
Citation: Katona, J. An Eye

Movement Study in Unconventional

Usage of Different Software Tools.

Sensors 2023, 23, 3823. https://

doi.org/10.3390/s23083823

Academic Editor: Cosimo Distante

Received: 9 March 2023

Revised: 2 April 2023

Accepted: 6 April 2023

Published: 8 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Eye Movement Study in Unconventional Usage of Different
Software Tools
Jozsef Katona 1,2,3

1 CogInfoCom Based LearnAbility Research Team, Department of Software Development and Application,
Institute of Informatics, University of Dunaujvaros, 2400 Dunaujvaros, Hungary; katonaj@uniduna.hu or
katona.jozsef@kvk.uni-obuda.hu or Jozsef.Katona@hvl.no; Tel.: +36-25-551-605

2 Department of Instrumentation and Automation, Institute of Electronics and Communication Systems,
Kandó Kálmán Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary

3 Department of Computer Science, Electrical Engineering and Mathematical Sciences,
Faculty of Engineering and Science, Western Norway University of Applied Sciences, 5063 Bergen, Norway

Abstract: One of the main challenges of Human-Computer Interaction is the creation of UIs that
enable the use of different systems in an easy and understandable method. The study analyses the
student audience who uses software tools differently from the basis. In the research, two languages
supporting UI implementation related to .NET technology, XAML and classic C#, were compared in
terms of the cognitive load of test subjects. The results of the traditional knowledge level assessment
tests and the answers to the questionnaires show that the UI implementation described in XAML is
easier to read and understand than the same description in classic C#. When viewing the source codes,
the eye movement parameters of the test subjects were also recorded and then evaluated, where a
significant difference in the number and duration of fixations was observed, i.e., the interpretation of
the classic C# source code showed a larger cognitive load. Overall, the results of the eye movement
parameters supported the results of the other two measurement methods when comparing the
different types of UI descriptions. The results established in the study and its conclusion may have
an impact on programming education as well as industrial software development in the future, and
also clearly shows the importance of choosing the development technology that best suits the person
or development team.

Keywords: XAML; classic C#; cognition load; eye-tracking; programming

1. Introduction

Software development has now become a critically complicated and complex process,
as the production of source codes to be implemented, and later improved and maintained,
is an increasingly difficult task. In order to facilitate the process, developers come up with
new techniques, technologies, methods, tools, and paradigms.

Although GUI development environments are available today that effectively support
development in this direction without even writing a single line of source code, there are
basically two problems with this kind of approach. The first is that those students who, for
example, only put together the graphic interfaces using the drag&drop method often do not
understand what kind of code is generated in the background. The second is that, in most
cases, these methods pollute the source code and generate more code than is absolutely
necessary. This makes the code harder to understand and read and ultimately maintain. The
GUI interface can be implemented at the source code level in several languages and tools.

One such tool is XAML (eXtensible Application Markup Language), which is an XML
(Extensible Markup Language)-based declarative markup language that greatly simplifies
the creation of user interfaces (UI). The language plays a particularly important role in
the .NET framework, and it can be especially important in the development of WPF
(Windows Presentation Foundation) or Xamarin applications, where the UI data elements,

Sensors 2023, 23, 3823. https://doi.org/10.3390/s23083823 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23083823
https://doi.org/10.3390/s23083823
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8188-2425
https://doi.org/10.3390/s23083823
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23083823?type=check_update&version=2

Sensors 2023, 23, 3823 2 of 14

data bindings, and other services, etc. defines. In addition to all this, every XAML element
type can be matched to a .NET class and the declarative description to the imperative code,
the consequence of which is that everything we describe in XAML can also be described
with classic C# code, so we can also dynamically create UI controls. However, creating an
entire window completely in classic C# can result in much more complex and difficult-to-
understand code. In WPF or Xamarin, XAML allows UI design and business logic to be
managed or handled separately, resulting in much more readable code [1].

Figure 1 shows a semantically identical but different source code in the used language.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 15

.NET framework, and it can be especially important in the development of WPF (Win-
dows Presentation Foundation) or Xamarin applications, where the UI data elements, data
bindings, and other services, etc. defines. In addition to all this, every XAML element type
can be matched to a .NET class and the declarative description to the imperative code, the
consequence of which is that everything we describe in XAML can also be described with
classic C# code, so we can also dynamically create UI controls. However, creating an entire
window completely in classic C# can result in much more complex and difficult-to-under-
stand code. In WPF or Xamarin, XAML allows UI design and business logic to be managed
or handled separately, resulting in much more readable code [1].

Figure 1 shows a semantically identical but different source code in the used lan-
guage.

(a) (b)

Figure 1. XAML; (a) and classic C# (b) source code is semantically identical.

However, based on industrial and educational feedback, choosing the right toolkit is
not always a clear task due to, among other things, the different cognitive abilities charac-
teristic of individuals [2,3]. An objective examination of programming as a complex cog-
nitive activity [4] can contribute to the implementation and implementation of more effec-
tive applications and software systems, as well as to the selection of the toolbox that best
suits developers [5]. Eye movement tracking systems, which can be classified as human-
computer interfaces, make it possible to objectively examine the readability and compre-
hensibility of the source code of software, as well as the overall cognitive load, by analyz-
ing the path of the human gaze.

Recently, more and more research has been published that aims to reduce the costs
of software development phases by using eye movement tracking systems since the ob-
servation and study of the gaze path are suitable for the analysis of more complex cogni-
tive processes. A group of researchers studies the planning phase of the development cy-
cle. Within the group, some of the visual patterns used to design UML class diagrams that
provide a framework for object-oriented programs, as well as the cognitive effect of their
application [6–8], while others analyze the layout of these diagrams and the resulting
more effective comprehensibility and readability [9–11]. Another group of research anal-
yses the product of the implementation activity, i.e., the readability, comprehensibility,
and complexity of the created source codes [12,13]. In a study by Crosby & Stelovsky [14],
they analyzed how subjects read a source code or text in their native language. As a result
of the research, it was stated that a significant difference could be shown in the way of
reading and reviewing the two types of text because, in the case of program codes, longer
recording times were present. Crosby, Schlotz & Wiedenbeck [15] observed that novice
programmers put much more emphasis on reading comments and additional information
than their more experienced.

The aim of the research is to examine which language can be used to create a more
understandable, readable, and at the same time, maintainable UI source code. In addition
to the comprehension questions, the eye movement parameters of the test subjects were
recorded and evaluated in order to reveal possible associations. In Section 2, the article

<Grid>
 <TextBlock Grid.Column="1"
 Grid.Row="1"
 Grid.ColumnSpan="3"
 FontSize="28"
 Margin="0, 0, 0, 10"
 Text="Personal Information"/>
</Grid>

Grid grid = new Grid();
TextBlock txtBlckPersonalInformation = new TextBlock()
{
 FontSize = 28,
 Margin = new Thickness(0, 0, 0, 10),
 Text = "Personal Information"
};

Grid.SetColumn(txtBlckPersonalInformation, 1);
Grid.SetRow(txtBlckPersonalInformation, 1);
Grid.SetColumnSpan(txtBlckPersonalInformation, 3);

Figure 1. XAML; (a) and classic C# (b) source code is semantically identical.

However, based on industrial and educational feedback, choosing the right toolkit
is not always a clear task due to, among other things, the different cognitive abilities
characteristic of individuals [2,3]. An objective examination of programming as a complex
cognitive activity [4] can contribute to the implementation and implementation of more
effective applications and software systems, as well as to the selection of the toolbox that
best suits developers [5]. Eye movement tracking systems, which can be classified as
human-computer interfaces, make it possible to objectively examine the readability and
comprehensibility of the source code of software, as well as the overall cognitive load, by
analyzing the path of the human gaze.

