
Science of Computer Programming 225 (2023) 102896
Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Cost analysis for a resource sensitive workflow modelling 

language ✩

Muhammad Rizwan Ali ∗, Yngve Lamo, Violet Ka I Pun ∗

Western Norway University of Applied Sciences, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 May 2022
Received in revised form 17 October 2022
Accepted 1 November 2022
Available online 9 November 2022

Keywords:
Cross-organisational workflows
Resource planning
Formal modelling
Static analysis

Workflow analysis usually requires domain-specific knowledge from the domain experts, 
making it a relatively manual process. In addition, workflows often cross organisational 
boundaries. As a result, minor local modifications in the workflow of a collaborative partner 
may be propagated to other concurrently running tasks of the workflow, which is difficult 
for the domain experts to recognise since they only have a limited (local) view of the 
workflow. Therefore, changes in cross-organisational workflows may result in significant 
adverse impacts. This paper presents a resource-sensitive formal modelling language, Rpl, 
which has explicit notions of task dependencies, qualitative assessment of resources, time 
advancement and method execution deadlines. The language allows the workflow analysers 
to estimate the effect of changes in collaborative workflows with respect to cost in terms of 
execution time. This paper proposes a static analysis to compute the worst execution time 
of a cross-organisational workflow modelled in Rpl by defining a compositional function 
that translates an Rpl program to a set of cost equations.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Workflow management can be seen as an effective method of monitoring, managing, improving and analysing business 
processes using IT assistance [1]. Workflow management systems (WMS) automate business processes and play a key role 
in collaborative business domains such as supply chain management and customer relationship management. As a result, 
WMS is regarded as among the most effective systems for facilitating cooperative business operations [16].

With the fast growth of e-commerce and virtual companies, corporations frequently work beyond organisational borders, 
engaging with others to meet competitive challenges. Moreover, the rapid growth of the Internet and digital technology 
encourages collaboration across widely distant businesses [40]. The adoption of cross-organisational workflows allows re-
structuring of business processes beyond the limits of an organisation [2]. Cross-organisational workflows often comprise 
multiple concurrent workflows running in various departments within the same organisation or different organisations, and 
sometimes share resources. Examples are the workflows of a hospital’s emergency department, outpatient department, and 
pathology department.

Organisations very often analyse their workflows using experts with domain specific knowledge (the analysts) to ensure 
optimal resource allocation, task management and workflow updates to cope with the competitors. Nonetheless, analysing 
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cross-organisational workflows from a global perspective can be incredibly challenging as the analysts may only have limited 
domain knowledge of their local workflows, may not have a common understanding of all the collaborative workflows, 
shared resources, and across-workflow task dependencies. Additionally, modifying cross-organisational workflows is error-
prone: one modification in a workflow may result in significant changes in other concurrently running workflows, and a 
minor mistake might have significant (negative) consequences, particularly in domains like healthcare and aviation.

Workflows have been significantly digitalised and automated using the most popular modelling languages. Furthermore, 
many formal approaches have been extensively utilised to formalise and analyse workflows. A detailed comparison of some 
most popular languages and techniques is presented in Section 2. However, as per our knowledge, cross-organisational work-
flow analysis remains a somewhat manual process as current techniques and tools often lack domain-specific knowledge to 
support the automation of workflow analysis and updates. Therefore, there is a need for a formal approach that supports 
modelling of cross-organisational workflows, including cross-workflow task dependencies and shared resource allocation. 
Also, the required approach should allow the analysts to simulate changes in the design of workflows and understand the 
effect of the changes in all collaborating workflows before the actual implementation and execution of updated workflows.

This paper presents a resource-sensitive formal modelling language Rpl, which can be used to model cross-
organisational workflows formally. The language supports the creation, acquisition and release of shared resources, allows 
specifying inter-workflow task dependencies. Additionally, the language has a unique notion of time consumption and sup-
ports specifying the deadlines of task execution. It also enables a modeller to couple collaborative workflows through shared 
resources and task dependencies, and to create a common knowledge base of all collaborating workflows in the form of 
shared resources. In addition, we present an analysis based on the work in [31] to statically over-approximate the worst 
execution time of the cross-organisational workflows modelled as an Rpl program by translating the program into a set of 
cost equations that can be fed to an off-the-shelf constraint solver (e.g., [19,5]). This enables analysts to estimate the effects 
of the workflow (and its possible changes) in terms of execution time before the actual implementation.

A preliminary idea of the language was presented in [8,9], where resources are assessed by quantity, and the conditional 
statement supports only one-way selection. As compared to [8,9], this paper presents the language which assesses resources 
by both quantity and quality, the conditional statement supports two-way selection, the methods can be invoked with 
deadlines, and task dependencies may have logical disjunction between them. The language and the cost analysis can help 
facilitate planning cross-organisational workflows and may ultimately contribute to automated planning.

The rest of the paper is organised as follows: Section 2 presents a comparative analysis of the most popular workflow 
modelling approaches, and briefly discusses the work related to static cost analysis. Section 3 introduces the syntax and 
semantics of the Rpl language. Section 3.3 presents a motivating example of collaborative workflows modelled in Rpl. Sec-
tion 4 shows a static analysis to over-approximate the execution time of an Rpl program. Section 5 shows the correctness 
of the analysis. Finally, we summarise the paper and discuss possible future work in Section 6.

