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Abstract 

Background  Loss of autonomy in day-to-day functioning is one of the feared outcomes of Alzheimer’s disease 
(AD), and relatives may have been worried by subtle behavioral changes in ordinary life situations long before these 
changes are given medical attention. In the present study, we ask if such subtle changes should be given weight as an 
early predictor of a future AD diagnosis.

Methods  Longitudinal data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were used to define a 
group of adults with a mild cognitive impairment (MCI) diagnosis remaining stable across several visits (sMCI, n=360; 
55-91 years at baseline), and a group of adults who over time converted from having an MCI diagnosis to an AD 
diagnosis (cAD, n=320; 55-88 years at baseline). Eleven features were used as input in a Random Forest (RF) binary 
classifier (sMCI vs. cAD) model. This model was tested on an unseen holdout part of the dataset, and further explored 
by three different permutation-driven importance estimates and a comprehensive post hoc machine learning 
exploration.

Results  The results consistently showed that measures of daily life functioning, verbal memory function, and a 
volume measure of hippocampus were the most important predictors of conversion from an MCI to an AD diagnosis. 
Results from the RF classification model showed a prediction accuracy of around 70% in the test set. Importantly, the 
post hoc analyses showed that even subtle changes in everyday functioning noticed by a close informant put MCI 
patients at increased risk for being on a path toward the major cognitive impairment of an AD diagnosis.

Conclusion  The results showed that even subtle changes in everyday functioning should be noticed when reported 
by relatives in a clinical evaluation of patients with MCI. Information of these changes should also be included in 
future longitudinal studies to investigate different pathways from normal cognitive aging to the cognitive decline 
characterizing different stages of AD and other neurodegenerative disorders.
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Introduction
Loss of autonomy in everyday life activities is a core 
symptom of neurodegenerative diseases, including 
Alzheimer’s disease (AD). It affects a wide range of 
activities of daily living (ADL), such as managing finances 
and medication, running errands, preparing meals, 
and maintaining interests and abilities to take part in 
already established hobbies [1]. In patients with AD, this 
deprivation of autonomy is closely related to a cognitive 
impairment that gradually tends to worsen [2].

Although the diagnostic criteria for the dementia 
syndrome of AD are not met until a patient shows a 
major functional disability in these ADL activities, more 
subtle alterations in ADL functions may raise concerns 
and worries both by patients and their relatives at a much 
earlier stage. The concept of mild cognitive impairment 
(MCI) is used to describe a stage between normal 
cognitive aging and the more severe decline of dementia 
characterizing patients with AD [3]. The importance of 
changes in ADL functions even at this stage is supported 
by studies showing their impact on the rate of subsequent 
progression to a more severe dementia syndrome 
[4–7]. These results point to the value of assessing 
everyday functioning as part of general practitioner’s 
(GP’s) consultations when a patient presents symptoms 
suspected of being early signs of a trajectory towards an 
AD diagnosis [8, 9].

In fact, both ADL alternations and cognitive symptoms 
tend to manifest themselves several years after the 
pathology is well established in the brain [10]. One of 
our previous studies [11] included performance on a 
set of cognitive tests and brain measures derived from 
a magnetic resonance imaging (MRI) examination as 
features to predict future AD in patients with an MCI 
diagnosis. When analyzed within a machine learning 
(ML) framework, the results showed the value of 
including both features as predictors. In the present study, 
we follow up on these results by adding information 
about daily life functioning as a feature in our prediction 
model, and by running post hoc analyses to build trust in 
the results generated from the prediction model and to 
improve the clinical interpretability of the results. By this, 
we aimed to investigate the value of even subtle changes 
in ADL activities as a predictor of a trajectory towards the 
more global dementia syndrome characterizing patients 
with AD.

Longitudinal data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) were used to define two 
groups: one group including adults with an MCI diagnosis 

that remained stable across all registered visits (sMCI), and 
a group of adults that over time converted from an MCI to 
an AD diagnosis (cAD). Daily life functioning was defined 
from reports on the functional activity questionnaire 
(FAQ). These reports were included in a Random Forest 
(RF) classification model together with performance 
on a set of psychometric tests of memory and executive 
function and MRI-derived brain measures of the volume of 
hippocampus and the lateral ventricle volumes (LVV). In 
addition to presenting model performance, comprehensive 
model interpretation was applied, including post hoc 
algorithms such as Shapley Additive exPlanation (SHAP) 
values and partial dependency plots (PDP). From previous 
studies, we expected that changes in daily life activities 
would consistently be among the features with the 
strongest importance [7] and that this importance would 
be shared by performance on tests of memory function 
and related brain structures (e.g., [11, 12]). Ultimately, by 
including two carefully selected groups of patients with 
MCI and analytic models, we aimed to contribute to the 
task of obtaining personalized prognostic information for 
patients at risk of developing a neurodegenerative disease.

Methods
Data set
The ADNI cohort
Data used in the preparation of this study were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public-private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical 
and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD). The study 
was approved by the institutional review boards of all 
participating ADNI centers. Written informed consent was 
obtained from all participants or authorized representatives 
after an extensive description of the ADNI study according 
to the Declaration of Helsinki. All methods were performed 
in accordance with relevant guidelines and regulations [13].

