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Abstract
This study presents a deep learning approach for classification of microscopic black holes and
sphalerons using convolutional neural networks. The main objective of this study is to de-
velop a deep learning model that can accurately and efficiently predict the classification of
simulated collision data using supervised learning techniques. The proposed approach aims
to overcome the challenges associated with traditional classification methods, which may be
time-consuming and require significant expertise in particle physics and advanced mathemat-
ics. By leveraging the power of deep learning, this study demonstrates the potential to improve
the accuracy and efficiency of microscopic black hole and sphaleron classification.
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Glossary

Physics
Antimatter - Matter composed of particles with opposite charge of what ”normal” matter has.

ATLAS detector - A particle detector used in the Large Hadron Collider (LHC) at CERN to
study high-energy particle collisions. The ATLAS detector is designed to detect a wide range
of particles and phenomena resulting from these collisions, including the Higgs boson.

ATLAS experiment - A research collaboration aimed at discovering new particles and phe-
nomena to improve our understanding of the fundamental nature of the universe. The ATLAS
experiment uses the ATLAS detector at the LHC to collect and analyze data from high-energy
particle collisions.

Big Bang - A model describing the origin of our universe. A big ”explosion” in which all
matter originated from.

CERN - A European research organization that operates the world’s largest particle physics
laboratory. Located in Switzerland, CERN conducts research primarily on high-energy particle
physics, including the study of subatomic particles and their interactions.

Dark Matter - Unknown type of matter which does not interact strongly with normal matter.
Dark matter has gravity like ”normal” matter. 85% of matter in our universe consists of dark
matter.

Decay - A spontaneous process where a unstable particle transforms into multiple other parti-
cles.

Elemantary particles - Smallest known building blocks of the universe.

Electromagnetic calorimeter - A detector that measures the energy of electrons and photons
as they interact with matter. The electromagnetic calorimeter is one of several subsystems used
in the LHC detector to study high-energy particle collisions.

Electrons - Elementary particle that has a negative charge and no strong interaction. Often
orbiting an atom.

η(Eta) - A coordinate used to measure the angle of a particle relative to the particle beam in a
detector.
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Exotic particles - Unusual or rare subatomic particles that have properties that are not well
understood or predicted by existing theories. Examples include particles with multiple quarks
or anti-quarks, or particles that violate conservation laws.

Fundamental forces - The basic forces that govern the behavior of subatomic particles, the
strong nuclear force, weak nuclear force, electromagnetic force, and gravitational force.

Gravitational attraction - The force of attraction between two objects with mass, which is
proportional to the product of their masses and inversely proportional to the square of the
distance between them.

Hadron Calorimeter - A detector that measures the energy of hadrons, which are particles
that are made up of quarks and are subject to the strong nuclear force.

Hadronization - The process by which quarks and gluons produced in high-energy particle
collisions combine to form stable hadrons, such as protons and neutrons.

Hadrons - Subatomic particles made up of quarks that are subject to the strong nuclear force,
such as protons and neutrons.

Higgs boson - A subatomic particle that is thought to give mass to other particles through
interactions with the Higgs field. Its discovery was announced by CERN in 2012.

Jet - A collimated stream of particles produced in high-energy collisions, such as those that
occur at the LHC.

Large Hadron Collider (LHC) - The world’s largest and most powerful particle accelerator,
located at CERN in Switzerland. The LHC is used to study the fundamental properties of
subatomic particles by colliding them at high speeds.

Matter - The substance that makes up all physical objects, including subatomic particles.

Microscopic black hole - A hypothetical type of black hole that is much smaller than typical
black holes and is thought to be produced by high-energy particle collisions.

Monte carlo simulation - Is a mathematical technique used to simulated events with uncertain
outcomes. Used to generate the data used for the construction of 2D Histograms.

Particle - A small, subatomic unit that cannot be further divided without losing its unique
properties. Examples include protons, electrons, and neutrinos.
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Particle collision - A process in which two or more subatomic particles interact with each
other, resulting in the formation of new particles and the release of energy.

Photons - Elementary particles that make up light and other forms of electromagnetic radiation.
They have no mass and travel at the speed of light.

ϕ(Phi) - An angle used to describe the direction of particles in LHC detectors in the plane
orthogonal to the beam axis.

Proton beam - A high-energy beam of protons that is accelerated and directed toward a target
in order to produce collisions and study subatomic particles.

Proton-proton collision - A type of high-energy particle collision that occurs when two beams
of protons are directed toward each other and collide, producing a variety of new particles.

Silicon tracker - The first component of the LHC detector that measures the direction of
particles produced in collisions.

Sphaleron - A hypothetical phenomenon in physics that is thought to be related to the breaking
of certain symmetries in subatomic particles.

TeV - A unit of energy used in particle physics, equivalent to one trillion electron volts.

Vacuum state - The lowest possible energy state of a system, which may still contain some
energy due to fluctuations in the vacuum. In particle physics, the vacuum state is thought to
be filled with virtual particles that constantly pop in and out of existence.

Velocity - The rate at which an object changes its position with respect to time, typically mea-
sured in units of meters per second or kilometers per hour.

Machine learning
2D Histogram - A graphical representation of data that shows the frequency of values across
two dimensions.

Activation function - An activation function is a function that determines the value that a node
should send to the next node.

Artificial neural network - A machine learning algorithm that uses artificial neurons to learn
data from data to make decisions or predictions.
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Artificial Neuron - An artificial neuron, also called a perceptron, is a computational unit that
takes inputs and produces an output based on a set of weights and bias. It is the fundamental
building block of an artificial neural network.

Average pooling - A pooling operation in which each output element is the average of the
corresponding input elements within a pooling region. It is commonly used in convolutional
neural networks to reduce the spatial dimensions of feature maps.

Backpropagation - Involves calculating the gradient of the loss function with respect to the
network’s parameters and using it to update the weights of the network in reverse order.

Batch - Refers to a smaller section of training or test data that are being passed through the
machine learning model. Choosing a batch size too large may cause the gpu to run out of
memory.

Bias - A parameter value in a function that is a constant value added to the output of a node.
This value is used to adjust the output of each node in the network.

Bin box - Related to histograms. The bin box refers to a interval of number of which all
elements gets places in the same bar plot.

Bottleneck residual block - A type of residual block in a deep neural network architecture
that reduces the number of feature maps before applying a convolutional layer. This is done to
decrease the computational cost and improve performance.

Channel - Refers to the third dimension of an image(RGB layer) or feature map in a convo-
lutional neural network. Each channel represents a different feature or filter that the network
has learned.

CNN - Convolutional Neural Network (CNN) is a neural network architecture that divides an
image into small parts and iterates through them, making it possible to find patterns indepen-
dently of position.

Concatenate - A way to combine items. Often refers to combining matrises along a given
axis.

Convolutional Block - A building block in a convolutional neural network architecture that
typically consists of several convolutional layers with nonlinear activation functions, followed
by a pooling layer.

Convolutional Layer - A layer in a convolutional neural network that performs convolution
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on the input image or feature map with a set of learnable filters, producing a set of output
features.

Convolutional Operation - The mathematical operation performed by a convolutional layer
in a neural network. It involves sliding a kernel over the input image or feature map and
computing the dot product between the kernel and the local region of the input.

Custom-loss-x - The Custom loss function developed by modifying the softmax function. The
x indicates the root index used.

Deep learning - A subfield of machine learning that involves training artificial neural networks
with multiple layers.

Dimensionality - The number of dimensions in a dataset or a feature space. In the context
of deep learning, dimensionality refers to the number of parameters or weights in a neural
network.

Dropout - Dropout determines the probability that a connection between two nodes will tem-
porarily disappear. This is used to prevent overfitting.

Epoch - A complete pass through the entire training dataset during the training of a neural
network.

Error Rate - The proportion of incorrect predictions made by a model on a given dataset. It
is commonly used as a performance metric for classification tasks.

Exploding Problem - The phenomenon that occurs when the gradient values in a neural net-
work become very large during training, causing the weights to update by a large amount and
destabilizing the training process. This can occur when the learning rate is too high or when
the network architecture is not well-suited to the task.

Fast.ai - High-level Python library for machine learning.

Feature engineering - The process of creating new variables from existing data.

Feature map - A 2D array obtained from applying a filter to an input image, representing a
specific feature that the filter is designed to detect.

Filter - A small matrix of numerical values used for operations such as convolution and pooling
in a convolutional neural network.
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Fully connected layer - A type of neural network layer where each neuron is connected to
every neuron in the previous and next layers.

Globalminimum - The lowest possible value of a function, and represents the optimal solution
to an optimization problem.

Gradient - A vector that represents the slope of a function at a given point, and is used in
optimization algorithms to find the minimum or maximum of the function.

Hidden layer - Layers that are between input layer and output layers. The layers where ma-
chine learning occurs.

Hyperparameter - Model-specific parameter that does not change during training. Examples
of this could be model architecture, loss function, learning rate, or number of epochs.

Identity block - A residual block in a convolutional neural network that preserves the input’s
spatial dimensions.

ImageNet - Image database containing 1000 classes. Designed to be used for training AI
algorithms.

Image classification - The task of assigning a label to an input image, based on the content of
the image.

Input layer - The first layer of a neural network, which receives the input data.

Iteration - A single step in the optimization process of a machine learning model.

Kernel - Another name for a filter in a convolutional neural network.

Learning rate - A variable that determines the size of the steps taken during gradient descent.

Library - A collection of pre-written code in a specific programming language, designed to
be used by other programs.

Learning rate - A variable that determines the size of the steps taken during gradient descent,
and affects the speed and accuracy of the training process.

Loss function - Measures the difference between the predicted output of a machine learn-
ing model and the target output, and is used to train the model by adjusting its parameters to
minimize the loss.

xii



Loss value - The numerical value of the loss function for a specific set of input and output
data.

Max pooling - A type of pooling operation in a convolutional neural network, where the max-
imum value within a specific region is selected as the output.

Model parameter - Model parameter is the weight and bias between the different node con-
nections.

Optimizer - An algorithm used to minimize the loss function during training. Performs the
gradient decent to change the model parameters to reduce loss. Examples of optimizers are
Stochastic Gradient Descent (SGD) or Adam optimizer which is an extension of SGD.

Output layer - The final layer of a neural network, which produces the model’s predictions.

Overfitting - When the model performs better on data it has seen before (training dataset) than
on data it has not seen.

Padding - A hyperparameter in a convolutional neural network that determines the amount of
pixels that are added to the edge around a image. The pixel value is most commonly zeros.

Parameter values - Refers to the numerical values assigned to variables in a function, which
can affect the behavior or outcome of the model.

Pixel - The smallest unit of an image, represented as a single point in a 2D array.

PyTorch - Low-level Python library for machine learning.

Receptive field - The receptive field of a neuron in a convolutional neural network (CNN) is
the region of the input image that the neuron is looking at. It refers to the size of the area in
the input image that contributes to the activation of a given neuron.

ReLu - ReLu (Rectified Linear Unit) is a commonly used activation function in neural net-
works. It is defined as f(x) = max(0,x), which means that it outputs the input if it is positive,
and zero otherwise.

ResNet - ResNet (Residual Network) is a type of neural network architecture that was designed
to address the vanishing gradient problem in deep neural networks. It uses skip connections
and residual blocks to enable the gradient to flow more easily through the network, allowing
for deeper architectures.

Residual Block - A residual block is a building block used in ResNet architectures. It consists
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of two or more convolutional layers, and uses a skip connection to add the input to the output
of the block.

Residual parts - A component used to build a ResNet. The component consists of 2 or more
CNN layers. The input and output of this component are added together so that during back-
propagation, the gradient can ”jump” over steps.

Root index - Root index is the symbol used to indicate what root is being applied. For square
root the root index is 2, most time not even written.

Scalar product - The scalar product, also known as the dot product or inner product, is a
mathematical operation that takes two vectors and returns a single number. It is defined as the
sum of the products of the corresponding elements of the two vectors.

Scheduler - PyTorch implements ways to adjust the learning rate based on the number of
epochs. Using a scheduler is a good way to prevent the model from becoming worse. Gamma
is a hyperparameter used to determine how much the learning rate should decrease.

Sigmoid - Sigmoid is an activation function commonly used in neural networks. It is defined
as f(x) = 1 / (1 + exp(-x)), and outputs values between 0 and 1. It is often used in the output
layer of binary classification problems.

Skip connection - A skip connection, also known as a shortcut connection or identity mapping,
is a way of connecting the input of a layer to the output of a layer that is not directly adjacent.
It is used to address the vanishing gradient problem in deep neural networks.

Softmax - Softmax is an activation function commonly used in the output layer of a neural
network for multiclass classification problems. It takes a vector of values and outputs a vector
of probabilities that add up to 1.

Standard deviation - Standard deviation is a mathematical function that on average tells how
far each value lies from the mean.

Stochastic Gradient Descent - Stochastic Gradient Descent

Stride - A hyperparameter in a convolutional neural network that determines the step size of
the filter kernel as it slides along the input volume. Stride value is usually set to 1 by default,
which means the filter slides 1 pixel at a time.

Summing function - A summing function is a mathematical operation that takes two or more
numbers as input and returns their sum.
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The vanishing gradient problem - Refers to the problem of the gradient becoming smaller
and smaller as it propagates through many layers of a deep neural network, which can make it
difficult to train the network.

Transfer Learning - Transfer learning is a technique in machine learning where a model
trained on one task is used as a starting point for training a model on a different task. It is
commonly used in deep learning to leverage pre-trained models on large datasets to improve
performance on smaller datasets.

Traditional fully connected network - A traditional fully connected network, also known as a
feedforward neural network, is a type of neural network architecture where the input is passed
through a series of layers of fully connected neurons. Each neuron in a layer is connected
to every neuron in the previous layer, and the output of each neuron is passed through an
activation function.

Training process - The training process in a neural network involves feeding input data through
the network, computing a loss function that measures how well the model is performing, and
using an optimization algorithm to update the weights of the model to minimize the loss func-
tion.

