
Citation: Verma, A.K.; Saxena, R.;

Jadeja, M.; Bhateja, V.; Lin, J.C.-W.

Bet-GAT: An Efficient Centrality-Based

Graph Attention Model for Semi-

Supervised Node Classification. Appl.

Sci. 2023, 13, 847. https://doi.org/

10.3390/app13020847

Academic Editor: Giacomo Fiumara

Received: 1 December 2022

Revised: 28 December 2022

Accepted: 30 December 2022

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Bet-GAT: An Efficient Centrality-Based Graph Attention Model
for Semi-Supervised Node Classification
Atul Kumar Verma 1, Rahul Saxena 1,2, Mahipal Jadeja 1, Vikrant Bhateja 3 and Jerry Chun-Wei Lin 4,*

1 Department of Computer Science and Engineering, Malaviya National Institute of Technology Jaipur,
Jaipur 302017, Rajasthan, India

2 Department of Information Technology, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
3 Department of Electronics Engineering, Veer Bahadur Singh Purvanchal University, Shahganj Road,

Jaunpur 222003, Uttar Pradesh, India
4 Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway

University of Applied Sciences, 5063 Bergen, Norway
* Correspondence: jerrylin@ieee.org

Abstract: Graph Neural Networks (GNNs) have witnessed great advancement in the field of neural
networks for processing graph datasets. Graph Convolutional Networks (GCNs) have outperformed
current models/algorithms in accomplishing tasks such as semi-supervised node classification, link
prediction, and graph classification. GCNs perform well even with a very small training dataset.
The GCN framework has evolved to Graph Attention Model (GAT), GraphSAGE, and other hybrid
frameworks. In this paper, we effectively usd the network centrality approach to select nodes from
the training set (instead of a traditional random selection), which is fed into GCN (and GAT) to
perform semi-supervised node classification tasks. This allows us to take advantage of the best
positional nodes in the network. Based on empirical analysis, we choose the betweenness centrality
measure for selecting the training nodes. We also mathematically justify why our proposed technique
offers better training. This novel training technique is used to analyze the performance of GCN
and GAT models on five benchmark networks—Cora, Citeseer, PubMed, Wiki-CS, and Amazon
Computers. In GAT implementations, we obtain improved classification accuracy compared to the
other state-of-the-art GCN-based methods. Moreover, to the best of our knowledge, the results
obtained for Citeseer, Wiki- CS, and Amazon Computer datasets are the best compared to all the
existing node classification methods.

Keywords: graph convolution network (GCN); graph attention network (GAT); network centrality;
semi-supervised node classification

1. Introduction

The role of Graph Neural Networks (GNNs) has grown significantly in the last 3–
4 years for network mining and analysis [1]. Given the ever-evolving data on the social web
and the dynamic evolution of network structures, GNN-based frameworks and explorations
have improved significantly in contrast to other machine learning algorithms. In fact, Graph
Convolutional Networks (GCNs) play a key role in the analysis and information mining
of any kind of network structures (biomedical, electrical circuits, etc.). Tasks, such as
semi-supervised classification of nodes [2], link prediction [3], graph classification [4], etc.,
achieve more promising results and predictions based on GCNs and GAT frameworks. The
importance of these methods becomes even more apparent when considering that even
with 20% or less training data, model accuracy is much higher (over 75%) [2]. The node
classification task is basically to find the mapping of nodes ‘N’ of a graph ‘G’ to the set
of labels ‘L’. Mathematically, it can be expressed as G : N → L. GCNs have been shown
to be the most suitable models to perform the task of semi-supervised node classification

Appl. Sci. 2023, 13, 847. https://doi.org/10.3390/app13020847 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020847
https://doi.org/10.3390/app13020847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3259-8874
https://orcid.org/0000-0001-8768-9709
https://doi.org/10.3390/app13020847
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020847?type=check_update&version=3

Appl. Sci. 2023, 13, 847 2 of 19

in different networks. GCN is a message-passing algorithm on graphs. It means that the
information about the graphical network propagates through the neighborhood interactions
in the graph. In a semi-supervised classification task, the labels for a few nodes in the
network are known. Based on this mechanism of message passing, the labels for the
remaining nodes are determined. The machine-learning-based models or algorithms are
able to use only the information based on the entity features. In contrast, GCN uses the
neighborhood interactions, i.e., the information about the features of the node’s neighbours
(as well as neighbours’ neighbours) along with the node features where neighbours are
identified using edges. The idea of neighbourhood information aggregation to characterize
the underlying node’s behaviour is the key aspect of GCN-based models. Thanks to this
information propagation, GCN outperforms conventional machine learning models even
for a small training dataset.

Graph Convolutional Networks (GCN) are preferable for the applications where data
are generated from the non-Euclidean space with complex relationships and interdepen-
dencies. Traditional machine learning and deep learning strategies over graphical data tend
to fail. These algorithms work well with structured data, with each data unit being indepen-
dent of each other. Real-world networks, such as social networks, biological networks, road
traffic networks, etc., are represented in the form of a graph. The graphical representations
have an irregular structure where a node can have any number of neighbors. For example,
in a social network, one user (node) can have ‘x’ number of users as friends in the network,
while another user can have ‘y’ number of friends. Hence, the symmetry is not fixed as
in the case of an image, where each pixel is represented as a fixed dimension. In addition,
each user is related to its friends in the network, while in image data, each pixel unit is
independent. In addition, the data for graphs are invariant to the node order. Hence, deep
learning frameworks such as CNN are not suitable for operating over graphical data. GCNs
do find their application in various application domains. Recently, the GCN framework has
been utilized in Google Maps route optimization tasks. The route identification performed
by converting the road network of a city into a graph and treating other road activities as
features has experimentally shown traffic delays significantly optimized [5]. Protein Fold-
ing, another classical problem has also effectively utilized the predictive power of GCNs
to estimate the protein molecule interactions. The proposed method not only improves
predictions but also lowers the complexity of the task [6]. Similarly, GCN has extensive
utility in various other fields, such as computer vision [7], natural language processing [8],
medical imaging [9], VLSI domain [10], etc. With respect to a graphical network, the tasks
that can be accomplished are node classification, link prediction, graph classification, graph
clustering, etc. In this article, we consider the task of node classification to predict the label
of a node in the network based on the aggregation of the information from its neighbor.
The work presented in this article is an enhancement to the traditional GCN-based node
classification in which the training dataset is chosen based on graphical properties of the
node: (i) clustering coefficient and (ii) betweenness centrality. The proposed method,
named Bet-GAT, accomplishes the task of node classification using the Graph Attention
Model, which improves the classification accuracy of the traditional Graph Attention Model.
Further, the proposed method attains improved results with a training dataset of around
20% only, which is appreciable as feature availability for all the entities in a real-world
network are a big challenge; hence, models need to work with a limited training dataset.