Recently, more and more research has been published that aims to reduce the costs of
software development phases by using eye movement tracking systems since the obser-
vation and study of the gaze path are suitable for the analysis of more complex cognitive
processes. A group of researchers studies the planning phase of the development cycle.
Within the group, some of the visual patterns used to design UML class diagrams that
provide a framework for object-oriented programs, as well as the cognitive effect of their
application [6–8], while others analyze the layout of these diagrams and the resulting more
effective comprehensibility and readability [9–11]. Another group of research analyses
the product of the implementation activity, i.e., the readability, comprehensibility, and
complexity of the created source codes [12,13]. In a study by Crosby & Stelovsky [14], they
analyzed how subjects read a source code or text in their native language. As a result of the
research, it was stated that a significant difference could be shown in the way of reading
and reviewing the two types of text because, in the case of program codes, longer recording
times were present. Crosby, Schlotz & Wiedenbeck [15] observed that novice programmers
put much more emphasis on reading comments and additional information than their
more experienced.

The aim of the research is to examine which language can be used to create a more
understandable, readable, and at the same time, maintainable UI source code. In addition
to the comprehension questions, the eye movement parameters of the test subjects were
recorded and evaluated in order to reveal possible associations. In Section 2, the article
provides a short literature review of the WPF technology, along with the application
possibilities of the classic C# and XAML languages. In Section 3, the tools, materials, and
methods used for the research are described in more detail. Sections 4 and 5 evaluate the

Sensors 2023, 23, 3823 3 of 14

results of the research and formulate the discussions that can be drawn from the determined
results. A shorter conclusion can be read in the last section.

2. Theoretical Background

In the research of Zhang & Liu [16], WPF technology was used in the implementation
of the intelligent, client-server-based system for automatic battery bag detection, which is
the basis of their research. The developed system is based on a three-layer (Presentation,
Logic, and Data) architectural design model, so the UI was separated from the business
logic of the application, and the results recorded and determined during the measurements
were stored in a MySQL-based database and made exportable for carrying out further tests.

Kozminski [17] examined how important it is to design a user-friendly UI during a
possible emergency intervention. A well-designed UI can reduce operator errors and test
times while increasing efficiency. The article also discusses the WPF technology, which
enables more intuitive, easier-to-use, and higher-quality UI development in a shorter time.

Wang et al. [18] developed a productivity-enhancing office automation (OA) system
for small and medium-sized companies. After getting to know the specific work and
management processes of companies, the functional and non-functional requirements of
an application can be more easily explored. The authors used WPF technology for the
software development, which is the basis of the research, as it supported the tools that
increase the efficiency of the development, such as functional module design, multi-level
architecture implementation, etc. The new OA system provides ease of use and improves
the level of information management.

Lew et al. [19] showed that operators of critical processes have to deal with the
continuous challenges of complex systems. During the research, it was stated that the
development of human-machine interfaces (HMI) is of particular importance from the
point of view of the safety and reliability of the operation. There are very few tools available
for the efficient design and implementation of HMIs, so the authors formulated suggestions
during their investigation that, based on WPF technology, can be well-matched and adapted
to the HMI research and development required for process control.

Belenesi et al. [20] compare the possibilities of the UWP (Universal Windows Platform)
framework published in recent years with WPF. Based on the results, it can be stated that
an important factor of a framework can be the target device for which the application
is developed.

During the research of Filipova-Petrakieva & Shopov [21], a desktop application
related to data security was developed, the main purpose of which is to create educational
software presenting the coding and decoding of information. Software tools such as C#,
.NET Framework, WPF and XAML, and Entity Framework were used to implement the
application. Based on the obtained results, it can be stated that the implemented software
can effectively present the operation of the different encryption algorithms.

Guzsvinecz et al. [22] developed a desktop application using WPF for human motion
classification. By designing an easy-to-use GUI, their aim was to support telerehabilitation
on home computers with low-cost sensors such as the Microsoft Kinect. Their algorithm is
able to predict repeating—but possibly changing—gestures of the patients without the use
of machine learning methods.

In their research, Zhang & Ruan [23] implemented the online monitoring of gantry
cranes based on the WPF platform and in a virtual reality (VR) environment. Since WPF
effectively supports vector graphic development, it serves as a good basis for 3D dynamic
monitoring of devices and equipment. By using stress analysis, the system can predict the
safety risk in the steel structure in a predictive manner, so it can determine the condition of
the gantry cranes.

The short literature background research supports the applicability and importance
of WPF technology in the design and development of user-friendly UI. In addition to the
classic C# language, the technology also makes XAML available to developers to implement
this type of interface.

Sensors 2023, 23, 3823 4 of 14

If we want to somehow measure the cognitive load of performing a task, we can
measure test-related performance indicators [24], reveal subjective opinions using ques-
tionnaires [25], or use non-invasive psychophysical tools [26].

Nowadays, different tools are available that can measure cognitive load in real
time [27–29]. With the help of eye movement tracking devices, we can record parame-
ters such as fixation, saccade, or pupil diameter [30], and these parameters can also provide
information about the attention level and cognitive status of a test subject [31].

Based on the above, the following research questions were formulated:
Research Question 1 [RQ1]: Can a significant difference be detected in the results of

the tests with regard to the two languages?
Research Question 2 [RQ2]: Can a significant difference be detected in the visual

parameters of the tests with regard to the two languages?

3. Materials and Methods

During the research, a total of 4 UI descriptions were used, which used elements of
the same toolbox (e.g., buttons, labels, input fields, etc.), so the difficulty of their readability
and their level of comprehensibility were the same. Of the 4 UI descriptions, 2 were written
in XAML, while another 2 were written in classic C# in the Visual Studio development
environment. In order to ensure that the difference in the knowledge levels of the test
subjects does not affect the final result, a test subject had to interpret the UI written in both
languages in each case. After studying the source codes, a knowledge-level assessment
test examining the interpretability of the UI had to be completed. Finally, a subjective
questionnaire consisting of a few questions examining readability and comprehensibility
had to be filled out. The process describing the test is briefly summarized in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 15

Figure 2. A schematic diagram of the equipment setup.

(a) (b)

Figure 3. GP3 eye-tracker device; (a) and the recording module of OGAMA software package (b).

3.1. Test Subjects
The test was attended by 36 university students (10 woman and 26 man, age: M =

20.25 SD = 1.05), who successfully completed the subjects containing the study materials,
the knowledge of which is essential for solving the tests. The test subjects volunteered for
the test and declared themselves to be completely healthy. They were not under the influ-
ence of any medication and had no difficulties in reading or learning in the past and dur-
ing this examination. Based on the results of the programming subject, test subjects with
better-than-average programming skills and a similar level of knowledge were selected.

3.2. Test Conditions and Steps of the Research
The description of the UI interface as illustrated in the Visual Studio development

environment on an LG22M45 22” monitor capable of 1920 × 1080 resolution. The GP3 unit
was placed under the monitor at a distance of approximately 65 cm from the eyes of the
test subjects. So that the test subjects are not affected by sudden changes in light, I natu-
rally used uniform lighting. For each UI description, 1 XAML and 1 classic C# description
were randomly selected for the test subjects. Since the density of images or texts can affect
information processing [35], comprehensibility and easy readability are also important
points in UI descriptions, so it was tried to set the same distance between the texts and the
source codes. A total of 36 XAML and 36 classic C#-based eye movement parameter pack-
ages were saved in a database for further evaluation.

A schematic diagram of the testing environment is shown in Figure 4.

Figure 2. A schematic diagram of the equipment setup.