Underfitting - Underfitting occurs when amodel is not complex enough to capture the patterns
in the data, and as a result, has poor performance on both the training and test data.

Weight - A parameter value in a function that represents the strength of a connection between
two nodes. This value can be a negative or positive. During the training process, the weights
are updated to minimize the loss function and improve the accuracy of the model. Proper
initialization of weights is crucial for the performance of a neural network.

Acronyms
ATLAS A Toroidal LHC ApparatuS

CERN European Council for Nuclear Research

LHC Large Hadron Collider

API Application programming interface

CNN Convolutional neural network

xv



MBHMicroscopic black hole

ResNet Residual Network

SPH Sphalerons

xvi



1 Introduction

In order to provide a comprehensive understanding of the thesis, this chapter serves as an
introduction to the background and context of the project. The chapter introduces the idea
behind the thesis, as well as introducing the project owners that have established the problem
statement. Moreover, this chapter presents the structure of the thesis, with a brief introduction
to every chapter.

1.1 Context
The Large Hadron Collider (LHC), situated at the Organization for Nuclear Research (CERN)
outside of Geneva, Switzerland, is currently the worlds largest and most powerful particle ac-
celerator. Along with its state-of-the-art technology and groundbreaking research capabilities,
it serves a crucial asset to scientific research (Rossi, 2016). With a circumference of 27 kilo-
meters, the LHC is capable of accelerating particles to nearly the speed of light (Jones, 2023).

The LHC is a scientific tool that helps us explore the secrets of the universe and expand our
understanding of the fundamental building blocks of matter and the laws of physics. The
discovery of the Higgs boson, a particle that gives mass to other particles (Jones, 2023), is
among the LHC’s most significant achievements.

On July 5th 2022, the announcement was made regarding the commencement of Run 3 for
the LHC. During Run 3, the LHC will be colliding proton beams at a world-breaking-record
of 13.6 trillion electronvolts (TeV) – 6.8 TeV per beam, for nearly four years (CERN, 2022).
With higher beam energy and intensity during Run 3, the ATLAS experiment will have the op-
portunity to push the boundaries of its physics research to new heights (ATLAS-Collaboration,
2022).
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Figure 1.1: LHC - Schematic layout of the Large Hadron Collider (LHC) underground, as
well as the location of the ATLAS detector (Popsci, 2015).

Among the four detectors at LHC, the ATLAS detector (A Toroidal LHC ApparatuS) is the
world’s largest general-purpose particle detector. The ATLAS detector has the shape of a
cylinder, measuring 44 meters long and 25 meters in diameter (Li1, 2017). The detector con-
sists of six different detecting subsystems (ATLAS-Experiment, n.d), that measures particles
that are produced in proton-proton collisions.

When accelerating two beams of protons in the LHC, proton-proton collisions are intended
to occur in the detectors. High-energy particle collisions generates a new state with a short
lifetime. This state decays into a scattering of new particles. The scattering forms jetstreams
that the ATLAS detector aim to detect, and the ATLAS experiment aim to analyse and research
(May, 2022).

Deep learning provides a solution to the ever more complex analysis required for extracting
valuable information from collision data. Hence, the implementation of deep learning ap-
proaches has become increasingly in favour for enhancing the performance of tasks such as jet
classification (ATLAS-Collaboration, 2022).
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Figure 1.2: ATLAS detector - Layout of the ATLAS detector. Size comparison of the detector
with humans to scale (Popsci, 2015).

1.2 Project Owner
The ATLAS group is a research group at Western Norway University of Applied Sciences
(HVL) in collaboration with CERN. Their goal is to expand scientific knowledge about one of
the most significant and complex questions in modern physics: What is Dark Matter? (HVL-
ATLAS-Group, n.d)

The group consists of four associate professors, one postdoctoral researcher, two PhD students,
and multiple master students. The project group has received guidance from two external
advisors, Associate Professors Trygve Buanes and Steffen Mæland, throughout the project.

The project group has worked closely with three representatives from the ATLAS group, each
of whom has expertise relevant to guiding the project. Trygve Buanes has expertise in par-
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ticle physics data analysis, Steffen Mæland in applications of machine learning, and Aurora
Singstad Grefsrud in the domain and is the developer behind the 2D histogram data used in the
project (HVL-ATLAS-Group, n.d).

1.3 Structure
Chapter 1 - Introduction: The chapter refers to the project’s topic, as well as introducing the
project owners and the structure of the report.

Chapter 2 – Theoretical Background: The chapter explains theoretical concepts within
physics and deep learning, as well as explains the use of data, and why it is in the form of
a 2D histogram.

Chapter 3 – Project Description: The chapter refers to what the project is about by referring
to practical background and previous work. Motivation, goals, and possible solutions are ex-
plained, as well as the literature and resources used to achieve the results, and any limitations
regarding the project.

Chapter 4 – Project Setup: The chapter refers to the proposed solutions and discusses which
solutions to use for the final result. It also refers to the selection of technological tools and
methodologies used during the development process.

Chapter 5 – Detailed Solution: The chapter discusses the project’s final solution and the
approach taken to achieve it, and providing an in-depth description of the solution.

Chapter 6 – Results: This chapter examine the solution’s outcomes through a close inspection
of data and graphs, while analyzing and discussing both successful aspects and areas that didn’t
perform as expected.

Chapter 7 – Conclusion: This chapter wraps up the overall project development, addressing
the problem statement and summarizing the final results.

Chapter 8 – Suggestion for further research: This chapter discusses potential work for
further research aiming to improve and optimize the results.
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2 Theoretical Background

This chapter introduces current theory of particle collisions that occur at the ATLAS detector,
as well as the production of microscopic black holes and sphalerons. Furthermore, the chapter
provides a detailed explanation of how a artificial neural network is trained, and the dataset
that will be utilized to train the deep learning model.

2.1 Particle Physics

2.1.1 Particle Collision in ATLAS Detector
The LHC enables the acceleration of two beams of protons to nearly the speed of light. These
beams collide with each other within a controlled environment, such as the ATLAS detector,
Figure 2.1 shows an official depiction of particle collision in the ATLAS detector. The col-
lisions aim to recreate the conditions that existed in the early universe, shortly after the Big
Bang (Cern., n.db). Physicists are able to identify the particles that emerge from a collision by
studying their momentum, energy, and other properties (Cern., n.da).

Microscopic black holes and sphalerons are not particles in the conventional sense, but rather
short-lived phenomena that may occur during a particle collision. The ATLAS experiment
aims to identify these phenomena which are theorized to happen during high-energy collisions
(The-CMS-Collaboration, 2018).
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Figure 2.1: Particle Collision - Visualization of Particle Collision in ATLAS detector (CERN,
2023).

2.1.2 Jet detection
When high-energy proton-proton collisions occur at the LHC, a large fraction of the resulting
particles tend to cluster together into groups, known as jets. The ATLAS detector is designed
to measure the energy and properties of particles produced in these collisions, which in turn
allows for the detection and study of jets. The detector holds a series of calorimeters that are
able to detect the energy of particles as they interact with the detector material. When particles
deposit energy in the calorimeters, they create clusters of energy deposits that are referred to
as topologically-related energy deposits. Jets are observed as groups of topologically-related
energy deposits in the ATLAS calorimeters. (OpenData-ATLAS, n.d)
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Figure 2.2: Jet Formation 1 - Illustration of jet formations after a proton-proton collision in
the ATLAS detector (Qu et al., 2022).

Figure 2.3: Detectors in ATLAS - Figure illustrating how different particles react with the
detector layers. (Figure inspired by Amram and Etzion (2023)
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2.1.3 Hadronization
Hadronization is a process that occurs shortly after a collision, following the decay of a particle.
In this process, new elementary particles are formed around the original particle, resulting in
a spread of hadrons that move together. The hadronization process is over long before the
particles reach the detector. Hence, analytically calculating hadronization is very complex
(Webber, 1999). For this reason, Monte Carlo simulated data is used for research. Monte
Carlo simulation will be presented in more detail in Section 2.5.1. Hadronization is significant
for researchers to assess the state that occurred after a collision and before a jet was formed.

Figure 2.4: Jet Formation 2 - The figure illustrates the processes after a proton-proton col-
lision, and how the jets are formed. The particles are observable right after the
hadronization process (Sumida, 2011).
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2.1.4 Microscopic Black Holes
In 1971, Stephen Hawking predicted that microscopic black holes could have formed after the
Big Bang (Pinochet, 2019). This theory has not been proven. With the help of the LHC, CERN
aims to produce microscopic black holes during a proton-proton collision. Production requires
a energy density that is sufficient so that no repulsive forces can balance the gravitational
attraction. If microscopic black holes are produced in the LHC, they will have a very short
lifetime due to Hawking radiation, a phenomenon where black holes emit particles and lose
mass, eventually decaying. This process results in a distinct spread of subatomic particles
that form jet streams. If the existence of microscopic black holes is confirmed, scientists will
likely be able to confirm the theory of the existence of multiple unseen dimensions in the
universe. Furthermore, scientists will be closer to an answer as to why gravity appears weak
in comparison to other fundamental forces (The-CMS-Collaboration, 2018).

2.1.5 Sphaleron
A sphaleron is a hypothetical phenomenon that may have occurred during the beginning of
the universe, just after the Big Bang. LHC recreates the conditions that existed in the early
universe, as mentioned in Section 2.1.1. For this reason, sphalerons may possibly arise in
high-energy proton-proton collisions in the ATLAS detector.

A Sphaleron is an energy transition that occurs between two different vacuum states. A vacuum
state is a state where energy is at its lowest (Xu, 2022). Simply put, a sphaleron is a process
that can convert elementary particles into other types of elementary particles. Sphalerons are
associated with saddle points as shown in Figure 2.5, and can be interpreted as the top of a
transition where energy is at its highest (Chaudhuri and Khlopov, 2021).

The existence of sphalerons has not been confirmed, but they play a significant role in the
study of particle physics and the understanding of the universe by answering the question of
why there is more matter than antimatter in the universe.
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Figure 2.5: Sphaleron - The figure shows the saddlepoint of the the sphaleron, which exists
between two vacua of equal energy (Gannouji, 2022).

Microscopic black holes and sphalerons are anticipated to show similar signatures within the
detector, making their classification a non-trivial task.
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2.2 Machine Learning
Machine learning refers to a broad set of techniques that enable computer systems to learn from
data and improve their performance on specific tasks without being explicitly programmed. In
essence, machine learning enables systems to learn from experience and adapt to new condi-
tion, making it a powerful tool for solving complex problems across a variety of domains.

2.2.1 Machine Learning Techniques
Machine learning covers a variety of techniques that are suited to different types of tasks. The
most common techniques are supervised learning, unsupervised learning, and reinforcement
learning. In supervised learning, models are trained on labeled data to make predictions on
new, unlabeled data. Unsupervised learning, on the other hand, involves finding patterns and
relationships in the data without the use of labeled data. Reinforcement learning is a type
of learning where an agent interacts with an environment to learn how to perform a task. The
Figure 2.6 provided below shows what type of tasks the different techniques can do. The figure
provides an overview of the different machine learning techniques and the types of tasks each
one can accomplish (Janiesch et al., 2021).

Figure 2.6: Machine Learning Techniques - Coloured dots and triangles represent the train-
ing data. Yellow stars represent the new data which can be predicted by the trained
mode (Peng et al., 2021).
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This project utilizes supervised learning as the data provided is labeled and the task involves
classification between sphalerons and microscopic black holes. In addition, transfer learning
is also employed in this project, which allows a model trained on one task to be adapted to
perform a related task. Further details on supervised learning and transfer learning and are
provided in the following sections, Section 2.2.2 and Section 2.2.3.

2.2.2 Supervised learning
Image classification is typically approached as a supervised learning problem, meaning that
it aims to categorize images into different classes by assigning accurate labels. Supervised
learning is a method used to train a model on labeled data, extract the features, and learn what
is typical for that specific image or object in the image. When testing the model on unlabeled
data, it is expected that the model has previously learned the patterns and can correctly make
predictions (Cunningham et al., 2008).

Figure 2.7: Supervised Learning - The figure shows the process of training a model using
labeled data and making predictions. It’s important to note that the test data is
inputted to the model solely for prediction purposes to check the accuracy of the
model, and is not to be used for training.
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2.2.3 Transfer learning
Transfer learning involves taking a model that has already been trained on a particular task and
repurposing it for another related task. The idea behind transfer learning is that many tasks
have shared features and patterns in their data, and these can be learned by a model trained on
a related task. By using a pre-trained model as a starting point, a significant amount of time
can be saved, as well as computational resources that would have been required to train a new
model from scratch (Kandel and Castelli, 2020).

When initializing a model all the weights and connections are given random values. By giving
themodel values that are generalized for any task, training would be faster as all the patterns are
already found by the model. This is often done by training a model on a much larger dataset
with multiple classes, freezing all previous layers so they do not change under backwards
propagation and adding a fully connected layer with desired output layer. An example is using
ImageNet 4.1.4.

Figure 2.8: Transfer Learning - The figure shows the difference between training a model
from scratch and utilizing a transfer learning techniques by making predictions on
a pre-trained model (MathWorks, 2021a).
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2.2.4 Conceptual Distinction
In order to provide a comprehension of the broad domain of Machine Learning, a hierarchical
relationship among the terms - Machine Learning algorithms, Artificial Neural Network, and
Deep Neural Network - is illustrated through a Figure 2.9 below.

Figure 2.9: Venn Diagram - The Venn diagram representing the machine learning domain
shows that deep learning and neural networks are subsets of machine learning.
The diagram also indicates the complexity of these areas within the larger field of
machine learning (Janiesch et al., 2021)

As illustrated in the Figure 2.9, Artificial Neural Networks (ANNs) and Deep Neural Networks
(DNNs) are subset of Machine Learning (ML), yet they are more specialized types of architec-
tures within this field. Traditional machine learning algorithms, such as linear regression and
decision trees, have a separate feature extraction step before the model starts the training pro-
cess. On the contrary, ANNs perform the feature extraction step implicitly during the model
training process in the hidden layer of the architecture. In this layer, the model learns to extract
features from the input data that are relevant for the task at hand.