ADNI diagnose criteria
At inclusion, an MCI diagnosis was defined according to 
the following criteria: the presence of (1) cognitive com-
plaints, either reported by the participant, an inform-
ant, or a clinician; (2) objective memory impairment 
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defined as a score below the education-adjusted cut-
off on the Wechsler Memory Scale Revised, Logical 
Memory II sub-scale (delayed recall); (3) a Mini-Mental 
State Examination (MMSE) score between 24 and 30; 
(4) a clinical Dementia Rating (CDR) of 0.5; and (5) pre-
served functional abilities such that criteria for demen-
tia diagnosis were not fulfilled. AD diagnosis was based 
on the NINCDS/ADRDA criteria for probable AD, 
including memory complaint verified by a study partner, 
impaired memory function (defined as for MCI); MMSE 
scores between 20-24 and a CDR scale score of 0.5 or 
1.0. All diagnoses were made without the use of MRI 
scans or other biomarkers. Further details on the inclu-
sion and exclusion criteria used in the ADNI are given 
in the clinical protocols (http://​adni.​loni.​usc.​edu/​metho​
ds/​docum​ents/).

Subsample
The present study included results from a baseline 
assessment when all participants were diagnosed as 
MCI. Longitudinal data were used to define the fol-
lowing two groups (based on the ADNI-1, ADNI-2, 
ADNI-GO and ADNI-3 phases): a group of patients 
where the MCI diagnosis remained stable across all 
visits (mean 4.5 years follow-up) (sMCI) and a group 
of adults converting from MCI to AD at some time 
point during follow-up (cAD). All patients in either 
group were defined as MCI and AD, respectively, 

at the final time-point. A total of 708 patients were 
selected for the current study. After removing miss-
ing values, we were left with 360 patients defined as 
sMCI and 320 defined as cAD. Demographic infor-
mation for the two subgroups is displayed in Table 1. 
The data for the present study was downloaded in 
September 2020.

Cognitive, functional and MRI measures
Cognitive measures
Results on six psychometric tests were available at base-
line. Three scores assessing different aspects of verbal 
memory function were derived from the Rey Auditory 
Verbal Learning Test (RAVLT): immediate recall 
(RAVLT-Im, number of correct words recalled across 
the immediate recall of the five learning trials); delayed 
recall (RAVLT-Delay, number of correct words recalled 
at a 30-minute delayed free recall trial); and recognition 
(RAVLT-Recognition, number of words correctly rec-
ognized in a recognition trial). Three measures assess-
ing aspects of executive function were obtained from 
the time to complete parts A and B of the Trail Making 
Test (TMT) and the number of correct unique names 
reported on the Category Fluency Test (CFT, animals). 
These variables were selected because they were admin-
istered to a large fraction of ADNI participants. In addi-
tion, the total score from the geriatric depression scale 
(GDS) was acquired from the initial screening procedure 
of ADNI (GDS file) [14].

Table 1  Demographics, cognitive and functional characteristics on the included subsample extracted from the ADNI cohort. Total 
number of subjects, gender distribution, mean, range and standard deviations (SD) of age, education level, length of participation and 
functional and cognitive measures are given separately for the training and test sets in the two subgroups (sMCI and cAD)

sMCI (360) cAD (320)
Train (285)/Test (75) Train (255)/Test (65)

Demographics
Sex (F:M) 114:171/32:43 99:156/25:40

Age at inclusion [years]: mean (SD) 73.9 (7.4)/72.7(7.3) 73.9 (7.7)/73.9 (6.9)

Age at inclusion [years]: range 55-91/57.8-87.8 55.2-88.3/55-88.4

Education [years]: mean (SD) 15.8 (2.9)/16.2(2.9) 15.8 (2.9)/16.2(2.9)

Participation length [years]: mean (SD) 4.6 (2.8)/4.5(2.7) 5.0 (2.7)/5.5(2.8)

Cognitive function
RAVLT immediate recall: mean number (SD) 36.9(10)/36.8(9) 28.8(7.8)/30.7(6.9

RAVLT delayed: mean number (SD) 4.9(3.9)/4.6(3.6) 1.9(2.6)/2.4(2.7)

RAVLT recognition: mean number (SD) 11.2(3.2)/11.4(3.0) 9.3(3.5)/9.8(3.6)

TMTA: mean seconds (SD) 39(16)/38(12) 44(20)/44(26)

TMTB: mean seconds (SD) 109(60)/102(44) 134(72)/132(81)

CFT animals: mean number (SD) 17.7(5.1)/18.1(5.0) 15.8(4.9)/15.6(4.3)

Functional level
FAQ Total: mean (SD) 1.9(2.9)/2.4(4.6) 4.9(4.5)/4.5(4.6)