2. Related work

This section first presents some of the most widely studied workflow modelling approaches in scientific literature and 
practice scenarios, and presents a comparative analysis of the selected approaches with Rpl. We then discuss some of the 
work that is related to static cost analysis.

2.1. Workflow modelling approaches and practices

Workflows can be modelled using graphical or textual modelling languages or a combination of both. Selecting an appro-
priate formalism for modelling and analysing cross-organisational workflows is still an open issue. Several approaches for 
workflow modelling already exist, some have a strict formal foundation, and others are tool based with an unclear founda-
tion. However, it is not yet clear which is the most valuable, nor if they are more or less useful in particular contexts. Simple 
workflows can be modelled solely through a graphical designer with some software products. Such systems rely on captur-
ing the information relevant to the workflow process through a user-friendly interface aimed at non-programmers and then 
compiling that information into practical workflows. However, complex, time-sensitive, or cross-organisational workflows 
are hard to represent with informal modelling languages [23]. Therefore, the demand for employing a formal modelling 
language emerges. The reason is that formal modelling languages are more rigorous and explore every possibility to ensure 
completeness and correctness.

There are several aspects of formal modelling languages that need to be enhanced in order to support cross-
organisational workflows. Some of the primary aspects are as follows:

1. Workflow Description: It should provide the constructs to model business rules, including control flow and reuse of 
common processes without recreating them repeatedly.

2. Communication Mechanism: It should support some communication mechanism to share data and information between 
the tasks of one workflow as well as the tasks of different collaborating workflows.

3. Resource Modelling: It should explicitly specify resources that are often shared between collaborative partners.
4. Knowledge Representation: It should allow the representation of local as well as global knowledge.
2
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Table 1
Definition of concepts.

Concepts Definition

Workflow Description (1) Task A task is a sequence of steps that need to be executed.
(2) Control Flow Control flow is an order in which a task executes.
(3) Sub-Workflow It is splitting up a complex workflow into smaller workflows that are more manageable 

and easier to understand. By creating sub-workflows, common processes can be reused 
without being recreated.

Communication Mechanism (3) Intra-Workflow 
Communication

Intra-workflow communication happens between the participants of a single workflow.

(4) Inter-Workflow 
Communication

Inter-workflow communication happens between the participants of different workflows.

Resource Modelling (5) Participant The participant is a type of resource who can carry out actions.
(6) Material 

Resources
A material resource (tangible resource) is anything that has actual physical existence and 
is owned by an individual participant or company, like equipment or vehicles.

(7) Internal 
Participants

Internal participants are those who collaborate within a single workflow.

(8) External 
Participants

External participants are those who collaborate across different workflows.

(9) Shared 
Resources

The resources which all the workflows can access and share.

Knowledge Representation (10) Tacit Knowledge Tacit knowledge is a piece of implicit knowledge tied to the human (in his brain), such as 
experience, skills, talents and abilities.

(11) Explicit 
Knowledge

Explicit knowledge is a formal knowledge that can be expressed in words, mathematical 
expressions, specifications, or computer programs and easily shared with others.

(12) External 
Knowledge

External knowledge is a piece of knowledge created and stored within the boundaries of 
other organisations.

Non-Functional Aspects (13) Executable An executable workflow is one whose execution can be simulated by a computer program.
(14) Approach It can be knowledge-oriented, formal and informal.
(15) Usage Usage refers to where the given approach is used, such as in industry and academia.
(16) Complexity The ability to describe the advanced control flows and intra as well as inter-workflow 

collaboration.
(17) Expressiveness The power and suitability to integrate and specify all business process aspects.
(18) Understand-

ability
The degree to which the workflow formalism and model can be easily interpreted by all 
stakeholders in the organization.

(19) Tools Support The availability of diversified set of tools supporting the formalism and transformation to 
other formats to benefit from models interchange among tools.

5. Non-functional Aspects: It should be executable, more expressive, easy to understand, have some tool support, have 
formal semantics and be analysable.

Table 1 defines these aspects in detail. There are many approaches for workflow modelling; however, we have selected 
some of the most prominent ones, considering the aspects defined in Table 1. The selected approaches are classified accord-
ing to the three most prominent categories for workflow representation, some of them follow a process-oriented approach 
(UML-AD [17], RAD [34], BPMN [13], BPEL [35], eEPC [38] and DWM [32]), some follow a knowledge-oriented approach 
(PROMOTE [39], Oliveira [33] and KMDL [21]) and others adopt a formal approach (CPN [27], YAWL [3], Pi-Calculus [36] and 
Timed-Automata [41]).

Table 2 shows a comparison of Rpl with the selected approaches. The concepts of workflow description, resources, 
knowledge and communication are compared with an evaluation scale, ×, –, and �, where × is an evaluation that the 
concept is not supported at all (notation element is missing, the fact is not illustratable), – partially supported (notation 
element is missing, the fact is illustratable), and � fully supported (notation element is available, the fact is illustratable). For 
non-functional aspects, we use different evaluation scales. To indicate executability, we use � and ×. To indicate different 
approach, we use P, K and F, where P refers to process-oriented, K knowledge-oriented and F formal approach. We use I 
and A to indicate usage in industry and academia, respectively. Moreover, a 4-point scale from 0 to 3 is used for complexity, 
expressiveness, understandability and tools support. This scale assigns a score 0 to any requirement that the language cannot 
support. It assigns score 1 if partially supported, 2 if satisfactorily supported and 3 if it is very well supported.

