edges (ENA): sname, tname

In addition, attributes of nodes are represented as special edges between graph nodes
and data nodes that represent the type that attributes. For example, the attribute tname is
represented as an edge between graph node Transition and the data node String.

State Transition*

*

1 source

1 target

tnamesname

String

NG

EG

ND

ENA

NG

Figure 11. An E-Graph, EG, with node attributes represented as edges. The star (*) indicates that zero
or more instances of the class “Transition” are associated with one instance of the class “State”.

An instance typed graph ITG (i.e., model) of the attributed E-graph EG in Figure 11 is
illustrated in Figure 12, where this figure is a representation of the typed attributed graph

Algorithms 2023, 16, 105 9 of 34

found in Figure 9. We use the notation Inst[EG] to denote the set of all graphs conforming
to EG; hence, ITG ∈ Inst[EG].

L1: srcAsso S2:State

“S2”: String

S2.sname: sname

L2: tgtAssoS1:State

“S1”: String

S1.sname: sname

T1:Trans

“T1”: String

T1.tname: tname

Figure 12. An instance typed graph ITG of the E-graph EG in Figure 11.

3.3. Formalization of Model Families and Union Models

In this paper, we consider model families that consist of an arbitrary set of homogeneous
models that conform to the same metamodel. In that sense, we can define a model family
as a set of typed attributed graphs that are instances of the same attributed type graph,
ATG, and satisfy the constraints of that type graph.

Definition 7. Model Family: A model family is a tuple MF = ({Gtyped}, type, ATG), where each
Gtyped ∈ {Gtyped} is in Inst[ATG] and type: {Gtyped} → ATG.

Definition 8. Union Model (MU): Let MF be a model family with two models such that
MF = ({G1, G2}, type, ATG), where type: G1, G2 → ATG (represented as an E-Graph) and
where:

• G1 = (NG1, ND_G1, EG1, ENA_G1, EEA_G1, (srcj,tgtj), where j ∈ {G, NA, EA}, typeG1)
• G2 = (NG2, ND_G2, EG2, ENA_G2, EEA_G2, (srcj,tgtj), where j ∈ {G, NA, EA}, typeG2)

In addition, G1 and G2 satisfy the following conditions:

• Cond. 1: If two nodes have the same name and the same type, then these nodes are considered
identical. Note that we assume that each node and each edge has its own unique identifier; for
simplicity, we express this identity by means of a unique name.

• Cond. 2: If two edges have the same name and the same type and if they connect between the
same source and target nodes, these edges are considered identical.

If the above conditions are satisfied, then the union model that represents MF is a model
MU = G1 t G2 = (NU, EU, srcU, tgtU, typeU) such that NU = (NG1 ∪ NG2 ∪ ND_G1 ∪ ND_G2),
EU = (EG1 ∪ EG2 ∪ ENA_G1 ∪ ENA_G2 ∪ EEA_G1 ∪ EEA_G2), and the functions srcU, tgtU, and
typeU are:

srcU(e) =

srcG1(e) if e ∈ EG1

srcNA_G1(e) if e ∈ ENA_G1

srcEA_G1(e) if e ∈ EEA_G1

srcG2(e) if e ∈ EG2

srcNA_G2(e) if e ∈ ENA_G2

srcEA_G2(e) if e ∈ EEA_G2

tgtU(e) =

tgtG1(e) if e ∈ EG1

tgtNA_G1(e) if e ∈ ENA_G1

tgtEA_G1(e) if e ∈ EEA_G1

tgtG2(e) if e ∈ EG2

tgtNA_G2(e) if e ∈ ENA_G2

tgtEA_G2(e) if e ∈ EEA_G2

Algorithms 2023, 16, 105 10 of 34

typeU(elem) =

{
typeG1(e) if elem ∈ NG1 ∪ ND_G1 ∪ EG1 ∪ ENA_G1 ∪ EEA_G1

typeG2(e) if elem ∈ NG2 ∪ ND_G2 ∪ EG2 ∪ ENA_G2 ∪ EEA_G2

Provided that conditions Cond. 1 and Cond. 2 in Definition 6 are respected, the
union operation can be generalized into an MF of arbitrary size. That is, given
MF = ({G1, G2, . . . , Gn}, type, ATG), its union model is MU = G1t G2t G3 . . . t Gn.

The union operation is incremental. That is, given a union model MU already con-
structed for a particular family, any upcoming model Mi added to that family is unified
incrementally with MU such that the new union model becomes MUnew = MU tMi. The
annotations of MU and Mi are unified as well, which is discussed in the next section.
Consequently, the incremental nature of the union operation allows for the merging of two
or more individual models, a model and a union model, or two union models.

It is important to mention here that even if the typed graphs used to construct models
are well-formed, there is no guarantee that their union MU will be a well-formed model. In
fact, MU will conform to the typing constraints imposed by the ATG, and may not conform
to other constraints such as multiplicities of attributes and/or association ends, or to other
external OCL constraints. This metamodel-level issue is discussed in more detail in [10].

4. Spatio-Temporal Annotation Language (STAL)

With an appropriate formalization of model families (as discussed in Section 3), the
challenging part of constructing a union model is not necessarily in the union operation
itself. Rather, the challenge is in being able to distinguish the models to which a particular
element belongs. For example, in the goal model family shown in Figure 1, we need to
distinguish that Fence rule 3 belongs only to aerodromes of TYPE 1 (i.e., configuration 1),
Fence rule 2 belongs only to TYPE 2, etc. In addition, if there are common elements among
all models (such as ACS rule 2) we need to indicate this in MU in a precise and exploitable
manner.

To achieve this, we propose a Spatio-Temporal Annotation Language (STAL) to annotate
elements of each individual model with information about their versions and/or configura-
tions in the form of <vernum, confinfo>, where vernum denotes the version number (time
dimension) of a particular model (e.g., 1st version, 2nd version, etc.), while confinfo denotes
space dimension-related information (e.g., organization type, size, location).

In the time dimension, models can evolve independently and asynchronously over
distinct timepoints. Because timepoints can be correlated and compared, they naturally
form a chronological order. Considering this inherent chronological nature of models
evolution, a sequence of versions of a particular model can be annotated with sequential
version numbers: ver1, ver2, . . . vern. This creates an implicit temporal validity between
model versions; for instance, we can say that ver1 happened before ver2. The timing
information embedded in the <vernum> format in STAL can represent version numbers
or dates, a hierarchical version numbering scheme (e.g., versions 2.3.1 and 4.3.2, etc.), or
ranges thereof.

The space dimension, on the other hand, is different and somewhat more complex.
This stems from the fact that the space dimension is flat and has neither a chronological
order nor a hierarchical nature (except in very specific domains, such as in provinces and
their cities). In STAL, we usually use the naming conventions confA, confB, . . ., confZ
instead of conf1, conf2, . . ., confn to reflect the lack of ordering semantics. If a configuration
is simple, we use its syntactical description as a name for that configuration. For example,
confA=“airports in Ontario” and confB=“airports in Quebec” are the names of the two
different configurations of airports.

However, it is worth mentioning that information about configurations can be com-
posite, i.e., it may consist of several pieces of information. For example, TYPE1 aerodromes
may refer to those airports that are of medium-size, located in Ontario, and with national

Algorithms 2023, 16, 105 11 of 34

flights only. To represent this type of composite information in STAL in a way that keeps
annotated models as simple as possible, we propose the use of look-up tables, and approach
that provides mappings between configuration names and their real descriptions. Please
note that, in this example, the numbering suffixes of TYPEs do not hold any ordering
meanings; they are only descriptions of the configuration. Table 1 shows an example of a
look-up table for the configurations in Figure 1.

Table 1. Mapping configurations to their detailed descriptions.

Config Description

TYPE1 Size = M, Location = Ontario, Flight = national
TYPE2 Size = L, Location = Ontario, Flight = international
TYPE3 Size = M, Location = Quebec, Flight = national

In addition, in a model family it is possible that one model element belongs to several
or all family members; see the full STAL grammar in Appendix A. For instance, assume
that there is a model family with one model configuration (confA) that evolves into five
versions (i.e., ver1 to ver5). Moreover, assume a node n that belongs to the five versions
of that model. In this case, n will typically be annotated in the union model with five
annotations: <ver1, confA>, <ver2, confA>, <ver3, confA>, <ver4, confA>, <ver5, confA>.
Such a style may lead to large amounts of annotations per element. To simplify annotations
of union models, the representation of STAL annotations can be shortened such that a
sequence of version annotations is represented as a range of values ([start:end]). In the
above example, the annotation of n becomes <[ver1: ver5], confA>. Ranges are, however,
unavailable for configurations, as they are usually not sortable.

In the same example, it could happen that an element, say, edge e, appears in all
versions from ver1 to ver8 except in ver4. In this scenario, a set of ranges can be used such
that e is annotated with <{[ver1: ver3], [ver5:ver8]}, confA>. Furthermore, if an element x
belongs to ver1 to ver3 of confA and to versions ver1 to ver4 of confB, then that element will
be annotated as <[ver1:ver3], (confA, confB)>; <ver4, confB>. Finally, if an element belongs
to all versions and/or all configurations of a family, we annotate it with the keyword ALL.

The ranging mechanism used with versions may be applicable to configurations as
well if their nature allows for continuous or discrete ranging, such as TYPE1, TYPE2, etc.
However, to avoid confusion between versions and configurations we do not use ranges to
annotate configurations in this paper. Rather, we use a comma-separated list to indicate a
set of configurations, e.g., <(confA, confB, confD)>.

5. Propositional Encoding Language with Annotations (PELA)

To facilitate reasoning about models and to realize a simple graph union in practice,
we encode typed graphs (i.e., models) as logical propositions. Such encoding provides a
concrete syntax for defining models and metamodels. To encode a model m into proposi-
tional logic, we need to first map elements in m into propositional variables and then join
them. To achieve this, we propose a propositional encoding language with annotations (PELA),
which defines specific naming conventions for the propositional encoding of variables,
where propositions themselves are annotated with STAL (see Section 4). While defining the
syntax of PELA, we took into consideration that this language should be reversible, that
is, a modeler should be able to retrieve (or decode) a model back from its propositional
encoding. This operation, however, is not supported by the tools in this paper; such tool
support, albeit not difficult to implement, is left for future work.

5.1. Definitions

The propositional encoding of models using PELA is defined as follows:

Definition 9. ElementToPropositionWithAnnotation: Given a model M = (G, type, ATG),
where G = (NG, ND, EG, ENA, (srcj, tgtj), j ∈ {G, NA, EA}) (see Definition 6), together with

Algorithms 2023, 16, 105 12 of 34

a STAL annotation specifying version numbers and configuration information, the mapping of
elements of M into propositions with annotation ElementToPropositionWithAnnotation(elem) is
defined according the following syntactical rules (along with their semantics):

• A graph node n ∈ NG of type t ∈ NATG is mapped into a propositional variable “t–<vernum,
confinfo>” to express the semantics: “a model (with vernum and confinfo) contains a node n of
type t”. Formally: n–t iff ∃n ∈ NG ∧ type(n) = t.