During the examination and interpretation of the source codes, the eye movement
parameters of the test subjects were continuously recorded and subsequently evaluated
using GazePoint 3 (GP3) (https://www.gazept.com/product/gazepoint-gp3-eye-tracker/,
accessed on 1 March 2023) eye-tracker device and the OGAMA (http://www.ogama.net/,
accessed on 1 March 2023) open-source software package. The device and the software
package used are cost-effective, and several researchers have already used them successfully
for previous research [32–34]. Figure 3a shows the GP3 research-grade eye tracker hardware
unit, and Figure 3b the recording module of the OGAMA software package.

https://www.gazept.com/product/gazepoint-gp3-eye-tracker/
http://www.ogama.net/

Sensors 2023, 23, 3823 5 of 14

Sensors 2023, 23, x FOR PEER REVIEW 5 of 15

Figure 2. A schematic diagram of the equipment setup.

(a) (b)

Figure 3. GP3 eye-tracker device; (a) and the recording module of OGAMA software package (b).

3.1. Test Subjects
The test was attended by 36 university students (10 woman and 26 man, age: M =

20.25 SD = 1.05), who successfully completed the subjects containing the study materials,
the knowledge of which is essential for solving the tests. The test subjects volunteered for
the test and declared themselves to be completely healthy. They were not under the influ-
ence of any medication and had no difficulties in reading or learning in the past and dur-
ing this examination. Based on the results of the programming subject, test subjects with
better-than-average programming skills and a similar level of knowledge were selected.

3.2. Test Conditions and Steps of the Research
The description of the UI interface as illustrated in the Visual Studio development

environment on an LG22M45 22” monitor capable of 1920 × 1080 resolution. The GP3 unit
was placed under the monitor at a distance of approximately 65 cm from the eyes of the
test subjects. So that the test subjects are not affected by sudden changes in light, I natu-
rally used uniform lighting. For each UI description, 1 XAML and 1 classic C# description
were randomly selected for the test subjects. Since the density of images or texts can affect
information processing [35], comprehensibility and easy readability are also important
points in UI descriptions, so it was tried to set the same distance between the texts and the
source codes. A total of 36 XAML and 36 classic C#-based eye movement parameter pack-
ages were saved in a database for further evaluation.

A schematic diagram of the testing environment is shown in Figure 4.

Figure 3. GP3 eye-tracker device; (a) and the recording module of OGAMA software package (b).

3.1. Test Subjects

The test was attended by 36 university students (10 woman and 26 man, age: M = 20.25
SD = 1.05), who successfully completed the subjects containing the study materials, the
knowledge of which is essential for solving the tests. The test subjects volunteered for the
test and declared themselves to be completely healthy. They were not under the influence
of any medication and had no difficulties in reading or learning in the past and during
this examination. Based on the results of the programming subject, test subjects with
better-than-average programming skills and a similar level of knowledge were selected.

3.2. Test Conditions and Steps of the Research

The description of the UI interface as illustrated in the Visual Studio development
environment on an LG22M45 22” monitor capable of 1920 × 1080 resolution. The GP3 unit
was placed under the monitor at a distance of approximately 65 cm from the eyes of the
test subjects. So that the test subjects are not affected by sudden changes in light, I naturally
used uniform lighting. For each UI description, 1 XAML and 1 classic C# description were
randomly selected for the test subjects. Since the density of images or texts can affect
information processing [35], comprehensibility and easy readability are also important
points in UI descriptions, so it was tried to set the same distance between the texts and
the source codes. A total of 36 XAML and 36 classic C#-based eye movement parameter
packages were saved in a database for further evaluation.

A schematic diagram of the testing environment is shown in Figure 4.
Sensors 2023, 23, x FOR PEER REVIEW 6 of 15

Figure 4. A schematic diagram of equipment setup (Reprinted from ref.[35]).

4. Results
In order to ensure a correct evaluation, it was considered that the same test subjects

were examined within a group and that they were independent of each other. The nor-
mality of the variables was checked with the Shapiro-Wilk test. In the case of the tests, the
p < 0.05 value was significant.

The evaluation of the results began with the evaluation of traditional knowledge-
level assessment tests, which examined the comprehensibility and readability of the stud-
ied source code. Each test subject received the same 10 questions, so a total of 360 answers
were evaluated.

4.1. The Evaluation of the Results of the Traditional Knowledge Level Tests
The test subjects were able to answer all questions regarding the comprehensibility

and readability of the different types of source codes.
The results show that in the case of a UI written by XAML, in the worst case, the

number of incorrect answers was a maximum of 3, which means 70% success, and in the
best case, the test subjects answered all questions correctly. Regarding the total sample, M
= 1.56, SD = 0.88 wrong answers were made, which shows an overall success rate of 84.4%.

In the case of the UI written with classic C#, the maximum number of errors was 4,
which means a 60% success rate, and this method also had test subjects who were able to
answer all questions correctly. Regarding the total sample, M = 2.53, SD = 1.40 wrong an-
swers were made, which shows a success rate of 74.7% overall.

Table 1 summary table shows the number and percentage of incorrect answers in the
knowledge level test regarding the XAML and classic C# code.

Table 1. A summary table on the number of incorrect answers (possible max: 10, possible min: 0)
regarding the XAML and classic C# code (n = 36).

XAML (Count) Classic C# (Count)
Min Max Mean SD Min Max Mean SD

0 3 1.56 0.88 0 4 2.53 1.40

Figure 5 shows the distribution of the test subjects’ incorrect answers. Figure 5a is
written in XAML, while Figure 5b is for a UI written in classic C#. In the case of XAML,
there were four correct answers, 13 with one, 14 with two, and five with three errors, while
in the case of classic C#, there were also four without errors, five with one, eight with two,
six with three, and 13 with four errors.

Figure 4. A schematic diagram of equipment setup (Reprinted from ref. [35]).

4. Results

In order to ensure a correct evaluation, it was considered that the same test subjects
were examined within a group and that they were independent of each other. The normality

Sensors 2023, 23, 3823 6 of 14

of the variables was checked with the Shapiro-Wilk test. In the case of the tests, the p < 0.05
value was significant.

The evaluation of the results began with the evaluation of traditional knowledge-level
assessment tests, which examined the comprehensibility and readability of the studied
source code. Each test subject received the same 10 questions, so a total of 360 answers
were evaluated.

4.1. The Evaluation of the Results of the Traditional Knowledge Level Tests

The test subjects were able to answer all questions regarding the comprehensibility
and readability of the different types of source codes.

The results show that in the case of a UI written by XAML, in the worst case, the
number of incorrect answers was a maximum of 3, which means 70% success, and in the best
case, the test subjects answered all questions correctly. Regarding the total sample, M = 1.56,
SD = 0.88 wrong answers were made, which shows an overall success rate of 84.4%.

In the case of the UI written with classic C#, the maximum number of errors was 4,
which means a 60% success rate, and this method also had test subjects who were able
to answer all questions correctly. Regarding the total sample, M = 2.53, SD = 1.40 wrong
answers were made, which shows a success rate of 74.7% overall.

Table 1 summary table shows the number and percentage of incorrect answers in the
knowledge level test regarding the XAML and classic C# code.

Table 1. A summary table on the number of incorrect answers (possible max: 10, possible min: 0)
regarding the XAML and classic C# code (n = 36).

XAML (Count) Classic C# (Count)

Min Max Mean SD Min Max Mean SD

0 3 1.56 0.88 0 4 2.53 1.40

Figure 5 shows the distribution of the test subjects’ incorrect answers. Figure 5a is
written in XAML, while Figure 5b is for a UI written in classic C#. In the case of XAML,
there were four correct answers, 13 with one, 14 with two, and five with three errors, while
in the case of classic C#, there were also four without errors, five with one, eight with two,
six with three, and 13 with four errors.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 15

(a) (b)

Figure 5. Distribution of incorrect answer (count) based on XAML (a) and classic C# (b).