However, both the machine learning algorithm approach and the ANN approach are referred to
as ”shallow machine learning,” which indicates their simple design and limited ability to learn
complex features. Therefore, they may not be sufficient for more challenging tasks.DNNs
solve this problem by adding multiple layers in the hidden layer, allowing for more complex
feature extraction. The feature extraction is hierarchical, where lower layers learn to extract
simple, low-level features, and higher layers learn to combine and abstract these lower-level
features into more complex and high-level representations. The following Section 2.3 and
Section 2.4, provides a deeper understanding of how these architectures operate.
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2.3 Artificial Neural Network
As previously discussed, a neural network is a subset of machine learning, and the term ’arti-
ficial neural network’ refers to a network composed of an input layer, hidden layer(s), and an
output layer. While a basic neural network consists of a single hidden layer, numerous other
architectures delve beyond this simple structure, adding complexity and depth to the hidden
layer. In this section, the fundamental parts that apply to all neural networks will be discussed.

2.3.1 Structure of Artificial Neural Networks
Artificial neural networks has a complex structure. The model is inspired by the human brain,
particularly the neurons found within it, hence the name “neural network” In computer science,
”neurons” are known as ”nodes.” The neurons are organized into three layers: input layer,
hidden layer, and the output layer. Connections between the neurons create a network that
enables information to move through the system. (Howard and Gugger, 2020)

Figure 2.10: Fully Connected Neural Network (FCN) - A simple five layered fully con-
nected neural network, comprised of a input layer, thee hidden layers and an
output layer (Sidiya and Li, 2020).
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A neural network consists of a single input layer and output layer, and one or more hidden
layers (Howard and Gugger, 2020). As depicted in Figure 2.11, a neuron within a neural
network receives a set of input values (x1, x2,…, xm) either directly from the dataset if it is
within the input layer, or from a previous neuron if it is within the hidden- or output layer.

Figure 2.11: AnArtificial Neuron - The figure depicts the structure of an artificial neuron that
processes input data, and forwards output data. Composed of a set of weights
assigned to each connection, a bias term that is added to the weighted sum of
inputs, and an activation function that maps the output (Kaya and Baştemur Kaya,
2021).

The value of the model parameters is determined during the training process. The parameter
values are referred to as weights and biases in a connection. The weight (w1, w2,…, wm)
represents the strength of a connection between two nodes and is usually a value between -1
and 1. Bias (b) is a constant value added to the summing function. This value is used to adjust
the output of each node in the network. The activation function is essential in avoiding a linear
output as it allows the network to make non-linear decisions. This is crucial in preventing the
network from limiting itself to linear patterns and ensures that it is capable of capturing all the
various types of patterns that may arise within the dataset (O’Shea and Nash, 2015).
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Common activation functions for classification:

Relu(z) = max(0, z)

Figure 2.12: ReLU applies to hidden layer for better computation performance (Vieira and
Paixao, 2019)

σ(z) =
1

1 + e−z

Figure 2.13: Sigmoid applies to binary classification methods (Vieira and Paixao, 2019).

σ(zi) =
ezi

∑K
j=1 e

zj
for i = 1, 2, . . . , K
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Softmax applies to multiclass problems, and is an extension of sigmoid. Softmax used for a
single variable input would be equal to sigmoid function on Figure 2.13. The function parame-
ter zi is a vector containing the model output for a batch. The output of the function is a vector
containg the model estimates.

2.3.2 Hyperparameter Optimization
The goal of training an artificial neural network is to find optimal model parameter values that
minimize the loss value, so the network can give accurate predictions. In contrast to model
parameters, hyperparameters in a neural network are determined before the training process
and remain unchanged. Hyperparameters are adjusted by changing their value or by using
different functions to achieve a model with optimal performance. It is the hyperparameter
values that determine the value of the model parameters (Howard and Gugger, 2020).

There are several hyperparameters that can be adjusted and tested to improve the performance
of training the neural network. In this section, different hyperparameters will be reviewed to
gain a good understanding of their function and role in the network.

Epoch In one epoch, the neural network is trained on the entire training data set. The data
is used exactly once. An epoch is completed when the data has been moved forward, and
Backpropagation 2.3.4 is performed to adjust the weights.

Batch In an epoch, the training data is divided into batches to avoid problems that may arise
due to limited storage space on a computer . When all batches have trained the neural network,
an epoch is completed.

Optimizer Hyperparameters can also be functions. There are different optimization functions
to choose from. The goal of an optimization function is to adjust the weights and learning rate
to achieve a good combination of values that contribute to reducing the loss value.

Learning Rate The speed at which the neural network learns is defined by a learning rate
value. This hyperparameter is a parameter in an optimization function. It controls how much
the optimization function can adjust the weight with respect to the gradient. The smaller the
value, the slower it will move towards the global minimum or local minimum. Too large of a
learning rate can result in the model parameters updating too quickly, causing the loss function
to diverge. It can also result in overfitting to the training data, causing the model to perform
poorly on new, unseen data.
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In order to optimize hyperparameters, various algorithms can be employed. Among the most
common hyperparameter optimization techniques are Grid Search, Random Search, and Ge-
netic Algorithm. For this particular project, Grid Search is utilized. Grid Search makes a
complete search over a given subset of the hyperparameters space of the training algorithm,
Figure 2.14 shows an example of how it would look like. A range of possible parameters
are manually set, and the algorithm makes a complete search over them. Essentially, the grid
search algorithm utilizes a brute-force approach, which can result in extended execution times
(Liashchynskyi and Liashchynskyi, 2019).

Figure 2.14: Grid Search - Figure shows what combinations of two hyperparameters would
be used in grid search (Teacher, 2021).

2.3.3 Loss Function
In the final layer of the network, the predicted output is evaluated to determine its difference
with the target output. This evaluation is accomplished by employing a loss function, which
calculates the difference between the predicted output and the target output. The purpose of the
loss function is to express how far off the computed output is from the target value. The goal is
to achieve the lowest possible loss value, indicating a close match between the predicted output
and the target outputs. By employing backpropagation, the model parameters are adjusted to
minimize the loss.

The standard choice of loss function for a classification task, is the combination of softmax
with cross entropy (Ruby et al., 2020). In binary classification, where C = 2, the Figure 2.15
below illustrates the pipeline from the output value to the loss value:
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Figure 2.15: Softmax andCross-Entropy - The figure is an example of a binary classification
pipeline from the model output to the loss value.

In Figure 2.15, the model generates output values for both MBH (highlighted in bold) and
SPH. The highest value among them indicates the predicted label, which in this case is MBH.
However, both of these values are then passed through the softmax function. Only the MBH
value is fed into the cross-entropy function, as the model knows this based on the target label.
The cross-entropy function calculates the difference between the predicted value (MBH) and
the target value, resulting in a loss value. The loss value is propagated backward through the
network until all the weights are updated.

For binary classification problems the cross entropy uses the sigmoid or softmax activation
function to map input values to a range between 0 and 1. The loss increases when the predicted
estimation for the true label decreases. If the loss increases, it indicates that the current image
classification model is performing poorly and can be characterized as a poor classification
model. On the other hand a loss value near zero indicates that the model has done an almost
perfect prediction.

As described in Section 4.4.4, cross-entropy will be used as a comparison metric when evaluat-
ing different loss functions for the thesis. Additionally, a custom loss function was developed
in this thesis, which is discussed further in Section 5.2.1. This custom function takes inspira-
tion from zero-one loss and will be used to compare its performance against cross-entropy loss
function in the evaluation process.

2.3.4 Training the Model
In the first epoch (epoch 0), the neural network is initialized with random values, unless the
model is pre-trained, then it is initialized with the weights from the pre-trained model, which is
a common practice in Transfer Learning 2.2.3. The input data is passed through the network in
a process called forward propagation. During forward propagation, each layer of the network
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applies a set of mathematical transformations to the input data. This process involves multiply-
ing the input by a set of weights, adding a bias term, and applying an activation function. The
output of one layer serves as the input for the next layer, and the process is repeated until the
final layer produces the network’s output. As these initial weights are random, the predicted
output is also essentially random.

Furthermore, the loss function calculates the difference between the predicted value and the
correct value. The goal of the training process is to minimise the loss between these two values,
to achieve better and more accurate predictions.

Figure 2.16: FP and BP - The figure illustartes the process of forward propagation and back-
propagation, which involves forwarding input data through a neural network
to produce an output, computing the loss, and then backpropagating gradients
through the network to update its parameters. This process is repeated for each
epoch until the loss is minimized (Pramoditha, 2021).

To minimize the loss, an algorithm called backpropagation is used. Backpropagation is able
to calculate the gradient of the weights in the network with respect to the loss function during
training. During this process, the optimizer is the significant hyperparameter that updates the
weight and learning rate with respect to the gradient. The gradient represents the direction and
magnitude of the change required to minimize the loss. Once the gradients are computed, an
optimizer algorithm, such as Stochastic Gradient Descent (SGD) or Adam optimizer, updates
the weights of the network. The learning rate determines the step size of the weight updates.
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Backpropagation is performed in each batch, which is a subset of the dataset. The process
of forward propagation, calculating the loss, and performing backpropagation is repeated for
each batch until the entire dataset has been processed. The choice of the number of epochs and
batch size depends on the size of the dataset, the complexity of the model, and the desired level
of accuracy. These hyperparameters must be tested and adjusted during the training process to
achieve optimal performance. (Howard and Gugger, 2020)

2.3.5 Overfitting and underfitting
During the process of training a model on a dataset through multiple iterations, a noticeable
”bad fit” in performance can occur, due to either overfitting or underfitting. A ”bad fit” means
that the model does not accurately represent the relationship between the input data and the de-
sired output. Overfitting occurs when a model becomes too specialized in learning the patterns
and details of the training dataset, causing it to lose generalization ability and perform poorly
on new, unseen data. Underfitting occurs when a model is too simplistic and fails to capture
the complexity of the training dataset, leading to poor performance on both the training and
test data (Biswal, 2023).

Figure 2.17: Overfitting and underfitting - Figure above shows how 3 different models
could predict. An extreme overfitting, a good prediction, and an extreme un-
derfitting (MathWorks, 2021b).
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Figure 2.18: Observing overfitting - When test data has a lower performance on accuracy
than train data, it is a common observation of themodel overfitting (Smith, 2018).

The goal of training a machine learning model is to increase the level of generalization, mean-
ing the ability to adapt to new unseen data. To increase generalization; overfitting and un-
derfitting can to be reduced. Tuning Hyperparameters 2.3.2 are generally the method used to
prevent overfitting, as well as regularization methods. It is important to note that even if a
model performs poorly due to a bad fit, it can still have the ability to generalize well.
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2.4 Deep Neural Network
In the previous section, the fundamental components of a neural networkwere discussed. How-
ever, this section will be explore more complex architectures that utilize multiple layers of
neurons to extract more intricate features from data. The architecture of a neural network with
multiple hidden layers, which is commonly referred to as a Deep Neural Network. There are
several types of deep neural networks, but for this project, but this project will be centered on
Convolutional Neural Networks (CNNs) and Residual Networks (ResNets).

2.4.1 CNN architecture
Convolutional Neural Network (CNN) is a subtype of a neural network that is commonly used
for image classification tasks. Unlike a traditional fully connected neural network, CNN con-
tains at least one convolution layer. The convolutional layers are the main building blocks
of CNN. The layer applies a set of filters to the input image, enabling the network to detect
specific features and patterns in an image independent of location. Convolutional layers are
often combined with pooling layers, and fully connected layers. These additional layers help
to further refine the output of the network and improve its accuracy. (O’Shea and Nash, 2015)

Figure 2.19: Convolutional Neural Network (CNN) - A simple CNN model comprised of
a single convolution layer and pooling layer, followed by a flattening of outputs
that is feed into a fully connected layer (InterviewBit, 2021).

Convolutional Neural Networks (CNNs) are generally considered to be more suitable for im-
age classification tasks than regular neural networks. Due to the dimensionality of the input
data and the number of parameters required to process full images accurately, regular neural
networks do not scale well for image classification tasks. Regular neural networks treat each
input feature independently, which can lead to the loss of spatial information. In contrast, the
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complexity of the convolutional layers, and the pooling layer of the CNN ensures the preser-
vation of spatial information (Pan et al., 2018).

To process an image, each pixel is passed into the network. For a image size of 50x50x3 (50
wide, 50 high, 3 color channels), 50x50x3 = 7 500 input neurons must be provided. The mod-
elparameters would multiply quickly, and would lead to overfitting. Convolutional operations
solves this problem by reducing the dimentionality of the image (O’Shea and Nash, 2015).

2.4.2 Convolution Layer
Unlike an artificial neuron in a fully-connected layer, a neuron in a convolutional layer is not
connected to the entire input. Instead, it only processes a section of the input data, known as
the receptive field. This allows the convolutional layer to identify specific features in the input
image. The use of receptive fields is a fundamental concept in CNNs and is what sets them
apart from other neural network architectures (Dumoulin and Visin, 2018).

Figure 2.20: Receptive Field - Schematic diagram of the receptive field in CNNs (Xu et al.,
2021).

A convolution operation is performed when a kernel K1 is applied to the input image (I).
The kernel is also referred to as the “filter”. During convolutional operations, the kernel is
gradually shifted one pixel at a time, ensuring that the details of the input image are preserved.
The output of this operation is a single feature map. F1 = I ∗K1, (* = convolutional operation)
(Karpathy et al., 2016).

25



To compute the individual values of the feature map matrix, the scalar product of the kernel
with the corresponding region of the input image is taken, As depicted in Figure 2.21. For
instance, if the input image is of size 4x4x3 and the kernel is of size 2x2, then the scalar
product of the kernel with each 2x2 region of the input image is calculated. (Karpathy et al.,
2016) This operation is repeated until the kernel has traversed the entire input image, resulting
in a complete feature map filled with values (Liu et al., 2015).