GDS: mean (SD) 1.6(1.5)/1.8(1.3) 1.7(1.4)/1.4(1.2)

http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/methods/documents/
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Reports on the functional activity questionnaire (FAQ)
The ability to independently perform activities of daily life 
(ADLs) was evaluated by asking relatives to complete the 
FAQ [15]. The questionnaire includes 10 items assessing 
functions related to the following everyday tasks: (1) writing 
checks, balancing a checkbook, and paying bills (FAQ Bills); 
(2) organizing tax, business, and insurance papers (FAQ 
Taxes); (3) shopping for clothes, household goods, and 
groceries (FAQ Shopping); (4) playing a game of skill such 
as chess or bridge or working on a hobby (FAQ Games); (5) 
heating water for coffee/tea and turning off the stove (FAQ 
Beverage/stove); (6) preparing a meal (FAQ Meal); (7) 
following current events (FAQ Events); (8) understanding 
a TV show, book, or magazine (FAQ Pay attention); (9) 
remembering appointments, family events, and medications 
(FAQ Remember Dates); and (10) planning travel away 
from the home by car or bus (FAQ Travel). Each item is 
rated as follows: 0 (can complete independently/normal), 1 
(has difficulty but performs task independently), 2 (requires 
assistance), or 3 (completely dependent upon a caregiver). 
The informant could also add the following information 
on each item: “Never did but could do now” coded as 0 
or “Never did and would have difficulty now” equals 1. A 
sum score across all items ranges from 0 to 30, with higher 
scores reflecting less independence in ADL activities. A cut-
off score of 9 (evaluated to be dependent in three or more 
activities) is recommended to indicate impaired function 
[15]. If the subject had never done one of these activities, the 
answer was coded as “not applicable” and excluded from the 
analyses conducted in the present study.

MRI measures
A standardized and well-described acquisition protocol 
developed by ADNI was to be followed at each of the 
multiple ADNI sites. MRI acquisition was applied on MR 
scanners of field strength 1.5 Tesla in ADNI-1 and 3.0 Tesla 
in the study phases ADNI-GO, ADNI-2, and ADNI-3. See 
http://​adni.​loni.​usc.​edu/​metho​ds/​mri-​analy​sis/​mri-​acqui​
sition for details. The ADNI consortium made available 
the results from processing the MRI data using FreeSurfer, 
but they used two different versions of the software (v.4.3 
and v.4.1). It is well known that using different versions of 
FreeSurfer may lead to discrepancies in atrophy estimates 
[11]. We therefore re-processed all included T1-Weighted 
MRI images by using the longitudinal stream of FreeSurfer 
v.7.1 [16] before entering the analyses of the present study. 
In the longitudinal stream, an unbiased within-subject 
template space and image [17] is created using robust, 
inverse consistent registration [16]. Several processing 
steps are included to improve reliability and statistical 
power [16], such as skull stripping, Talairach transforms, 
atlas registration, as well as spherical surface maps and 
parcellations that are then initialized with common 

information from the within-subject template. To reduce 
the effect of individual and gender differences in brain size, 
we normalized the volumes using the total intracranial 
volume measure estimated (eTIV) by FreeSurfer. Two 
brain measures were derived from the MRI examinations: 
volume measures of the hippocampus, regarded as a 
hallmark region for memory loss in neurodegenerative 
disease [18, 19], and the lateral ventricle volumes (LVV), 
used as a proxy of brain tissue volume [20–22]. We 
combined the volumes from the left and right hemispheres 
to improve the robustness of the measure.

Prediction of sMCI versus cAD
Training and test datasets
A machine learning framework was used to classify sub-
jects as belonging to one of the two pre-defined groups 
(sMCI and cAD). To assess the generalization ability of 
our predictive models, we put aside a test set containing 
21% of the subjects (n=140). Thus 79% of the participants 
formed the training dataset (n=540). The train and test 
sets were balanced by stratifying the two test sets with 
regard to age-bins, gender, and class belonging (Fig.  1). 
See Table  1 for information of demographics, cognitive 
test performances and functional ADL level of the sub-
jects in the two datasets. None of the subjects were pre-
sent in both the train- and test sets.

Random forest
For predicting those defined as sMCI versus those 
converting to AD, we applied a random forest algorithm 
[23] as implemented in scikit-learn. A random 
forest is a meta-estimator that fits several decision 
tree classifiers on various sub-samples of the data set 
and uses averaging to improve predictive accuracy and 
combat overfitting. To improve model performance, 
we conducted a grid search using 10-fold cross-
validation to identify model hyperparameters. The best 
parameters revealed by the search were utilized in the 
classifier: n_estimators=65, criterion=‘gini’, and max_
features=‘2’; min_samples_leaf=2; min_samples_split=2; 
max_dept=6.