• A graph edge e ∈ EG of type t ∈ EATG with source node x and target node y is mapped into a
propositional variable “e–x–y–t–<vernum, confinfo>” to express the semantics: “a model (with
vernum and confinfo) contains an edge e of type t from node x to node y”. Formally: e–x–y–t iff
∃e ∈ EG ∧ type(e) = t ∧ srcG(e) = x ∧ tgtG(e) = y.

• A data node dn ∈ ND of type t ∈ dataType owned by a graph node n ∈ NG is mapped into a
propositional variable “dn–n–t–<vernum, confinfo>” to express the semantics: “a model (with
vernum and confinfo) contains a node n that owns a data node dn of type t”. Formally: dn–n–t
iff ∃n ∈ NG ∧ owner(dn) = n ∧ type(dn) = t.

• A node attribute edge nae ∈ ENA of type t ∈ attribute_name that is represented as a special
edge between a graph node n ∈ NG and a data node dn ∈ ND, where n is also the owner of
that attribute, is mapped into a propositional variable “nae–n–n–dn–t–<vernum, confinfo>” to
express the semantics: “a model (with vernum and confinfo) contains a node n which owns an
attribute nae of type t, and this nae is represented as an edge from graph node n to data node
dn”. Formally: nae–n–n–dn–t iff ∃nae ∈ ENA ∧ owner(nae) = n ∧ type(nae) = t ∧ src(nae) =
n ∧ tgt(nae) = dn. It is worth clarifying that the “n–n” part in the pattern nae–n–n–dn–t
represents the same element n. The first n indicates the owner of the attribute, and the second
n indicates that this owner is also a source of the edge. We use this syntax to distinguish the
node attribute edge as a special edge distinct from the ordinary graph edge.

For example, if model M in Figure 12 is the second version of an initial model, say, M0,
and represents configuration X, then the propositional encoding of state S1 in that model is
S1–State–<ver2, confX> and the propositional encoding of a node attribute edge S1.sname is
S1.sname–S1–S1–“S1”–name–<ver2, confX>.

It is important to emphasize here that model M could be a union model rather than
an individual model. According to Definition 8, because a union model MU is a model,
the propositional encoding rules discussed above should be applicable to MU, with the
exception that the annotations of MU elements are expressed as full STAL annotations
instead of single model annotations. This means that the four rules stated in Definition 9
preserve their syntax and semantics when applied to MU, except that the annotation format
changes from single vernums and single confinfo into ranges, sets, or lists of vernum and lists of
confinfo.

Based on Definition 9, we can now define the mapping of an entire graph to proposi-
tions (with annotations), as follows:

Definition 10. GraphToPropositionWithAnnotation: Given a typed graph G, a mapping of
G’s elements into a set of propositions is GraphToPropositionWithAnnotation(G) =
{ElementToPropositionWithAnnotation(elem) | elem ∈ NG ∪ ND ∪ EG ∪ ENA ∪ EEA}.

For example, the propositional encoding of the model in Figure 12 (repeated here for
convenience) is shown to the left of Figure 13. We assume that the model here represents
the second version of a given initial model and represents configuration X; that is, each of
its elements is annotated with <ver2, confX>.

Algorithms 2023, 16, 105 13 of 34

GraphToPropositionwithAnnotation(M) = {

S1–State–<ver2, confX>,

S2–State–<ver2, confX>,

T1–Trans–<ver2, confX>,

“S1”–S1–String–<ver2, confX>,

“T1”–T1–String–<ver2, confX>,

“S2”–S2–String–<ver2, confX>,

L1–T1–S1–src–<ver2, confX>,

L2–T1–S2–tgt–<ver2, confX>,

S1.sname–S1–S1–“S1”–sname–<ver2, confX>,

T1.tname–T1–T1–“T1”–tname–<ver2, confX>,

S2.sname–S2–S2–“S2”–sname–<ver2, confX>}

L1: srcAsso S2:State

“S2”: String

S2.sname: sname

L2: tgtAssoS1:State

“S1”: String

S1.sname: sname

T1:Trans

“T1”: String

T1.tname: tname

Figure 13. GraphToPropositionWithAnnotation encoding of model M in Figure 12.

5.2. Union of Propositional Encodings of Models

Given the propositional encoding of models discussed in the previous section, the
union operation simply becomes the union of the propositional encodings of individual
models, as follows:

Definition 11. Proposition Encoding Union (PEU): Let MF be a model family of two models G1
and G2 (Definition 8), where G1 and G2 are attributed typed graphs with the same metamodel ATG,
and let GraphToPropositionWithAnnotation(G1) and GraphToPropositionWithAnnotation(G2) be
their propositional encodings (Definition 10); then, the union of the propositional encodings with
annotations G1 and G2 is: PEU = GraphToPropositionWithAnnotation(G1) ∪ GraphToProposition-
WithAnnotation(G2).

We can generalize the above definition to a set of arbitrary encoded models, where
the union of the propositionally encoded models is annotated according to the grammar
of STAL following the approach in Section 4. Furthermore, because the union operation
is incremental, a proposition encoding union (PEU) can be unified with other individual
models or even with other PEUs. For instance, given a PEU of a set of propositionally
encoded models and a new model Mi encoded as GraphToPropositionWithAnnotation(Mi),
their union becomes PEUnew = PEU ∪ PEMi . The annotations of PEU and Mi are unified
according to STAL.

5.3. Example

This section provides a simple yet complete example for two versions of state transition
diagrams, M1 and M2. The example illustrates the formalization of both models as E-graphs.
In addition, it illustrates their encoding into propositional variables as well as their union.
In this example, M1 and M2 are assumed to be the first and the second version of a model
that together represent configuration A. Hence, the elements of M1 and M2 are respectively
annotated with <ver1, confA> and <ver2, confA>.

Figure 14 represents M1 in the conventional representation of state transition diagrams,
Figure 15 illustrates the representation of M1 as a canonical typed attributed E-graph, and
Figure 16 represents M1’s propositional encoding.

T1

sname =“S1”

color =“red”

S1

sname =“S2”

color =“green”

S2

M1

Figure 14. First version of a state transition diagram, M1.

Algorithms 2023, 16, 105 14 of 34

L1: srcAsso
S2:State

“S2”: String “green”: String

S2.sname: sname S2.color: color

L2: tgtAsso
S1:State

“S1”: String “red”: String

S1.color: colorS1.sname: sname

T1:Trans

“T1”: String

T1.tname: tname

Figure 15. Representation of M1 as an E-graph.

GraphToPropositionwithAnnotation(M1) = {

S1–State–<ver1, confA>, S2–State–<ver1, confA>,

“S1”–S1–String–<ver1, confA>, “red”–S1–String–<ver1, confA>,

“S2”–S2–String–<ver1, confA>, “green”–S2–String–<ver1, confA>,

T1–Trans–<ver1, confA>, “T1”–T1–String–<ver1, confA>,

L1–T1–S1–srcAsso–<ver1, confA>, L2–T1–S2–tgtAsso–<ver1, confA>,

S1.sname–S1–S1–“S1”–sname–<ver1, confA>,

S1.color–S1–S1– “red”–color–<ver1, confA>,

S2.sname–S2–S2– “S2”–sname–<ver1, confA>,

S2.color–S2–S2–“green”–color–<ver1, confA>,

T1.tname–T1–T1– “T1”–tname–<ver1, confA> }

Figure 16. Propositional encoding of M1.

In the same manner, Figure 17 shows the conventional representation of M2 as a
state transition diagram, Figure 18 represents it as an E-graph, and Figure 19 details its
propositional encoding.

T2

sname = “S1”

color = “yellow”

S1

sname = “S2”

color = “green”

S2

M2

Figure 17. Second version of a state transition diagram, M2.

L1: srcAsso
S2:State

“S2”: String “green”: String

S2.sname: sname S2.color: color

L2: tgtAsso
S1:State

“S1”: String “yellow”: String

S1.color: colorS1.sname: sname

T2:Trans

“T2”: String

T2.tname: tname

Figure 18. Representation of M2 as an E-graph.

GraphToPropositionwithAnnotation(M2) = {

S1–State–<ver2, confA>, S2–State–<ver2, confA>,

“S1”–S1–String–<ver2, confA>, “yellow”–S1–String–<ver2, confA>,

“S2”–S2–String–<ver2, confA>, “green”–S2–String–<ver2, confA>,

T2–Trans–<ver2, confA>, “T2”–T2–String–<ver2, confA>,

L1–T2–S1–srcAsso–<ver2, confA>, L2–T2–S2–tgtAsso–<ver2, confA>,

S1.sname–S1–S1–“S1”–sname–<ver2, confA>,

S1.color–S1–S1–“yellow”–color–<ver2, confA>,

S2.sname–S2–S2–“S2”–sname–<ver2, confA>,

S2.color– S2–S2–“green”–color–<ver2, confA>,

T2.tname–T2–T2–“T2”–tname–<ver2, confA> }

Figure 19. Propositional encoding of M2.

After encoding M1 and M2, we can now construct their union model MU as the union
of their propositional encodings with annotations (Definition 11), as shown in Figure 20:

Algorithms 2023, 16, 105 15 of 34

PEU=GraphToPropositionWithAnnotation(G1)∪ GraphToPropositionWithAnnotation(G2) = {

S1–State–<ALL>, S2–State–<ALL>,

“S1”–S1–String–<ALL>,

“red”–S1–String–<ver1, confA>, “yellow”–S1–String–<ver2, confA>,

“S2”–S2–String–<ALL>, “green”–S2–String–<ALL>,

T1–Trans–<ver1, confA>, “T1”–T1–String–<ver1, confA>,

T2–Trans–<ver2, confA>, “T2”–T2–String–<ver2, confA>,

L1–T1–S1–srcAsso–<ver1, confA>, L2–T1–S2–tgtAsso–<ver1, confA>,

L1–T2–S1–srcAsso–<ver2, confA>, L2–T2–S2–tgtAsso–<ver2, confA>,

S1.sname–S1–S1–“ S1”–sname–<ALL>, S1.color–S1–S1–“red”–color–<ver1, confA>,

S1.color–S1–S1–“yellow”–color–<ver2, confA>, S2.sname–S2–S2–“S2”–sname–<ALL>,

S2.color–S2–S2–“green”–color–<ALL>,

T1.tname–T1–T1–“T1”–tname–<ver1, confA>,

T2.tname–T2–T2–“T2”–tname–<ver2, confA> }

Figure 20. Union of the propositional encodings of M1 and M2.

The representation of the union model as an E-graph is depicted (with annotations)
in Figure 21, and its conventional representation as an ordinary state transition diagram
(again with annotations) is shown Figure 22.

L1: srcAsso
S2:State

“S2”: String “green”: String

S2.sname: sname S2.color: color

L2: tgtAssoS1:State

“S1”: String “yellow”: String “T2”: String

T2.tname: tname

T1:Trans

“red”: String

S1.color: color

“T1”: String

T1.tname: tname

T2:Trans

<ALL>

<ALL>

<ALL>

<ver2,confA><ver1,confA>

<ver1,confA>

<ALL><ALL>

<ALL> <ALL>

<ALL>
<ver2,confA> <ver2,confA><ver2,confA>

<ver1,confA>

<ver1,confA>

<ver1,confA>

<ver1,confA>

<ver1,confA>

<ver2,confA>

<ver2,confA>

Figure 21. Representation of MU as an E-graph.