Figure 2.21: Convolution - Each layer undergoes matrix multiplication with a 2x2 kernel,
and the resulting values are summed (178+180+117=475). Upon the filter/kernel
traversing the entire input, a complete feature map is produced Camp (2021).

Applying the convolution operation multiple times with n different kernels will result in n

feature maps. These feature maps are usually concatenated to form a block of feature maps.
The total number of feature maps produced is equal to n, which corresponds to the number of
kernels used to apply convolution on the input image (Karpathy et al., 2016).
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2.4.3 Pooling Layer
In the pooling layer, the feature maps obtained from the convolutional layer are taken as input.
The primary goal of this layer is to further reduce the dimensionality of the feature maps and
detect the most significant features in the image (O’Shea and Nash, 2015).

As an example, consider the resulting feature map from the convolutional layer in Section
2.4.2, which was a 3x3 matrix. In the pooling operation, a 2x2 matrix will be generated as the
output. That being the case, the feature map will be divided into all possible 2x2 submatrices.

Figure 2.22 shows the difference between max pooling and average pooling. For max pooling,
the maximum value in each submatrix is selected as the output (627). In contrary, for average
pooling, the average of the four values in each submatrix is calculated (546).

Figure 2.22: Pooling layer - Illustration of the pooling layer with either a max-pooling oper-
ation or an average-pooling operation (Camp, 2021).

Additionally, the pooling layer also filters out noise from the input image. This involves re-
moving elements of the image that are irrelevant to the classification task, thereby improving
the overall performance of the network (O’Shea and Nash, 2015).

2.4.4 Fully Connected Layer
The fully connected layer resembles the layers of a regular neural network. After the convo-
lutional and pooling operations, the dimensionality of the input is reduced, resulting in fewer
neurons and requiring fewer resources during training (O’Shea and Nash, 2015). The training
is equal to the description in Section 2.3.4.
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2.4.5 ResNet
The residual neural network (ResNet) architecture is based on the convolutional neural net-
work architecture, with a focus on improving performance and efficiency by increasing the
number of layers. The motivation behind this approach is that as networks become deeper,
they can suffer by an issue known as the ”vanishing gradient problem.” To address this chal-
lenge, the ResNet architecture was developed, which effectively resolves the problem through
the incorporation of residual connections, also referred to as skip connections. In Figure 2.24
there is shown an expample of the same ResNet model with and without residual connections.
In the following section, a more comprehensive explanation will be provided.

Figure 2.23: ResNet Architecture - The figure shows the architectural distinctions between
a plain neural network and a ResNet architecture with residual connections (ar-
rows).(IndoML, 2018)

Typically, increasing the depth of a neural network should result in a decrease in the error rate
during training and testing as the network learns more complex features. However, due to the
vanishing gradient decent problem, the error rate start to increase again. This problem also
causes overfitting of the model, hence increases the error (Zhang et al., 2015).
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Figure 2.24: Plain Networks - Training error (left) and test error (right) with 20-layer and 56-
layer “plain” networks. The deeper network has higher training error, and thus
test error. (Zhang et al., 2015)

Vanishing gradient problem To update the weights in the neural network during training,
backpropagation must be performed. This involves calculating the gradient by taking the
derivative of the loss with respect to the weights.

When using sigmoid in the output layer, the derivative ranges from 0 to 0.25. This means that
the output values of the gradients will be small. This will result in only a small improvement
in the weights of the network. Ultimately when the gradient vanishes, the weight will not be
updated, hence the network cannot learn, resulting in decrease of performance (Huber et al.,
2019).

Figure 2.25: Derivative of Sigmoid - The figure depicts that the sigmoid function and its
derivative have different ranges. The sigmoid function ranges from 0 to 1,
whereas its derivative spans from 0 to 0.25. (Bahr, 2012)

29



Residual Block ResNet solves the vanishing gradient problem by using skip connections be-
tween every two layers, as well as direct connections along all the layers. One building block
of such a connection is called a ”residual block.” These residual blocks are stacked on top of
each other to maintain efficient learning of parameters. By using skip connections, the gradient
can flow directly from the output to the input of the residual block, and bypass some layers in
between, allowing for better gradient propagation. (Zagoruyko and Komodakis, 2017).

The residual block uses the parameters from the previous activation function, which allows
the network to learn more efficiently by reducing the number of computations required for
each layer. This helps to overcome the vanishing gradient problem by allowing the network
to maintain a stronger gradient signal throughout the training process (Zagoruyko and Ko-
modakis, 2017).

There are two main types of residual blocks: the identity block and the convolutional block.
Determinating which one to use depends primarily on whether the input and output dimensions
are the same or different (Dai et al., 2022).

Identity block The identity block is utilized when the input activation has the same dimensions
as the output activation, and is the standard block used in ResNet. An example of an identity
block is shown in Figure 2.26. (Dai et al., 2022).

Figure 2.26: Identity Block - The figure shows that the upper path (right) is the ”shortcut
path”, and the lower path is the ”main path” (left) (Balciunas, n.d.).
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Convolutional block When the input and output dimensions don’t match up, The convolu-
tional block is used. In addition to handling spatial dimensions, convolutional blocks can also
be used to handle changes in the number of channels or filters in the input and output. An
example of a convolutional block is shown in Figure 2.27(Dai et al., 2022).

Figure 2.27: Convolutional Block - This figure despic the additinal operations in the shortcut
path. The CONV2D layer in the shortcut path is used to resize the input x to a
different dimension so that the dimensions match up in the final addition needed
to add the shortcut value back to the main path.(Balciunas, n.d.)

Another commonly used block for deeper neural networks is the bottleneck residual block,
Figure 2.28. As network depth increases, the number of parameters also increases, leading to
a higher risk of overfitting and the vanishing gradient problem. The bottleneck residual block
is designed to address these issues by minimizing the width of the block, while increasing its
depth to reduce the overall number of parameters. This architecture of this block includes
a 1x1 convolutional layer at both the input and output ends, which contributes to reduce the
number of input and output channels. In the middle of the block, the 3x3 convolutional layer
performes the main computation of the block (Howard et al., 2018).

Figure 2.28: Bottleneck Residual Block - The figure depicts a side-by-side comparison be-
tween a plain residual block (left) and a bottleneck residual block (right) (Cheng
et al., 2023).
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2.5 Data
The ATLAS detector is in the form of a cylinder consisting of multiple layers of detector sys-
tems. The detector system measure various properties of particles that arise during a proton-
proton collision. For the production of data in the form of 2D histograms, three of the detector
layers are used Section 2.5.2. The histograms are rectangular pixelated images of the particles’
energy after a collision, despite the detector being a cylinder. By ”unfolding” the cylinder, the
data can be in the form of rectangular images (Wynne, 2013).

The data is generated using Monte Carlo algorithms 2.5.1, which produce simulated proton-
proton collisions (ATLAS Collaboration, 2020). The histograms are based on this data, which
is analyzed using machine learning algorithms for the classification of microscopic black holes
and sphalerons after a proton-proton collision. The following section will explain the use of
Monte Carlo Event Generator.

Sphaleron Microscopic Black Hole

Figure 2.29: 2D Histogram of simulated Events

2.5.1 Monte Carlo Event Generator
Due to hadronization processes that require complex analytical calculations, researchers use
Monte Carlo simulations of particle collisions ”events” (Webber, 1999). Long and complex
calculations are replaced by experiments with random numbers, which produce simulated data
of proton-proton collisions. Several simulations are produced, and the end result is the aver-
age of the number of observations. The number of simulations increases with the amount of
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collision data collected from the ATLAS experiment. (ATLAS Collaboration, 2020)

2.5.2 2D Histogram
A 2D histogram visualizes the distribution of data in a two-dimensional space. The data is
distributed in a grid of equally sized rectangular bins. Data points fall into their respective
bins based on the position of the particles. The histogram’s x-axis represents the distance
between the detector’s center and where the particles hit, measured in Eta. The histogram’s
y-axis represents the detector’s angle, measured in Phi. The energy of each particle is then
added up with the rest of the particles that hit an area for one collision (bin box)(Scott, 2010).

The data we have been given consists of three layers of 2D histograms that are stacked on top
of each other. The three layers are represented as RBG colors: red, green, and blue. The blue
layer represents the innermost sensor in the ATLAS detector that measures the direction of the
particles when a jet is produced, known as the ”silicon tracker.” The red layer represents the
”Electromagnetic Calorimeter” sensor in the detector that measures the energy of electrons and
photons when they interact with matter. The outermost sensor in the detector is represented
”Hadron Calorimeter” by the green 2D histogram layer. This layer measures the energy of
hadrons. These layers is shown in Figure 2.30.

Figure 2.29 contains an image representation of the histogram with the three color channels.
The result shows the particles’ positions relative to each other. One can identify areas of high
or low particle intensity. High particle intensity refers to a jet.
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Figure 2.30: Schematic layout of the detector components in the ATLAS detector - The
detector layers corresponds to RBG layers in the 2D Histograms. The blue layer
is the Hadron Calorimeter. The orange layer is Electromagnetic Calorimeter.
And the inner green layer is silicon tracker (Virdee, 2012).
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3 Project Description

This chapter presents the problem statement and initial goals of the project, along with the
resources and initial solutions that will be utilized to achieve them. Moreover, various relevant
literature and earlier work are explored to identify what is already known and what is yet to be
explored in this field of study. Furthermore, potential challenges and limitations for the project
are acknowledged.

3.1 Earlier Work
Conventionally, collision data has been stored in tabular formats as numerical values. In this
project, the data is in the form of 2D histograms that show the energy levels of particles in
the detector. 2D histograms have been used in a previous research report for the ATLAS
experiment:’End-to-End Physics Event Classification with CMS Open Data.’ (Andrews et al.,
2020). The project will build upon the approach presented in the research report, which utilizes
2D histograms for image classification.

3.2 Motivation and Goals
The project group has been provided with simulated data, in the form of 2D histograms, that
portrays high-energy particle collisions. The dataset was created by a representative from the
ATLAS group at Western University of Applied Science, based on theoretical understanding
of how collision data directly from the ATLAS detector would appear. The ATLAS group has
tasked the project group with the challenge of analyzing and classifying two distinct events
that can occur during a particle collision using machine learning algorithms. These two events
havemany similarities, making it difficult to differentiate between them. Therefore, the project
group will employ various machine learning techniques to classify these events. The problem
statement for the project is to ”Explore and evaluate the performance of various neural network
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architectures and loss functions for accurately classifying simulated image data portraying par-
ticle collisions in the ATLAS detector.” The primary objective is to develop an accurate solu-
tion that can differentiate between these two events with high accuracy, enabling researchers
to perform further analysis on the resulting data.

The project will also be based on three sub-goals:

• Investigate the importance of different network architectures.

• Investigate the effect of using different loss functions.

• Investigate whether networks pre-trained on ImageNet data are useful for 2D histograms.

3.3 Initial goals and initial solution idea
The ATLAS group has tasked the project group to enhance the sensitivity of the analysis of
the ATLAS detector. The task is achieved by utilizing machine learning techniques to classify
collision data based on information from the entire detector or parts of it. The provided data
for analysis consists of simulated particle collisions resulting from either microscopic black
holes or sphalerons.

To accurately classify collisions, the project group will explore different machine learning
models. These models will be implemented using Convolutional Neural Networks (CNN) and
Residual Networks (ResNet). Furthermore, the ATLAS group expects the project group to
train the best-performing models from each architecture on imageNet data. Subsequently, the
pre-trained imageNet models will be compared with the project group’s own models, which
are trained on ImageNet data.

3.4 Resources
Resourses utilized in this project, demonstrate the depth of research, as well as acknowleding
the contributions of other researchers, advisors, and tools that assisted with the project.

The research paper ’End-to-End Physics Event Classification with CMS Open Data’ is a es-
sential resource for this project, as it provides techniques and processes required to construct
and train machine learning models effectively by utilizing 2D histograms.
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Furthermore, the project owners served as external advisors, providing academic assistance in
the fields of physics and machine learning. Throughout the project, Carsten Gunnar Helgesen
provided valuable guidance and support as the internal supervisor.

Aurora Singstad Grefsrud, a PhD student in the team, is an essential resource for the project.
She had developed the 2D histogram data used in the project as part of her ongoing PhD re-
search. The project is built upon her work and utilizes the same data, providing an opportunity
for collaboration and achieving a result that could also be used in her further research.

Moreover, technical tools that has been utilized saves time and resources. The project group
has been granted access to a powerful computer from the masters laboratory at HVL, to ensure
that the machine learning model can be executed within a reasonable timeframe.

Additionaly, various Python libraries, including fast.ai and pyTorch, enables the project group
to develop and run machine learning models effectively, and to analyze the data and produce
accurate results.

3.5 Literature
To understand the field of study for this project, relevant research paper for the problem state-
ment has ben explored. By reviewing relevant literature, the research of this project can con-
tribute on the field and identify potential gaps.

The research paper ’End-to-End Physics Event Classification with CMSOpen Data’ (Andrews
et al., 2020) mentioned in Section 3.1 describes a new way of performing image classification
on high-energy particle collisions. This research paper is of great importance to the project,
as it introduces a novel machine learning approach to particle physics, as well as utilizing 2D
histograms to represent data.

Additionally, the paper “Search for black holes and sphalerons in high-multiplicity final states
in proton-proton collisions at

√
s = 13TeV (The-CMS-Collaboration, 2018) offers insightful

understanding of sphalerons and microscopic black holes. Althought, the research paper pro-
vides a broader scope of physics that is required for this project, the insights gained provides
an advances understanding of the fundamental properties in particle physic.

Although the research papers discussed above are based on simulated data from the CMS de-
tector rather than the ATLAS detector used in this thesis, they still provide valuable background
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information.