The normality results of the traditional knowledge level tests measured are signifi-
cant (XAML approach: W(36) = 0.879, p < 0.001, classic C# approach: W(36) = 0.857, p <
0.001). Due to the results of the normality test, the Wilcoxon signed-rank test was used:
(XAML approach: T = −383, Z = 2.68, p = 0.007 (2-tailed), r = 0.316). Regarding the obtained
results, it can be stated that the results of traditional knowledge level tests were signifi-
cantly better with a small effect in the case of the XAML approach: Mdn = 2 than in the
case of the classic C# approach: Mdn = 3.

4.2. The Evaluation of Test Subjects’ Subjective Opinion
After completing the traditional knowledge level assessment test, the test subjects

also had to fill out a questionnaire consisting of six questions, which measured the subjec-
tive opinions regarding XAML and classic C#. During the survey, a 5-point Likert-type
scale was used, where “A”: not at all; “B”: slightly; “C”: moderately; “D”: pretty; “E”: com-
pletely. The following questions were formulated in the questionnaire (Qs):

Q1: How difficult was it to understand the XAML code?
Q2: How difficult was it to understand classic C# code?
Q3: To what extent would you feel the need for comments for the XAML code?
Q4: To what extent would you feel the need for comments for classic C# code?
Q5: How much would you recommend XAML code for creating UI?
Q6: How much would you recommend classic C# code for creating UI?
After the evaluation, it can be seen that, according to the test subjects, the XAML code

is easier to read and better understood without comments than the classic C# source code.
In addition to all this, XAML code was much more recommended for creating UIs.

The result of the evaluation is shown in Figure 6.

Figure 5. Distribution of incorrect answer (count) based on XAML (a) and classic C# (b).

The normality results of the traditional knowledge level tests measured are significant
(XAML approach: W(36) = 0.879, p < 0.001, classic C# approach: W(36) = 0.857, p < 0.001).
Due to the results of the normality test, the Wilcoxon signed-rank test was used: (XAML
approach: T = −383, Z = 2.68, p = 0.007 (2-tailed), r = 0.316). Regarding the obtained results,
it can be stated that the results of traditional knowledge level tests were significantly better
with a small effect in the case of the XAML approach: Mdn = 2 than in the case of the classic
C# approach: Mdn = 3.

Sensors 2023, 23, 3823 7 of 14

4.2. The Evaluation of Test Subjects’ Subjective Opinion

After completing the traditional knowledge level assessment test, the test subjects also
had to fill out a questionnaire consisting of six questions, which measured the subjective
opinions regarding XAML and classic C#. During the survey, a 5-point Likert-type scale
was used, where “A”: not at all; “B”: slightly; “C”: moderately; “D”: pretty; “E”: completely.
The following questions were formulated in the questionnaire (Qs):

Q1: How difficult was it to understand the XAML code?
Q2: How difficult was it to understand classic C# code?
Q3: To what extent would you feel the need for comments for the XAML code?
Q4: To what extent would you feel the need for comments for classic C# code?
Q5: How much would you recommend XAML code for creating UI?
Q6: How much would you recommend classic C# code for creating UI?
After the evaluation, it can be seen that, according to the test subjects, the XAML code

is easier to read and better understood without comments than the classic C# source code.
In addition to all this, XAML code was much more recommended for creating UIs.

The result of the evaluation is shown in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 15

(a) (b)

Figure 5. Distribution of incorrect answer (count) based on XAML (a) and classic C# (b).

The normality results of the traditional knowledge level tests measured are signifi-
cant (XAML approach: W(36) = 0.879, p < 0.001, classic C# approach: W(36) = 0.857, p <
0.001). Due to the results of the normality test, the Wilcoxon signed-rank test was used:
(XAML approach: T = −383, Z = 2.68, p = 0.007 (2-tailed), r = 0.316). Regarding the obtained
results, it can be stated that the results of traditional knowledge level tests were signifi-
cantly better with a small effect in the case of the XAML approach: Mdn = 2 than in the
case of the classic C# approach: Mdn = 3.

4.2. The Evaluation of Test Subjects’ Subjective Opinion
After completing the traditional knowledge level assessment test, the test subjects

also had to fill out a questionnaire consisting of six questions, which measured the subjec-
tive opinions regarding XAML and classic C#. During the survey, a 5-point Likert-type
scale was used, where “A”: not at all; “B”: slightly; “C”: moderately; “D”: pretty; “E”: com-
pletely. The following questions were formulated in the questionnaire (Qs):

Q1: How difficult was it to understand the XAML code?
Q2: How difficult was it to understand classic C# code?
Q3: To what extent would you feel the need for comments for the XAML code?
Q4: To what extent would you feel the need for comments for classic C# code?
Q5: How much would you recommend XAML code for creating UI?
Q6: How much would you recommend classic C# code for creating UI?
After the evaluation, it can be seen that, according to the test subjects, the XAML code

is easier to read and better understood without comments than the classic C# source code.
In addition to all this, XAML code was much more recommended for creating UIs.

The result of the evaluation is shown in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 15

Figure 6. Distribution of responses to the questionnaire.

Answering the RQ1 question, it can be stated that a significant difference can be
shown (p = 0.007) between the results of the traditional knowledge level assessment tests.
The results show that the UI description written in XAML is easier to understand and
shows better test results than the classic C# source code that generates the same UI.

It can also be seen based on the subjective opinions that the test subjects preferred
and easier to interpret the XAML-based codes, on the contrary, with the classic C# code.

4.3. Evaluation of Eye-Tracking Parameters
During the understanding and reading of the XAML and classic C# source codes, the

many eye movement parameters of the test subjects were recorded, and after evaluation,
a possible relationship between the individual parameters and the results of the
knowledge level assessment tests may be shown.

4.3.1. Fixation Duration Mean
The descriptive statistical table of the recorded fixation duration mean results can be

read in Table 2 for XAML and classic C#.

Table 2. The descriptive statistic of the fixation duration mean is based on XAML and classic C# (n
= 36).

XAML (Milliseconds) Classic C# (Milliseconds)
Min Max Mean SD Min Max Mean SD
387 748 574.67 100.21 498 878 659.45 114.94

Figure 7 shows the relationship between the fixation duration mean eye movement
parameter recorded while reading and understanding the XAML and classic C# source
codes.

Figure 6. Distribution of responses to the questionnaire.

Answering the RQ1 question, it can be stated that a significant difference can be shown
(p = 0.007) between the results of the traditional knowledge level assessment tests. The
results show that the UI description written in XAML is easier to understand and shows
better test results than the classic C# source code that generates the same UI.

It can also be seen based on the subjective opinions that the test subjects preferred and
easier to interpret the XAML-based codes, on the contrary, with the classic C# code.

Sensors 2023, 23, 3823 8 of 14

4.3. Evaluation of Eye-Tracking Parameters

During the understanding and reading of the XAML and classic C# source codes, the
many eye movement parameters of the test subjects were recorded, and after evaluation, a
possible relationship between the individual parameters and the results of the knowledge
level assessment tests may be shown.

4.3.1. Fixation Duration Mean

The descriptive statistical table of the recorded fixation duration mean results can be
read in Table 2 for XAML and classic C#.

Table 2. The descriptive statistic of the fixation duration mean is based on XAML and classic C#
(n = 36).