T2 < ver2, confA >

sname =“S1” <ALL>

color =“red” <ver1, confA>

color= “yellow” <ver2, confA>

S1 <ALL> T1 <ver1, confA>

sname =“S2” <ALL>

color =“green” <ALL>

S2 <ALL>

MU

Figure 22. Conventional representation of MU as an annotated state transition diagram.

6. Analysis and Reasoning with Model Families

This section explores the research question: How efficient is reasoning and analysis with a
group of models all at once using MU in comparison to the use of individual models?

To this end, Section 6.1 defines three reasoning tasks in order to evaluate their perfor-
mance, first using union models and then using individual model several times. Section 6.2
discusses our experimental setup, methodology, and implementation. The next chapter
then presents our results. A preliminary version of this section and the next one has
previously been published in [12].

6.1. Reasoning Tasks

To answer the research question mentioned above, we need to describe how a union
model can facilitate analysis and reasoning with sets of models instead of only single
models. To achieve this, we consider three reasoning tasks (RTs), namely, property checking,
trend analysis, and commonality analysis. Then, we compare the performance of the three RTs
using MU as opposed to using individual models.

Algorithms 2023, 16, 105 16 of 34

Although these kinds of analyses can be performed using individual models several
times, one model at a time, our objective here is to make these analyses more efficient
using MU . In addition, we aim to reduce the effort needed for loading each model into a
tool, analyzing the model, saving the analysis results, and then moving to the next model,
especially as this effort cannot be neglected with a large number of models. These manual
steps are, however, not considered in our results; as such, our results and performance
improvements are conservative.

6.1.1. RT1: Property Checking

Property checking of models aims to verify whether or not a model satisfies a particular
property. Given a model m and a property p, the result of property checking is either True
if m satisfies p or False otherwise. For instance, a modeler may want to check whether
or not a group of state machine diagrams contains self-looping edges, or she may check
whether there exist two or more different actors in a GRL model family that contain the
same goal. In these scenarios, property checking is beneficial to help modelers understand,
for example, what is common between model versions or variations that violate a property.

In this section, we limit ourselves to language-independent syntactic properties (which
describe the structure of models) other than semantic properties (which describe the
behavior of models, e.g., traces). The rationale behind this scoping is because our approach
aims to be applicable to any metamodel-based modeling language. However, while there
exists a standard approach for defining the syntax of a modeling language (i.e., through
metamodeling), there is no common approach for specifying semantics. Thus, we limit our
approach to checking those properties related to a language syntax independently from any
language specificity. Hence, “property” here means “syntactic property”. Alwidian [10]
further discusses and evaluates semantic aspects for one particular language.

To perform property checking, we assume that a property p (expressed in any con-
straint language such as FOL or OCL) can be grounded over the vocabulary of models.
Hence, a corresponding propositional formula Φp can be obtained. For example, given a
well-formedness constraint Φp = {∀t : Transition, ∃s : State | t.src = s}, it can be grounded
over the vocabulary of the model in Figure 23 as follows:

T1-S1-S2-Transition =⇒ S1-State∧ T2-S2-S3-Transition =⇒ S2-State

S1 S2 S3
T1 T2

Figure 23. An example of propositional encoding of a model (Φm).

As can be noticed, the example considers the graphical representation of the state
machine presented in the canonical form in Figure 6b, where transitions T1 and T2 are
represented here as directed edges between states and not as nodes.

Formally speaking, given the propositional encoding of both models (Section 5) and
properties, the task of property checking can be defined as follows:

Definition 12. Property Checking: Given a model m, property p, and their respective proposi-
tional encodings Φm and Φp, we check whether the expression Φm ∧Φp is satisfiable or not using
a SAT solver.

For RT1, inspired by van der Straeten et al. [23], we checked the “cyclic composition
property”, which ensures that “the model does not contain self-looping edges”, i.e., Φp =
{∀e : EG, srcG(e) 6= tgtG(e)}. It is important to highlight here that checking the self-looping
edge property in individual models and in their MU is a simple reasoning task that always
produces the same result; that is, if a self-looping edge exists in any of the individual
models, then it will be detected in the MU that captures these individual models, and vice
versa. This case, however, is not necessarily true for other properties, such as for example
the general acyclicity property.

Algorithms 2023, 16, 105 17 of 34

Figure 24 shows two simple state machine models that are acyclic (i.e., cycle-free)
along with their union model MU that is not acyclic (i.e., has a cycle). In this scenario,
checking the acyclicity property in individual models M1 and M2 produces a different
result than checking the same property in MU . To address this issue, there is a need to
explicitly consider annotations on elements during property checking to determine the
actual occurrence of cycles. For instance, if the link in model M1 is annotated with <v1>
and the link in M2 is annotated with <v2>, then both links in MU will be considered as
different and not as an actual cycle, even though they seem to constitute a structural cycle.
A real cycle only exists when the intersection of the annotations of the links involved is not
empty.

A B A B

A B

(b)(a)

(c)

Figure 24. (a) An acyclic model M1, (b) an acyclic model M2, and (c) a union model of M1 and M2
that is cyclic. Note: these three models satisfy Φp, as they have no self-loops.

In the presence of annotations, property checking is more complicated and further
research is needed to investigate its complexity. That is, we need to characterize the
conditions under which this kind of property checking is beneficial when using MU in
comparison to using individual models multiple times. The findings of Famelis et al. [6]
regarding the analysis of syntactic properties of partial models indicate that the size of
the model family might be an important factor; in smaller model families, it is better to
analyze each individual model separately. In the future we want to investigate whether
other factors, such as the degree of redundancy across the family or the shape of the models
and property expressions, might play a role. In addition, counterexamples produced
by model-checkers for union models that would violate a property would be harder to
interpret than usual, as they might cover multiple models in the family. How to interpret
such counterexamples in terms of individual models is left for future work.

6.1.2. RT2: Trend Analysis

This analysis aims to search for a particular element across members of a model family
and to study the trend of that element, i.e., the behavior of elements over space/time. In
other words, a trend analysis studies how properties of elements change over the course of
time or across configurations. For instance, a modeler may need to search for a particular
goal, say, GoalX, in all members of a GRL family in order to conduct a trend analysis about
the properties of that goal (e.g., its importance/satisfaction value) and to observe how
that value changes across model versions/variations in order to obtain insights into its
evolution pattern.

6.1.3. RT3: Commonality Analysis

We suggest this type of analysis to enable modelers to check for those elements that are
common in all (or part) of versions or variations of models in a family. This type of analysis
is aligned with the commonality-based analysis in the SPL domain, where commonality is
a key metric that indicates the reuse ratio of a feature across the SPL [24]. Following the
same rationale, in this analysis it can be inferred that elements found to be common among
the majority of models are important. For example, if a modeler is investigating several
design options of a particular system and needs to know which elements are important
in design options, then she would conduct this analysis once using the MU of the model
family she has at hand instead of carrying out a pairwise search on each version/variation

Algorithms 2023, 16, 105 18 of 34

of individual models. To be fair, such analysis obviously needs to take into consideration
the construction time of the union model.

6.2. Analysis and Experiments

We assessed the feasibility of reasoning using MU empirically by running experiments
with parameterized random inputs that simulated different settings of various reasoning
and analysis categories. In this chapter, we build on the formalization of union models
in Section 3.3 and use formalized GRL models and state machine models. Our approach,
however, is not bound to these languages, and is applicable to other metamodel-based
languages.

6.2.1. Methodology

To evaluate the feasibility of using MU with the three reasoning tasks RT1, RT2, and
RT3, we first measured the total time (in seconds) needed to perform each one of the RTs on
each individual model one model at a time; we refer to this time as Tind. Next, we measured
the time needed to accomplish the same task with MU ; we refer to this time as TMU. Then,
we computed the performance improvements using the time metrics speedup (as used by
Famelis in [25], defined originally as speedup = Tind / TMU) and time saving (in minutes for
RT1 and in seconds for RT2 and RT3, calculated as TimeSaving = (Tind − TMU)).

Here, we define Tconstruct as the time needed to construct MU . Although Tconstruct
is usually quite small and can be performed once before being amortized over multiple
analyses, we distinguish two categories of experiments, named Exp.1 and Exp.2. In Exp.1,
we consider Tconstruct, such that the speedup is calculated as speedup_with_constrTime=
Tind/(Tconstruct + TMU). In Exp.2, on the other hand, we neglect the time needed to construct
MU , where the speedup is calculated here (same as in [25]) as speedup_without_constrTime =
Tind/TMU. In both experiments, a speedup larger than 1 is a positive result, and the larger
the speedup, the better the improvement.

The reason why Tconstruct is considered here is to be more fair and realistic in the
experiments, especially for large models, where it becomes necessary to not neglect the
time needed to construct MU. Another reason is to compare the results of both categories of
experiments in order to reach a conclusion on whether or not to always neglect Tconstruct .
As mentioned, the time that an analyst would need to analyze models individually in a
realistic context by loading the model in a tool, performing the analysis, and saving the
results is not taken into consideration in Tind.

For both experiments, we considered the following experimental parameters: (1) the
size of individual models (SIZE), which represents the number of elements (i.e., nodes
and edges) in each individual model, and (2) the number of individual models in a model
family (INDV). To control the possible combinations of parameters SIZE and INDV and
to facilitate reporting, we followed the methodology proposed by Famelis et al. [6,25] to
discretize the parameters’ domain into categories, where the ranges of values for the INDV
parameter were set based on pilot experiments conducted by Famelis et al. [6] to determine
reasonable ranges of individual models that constitute a family. Regarding the ranges of
values for the SIZE parameter, we relied on our own experience with goal models, where
models with a few dozen elements are considered to be small, while models with many
hundreds or more elements are deemed to be extra-large.

For parameter SIZE, four categories were defined based on the number of nodes and
edges, as follows: small (S), medium (M), large (L), and extra-large (XL). To calculate the
ranges of each size category, we performed experiments with a seed sequence (0, 5, 10, 20,
40). The boundaries of each category were calculated from successive numbers of the seed
sequence using the formula n× (n + 1). Using the same formula, a representative exemplar
of each category is calculated by setting n to be the mean (rounded up) of two successive
numbers in the seed sequence. We followed the same methodology for the number of
individual models, INDV, using a seed sequence (0, 4, 8, 12, 16). The four size categories
(S, M, L, XL) are shown in Table 2. The ranges of all categories of SIZE and INDV and

Algorithms 2023, 16, 105 19 of 34

the selected exemplars for each category are shown in Table 3. These ranges (generated
from the seeds mentioned above) are in line with our own real experience dealing with
goal models and state machines of various sizes. The same can be said for the number of
individual models; a family is considered small when it contains a handful of models, and
it is considered very large when it contains hundreds of models or more.

Table 2. Categories of SIZE parameter (number of elements in a model).