Furthermore, the research paper “Specially designed random forest loss function for high en-
ergy physics” (Sprindys, 2022) serves as an influential source for developing a custom loss
function in this project. The paper provides a comprehensive understanding of how loss func-
tions can be applied to machine learning algorithms to improve model performance, serving as
a baseline for designing a custom loss function that could potentially enhance the classification
of microscopic black holes and sphalerons using deep learning.

3.6 Limitations
The project focuses on exploring a limited number of machine learning models and architec-
ture, due to the time and resource constraints. Combining two different network architectures
would be interesting to explore for this project. The project group has considered combining
CNN and RNN architecture. Using RNN would require access to the root file used to gen-
erate the 2D histogram dataset. The utilization of the root file format, which contains data
in a numerical tree structure, would require additional time to process, which is a significant
limitation for this project.

The time limitation also presents a challenge in exploring the efficiency of pre-trained Ima-
geNet models. One of the goals of this project is to evaluate the performance of pre-trained
ImageNet models. However, due to the large size of the ImageNet dataset, training a model
from scratch would require significant processing power and time. As a result, this project will
only compare the performance of already pre-trained models.

Furthermore, the development of machine learning models for this project will not involve data
processing techniques like data augmentation. Nevertheless, the main goal of implementing
data augmentation methods is addressed in a separate collaborative thesis.
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4 Project Setup

This chapter introduces various models and architectures as potential solutions to the research
problem, along with the creation of custom loss functions and the use of ImageNet. The pro-
posed solutions are then discussed and evaluated to determine their effectiveness. In addi-
tion, this chapter also covers the different tools that will be utilized throughout the project.
Furthermore, the project methodology will be presented in detail to provide a comprehensive
description of the research steps taken.

4.1 Proposed solution
This section aims to present an overview of the tools and techniques that are planned to be
utilized in order to achieve the desired result. The desired result involves the development of
a customized loss function that demonstrates significant improvements when implemented in
various deep learning models. The ultimate goal is to surpass the performance of the bench-
mark. In the subsequent section, each component of a potential solution will be introduced,
providing a comprehensive understanding of the proposed approach.

4.1.1 Fast.ai
Fast.ai is a deep learning library developed on top of the PyTorch deep learning framework.
The library features a high-level API that simplifies the process of building and training deep
learning models. Fast.ai also provides a range of pre-trained models that can be utilized for
tasks such as image classification. Utilizing pre-trained models can save a significant amount
of time, as developers can build on top of existing models instead of creating them from scratch
(Howard and Thomas, n.d).
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4.1.2 CNN-architecture
Convolutional neural network (CNN) is a network architecture within artificial neural net-
works, suitable for analyzing and recognizing image objects that involve processing of pixel
data. In-depth understanding of the various layers in CNN and their functions is discussed are
Section 2.4.1.

4.1.3 ResNet-architecture
Residual network (ResNet) is a CNN architecture that supports a larger number of convolu-
tional layers in its network. This architecture solves the ”vanishing gradient” problem that
occurs when the neural network grows. The difference between traditional CNN and ResNet
architectures will be discussed in Section 4.1.6.

4.1.4 ImageNet
ImageNet is a database that contains 1.2 million training images of 1000 different classes (Im-
ageNet, n.d). These classes can be anything from animals, plants, and objects. ImageNet is
used as the dataset for training and evaluating classification models/algorithms. In Section
4.1.6, the relevant use of ImageNet for the project will be discussed.

4.1.5 Applications of loss functions
Cross-entropy is a commonly used loss function in machine learning that measures the dif-
ference between the predicted probability distribution and the true probability distribution of
a classification task. It penalizes high-confidence predictions that are incorrect more heav-
ily than low-confidence predictions that are incorrect, and low-confidence predictions that are
correct. The goal of cross-entropy is to predict the correct class with high confidence, which
makes it an effective approach for classification tasks. By minimizing the cross-entropy loss,
the model learns to make more accurate predictions and becomes better at classifying new un-
seen data. In Section 4.1.6, the application of custom loss functions in relation to cross-entropy
will be further discussed.
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4.1.6 Discussion of alternatives
CNN is an effective architecture for image classification as it utilizes layers that learn to extract
relevant features from input images. This is in contrast to traditional machine learning models,
which require a separate feature engineering step to process data.

Despite the effectiveness of CNN in image classification, neither CNN nor traditional neural
networks are well-suited for scaling to a larger number of layers. This is due to the connections
between all layers can cause the gradient that is back-propagated to become very small, result-
ing in limited performance. This problem is commonly referred to as the ”vanishing gradient
problem”

ResNet addresses the vanishing gradient problem by skipping some connections, reusing the
activation function of previous layers, and compressing the network into fewer layers. The
remaining layers, called ”residual parts,” are used when the network is retrained. Fast.ai offers
a selection of pre-trained models as mentioned in Section 4.1.1, including pre-trained ResNet
models, making it a powerful tool for the project.

ResNet is foreseen to be the ideal solution for the research project, and is intended to be utilized
either through Fast.ai, or by creating custom models in the ResNet architecture.

Creating custom loss functions will require comparing the results with a benchmark. Cross-
entropy will serve as the standard loss function, with the goal of surpassing its results.

The last sub-goal of the project Section 3.2 explore the potential use of pre-trained models on
ImageNet data to determine whether the pattern under training recurs in common objects. The
ATLAS group has expressed an interest in utilizing models pre-trained models on ImageNet
data for classifying microscopic black holes and sphalerons. For this reason, models pre-
trained on ImageNet will be used.

4.2 Selected Solution
In order to find themost suitable model for analyzing high-energy particle data that is presented
in the form of 2D histograms, a thorough comparison will be studied between various models.
The selection of the most appropriate solution will be based on the outcomes that each model
delivers. The chosen solution will be the model that achieves the highest level of accuracy in
producing optimal results.
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4.3 Selection of Tools
The following section provides an overview of the technological tools and services that have
been utilized during the development process, along with a brief description of their relevant
use in this project.

4.3.1 LaTeX
LaTeX is a typesetting system that is especially suited for creating research papers that feature
complex mathematical equations, symbols, and code (The LaTeX Project, n.d.).

4.3.2 Python
In the context of deep learning and artificial neural networks, Python is the most common pro-
gramming language. Python offers a large number of available libraries and frameworks such
as fast.ai, PyTorch, TensorFlow. These libraries provide high-level abstractions for creating
and training deep neural networks.

4.3.3 Python Notebook
Python notebook is a dynamic programming environment that allows integration of Python
code snippets and combines them with explanatory text and graphs in a single document. It
has a user-friendly interface for practicing machine learning algorithms and techniques, which
makes it ideal for iterative testing.

4.3.4 Visual Studio Code (VS Code)
Visual Studio Code is a text editor for programming languages. VS Code has many available
extensions that support tasks related to deep learning, such as code completion, debugging,
and data visualization.

4.3.5 GitHub
GitHub is an online platform for collaborative software development. GitHub users can share
and store projects with each other, as well as track changes in the project. It makes it easy to
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share code between project members and different workstations.

4.3.6 WandB
WandB is a website for hyperparameter testing of machine learning models. WandB makes it
easier for users to perform hyperparameter testing and compare models.

4.4 Project methodology
This section provides a comprehensive overview of the development process employed in this
project by introducing the methodology. This subsequent sections includes the project plan
presented in the form of a Gantt chart, a risk assessment to identify and reduce potential chal-
lenges, and an evaluation plan to ensure the achievement of project goals.

4.4.1 Development methodology
The scientific working process is employed as the methodology to guide the project’s devel-
opment, providing flexible frameworks for collaboration, communication, testing, and contin-
uous improvement. The project is broken down into iterations, with each iteration comprising
a cycle of planning, implementation, design, development, and testing (Ladders, 2022). The
duration of each iteration is set at two weeks, during which the goal is to produce a machine
learning model or neural network that can be evaluated and improved based on feedback from
internal and external advisors.

To ensure effective communication and progress tracking, the project group holds weekly sta-
tus meetings with the advisors, where feedback is requested and incorporated into the next
iteration’s research, hypothesis, experiments, and requirements. The advisors’ input is also
used to refine the report writing process. This process is repeated iteratively until the final
product is completed, ensuring that the project remains on track and the final product meets
all requirements.
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Figure 4.1: The scientific method(Education, 2023)

The combination of a scientific working process and effective communication with advisors
has resulted in a flexible development process. Through constructive discussions and collab-
orative efforts, the project group has been able to quickly make changes and incorporate new
ideas and feedback without causing disruption to the overall development process.

During one of the weekly status meetings, it was discovered that there may be an error in the
dataset. This led to a conversation with the domain expert, which was then escalated to a
meeting with the entire ATLAS team. Through this collaborative effort, it was determined that
there was indeed an error in the dataset, and a new dataset was provided to the project group
shortly after.

This exemplifies the value of open communication and a collaborative approach, which enables
the project team to identify and address issues quickly and efficiently.

4.4.2 Project plan
The project plan is presented in the form of a Gantt chart, a visual representation that captures
the timeline of the project. The chart presents each task during the development process as
horizontal bars, with the length of each bar corresponding to the estimated or actual duration
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of the task. This chart serves as an effective tool to visualize project milestones, identify any
potential delays, and monitor the overall progress of the project against established timelines.
The Gantt chart is included in Appendix B.15

4.4.3 Risk assessment
A risk assessment identifies and evaluates potential risks that may arise during the develop-
ment process. Conducting an overview of possible risks, enables the project group to develop
measures to reduce the likelihood of problems occurring and mitigate the impact if they do.

To estimate the probability and consequence of a risk, a score between 1-25 is assigned. The
score for probability and consequence is then multiplied together, resulting in a risk product
score that provides a quantitative assessment of the overall risk associated with a given sce-
nario. The risk assessment is attached in Appendix B.16

4.4.4 Evaluation plan
The evaluation plan for achieving the project goals Section 3.2 involves comparing the per-
formance of different machine learning models. To measure the performance of the models,
the accuracy metric will demonstrates the model’s ability to correctly classify sphalerons and
microscopic black holes.

Accuracy is a metric that tells the fraction of predictions that are correctly classified. The
dataset used for training the models has a class balance, meaning that the amount of MBH
and SPH is equal. If the amount were not equal, accuracy would be a bad metric to use as it
does not take into account classes with low frequency. The accuracy will be determined by
calculating the total correctly predicted outcomes divided by the total number of outcomes.

Hyperparameter testing is a crucial step in the process of optimizing machine learning mod-
els. To enhance the performance of the machine learning model, various parameters can be
fine-tuned, including loss functions and the learning rate variable. By testing and adjusting
these parameters, different results can be generated and evaluated, allowing the selection of
the model that produces the most accurate classifications. The ”Grid Search” method is used
to test the parameter values for all possible combinations.

When running the various models, the tuning process will be constrained to the loss function.
Each model will be trained using different loss functions, which will be evaluated based on
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their accuracy performance.

Cross entropy will be the standard loss function, serving as the benchmark for evaluating per-
formance. The objective is to develop a custom loss function that surpasses this benchmark.
The performance of the custom loss functions will be evaluated by comparing their accuracy
against that of the cross-entropy. This analysis will assist in determining the optimal loss func-
tion.

The methodology discussed in Section 4.4.1 allows for frequent evaluation of the project’s
progress by sharing the results obtained from each iteration with the project owners and super-
visors. This promotes a flexible and efficient development process with ongoing discussions
for continuous improvement.
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5 Detailed Solution

This chapter delves into the technical aspects of the solutions implemented for the project,
presenting a detailed exploration of the choices made for the model architecture, constant
hyperparameter values, and the underlying reasoning behind these decisions. It provides a
comprehensive understanding of the final solution developed.

5.1 Architecture construction
The following sections explore the pipeline of the CNN architecture and ResNet architecture
that were constructed. The upcoming sections will provide a detailed analysis of these archi-
tectures, highlighting their key components and functionalities.

5.1.1 Custom CNN
The pipeline of the CNNmodel consists of three convolutional layers, each followed by a max
pooling operation. Convolutional operations enables the model to transforms the input image
in order to extract features from the image, and subsequently reduce the dimensionality of the
feature maps through max pooling (O’Shea and Nash, 2015). In the following table Table
5.1, the mathematical operations of how the input data is transformed as it passes through the
convolutional layers, are provided.
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First Convolution Layer Second Convolution Layer Third Convolution Layer
Input [ 50 50 50 3 ] [ 50 24 24 16 ] [ 50 11 11 64 ]

Kernel [3 16] [3 64] [3 256]
Stride [1 1] [1 1] [1 1]

Padding [0 0 0 0] [0 0 0 0] [0 0 0 0]
Output height (50+0+0-3)/1+1=48 (24+0+0-3)/1+1=22 (11+0+0-3)/1+1=9
Output width (50+0+0-3)/1+1=48 (24+0+0-3)/1+1=22 (11+0+0-3)/1+1=9
Output Size O1 =[50 48 48 16] O2=[50 22 22 64] O3=[50 9 9 256]
Max Pool max(O1,2)= [50 24 24 16] max(O2,2)= [50 11 11 64] max(O3,3)= [50 3 3 256]

Table 5.1: Mathematical operations of the CNN model - The input and output dimension is
in the following format: [batchsize height width channels]. The figure shows the
construction of the CNN model used in this project.

Starting from the first convolutional layer, the input is comprised of RGB images with dimen-
sions of 50x50x3, representing a stack of three layers with 50x50 pixel images. To ensure
compatibility, the filter must also have three dimensions, corresponding to the red, green, and
blue channels in the image ( [50 50 3] ! [3 3 3] )1.

The conv_layer with 3x3 kernel size reduces the dimensionality of the image with two pixels
in height and width. To further reduce the dimensionality, max pooling is performed on the
convolutional operation output. As shown in the output of the first convolutional layer, the
dimensionality of the image is reduced from 50x50 to 48x48 feature map. However, this is
followed by a 2x2 max pooling operation, which reduces the dimensionality of the feature
maps by half, resulting in a size of 24x24.