There are a number of studies based on GCN models to perform effective classification
of nodes on different benchmark datasets. In this paper, we propose a network-centrality-
based approach to select training set nodes for GCN and GAT models. The idea of GCN
revolves around edge-connectivity-based information propagation and property trans-
fer from node to node. Effective information propagation occurs in the network when
important nodes are selected based on their structural position. We exploited this idea
to select the training set such that nodes with high network centrality are selected [11].
Our results analysis of different benchmark networks shows that the validation and test
accuracy improved significantly for these networks. The simulative analysis was performed

Appl. Sci. 2023, 13, 847 3 of 19

for different centrality measures (degree, closeness, eigenvector, etc.). However, the best
results are obtained by selecting the training sample betweenness centrality. This idea helps
in accurate weight learning and in building the attention model. The results are promising
for both binary and multiclass node classification tasks. The comparative analysis of the
results with the other current methods proves the superiority of the proposed method.

The rest of the paper is organized as follows: Section 1 gives a brief introduction about
GCN, its applications, and the contributions of the paper. Section 2 discusses in detail the
modeling dynamics of GCN and GAT models. We also present the state of the art in graph
theoretic models for deep learning, focusing on methods based on convolutional operations.
Section 3 discusses how network centrality is helpful in improving the performance of GCN-
based classification tasks. The section also defines the problem formulation, experimental
setup, and algorithmic procedure and proposed framework. Section 4 is the results and
analysis section. This section highlights the behavioral aspects of the proposed model. We
also present the performance evaluation of the proposed method by comparing our results
with the other prominent current methods. Section 5 summarizes our main contributions.

2. Literature Survey

In this section, we present the basics of Graph Neural Networks (in particular GCN
and its variant GAT) along with an extensive literature review on these methods.

2.1. Graph Convolutional Neural Networks (GCNs)

Graph Convolutional Networks are the type of neural networks that work directly with
graphs. The idea of Graph Convolution is analogous to Convolutional Neural Networks
(CNNs) for images. The main difference between CNNs and GCNs is that CNNs work
with regular Euclidean (structured) data, while GCNs work with data in non-Euclidean
space. This is due to the irregularities in the network structure caused by the different
neighborhood connections and alignments. Therefore, the operational feature extraction
method is different from the one used for CNNs. Therefore, we need a mathematical model
formulation based on spectral graph theory to solve the problem.

The convolution operation defined for an image using CNNs introduces hidden
convolution and pooling layers to identify spatially localized features via a set of receptive
fields in kernel form. We slide the convolutional operator window across a two-dimensional
image, and we compute some function over that sliding window. Then, we pass it through
many layers. Convolution takes a little sub-patch of the image (a little rectangular part
of the image), applies a function to it, and produces a new part (a new pixel). The center
node of that center pixel aggregates information from its neighbors, as well as from itself,
to produce a new value. However, the same strategy cannot be utilized for GCNs due to
the arbitrary size of the graph and the complex topology, which means there is no spatial
locality. The structural differences are depicted in Figure 1. In addition, the convolution
operation must be invariant to node order. For GCNs, the challenging task is to identify
an encoding function which can encode the nodes of a graph in a d-dimensional space
preserving the proximity of nodes as in the original graph (local network neighborhoods).
Based on this, the computational graph for each node is defined, and aggregation of
information is performed for a particular node. Thus, we have convoluted information
aggregated over each node of the network.

Appl. Sci. 2023, 13, 847 4 of 19

Image Graph

1 4 7

2 5 8

3 6 9

Figure 1. Convolutional operational strategies for regular grid structures and irregular graph structures.

Here, we consider the problem of node classification by GCN. The general idea of
GCN is to collect information about the neighborhood of a node for which the class is to be
predicted. This includes both the local neighborhood information and the characteristics of
the individual node, which serve as input to the model. Let us build the model based on this
information. Let G be an undirected graph with V a set of nodes such that viεV and let E be
the set of edges such that (vi, vj)εE. Furthermore, let X be the feature vector corresponding
to each node in N. From this, the aggregation function can be defined as follows:

Z = f (A, X) = A× X (1)

in which A is an adjacency matrix, such that AεRNXN , X is the feature vector matrix, such
that XεRNXC, N is the number of nodes in the network, C is the dimensions of the feature
vector, and λ is Scalar(λ > 0).

Equation (1) represents the sum of all neighborhood vectors except itself. For this
purpose, consider a self-loop for each node:

Â = A + λIN (2)

Thus, the final aggregated function becomes:

Z = Â× X (3)

To prevent the dominance of feature vectors, the function is normalized using the
degree matrix. The degree matrix over the graph ‘G’ with adjacency matrix ‘A’ is defined
as: Di,i = ∑j Aij. Using this information, the aggregate convolution function is defined
as [2]:

Z = f (A, X) = D−1/2 ÂD−1/2 × X (4)

The adjacency matrix is scaled over both rows and columns. This provides the
weighted average scaled uniformly both for low and high degree nodes. For a 2-layer
GCN, where the first layer is an input layer and the second is the output layer, as given in
Equation (1), the forward model is defined as [2]:

Z = f (A, X) = so f tmax(Â.ReLU(Â× X×W(0))×W(1)) (5)

Here, Â is defined as D−1/2 × A×D−1/2. The ultimate task is to learn the weights for
the model where C× H are the trainable weights for W(0) (weights at layer 0). Similarly,
H × F trainable weights for W(1)(weights at layer 1). Here, C refers to the dimensions of
the feature vectors, F refers to the dimensions of the resulting vectors and H is the number
of hidden layers. The expression in Equation (5) can further be extended depending upon
the hidden layers in the network. The depth of the network is based on the intuition of
the k path length neighborhood contribution. However, in general, graph networks do not
have much effect of the neighborhood interactions beyond 2–3 path lengths [12]. Thus,
results of 2–3 layer GCN networks are considerable and impressive. Further, considering
the neighbors beyond this range spoils the meaning of neighborhood aggregation, and the
results will overfit.

Appl. Sci. 2023, 13, 847 5 of 19

The last layer of the GCN corresponds to the number of classes for which the prediction
is to be made. The output vector of the last layer is then passed through a Softmax function
to make the predictions. The cross entropy loss function is used for training:

L = − ∑
yεYl

F

∑
f=1

Yl f lnZl f (6)

Here, YI is the set of node indices with labels. The whole discussion so far summarizes
the process (Figure 2) of semi-supervised node classification by the GCN model. The
training process is tuned using hyperparameters such as learning rate, number of layers
of the network, number of epochs, dropout, etc., to optimize the loss function as per
Equation (6).

Figure 2. Semi-supervised node classification through a GCN model.

Graph Neural Networks have been the most widely studied area of research in recent
years. These are specific types of neural networks based on the graph structure. The
semi-supervised node classification using the GCN model was proposed by Kipf et al. [2].
This GCN model is capable of encoding node features and underlying graph structure.
A new GCN approach, Graph Wavelet Neural Network (GWNN) [13], significantly out-
performs spectral graph CNNs in the task of graph-based semi-supervised classification.
Abu-El-Haija et al. [14] proposed a model using multiple powers of an adjacency matrix.
Lu et al. [15] addressed the attention mechanism problem for multiple prediction tasks, such
as node and graph classification. Several studies worked on the performance improvement
of GNNs [16,17].

