
 1

Code guidelines
For consistency please read and follow these guidelines.

Creating files and folders
Do:

lowercase
dash-dividers
.module.js , .component.js , .jsx.js , .style.js , .service.js , .slice.js ,
.mock.js , .state.js file endings
descriptive file names

Don't:

UPPERCASE
CamelCase
Random non-descriptive names

Components
Use function components, not class components.

Example:

Export & Import
Spending 2 minutes organizing your exports and imports saves a lot of time later
when you or someone else reads, refactors or debugs your code!

Use export default when exporting a component:

const ExampleComponent = () => {
 return (
 ...
);
}

 2

Place the exports in the bottom of the document.

With export default we can import like so:

Use the whole path to the file and include the extension at the end.

Export all variables from a file with export {} like so:

Importing variables like so:

Stack multiple exports and imports!

What does this mean?

const ExampleComponent = () => {...}

export default ExampleComponent;

import ExampleComponent from 'src/views/.../example.component.js';

<ExampleComponent />

const example1 = '...';
const example2 = '...';
const example3 = '...';

export {
 example1,
 example2,
 example3,
}

import {
 example1,
 example2,
 example3,
} from 'src/global/constants/example.js';

// Don't do this
import { example1, example2, example3 } from '...';

// Do this
import {
 example1,
 example2,
 example3,
} from '...';

 3

Props(paramaters)
If you have 1 or 2 props in a component they can be destructured like this:

But once you have more props this quickly becomes unreadable.

You can then destructure them within the component like so:

This goes for sending props as well; props.data.person.name is a no go!

Destructure the props and even the data if needed.

Sending props is also much more readable when stacked:

The alternative would be a long unreadable line that goes off screen:

const ExampleComponent = ({ navigation, data }) => {...}

const ExampleComponent = (props) => {

 const {
 navigation,
 data,
 clickHandler,
 ...
 } = props;

}

<PrevButton
 absolute={true}
 backgroundColor='#00b6cd'
 color='#fff'
 horizontal={true}
 onPress={() => console.log('PrevButton pressed!')}
 position={{
 top: '50%',
 left: '3%',
 }}
/>

<PrevButton absolute={true} backgroundColor='#00b6cd' color='#fff'
horizontal={true} onPress={() => console.log('PrevButton pressed!')}
position={{ top: '50%', left: '3%' }} />

 4

Variables
Use descriptive variable names, if a variable name is too long change it.

Difficult to write good variable names? Add a comment..

Using variables in string:

const firstName = 'Ola';
const lastName = 'Nordmann';

// Don't do this
console.log('First name: ' + firstName + ' Last name: ' + lastName);

// Do this
console.log(`First name: ${firstName} Last name: ${lastName}`);

 5

Git guidelines
Main/Beta branch are considered production branches!

Don't work directly in a production branch..

Refactor your code before merging!

Branches
Make a pull request before creating a new branch to make sure you're working on
the latest version.

Naming branches something that describes what your working on helps others in the
team understanding what changes are being made in which branch. It's also very
helpful later for anyone viewing 50 different branches, to know what's going and
where.

On the note of 50 branches; delete branches when they have been merged.

Although there is no need to do this immediately, and we tend to let them go stale
before deletion to be sure it's been merged and that we don't delete anything
important.

Pushing to git
Whenever you push to git you should write a descriptive commit message.
This commit message should in short explain what changes you have made to the
project.

The exception here is taking backup of your work at any point with a commit message
like:

Which is something I tend to do because I'm afraid to lose any work.

Merging

Saving changes

 6

When merging/creating a pull request to main/beta, the code should be production
ready!

What do we mean by "production ready code"?

Your code is clean, solid and dynamic.
There is no console.log() throughout the project.
You have added comments explaining your code where it's needed.
You have added info in the change log.
You have tested your code on both iOS and Android(developing on an emulator is
fine, but testing is not!�.