This process is repeated for the second and third convolutional operation. The final feature
map has a dimensionality of 3x3 pixels, and prior to being passed to the fully connected layer,
the feature map is flattened into a one dimensional vector.

A fully connected layer assigns a separate weight to each output node for all input node. In the
case of 2304 inputs (3∗3∗256) and 128 outputs, this results in 294,912 weights. Additionally,
the layer has a bias for each output node, increasing the number of parameters to (2304 +

1) ∗ 128 = 295, 040. The output value is randomly selected from 2n, where n equals 7 in this
case. The second and final fully connected layer takes 128 nodes as input, which is the output
from the first fully connected layer. The final output of the network is either a sphaleron or a
microscopic black hole, resulting in two possible outputs. Therefore, the number of parameters

1! is the symbol for the convolution operator
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for this layer is calculated as (128 + 1) ∗ 2 = 258.

Furthermore, considerations has been made to ensure that the model is capable of being trained
on ImageNet. Two fully connected layers have been constructed, with the first layer consisting
of 1000 output layers, and the second and final layer consisting of 2 output layers. By removing
the second layer, the model would be able to train on the ImageNet dataset.

The ImageNet dataset contains 1000 classes. Training on this dataset requires a model that
has 1000 nodes in the last fully connected layer. The dataset consists of 14 million images,
therefore it requires a lot of processing time. Due to the time limitation discussed in Limitations
3.6, no training has been conducted on this dataset (Russakovsky et al., 2015).

The Figure 5.1 below illustrates the pipeline of the CNN model, showcasing the progression
from the input layer to the output layer.

Figure 5.1: CNN model architecture - The CNN model consists of 3 convolution layers and
2 fully connected layers. The input dimension is 50x50x3, by the end of the last
convolution layer the shape is 3x3x256. The output of the last fully connected
layer is 2, microscopic black hole and sphaleron.
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5.1.2 ResNet
In a ResNet architecture, the design of the residual block differs based on the network’s depth.
For smaller networks such as ResNet-34, each residual block consists of two convolutional
layers. In contrast, for deeper networks like ResNet-50 and ResNet-101, each residual block
contains three convolutional layers. Deeper ResNet networks use three-layer residual blocks to
capture complex features, while shallower networks with two-layer residual blocks are suitable
for less complex features or smaller datasets. This projet explores ResNet-34, ResNet-50,
and ResNet-101 architecture. The Figure 5.2 below illustrates the structure of three different
residual blocks.

Figure 5.2: (a) Residual block, (b) two layer deep, (c) three layer deep (Venugopal et al., 2021)

The architecture is based on a pipeline that incorporates five distinct convolutional layers,
depicted in Table 5.2. However, the main variation between these layers is the number of
layers utilized (34, 50, 101), and the type of residual block.
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layer name 34-layer 50-layer 101-layer
conv1 7× 7, 64, stride 2

conv2
3× 3 max pool, stride 2

[
3× 3, 64

3× 3, 64

]
× 3




1× 1, 64

3× 3, 64

1× 1, 256



× 3




1× 1, 64

3× 3, 64

1× 1, 256



× 3

conv3

[
3× 3, 128

3× 3, 128

]
× 4




1× 1, 128

3× 3, 128

1× 1, 512



× 4




1× 1, 128

3× 3, 128

1× 1, 512



× 4

conv4

[
3× 3, 256

3× 3, 256

]
× 6




1× 1, 256

3× 3, 256

1× 1, 1024



× 6




1× 1, 256

3× 3, 256

1× 1, 1024



× 23

conv5

[
3× 3, 512

3× 3, 512

]
× 3




1× 1, 512

3× 3, 512

1× 1, 2048



× 3




1× 1, 512

3× 3, 512

1× 1, 2048



× 3

average pool, 2048-d fc

Table 5.2: Detailed construction of the different ResNet models - The table contains dimen-
sions and size of each residual block used to construct the ResNet models (Zhang
et al., 2015).

ResNet34 Implementation The ResNet34 architecture consists of 16 residual blocks (3 +

4 + 6 + 3 = 16), each residual block contains 2 convolutional layers. Additionally, the first
layer of the architecture also includes 2 convolutional layers, which are not part of a residual
block. Consequently, the total number of convolutional layers in ResNet34 is ((16 ∗ 2) + 2).
Although it is considered relatively shallow compared to ResNet50 and ResNet101, it remains
an effective architecture due to its fewer number of parameters, resulting in faster training and
less prone to overfitting.

In this particular architecture, the residual block is implemented as an identity block. The
indetity block skips over two layers in the main path. The layers that are skipped consists a
conv2d, and a batch normalization as shown in the Figure 5.3. The first layer also consists of
a ReLu function. The shortcut connection in the block skips the two layers and forwards the
output of one layer as the input to the next layers. The resulting output is then passed through
a ReLU function.
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Figure 5.3: Architecture of the identity block (Jjuinni, 2023)

ResNet50 and ResNet101 Implementation ResNet50 and ResNet101 have a larger number
of parameters, enabling them to handle more complex tasks compared to ResNet34. In these
models, the residual block is implemented as a bottleneck block, further reducing the number
of parameters while increasing the depth of the network.

5.2 Selection of Loss Functions

5.2.1 Custom Loss function
When developing a custom loss function, a benchmark will be significant to compare against.
Cross-entropy will serve as the benchmark for evaluating the custom loss functions.

In the initial stage of selecting a loss function, the zero-one loss function was considered as
a potential approach for the model. This function does not penalize the model for making
correct predictions with low confidence, in contrast to cross-entropy which heavily penalized
the model for making correct but low-confidence predictions.

The idea is to make the penalty of cross-entropy resemble that of the zero-one loss. To achieve
this, the softmax activation function in the model can be modified. One approach is to apply a
root function to the input, which would flatten the predicted estimates and make the model’s
confidence less important. By applying this modification, it is expected to decrease the penalty
for accurate predictions made with low confidence and increase the penalty for inaccurate
predictions made with high confidence.

Softmax(xi) =
exp(xi)

Σjexp(xj)

Figure 5.4: Original implementation of the softmax function
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The modified softmax function introduces a new variable that determines the root to be applied
to the input value.

Softmax(xi, r) =
exp(sgn(xi) ∗ r

√
|xi|)

Σjexp(sgn(xi) ∗ r
√

|xj|)

Figure 5.5: Custom Loss Function - Modified implementation of the softmax function. The
parameter X_i is the model output, and r is the root index. The function sgn() is
used to negative or positive value of a number(outputs -1 or +1)

Figure 5.6: Comparison between softmax and modified version of softmax

In this classification task, the input of the softmax function is 2-dimensional, representing the
model weight for microscopic black hole and sphalerons. Figure 5.6 depicts various modified
softmax functions in comparison to the original softmax function. The X-axis represents the
weight given to the microscopic black hole when the weight for sphalerons is 0, while the Y-
axis represents the output for microscopic black hole. The legend 2 indicates which softmax
function is being applied, with the number behind the custom softmax indicating the root index
that has been used.
2Legend is the textbox that labels the data by color.
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By comparing the different softmax functions, it becomes evident that the modification we
made to the softmax function reduces the impact of model confidence as the root value in-
creases. When a higher root index is applied, the softmax function demonstrates a trend of
converging closer to y = 0.5. For positive x-values standard softmax converges to y = 1,
whilst softmax-7 converges closer to y = 0.8. A similar pattern is seen for the negative x-
values, were softmax converges to y = 0, whilst softmax-7 converges closer to y = 0.2. This
modification is intended to bring the penalty of cross-entropy closer to that of the zero-one loss
function.

Figure 5.7: Comparison between -logsoftmax and modified version of -logsoftmax. Note that
-logsoftmax and cross entropy is mathematical the same (de Brébisson and Vin-
cent, 2016).

Figure 5.7 shows a comparison between cross-entropy and the custom loss function. The x-
axis represents the model output for MBH when the value for SPH is 0. The y-axis represents
the loss value if the correct label is MBH. For instance, when evaluating an output with a
confidence score represented by x = −5, the custom loss-3 function would yield a loss value of
approximately 2, whereas the standard cross-entropy loss function would result in a higher loss
value of approximately 5. However, with an output confidence score of x = −10, the custom
loss-3 function would yield a slightly above 2 loss value, while the standard cross-entropy loss
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function would yield a significantly higher loss value of 10. This behavior exhibits similarity
to the zero-one loss, where both a highly confident incorrect model output and a moderately
confident incorrect output yield similar loss values. In contrast, the standard cross-entropy loss
results a significantly higher loss value to a highly confident incorrect model output.

1 def logSoftmax(x, root):
2 x_pow = x.sign() * x.abs().pow(1/root)
3 x_exp = torch.exp(x_pow)
4 x_exp_sum = torch.sum(x_exp, 1, keepdim=True)
5 return torch.log(x_exp/x_exp_sum)
6

7 class CustomLoss(nn.Module):
8 def __init__(self, root):
9 super(CustomLoss , self).__init__()
10 self.root = root
11

12 def forward(self, input, targets):
13 batch_size = input.size()[0]
14 input = logSoftmax(input, self.root)
15 input = input[range(batch_size), targets]
16 return -torch.sum(input) / batch_size

Listing 5.1: Implementation of the custom loss function

Listing 5.1 above shows the implementation of the custom loss function. The modification
made to the original implementation in the pyTorch library involves the addition of line 2 and
the introduction of a function parameter called ”root”.
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5.3 ImageNet
In Section 2.2.3, it is discussed that utilizing pre-trained models from ImageNet can enhance
performance. The suggested approach involves initially freezing all layers, except for the last
fully connected layer before the output layer. The final fully connected layer should consist of
1000 input nodes and 2 output nodes. Subsequently, this last layer is trained using the projects
dataset.

The following Listing 5.2 demonstrates the implementation of the ResNet34 model using the
PyTorch library. The weights are imported from the torchvision.models module. The imple-
mentation for ResNet50 is identical.

1 class Resnet34(nn.Module):
2 def __init__(self):
3 super(Resnet34 , self).__init__()
4 #Initialize weights from a resnet34 model pre-trained on ImageNet:
5 self.layers = resnet34(weights=ResNet34_Weights.IMAGENET1K_V1)
6 #Fully connected layer with 1000 input nodes and 2 output nodes:
7 self.new_layer = nn.Sequential(nn.Linear(1000, 2))
8

9 def forward(self, x):
10 x = self.layers(x)
11 x = self.new_layer(x)
12 return x

Listing 5.2: ResNet34 pre-trained on ImageNet

The Listing 5.3 below demonstrates the initialization of the model and the process of freezing
its layers

1 #Initialized the model and moves to gpu
2 model = Resnet34().to(device)
3 #Freez the layers, look at implementation
4 model.layers.requires_grad = False

Listing 5.3: Initialization of the model
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6 Results

This chapter presents the results obtained from the implemented models. Results from each
model architecture will be analyzed, aiming to comprehend their relevance to the problem
statement and the sub-goals of the project. Additionally, the results will be compared against
a benchmark to evaluate their performance. Furthermore, observations will be discussed to
understand underlying patterns that has been discovered that influence the results. By evalu-
ating these results, this chapter lays the groundwork for the subsequent discussion, which will
address the problem statement and the sub-goals of the project.

6.1 Analysing the CNN Model
The constructed CNNmodel has a relatively simple structure, comprised of three convolutional
layers and two fully connected layers. The incorporation of custom loss functions introduces
an additional layer of complexity to this model. The additional complexity is expected to
achieve a better performances than the standard cross-entropy loss function.

The custom loss function is essentially a modified softmax function that applies a root on the
output value. The index of the root is an additional parameter that is adjusted. As previously
mentioned in Section 4.4.4, the hyperparameter tuning process in this study is limited to the
loss function. The index values are arbitrarily values, ranging from 3 to 9, as seen in Figure
6.1 below.
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Figure 6.1: CNN Loss function comparison - Graph containing accuracy comparison of 8
loss functions. This graph is one of three other used for CNN comparison. The
blue highlighted line is cross-entropy loss which is the benchmark.

The line graph displays the training performance of the implemented loss functions for each
epoch. This graph effectively captures noticeable changes in the trend over the time of 40
epochs. Towards the upper end of the range, where the index increases, it becomes evident
that the custom loss functions display instability during the early stages of training.

The line graph illustrates the performance of a single run. However, to accurately evaluate
the model’s performance, it is necessary to conduct at least three runs for each model. By
calculating the average accuracy across these three runs, a more reliable estimate of themodel’s
accuracy can be obtained. Subsequently, the results are evaluated in comparison to the standard
cross-entropy benchmark. The accuracy for each run is listed in the Table 6.1, and the average
accuracy for each model is illustrated in a bar plot in Figure 6.2, with the standard deviation is
represented as error bars.
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Loss Function Run epoch 10 epoch 20 epoch 40
Run 1 84.2% 87.6% 86.7%

Cross-entropy Run 2 82.8% 86.9% 88.7%
Run 3 85.2% 85.0% 87.7%
Run 1 85.4% 87.0% 86.6%

Custom-Loss-3 Run 2 86.5% 87.0% 87.4%
Run 3 86.1% 87.4% 88.1%
Run 1 87.8% 88.5% 88.6%

Custom-Loss-4 Run 2 85.3% 86.1% 88.2%
Run 3 88.1% 88.1% 86.1%
Run 1 90.0% 89.1% 89.3%

Custom-Loss-5 Run 2 88.3% 89.2% 90.5%
Run 3 89.9% 89.2% 89.1%
Run 1 82.4% 90.1% 89.5%

Custom-Loss-6 Run 2 50.6% 87.0% 89.7%
Run 3 89.0% 89.0% 90.6%
Run 1 54.1% 74.6% 88.3%

Custom-Loss-7 Run 2 88.8% 88.7% 81.8%
Run 3 88.6% 88.9% 89.9%
Run 1 86.1% 87.0% 89.3%

Custom-Loss-8 Run 2 85.9% 50.5% 90.0%
Run 3 83.5% 88.8% 88.2%
Run 1 73.9% 82.9% 87.7%

Custom-Loss-9 Run 2 75.2% 83.6% 88.2%
Run 3 84.5% 85.8% 87.5%

Table 6.1: CNN Loss function comparison table - Table containing accuracy comparison of
8 loss functions over 3 runs.