To assess the model performance, we computed 
an accuracy (ACC), precision (PRE), recall (REC), 
and F1-score (F1), calculated for each fold and each 
classifier. To further assess the model performance, a 2x2 
confusion matrix was constructed, displaying the true 
labels versus the classification labels returned from the 
prediction on the hold-out validation set. To estimate 
the relative importance of the multimodal features, we 
calculated their importance score (range 0-1) using the 
mean decrease in impurity (Gini), as implemented in 
scikit-learn.

http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition
http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition
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Model interpretation
To clinically implement prediction models, they must 
be accurate as well as interpretable [24]. The present 
study therefore applied a diverse range of algorithms 
to enable a comprehensive evaluation of the models’ 
decision behavior. Permutation importance, also called 
mean decrease accuracy, was applied with an in-house 
algorithm that can group potentially correlated fea-
tures, inspired by the rfpimp R-package available via 
https://​github.​com/​parrt/​random-​forest-​impor​tances. 
Permutation importance is a robust data-driven tech-
nique assessing the relevance of features based on 
measuring the decrease in model accuracy when each 
feature is randomly shuffled multiple times. In the pre-
sent study, permutation was tested with 2000 repeti-
tions for each feature or group of features. The negative 
impact on performance when permuting an impor-
tant feature is larger than for less important features 
[23]. Additionally, we implemented a drop-feature 
setup based on the idea that a feature is important 
for a model if dropping the feature reduces the mod-
el’s performance. The importance score is defined as 
the re-trained model performance reduction, applied 
iteratively for one of the feature columns at a time 

(either single or grouped features). The permutations 
were shuffled 2000 times, and we reported the average 
importance values.

The specific effect on the prediction model within the 
range of values of each feature was investigated via par-
tial dependency plots (PDP) and individual composition 
expectation (ICE) plots. Partial dependence plots display 
the response for a single feature in the model while hold-
ing all other features constant [25]. Importantly, the plots 
can capture whether relationships between a feature or 
a set of features and specified targets are linear or more 
complex [25]. While PDP plots illustrate general effects 
across the cohort, the ICE plots display the prediction 
changes for each individual. Consult [24, 25] for further 
details.

The SHapley Additive exPlanations (SHAP) tech-
nique proposed by Lundberg and Lee [24, 26] was 
included as a third permutation-based method to 
investigate feature importances. While permutation 
feature importance is based on the decrease in model 
performance, SHAP values are based on the magni-
tude of feature attributions. Thus, a Shapley value for 
a given feature value can, in a prediction model frame-
work, be interpreted as the difference between the 

Fig. 1  Train-Test Balance. Controlling for gender, age bins, age and length of participation in years in the train (A) and test (B) set

https://github.com/parrt/random-forest-importances
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actual prediction and the average prediction for the 
whole dataset. We presented SHAP values visualized 
in a summary plot as it combines feature importance 
with feature effects. Hence, the plots will both show 
the direction and degree of influence on the model 
decision through the SHAP value of each variable and 
the sum of the absolute SHAP values. Furthermore, 
we also included a SHAP auto-cohort feature explana-
tion, utilizing a DecisionTreeRegressor from scikit-
learn and analyzed interaction effects between the 
included features.

Implementation
We used Python (v. 3.7.6), Jupyter Notebook, and 
the Python ecosystem for data science for our 
implementations. Figures  1, 3, 4, 5, 7B were produced 
using Matplotlib, while Figs.  6 and 7A were produced 
using pdbox.

Results
Predicting sMCI versus cAD ‑ random forest model 
performance
Reports on FAQ, performance on cognitive tests, and 
brain measures derived from MRI examinations were 
included as features in an RF classification model with 
a k-fold (k=10) grid search cross-validation procedure. 
When the trained model was tested on unseen data, 
predictions of class belongings were above chance level. 
In this hold-out test set the RF classifier obtained an 
accuracy, recall, precision, and F1 score of  73%, 69%, 
/72% and 70%, respectively.

We obtained single-subject predictions from the 
unseen test set, enabling detailed characteristics of the 
subgroups of correctly and wrongly classified patients. 
This information is described within each cell of the 
confusion matrix presented in Fig.  2 (see Table  S1 for 
details). The model misclassified 17

75
 sMCI subjects as cAD 

and 20
65

 cAD subjects as sMCI, resulting in a sensitivity 

Fig. 2  Confusion Matrix. The 2 × 2 confusion matrix computed for the sMCI and cAD labels returned from applying the trained nonlinear RF 
model prediction on the test set compared with the co-occurrences of the true (observed) sMCI/cAD (longitudinal defined diagnose) labels. The 
diagonal cells represent correctly classified subjects (the number of occurrences in each cell is given as N, TN: true negative, TP: true positive, FP: 
false positive, FN: false negative), and these cells are shaded in blue. Off-diagonal cells represent various events of misclassification. Observed/
predicted co-occurrences are also accompanied, for each cell, with corresponding information about sex ratio (F/M), mean(SD) in; FAQ: Functional 
Activity Questioner, GDS: Geriatric Depression Scale, RAVLT-Im: Rey Auditory Verbal Learning Test immediate recall, TMTB: Trail Making Test part B, HC: 
hippocampus volume, LVV: lateral ventricle volume
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Fig. 3  Feature Importance. Bar graph displaying the relative order of the eleven features (y-axis) when classifying sMCI versus cAD by the RF model 
evaluated on the hold-out validation set. The importance is estimated as gini importance. The x-axis shows the relative importance score. RAVLT: 
Rey Auditory Verbal Learning Test, TMT: Trail Making Test part A and B, CFT: Category Fluency Test; LVV: lateral ventricle volumes, GDS: Geriatric 
Depression Scale, FAQ: Functional Activity Questioner