For performance improvement of semi-supervised classification, Lin et al. [18] pro-
posed an SF-GCN structure fusion model that is based on graph convolutional networks.
Another approach by Gao et al. [19] conveys the learning graph convolutional layer (LGCL),
which takes out a fixed number of neighbor nodes for each feature and transforms graph
data into grid-like structures. In contrast to these methods, Luo et al. [20] focused on a
novel framework called Self-Ensembling GCN (SEGCN), where both labeled and unlabeled
nodes were used to train GCN. For the same scenario, Franceschi et al. [21] incorporated
the graph structure and parameters of graph convolutional networks. Zhou et al. [22]
addressed the shortcomings of the GNN architecture through the automated Graph Neural
Networks (AGNN) framework. Gao et al. [23] also developed a graph neural architecture
search method. Jiang et al. [24] defined Graph Optimized Convolutional Network (GOCN)
for graph data representation and learning, which is applicable to multiple graphs.

Wijesinghe et al. [25] used Distributed Feedback-Looped Networks (DFNets) for the
spectral convolutional neural network. Recently, Dabhi et al. [26] proposed a model using
NGL-NodeNet to solve node classification tasks for citation graphs. Huang et al. [27] trained
GCNs for large graphs by implementing an adaptive layer-wise sampling method. More
recently, Wang et al. [28] developed an end-to-end model that defines the incorporation of
GCN and a Label Propagation Algorithm (LPA) for node classification. This model allows
simultaneous learning of transformation matrices and edge weights. Therefore, it provides
better performance compared to a traditional GCN.

Appl. Sci. 2023, 13, 847 6 of 19

2.2. GCN to GAT Transition

GCNs, the simplest formulation of Graph Neural Networks, define model training
based on the concept of isotropic aggregation. Isotropic aggregation means that the contri-
bution of each neighbor to the node under consideration is considered equal. On this basis,
the simple neighborhood aggregation function is defined as follows [24]:

hk
v = σ(Wk[ΣuεN(v)

hk−1
u

N(v)
] + Bk.hk−1

v) (7)

Equation (7) is a more formalized way of expressing a GCN model. Here, hk
v represents

the resulting node embedding after k layers of neighborhood aggregation, σ represents the
nonlinear function (e.g., ReLU), hk−1

u represents the node embedding of the previous layer,

ΣuεN(v)
hk−1

u
N(v) is the average neighborhood aggregation over u nodes such that uεN(v), and

Bk is the bias.
The Graph Attention Model varies the concept of GCN by defining the importance of

neighborhood connections. It defines the importance of the message from node u to node
v such that (u, v)εE. Let a define the attention coefficient for the edge evu for the pair of
nodes (u, v); evu is defined as [24]:

evu = a(Wkhk−1
u , Wkhk−1

v) (8)

Furthermore, normalizing the expression in Equation (8) using the Softmax function,
the equation turns out to be:

αvu =
exp(evu)

∑kεN(v) exp(evk)
(9)

Finally, the node embedding at Kth layer is defined as:

hk
v = σ(∑

uεN(v)
αvuWkhk−1

u) (10)

Equation (10) defines the learning model according to GAT. The parameters of the
attention mechanism a are trained using a neural network. These parameters are learned
together with the weight matrices. To stabilize the learning process, a multi-head attention
mechanism is used. Here, the attention operations for each layer are repeated R times
independently. Finally, the output is aggregated or summed. This equation-based analysis
of the process justifies why GAT has an advantage over GCNs. GAT considers aggregation
of neighbors based on their importance with respect to the node. This further improves the
accuracy of the results and the quality of the learning process imparted to the model.

In the world of neural network architectures running on graph structure data,
Veličković et al. [29] introduced a new approach called GATs, i.e., Graph Attention Net-
works. The authors try to strengthen GCN approximation techniques and remove weak-
nesses by using mask self-attention layers. In this model, nodes can pick up information
about neighboring nodes by superimposing the layers. Interestingly, no prior knowledge of
graph structure is required to implement layering, and this process is computationally fast.

Yu et al. [30] present a supervised graph attention network (super- GAT). This model con-
siders both implicit and explicit weights for the nodes. Therefore, the model provides better re-
sults than the traditional GAT. In another robust variant of GAT, Shanthamallu et al. [31] claim
that the performance of semi-supervised learning is improved. In refining GAT, Wang et al. [32]
focused on overfitting during training and improved the performance of their model.

3. Proposed Methodology
3.1. Background of Network Centrality Measures

The concept of network centrality was first discussed in [33]. In a network, identifying
the most important nodes is a very important task in order to efficiently control the flow of

Appl. Sci. 2023, 13, 847 7 of 19

information. In a graphical network, a few nodes are positioned in the network in such a
way that they define communication paths for the nodes at the periphery of the network.
Due to their optimal structural position in the network, their reachability to different parts
of the network and their accessibility from other nodes are high. As can be seen in Figure 3,
the central node has the highest centrality value due to its better accessibility to other nodes
(in terms of path length).

0.160.14 0.140.1 0.1

Figure 3. Instance of a path graph (P5) with centrality scores based on importance.

However, the notion of importance for the nodes in the network depends on the
choice of the task to be accomplished. In some cases, the node with the most connections
in the network is important, while in other cases, the node through which most edge
connections pass is more important. Based on these criteria, there are different types of
network centrality measures.

When measuring degree centrality, nodes with more links in the network [34] are given
higher importance. Alexander Bavelas [35] was the first to introduce closeness centrality.
Degree centrality may not be a good criterion for defining the importance of a node in
the network. Closeness centrality defines the importance of a node based on the notion
of closeness to other nodes. However, this was later redefined as harmonic centrality [36]
because the functional definition for closeness centrality is not valid for an unconnected
network. The computation of Eigenvector centrality for a node is based on what kind of
nodes the underlying node is connected to [37].

The betweenness centrality metric [38] is a path-based measure based on two conjec-
tures: node betweenness and edge betweenness. The latter, however, depends on the node
betweenness. Here, the importance metric of the node depends on how often it occurs on
the shortest paths from one node to another. We then can obtain Equation (11) as:

cbet(x) = ∑
y,z 6=x,σyz 6=0

σyz(x)
σyz

(11)

Here, σyz stands for the number of shortest paths from y to z and σyz(x) for the
number of these paths passing through x. The centrality measure has several implications
for finding the important nodes in the network when the flow of information between
two groups is mediated by a node or group of nodes. Brandes [39] proposed an efficient
algorithm for computing betweenness centrality. The time complexity of Brandes’ algorithm
is O(nm + n2logn), and the space complexity is O(n + m), where n and m are the number
of nodes and edges in a graph, respectively.