59



Figure 6.2: CNN Loss function bar plot - Bar plot containing average accuracy of the loss
functions with standard deviation as error bar.

The bar graph provides an comprehensible visualization of the average performance of accu-
racy for each model at epochs 10, 20, and 40, along with the display of standard deviation.
At epoch 10, it can be observed that there is slightly more efficient training when the custom
loss function’s root index increases from 3 to 5, compared to the standard cross-entropy bench-
mark. However, when the index increases from 6 to 9, there is a sudden drop in performance.
A reason for this instability may be correlated to Figure 5.6. A higher root index will lead to a
steeper derivative, meaning that optimizer may take too large steps when adjusting the model
parameters. Eventually, at epoch 40, all models converge to a similar level of accuracy, but
Custom-loss-5 exhibits the most stable training performance and achieves high accuracy.

Custom-loss-4 and custom-loss-5 consistently demonstrate a consistent performance through-
out all epochs. This suggests that these custom loss functions have the potential to decrease
the required number of epochs to achieve a point where further performance improvements are
no longer significant.

60



6.2 Analysing the ResNet Model
When choosing the best ResNet model, the focus shifts towards the architecture itself rather
than the performance of the custom loss function, which differs from the approach taken with
CNN models.

The attached document Appendix B.13 and Appendix B.14 reveals that ResNet101 exhibit
instability, whilst all ResNet models show a tendency to overfit. Although the models overfit,
there is little to no difference in accuracy. As the amount of layers increase in the time it takes
train also increases, therefore only ResNet34 is utilized for further evaluation of the impact of
the custom loss function.

As the number of layers increases, the models become more susceptible to overfitting. How-
ever, in Figure 6.3, it is evident that ResNet34 displays relatively less instability and overfitting
in comparison. As a result, only ResNet34 is utilized for further evaluation of the impact of
the custom loss function.

Figure 6.3: ResNet Loss function comparison - Graph containing accuracy comparison of
8 loss functions. This graph is one of three other used for ResNet34 comparison.
The blue highlighted line is cross-entropy loss.
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A graph illustrating the training performance of the implemented loss functions for ResNet34
is also provided. Similar to the CNN, root indices 3, 4, 5, 6, 7, 8, and 9 have been tested
out. However, compared to the CNN run, the graph shows increased instability for several of
functions. This instability appears to persist across the epochs. Notably, ResNet-Custom-Loss-
8 appears to reach an accuracy of 50% around epoch 38. This observation suggests that the
ResNet-Custom-Loss-8 model likely fails to reach a flattening, indicating an unstable training
performance.

The loss functions with higher root index values, such as 6, 7, 8, and 9, demonstrate the most
instability. This observation aligns with the findings discussed during the analysis of the CNN
model in Figure 6.1. It becomes apparent that increasing the root index leads to unstable
behavior for both architectures.

ResNet tends to exhibit overfitting as the number of layers increases. Therefore, it is reasonable
to compare the test accuracy with the train accuracy to analyze the model’s performance. The
Figure 6.4 below depicts the accuracy on the training dataset. Standard cross-entropy, custom-
loss-3, and custom-loss-4 achieves a accuracy of 99% by epoch 40, indicating that they overfit.
Comparing these findings to the accuracy results provided in Table 6.2, it is observable that for
epoch 40, the accuracy for these functions hovers around 91%. This substantial difference be-
tween the training and test accuracy suggests that the models have learned the patterns present
in the training set.

Figure 6.4: ResNet Custom-loss functions comparison - Figure shows the accuracy on the
train dataset for Figure 6.4. The blue highlighted line is cross-entropy loss.
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Loss Function Run epoch 10 epoch 20 epoch 40
Run 1 91.5% 89.3% 91.0%

Cross-entropy Run 2 92.5% 91.5% 88.8%
Run 3 92.0% 90.5% 91.1%
Run 1 91.7% 91.3% 91.9%

Custom-Loss-3 Run 2 91.4% 89.4% 91.0%
Run 3 90.0% 91.1% 91.3%
Run 1 86.8% 87.4% 91.4%

Custom-Loss-4 Run 2 87.4% 90.6% 90.8%
Run 3 91.6% 92.3% 88.4%
Run 1 89.4% 89.7% 84.0%

Custom-Loss-5 Run 2 82.5% 89.5% 92.0%
Run 3 89.3% 89.4% 89.0%
Run 1 87.2% 88.9% 91.8%

Custom-Loss-6 Run 2 84.5% 89.9% 88.8%
Run 3 85.4% 86.0% 79.7%
Run 1 86.0% 88.9% 89.9%

Custom-Loss-7 Run 2 84.1% 65.0% 89.6%
Run 3 83.1% 87.6% 90.2%
Run 1 84.2% 85.4% 90.1%

Custom-Loss-8 Run 2 87.0% 50.6% 89.1%
Run 3 86.4% 87.5% 88.1%
Run 1 82.9% 83.0% 83.7%

Custom-Loss-9 Run 2 51.8% 83.9% 84.0%
Run 3 81.7% 88.0% 86.7%

Table 6.2: ResNet Loss function comparison table - Table containing accuracy comparison
of 8 loss functions over 3 runs.
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The bar plot in Figure 6.5, representing the ResNet34 models, exhibits notable differences
compared to the CNN model. An interesting observation is that as the root index increases,
the performance decreases, whereas the CNN models demonstrated improved performance.
Additionally, the standard cross-entropy benchmark shows a gradual decrease in performance
by epoch 20 and 40.

The ResNet-Custom-Loss-7 and ResNet-Custom-Loss-8 models, which demonstrate signs of
instability, exhibit a noticeable drop in performance around epoch 20. However, it is interesting
to observe that by epoch 40, ResNet-Custom-Loss-7 demonstrates an increase in performance
by 6%, while ResNet-Custom-Loss-8 demonstrates a 3% increase. This contrasts with the
behavior of the cross-entropy benchmark, which experiences a decrease of 2% by epoch 40.
This observation could potentially be explained by the overfitting observed in the training
graph.

ResNet-Custom-Loss-9, similar to the other unstable models, also displays instability. How-
ever, it exhibits poor performance by epoch 10, followed by an improvement by epoch 20.
Unlike the CNN models, there are no notable discernible trends in the accuracy patterns. One
consistent observation remains that as the index value increases, both the ResNet and CNN
models tend to become more unstable.

Seemingly, the custom loss function does not appear to benefit the performance of the model.
However, it is noteworthy that the highest average accuracy achieved is 92% for ResNet34-
Custom-Loss-3, while the highest average accuracy for the CNN model is 90% for CNN-
Custom-Loss-5. This indicates that ResNet34-Custom-Loss-3 performs well, but it also sug-
gests that there is potential for further improvement.
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Figure 6.5: ResNet Loss function bar plot - Bar plot containing average accuracy of the loss
functions with standard deviation as error bar.
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6.3 Models pre-trained on ImageNet
In order to implement transfer learning, the weights frommodels pre-trained on ImageNet have
been extracted and used to replace the weights of the best performing model. This approach
aims to potentially decrease the number of epochs required to reach a peek point of accuracy.

The ResNet34-Custom-Loss-3 model will be compared to a pre-trained ResNet34-Custom-
Loss-3 model. Below in Figure 6.6, the graph of the custom-loss model can be observed. The
model have been run three times to analyze the average performance. The aim is to observe a
peek point of accuracy in an early epoch, compared to the not pre-trained model.

Figure 6.6: ResNet34 custom-loss-3 - Three runs each trained for 40 epochs.
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Figure 6.7: ResNet34Pre custom-loss-3 - Three runs each trained for 40 epochs.

Comparing the graphs from Figure 6.6 and Figure 6.7, it becomes evident that there is no
distinct difference between the models. Both graphs exhibit a flattening trend around epoch
30, with the training remaining relatively stable. This observation suggests that the model pre-
trained on ImageNet does not necessarily reach its peak accuracy in earlier epochs. Instead, it
demonstrates a consistent level of stability with good accuracy throughout the training process.

A comprehensive comparison of the average accuracy for eachmodel is presented in the Figure
6.3 below. The figure displays the average accuracy for three runs at epoch 10, 20, and 40.
This numerical comparison allows for clear observation of the point in the training process
where convergence begins to occur.
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Model Average
Accuracy on
Three Runs
(Epoch 10)

Average
Accuracy on
Three Runs
(Epoch 20)

Average
Accuracy on
Three Runs
(Epoch 40)

ResNet34-Custom-Loss-3
(pre-trained)

90% 87% 91%

ResNet34-Custom-Loss-3
(Not pre-trained)

91% 91% 92%

Table 6.3: Comparison between 3 different ResNet34 models - The first model used cross-
entropy and is pre-trained with ImageNet. The second model uses custom-loss-3
and is pre-trained with ImageNet. The third model uses custom-loss-3 and is not
pre-trained.

As mentioned earlier, the table reveals that the accuracy remains consistent across all three
epochs. Although this result does not indicate any noticeable differences, it indicates that for
ResNet34-Custom-Loss-3, running 40 epochs for training may not be necessary.
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6.4 Discussion
The research conducted in this study delve into the significance of various network architec-
tures, examined the impact of diverse loss functions, and compare the models with those pre-
trained on ImageNet Section 6.3. The results obtained provides insight into the performance
of the models and their ability to generalize on unseen data. This section will examine how
the obtained results address the problem statement and the corresponding subgoals.

This project has aimed to address the problem statement ”Explore and evaluate the perfor-
mance of various neural network architectures and loss functions for accurately classifying
simulated image data portraying particle collisions in the ATLAS detector”. By analyzing the
results in light of the research subgoals, insight of implications can be gained. The following
sections will discuss the findings of this project for each subgoal:

Investigate the importance of different network architectures

Initially it was considered to use precision and recall as metrics in combination with accuracy.
These metrics are particularly useful when dealing with class imbalance in a dataset, where
one class has significantly more instances than the other. However, in the scenario described,
where both classes have the same frequency in the dataset, it was concluded that precision and
recall were not necessary.

The CNN model and the ResNet models express significantly different performance. The
CNN model is more stable, with minimal overfitting and fairly good accuracy, considering
its simplicity. However, the architectural construction demands more manual work for the
mathematical operations in each layer. The CNN model’s performance improved with the
custom loss function, potentially due to its simpler architecture. The added complexity of the
custom loss function may have contributed to the improved performance.

In contrast, the ResNet models tend to be unstable for each run. It can learn something incor-
rectly, leading to poor results, or produce good accuracy but still overfit. Possible solutions
include using an early stopping algorithm or a scheduler to prevent poor performance. Under
the development process, a scheduler was employed to reduce the learning rate. This slightly
improved the model’s instability but did not address the overfitting issue. Additional tuning is
required, which demands more developing time.

Preprocessing of the data was not performed prior to training the models. However, employing
methods like data augmentation could potentially reduce the overfitting problem observed for

69



the ResNet models.

Considering that we have compared the models on the test dataset under the training process, it
is possible that the models are overfitted to perform well on the test dataset. Ideally, a portion
of the dataset should have been held aside for final evaluation. However, since we are not
developing a model for practical use, this should not pose a significant issue.

Investigate the effect of using different loss functions

When selecting a benchmark loss function for the evaluation of a custom loss function, mainly
cross-entropy were taken into consideration. The reason for this choice was that the custom-
loss is a modification of cross-entropy. As a result, it was concluded that cross-entropy was a
suitable loss function to determine if the modification made any improvement to the model.

The custom loss function is a modified version of cross-entropy that apply different roots index
values on the input. Applying different exponents were also tested. However, the model failed
to train with exponents, suggesting the need for further experimentation as the project group
is uncertain why this is.

The ResNet models demonstrated only slight improvement when the custom loss function was
incorporated. Given their inherently complex architecture, it’s possible that the custom loss
function isn’t an ideal fit for these models.

It would be interesting to add more layers to the CNN model to increase its complexity and
observe the impact of the custom loss function as the number of layers grows. For the ResNet
model, creating a different custom loss function that can better handle its complex architecture
might be more effective.

Investigate whether networks pre-trained on ImageNet data are useful for 2D histograms

When comparing pre-trained models on ImageNet, only ResNet34 were considered since it
had the best resulting model. Although pre-training the CNN model was initially considered,
it was ultimately considered to be unfeasible. The reason for this is the fact that the CNN
model is custom-built and has a relatively simple structure. There are no corresponding model
that are pre-trained on ImageNet. Even a slightly altered version of a CNNmodel could not be
employed due to the mismatch in the number of weights. Hence, pre-training the CNN model
was not a viable option.

On the contrary, ResNet models have a fixed depth of layers. The expectation was that ex-
tracting the weights from an already pre-trained ResNet model would lead to some improve-
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ment. However, the results revealed that the model experienced stable training that flattened
out around epoch 30, similar to the original non-pre-trained model. Unfortunately, the results
did not indicate any improvement in an early peak of accuracy. The only observation made
was that the ResNet34-Custom-Loss-3 model did not require 40 epochs for training, thereby
reducing the training time for this particular model.
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7 Conclusion

This concluding chapter will reflect back on the findings and discussion of the project. The
project aimed to address the problem statement ”Explore and evaluate the performance of
various neural network architectures and loss functions for accurately classifying simulated
image data portraying particle collisions in the ATLAS detector”. Throughout the project,
several significant findings have been uncovered that contribute to this statement.

This project introduces a deep learning approach for the classification of microscopic black
holes and sphalerons. Through the utilization of deep learning, the project overcomes the
limitations associated with traditional classification methods, which often demands expertise
in particle physics and advanced mathematics, in addition to being time-consuming.