Fig. 4  Permutation importance with grouping of correlated features. Displays permutation importance (right upper panel) and the drop-feature 
importance (right lower panel). Results are reported by taking the average across 2000 repetitions. The importance score (x-axis) is illustrated 
by the F1-score in the graphs, whereas the complete model evaluation table (accuracy, recall, precision, and F1 scores) is superimposed. Due to 
multicollinearity, illustrated in the correlation matrix (left panel), RAVLT subscores (Im, Delay and Recog) were grouped: RAVLT, and also for the two 
parts, A and B, of the TMT in the presented permutation results (right upper and lower panels)
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Fig. 5  SHAP importance. The figure displays the SHAP summary plot of the features of the RF model. A dot is created for each feature attribution 
value for the model of each subject. Dots are colored according to feature values. Thus, higher values (represented by red color) for FAQ and lower 
values for RAVLT -Im, -Delay, and HC (blue) increase the prediction of conversion to AD. Symmetrically, low values in FAQ and high values in RAVLT 
and HC decrease the prediction of conversion to AD. When the distribution is clustered around 0 indicates that the feature is less relevant. The more 
skewed the distribution, the more important the feature. The features are ordered according to their importance

Fig. 6  The dependence of the prediction on a single features. Illustrates the marginal effect of RAVLT Immediate (A) and hippocampus volume (B), 
have on our RF model. The X-axis represents the range of the feature, and the Y-axis shows changes in the prediction. Positive values represent the 
contribution of the feature to the increase in the odds to convert to AD. The shaded area represents the standard deviation. The same effects can be 
observed in the ICE plot and the PDP for RAVLT recall (A). However, the ICE plot for the hippocampus shows a skewed tendency (B)
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of 69% and specificity of 77%. Compared to the wrongly 
classified sMCI subgroup (14% - false negative), the cor-
rectly classified sMCI subgroup (41% - true negative) had 
on average lower age, higher performance on cognitive 
tests, a larger volume of the hippocampus, and lower vol-
umes of the lateral ventricles.

Furthermore, the correctly predicted cAD subgroup 
(32% - true positive) were characterized by lower 
performance on cognitive tests and larger hippocampal 
volume compared to the cAD subgroup that was falsely 
predicted as sMCI by the model (14% - false negative.) 
In addition, subjects within the correctly predicted cAD 
subgroup were also reported with the largest decline in 
everyday life functioning, and a large proportion within 
this subgroup had a FAQ score equal to or above 9. None 
of the 20 subjects with cAD misclassified as sMCI were 
rated above this cut-off. Some findings on the depression 
scale should also be noted. Only three participants 
obtained a score of 5 on the GDS, and they were all 
allocated to the correctly classified sMCI subgroup.

The ranking of the features in the RF model was esti-
mated using gini importance. Figure 3 displays the results 
from the ranking in the hold-out test dataset. The rela-
tive order of the eleven features shows that the FAQ was 
ranked as the most important feature. The importance of 
FAQ was closely followed by high values for immediate 
memory recall, hippocampus volume, and delayed mem-
ory recall.

Feature contribution: post hoc interpretation methods
We included a comprehensive analytic approach to 
evaluate the contributions of features generated from the 
RF prediction model.

Figure  4 displays permutation importance (right-
upper-panel) and drop-feature importance (right-lower-
panel) for feature estimations. Correlated features were 
grouped to avoid poor performance due to the presence 
of multicollinearity (see the pairwise Pearson’s corre-
lation matrix shown as a heat map in the left panel of 
Fig.  4). Thus, RAVLT subscores (immediate, delay, and 
recognition) and the two parts of TMT (A and B) were 
grouped and named RAVLT and TMT in the permuta-
tion importance and drop-feature importance analyses. 
The permutation importance algorithm measures how 
much the importance score decreases when a variable 
is shuffled, breaking any prior relationship between the 
variable and the target. RAVLT, FAQ, and hippocam-
pus volume were identified with the highest permuta-
tion importance, and thereby with a ranking similar to 
the one generated by the RF model (Fig. 3). The remain-
ing features showed less predictive power, and the LVV 
showed negative values, indicating that the ventricle vol-
umes did not provide important additional information 
in this predictive model. Furthermore, the drop-feature 
importance also emphasized the importance of RAVLT 
and FAQ for the model prediction. In this model, how-
ever, TMT was given a prediction power at the same level 

Fig. 7  Model exploration: PDP of the FAQ and SHAP auto-cohort split. A Illustrates the marginal effect the FAQ total score have on the RF model. 
The X-axis represents the range of FAQ values (0-30), and the Y-axis shows changes in the prediction. Positive values represent the contribution of 
the FAQ to the increase in the odds to convert to AD. The shaded area represents the standard deviation. The individual composition expectation 
(ICE) plot is superimposed on the PDP. B Two cohorts are optimally separated by the SHAP values by applying auto-cohort feature of explanation, 
utilizing a DecisionTreeRegressor from scikit-learn. By this, separation is given between those scoring less than 1.5 and those ≥ 1.5 in the FAQ. Hence, 
creating two cohorts with 65 and 75 subjects in each. The bar plot displays the mean SHAP values for each group for each feature
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as hippocampus volume. The drop-feature importance 
analysis still left LVV with negative values.