In the following, we discuss the languages under comparison from the five different aspects mentioned above.

Workflow Description. As shown in Table 2, all the selected languages are task-oriented. However, most languages lack 
control flow. While UML-AD compares well to existing WMS, the language does not fully capture advanced synchronisa-
tion patterns, e.g., N-out-of-M joins [12]. RAD is expressive enough to model workflows; however, it lacks sub-workflow 
support [24]. PROMOTE, Oliveira, and KMDL are developed for knowledge representation. They support the three essen-
tial control flow elements AND, OR, and XOR operators, but have shortcomings concerning their ability of representing 
complex decisions and data flows. Moreover, these languages do not support decomposing a complex workflow into sub-
3
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Table 2
Comparison of approaches, where (i) correspond to the numbered items in Table 1.

Languages Workflow 
Description

Comm. 
Mechanism

Resource Modelling Knowledge 
Representation

Non-Functional Aspects

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

BPMN � � � � – � � - � × – – × P I 2 3 3 3
UML-AD � – � × × – – × – × × × × P I 1 1 2 3
RAD � – – – × – � × – × × × × P A 1 1 2 1
BPEL � � � � × � � – � × – × � P I 2 2 1 2
DWM � � � � × � � – – × – × � P A 3 2 1 1
eEPC � � – × × – – × – – – × � P I 1 2 2 1
PROMOTE � – × × × – � × × – – × × K A 1 1 2 0
Oliveira � – × � × – � × × � – × × K A 1 1 2 0
KMDL � – × – × – � × – � – × � K I 2 2 2 1
CPN � – � � – � � – – × - × � F I 2 2 2 2
YAWL � � � � – � – – – × – × � F I 2 3 2 2
Pi-Calculus � � � � – � � – – × – × � F I 2 2 1 2
Timed-Automata � � � � – � � – – × – × � F I 2 2 2 2
Rpl � � � � � � � � � × � � × F I 3 2 1 0

workflows. While high-level Petri nets (CPN) outperform most existing languages, the control flow modelling is not entirely 
satisfactory, especially for patterns including multiple instances or advanced synchronisation patterns [3]. Like BPMN, BPEL, 
YAWL, Pi-Calculus and Timed-Automata, Rpl is expressive enough from a workflow description perspective because Rpl

offers explicit notations for the organisation of control flows, complex decisions, exclusive event-based decisions and parallel 
event-based decisions.

Communication Mechanism. From the communication perspective, most languages support sending or receiving messages 
within one workflow, but not UML-AD, eEPC and PROMOTE. For inter-workflow communication, BPMN allows exchanging 
messages among different workflows; however, it does not provide the semantics to depict the dependencies of the global 
control flow of the message exchange [12]. Moreover, inter-workflow communication is illustrated to some extent with 
the help of hierarchical models in CPN, sub-processes in Pi-Calculus and templates in Timed-Automata. Compared to these 
approaches, Rpl uses the actor model of concurrency and cooperative scheduling (safe concurrency). Additionally, Rpl

supports inter-workflow communication by joining different workflow models using explicit notions of shared resources 
and task dependencies, considering the dependencies of the global control flow of the message exchange.

Resource Modelling. Almost all selected languages support the modelling of material resources and internal participants; 
however, UML-AD, RAD, PROMOTE, Oliveira and KMDL do not support external participants. Apart from PROMOTE and 
Oliveira, all languages support shared resources to some extent. Compared to them, Rpl fully supports external participants 
and shared resources as Rpl have explicit notions for inter-workflow task dependencies and resources that can be shared 
safely (without deadlock) between cross-organisational workflows.

Knowledge Representation. From the knowledge perspective, KMDL, Oliveira and PROMOTE are adequate for modelling tacit 
and explicit knowledge categories. On the other hand, eEPC, which belongs to the traditional process-oriented formalism, 
has to be adapted for knowledge-based modelling. In eEPC, knowledge is represented by two object types, knowledge 
category and documented knowledge, represented by knowledge structures and knowledge maps. However, eEPC models 
lack personal references and knowledge transformations [38]. On the contrary, availability and knowledge transformations 
can more easily be demonstrated indirectly with the PROMOTE notation [39]. The tacit knowledge of a person could be 
used for creating a skilled catalogue. Oliveira and KMDL support modelling tacit knowledge, which belongs to a particular 
person or group. Explicit knowledge can be modelled with documented information such as messages, documents and 
records. Besides UML-AD and RAD, all selected languages support the modelling of explicit knowledge but lack external 
knowledge. In contrast, Rpl supports the creation of a shared knowledge base in terms of shared resources and supports 
sharing knowledge across organisations.