XAML (Milliseconds) Classic C# (Milliseconds)

Min Max Mean SD Min Max Mean SD

387 748 574.67 100.21 498 878 659.45 114.94

Figure 7 shows the relationship between the fixation duration mean eye movement pa-
rameter recorded while reading and understanding the XAML and classic C# source codes.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15

Figure 7. Scatter plot of the fixation duration mean (milliseconds) based on XAML and classic C#.

The normality results of the fixation duration mean measured in the XAML code are
significant (XAML: W(36) = 0.962, p = 0.251, C#: W(36) = 0.935, p = 0.036). Due to the results
of the normality test, the Wilcoxon signed-rank test was used: (T = 496.5, Z = 2.57, p = 0.010
(2-tailed), r = 0.303). Regarding the obtained results, it can be stated that the fixation du-
ration mean was significantly shorter with a medium effect in the case of the XAML: Mdn
= 572 ms than in the case of the C#: Mdn = 670 ms.

The distribution of the fixation duration means based on XAML and classic C# are
shown in Figure 8.

Figure 8. The distribution of the fixation duration mean (milliseconds) is based on XAML and classic
C#.

In response to the RQ2 question, a significant difference was found in the average of
the fixation duration mean (p = 0.010) when the test subjects read and understood the
source codes based on XAML or classic C#. The results show that a shorter fixation dura-
tion means, i.e., shorter information recording, was necessary in the case of the XAML-
based UI description.

4.3.2. Number of Fixations
The descriptive statistical table of the recorded number of fixations results can be

seen in Table 3 for XAML and classic C#.

Table 3. The descriptive statistic of the number of fixations based on XAML and classic C# (n = 36).

XAML (Count) Classic C# (Count)
Min Max Mean SD Min Max Mean SD
204 685 489.25 140.82 271 997 667.75 221.61

Figure 9 shows the relationship between the number of fixations eye movement pa-
rameter recorded while reading and understanding the XAML and classic C# source
codes.

Figure 7. Scatter plot of the fixation duration mean (milliseconds) based on XAML and classic C#.

The normality results of the fixation duration mean measured in the XAML code are
significant (XAML: W(36) = 0.962, p = 0.251, C#: W(36) = 0.935, p = 0.036). Due to the
results of the normality test, the Wilcoxon signed-rank test was used: (T = 496.5, Z = 2.57,
p = 0.010 (2-tailed), r = 0.303). Regarding the obtained results, it can be stated that the
fixation duration mean was significantly shorter with a medium effect in the case of the
XAML: Mdn = 572 ms than in the case of the C#: Mdn = 670 ms.

The distribution of the fixation duration means based on XAML and classic C# are
shown in Figure 8.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15

Figure 7. Scatter plot of the fixation duration mean (milliseconds) based on XAML and classic C#.

The normality results of the fixation duration mean measured in the XAML code are
significant (XAML: W(36) = 0.962, p = 0.251, C#: W(36) = 0.935, p = 0.036). Due to the results
of the normality test, the Wilcoxon signed-rank test was used: (T = 496.5, Z = 2.57, p = 0.010
(2-tailed), r = 0.303). Regarding the obtained results, it can be stated that the fixation du-
ration mean was significantly shorter with a medium effect in the case of the XAML: Mdn
= 572 ms than in the case of the C#: Mdn = 670 ms.

The distribution of the fixation duration means based on XAML and classic C# are
shown in Figure 8.

Figure 8. The distribution of the fixation duration mean (milliseconds) is based on XAML and classic
C#.

In response to the RQ2 question, a significant difference was found in the average of
the fixation duration mean (p = 0.010) when the test subjects read and understood the
source codes based on XAML or classic C#. The results show that a shorter fixation dura-
tion means, i.e., shorter information recording, was necessary in the case of the XAML-
based UI description.

4.3.2. Number of Fixations
The descriptive statistical table of the recorded number of fixations results can be

seen in Table 3 for XAML and classic C#.

Table 3. The descriptive statistic of the number of fixations based on XAML and classic C# (n = 36).

XAML (Count) Classic C# (Count)
Min Max Mean SD Min Max Mean SD
204 685 489.25 140.82 271 997 667.75 221.61

Figure 9 shows the relationship between the number of fixations eye movement pa-
rameter recorded while reading and understanding the XAML and classic C# source
codes.

Figure 8. The distribution of the fixation duration mean (milliseconds) is based on XAML and classic C#.

Sensors 2023, 23, 3823 9 of 14

In response to the RQ2 question, a significant difference was found in the average
of the fixation duration mean (p = 0.010) when the test subjects read and understood the
source codes based on XAML or classic C#. The results show that a shorter fixation duration
means, i.e., shorter information recording, was necessary in the case of the XAML-based UI
description.

4.3.2. Number of Fixations

The descriptive statistical table of the recorded number of fixations results can be seen
in Table 3 for XAML and classic C#.

Table 3. The descriptive statistic of the number of fixations based on XAML and classic C# (n = 36).

XAML (Count) Classic C# (Count)

Min Max Mean SD Min Max Mean SD

204 685 489.25 140.82 271 997 667.75 221.61

Figure 9 shows the relationship between the number of fixations eye movement pa-
rameter recorded while reading and understanding the XAML and classic C# source codes.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 15

Figure 9. Scatter plot of the number of fixations (count) based on XAML and classic C#.

The normality results of the average fixation number measured in the XAML code
are significant (XAML: W(36) = 0.935, p = 0.035, C#: W(36) = 0.951, p = 0.109). Due to the
results of the normality test, the Wilcoxon signed-rank test was used: (T = 526, Z = 3.032, p
= 0.002 (2-tailed), r = 0.357). Regarding the obtained results, it can be stated that the average
fixation number was significantly less with a medium effect in the case of the XAML: Mdn
= 482 than in the case of the C#: Mdn = 661.

The distribution of the average fixation number based on XAML, and classic C# is
shown in Figure 10.

Figure 10. The distribution of the number of fixations (count) based on XAML and classic C#.

In response to the RQ2 question, a significant difference was found in the average
fixation number (p = 0.002) when the test subjects read and understood the source codes
based on XAML or classic C#. The results show that less fixation number, i.e., a focus point
number or recording of information, was necessary in the case of the XAML-based UI
description.

4.3.3. Average of Pupil Diameter Based on AOIs
The descriptive statistical table of the recorded average pupil diameter results can be

seen in Table 4 for XAML and classic C#.

Table 4. The descriptive statistic of the average pupil diameter is based on XAML and classic C# (n
= 36).

XAML (Pixels) Classic C# (Pixels)
Min Max Mean SD Min Max Mean SD
37 58 46.86 7.19 38 59 48.30 5.97

Figure 9. Scatter plot of the number of fixations (count) based on XAML and classic C#.

The normality results of the average fixation number measured in the XAML code
are significant (XAML: W(36) = 0.935, p = 0.035, C#: W(36) = 0.951, p = 0.109). Due to the
results of the normality test, the Wilcoxon signed-rank test was used: (T = 526, Z = 3.032,
p = 0.002 (2-tailed), r = 0.357). Regarding the obtained results, it can be stated that the
average fixation number was significantly less with a medium effect in the case of the
XAML: Mdn = 482 than in the case of the C#: Mdn = 661.

The distribution of the average fixation number based on XAML, and classic C# is
shown in Figure 10.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 15

Figure 9. Scatter plot of the number of fixations (count) based on XAML and classic C#.

The normality results of the average fixation number measured in the XAML code
are significant (XAML: W(36) = 0.935, p = 0.035, C#: W(36) = 0.951, p = 0.109). Due to the
results of the normality test, the Wilcoxon signed-rank test was used: (T = 526, Z = 3.032, p
= 0.002 (2-tailed), r = 0.357). Regarding the obtained results, it can be stated that the average
fixation number was significantly less with a medium effect in the case of the XAML: Mdn
= 482 than in the case of the C#: Mdn = 661.