While permutation feature importance is based on 
the decrease in model performance, SHAP values were 
included to investigate the magnitude of feature attribu-
tions. Figure  5 illustrates feature importance based on 
estimates of SHAP values. Also, here, the FAQ was given 
the strongest importance. The summary plot combines 
feature importance with feature effects (Fig.  5). Each 
point on the summary plot is a SHAP value for a feature 
and an instance. The position on the y-axis is determined 
by the feature and on the x-axis by the SHAP value. Thus, 
the results show that higher values (represented by red 
color) for FAQ and lower values for immediate- and 
delayed -recall and hippocampus volume (blue) increase 
the strength of the prediction to convert to AD. Symmet-
rically, low values in FAQ and high values in RAVLT and 
hippocampus decrease the prediction of conversion from 
a mild to the more severe impairment characterizing the 
dementia of AD.

Taken together, the three feature importance results, 
permutation, drop-feature, and the SHAP summary-
plot, support the relevance of the features defined by the 
default RF model, suggesting that measures of everyday 
functioning, verbal memory, and hippocampus volume 
should be given weight in a model predicting conversion 
from MCI to an AD diagnosis.

The PDP was included to determine the marginal con-
tribution of each of the features to the RF model out-
put. From this, we could estimate the prediction within 
a range of values associated with an increased likelihood 
of being defined as cAD. By this, we could estimate the 
specific effect on the prediction associated with this 
increased likelihood within the range of values of each 
feature. Although somewhat artificial, separating the 
impact of each feature can give insight into the model’s 
behavior. PDP for the top three ranked features across 
our importance estimates, the FAQ, RAVLT immedi-
ate recall, and hippocampus volume is illustrated in 
Figs. 6 and 7A. The Y-axis shows changes in the predic-
tion. Positive values represent to what degree a feature 
increases the likelihood of correct prediction, while a 
reduction in this likelihood correspond to negative val-
ues. As expected, PDP results for the RAVLT immediate 
recall measure showed that remembering more words 
lowers the risk of being defined as cAD (Fig. 6A). In most 
individuals, there seems to be a critical gap between 33 
and 40 words, while fewer than 33 words seem to lower 
its predictive value. Looking at the individual effects 
from the ICE plots indicates the same tendency as in 
the PD plots regarding the immediate recall measure. 
Furthermore, the PDP results of hippocampus volume 
(eTIV-normalized) indicated that a larger volume tends 

to decrease the risk of conversion to AD up to 0.005 
mm3 (Fig. 6B). The ICE plot displays that most subjects 
with MCI follow this average prediction pattern. How-
ever, some skewed trends seem to appear. Some subjects 
with a higher probability of being defined as cAD seem 
to be dependent on a slightly enlarged hippocampus 
volume before volume appears to provide a protective 
effect. Thus, these results suggest considerably larger het-
erogeneity in this measure than in the immediate recall 
measure.

Finally, the PDP for the FAQ shows that even a slight 
increase in the FAQ score (1-2) increased the odds 
of converting from MCI to AD, and from score 5 and 
onward, there is an above 20% increased chance for 
such a disease progression (Fig. 7A). The same trend was 
displayed by the ICE plot. Additionally, Fig. 7B, illustrates 
two cohorts, with 65 and 75 subjects in each, that are 
optimally generated by applying auto-cohort SHAP 
explanation. Without predefined restrictions, consistently 
with the PDP of FAQ, a separation for defining two 
groups was automatically given between those scoring 
less than 1.5 and those scoring ≥ 1.5 on the FAQ. Thus, 
the SHAP values conditioned across these two groups 
may indicate how the feature may contribute differently 
to the RFs models’ decision behavior. Accordingly, the 
subgroup with lower FAQ scores may contribute to better 
prediction performance across features. The opposite 
effect seems to matter in the group of subjects with 
higher FAQ scores. The RAVLT delay recall score in these 
subjects also seemed more influential for the prediction 
than in the cohort with lower FAQ scores. Overall, the 
PDP for FAQ and the SHAP auto-split results underline 
the importance of subtle changes in the FAQ score for 
decision behavior in the current RF prediction model.

Discussion
Results from the RF classification model incorporating 
k-fold cross-validation, grid-search, and testing on 
a hold-out test set showed a prediction accuracy of 
around 70%. Clinical descriptions of correctly classified 
and misclassified patients included well-known 
AD traits in patients who were correctly and falsely 
allocated to the group of patients with MCI who over 
time were diagnosed with AD. A strong weight was 
given to everyday functioning, verbal memory, and 
a volume measure of the hippocampus. This finding 
was consistently supported across three different 
permutation-driven estimates of feature importance. To 
build confidence in the results, we used additional post 
hoc analyses to investigate which features contributed 
considerably to the RF model. The post hoc analyses i) 
showed that even subtle changes in everyday functioning 
noticed by a close informant put MCI patients at 
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increased risk for an AD diagnosis later in life, ii) showed 
the robustness of memory function as a clinical predictor 
and iii) illustrated the heterogeneity of volume measures 
of the hippocampus.