The data provided for this project consists of simulated proton-proton collision data presented
as 2D histograms. The paper ’End-to-End Physics Event Classification with CMS Open Data’
(Andrews et al., 2020) introduced the utilization of 2D histograms in the fields of physics
and machine learning. This project draws inspiration from that paper and aims to accurately
classify the simulated 2D histogram images.

The project examined the application of CNN (Convolutional Neural Network) architecture
and ResNet (Residual Network) architecture in analyzing 2D histogram data. Furthermore,
a customized loss function was developed to improve the performance of these models. The
outcomes obtained from these two models exhibit notable differences.

From the CNN models, the results demonstrated a significant improvement in accuracy when
using the custom loss function, whereas the ResNet models did not exhibit the same results.
This might be explained by the simplicity of the CNN model, which has only three layers, in
contrast to the more complex, multi-layered ResNet models. The custom loss function adds
an additional layer of complexity to the CNN model, leading to better performance compared
to the standard cross-entropy loss function. However, the ResNet34-CustomLoss-3 achieves
a 2% higher accuracy compared to CNN-CustomLoss-5. It is worth noting that the custom
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loss function may not be as well-suited for the ResNet architecture, resulting in less significant
accuracy improvements compared to the benchmark. Nevertheless, the ResNet model has the
potential to further enhance its performance by employing data processing techniques such as
data augmentation and developing a more suitable custom loss function.

Additionally, an alternative approach was explored using transfer learning. The ResNet34-
CustomLoss-3 model was trained with weights extracted from pretrained ImageNet models.
Unfortunately, the results did not demonstrate any noticeable improvement in terms of early
peak accuracy. However, it was observed that the ResNet34-Custom-Loss-3 model required
fewer than 40 epochs for training. This indicates that the ResNet34-Custom-Loss-3 model
requires less training time.
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8 Suggestion for further research

This project has explored various aspects of utilizing deep learning for the classification of
microscopic black holes and sphalerons. However, there are areas that require further research.
Taking into account of the findings and limitations of this project, the following suggestions
for further research are proposed.

I Creating other loss functions - The CNN model demonstrates improved performance
through the utilization of a custom loss function. Conversely, the ResNet model did
not exhibit a substantial improvement. Therefore, it would be advantageous to create a
custom loss function that is more suitable for the ResNet model.

II Increase the complexity of the CNNmodel -By addingmore layers to the CNNmodel,
it would improve the complexity. This would be interesting to further explore, and to see
if it yields different results and to observe the impact of using a custom loss function on
the model. By delving into this approach, a better understanding of the reasons behind
the positive results obtained from this loss function can be gained.

III Implementing regularization - To reduce overfitting in the ResNet model, it is worth
considering the exploration of regularization methods for image classification. One po-
tential idea is to incorporate L2 regularization into the custom loss function.

IV Testing out the custom loss function on newermodels - To gain a more comprehensive
understanding of the loss function’s performance, it would be interesting to evaluate it
on newer and more complex networks such as ConvNeXT(Liu et al., 2022).

V Exploring the use of data augmentation - The overfitting issue of the ResNet model
could potentially be reduced by incorporating data processing techniques like data aug-
mentation. Implementing data augmentation methods is addressed in a separate collab-
orative thesis. Combining the findings from these two projects would offer interesting
possibilities for further research.
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A Code

A.1 CNN model
1 class ConvModel(nn.Module):
2 def __init__(self, dropout):
3

4 super(ConvModel , self).__init__()
5 self.conv1 = nn.Conv2d(
6 in_channels=3, out_channels=16, kernel_size=3, padding=0)
7 self.conv2 = nn.Conv2d(
8 in_channels=16, out_channels=64, kernel_size=3, padding=0)
9 self.conv3 = nn.Conv2d(
10 in_channels=64, out_channels=256, kernel_size=3, padding=0)
11

12 self.fc1 = nn.Linear(3*3*256, 1000)
13 self.fc2 = nn.Linear(1000, 2)
14

15 def forward(self, x: Tensor):
16 x = self.conv1(x)
17 x = F.relu(x)
18 x = F.max_pool2d(x, 2)
19 x = self.conv2(x)
20 x = F.relu(x)
21 x = F.max_pool2d(x, 2)
22 x = self.conv3(x)
23 x = F.relu(x)
24 x = F.max_pool2d(x, 3)
25 x = torch.flatten(x, 1)
26 x = self.fc1(x)
27 x = F.relu(x)
28 x = self.fc2(x)
29 return x

Listing A.1: Implementation of the Convolutional model
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A.2 ResidualBlock(34)
1 class ResidualBlock(nn.Module):
2

3 def __init__(self, in_channels , out_channels , stride=1, i_downsample=
None):

4

5 super(ResidualBlock , self).__init__()
6 self.conv1 = nn.Sequential(
7 nn.Conv2d(in_channels , out_channels ,
8 kernel_size=3, stride=stride, padding=1),
9 nn.BatchNorm2d(out_channels),
10 nn.ReLU())
11 self.conv2 = nn.Sequential(
12 nn.Conv2d(out_channels , out_channels ,
13 kernel_size=3, stride=1, padding=1),
14 nn.BatchNorm2d(out_channels))
15 self.i_downsample = i_downsample
16 self.relu = nn.ReLU()
17 self.out_channels = out_channels
18

19 def forward(self, x):
20 residual = x
21 out = self.conv1(x)
22 out = self.conv2(out)
23 if self.i_downsample:
24 residual = self.i_downsample(x)
25 out += residual
26 out = self.relu(out)
27 return out

Listing A.2: Implementation of the Residual Block
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A.3 Bottleneck(50,101)
1 class Bottleneck(nn.Module):
2 expansion = 4
3

4 def __init__(self, in_channels , out_channels , i_downsample=None,
stride=1):

5 super(Bottleneck , self).__init__()
6

7 self.conv1 = nn.Conv2d(in_channels , out_channels ,
8 kernel_size=1, stride=1, padding=0)
9 self.batch_norm1 = nn.BatchNorm2d(out_channels)
10

11 self.conv2 = nn.Conv2d(out_channels , out_channels ,
12 kernel_size=3, stride=stride, padding=1)
13 self.batch_norm2 = nn.BatchNorm2d(out_channels)
14

15 self.conv3 = nn.Conv2d(
16 out_channels , out_channels*self.expansion , kernel_size=1,

stride=1, padding=0)
17 self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion)
18

19 self.i_downsample = i_downsample
20 self.stride = stride
21 self.relu = nn.ReLU()
22

23 def forward(self, x):
24 identity = x.clone()
25 x = self.relu(self.batch_norm1(self.conv1(x)))
26 x = self.relu(self.batch_norm2(self.conv2(x)))
27 x = self.conv3(x)
28 x = self.batch_norm3(x)
29

30 # downsample if needed
31 if self.i_downsample is not None:
32 identity = self.i_downsample(identity)
33 # add identit\n,y
34 x += identity
35 x = self.relu(x)
36 return

Listing A.3: Implementation of the Bottleneck block
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A.4 Residual network model(34)
1 class ResNetModel(nn.Module):
2 def __init__(self, block, layers, num_classes=2):
3

4 super(ResNetModel , self).__init__()
5 self.conv1 = nn.Conv2d(
6 in_channels=3, out_channels=64, kernel_size=7, stride=2,

padding=3)
7 self.batch1 = nn.BatchNorm2d(64)
8

9 self.inplanes = 64
10 self.layer0 = self._make_layer(block, 64, layers[0], stride=1)
11 self.layer1 = self._make_layer(block, 128, layers[1], stride=2)
12 self.layer2 = self._make_layer(block, 256, layers[2], stride=2)
13 self.layer3 = self._make_layer(block, 512, layers[3], stride=2)
14

15

16 self.fc0 = nn.Linear(2048, num_classes)
17

18 def forward(self, x: Tensor):
19 x = self.conv1(x)
20 x = self.batch1(x)
21 x = F.relu(x)
22 x = F.max_pool2d(x, 2)
23

24 x = self.layer0(x)
25 x = self.layer1(x)
26 x = self.layer2(x)
27 x = self.layer3(x)
28

29 x = torch.flatten(x, 1)
30 x = self.fc0(x)
31

32 return x
33

34 def _make_layer(self, block, planes, blocks, stride=1):
35 downsample = None
36 if stride != 1 or self.inplanes != planes:
37

38 downsample = nn.Sequential(
39 nn.Conv2d(self.inplanes, planes, kernel_size=1, stride=

stride),
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40 nn.BatchNorm2d(planes),
41 )
42 layers = []
43 layers.append(block(self.inplanes , planes, stride, downsample))
44 self.inplanes = planes
45 for i in range(1, blocks):
46 layers.append(block(self.inplanes , planes))
47

48 return nn.Sequential(*layers)

Listing A.4: Implementation of the ResNet34 model
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A.5 Residual network model(50,101)
1 class ResNet(nn.Module):
2 def __init__(self, ResBlock, layer_list , num_classes , num_channels=3):
3 super(ResNet, self).__init__()
4 self.in_channels = 64
5

6 self.conv1 = nn.Conv2d(
7 num_channels , 64, kernel_size=7, stride=2, padding=3, bias=

False)
8 self.batch_norm1 = nn.BatchNorm2d(64)
9 self.relu = nn.ReLU()
10 self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
11

12 self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64)
13 self.layer2 = self._make_layer(
14 ResBlock, layer_list[1], planes=128, stride=2)
15 self.layer3 = self._make_layer(
16 ResBlock, layer_list[2], planes=256, stride=2)
17 self.layer4 = self._make_layer(
18 ResBlock, layer_list[3], planes=512, stride=2)
19

20 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
21 self.fc0 = nn.Linear(512*ResBlock.expansion , 1000)
22 self.fc1 = nn.Linear(1000, num_classes)
23

24 def forward(self, x):
25 x = self.relu(self.batch_norm1(self.conv1(x)))
26 x = self.max_pool(x)
27

28 x = self.layer1(x)
29 x = self.layer2(x)
30 x = self.layer3(x)
31 x = self.layer4(x)
32

33 x = self.avgpool(x)
34 x = torch.flatten(x, 1)
35 x = self.fc0(x)
36 x = self.fc1(x)
37

38 return x
39

40 def _make_layer(self, ResBlock, blocks, planes, stride=1):
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41 ii_downsample = None
42 layers = []
43

44 if stride != 1 or self.in_channels != planes*ResBlock.expansion:
45 ii_downsample = nn.Sequential(
46 nn.Conv2d(self.in_channels , planes*ResBlock.expansion ,
47 kernel_size=1, stride=stride),
48 nn.BatchNorm2d(planes*ResBlock.expansion)
49 )
50 layers.append(ResBlock(self.in_channels , planes,
51 i_downsample=ii_downsample , stride=stride))
52 self.in_channels = planes*ResBlock.expansion
53

54 for i in range(blocks -1):
55 layers.append(ResBlock(self.in_channels , planes))
56

57 return nn.Sequential(*layers)

Listing A.5: Implementation of the class used to generate ResNet 50 and ResNet101 model
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A.6 Pre-trained resnet34 imagenet model
1 class Resnet34(nn.Module):
2 def __init__(self):
3 super(Resnet34 , self).__init__()
4 self.model = resnet34(weights=ResNet34_Weights.IMAGENET1K_V1)
5 self.my_new_layer = nn.Sequential(nn.Linear(1000, 2))
6

7 def forward(self, x):
8 x = self.model(x)
9 x = self.my_new_layer(x)
10 return x
11 \end{verbatim}
12

13 \section{Pre-trained resnet50 imagenet model}
14 \begin{verbatim}
15 class Resnet50(nn.Module):
16 def __init__(self):
17 super(Resnet50 , self).__init__()
18 self.model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
19 self.my_new_layer = nn.Sequential(nn.Linear(1000, 2))
20

21 def forward(self, x):
22 x = self.model(x)
23 x = self.my_new_layer(x)
24 return x

Listing A.6: Implementation of the pre-trained ResNet34 and ResNet50 model
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A.7 Custom cross-entropy and custom softmax
1

2 def logSoftmax(x, root):
3 x_pow = x.sign() * x.abs().pow(1/root)
4 x_exp = torch.exp(x_pow)
5 x_exp_sum = torch.sum(x_exp, 1, keepdim=True)
6 return torch.log(x_exp/x_exp_sum)
7

8

9 class CustomLoss(nn.Module):
10 def __init__(self, root):
11 super(CustomLoss , self).__init__()
12 self.root = root
13

14 def forward(self, input, targets):
15 batch_size = input.size()[0]
16 input = logSoftmax(input, self.root)
17 input = input[range(batch_size), targets]
18 return -torch.sum(input) / batch_size

Listing A.7: Implementation of the custom loss function
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B Appendix

B.0.1 GitHub Repository
Here is the GitHub repository of the code: https://github.com/591291-hvl/Bachelor

B.0.2 Figures

Figure B.1: CNN LossFunctions Test Accuracy results run 1
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Figure B.2: CNN LossFunctions Train Accuracy results run 1

Figure B.3: CNN LossFunctions Test Accuracy results run 2
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Figure B.4: CNN LossFunctions Train Accuracy results run 2

Figure B.5: CNN LossFunctions Test Accuracy results run 3
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Figure B.6: CNN LossFunctions Train Accuracy results run 3

Figure B.7: ResNet LossFunctions Test Accuracy results run 1
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Figure B.8: ResNet LossFunctions Train Accuracy results run 1

Figure B.9: ResNet LossFunctions Test Accuracy results run 2
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Figure B.10: ResNet LossFunctions Train Accuracy results run 2

Figure B.11: ResNet LossFunctions Test Accuracy results run 3
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Figure B.12: ResNet LossFunctions Train Accuracy results run 3

Figure B.13: Comparison of ResNet34, 50, 101 - Accuracy on test dataset for 40 epochs
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Figure B.14: Comparison of ResNet34, 50, 101 - Accuracy on train dataset for 40 epochs

Figure B.15: GANTT Chart
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Figure B.16: Risk assessment
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