Non-functional Aspects. Among the compared languages, BPMN, UML-AD, RAD, BPEL, DWM and eEPC are process-oriented; 
PROMOTE, Oliveira and KMDL are knowledge-oriented; and only CPN, YAWL, Pi-Calculus, Timed-Automata and Rpl have 
formal semantics. Most of the selected languages are executable and have tools support for simulation. DWM uses DynaFlow 
[32] for execution. eEPC can be modelled and executed in ARIS Toolset [30]. CPN Tools [28] support editing, simulating and 
analysing of CPN workflows. YAWL is a free, open-source workflow system [26]. Workflows modelled in Pi-Calculus can be 
simulated in PiVizTool [11]. UPPAAL [10] is a tool for modelling, simulation and analysis of Timed-Automata models. Though 
BPMN has the support of several tools, however, it needs to be translated into an XML based executable modelling language 
for simulation, i.e., BPEL.

In terms of workflow description, expressiveness, understandability, and tools support, BPMN is likely the best option 
since anyone can easily use it regardless of their background. On the contrary, the formal approaches require some program-
4
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P ::= R Cl {T x; s}
R ::= [r �→ (b,Q)]
Cl ::= class C {T x; M}
M ::= Sg {T x; s}
Sg ::= B m(T y)

T ::= B | C | Rid | Fut〈B〉
B ::= Int | Bool | Unit

s ::= x = rhs | if (e) {s1} else {s2} | skip | return e
| wait( f ) | cost(e) | add(rs) | release(rid) | s ; s

rhs ::= e | new C | hold(rs) | f .get
| m(x, e) after fs dl e′
| !m(x, e) after fs dl e′

e ::= k | x | g | this | null | rid
g ::= b | fs | g ∧ g
rs ::= ∅ | {Q} ∪ rs

rid ::= ∅ | {r} ∪ rid
fs ::= f ? | fs ∧ fs

Fig. 1. Syntax of Rpl.

ming knowledge. While BPMN has fully documented syntactic rules, the existing semantics is only defined in a narrative 
form employing some unstable terminology [14]. Moreover, the capability to inspect the semantics correctness of models 
at the static time is required for modelling inter-organisational workflows. Instead, the static analysis of informal models is 
deprived of ambiguities in the standard specification and the language complexity. Also, it is more demanding to present 
formal semantics to analyse BPMN models [14].

Compared to all selected languages, Rpl has explicit notions to couple workflows through shared resources and task 
dependencies and supports inter-organisation workflow modelling and analysis. Moreover, in Rpl, transition rules are for-
mally defined in the form of structural operational semantics (SOS), and Rpl is executable on the semantics level. Although 
currently Rpl does not support any tool for simulation, we aim in our future work to implement a framework for Rpl, 
where one can create, change, simulate and estimate the effect of changes in cross-organisational workflows. Therefore, Rpl

can be seen a helpful tool for automating various industrial inter-organisational workflows.

2.2. Cost analysis

For static cost analysis, numerous techniques have been introduced. For example, [6] presents the first approach to 
the automatic cost analysis of object-oriented bytecode programs, [25] proposes the first automatic analysis for deriving 
bounds on the worst-case evaluation cost of parallel first-order functional programs. Our approach differs from [25] in the 
concurrency model and the distinction between blocking and non-blocking synchronisation.

The authors in [7] present a cost analysis that targets a language with the same concurrency model as Rpl. On the 
contrary, the analysis in [7] is not compositional, and it does not demand any control of synchronisation sets because 
it takes the entire program and computes the components that may execute in parallel. Another approach presented in 
[20] analyses time complexity for concurrent programs by deriving the time-consuming behaviour with a type-and-effect 
system. However, the analysis in [20] lacks in computing the costs of methods that have invocations to arguments (namely 
actors) which do not live in the same machine. Besides, [31] defines a compositional analysis for concurrent programs and 
overcomes the lacking of [20].

Formal method tools have also been used for worst-case execution time (WCET) analysis. UPPAAL [10] is being used to 
model, simulate and verify workflows modelled in timed automata. SWEET [18] can generate models using UPPAAL syntax 
[37]. However, the C-style UPPAAL syntax is limited when it comes to function calls; for example array arguments need to 
have a known size, and if larger data is later to be stored, a new array needs to be created, which makes the code less 
generic. Consequently, the functions in UPPAAL syntax are intended to be very small and simple [22].

Compared to the above-mentioned tools and techniques, this paper handles a more expressive language that supports 
modelling complex workflows and is sensitive to task dependencies and resource consumption.

3. Formal workflow modelling language Rpl

In this section, we present the formal modelling language Rpl. The language is inspired by an active object language 
ABS [29]. It has a Java-like syntax and actor-based concurrency model. In actor-based concurrency models [4], actors are 
primitives for concurrent computation. Actors can send a finite number of messages to each other, create a finite number of 
new actors, or alter their private states. One of the primary characteristics of actor-based concurrency models is that only 
one message is processed per actor, so the invariants of each actor are preserved without locks.

In addition, the language uses cooperating scheduling to control the internal interleaving of processes inside an object 
with explicit scheduling points. It also uses explicit notions to specify time advancement, to assign a deadline to a task 
(expressed as a method), and to indicate resources required for each task and dependencies between tasks.

3.1. The syntax of Rpl

The syntax of the Rpl is given in Fig. 1. An overlined element represents a (possibly empty) finite sequence of such 
elements separated by commas, e.g., T implies a sequence T1, T2, . . . , Tn .

An Rpl program P comprises resources R , a sequence of class declarations Cl and a main method body {T x; s}, where 
T x; is the declaration of local variables and s is a statement.
5
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Fig. 2. An example of shared resources in a clinic in Rpl.