#Elements/Model
(SIZE) (0, 30] (30, 110] (110, 420] (420, 1640]

Exemplar 12 56 240 930
Category S M L XL

Table 3. Categories of INDV parameter (number of individual members in a family).

of Indiv.
Models (INDV) (0, 20] (20, 72] (72, 156] (156, 272]

Exemplar 6 42 110 210
Category S M L XL

To evaluate the property checking task (i.e., RT1), each annotated individual model
m in a model family MF was encoded as a propositional logic formula, namely, Φm =∧

ElementToPropositionWithAnnotation(ei), ei ∈ m, where ei are elements of the model m.
A union model MU of that MF was encoded as ΦMU =

∧
ElementToPropositionWith-

Annotation(ei), ei ∈ MU . Furthermore, the property to be checked was encoded into a
propositional formula Φp. Afterwards, an SAT solver was used to check whether or not
the encodings of each of the individual model and their union model satisfied the property.
In particular, a formula Φm ∧Φp was constructed for each individual model. The property
was said to hold in any model if and only if this formula was satisfiable. Similarly, a formula
ΦMU ∧Φp was constructed and checked against whether the property was satisfiable. In
both experiments, using the same computer settings, the time it took to check a property
on individual models (Tind) was recorded and compared to the time needed to carry out
the check on union models (TMU).

6.2.2. Implementation

To validate our approach, we used the NetworkX 2.2 Python library [26] to implement
attributed typed graphs (according to Definition 5); we implemented our own union algo-
rithm on top of that library to construct MU (based on Definitions 9 and 11). NetworkX 2.2 is
a Python package for the creation, manipulation, and study of the structure, dynamics, and
functions of complex graphs [26]. It is enriched with a variety of features, from the support
of graph data structures and algorithms to analysis measures to visualization options.

To ensure that we had a family of state machine models, NetworkX’s graph generator
was applied to randomly generate valid attributed typed graphs with different SIZE and
INDV parameters. These graphs corresponded to typed state machines with likely evolutions,
i.e., a sequence of random but typical manipulations on state machine models that lead to
different versions. A sample of the generated graphs was manually checked to make sure
that we had generated likely changes to existing models rather than generating completely
independent models. Due to the completely random nature of the graph generators, we
found that although the amount of changes in state machine models could be controlled, the
topology of the resulting graph could not; that is, the same node in a model could change its
incoming and/or outgoing edges randomly, leading to a different model. Such deviations
between individual models can lead to a union model with large variations, indicated by
the number of annotations on each element. Although this is not the best or even the typical
case of state machine model families, we decided to perform experiments on the generated

Algorithms 2023, 16, 105 20 of 34

models in order to examine the complex families, for which the performance is unlikely to
be worse.

For GRL models, the generation of models was less random; we took a set of real
GRL models of smart homes published in [12] as a starting point and enlarged them
according to the different combinations of the SIZE and INDV parameters. While growing
the models, we created a set of random realistic modifications that involved adding and/or
deleting intentional elements and/or element links or modifying their attributes. We then
constructed GU from the generated graphs using our union algorithm. GU is the union of a
set of typed graphs; hence, GU corresponds to MU .

It is worth mentioning here that the random generation of graphs was only used to
check the scalability of the approach in order to provide a proof of concept for the suggested
approach. Properties checked on such random graphs may be satisfied or not; this is not
important here as long as the results for the model family are the same as the results for
individual models, which is the case here.

For RT1, we checked the cyclic composition property inspired by [23], which ensures
that the model does not contain self-looping edges. A propositional formula (Φp = {∀e :
EG, srcG(e) 6= tgtG(e)}) was generated for this property. The propositional encodings were
generated according to the rules discussed in Section 5, and were fed as literals to the
MiniSAT solver included in the SATisPY package [27]. SATisPy is a Python library that
provides an interface for various SAT solver applications.

To build confidence about the property checking results, the graphs and their union
model were tested to check for the existence of any self-looping edges. Output solutions
retrieved for individual models of a particular family were compared to the solutions
returned for the corresponding union model. The results were the same. All experiments
were executed on a laptop with an Intel Core i5-8250U (8th Gen) 1.6GHz quad-core CPU
and 8 GB RAM running Windows 10× 64.

The next three sections are organized according to the experiments conducted to
evaluate RT1, RT2, and RT3. All figures illustrated below represent a summary of the
average results of fifteen runs represented for all SIZE and INDV categories together.

7. Results and Discussion

The results of the three reasoning tasks defined earlier are reported in Sections 7.1–7.3.
Section 7.4 highlights the potential threats to validity. Finally, Section 7.5 provides a
summary and a discussion of important points related to the current results and means of
improving them in the future.

7.1. Results for Property Checking (RT1)

This section reports on our empirical results for the property checking reasoning
task. Figure 25a illustrates Tind, which is the total time performing property checking
on each individual model, for all SIZE and INDV categories. Figure 25b reports on TMU,
which is the time needed to perform property checking on union models that capture
individual models of different SIZE and INDV. In addition, Figure 25c shows the time
Tconstruct needed to construct these union models. Figure 25d shows the time speedup with
Tconstruct, i.e., speedup_with_constrTime = Tind /(Tconstruct + TMU), while Figure 25e shows the
speedup without considering Tconstruct, calculated as speedup_without_constrTime = Tind /
TMU. Finally, Figure 25f highlights the time saving in minutes achieved by using MU to
perform property checking calculated as TimeSaving = (Tind − TMU).

Algorithms 2023, 16, 105 21 of 34

(a) Tind

(b) TMU

(c) Tconstruct

(d) Speedup, with Tconstruct

 (e) Speedup without Tconstruct

(f) Time saving

0

100

200

300

400

500

600

700

800

900

0 40 80 120 160 200 240

T
im

e

(s
e

c
)

INDV

(with S=6, M=42, L=110, XL=210)

 SIZE=S SIZE=M SIZE=L SIZE=XL

0.0

0.5

1.0

1.5

2.0

2.5

0 40 80 120 160 200 240

T
im

e
 (

se
c)

INDV

(with S=6, M=42, L=110, XL=210)

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

10

20

30

40

50

60

70

0 40 80 120 160 200 240

T
im

e
 (

s
e

c
)

INDV

(with S=6, M=42, L=110, XL=210)

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

20

40

60

80

100

120

140

INDV=6 (S) INDV=42 (M) INDV=110 (L) INDV=210 (XL)

131

37

26

46

33

12

25 24

14
10

14 14
10

8
12 11

S
p

e
e

d
u

p
_

w
it

h
_

co
n

st
rT

im
e

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

200

400

600

800

1000

1200

INDV=6 (S) INDV=42 (M) INDV=110 (L) INDV=210 (XL)

253

499

1028

678

128

309

990

492

129

252

819

491

126

216

728

386

s
p

e
e

d
u

p
_

w
it

h
o

u
t_

c
o

n
s
tr

T
im

e

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

2

4

6

8

10

12

14

INDV=6 (S) INDV=42 (M) INDV=110 (L) INDV=210 (XL)

0.4 1.3

5.4

10.6

0.4

1.7

6.5

10.6

0.4

2.5

7.9

11.1

0.5

2.9

9.2

12.7

T
im

e
 s

a
v

in
g

 (
m

in
)

 SIZE=S SIZE=M SIZE=L SIZE=XL

Figure 25. Results for property checking (RT1) for all INDV and SIZE categories.

Figure 25a–c shows that Tind, TMU, and Tconstruct increase when the size of models
(i.e., SIZE) or the number of models in a family (i.e., INDV) increase. In addition, it can be
noticed that the increase of Tind is important for each SIZE category, as the INDV parameter
grows from INDV = S to INDV = XL. For instance, with SIZE = XL, we observe 30.85 s on
average for INDV = S to 765 s on average for INDV=XL. On the other hand, the increase of
TMU as INDV grows is marginal for each SIZE category. For example, for XL-sized models
TMU increases from 0.39 s (for INDV = S) to 2.25 s (for INDV = XL).

Furthermore, it can be inferred from Figure 25d,e that the use of MU for property
checking achieves a noticeable time speedup compared to performing the same task on a
set of individual models separately. For speedup_with_constrTime (Figure 25d), the highest
speedup (=131) was observed with a small number of individual models (i.e., INDV =
S) that are of a small size (i.e., SIZE = S). The smallest speedup (=8) was observed when
INDV = M and SIZE = XL. In addition, Figure 25d shows that there is a noticeable pattern
of speedup degradation for each INDV category as the number of elements per individual
model (i.e., SIZE) increases. This is due in part to the increase of Tconstruct as the SIZE
increases. Nevertheless, the speedup never falls below 1, which means that even with very

Algorithms 2023, 16, 105 22 of 34

large models (with INDV = XL and SIZE = XL) the time to perform property checking
on a group of such models (using MU), considering the time to construct MU , is better
than performing property checking on all individual models. Figure 25e shows that the
time speedup becomes more significant when Tconstruct is ignored, where the highest
speedup_without_constrTim = 1028 is with models of SIZE = S and INDV = L. This high
value of 1028, which is higher than the number of models in family (110), is caused in part
because of a low denominator value with low resolution (e.g., 1028 = 308.4/0.3), as well
as by the time taken by the Python environment to load before executing the code of each
individual model, which is not negligible, particularly for small models.

It is important to emphasize here that the erratic behavior of the time speedup with
and without Tconstruct across all categories of SIZE and INDV does not necessarily mean that
one category is superior to the other. This is because speedup reflects the ratio between Tind
and TMU (and Tconstruct in case of calculating speedup_with_constrTime), and could fluctuate
because of different densities of variability in the models.

It is not necessary that the speedup with INDV = S should be always better than that
of INDV = M, INDV = L, etc., or vice versa, as the topology of the models generated may
influence efficiency and this aspect is not controlled in this experiment. To this end, the
speedup metric is used in this paper to demonstrate the improvements achieved by using
MU in general, without regarding of the particular behavior of this improvement.

The TimeSaving metric, however, can be relied on to observe the behavior of the time
gained from using MU to perform a particular task as opposed to using individual models
multiple times. Figure 25f clearly illustrates a consistent pattern of time savings that
increases when SIZE and INDV increase, which is the result that we were hoping for.

7.2. Results for Trend Analysis (RT2)

In this experiment, a trend analysis is conducted on an element named X-Goal from a
set of individual GRL models and their union model MU . The purpose of this analysis is to
study the trend of this goal’s importance value attribute and analyze how this value changes
over time. Performing this analysis on MU implies retrieving an element named X of type
Goal, annotated with any version number <versions>, which could be a single version,
a set of versions, or a range of versions that the element may belong to. With individual
models, the search for and retrieval of X-Goal involve each individual model, where the
laborious process in practice would involve opening each individual model, searching the
desired element, observing its importance value, and closing the current model.

Figure 26a–c shows the respective Tind, TMU, and Tconstruct utilised in this experiment,
while Figure 26d–f illustrates the time speedups, with and without Tconstruct and the time
saved. The results in Figure 26a–c clearly illustrate a linear increase of Tind, TMU, and
Tconstruct as SIZE or INDV increases. This is to be expected, as the searching task, which is
the core of trend analysis, has a linear time complexity.

From Figure 26d, it can be noticed that for one SIZE category, SIZE = XL, the speedup
decreases with the increase of the number of individual models in a family, i.e., INDV. This
decrease is mainly due to the consideration of Tconstruct while computing the speedup. Nev-
ertheless, the achieved speedups with Tconstruct are very positive and important. Without
considering Tconstruct the speedup becomes more substantial, with a generally increasing
pattern as INDV or SIZE increases, as depicted in Figure 26e.