The distribution of the average fixation number based on XAML, and classic C# is
shown in Figure 10.

Figure 10. The distribution of the number of fixations (count) based on XAML and classic C#.

In response to the RQ2 question, a significant difference was found in the average
fixation number (p = 0.002) when the test subjects read and understood the source codes
based on XAML or classic C#. The results show that less fixation number, i.e., a focus point
number or recording of information, was necessary in the case of the XAML-based UI
description.

4.3.3. Average of Pupil Diameter Based on AOIs
The descriptive statistical table of the recorded average pupil diameter results can be

seen in Table 4 for XAML and classic C#.

Table 4. The descriptive statistic of the average pupil diameter is based on XAML and classic C# (n
= 36).

XAML (Pixels) Classic C# (Pixels)
Min Max Mean SD Min Max Mean SD
37 58 46.86 7.19 38 59 48.30 5.97

Figure 10. The distribution of the number of fixations (count) based on XAML and classic C#.

Sensors 2023, 23, 3823 10 of 14

In response to the RQ2 question, a significant difference was found in the average
fixation number (p = 0.002) when the test subjects read and understood the source codes
based on XAML or classic C#. The results show that less fixation number, i.e., a focus
point number or recording of information, was necessary in the case of the XAML-based
UI description.

4.3.3. Average of Pupil Diameter Based on AOIs

The descriptive statistical table of the recorded average pupil diameter results can be
seen in Table 4 for XAML and classic C#.

Table 4. The descriptive statistic of the average pupil diameter is based on XAML and classic C# (n = 36).

XAML (Pixels) Classic C# (Pixels)

Min Max Mean SD Min Max Mean SD

37 58 46.86 7.19 38 59 48.30 5.97

Figure 11 shows the relationship between the average pupil diameter eye move-
ment parameter recorded while reading and understanding the XAML and classic C#
source codes.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 15

Figure 11 shows the relationship between the average pupil diameter eye movement
parameter recorded while reading and understanding the XAML and classic C# source
codes.

Figure 11. Scatter plot of the average pupil diameter (pixels) based on XAML and classic C#.

The normality results of the average pupil diameter measured in the XAML code are
significant (XAML: W(36) = 0.918, p = 0.011, C#: W(36) = 0.963, p = 0.269). Due to the results
of the normality test, the Wilcoxon signed-rank test was used: (T = 377.5, Z = 1.025, p =
0.305 (2-tailed), r = −0.121). Regarding the obtained results, it can be stated that the average
pupil diameter was not significantly smaller in the case of the XAML: Mdn = 46.5 than in
the case of the C#: Mdn = 48.5.

The distribution of the average pupil diameter based on XAML, and classic C# is
shown in Figure 12.

Figure 12. The distribution of the average pupil diameter (pixels) based on XAML and classic C#.

In response to the RQ2 question, a significant difference was not found in the average
pupil diameter (p = 0.305) when the test subjects read and understood the source codes
based on XAML or classic C#.

The more modern XAML technology was basically created due to the development
of the GUI of the more efficient and lighter desktop application, which is also confirmed
by the results of the knowledge level assessment used in the research. Furthermore, based
on the results obtained, it can be stated that a correlation can be demonstrated in the re-
sults of the eye movement parameters and the knowledge level assessment tests. This
means that eye-tracking analysis can also be used as an alternative knowledge-level as-
sessment. With this objective measurement method, the teacher can make sure that a stu-
dent’s knowledge is lacking or that it exists.

Figure 11. Scatter plot of the average pupil diameter (pixels) based on XAML and classic C#.

The normality results of the average pupil diameter measured in the XAML code
are significant (XAML: W(36) = 0.918, p = 0.011, C#: W(36) = 0.963, p = 0.269). Due to the
results of the normality test, the Wilcoxon signed-rank test was used: (T = 377.5, Z = 1.025,
p = 0.305 (2-tailed), r = −0.121). Regarding the obtained results, it can be stated that the
average pupil diameter was not significantly smaller in the case of the XAML: Mdn = 46.5
than in the case of the C#: Mdn = 48.5.

The distribution of the average pupil diameter based on XAML, and classic C# is
shown in Figure 12.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 15

Figure 11 shows the relationship between the average pupil diameter eye movement
parameter recorded while reading and understanding the XAML and classic C# source
codes.

Figure 11. Scatter plot of the average pupil diameter (pixels) based on XAML and classic C#.

The normality results of the average pupil diameter measured in the XAML code are
significant (XAML: W(36) = 0.918, p = 0.011, C#: W(36) = 0.963, p = 0.269). Due to the results
of the normality test, the Wilcoxon signed-rank test was used: (T = 377.5, Z = 1.025, p =
0.305 (2-tailed), r = −0.121). Regarding the obtained results, it can be stated that the average
pupil diameter was not significantly smaller in the case of the XAML: Mdn = 46.5 than in
the case of the C#: Mdn = 48.5.

The distribution of the average pupil diameter based on XAML, and classic C# is
shown in Figure 12.

Figure 12. The distribution of the average pupil diameter (pixels) based on XAML and classic C#.

In response to the RQ2 question, a significant difference was not found in the average
pupil diameter (p = 0.305) when the test subjects read and understood the source codes
based on XAML or classic C#.

The more modern XAML technology was basically created due to the development
of the GUI of the more efficient and lighter desktop application, which is also confirmed
by the results of the knowledge level assessment used in the research. Furthermore, based
on the results obtained, it can be stated that a correlation can be demonstrated in the re-
sults of the eye movement parameters and the knowledge level assessment tests. This
means that eye-tracking analysis can also be used as an alternative knowledge-level as-
sessment. With this objective measurement method, the teacher can make sure that a stu-
dent’s knowledge is lacking or that it exists.

Figure 12. The distribution of the average pupil diameter (pixels) based on XAML and classic C#.

Sensors 2023, 23, 3823 11 of 14

In response to the RQ2 question, a significant difference was not found in the average
pupil diameter (p = 0.305) when the test subjects read and understood the source codes
based on XAML or classic C#.

The more modern XAML technology was basically created due to the development of
the GUI of the more efficient and lighter desktop application, which is also confirmed by
the results of the knowledge level assessment used in the research. Furthermore, based on
the results obtained, it can be stated that a correlation can be demonstrated in the results of
the eye movement parameters and the knowledge level assessment tests. This means that
eye-tracking analysis can also be used as an alternative knowledge-level assessment. With
this objective measurement method, the teacher can make sure that a student’s knowledge
is lacking or that it exists.

5. Discussion

Based on the recorded and complete knowledge level assessment results, the subjective
opinions given on the questionnaires, and the eye movement parameters, it can be stated
that XAML-based UI descriptions give better test results and can be read and understood
with a lower cognitive and mental load than those based on classic C#. The test subjects’
average information recording, i.e., fixation duration, was significantly longer, and the
number of focus points, i.e., information recording and fixation points, was significantly
higher when understanding classic C#-based UI descriptions. The recording and processing
of significantly less and shorter information showed a more efficient processing of the
information located at the given position in XAML-based UI descriptions. In addition
to examining fixations, the examination of changes in pupil diameter is widely used to
analyze cognitive load; however, in the current research, no significant difference between
the two methods, and only a small difference was detected.

A relationship can be shown between the knowledge level assessment test results,
subjective opinions, and eye movement parameters because, in the research, a better test
result meant a lower fixation duration and fewer fixation points. The opinions of the test
subjects also clearly show that XAML-based source codes are easier to understand, and
there is no real need for comments to support understanding.