Types T in Rpl are basic types B , classes C, sets of resource identifiers Rid and future types Fut〈B〉. An asynchronous 
method invocation is associated to a future variable f of type Fut〈B〉, where B is the return type of the invoked method. 
One can see a future as a mailbox that is created by the time a method is asynchronously invoked, and the caller object 
continues its own execution after the invocation. When the invoked method has completed the execution, the return value 
will be placed into the mailbox, i.e., the future. Basic types B include integers Int, booleans Bool, and empty types Unit.

Resources R , written as [r �→ (b, Q)], is a mapping from resource identifier r to a pair (b, Q), where b is a boolean value 
indicating the availability of the resource (b evaluates to true if the resource is free, and false otherwise), and Q is a set of 
resource qualities such as category, speciality and efficiency. Fig. 2 shows an example of resources R of a clinic modelled in 
Rpl, where each resource has an identifier with its availability and a set of qualities, e.g., r1 is a doctor who is available for 
a new task, and specialises in orthopaedics with three years of experience as qualities.

A class declaration class C {T x; M} has a class name C and a class body {T x; M} comprising state variables and meth-
ods of the class. Methods in Rpl have a method signature Sg followed by a method body {T x; s}. A method signature Sg
consists of a return type B , method name m and a sequence of formal parameters T y. We assume each method name 
is unique. We further assume that the formal parameters T y is a non-empty set and has a fixed pattern C o, C′ o′, T ′ x
where o is always the callee object identifier of the method of class C, o′ are object identifiers of classes C′ and x are the 
remaining parameters.

Statements s, including assignment, conditional, skip, return and sequential composition, are standard. Statement wait( f )
suspends the current process until the future variable f is resolved, while other processes in the same object can be sched-
uled for execution. A future f is resolved when the method associated with f terminates and returns. Statement cost(e), 
the only term in Rpl that consumes time, represents e (expression, see below) units of time advancement. Statement 
add(rs) adds new resources to the resource map R , where rs is a set of resource quality set Q, and each of the newly added 
resources is mapped to a quality set. Statement release(rid) frees a set of acquired resources that is indicated by the set of 
resource identifiers rid.

The right-hand side rhs of an assignment statement includes expressions, object creation, resource acquisition, method 
invocations and synchronisation. We use the statement hold(rs) to acquire resources which have the qualities indicated 
by rs.

Communication in Rpl is based on method calls, which can be either synchronous or asynchronous, respectively written 
as m(x, e) after fs dl e′ and !m(x, e) after fs dl e′ , where x is the callee object and e a sequence of formal parameters. In 
addition, the task dependency of a method call is specified using after fs in method invocations, where fs corresponds to a 
possibly empty list of the conjunction of future tests f ?. If the list is empty, fs is evaluated to true, which means that the 
method can be invoked without any restriction; otherwise, at least one of the conjunction of future tests in the list must be 
evaluated to true in order to invoke the method.

Example 3.1. Let fs = fs1, fs2, fs1 = f11? ∧ f12? and fs2 = f21?. The method call !m(x, e) after dl e′ does not have any task 
dependency, while the call !m(x, e) after fs dl e′ is depending on the two methods associated with f11 and f12 or on the 
method associated with f21.

Furthermore, the deadline of finishing a method is specified using dl e′ . A method without deadline is written as 
dl null.

A synchronous method invocation blocks the caller object until the invoked method returns. Asynchronous method 
invocations, on the contrary, do not block the caller, allowing the caller and callee to run in parallel. Moreover, the synchro-
nisation in Rpl is done with f .get, which blocks all execution in the object until future f is resolved. The caller object will 
only be blocked if it tries to retrieve the value of the future with a get statement.

Expressions e include constants k, variables x, guards g , self-identifier this, null expression and a value of resource 
identifier set rid. A guard g allows a process to release control of an object. It can be boolean conditions b, future test fs, 
and conjunction of guards.

We assume in this paper that all asynchronously invoked methods inside a conditional statement must be synchronised 
within the scope of the statement and vice versa. Moreover, we assume that the method invocations inside the body of a 
conditional statement must not have any dependency on futures associated with asynchronously invoked methods outside 
the body of a conditional statement and not yet synchronised.

The assumptions described above simplify the realisation of the cost analysis presented in Section 4, which only considers 
the cost of method invocations that are synchronised, and we aim to implement a type-checker to verify these assumptions 
in the future.

Let us use a simple example to illustrate the idea of Rpl language. Fig. 4 models a simple patient-diagnosis workflow in 
a clinic, which has the resource map modelled in Fig. 2.
6
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Fig. 3. A simple example.

Fig. 4. A simple clinic workflow in Rpl.

cn ::= ε | res | fut( f , val) | obj(o,a, p,q)

| invoc(o, f ,m, v,d) | error | cn cn
res ::= [r �→ (b,Q)]
val ::= v | ⊥

v ::= o | f | b | k | rid | ∞

a ::= [. . . , x �→ v, . . . ]
p ::=idle | {l | s}
q ::=∅ | {l | s} | q q
s ::=cont( f ) | suspend | . . .

rhs ::= m(x, e) dl e′
| !m(x, e) dl e′ | . . .

Fig. 5. Runtime syntax of Rpl.