These are some basic centrality measures to identify the important nodes of the net-
work based on their structural positions. Current research further explores the applicability
and usability of centrality measures depending on the network structures and applications.
In this proposed work, we use this concept to identify a set of nodes for training the Graph
Neural Network. To improve the training dataset, we choose nodes with high betweenness
centrality values. In the next subsection, we justify this statement with a detailed analytical
reasoning.

3.2. Justification of Betweenness Centrality Based Training

Let us consider a network in terms of a graph G(V, E) such that V is the set of vertices
or nodes defined as

{
v1, v2, . . . , vn

}
∈ V, and E is the set of edges or links defined as{

e1, e2, . . . , ek
}
∈ E such that n, k > 1.

Appl. Sci. 2023, 13, 847 8 of 19

Let X be the feature matrix of order n×m defined for each node vi ∈ V. Thus, the
feature matrix’s row will be given as:

{
x1, x2, . . . , xm

}
∀ xi ∈ X such that 1 < i < m.

Generally, we have n > m (size of training data > size of feature vector for each node) in
order to avoid the condition of overfitting during the training process. We consider total p
different classes (

{
c1, c2, . . . , cp

}
) for the underlying node classification problem; i.e., each

node vi belongs to one of these p classes which is represented by its label li associated with
it; li ∈

{
c1, c2, . . . , cp

}
where p << n . Consider the optimal label set L, where each node

has its correct classification label; i.e., the correct class value is known for all the nodes.
So far, we have defined all the basic terminologies of our proposed model. Our goal

is to identify a mapping (predicted label set) that is close to the optimal set L. We need to
show that the classification accuracy of the GAT model improves when nodes with high
betweenness centrality are chosen as training nodes for the model. For this, we need to
show two things:

1. A subset of training nodes selected based on betweenness centrality improves train-
ing efficiency.

2. The probability of selecting the same subset of nodes by a traditional GAT/GCN
model (by default random selection of training nodes) is near zero.

Let us consider the first statement and infer its validity. A subset of training nodes
selected based on betweenness centrality improves training efficiency.

For GCN and GAT as per Sections 2.1 and 2.2, we already know that the model accu-
racy depends on the neighborhood aggregation. In other words, neighborhood aggregation
contributes to more and more availability of features for training the data. We can say that
training efficiency ∝ feature availability ∝ neighborhood aggregation.

Thus, the problem reduces to finding an efficient subset of nodes that can increase the
availability of features. Let A′′ be a subset of nodes defined over the set V such that nodes
are selected in order of betweenness centrality score. Let A′ be another subset of nodes from
the set V such that the nodes are randomly selected. Here cardinality(A′) = cardinality(A′′)
is maintained. Suppose the very first node (with the highest betweenness centrality) a ∈ A′′

is selected, and the first node in b ∈ A′ is selected. Since the nodes in A′′ are selected based
on betweenness centrality, the following holds,

betweenness centrality score(a) > betweenness centrality score(b)

We assume that a 6= b, i.e., that the same node a is not selected by the random selection
process. The reason is that the probability of the node a being selected by the random
process is 1/n, which is close to zero for large values of n.

According to the definition of betweenness centrality from Section 3.1, a node with a
high betweenness centrality value participates in a larger number of shortest paths between
different pairs of nodes of the graph. This implies that:

Number of shortest paths with membership of node a > Number of shortest paths with membership of node b

It should be noted that node coverage up to q path length should be considered, where
q > 0, and generally has a small value. For GAT, the neighborhood contribution is not
taken into account for a path length of two hops or more. Thus, we can say that node a
necessarily has more neighbor nodes of path length p compared to node b. This is because
a participates in more shortest paths compared to b, and from this it can be deduced that:

node coverage(A′′) > node coverage (A′)

Let us consider an example to verify this. Figure 4 illustrates the computational graphs
corresponding to a node for the graph defined in the first subfigure of Figure 4. Suppose
that for this graph G, the size of the training set is 2. Consider the two subsets A′ (random
selection) and A′′ (proposed selection) as:

A′ =
{

E, G
}

(12)

Appl. Sci. 2023, 13, 847 9 of 19

A′′ =
{

B, C
}

(13)

Random selection of nodesGraph

A

B

C

D
F

G

E
(a1)

A

E

BCE

G

C AG

B

(a2)

Selection of nodes based on high Betweenness Centrality value

C

F A

BCEC AG

B

F C

D

CD

(b2)

G

B

AB

C

F D

(b1)

A

BCEB

Figure 4. Node selection: a1, a2 (traditional random selection) vs b1, b2 (proposed selection).

Thus, extending the computational graphs of the selected training nodes in A′ to the
neighbors up to path length 2 (fixed size z path length), the node coverage of A′:

A′ =
{

A, B, C, E, G
}

(14)

On the other hand, node coverage for A′′ using the training nodes B and C is:

A′′ =
{

A, B, C, D, E, F, G
}

(15)

This small illustration shows that A′′ has a larger node coverage compared to A’.
Moreover, each node ai ∈ A′′ is a feature matrix row associated with it as an A′′ ⊂ V, and
for each node vi ∈ V, there is a feature vector xj ∈ X such that 1 < i < n, and 1 < j < m, ∀
i, m > 1. Each node of A” delivers its feature vector to as many nodes as it can reach within
the defined constrained path length z. This implies a higher neighborhood contribution
compared to the nodes of the subset A′. In this way, we finally have a greater availability
of feature vectors and labeling information for training the GAT model. From this, we can
deduce that the training efficiency of the model (GAT /GCN) is higher when the selection
of the training nodes is based on the betweenness centrality model, and therefore, the
assignment function (class prediction) obtained for each node in V will eventually be close
to the optimal assignment function L.

Next, we will try to show that probability of selection of this subset of nodes (A′′)
randomly is near equal to zero.

Definition 1. The probability that the GAT model (random selection of training nodes by default)
selects the same subset of nodes approaches zero.

In GAT, the selection of training nodes is conducted randomly from the set of available
nodes. In our proposed method, on the other hand, these training nodes are selected based
on their betweenness centrality scores. Thus, the subset A′′ contains the best w central
nodes with the highest betweenness centrality such that w < n, where ‘n’ is the total
number of nodes in the network. This is due to the fact that in GCN we have very few
nodes that can be used for training, since no information (features and labels) is available.
The number of ways to select a subset of length w (subset of w nodes) is given as nCw. Our
goal is to find the probability of choosing the subset A′′ from these nCw subsets. Thus, let
us consider an event Q as: Selection of the subset A′′ of the set V, where V is the set of all
vertices of the graph and |V| = n. The probability of this event will be:

P(Q) = 1/nCw (16)

Appl. Sci. 2023, 13, 847 10 of 19

Assuming that 60% of the data is used for the training, we then obtain w = 3n/5.
Thus:

P(Q) = 1/nC3n/5 (17)

If we solve the problem, we obtain P(Q) ≈ 0. To check it empirically, if the value of
n = 104, then the probability of the event Q according to the above expression is given as
follows:

P(Q) = 1/104
C6000 (18)

=⇒ P(Q) = (2.68e20065 × 1.82e12673)/2.84e35679 (19)

To make the further solution, we have that:

P(Q) ≈ 1/e2921 (20)

The value is then calculated as: e ≈ 2.73. Moreover, we have obtained that (2.73)2921 >>
(2.73)5. Thus, we finally have

P(Q) ≈ 1/(2.73)5 ≈ 0 (21)

So we can show that the probability that the subset A′′ is chosen at random goes
to zero.