Finally, Figure 26f demonstrates that the use of MU reduces the time needed to search
for elements that belong to a group of models compared to traversing each individual
model separately. This is clearly illustrated by the time savings, which substantially increase
when SIZE or INDV increases.

Algorithms 2023, 16, 105 23 of 34

(a) Tind

(b) TMU

(c) Tconstruct

(d) Speedup, with Tconstruct

 (e) Speedup without Tconstruct (f) Time saving

0

5

10

15

20

25

30

35

0 40 80 120 160 200 240

T
im

e
 (

se
c)

INDV

(with S=6, M=42, L=110, XL=210)

 SIZE=S SIZE=M SIZE=L SIZE=XL

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 40 80 120 160 200 240

T
im

e
 (

s
e

c
)

INDV

(with S=6, M=42, L=110, XL=210)

 SIZE=S SIZE=M SIZE=L SIZE=XL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 40 80 120 160 200 240

T
im

e
 (

s
e

c)

INDV

(with S=6, M=42, L=110, XL=210)

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

5

10

15

20

25

INDV=6 (S) INDV=42 (M) INDV=110 (L) INDV=210 (XL)

5.7 5.6 5.3 5.4

12.6
12.6

9.5

6.6

10.5 11.0

7.2

5.1

22.4

17.2

10.5

5.8

s
p

e
e

d
u

p
_

w
it

h
_

c
o

n
st

rT
im

e

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

10

20

30

40

50

60

70

80

INDV=6 (S) INDV=42 (M) INDV=110 (L) INDV=210 (XL)

10.8

17.2
20.8 22.026.3

33.2
38.9 37.2

29.0
33.0

39.9
35.9

74.1 74.8

69.0

56.1

sp
e

e
d

u
p

_
w

it
h

o
u

t_
c
o

n
st

rT
im

e

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

5

10

15

20

25

30

INDV=6 (S) INDV=42 (M) INDV=110 (L) INDV=210 (XL)

1.4
2.6

3.5

5.7
4.9

6.9
8.5

10.6

7.3
9.5

11.7
12.6

22.1
23.8

26.0

29.2

T
im

e
 s

a
v
in

g
 (
s
e

c
)

 SIZE=S SIZE=M SIZE=L SIZE=XL

Figure 26. Results for trend analysis (RT2) for all INDV and SIZE categories.

7.3. Results for Commonality Analysis (RT3)

Figure 27 shows the results of conducting commonality analysis on a set of GRL
models and their MU . This experiment required searching for all elements that are common
between all model versions. This is a tedious task, especially when the number/size of
models increases. Searching a set of M individual models with N elements each to find
elements in common between all models has a complexity of O(M× N2). However, with
MU we only use one model to search for elements in common, where the task here is to
search for elements annotated with <ALL>.

Algorithms 2023, 16, 105 24 of 34

(a) Tind

(b) TMU

(c) Tconstruct

(d) Speedup, with Tconstruct

 (e) Speedup without Tconstruct (f) Time saving

0

15

30

45

60

75

90

105

120

135

0 40 80 120 160 200 240

T
im

e
 (

se
c)

INDV

(with S=6, M=42, L=110, XL=210)

 SIZE=S SIZE=M SIZE=L SIZE=XL

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 40 80 120 160 200 240

T
im

e
 (

se
c
)

INDV

(with S=6, M=42, L=110, XL=210)

 SIZE=S SIZE=M SIZE=L SIZE=XL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 40 80 120 160 200 240

T
im

e
 (

se
c)

INDV

(with S=6, M=42, L=110, XL=210)

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

5

10

15

20

25

30

35

INDV=6 (S) INDV=42 (M) INDV=110 (L) INDV=210 (XL)

23.4

13.6

10.6

8.0

22.0

16.5

11.3

9.2

20.8 21.0

12.7 12.7

34.6
33.2

27.0 26.1

sp
e

e
d

u
p

_
w

it
h

_
co

n
st

rT
im

e

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

50

100

150

200

250

INDV=6 (S) INDV=42 (M) INDV=110 (L) INDV=210 (XL)

48
42 40 4045 40 39 51

65 68
71

102103

125

154

239

sp
e

e
d

u
p

_
w

it
h

o
u

t_
co

n
st

rT
im

e

 SIZE=S SIZE=M SIZE=L SIZE=XL

0

20

40

60

80

100

120

140

INDV=6 (S) INDV=42 (M) INDV=110 (L) INDV=210 (XL)

6 6 7 89
10 11 1514 18

21

3136

48

69

133

T
im

e
 s

a
v
in

g
 (
se

c)

 SIZE=S SIZE=M SIZE=L SIZE=XL

Figure 27. Results for commonality analysis (RT3) for all INDV and SIZE categories.

It can be noticed from Figure 27a that Tind in this experiment is at least two times
larger than Tind in the previous experiment (i.e., RT2). TMU and Tconstruct, on the other
hand, grow at the same pace. Again, times Tind, TMU, and Tconstruct increase as SIZE or
INDV increases.

The time speedup achieved by using MU is always positive, regardless of whether
or not Tconstruct is considered. Figure 27d illustrates that speedup_with_constrTime shows a
pattern close to that in RT2, that is, for one SIZE category, e.g., SIZE = S or SIZE = M, the
speedup decreases as INDV increases. On the other hand, speedup_without_constrTime is
more substantial, and increases as INDV or SIZE increases, as shown in Figure 27e. Finally,
the time savings in this experiment (Figure 27f) are more significant than in the experiments
for RT2, as the potential gain here is quadratic rather than linear, with about 133 s saved for
extra-large families of extra-large models.

Algorithms 2023, 16, 105 25 of 34

7.4. Threats to Validity

One major threat to the validity of our empirical evaluation stems from relying on
randomly generated inputs, both graphs and experimental parameters. This threat can be
alleviated by using more realistic parameters, e.g., using real-world model families.

Another threat is related to the experimental parameters, where we used only SIZE
and INDV. We recognize that we need to examine the impact of the variability of models
on reasoning. For example, we could consider the number of different annotations per
element to describe how similar or different the members are. The topology of the graphs
(e.g., depth, number of linked nodes, etc.) could benefit from specific experiments. The
complexity of a property to be checked might be another parameter to consider.

Our experiments need to be elaborated further for more complex properties and
analysis types, some of which might not exploit the STAL annotations as the ones used
here could, and should be compared to other approaches that handle variability in the
time dimension alone for goal models, including the work of Aprajita et al. [28] and that
of Grubb and Chechik [29]. Furthermore, the current validation covers two modeling
language, goal models and state machines, and should be extended to other types that
are more structural, e.g., class diagrams, or behavioral, e.g., process models. Finally, the
usefulness of our approach needs to be assessed and demonstrated with more significant
examples or real-world case studies and a better quantitative comparison with existing
approaches where there are overlapping analysis functionalities.

7.5. Summary and Discussion

Thus far, this paper has explored a research question related to the performance of
union models by empirically evaluating the efficiency of reasoning and analysis tasks for
modeling families using union models in comparison to the use of individual models.
We defined three general reasoning tasks and evaluated their performance, first using
union models and then using individual models several times. We have discussed the
experimental methodology, setup, and implementation and reported on the empirical
results. Our experiments demonstrate the usefulness and performance gains of union
models for analyzing a family of models all at once compared to individual models. Finally,
we have identified several threats to validity as caveats.

The speedups, whether the time for constructing the union model is considered or not,
are always in favor of the union model, and these speedups generally increase as models
or families grow larger. However, there is erratic behavior regarding the increase of the
time speedup. For instance, the speedup for L-sized models in certain experiments was
larger than the speedup of M-sized models, while in other experiments it was smaller than
that for M-sized models. This behavior is due in part to the possibility of having a footprint
for the creation of MU , which is not negligible. Moreover, in order for the behavior of the
speedup to be more stable and less erratic, we may need to consider additional experimental
parameters such as the ratio of variability across models and the topology of the models at
hand.

In addition, it is worthwhile to mention here that in certain individual experiments
related to the calculation of speedup_with_constrTime we encountered counter-intuitive
results, specifically, where the speedup was less than one. In such experiments, a speedup
value less than one suggests that the use of MU , when taking its construction time into
account, is slower than the use of individual models. Again, these slowdowns where
obtained in individual experiments only, and they were amortized by calculating the
average results of fifteen runs.

In terms of concrete time saved, which ranges from half a second to a few minutes
depending on the experiment, the savings may not seem large at first glance; however,
there are several practical implications:

• The time savings accumulate as many analyses are performed on a same union model,
especially as the union model construction time is amortized over multiple analyses;

Algorithms 2023, 16, 105 26 of 34

• The savings doe not take into account the concrete time required when a practitioner
uses a tool to open a model, perform the analysis, and save the results, which this may
take many seconds per model and is prone to human error;

• The savings become essential in a context where union model construction and verifi-
cation are offered as a service, i.e., as an online application where multiple users can
concurrently upload, merge, and analyze their model families.

While this paper focuses on analysis types that are language independent, the first
author’s previous work in [10,30] explored the adaptation or lifting of language-dependent
analyses for a given language, namely, forward and backward propagation of satisfaction
values for GRL model families, again with positive performance gains. The GRL-based
analysis algorithms and their lifted version were implemented using an optimizer (IBM
CPLEX) with speedups up to 23 times faster when using the union model compared to
individual models, and for a much lower additional memory cost. In practical terms, this
means that analysis on model families is no longer limited to the verification of behavioral
properties often seen in existing approaches.

In addition, while conducting property checking our focus was not on the type of
properties to be checked (i.e., semantic vs. syntactic properties); rather, the focus was
on examining the improvement of performance in terms of time speedup for performing
any kind of property checking (syntactic in this paper) when using union models once as
compared to performing the same task using many models in the model family one model
at a time. In the future, it would be possible to differentiate between the types of properties
to be checked and assess the impact of the property type on the overall performance of the
analysis.

8. Related Work

In the literature, few approaches have been proposed to support model families.
Shamsaei et al. [9] used GRL to define a generic goal model family for various types of
organizations in the legal compliance domain. They annotated models with information
about organization types to specify which were applicable to which family members.
Different from our work, the work of [9] handled only variation of models in the space
dimension, and did not consider evolution over time. In addition, the authors focused
only on maintainability issues and did not propose union models to improve analysis
complexity and reduce analysis effort. Palmieri et al. [8] elaborated further on the work
of [9] to support more variable regulations. The authors integrated GRL and feature models
to handle regulatory goal model families as software product lines (SPLs) by annotating a
goal model with propositional formula related to features in a feature model. Unlike [9],
Palmieri et al. considered further dimensions such as the organization size, type, the
number of people, etc. However, they did not consider the evolution of goal models over
time, and did not introduce union models.