Based on these results, it can be stated that in the field of education, the use of such eye
movement tracking devices can be used as an additional measurement method in addition
to traditional test and questionnaire results [36,37]. In addition, in the event that the eye
movement parameters show greater uncertainty for the students, the teacher can advise
repeating the course material and re-measure their understanding or possibly using other
measurement methods [38,39]. In addition, the development and continuous renewal of
newer methods, self-learning [40] for measuring cognitive load, is becoming more and
more necessary nowadays [41,42].

The current research results show that it is advisable to teach .NET-based WPF UI
development in XAML because it can be conducted with greater efficiency, thus increasing
the efficiency of learning. In addition, it can be used to effectively separate the UI and the
business logic, which can result in more efficient team-based development.

In addition to all this, it may be worthwhile to compare the individual technologies
in the field of programming education and examine them with eye movement tracking
devices, as the revealed results may also affect the organization of education. Introducing
easier-to-learn tools, techniques, and methodologies at the beginning of the training can
ultimately result in more effective knowledge transfer later on when the students have to
learn the more complicated part of the curriculum.

In addition to education, the revealed results can also affect UI software development
methods used in the industry, as they can indicate the importance of choosing appropriate,
personalized, or team-specific development tools, techniques, and methods.

With the development of devices that track eye movement and the refinement of
measurement methods, the use of these devices, in addition to education and programming,
may appear in more and more fields in which they are not used at all or less so today.

Sensors 2023, 23, 3823 12 of 14

6. Limitations and Future Directions

The results of the current research can be considered with their limitations. Limitations
of the research can be considered the low number of questions examining subjective
opinions, as well as the similarity and low standard deviation of the age of the selected
test subjects. In the future, it would be advisable to extend the study to other universities
and test subjects with different experiences and ages. In such tests, not only two software
tools could be analyzed, but also several options supporting the creation of a modern
GUI. In addition to all this, the use of additional HCI tools, e.g., BCI (Brain Computer
Interface), would mean additional research potential, and in addition, an even more precise
objective knowledge level assessment could be possible. After solving the ethical problems,
the analysis of the patterns of eye movement parameters of the test subjects suffering
from cognitive problems while reading and understanding the source codes may be an
additional possibility.

Focusing on the field of programming, the analysis of the eye movement parameters
of Front-End, Back-End, and Full-Stack developers can contain excellent research opportu-
nities and results because, based on these parameters, different visual patterns could be
observed and explored, and further cognitive processes could be analyzed. In addition to
all this, on the Front-End side, by examining the eye movement parameters of the different
user interfaces, it is possible to analyze their efficiency and manageability, and they can
also point out the specific problems of the interface, thus helping the developers to create a
user-friendly interface.

7. Conclusions

Technologies that help human-computer interaction and communication, such as
eye movement tracking, will be increasingly used with greater efficiency in the future to
examine and analyze complex cognitive processes. The current research examined two UI
descriptive languages (XAML and classic C#) with the participation of test subjects and
analyzed their readability and interpretability using a traditional knowledge level assess-
ment test, a questionnaire, and the recording and analysis of eye movement parameters. In
order to carry out the test, a complex IT test system was created, with the help of which
the necessary parameters could be recorded, and the results were persistently stored for
further evaluation. The article emphasizes the importance of selecting programming tools,
techniques, technologies, and methods personalized to the person or development team
based on the results determined. With the right toolkit, developers can create applications
that are more efficient, easier to maintain, and more developable.

Funding: The author would like to acknowledge the financial support of Emberi Erőforrások Min-
isztériuma (EMMI) under the NTP-NFTÖ-22-B-0003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. XAML Overview (WPF .NET). Available online: https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=

netdesktop-6.0 (accessed on 23 December 2022).
2. Guzsvinecz, T.; Orban-Mihalyko, E.; Sik-Lanyi, C.; Perge, E. An Overview of Received Results on MRT, MCT, and PSVT Spatial

Ability Tests in Virtual Environments. In Proceedings of the 2022 IEEE 1st International Conference on Internet of Digital Reality
(IoD), Gyor, Hungary, 23–24 June 2022; pp. 83–88.

3. Námesztovszki, Z.; Kővári, A. Framework for Preparation of Engaging Online Educational Materials. Appl. Sci. 2022, 12, 1745.
[CrossRef]

4. Kővári, A. Study of Algorithmic Problem-Solving and Executive Function. Acta Polytech. Hung. 2020, 17, 241–256. [CrossRef]

https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-6.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-6.0
http://doi.org/10.3390/app12031745
http://doi.org/10.12700/APH.17.9.2020.9.13

Sensors 2023, 23, 3823 13 of 14

5. Demeter, R.; Kővári, A. Importance of digital simulation in the competence development of engineers defining the society of the
future. Civ. Szle. 2020, 17, 89–101.

6. Cepeda Porras, G.; Guéhéneuc, Y.-G. An Empirical Study on the Efficiency of Different Design Pattern Representations in UML
Class Diagrams. Empir. Softw. Eng. 2010, 15, 493–522. [CrossRef]

7. De Smet, B.; Lempereur, L.; Sharafi, Z.; Guéhéneuc, Y.-G.; Antoniol, G.; Habra, N. Taupe: Visualizing and Analyzing Eye-Tracking
Data. Sci. Comput. Program. 2014, 79, 260–278. [CrossRef]

8. Jeanmart, S.; Gueheneuc, Y.-G.; Sahraoui, H.; Habra, N. Impact of the Visitor Pattern on Program Comprehension and Maintenance.
In Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement, Lake Buena Vista,
FL, USA, 15–16 October 2009; pp. 69–78.

9. Sharif, B.; Maletic, J.I. An Eye Tracking Study on the Effects of Layout in Understanding the Role of Design Patterns. In
Proceedings of the 2010 IEEE International Conference on Software Maintenance, Timisoara, Romania, 12–18 September 2010;
pp. 1–10.

10. Soh, Z.; Sharafi, Z.; Van den Plas, B.; Porras, G.C.; Guéhéneuc, Y.-G.; Antoniol, G. Professional Status and Expertise for UML
Class Diagram Comprehension: An Empirical Study. In Proceedings of the 2012 20th IEEE International Conference on Program
Comprehension (ICPC), Passau, Germany, 11–13 June 2012; pp. 163–172.

11. Yusuf, S.; Kagdi, H.; Maletic, J.I. Assessing the Comprehension of UML Class Diagrams via Eye Tracking. In Proceedings of the
15th IEEE International Conference on Program Comprehension (ICPC’07), Banff, AB, Canada, 26–29 June 2007; pp. 113–122.

12. Busjahn, T.; Schulte, C.; Busjahn, A. Analysis of Code Reading to Gain More Insight in Program Comprehension. In Proceedings
of the 11th Koli Calling International Conference on Computing Education Research, Koli, Finland, 17–20 November 2011;
pp. 1–9.

13. Busjahn, T.; Bednarik, R.; Schulte, C. What Influences Dwell Time during Source Code Reading? Analysis of Element Type and
Frequency as Factors. In Proceedings of the Symposium on Eye Tracking Research and Applications, Safety Harbor, FL, USA,
26–28 March 2014; pp. 335–338.

14. Crosby, M.E.; Stelovsky, J. How Do We Read Algorithms? A Case Study. Computer 1990, 23, 25–35. [CrossRef]
15. Crosby, M.E.; Scholtz, J.; Wiedenbeck, S. The Roles Beacons Play in Comprehension for Novice and Expert Programmers. In

Proceedings of the 14th Annual Workshop of the Psychology of Programming Interest Group, PPIG, London, UK, 18–21 June
2002; p. 5.

16. Zhang, W.; Liu, J. Design of Host Computer Software for the Battery Package Automatic Test System Based on WPF. In Proceedings
of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 4336–4340.