An orthopaedic doctor (resource) having three years of experience is first acquired on Line 5 before checking the pa-
tient p. After checking the patient, the doctor sends a sample to the lab for examination through an asynchronous method 
invocation on Line 6. While waiting for the lab to send back the result (Line 8), the resources are released such that they 
can diagnose other patients (Line 7). When the result is ready and retrieved (Line 9), a doctor is acquired again to write 
the prescription (Lines 10–11), and is released (Line 12) afterwards. For simplicity we do not show the implementation of 
the method prescribe from Clinic workflow and the Pathology workflow. The corresponding workflow modelled in BPMN is 
captured in Fig. 3.

3.2. The semantics of Rpl

To understand how time advances in Rpl and the cost analysis described in Section 4, we briefly discuss the semantics 
of the language in this section. The semantics of Rpl is a transition system whose states are configurations cn described 
with the runtime syntax defined in Fig. 5.

A configuration cn includes empty configuration ε, resource map res, futures fut( f , val), objects obj(o, a, p, q), message 
invocations invoc(o, f , m, v, d), configuration error error and associative and commutative union operator on configurations 
(denoted as white space) cn cn. Resource map res is a mapping from resource identifier r to (b, Q) where b is boolean value 
and Q is a set of resource qualities. A future fut( f , val) holds a future identifier f and a return value val, which can be 
either a value v or ⊥ indicating that future f has not been resolved. Values v include object identifier o, future identifier 
f , Boolean values b, Integer or constant values k, resource identifiers set values rid, and null expression value ∞.

An object is a term obj(o, a, p, q) where o is the object identifier, a a substitution describing the object’s attributes, p
an active process, and q a pool of suspended processes. A process p, written as {l | s}, has local variable bindings l and a 
statement s, or it is idle. The pool of suspended processes is indicated by q. We use q ∪ p to add a process p to the pool q, 
and q \ p to remove p from the pool. A message invocation is a term invoc(o, f , m, v, d), where o is a callee object, f a 
future to which method m returns a value, v the set of actual parameter values and d the deadline for method m.

The statement is extended with cont( f ) and suspend: the former controls the scheduling when a synchronous call 
completes its execution, returning the control to the caller; and the latter suspends the active process p to the pool of 
suspended processes q, leaving the processor idle. We extend the right hand side of an assignment with m(x, e) dl e′ and 
7
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(Field-Assign)

x ∈ dom(a) v = �e�(a◦l)

obj(o,a, {l | x = e; s},q)

→ obj(o,a[x �→ v], {l | s},q)

(Local-Assign)

x ∈ dom(l) v = �e�(a◦l)

obj(o,a, {l | x = e; s},q)

→ obj(o,a, {l[x �→ v]|s},q)

(Cond-True)

true = �e�(a◦l)

obj(o,a, {l | if (e) {s1} else {s2}; s},q)

→ obj(o,a, {l | s1; s},q)

(Cond-False)

false = �e�(a◦l)

obj(o,a, {l | if (e) {s1} else {s2}; s},q)

→ obj(o,a, {l | s2; s},q)

(Wait-False)

v = ⊥
obj(o,a, {l | wait( f ); s},q) fut( f , v)

→ obj(o,a,idle,q ∪ {l | wait( f ); s}) fut( f , v)

(Wait-True)

v �= ⊥
obj(o,a, {l | wait( f ); s},q) fut( f , v)

→ obj(o,a, {l | s},q) fut( f , v)

(New-Object)

o′ = fresh() a′ = atts(C,o′)
obj(o,a, {l | x = new C; s},q)

→ obj(o,a, {l | x = o′; s},q) obj(o′,a′,idle,∅)

(Return)

v = �e�(a◦l) f = l(destiny)

obj(o,a, {l | return e; s},q) fut( f ,⊥)

→ obj(o,a, {l | s},q) fut( f , v)

(Suspend)

obj(o,a, {l | suspend; s},q)

→ obj(o,a,idle,q ∪ {l | s})

(Skip)

obj(o,a, {l | skip; s},q)

→ obj(o,a, {l | s},q)

(Activate)

p = select(q)

obj(o,a,idle,q) → obj(o,a, p,q \ p)

(Context)

cn = cn′

cn cn′′ → cn′ cn′′

Fig. 6. Semantics of Rpl – part 1.

!m(x, e) dl e′ , which corresponds to the synchronous and asynchronous method calls at runtime. We use dl e′ to assign a 
deadline of e′ time units to method m, where �e′�(a◦l) > 0.