Our work has strong conceptual resemblances with the domain of SPL engineering,
which aims to manage software variants in order to efficiently handle families of soft-
ware [31,32]. The notion of a feature is central to variability modeling in SPL [33], where
features are expressed as variability points. Feature models (FMs) [16] are a formalism
commonly used to model variability in terms of optional, mandatory, and exclusive fea-
tures organized in a rooted hierarchy and associated with constraints over features. FMs
can be encoded as propositional formula defined over a set of Boolean variables, with
each variable corresponding to a feature. FMs are deemed to be very useful to represent
feature dependencies, describe precisely allowed variability between products in a product
line, and guide feature selection to allow for the construction of specific products [34,35].
However, it is important to emphasize here that FM is different from our proposed union
models MU in both usage and formalism. The differences between both artifacts can be
summarized as follows:

Algorithms 2023, 16, 105 27 of 34

• A feature model represents variability at an abstract “feature level”, which is separate
from software artifacts (such a grammar of possible configurations), whereas MU
represents the variability of all existing models at the “artifact level” itself [36];

• While a feature model defines all possible valid configurations of products along with
constraints on their possible configurations, an MU provides a complete view of the
solution space that makes it explicit for modelers which particular element belongs
to which model without necessarily modeling dependencies or constraints between
elements of one model or across several models of a family;

• The purpose behind using both artifacts is different, in that FMs are mainly used to
ensure that the derived individual models are valid through valid feature configura-
tions, with the possibility of generating new models or products. On the other hand,
MU is proposed to perform domain-specific analysis beyond configuration validation
more efficiently on a group of existing models than on individual models;

• Finally, an MU enables the extraction of individual members of a model family by
means of selecting particular time and/or space annotations, while FM enables model
extraction by means of selecting valid combination of dependency rules and cross-tree
constraints between features.

There exist verification approaches that target many valid configurations of feature
models [37]. For instance, Classen et al. [38] explored the use of model checking on a family
of behavioral models captured by a feature model, with resulting gains in verification time.
Similar approaches have been developed for real-time SPLs [39], for symbolic model check-
ing [40], and for probabilistic model checking [41], among others [42]. These approaches
are, however, limited to the space dimension (no evolution of models over time) and to
behavioral properties, e.g., they cannot be used to reason about satisfaction propagation in
a family of goal models, which is allowed by the usage of MU [30].

To express variability, annotative approaches are commonly used in the literature, such
as in the work of Czarnecki and Antkiewicz [34], in which variability points are represented
as presence conditions. These conditions are propositional expressions over features.
Annotations of features can be used as inputs to a variability realization mechanism
in order to derive or create a concrete software system as variant of the SPL. Using a
negative variability mechanism, annotative approaches define a so-called 150% model that
superimposes all possible variations for the entire SPL. The 150% model is used to derive
a particular variant, while other irrelevant parts are removed. While union models have
similarities to 150% models, the uses of both models, the domains they are used in, and the
ways of annotating them are all different.

Ananieva et al. [43–45] proposed an approach for consistent view-based management
of variability in space and time. In particular, the authors studied and identified con-
cepts and operations of approaches and tools dealing with variability in space and time.
Furthermore, the authors identified consistency preservation challenges related to view-
based evolution of variable systems composed of heterogeneous artifacts and provided a
technique for (semi-)automated detection and repair of variability-related inconsistencies.

Mahmood et al. [46] presented an empirical assessment of annotative and composi-
tional variability mechanisms for three popular types of models, namely, class diagrams,
state machine diagrams, and activity diagrams. The authors provided recommendations to
language and tools developers and discussed findings from a family of three experiments
with 164 participants in total, in which they studied the impact of different variability mech-
anisms during model comprehension tasks. The authors recommended that annotative
techniques lead to better developer performance and noted that the use of the composi-
tional techniques correlates with impaired performance. In addition, for all the experiments
it was found that annotative variability is preferred over compositional variability by a
majority of the participants for all task types and in all model types.

The approaches proposed by Seidl et al. [14], Ananieva et al. [47], Michelon et al. [48,49],
and Lity et al. [15] are closely related to ours. In the context of SPL engineering, they con-
sidered variation of software families in both space and time, and explicitly annotated

Algorithms 2023, 16, 105 28 of 34

variability models with time and space information to distinguish between the different
versions and variations of software artifacts.

Different from approaches for managing the variability and evolution, Wittler et al. [50]
have introduced a variability model for both software and hardware that captures variabil-
ity in both space and time as well as the dependencies between loosely coupled software
and hardware components. The authors refined the Unified Conceptual Model by introduc-
ing system generations to reflect the implicit dependencies between software and hardware
components in product lines.

Even though the concept of a “family” is shared between our work and the SPL
domain, the main difference is one of purpose and scope. At its core, SPL engineering is
a software engineering methodology for systematic proactive reusability. The overarching
concern is to strategically design, plan, and maintain a set of software artifacts according
to points of functionality (features). Then, by exploiting commonalities between variants,
engineers can efficiently derive or create software products with desirable features. It
is not the goal of our work to plan for reusability or to derive new models or products.
Characteristically, union models do not depend on modeling common functionalities in a
feature model. Such a model is expressly created to facilitate proactive reusability, and is a
central concept in SPLs.

Instead, we use union models to analyze families of existing models irrespective of their
provenance or the intent for which they were constructed. As an object-oriented technology,
union models generalize SPLs by decoupling family modeling from the particularities and
exigencies of proactive reusability. Union models are a step towards a more basic and
fundamental idea: the representation and analysis of families of models.

Famelis et al. [6] proposed partial models to capture a set of possible alternative mod-
els with design-time uncertainty. The emphasis of this work was to create a methodology
for the lifecycle of design-time uncertainty. This includes articulating modelers’ uncer-
tainty about design decisions, maintaining this uncertainty, and supporting systematic
decision-making via refinement [51]. Dhaouadi et al. [52] addressed the challenges of
design-time uncertainty by proposing DRUIDE (Design and Requirements Uncertainty
Integrated Development Environment), a language and workflow for articulating design
time uncertainty. DRUIDE provides modelers with the ability to explicitly articulate un-
certainty and compose completely heterogeneous models by linking uncertainties. This
work is related to decision-oriented Product Line Engineering (PLE) [53], mainly as design
uncertainty often involves modeling sets of design alternatives. Furthermore, DRUIDE
is related to research on creating representations of sets of related models, which is in
turn related to our work on model families. Compared to the work of Famelis et al. [6]
and Dhaouadi et al. [52], the focus of our work is more fundamental, looking at efficient
reasoning about model families by leveraging redundancies across members of the family.
Naturally, the three approaches are complementary, and we are actively researching various
synergies.

The use of a single model to represent multiple interrelated systems was proposed
by Stünkel et al. [54]. Similar to our approach, they used typed graphs to represent
commonalities between models. The authors focused on interoperability, consistency
specification, and consistency restoration, and did not consider the representation of
modeling families or variability representation in space and time.

Aprajita et al. [28,55] extended the GRL metamodel to document explicit changes
(additions/deletions) of elements to specific versions of a model. Although a model family
can be captured, this approach is specific to one language and is currently incomplete in
terms of the kinds of changes to versions that it can accommodate.

Grubb et al. [56,57] introduced the concept of dynamic intentions into goal models
to capture alternatives on multiple time scales. The authors proposed a tool-supported
method for specifying changes in intention over time which uses simulations to ask a
variety of “what-if” questions about models that evolve over time.

Algorithms 2023, 16, 105 29 of 34

Hablutzel et al. [58] investigated the problem of model merging for Tropos goal
models. In particular, the authors proposed a formal approach to address the problem of
automatically merging the attributes of intentions and actors in which both static models
and models with timing information were considered. In their work, Hablutzel et al.
looked at the initial creation of a goal model through merging, rather than tracking model
evolution over space and time through a merged representation using union models.

9. Conclusions and Future Work

In this paper, we propose union models as a first-class generic artifact to capture
and represent model families. The paper provides a graph theory-based formalization of
model families and their union models. In particular, model families are formalized as a
set of attributed typed graphs in which all models are typed over the same metamodel.
Metamodels are formalized as attributed type graphs, whereas union models are formalized
as the union of all graph elements in the set of typed attributed graphs which constitute
a model family. Included in the union model are the graph elements annotated by the
models they are occurring. The purpose of this formalization is to permit representation of
model families and their union models independent of any modeling language used in the
context of MBSE. In addition, we propose a Spatio-Temporal Annotation Language (STAL)
to support the representation of variability in model families in both the space and time
dimensions and to facilitate reasoning about union models.

We demonstrate how the properties of these formalisms can be used to support the
construction of union models as well as to perform typical reasoning tasks, such as trend
analysis and property checking, on union models. We empirically illustrate the potential of
using union models to improve analysis and reasoning over a set of models all at once as
opposed to analyzing single models separately one at a time. Positive results are observed
even when the time taken to construct union models is taken into consideration; in practice,
the construction time can be amortized over many analyses.

The artifacts related to this paper are available online. These include Excel files for
attributed typed graphs defined according to the formalization provided in Section 3. In
addition, GRL model families generated for four SIZE categories (i.e., small, medium, large,
X-large) for our experiments, and the Python programs used for the union algorithm, for
generating models, and for measuring the reasoning tasks defined in Section 6 are included.
See https://bit.ly/UnionModelsExtra, accessed on 8 February 2023.

For future work, there are many opportunities to follow up on several directions:

• Studying the effects of variation and topology on reasoning techniques: it is necessary
to describe how sensitive reasoning and analysis are to the degree of variation in a
union model, as well as where this variation is located (topology). The degree of
variation of an MU can be inferred from the number of annotations and the number of
annotated elements that exist in a model family and are represented by that MU .

• Improved tool support: although a prototype tool exists for creating union models,
the software ecosystem could be greatly enhanced by providing conversion from
metamodels (in EMF or MOF) to type graphs and from models to typed graphs
expressed with PELA. Tools to better visualize annotated union models in the original
language’s syntax whenever possible would be very useful. Support for more rigorous
lifting analysis methods and editors would contribute to the practical adoption of the
proposed approach.

• Studying the usability of the approach: there is a need to assess which practitioners
this approach is useful to and which parts require usability enhancements in order to
improve adoption in industry, especially regarding automation. We envision offering
merging and several types of reasoning as online services.

• Exploration of further synergies with techniques for representing and managing
design-time uncertainty using partial models [51]. Specifically, we would like to adapt
model transformation lifting to union models and to develop operators for managing
union models across their lifecycle.

https://bit.ly/UnionModelsExtra

Algorithms 2023, 16, 105 30 of 34

Author Contributions: Conceptualization: S.A., D.A. and Y.L.; methodology: S.A. and D.A.; software:
S.A.; validation: S.A.; formal analysis: S.A., D.A. and Y.L.; investigation: S.A., D.A. and Y.L.; resources:
S.A. and D.A.; data curation: S.A.; writing—original draft preparation: S.A.; writing—review and
editing: D.A. and Y.L.; visualization: S.A., D.A. and Y.L.; supervision: D.A.; project administration:
D.A.; funding acquisition: S.A. and D.A. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Ontario Trillium Scholarship program and the BMO
Financial Group Graduate Bursaries (for S. Alwidian), as well as the NSERC Discovery program (for
D. Amyot).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Michalis Famelis, Nan Niu, and Dorina Petriu for their useful
feedback on this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACS Access Control System
ATG Attributed Type Graph
DSML Domain-Specific Modeling Language
FM Feature Model
FOL First-Order Logic
GRL Goal-oriented Requirement Language
INDV Number of individual models in a family
ITG Instance Typed Graph
MBSE Model-based Software Engineering
MF Model Family
MU Union Model
OCL Object Constraint Language
PELA Propositional Encoding Language with Annotations
PLE Product Line Engineering
RT Reasoning Task
SIZE Size of individual models
SPL Software Product Line
STAL Spatio-Temporal Annotation Language
TG Type Graph
UML Unified Modeling Language
URN User Requirements Notation

Appendix A. STAL Grammar Definition

This appendix provides the grammar of the Spatio-Temporal Annotation Language
(STAL) discussed in Section 4.