Based on the above justifications, we could show that the selection of training nodes
based on betweenness centrality improves the efficiency of the GAT model. Therefore,
the model will have better classification accuracy than the traditional GAT model where
the selection of training nodes is random. Moreover, we found that the probability of
selecting all training nodes with the best centrality values is very low (approximately zero).
This justifies that this type of selection is almost impossible when the selection of nodes
is random. Thus, we could finally justify the efficiency of the proposed model (Bet-GAT)
to GAT.

3.3. Proposed Framework

In the proposed framework, we perform the following steps for building a graph
neural network model based on betweenness centrality.

Step (i): We consider data that can be represented in terms of a graph structure (such
as citation networks) as input. The set of nodes (A) and the feature matrix (X) of the
underlying graph serve as input.

Step (ii): After the input, the betweenness centrality (Bet) is calculated for all nodes
using k Equation (11).

Step (iii): Nodes are selected for the training based on betweenness centrality values.
Preference is given to nodes with high betweenness centrality values. A subset of nodes
(generally top 60% nodes in terms of betweenness centrality value) are selected for the
training.

Step (iv): The chosen training set nodes along with the feature matrix(X) are given to
the Graph Attention Network (GAT) for training.

Step (v): Finally, we obtain the classification of nodes as output. In addition, we
display the visualization of GAT embeddings for the underlying dataset as t-distributed
stochastic neighbour embedding (TSNE).

We consider the Cora citation network to explain the whole process. The Cora dataset
includes 2708 scientific publications classified into one of seven classes. In this dataset, the
nodes and edges represent documents and citation links, respectively. This dataset is in
the form of a set of nodes (A) and a feature matrix (X). Equation (10) is used to represent
the betweenness centrality (Bet) of each node from smallest (blue) to largest (yellow) (as in
Figure 5). Here, the set of nodes A is divided into two subsets A’ and A”. The subset A” is the
set of nodes selected for training (with high values for centrality, i.e., A′′ ⊂ A). For further
training, we select the set of nodes with the feature matrix GAT Veličković, P. et al. [29].
Then, we use ELU (exponential linear unit) [40] followed by Softmax activation. Lastly,
the result is shown as t-distributed stochastic neighbor embedding (TSNE) visualization of

Appl. Sci. 2023, 13, 847 11 of 19

GAT embedding for the Cora dataset. Here, each color represents a unique class (category)
of the Cora dataset. The dataset has 7 classes and hence, 7 different colors are visible in the
TSNE.

Figure 5. Diagrammatic representation of node sampling based on betweenness centrality.

3.4. Algorithmic Description of the Problem

To demonstrate the execution of the idea, we use Stellar Graph library [41], which
defines the GCN model for a graph. In addition, the graph library NetworkX [42] is used to
capture the structural information of the network. The process of node classification was
defined in terms of an algorithmic procedure (see Algorithm 1).

The dataset has the form of a graph where the nodes correspond to a data point con-
taining a feature vector. The relationships between the nodes (data points) are represented
by edges. These two pieces of information are provided as input to the model. These data
are divided into: training data, validation data, and test data. Here, the nodes of the training
data are selected based on the centrality measure function (nx.betweenness()) defined by
the NetworkX Python library (nx.betweenness()). In addition, the Stellar graph library
defines a function FullBatchnode Generator() to define the neural network (NN) for the nodes
of the graph. The defined NN generally consists of an input layer, a hidden layer, and
an output layer. The number of hidden layers is user-defined and is best determined by
experimental simulation runs. In the output layer, the function Softmax is applied to the
output obtained from the last hidden layer. Here, the final output is equal to the number of
classes to be predicted. The hidden layers have a ReLU (Rectified Linear Unit) activation
function with a hidden layer size on the order of 16× 16. However, the size of the kernel

Appl. Sci. 2023, 13, 847 12 of 19

varies depending on the size of the network. Other parameters of the network, such as the
learning rate, are set to 0.01, with Adam Optimizer and Cross Entropy as loss functions. The
Failure Rate for each layer ranges from 0.2–0.5. However, all of these parameter settings are
user-dependent and vary slightly in terms of task performance improvement.

Algorithm 1 Pseudocode of Bet-GAT(A, X).
Input: A is the edge list of the network; X is the feature vector matrix corresponding to the
dataset containing node labels.
Output: Classification of nodes for the given network.

dataset = sg.dataset(); . Loading dataset
centrality = nx.getcentrality(A); . Get centrality
nodelabels = extractlabels(X); . Extracting labels from Feature Vector matrix
nodesubjects = merge (A.nodes, nodelabels); . Combined node ids with labels
for each node in nodesubjects, centrality do

nodesubjects1 = merge(nodesubjects, centrality);
nodesubjects1 = sortbycentrality(nodesubjects1);

end for
for i in range(trainsize) do

trainset[i] = nodesubjects[i];
end for
for i in range(validationsize) and not in trainset do

validationset[i] = nodesubjects[i];
end for
for i in range(testsetsize) and not in trainset do

testset[i] = nodesubjects[i];
end for
trainset = encode(trainset); . One hot encoding
validationset = encode(validationset); . One hot encoding
testset = encode(testset); . One hot encoding
GAT = GAT (layersizes = [128, 32], activations = [“relu”, “relu”], generator = generator,
dropout = 0.5, attention head = 32); . Defining GAT layer
predictions = layers.Dense(units = trainsettargets, activation = “softmax”)(X); . Defining
Prediction layer
model = Model(inputs = X, outputs = predictions);

. Defining the model
model.compile (optimizer = Adam(learningrate = 0.0001), loss = categoricalcrossentropy,
metrics = [“accurracy”]);
model.fit (trainset, epochs, validationdata, callbacks = till stopping criteria); .
Performing Training

3.5. Dataset Description

We use five benchmark datasets (see Table 1) to evaluate the performance of the
proposed model. The details of the datasets are as follows.

1. Citation networks: In citation networks, the nodes and edges represent documents
and citation links (undirected), respectively. We consider following three datasets in
the citation networks.
(1). Cora: The Cora dataset comprises 2708 scientific publications. Each publication is
further classified into 1 of 7 classes.
(2). Citeseer: The Citeseer dataset contains 3312 scientific publications. Each publica-
tion is categorised into 1 of 6 classes.
(3). PubMed: The PubMed dataset contains 19,717 scientific publications. Each
publication is further classified into one of three classes.

2. Wikipedia-based [43]: Wiki-CS is a relatively new dataset from Wikipedia. The nodes
and edges represent computer science articles and hyperlinks, respectively. The
dataset contains 11,701 computer science articles which are categorised into 10 classes.