17. Kozminski, A. Windows Presentation Foundation (WPF) Technology Meets the Challenges of Operator Interface Design in
Automatic Test Systems. In Proceedings of the 2012 IEEE AUTOTESTCON Proceedings, Anaheim, CA, USA, 10–13 September
2012; pp. 80–83.

18. Wang, C.; Lin, Z.; Guotang, F.; Zheng, L.; Zhu, Z. Design and Implementation of WPF-Based Mini OA System. In Proceedings
of the 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Guangdong, China, 8–10
November 2014; pp. 120–126.

19. Lew, R.; Boring, R.L.; Ulrich, T.A. A Prototyping Environment for Research on Human-Machine Interfaces in Process Control Use
of Microsoft WPF for Microworld and Distributed Control System Development. In Proceedings of the 2014 7th International
Symposium on Resilient Control Systems (ISRCS), Denver, CO, USA, 19–21 August 2014; pp. 1–6.

20. Belenesi, D.-T.; Gabor, G.; Moisi, E.V. Comparative Study on WPF and UWP Frameworks Used in RSS Application. In Proceedings
of the 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July
2021; pp. 1–6.

21. Filipova-Petrakieva, S.; Shopov, S. Educational Windows Presentation Foundation and XAML Application for Information
Protection Based on the Cryptographic Methods–Part II. In Proceedings of the 2021 13th Electrical Engineering Faculty Conference
(BulEF), Varna, Bulgaria, 8–11 September 2021; pp. 1–8.

22. Guzsvinecz, T.; Szucs, V.; Magyar, A. Preliminary results of evaluating a prediction-based algorithm for movement pattern
recognition and classification. In Proceedings of the 2020 11th IEEE International Conference on Cognitive Infocommunications
(CogInfoCom), Mariehamn, Finland, 23–25 September 2020; pp. 39–44.

23. Zhang, Y.; Ruan, J. Large-Scale Machinery Monitoring System Based on the Visual Reality. In Proceedings of the 2018 IEEE 3rd
Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October
2018; pp. 863–867.

24. Charleton, S.; O’Brien, T. Measurement of Cognitive States in Testing and Evaluation. In Handbook of Human Factors and Evaluation;
CRC Press: Boca Raton, FL, USA, 2002; pp. 97–126.

25. Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In
Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183.

26. Card, S.; Moran, T.; Newell, A. The Model Human Processor- An Engineering Model of Human Performance. In Handbook of
Perception and Human Performance; Wiley: Hoboken, NJ, USA, 1986; Volume 2.

27. Riczu, Z.; Krutilla, Z. The Impact of Optical Character Recognition Artificial Intelligence on the Labour Market. Int. J. Eng. Manag.
Sci. 2021, 6. [CrossRef]

http://doi.org/10.1007/s10664-009-9125-9
http://doi.org/10.1016/j.scico.2012.01.004
http://doi.org/10.1109/2.48797
http://doi.org/10.21791/IJEMS.2021.4.2

Sensors 2023, 23, 3823 14 of 14

28. Krutilla, Z.; Kővári, A. The origin and primary areas of application of natural language processing. In Proceedings of the IEEE
Joint 22nd International Symposium on Computational Intelligence and Informatics and 8th International Conference on Recent
Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo 2022), Budapest, Hungary, 21–22
November 2022; pp. 1–4.

29. Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to
Methods and Measures; OUP Oxford: Oxford, UK, 2011.

30. Stankov, G.; Nagy, B. Eye Tracking Based Usability Evaluation of the MaxWhere Virtual Space in a Search Task. In Proceedings of
the 2019 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019;
pp. 469–474.

31. Derick, L.-R.; Gabriel, G.-S.; Máximo, L.-S.; Olivia, F.-D.; Noé, C.-S.; Juan, O.-R. Study of the User’s Eye Tracking to Analyze the
Blinking Behavior While Playing a Video Game to Identify Cognitive Load Levels. In Proceedings of the 2020 IEEE International
Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 4–6 November 2020; Volume 4, pp. 1–5.

32. Seha, S.; Papangelakis, G.; Hatzinakos, D.; Zandi, A.S.; Comeau, F.J. Improving Eye Movement Biometrics Using Remote
Registration of Eye Blinking Patterns. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 2562–2566.

33. Taha, B.; Seha, S.N.A.; Hwang, D.Y.; Hatzinakos, D. EyeDrive: A Deep Learning Model for Continuous Driver Authentication.
IEEE J. Sel. Top. Signal Process. 2023. [CrossRef]

34. Bottos, S.; Balasingam, B. Tracking the Progression of Reading through Eye-Gaze Measurements. In Proceedings of the 2019 22th
International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2–5 July 2019; pp. 1–8.

35. Katona, J. Measuring Cognition Load Using Eye-Tracking Parameters Based on Algorithm Description Tools. Sensors 2022, 22,
912. [CrossRef] [PubMed]

36. Molnár, G. Collaborative Technological Applications with Special Focus on ICT Based, Networked and Mobile Solutions.
2012. Available online: https://www.researchgate.net/publication/280742291_Collaborative_Technological_Applications_with_
special_focus_on_ICT-_based_networked_and_mobile_solutions (accessed on 1 March 2022).

37. Molnár, G. Challenges and Opportunities in Virtual and Electronic Learning Environments. In Proceedings of the 2013 IEEE 11th
International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 26–28 September 2013; pp. 397–401.

38. Kovari, A. Digital Transformation of Higher Education in Hungary in Relation to the OECD Report. In DIVAI 2022, 14th
International Scientific Conference on Distance Learning in Applied Informatics; Wolters Kluwer: Štúrovo, Slovakia, 2022; pp. 229–236.

39. Kővári, A. Policy aspects of the digital readiness of higher education in Hungary in connection with the OECD report on digital
transformation of higher education in Hungary. Civ. Szle. 2022, 19, 45–59.

40. Gőgh, E.; Racsko, R.; Kővári, A. Experience of Self-Efficacy Learning among Vocational Secondary School Students. Acta Polytech.
Hung. 2021, 18, 101–119. [CrossRef]

41. Guzsvinecz, T.; Szűcs, J. Using Analytics to Identify When Course Materials Are Accessed Relative to Online Exams during
Digital Education. Educ. Sci. 2021, 11, 576. [CrossRef]

42. Orosz, B.; Kovács, C.; Karuović, D.; Molnár, G.; Major, L.; Vass, V.; Sz Huts, Z.; Námesztovszki, Z. Digital Education in Digital
Cooperative Environments. J. Appl. Tech. Educ. Sci. 2019, 9, 55–69.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/JSTSP.2023.3235302
http://doi.org/10.3390/s22030912
http://www.ncbi.nlm.nih.gov/pubmed/35161659
https://www.researchgate.net/publication/280742291_Collaborative_Technological_Applications_with_special_focus_on_ICT-_based_networked_and_mobile_solutions
https://www.researchgate.net/publication/280742291_Collaborative_Technological_Applications_with_special_focus_on_ICT-_based_networked_and_mobile_solutions
http://doi.org/10.12700/APH.18.1.2021.1.7
http://doi.org/10.3390/educsci11100576

	Introduction
	Theoretical Background
	Materials and Methods
	Test Subjects
	Test Conditions and Steps of the Research

	Results
	The Evaluation of the Results of the Traditional Knowledge Level Tests
	The Evaluation of Test Subjects’ Subjective Opinion
	Evaluation of Eye-Tracking Parameters
	Fixation Duration Mean
	Number of Fixations
	Average of Pupil Diameter Based on AOIs

	Discussion
	Limitations and Future Directions
	Conclusions
	References