Appendix A.1. Metagrammar

The following elements describe the metagrammar and styles used to define the STAL
grammar.

• <> for rules
• ::= for definitions
• { }∗ for 0 to many
• { }+ for 1 to many
• | for alternatives

Algorithms 2023, 16, 105 31 of 34

• bold for terminal symbols
• NATURAL for non-negative integers
• IDENTIFIER for Strings without spaces
• # text for comments

Appendix A.2. STAL Grammar

ALL here means all versions and configurations.
<STAL> ::= <annotation> { ; <annotation>}∗ | ALL
<annotation> ::= < <versions> , <configurations> >
ALL here means all versions.
<versions> ::= <singleversion> | <listversions> | <rangeversions> | ALL
In versions, ver1, ver2, ver3, . . . are sorted.
<singleversion> ::= verNATURAL
Nested lists, if any, are flattened.
<listversions> ::= (<versions> { , <versions>}+)
The first version value must be lower than the second version value.
<rangeversions> :: = [<singleversion> : <singleversion>]
ALL here means all configurations.
<configurations> ::= <singleconfig> | <listconfigs> | ALL
<singleconfig> ::= IDENTIFIER
<listconfigs> ::= (<singleconfig> { , <singleconfig>}+)

Note that certain modelers use a hierarchical version numbering scheme (versions 2.3.1
and 4.3.2, etc.); for simplification, these hierarchical numbers can be mapped to simple
integers while keeping the same ordering.

References
1. Stahl, T.; Voelter, M.; Czarnecki, K. Model-Driven Software Development: Technology, Engineering, Management; John Wiley & Sons,

Inc.: Hoboken, NJ, USA, 2006.
2. van Deursen, A.; Klint, P.; Visser, J. Domain-Specific Languages: An Annotated Bibliography. SIGPLAN Not. 2000, 35, 26–36.

[CrossRef]
3. Taentzer, G.; Mantz, F.; Arendt, T.; Lamo, Y. Customizable Model Migration Schemes for Meta-model Evolutions with Multiplicity

Changes. In Proceedings of the Model-Driven Engineering Languages and Systems, Miami, FL, USA, 29 September–4 October
2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 254–270. [CrossRef]

4. Henderson, K.; Salado, A. Value and benefits of model-based systems engineering (MBSE): Evidence from the literature. Syst.
Eng. 2021, 24, 51–66. [CrossRef]

5. Domingo, Á.; Echeverría, J.; Pastor, Ó.; Cetina, C. Evaluating the Benefits of Model-Driven Development. In Advanced Information
Systems Engineering; Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 353–367. [CrossRef]

6. Famelis, M.; Salay, R.; Chechik, M. Partial Models: Towards Modeling and Reasoning with Uncertainty. In Proceedings of the
34th International Conference on Software Engineering, ICSE’12, Zurich, Switzerland, 2–9 June 2012; IEEE: Piscataway, NJ, USA,
2012; pp. 573–583. [CrossRef]

7. Michelon, G.K.; Obermann, D.; Assunção, W.K.G.; Linsbauer, L.; Grünbacher, P.; Egyed, A. Managing Systems Evolving in
Space and Time: Four Challenges for Maintenance, Evolution and Composition of Variants. In Proceedings of the 25th ACM
International Systems and Software Product Line Conference (SPLC ’21)—Volume A, Leicester, UK, 6–11 September 2021; ACM:
New York, NY, USA, 2021; pp. 75–80. [CrossRef]

8. Palmieri, A.; Collet, P.; Amyot, D. Handling Regulatory Goal Model Families as Software Product Lines. In Proceedings of the
Advanced Information Systems Engineering, Stockholm, Sweden, 8–12 June 2015; Springer International Publishing: Cham,
Switzerland, 2015; pp. 181–196. [CrossRef]

9. Shamsaei, A.; Amyot, D.; Pourshahid, A.; Braun, E.; Yu, E.; Mussbacher, G.; Tawhid, R.; Cartwright, N. An Approach to
Specify and Analyze Goal Model Families. In System Analysis and Modeling: Theory and Practice, Innsbruck, Austria; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 34–52. [CrossRef]

10. Alwidian, S. Union Models: Support of Variability Modeling and Efficient Reasoning About Model Families over Space and Time.
Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2020. [CrossRef]

http://doi.org/10.1145/352029.352035
http://dx.doi.org/10.1007/978-3-642-41533-3_16
http://dx.doi.org/10.1002/sys.21566
http://dx.doi.org/10.1007/978-3-030-49435-3_22
http://dx.doi.org/10.1109/ICSE.2012.6227159
http://dx.doi.org/10.1145/3461001.3461660
http://dx.doi.org/10.1007/978-3-319-19069-3_12
http://dx.doi.org/10.1007/978-3-642-36757-1_3
http://dx.doi.org/10.20381/ruor-24425

Algorithms 2023, 16, 105 32 of 34

11. Alwidian, S.; Amyot, D. Inferring Metamodel Relaxations Based on Structural Patterns to Support Model Families. In Proceedings
of the MODELS Companion 2019 (ME 2019), Munich, Germany, 15–20 September 2019; IEEE CS: Piscataway, NJ, USA, 2019;
pp. 294–303. [CrossRef]

12. Alwidian, S.; Amyot, D. Union Models: Support for Efficient Reasoning About Model Families Over Space and Time. In
Proceedings of the System Analysis and Modeling. Languages, Methods, and Tools for Industry 4.0, Munich, Germany, 16–17
September 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 200–218. [CrossRef]

13. International Telecommunication Union. Recommendation Z.151 (10/18) User Requirements Notation (URN)—Language
Definition. 2018. Available online: https://www.itu.int/rec/T-REC-Z.151/en/ (accessed on 17 December 2022).

14. Seidl, C.; Schaefer, I.; Aßmann, U. Integrated Management of Variability in Space and Time in Software Families. In Proceedings
of the 18th International Software Product Line Conference (SPLC ’14)—Volume 1, Florence, Italy, 15–19 September 2014; ACM:
New York, NY, USA, 2014; pp. 22–31. [CrossRef]

15. Lity, S.; Nahrendorf, S.; Thüm, T.; Seidl, C.; Schaefer, I. 175% Modeling for Product-Line Evolution of Domain Artifacts. In
Proceedings of the 12th International Workshop on Variability Modelling of Software-Intensive Systems (VAMOS 2018), Madrid,
Spain, 7–9 February 2018; ACM: New York, NY, USA, 2018; pp. 27–34. [CrossRef]

16. Famelis, M.; Rubin, J.; Czarnecki, K.; Salay, R.; Chechik, M. Software Product Lines with Design Choices: Reasoning about
Variability and Design Uncertainty. In Proceedings of the 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), Austin, TX, USA, 17–22 September 2017; IEEE CS: Piscataway, NJ, USA, 2017;
pp. 93–100. [CrossRef]

17. Ehrig, H.; Ehrig, K.; Prange, U.; Taentzer, G. Fundamentals of Algebraic Graph Transformation (Monographs in Theoretical Computer
Science. An EATCS Series); Springer: Berlin/Heidelberg, Germany, 2006. [CrossRef]

18. Taentzer, G.; Rensink, A. Ensuring Structural Constraints in Graph-Based Models with Type Inheritance. In Proceedings of the
Fundamental Approaches to Software Engineering, Edinburgh, UK, 4–8 April 2005; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 64–79. [CrossRef]

19. Biermann, E.; Ermel, C.; Taentzer, G. Formal foundation of consistent EMF model transformations by algebraic graph transforma-
tion. Softw. Syst. Model. 2012, 11, 227–250. [CrossRef]

20. Ehrig, K.; Küster, J.M.; Taentzer, G.; Winkelmann, J. Generating Instance Models from Meta Models. In Formal Methods for Open
Object-Based Distributed Systems; Gorrieri, R., Wehrheim, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 156–170.
[CrossRef]

21. de Lara, J.; Bardohl, R.; Ehrig, H.; Ehrig, K.; Prange, U.; Taentzer, G. Attributed graph transformation with node type inheritance.
Theor. Comput. Sci. 2007, 376, 139–163. Fundamental Aspects of Software Engineering. [CrossRef]

22. Ehrig, H.; Prange, U.; Taentzer, G. Fundamental Theory for Typed Attributed Graph Transformation. In Graph Transformations;
Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 161–177. [CrossRef]

23. Van Der Straeten, R.; Mens, T.; Simmonds, J.; Jonckers, V. Using Description Logic to Maintain Consistency between UML
Models. In UML 2003—The Unified Modeling Language. Modeling Languages and Applications; Stevens, P., Whittle, J., Booch, G., Eds.;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 326–340. [CrossRef]

24. Heradio-Gil, R.; Fernandez-Amoros, D.; Cerrada, J.A.; Cerrada, C. Supporting commonality-based analysis of software product
lines. IET Softw. 2011, 5, 496–509. [CrossRef]

25. Famelis, M. Managing Design-Time Uncertainty in Software Models. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada,
2016. Available online: http://hdl.handle.net/1807/72997 (accessed on 8 February 2023).