Appl. Sci. 2023, 13, 847 13 of 19

3. AMZ computers [44]: AMZ Computers is an Amazon co-purchase graph. The nodes
and edges of this graph represent items and co-purchased relation respectively. The
dataset contains 13,752 products which are categorised into 10 classes.

Table 1. Datasets description.

Datasets Nodes Edges Classes Features Type

Cora 2708 5429 7 1433 Citation network
Citeseer 3312 4732 6 3703 Citation network
PubMed 19,717 44,338 3 500 Citation network
Wiki-CS 11,701 4,31,726 10 767 Wikipedia-based

AMZ Computers 13,752 4,91,722 10 300 Amazon Computers

4. Results and Analysis

In this section, the effectiveness of the model’s performance is demonstrated experi-
mentally. A comparative analysis of the behavioral aspects of the proposed model with the
traditional GCN model is performed. We also present experimental results obtained with
the Bet-GAT model for three datasets. We also compare our results with other state-of-the-
art methods.

4.1. A Comparative Analysis: GCN vs. GCN with Betweenness Centrality

In this subsection, we compare the behavior of our model (GCN with betweenness
centrality) with the GCN model. We consider the Zachary Karate Club network and
analyze the node embeddings generated by the two models for this network. For this node
embedding process, we consider Equations (1), (4), and (5) as defined in Section 2.1.

Figure 6a shows the network of the Zachary Karate club, which consists of two classes.
In these two classes, there are 34 nodes connected by 78 unweighted and undirected edges.
Using this well-known network, we analyze the proposed idea (GCN with betweenness
centrality) for classifying nodes in graphs. To empirically test our idea, we train the GCN
model by randomly initializing the transformation matrices into the Zachary Karate Club
network [45]. Then, we train the GCN with the betweenness centrality model based on
selecting the training nodes with high betweenness centrality values. We also draw the
node embeddings. When we compare the node embeddings of both models, we find that
GCN performs well, but GCN performs better with the betweenness centrality model.
Figure 6b,c show the node embeddings of GCN and GCN with the betweenness centrality
model, respectively. Through observations and a comparative study of both embeddings,
we show the correctness of our claim that GCN performs better with the betweenness
centrality.

(a) Zachary karate club network (b) Node embedding through GCN (c) Node embedding through Bet-GCN

Figure 6. Node embedding of GCN and GCN with betweenness centrality.

Our idea provides better performance in terms of dispersion and proximity of nodes,
while the traditional GCN may consider nodes that do not contribute much to the functions
(such as leaf nodes or nodes with lower importance). The main reason for the better
performance of the GCN with the betweenness centrality is the consideration of nodes with

Appl. Sci. 2023, 13, 847 14 of 19

high betweenness centrality over random nodes in GCN. Nodes with high betweenness
centrality appear in many shortest path node pairs and therefore tend to contribute more
to the features during training.

4.2. Experimental Results

The results of our proposed model are summarized in Table 2. In terms of performance
(accuracy), our proposed Bet-GAT model (betweenness centrality with graph attention
network) is in line with the state of the art for the five benchmark networks: Cora, Citeseer
PubMed, Wiki-CS, and AMZ Computers.

For node classification, methods, such as multilayer perceptron (MLP) and logistic
regression (LR), consider only node features. On the other hand, a method such as the
label propagation algorithm (LPA) focuses only on graph structure [46]. Overall, these
three methods do not fully utilize the underlying network (dataset) (either in terms of
structural properties or node features). This is the main reason for the lower accuracy
of these methods (see Table 2). In the case of GCN [2] and GAT methods [29], we find
that they provide better results in different citation networks compared to the previously
discussed methods. We have already justified why our proposed method performs better
than the traditional GCN/GAT model. In other methods, such as jumping knowledge
networks (JK-Net) [47] and GCN- label propagation algorithm (GCN-LPA) [28], we find
that JK-Net works on subgraphs with distinct local structures generated based on random
walks. JK-Net is a strong foundation for Cora, but it does not provide the same for other
datasets. The GCN-LPA model allows simultaneous learning of transformation matrices
and edge weights. Therefore, it provides better performance than the traditional GCN.
With our proposed GAT implementation, we achieve a classification accuracy of 89.15%
for Cora, 81% for Citeseer, and 87.5% for PubMed. These results exceed the classification
accuracy of the other state-of-the-art-based GCN implementations [28] (see Table 2).

Our proposed model focuses on the structural properties of the underlying graph
for feature generation and prediction. Bet-GAT architectural hyperparameters were fine-
tuned for the Cora, Citeseer, and PubMed datasets. We consider the ratio of 6:3:1 for the
partitioning of the training set, the validation set, and the test set. We use a two-layer GAT
model. For the first layer, we use 32 attention heads, each computing 128 hidden node
features. The label classification result is provided by the second layer. Then, we use ELU
(exponential linear unit) [40] followed by Softmax activation. We also apply dropout = 0.5
for both layers. During training, we apply L2 regularization with a learning rate of 0.0005.
The weight of each edge is treated as a free variable during training. We train our model for
1000 epochs using Adam [48]. The same hyperparameters are applied to all three datasets

In Figures 7–9, we have shown the graphical representations of the accuracy and loss
curves for the Cora, Citeseer, and PubMed citation networks. The graphical representations
of the datasets in the form of TSNE embeddings show clusters of different classes (seven,
six, and three clusters for Cora, Citeseer, and PubMed, respectively). Accuracy and loss
curves are plotted for the training and validation phases. For the graphs, the epochs are
shown on the x-axis, and the accuracy and loss are shown on the y-axis. We obtain 89.15%
accuracy with loss 0.3712 for CORA, 79.00% accuracy with loss 0.4143 for Citeseer, and
81.00% accuracy with loss 0.3400 for PubMed.

Appl. Sci. 2023, 13, 847 15 of 19

Table 2. Experimental results.

Method Cora Citeseer PubMed Wiki-CS AMZ Computers

MLP 64.6 ± 1.7 62.0 ± 1.8 85.9 ± 0.3 73.17 ± 0.19 44.9 ± 5.8
LR 77.3 ± 1.8 71.2 ± 1.8 86.0 ± 0.6 - -
LPA(2005) [46] 85.3 ± 0.9 70.0 ± 1.7 82.6 ± 0.6 - -
GCN(2017) [2] 88.2 ± 0.8 77.3 ± 1.5 87.2 ± 0.4 79.07 ± 0.10 82.6 ± 2.4
GAT(2018) [29] 87.7 ± 0.3 76.2 ± 0.9 86.9 ± 0.5 79.63 ± 0.10 78.0 ± 1.9
JK-Net(2018) [47] 89.1 ± 1.2 78.3 ± 0.9 85.8 ± 1.1 - -
GCN-LPA(2020) [28] 88.5 ± 1.5 78.7 ± 0.6 87.8 ± 0.6 - -
Bet-GAT(Proposed) 89.15 ± 1.5 79.0 ± 0.3 87.5 ± 0.5 85.73 ± 0.3 91.05 ± 1.3

Figure 7. Graphical representation for Cora dataset.