The semantics rules of Rpl are defined in Figs. 6–9. We use the auxiliary functions dom(l) and dom(a) in the semantics 
to return the domain of local variables l and object’s attributes a, respectively. The evaluation function �e�(a◦l) returns the 
value of e by computing the expressions and retrieving the value of identifiers stored either in a or l, where the operator 
◦ joins the domains of a and l. Moreover, the function atts(C,o) is used to create an object of a class C , which binds 
this to o, and the function bind(o, f , m, v, d, C) returns a process that is going to execute method m with declaration 
B m(T y) {T ′ x; s}, which is defined as:

bind(o, f ,m, v,d, C) = {[destiny �→ f , y �→ v, x �→ ⊥,deadline �→ d] | s[o/this]}
The semantics rules in Fig. 6 are standard. Rules Field-Assign and Local-Assign assign the value of expression e to an 
object field and to a local variable, respectively. Rules Cond-True and Cond-False handle conditional statements based on 
the evaluation of expression e. Rule Wait-False suspends the active process, leaving the object idle if f is not resolved; 
otherwise, Wait-True consumes wait( f ). Rule New-Object creates a new object. Rule Return assigns the return value of 
a method to its future. Rule Skip consumes a skip statement in the active process. Rule Suspend moves an active process 
to the pool of suspended process and the object will become idle. If an object is idle, the rule Activate selects a 
suspended process to become active in an idle object, where the select function is defined as follows:

select(q) =

⎧⎪⎨
⎪⎩
idle if q = ∅
p if ∃p ∈ q and ready(p)

idle otherwise.

ready(p) =

⎧⎪⎨
⎪⎩

true if p = wait( f ),where

fut( f , v) and v �= ⊥
false otherwise.

Fig. 7 captures the communications between objects in Rpl. Rules Sync-Call and Async-Call handle the communication 
between objects through method invocations. These two rules rewrite method invocations to a conditional statement to 
ensure that the task dependencies between method calls have been fulfilled. If at least one of the conjunction of future 
tests in fs is evaluated to true, method m is invoked synchronously by rule Sync-Run or Self-Sync-Run (or asynchronously 
by rule Async-Run); otherwise, the process will be suspended.

Example 3.2. Let fs1 = f11? ∧ f12?, fs2 = f21? and fs3 = f31. Assume the future test f21? is true, while the others are false. 
For the method call !m(x, e) after fs1, fs2 dl e′ , the boolean condition fs1, fs2 will be evaluated to true, and it will be written 
to !m(x, e) dl e′ . Whereas for the method call !m(x, e) after fs1, fs3 dl e′ , the boolean condition fs1, fs2 will be evaluated to 
false, and the process will be suspended.
8
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(Sync-Call)

obj(o,a, {l | x = m(x′, e) after fs dl e′; s},q)

→ obj(o,a, {l | if (fs) {x = m(x′, e) dl e′; s} else {suspend; x = m(x′, e) after fs dl e′; s},q)

(Self-Sync-Run)

o = x′ v = �e�(a◦l) f = l(destiny) d = �e′�(a◦l)

f ′ = fresh() {l′ | s′} = bind(o, f ′,m, v,d,class(o))

obj(o,a, {l | x = m(x′, e) dl e′; s},q)

→ obj(o,a, {l′ | s′;cont( f )},q ∪ {l | x = f ′.get; s}) fut( f ′,⊥)

(Sync-Run)

o′ = x′ o �= o′ f = fresh()

obj(o,a, {l | x = m(x′, e) dl e′; s},q) obj(o′,a′, p,q′)
→ obj(o,a, {l | f = !m(x′, e) dl e′; x = f .get; s},q) obj(o′,a′, p,q′)

(Async-Call)

obj(o,a, {l | x = !m(x′, e) after fs dl e′; s},q)

→ obj(o,a, {l | if (fs) {x = !m(x′, e) dl e′; s} else {suspend; x = !m(x′, e) after fs dl e′; s},q)

(Async-Run)

v = �e�(a◦l) o′ = x′ f = fresh() d = �e′�(a◦l)

obj(o,a, {l | x = !m(x′, e) dl e′; s},q)

→ obj(o,a, {l | x = f ; s},q) invoc(o′, f ,m, v,d) fut( f ,⊥)

(Invoc)

{l | s} = bind(o, f ,m, v,d,class(o))

obj(o,a, p,q) invoc(o, f ,m, v,d) → obj(o,a, p,q ∪ {l | s})

(Sync-Return-Sched)

f = l(destiny)

obj(o,a, {l′ | cont( f )}),q ∪ {l | s}
→ obj(o,a, {l | s},q)

(Get)

v �= ⊥
obj(o,a, {l | x = f .get; s},q) fut( f , v)

→ obj(o,a, {l | x = v; s},q) fut( f , v)

Fig. 7. Semantics of Rpl – part 2.

(Add-Resource-1)

rs �= ∅ rs = Q∪ rs′ r = fresh()

res′ = res[r �→ (true,Q)]
obj(o,a, {l | add(rs); s},q) res

→ obj(o,a, {l | add(rs′); s},q) res′

(Release-Resource-1)

rid = {r} ∪ rid′ res(r) = (false,Q)

res′ = res[r �→ (true,Q)]
obj(o,a, {l | release(rid); s},q) res

→ obj(o,a, {l | release(rid′); s},q) res′

(Add-Resource-2)

rs = ∅
obj(o,a, {l | add(rs); s},q) res

→ obj(o,a, {l | s},q) res

(Release-Resource-2)

rid = ∅
obj(o,a, {l | release(rid); s},q) res

→ obj(o,a, {l | s},q) res

(Hold-Resource-1)

rs �= ∅ (res′, rid) = holdRes(rs, res,∅) rid �= ∅
obj(o,a, {l | x = hold(rs); s},q) res
→ obj(o,a, {l | x = rid; s},q) res′

(Hold-Resource-2)

rs = ∅
obj(o,a, {l | x = hold(rs); s},q) res

→ obj(o,a, {l | s},q) res

Fig. 8. Semantics of Rpl – part 3.