The FAQ is known as a valid instrument to assess 
functional activity levels in older adults [15, 27]. However, 
a questionnaire will always only give an indirect measure 
of the skills and behavior described by the items. Both 
over- and under-estimations are therefore expected. Thus, 
we find it intriguing that FAQ was identified among the 
top three most important features by the RF model and 
that three independent permutation estimates confirmed 
this. An AD diagnosis is defined when cognitive deficits 
are severe enough to interfere with daily life functioning. 
Impaired cognitive function is also present in patients 
with an MCI diagnosis, but this impairment should not 
interfere with daily life functioning. The present study 
indicates that this is not always the case. Originally, 
a FAQ score equal to or above 9 (preferably, but not 
exclusively, dependent on three or more activities) is 
used to indicate impaired ADL function [15]. As shown 
in the confusion matrix (Fig.  2), 10 of 45 MCI patients 
who later were diagnosed with AD were rated with a 
score of 9 already at the baseline examination. The mean 
for this subgroup was 5.7, while the mean FAQ score was 
much lower (1.8) for both those who were correctly and 
falsely classified as sMCI. Interestingly, recent studies 
suggest that the cut-off score for impairment should be 
5 or 6 [28]. The results in the present study indicated 
an even lower threshold value. As displayed in Fig.  7A, 
the marginal effect of FAQ total score on our RF model 
indicates that even a slight increase in the FAQ score 
(1-2) of a patient with MCI elevates the odds of a future 
AD diagnosis. For example, from a score of 5 points, there 
is more than 20% increased chance for an MCI patient 
to be on a path towards an AD diagnosis, and a similar 
trend can be observed in the superimposed ICE plot. 
Similarly, the auto-two-cohort split illustrated in Fig. 7B 
optimally separated the SHAP values between those 
subjects scoring less than 1.5 (n=65) and those ≥ 1.5 on 
the FAQ (n=75). According to the mean SHAP values, 
lower FAQ scores may contribute to better prediction 
performance across features. The opposite was displayed 
in the cohort of patients with higher FAQ scores, where 
the performance on the delayed recall test seemed to 
be more influential. This is in line with previous studies 
suggesting that while learning is a sensitive diagnostic 
measure for MCI, poor performance on a delayed recall 
test puts an MCI patient at higher risk of progressing to 
dementia [29, 30]. Still, the FAQ was considered to be 
most important for the prediction also in this subgroup 
of subjects, all with a FAQ score of ≥ 1.5. The present 
results support the inclusion of measures of everyday 

life activities already at an initial clinical evaluation of 
patients presenting symptoms indicating MCI [31].

The correctly and misclassified patients’s characteristics 
also gave some interesting results among the subgroup 
of sMCI patients who were falsely classified as cAD. 
A more detailed investigation of sub-items from FAQ 
(Table  S1) showed that this subgroup was impaired on 
items described as particularly predictive of dementia 
in previous studies: paying bills (finance), organizing 
taxes (form), and remembering dates [31]. Thus, further 
studies should investigate the predictive power of specific 
clusters of impaired daily life functioning and whether 
some sub-items are more vulnerable to reporting biases 
than others. By removing and adding items well adapted 
to the age and nationality of the patient, one could try 
to improve the instrument’s validity. Furthermore, in 
ADNI, patients with clinical depression were excluded 
from the dataset, motivated by studies showing MCI in 
patients with depression and that successful treatment 
of even mild symptoms of depression may reverse an 
MCI diagnosis [32]. Thus, none of the patients in our 
sample obtained a GDS score above 5. It is also worth 
noticing that the highest mean GDS scores are found in 
the correctly classified sMCI subgroup, and it is only in 
this subgroup we find subjects with a score of 5 on this 
depression scale (Fig. 2). Moreover, characteristics of the 
patients wrongly classified as stable MCI while the true 
outcome was AD showed a larger hippocampus volume, 
preserved LVV, and higher cognitive performance level 
than the correctly classified cAD. On the other hand, 
those patients falsely classified as converters to AD had 
a similar pattern of cognitive and structural decrease 
as the patients correctly predicted as cAD. Overall, 
these results illustrate the brain-behavior complexity. 
Although the current study is not appropriate to directly 
study this relationship, the described profiles of subjects’ 
classification are in line with the age-related brain 
maintenance [33, 34] and cognitive reserve hypotheses 
[35, 36].