Figure 8. Graphical representation for Citeseer dataset.

Appl. Sci. 2023, 13, 847 16 of 19

Figure 9. Graphical representation for PubMed dataset.

In Figure 10, we show the accuracy and loss curves for the Wiki-CS dataset. The
corresponding TSNE GAT embeddings (graphical representation) show clusters for the ten
different classes. For the training and validation phases, the accuracy and loss curves are
plotted (epochs are plotted on the x-axis and accuracy and loss on the y-axis). We obtain an
accuracy of 85.073% with a loss of 0.4639 for Wiki-CS.

Training accuracy and loss for Wiki-CS Dataset

Figure 10. Graphical representation for Wiki-CS dataset.

Finally, in Figure 11 we have presented the graphs of accuracy and training loss for
the AMZ computers. The corresponding TSNE GAT embeddings show clusters for its
three classes. For training and validation, the accuracy and loss graphs are plotted (x-axis
shows epochs and y-axis shows accuracy and loss). We obtain an accuracy of 91.05% for
Amazon with a loss of 0.2641. For verification of our proposed model, we calculate the
generalization error that refers to the test error of the model, which indicates how well a
model generalizes to the unseen data. We experimentally analyzed the training and test
errors for the mentioned datasets and observed that even though test error tends to be
greater than training error loss, the difference is not very significant. In the case of Cora, the
training error and test error loss values are 0.3712 and 0.25, respectively, with test accuracy

Appl. Sci. 2023, 13, 847 17 of 19

being 89.15%. For Citeseer, the training error and test error loss values are 0.4143 and 1.2,
respectively, with test accuracy being 79%. In the case of Citeseer, the training to test error
loss is high which accounts for low accuracy of the model over this dataset as compared to
CORA. In addition, it can be observed that the loss value difference is not huge and due to
which model performs well to classify the unseen node labels. For CORA, the base GAT
model has training and test loss values ranging above 0.5 or more attaining an accuracy
of around 85%. So, here the loss increases, and also the difference between the training
to test error loss is marginally high. With respect to the model complexity, our proposed
model just adds up a step of identifying the nodes based on the betweenness centrality
which is a preprocessing step and a one time evaluation task for the nodes of the graph. So,
it does not add up to the overall complexity of the model for predicting the node labels.
Thus, Bet-GAT has the same model complexity as the base GAT model and a minimized
generalization error which makes it a suitable choice to prefer.

Training accuracy and loss for AMZ Computers Dataset

Figure 11. Graphical representation for AMZ Computers dataset.

The F1 score is an indicative measure of the accuracy of the model. The F1 scores
(calculated using different methods) for the five benchmark datasets were compared with
the other state-of-the-art methods. The score gained through the training are as follows:
Cora (87%), Citeseer (84%), PubMed (84%), Wiki-CS (86%), and AMZ computers (95%) (see
Table 3).

Table 3. F1 Score.

Method Cora Citeseer PubMed Wiki-CS AMZComputers

GCN(2017) [2] 0.83 0.71 0.78 0.78 0.84
GAT(2018) [29] 0.84 0.70 0.78 0.77 0.88

JK-Net(2018) [47] 0.82 0.69 0.77 - -
Bet-GAT(Proposed) 0.87 0.84 0.84 0.86 0.95

5. Conclusions

We propose an efficient graph-attention-based semi-supervised classification method
(Bet-GAT) where training nodes are selected based on betweenness centrality. The model
essentially exploits the fact that GNN-based models rely on aggregation of neighborhood
information. In a graph network, the structurally well-positioned nodes ensure good
aggregation of information. This key idea is used to train the model. The classification
results obtained on the five benchmark datasets (Cora, Citeseer, PubMed, Wiki- CS, and

Appl. Sci. 2023, 13, 847 18 of 19

AMZ Computers) show that the prediction accuracy of the proposed model is high. We
also present a comparative analysis of the performance of the proposed model with current
models and algorithms for semi-supervised node classification. The approach can be
further extended to explore the combination of centrality measures (betweenness-closeness,
betweenness-degree, etc.) for training node selection.

Author Contributions: Methodology, A.K.V., M.J.; Validation, J.C.-W.L.; Formal analysis, R.S.; In-
vestigation, M.J.; Writing—original draft, A.K.V.; Writing—review & editing, J.C.-W.L.; Project
administration, V.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural

Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]
2. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International

Conference on Learning Representations, Toulon, France, 24–26 April 2017.
3. Kumar, A.; Singh, S.S.; Singh, K.; Biswas, B. Link prediction techniques, applications, and performance: A survey. Phys. Stat.

Mech. Appl. 2020, 553, 124289. [CrossRef]
4. Kriege, N.M.; Johansson, F.D.; Morris, C. A survey on graph kernels. Appl. Netw. Sci. 2020, 5, 1–42. [CrossRef]
5. Derrow-Pinion, A.; She, J.; Wong, D.; Lange, O.; Hester, T.; Perez, L.; Nunkesser, M.; Lee, S.; Guo, X.; Wiltshire, B.; et al. Eta

prediction with graph neural networks in google maps. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, Queensland, Australia, 1–5 November 2021; pp. 3767–3776.

6. Zaki, N.; Singh, H.; Mohamed, E.A. Identifying protein complexes in protein-protein interaction data using graph convolutional
network. IEEE Access 2021, 9, 123717–123726. [CrossRef]

7. Cao, P.; Zhu, Z.; Wang, Z.; Zhu, Y.; Niu, Q. Applications of graph convolutional networks in computer vision. Neural Comput.
Appl. 2022, 34, 13387–13405. [CrossRef]

8. Vashishth, S.; Yadati, N.; Talukdar, P. Graph-based deep learning in natural language processing. In Proceedings of the 7th ACM
IKDD CoDS and 25th COMAD, Hyderabad, India, 5–7 January 2020; pp. 371–372.

9. Meng, Y.; Wei, M.; Gao, D.; Zhao, Y.; Yang, X.; Huang, X.; Zheng, Y. CNN-GCN aggregation enabled boundary regression for
biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-
Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 352–362.

10. Wang, B.; Shen, G.; Li, D.; Hao, J.; Liu, W.; Huang, Y.; Wu, H.; Lin, Y.; Chen, G.; Heng, P.A. LHNN: Lattice Hypergraph Neural
Network for VLSI Congestion Prediction. arXiv 2022, arXiv:2203.12831.

11. Das, K.; Samanta, S.; Pal, M. Study on centrality measures in social networks: A survey. Soc. Netw. Anal. Min. 2018, 8, 13.
[CrossRef]

12. Derr, T.; Ma, Y.; Fan, W.; Liu, X.; Aggarwal, C.; Tang, J. Epidemic graph convolutional network. In Proceedings of the 13th
International Conference on Web Search and Data Mining, Houston, TX, USA, 10–13 July 2020; pp. 160–168.