26. NetworkX. Network Analysis in Python. 2022. Available online: https://networkx.org/ (accessed on 17 December 2022).
27. Tamás László, F. SATisPY Solver. 2018. Available online: https://github.com/netom/satispy (accessed on 28 March 2020).
28. Aprajita; Luthra, S.; Mussbacher, G. Specifying Evolving Requirements Models with TimedURN. In Proceedings of the IEEE/ACM

9th International Workshop on Modelling in Software Engineering (MiSE), Buenos Aires, Argentina, 21–22 May 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 26–32. [CrossRef]

29. Grubb, A.M.; Chechik, M. Formal Reasoning for Analyzing Goal Models That Evolve over Time. Requir. Eng. 2021, 26, 423–457.
[CrossRef]

30. Alwidian, S.; Amyot, D. “Union is Power”: Analyzing Families of Goal Models Using Union Models. In Proceedings of the
MODELS’20: 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS ’20),
Montreal, QC, Canada, 18–23 October 2020; ACM: New York, NY, USA, 2020; pp. 252–262. [CrossRef]

31. Pohl, K.; Böckle, G.; Linden, F. Software Product Line Engineering: Foundations, Principles, and Techniques; Springer:
Berlin/Heidelberg, Germany, 2005. [CrossRef]

32. Chimalakonda, S.; Hyung Lee, D. A family of standards for software and systems product lines. Comput. Stand. Interfaces 2021,
78, 103537. [CrossRef]

33. Berger, T.; Steghöfer, J.P.; Ziadi, T.; Robin, J.; Martinez, J. The State of Adoption and the Challenges of Systematic Variability
Management in Industry. Empir. Softw. Engg. 2020, 25, 1755–1797. [CrossRef]

34. Czarnecki, K.; Antkiewicz, M. Mapping Features to Models: A Template Approach Based on Superimposed Variants. In
Proceedings of the Generative Programming and Component Engineering, Tallinn, Estonia, 29 September–1 October 2005;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 422–437. [CrossRef]

http://dx.doi.org/10.1109/MODELS-C.2019.00046
http://dx.doi.org/10.1007/978-3-030-30690-8_12
https://www.itu.int/rec/T-REC-Z.151/en/
http://dx.doi.org/10.1145/2648511.2648514
http://dx.doi.org/10.1145/3168365.3168369
http://dx.doi.org/10.1109/MODELS.2017.3
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/978-3-540-31984-9_6
http://dx.doi.org/10.1007/s10270-011-0199-7
http://dx.doi.org/10.1007/11768869_13
http://dx.doi.org/10.1016/j.tcs.2007.02.001
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1007/978-3-540-45221-8_28
http://dx.doi.org/10.1049/iet-sen.2010.0022
http://hdl.handle.net/1807/72997
https://networkx.org/
https://github.com/netom/satispy
http://dx.doi.org/10.1109/MiSE.2017.10.
http://dx.doi.org/10.1007/s00766-021-00350-8
http://dx.doi.org/10.1145/3365438.3410963
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1016/j.csi.2021.103537
http://dx.doi.org/10.1007/s10664-019-09787-6
http://dx.doi.org/10.1007/11561347_28

Algorithms 2023, 16, 105 33 of 34

35. Beuche, D.; Papajewski, H.; Schröder-Preikschat, W. Variability management with feature models. Sci. Comput. Program. 2004,
53, 333–352. [CrossRef]

36. Schobbens, P.Y.; Heymans, P.; Trigaux, J.C.; Bontemps, Y. Generic semantics of feature diagrams. Comput. Netw. 2007, 51, 456–479.
[CrossRef]

37. Thüm, T.; Apel, S.; Kästner, C.; Schaefer, I.; Saake, G. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Comput. Surv. 2014, 47, 6. [CrossRef]

38. Classen, A.; Heymans, P.; Schobbens, P.Y.; Legay, A.; Raskin, J.F. Model Checking Lots of Systems: Efficient Verification of
Temporal Properties in Software Product Lines. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE ’10)—Volume 1, Cape Town, South Africa, 2–8 May 2010; ACM: New York, NY, USA, 2010; pp. 335–344.
[CrossRef]

39. Cordy, M.; Schobbens, P.Y.; Heymans, P.; Legay, A. Behavioural Modelling and Verification of Real-Time Software Product Lines.
In Proceedings of the 16th International Software Product Line Conference (SPLC ’12)—Volume 1, Salvador, Brazil, 2–7 September
2012; ACM: New York, NY, USA, 2012; pp. 66–75. [CrossRef]

40. Classen, A.; Cordy, M.; Heymans, P.; Legay, A.; Schobbens, P.Y. Formal semantics, modular specification, and symbolic verification
of product-line behaviour. Sci. Comput. Program. 2014, 80, 416–439. [CrossRef]

41. Chrszon, P.; Dubslaff, C.; Klüppelholz, S.; Baier, C. ProFeat: Feature-oriented engineering for family-based probabilistic model
checking. Form. Asp. Comput. 2018, 30, 45–75. [CrossRef]

42. Cordy, M.; Devroey, X.; Legay, A.; Perrouin, G.; Classen, A.; Heymans, P.; Schobbens, P.Y.; Raskin, J.F. A Decade of Featured
Transition Systems. In From Software Engineering to Formal Methods and Tools, and Back: Essays Dedicated to Stefania Gnesi on the
Occasion of Her 65th Birthday; Springer: Berlin/Heidelberg, Germany, 2019; pp. 285–312. [CrossRef]

43. Ananieva, S. Consistent Management of Variability in Space and Time. In Proceedings of the 25th ACM International Systems
and Software Product Line Conference (SPLC ’21)—Volume B, Leicester, UK, 6–11 September 2021; ACM: New York, NY, USA,
2021; pp. 7–12. [CrossRef]

44. Ananieva, S.; Kühn, T.; Reussner, R. Preserving Consistency of Interrelated Models during View-Based Evolution of Variable
Systems. In Proceedings of the 21st ACM SIGPLAN International Conference on Generative Programming: Concepts and
Experiences (GPCE 2022), Auckland, New Zealand, 6–7 December 2022; ACM: New York, NY, USA, 2022; pp. 148–163. [CrossRef]

45. Ananieva, S.; Greiner, S.; Krueger, J.; Linsbauer, L.; Gruener, S.; Kehrer, T.; Kuehn, T.; Seidl, C.; Reussner, R. Unified Operations
for Variability in Space and Time. In Proceedings of the 16th International Working Conference on Variability Modelling of
Software-Intensive Systems (VaMoS ’22), Florence, Italy, 24–25 February 2022; ACM: New York, NY, USA, 2022. [CrossRef]

46. Mahmood, W.; Strüber, D.; Anjorin, A.; Berger, T. Effects of Variability in Models: A Family of Experiments. Empir. Softw. Engg.
2022, 27, 72. [CrossRef]

47. Ananieva, S.; Greiner, S.; Kühn, T.; Krüger, J.; Linsbauer, L.; Grüner, S.; Kehrer, T.; Klare, H.; Koziolek, A.; Lönn, H.; et al. A
Conceptual Model for Unifying Variability in Space and Time. In Proceedings of the 24th ACM Conference on Systems and
Software Product Line: Volume A (SPLC ’20), Montreal, QC, Canada, 19–23 October 2020; ACM: New York, NY, USA, 2020.
[CrossRef]

48. Michelon, G.K.; Assunção, W.K.G.; Obermann, D.; Linsbauer, L.; Grünbacher, P.; Egyed, A. The Life Cycle of Features in
Highly-Configurable Software Systems Evolving in Space and Time. In Proceedings of the 20th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences (GPCE 2021), Chicago, IL, USA, 17–18 October 2021; ACM:
New York, NY, USA, 2021; pp. 2–15. [CrossRef]

49. Michelon, G.K.; Obermann, D.; Assunção, W.K.G.; Linsbauer, L.; Grünbacher, P.; Fischer, S.; Lopez-Herrejon, R.E.; Egyed, A.
Evolving software system families in space and time with feature revisions. Empir. Softw. Eng. 2022, 27, 112. [CrossRef]

50. Wittler, J.W.; Kühn, T.; Reussner, R. Towards an Integrated Approach for Managing the Variability and Evolution of Both
Software and Hardware Components. In Proceedings of the 26th ACM International Systems and Software Product Line
Conference—Volume B (SPLC ’22), Graz, Austria, 12–16 September 2022; ACM: New York, NY, USA, 2022; pp. 94–98. [CrossRef]

51. Famelis, M.; Chechik, M. Managing design-time uncertainty. Softw. Syst. Model. 2019, 18, 1249–1284. [CrossRef]
52. Dhaouadi, M.; Spencer, K.; Varnum, M.H.; Grubb, A.M.; Famelis, M. Towards a generic method for articulating design uncertainty.

J. Object Technol. 2021, 20, 3. [CrossRef]
53. Dhungana, D.; Grünbacher, P.; Rabiser, R. Domain-specific adaptations of product line variability modeling. In Proceedings of the

Situational Method Engineering: Fundamentals and Experiences, Geneva, Switzerland, 12–14 September 2007; Springer: Boston,
MA, USA, 2007; pp. 238–251. [CrossRef]

54. Stünkel, P.; König, H.; Lamo, Y.; Rutle, A. Multimodel correspondence through inter-model constraints. In Proceedings of the
Conference Companion of the 2nd International Conference on Art, Science, and Engineering of Programming, Nice, France,
9–12 April 2018; ACM: New York, NY, USA, 2018; pp. 9–17. [CrossRef]

55. Aprajita; Mussbacher, G. TimedGRL: Specifying Goal Models over Time. In Proceedings of the 2016 IEEE 24th International
Requirements Engineering Conference Workshops (REW), Beijing, China, 12–16 September 2016; IEEE: Piscataway, NJ, USA,
2016; pp. 125–134. [CrossRef]

56. Grubb, A.M.; Chechik, M. Looking into the Crystal Ball: Requirements Evolution over Time. In Proceedings of the 2016 IEEE 24th
International Requirements Engineering Conference (RE), Beijing, China, 12–16 September 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 86–95. [CrossRef]

http://dx.doi.org/10.1016/j.scico.2003.04.005
http://dx.doi.org/10.1016/j.comnet.2006.08.008
http://dx.doi.org/10.1145/2580950
http://dx.doi.org/10.1145/1806799.1806850
http://dx.doi.org/10.1145/2362536.2362549
http://dx.doi.org/10.1016/j.scico.2013.09.019
http://dx.doi.org/10.1007/s00165-017-0432-4
http://dx.doi.org/10.1007/978-3-030-30985-5_18
http://dx.doi.org/10.1145/3461002.3473067
http://dx.doi.org/10.1145/3564719.3568685
http://dx.doi.org/10.1145/3510466.3510483
http://dx.doi.org/10.1007/s10664-021-10112-3
http://dx.doi.org/10.1145/3382025.3414955
http://dx.doi.org/10.1145/3486609.3487195
http://dx.doi.org/10.1007/s10664-021-10108-z
http://dx.doi.org/10.1145/3503229.3547059
http://dx.doi.org/10.1007/s10270-017-0594-9
http://dx.doi.org/10.5381/jot.2021.20.3.a3
http://dx.doi.org/10.1007/978-0-387-73947-2_19
http://dx.doi.org/10.1145/3191697.3191715
http://dx.doi.org/10.1109/REW.2016.035.
http://dx.doi.org/10.1109/RE.2016.45

Algorithms 2023, 16, 105 34 of 34

57. Grubb, A.M.; Chechik, M. Reconstructing the past: The case of the Spadina Expressway. Requir. Eng. 2020, 25, 253–272. [CrossRef]
58. Hablutzel, K.R.; Jain, A.; Grubb, A.M. A Divide & Concur Approach to Collaborative Goal Modeling with Merge in Early-RE. In

Proceedings of the 2022 IEEE 30th International Requirements Engineering Conference (RE), Melbourne, Australia, 15–19 August
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 14–25.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00766-019-00321-0

	Introduction
	Motivation
	Formalization of Model Families
	Type Graphs and Typed Graphs
	Attributed Type(d) Graphs as E-Graphs
	Formalization of Model Families and Union Models

	Spatio-Temporal Annotation Language (STAL)
	Propositional Encoding Language with Annotations (PELA)
	Definitions
	Union of Propositional Encodings of Models
	Example

	Analysis and Reasoning with Model Families
	Reasoning Tasks
	RT1: Property Checking
	RT2: Trend Analysis
	RT3: Commonality Analysis

	Analysis and Experiments
	Methodology
	Implementation

	Results and Discussion
	Results for Property Checking (RT1)
	Results for Trend Analysis (RT2)
	Results for Commonality Analysis (RT3)
	Threats to Validity
	Summary and Discussion

	Related Work
	Conclusions and Future Work
	STAL Grammar Definition
	Metagrammar
	STAL Grammar

	References