Furthermore, the present study supports that 
impairment of memory function and reduced volumes 
in related morphometrical brain regions are hallmarks 
of early stages of AD [37–39]. As expected from previous 
studies from our group [11, 12], the current results 
accorded memory function and total hippocampus 
volume substantial weights in the prediction model. In 
addition, the present study added information about the 
relations between these impairments and reports on the 
FAQ. As illustrated by the SHAP interaction estimates 
shown in Fig. S1, the performance on FAQ, as well as on 
measures of memory function, and hippocampus volume, 
seem to have unique contributions to our classification 
model. The SHAP summary plot further illustrates that 
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larger deficits in functional activities level, a lower verbal 
memory function and hippocampus volume improve the 
prediction of conversion to AD. In contrast, a decrease 
in this prediction is associated with preserved levels in 
these measures. These SHAP results are in accordance 
with the expected decline in ADL, memory-related 
brain structure, and cognitive function characterizing 
the dementia of an AD patient and thus give confidence 
to our RF model decisions. By visual inspections of 
the dependency plots (Fig.  6), both the general and 
individual descriptions suggest that a low number of 
words immediately recalled from a word-list by a patient 
with MCI increases the odds of converting to an AD 
diagnosis by about 20% in our model. Most individuals 
seem to have a critical point between 33 and 40 words. 
Furthermore, the skewed trend illustrated by the ICE 
plot for hippocampus volume suggests the inclusion 
of subjects with somewhat different model behavioral 
patterns. While the general tendency shown in the PDPs 
indicated that larger volumes, up to 0.005 mm3, seem to 
decrease the risk of converting to AD, this may not be the 
case for all patients. The marginal effect on the prediction 
showed that a higher probability of converting to AD 
seems to be dependent on a slightly larger hippocampus 
volume before it has a protective effect. However, the 
contribution of hippocampus volume in our RF model 
should be interpreted with caution. Although the 
hippocampus is one of the most studied AD-related brain 
regions, it should not qualify as a stand-alone measure 
for an early diagnosis of dementia [40].

In that regard, some strengths and limitations should be 
mentioned. The pre-processing of the MRI data using the 
longitudinal stream of FreeSurfer [16] is a strength of the 
present study by increasing the reliability of the extracted 
hippocampus volume [41]. Combined bilateral brain 
volumes were also used to provide a reliable measure of 
the ventricle and hippocampus volumes [42, 43]. However, 
asymmetrical patterns in hippocampal volumes have been 
associated with MCI and AD differences [44]. Recent 
studies have also investigated parcellated subregions of 
the hippocampus to improve our understanding of this 
biomarker [45]. Thus, follow-up studies should expand on 
the present processed data and investigate the predictive 
values of subcomponents of the hippocampus and other 
related brain structures such as the entorhinal cortex [46], 
including both combined and lateralized measures of the 
brain volumes. In addition, future explorations should 
also consider the inclusion of a nonparametric Bayesian 
framework that allow for probability distributions in order 
to generalize the specific and joint feature prediction 
contribution [47].

A final remark should be given to the prediction per-
formance and the methodology used in the present 

study. Here, two groups were defined according to their 
longitudinally defined diagnosis. We investigated the 
contribution of information about everyday life func-
tioning in the context of well-defined cognitive and 
MRI markers in predicting disease outcomes. ADNI 
holds strict inclusion criteria, aiming to encounter 
amnestic MCI. MCI is nevertheless regarded as a het-
erogeneous diagnostic category both in terms of clini-
cal symptoms [48, 49], structural deterioration [50–52], 
and temporal disease stage progression [53, 54]. A pre-
diction at a modest level by our ML approach should 
thus be expected. The accuracy achieved in the current 
study is below what should be considered sufficient to 
enable direct implementation in clinical practice. Still, 
we believe that the results should inspire further work 
toward developing automated prognostic tools within 
a person-specific multi-factorial clinical framework. A 
main contribution of the present study was to show that 
FAQ was selected as one of the most predictive features. 
In that FAQ takes a relatively short time to administer, it 
should be easy to implement as part of a comprehensive 
clinical assessment of patients with mild as severe cogni-
tive impairment. This suggests that the clinical validity 
of questionnaires like FAQ should be a topic for future 
research. The present study also contributed by includ-
ing analytic models needed in the area of precision 
medicine [24]. Future explorations should go beyond 
such supervised learning, e.g., by including a functional 
random forest model  [55–57]. Using this and other 
methods, it should be possible to detect distinct mecha-
nisms in subgroups defined within the diagnosis of MCI. 
Future models, preferably with higher accuracy levels, 
should be evaluated also on external validation data 
[58]. Finally, although the post hoc SHAP exploration 
supports the general feature importance in our predic-
tion model, model explainability should be interpreted 
with caution [58, 59]. Approximation of Shapley values, 
e.g., the active coalition of variables (ACV) proposed by 
Amoukou and colleagues, should be considered in the 
context of correlated features [60].

Conclusion
In conclusion, three different permutation-driven 
estimates consistently supported the importance of 
including measures of everyday functioning in a model 
predicting future conversion to AD. The diverse post hoc 
ML explorations indicated that even subtle changes in 
everyday functioning might predict progression to AD at 
an early stage of the disease. Therefore, this information 
should be included as part of an initial multi-factorial 
clinical evaluation of patients with MCI. Information 
on these changes should also be included in future 
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longitudinal studies of different pathways from normal 
cognitive aging to the cognitive decline characterizing 
different stages of AD and other neurodegenerative 
disorders.
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