13. Xu, B.; Shen, H.; Cao, Q.; Qiu, Y.; Cheng, X. Graph Wavelet Neural Network. In Proceedings of the International Conference on
Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

14. Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.; Lerman, K.; Harutyunyan, H.; Ver Steeg, G.; Galstyan, A. Mixhop:
Higher-order graph convolutional architectures via sparsified neighborhood mixing. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 21–29.

15. Lu, H.; Huang, S.H.; Ye, T.; Guo, X. Graph star net for generalized multi-task learning. arXiv 2019, arXiv:1906.12330.
16. Ma, J.; Tang, W.; Zhu, J.; Mei, Q. A flexible generative framework for graph-based semi-supervised learning. Adv. Neural Inf.

Process. Syst. 2019; pp. 3281-3290, 32.
17. Zügner, D.; Günnemann, S. Certifiable robustness and robust training for graph convolutional networks. In Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 246–256.

18. Lin, G.; Wang, J.; Liao, K.; Zhao, F.; Chen, W. Structure Fusion Based on Graph Convolutional Networks for Node Classification
in Citation Networks. Electronics 2020, 9, 432. [CrossRef]

19. Gao, H.; Wang, Z.; Ji, S. Large-scale learnable graph convolutional networks. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1416–1424.

http://doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1016/j.physa.2020.124289
http://dx.doi.org/10.1007/s41109-019-0195-3
http://dx.doi.org/10.1109/ACCESS.2021.3110845
http://dx.doi.org/10.1007/s00521-022-07368-1
http://dx.doi.org/10.1007/s13278-018-0493-2
http://dx.doi.org/10.3390/electronics9030432

Appl. Sci. 2023, 13, 847 19 of 19

20. Luo, Y.; Ji, R.; Guan, T.; Yu, J.; Liu, P.; Yang, Y. Every node counts: Self-ensembling graph convolutional networks for semi-
supervised learning. Pattern Recognit. 2020, 106, 107451. [CrossRef]

21. Franceschi, L.; Niepert, M.; Pontil, M.; He, X. Learning discrete structures for graph neural networks. In Proceedings of the
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 1972–1982.

22. Zhou, K.; Song, Q.; Huang, X.; Hu, X. Auto-gnn: Neural architecture search of graph neural networks. arXiv 2019,
arXiv:1909.03184.

23. Gao, Y.; Yang, H.; Zhang, P.; Zhou, C.; Hu, Y. Graphnas: Graph neural architecture search with reinforcement learning. arXiv
2019, arXiv:1904.09981.

24. Jiang, B.; Zhang, Z.; Tang, J.; Luo, B. Graph optimized convolutional networks. arXiv 2019, arXiv:1904.11883.
25. Wijesinghe, W.; Wang, Q. DFNets: Spectral CNNs for graphs with feedback-looped filters. Adv. Neural Inf. Process. Syst. 2019, 32,

6009–6020.
26. Dabhi, S.; Parmar, M. NodeNet: A Graph Regularised Neural Network for Node Classification. arXiv 2020, arXiv:2006.09022
27. Huang, W.; Zhang, T.; Rong, Y.; Huang, J. Adaptive sampling towards fast graph representation learning. Adv. Neural Inf. Process.

Syst. 2018, pp. 4563-4572, 31.
28. Wang, H.; Leskovec, J. Unifying graph convolutional neural networks and label propagation. arXiv 2020, arXiv:2002.06755.
29. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
30. Yu, Z.; Wang, H.; Liu, Y.; Böhm, C.; Shao, J. Community Attention Network for Semi-supervised Node Classification. In Proceedings

of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 1382–1387.
31. Shanthamallu, U.S.; Thiagarajan, J.J.; Spanias, A. A regularized attention mechanism for graph attention networks. In Proceedings

of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
4–8 May 2020; pp. 3372–3376.

32. Wang, G.; Ying, R.; Huang, J.; Leskovec, J. Improving graph attention networks with large margin-based constraints. arXiv 2019,
arXiv:1910.11945.

33. Roethlisberger, F.J.; Dickson, W.J. Management and the Worker; Psychology Press: London, UK, 2003; Volume 5.
34. Liu, C.C.; Chen, Y.C.; Tai, S.J.D. A social network analysis on elementary student engagement in the networked creation

community. Comput. Educ. 2017, 115, 114–125. [CrossRef]
35. Cohen, E.; Delling, D.; Pajor, T.; Werneck, R.F. Computing classic closeness centrality, at scale. In Proceedings of the Second ACM

conference on Online Social Networks, Dublin, Ireland, 1–2 October 2014; pp. 37–50.
36. Boldi, P.; Vigna, S. Axioms for centrality. Internet Math. 2014, 10, 222–262. [CrossRef]
37. Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 2007, 29, 555–564. [CrossRef]
38. Barthelemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B 2004, 38, 163–168. [CrossRef]
39. Bhardwaj, S.; Niyogi, R.; Milani, A. Performance analysis of an algorithm for computation of betweenness centrality. In

Proceedings of the International Conference on Computational Science and Its Applications, Santander, Spain, 20–23 June 2011;
pp. 537–546.

40. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv
2015, arXiv:1511.07289.

41. Zhang, Z.; Wang, X.; Zhu, W. Automated Machine Learning on Graphs: A Survey. arXiv 2021, arXiv:2103.00742
42. Kaur, M.; Kaur, H. Implementation of Enhanced Graph Layout Algorithm for Visualizing Social Network Data using NetworkX

Library. Int. J. Adv. Res. Comput. Sci. 2017, 8, 287–292
43. Mernyei, P.; Cangea, C. Wiki-cs: A wikipedia-based benchmark for graph neural networks. arXiv 2020, arXiv:2007.02901.
44. Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of graph neural network evaluation. arXiv 2018, arXiv:1811.05868.
45. Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977, 33, 452–473. [CrossRef]
46. Zhu, X. Semi-Supervised Learning with Graphs; Carnegie Mellon University: Pittsburgh, PA, USA, 2005.
47. Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.i.; Jegelka, S. Representation learning on graphs with jumping knowledge

networks. In Proceedings of the International Conference on Machine Learning, Stockholm Sweden, 10–15 July 2018; pp. 5453–5462.
48. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patcog.2020.107451
http://dx.doi.org/10.1016/j.compedu.2017.08.002
http://dx.doi.org/10.1080/15427951.2013.865686
http://dx.doi.org/10.1016/j.socnet.2007.04.002
http://dx.doi.org/10.1140/epjb/e2004-00111-4
http://dx.doi.org/10.1086/jar.33.4.3629752

	Introduction
	Literature Survey
	Graph Convolutional Neural Networks (GCNs)
	GCN to GAT Transition

	Proposed Methodology
	Background of Network Centrality Measures
	Justification of Betweenness Centrality Based Training
	Proposed Framework
	Algorithmic Description of the Problem
	Dataset Description

	Results and Analysis
	A Comparative Analysis: GCN vs. GCN with Betweenness Centrality
	Experimental Results

	Conclusions
	References