Rule Self-Sync-Run directly transfers the control of the object from the caller to the callee. After the execution of 
invoked method is completed, rule Sync-Return-Sched reactivates the caller. Rule Sync-Run specifies a synchronous call 
to another object, which is replaced by an asynchronous call followed by a get statement. Rule Async-Run creates an 
invocation message to o′ with a fresh unresolved future f , method name m, actual parameters v and deadline d. Rule Invoc

adds a process (that is going to execute the method) to the pool of suspended processes. Rule Get retrieves the value of 
future f if it is resolved; the reduction on this object is blocked otherwise.

Resources are handled by the semantics rules in Fig. 8. The two Add-Resource rules recursively add new resources r
to the resource map res, based on rs that is a set of resource quality set Q. Each newly added resource r has a set of 
quality Q ∈ rs, which is removed from rs when r is added to the map res. The two rules Release-Resource recursively 
return the acquired resources rid. The resource acquisition is handled by the two Hold-Resource rules (see also the function
holdRes defined below). Each of the acquired resources has a quality set Q ∈ rs. Note that it is required to have all the 
requested resources to be available in order to consume the hold statement.
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(Cost)

�e�(a◦l) = 0

obj(o,a, {l | cost(e); s},q)

→ obj(o,a, {l | s},q)

(Tick-Ok)

strongstablet(cn)

cn′ = checkDl(cn, t)
error /∈ cn′

cn → advance(cn′, t)

(Tick-Miss)

strongstablet(cn)

cn′ = checkDl(cn, t)
error ∈ cn′

cn → error

Fig. 9. Semantics of Rpl – part 4.

holdRes(rs, res, rid) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

holdRes(rs′, res[r �→ (false,Q)], {r} ∪ rid) if rs = {Q} ∪ rs′,and

∃r.res(r) = (true,Q)

(res, rid) if rs = ∅
(res,∅) otherwise.

Fig. 9 takes care of the time advancement in the language. In Rpl, the unique statement that consumes time is cost(e). 
Rule Cost specifies a trivial case when e evaluates to 0. When the configuration cn reaches a stable state, i.e., no other 
transition is possible except those evaluating the cost(e) statement where e is evaluated to some t ≥ 0, time advances by 
the smallest value required to let at least one process execute. To formalize this semantics, we have defined stability below:

Definition 3.1. A configuration is t-stable for some t > 0, denoted as stablet(cn), if every object in cn is in one of the 
following forms:

1. obj(o, a, {l | x = f .get; s}, q) where fut( f , ⊥) ∈ cn,
2. obj(o, a, {l | cost(e); s}, q) where �e�(a◦l) ≥ t,
3. obj(o, a, {l | hold(rs); s}, q) where res ∈ cn and ∃Q ∈ rs s.t. �r ∈ res, res(r) = (true, Q),
4. obj(o, a, idle, q) and if

(a) q = ∅, or,
(b) ∀p ∈ q and if

i. p = {l | wait( f ); s} and fut( f , ⊥) ∈ cn, or,
ii. p = {l | x = m(x′, e) after fs dl e′; s}, or

p = {l | x = !m(x′, e) after fs dl e′; s}, where fs = false.

A configuration cn is strongly t-stable, written as strongstablet(cn), if it is t-stable and there is an object obj(o, a, {l |
cost(e); s}, q) with �e�(a◦l) = t . Note that both t-stable and strongly t-stable configurations cannot proceed any more because 
every object is stuck either on a cost(e), on unresolved futures, or waiting for some resources. Rules Tick-Ok and Tick-Miss

advance time when the configuration cn is strongly t-stable. We first use the function checkDl(cn, t) to check if any 
invoked methods will violate their own deadline if time advances by t units, which is defined as follows, where dl is the 
shorthand for deadline:

checkDl(cn, t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

obj(o,a, {l[dl �→ t′] | s},q′) checkDl(cn′, t) if cn = obj(o,a, {l | s},q) cn′,and
l(dl) − t = t′ ≥ 0,and
∀l′.{l′ | } ∈ q ∧ l′(dl) − t ≥ 0,and
q′ = updateDl(q, t)

error if cn = obj(o,a, {l | s},q) cn′,and
l(dl) − t < 0,or
∃l′.{l′ | } ∈ q st. l′(dl) − t < 0

cn otherwise,

and updateDl(q, t) =
{ {l[dl �→ l(dl) − t] | s} ∪ updateDl(q′, t) if q = {l | s} ∪ q′

∅ if q = ∅ .

Rule Tick-Ok corresponds to the case where none of the invoked methods violates its own deadline and time advances 
for the whole configuration as defined below:

advance(cn, t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

obj(o,a, {l | cost(k); s},q) advance(cn′, t) if cn = obj(o,a, {l | cost(e); s},q) cn′,and

k = �e�(a◦l) − t

obj(o,a, {l | hold(u); s},q) advance(cn′, t) if cn = obj(o,a, {l | hold(u); s},q) cn′

obj(o,a, {l | x = f .get; s},q) advance(cn′, t) if cn = obj(o,a, {l | x = f .get; s},q) cn′

obj(o,a,idle,q) advance(cn′, t) if cn = obj(o,a,idle,q) cn′

cn otherwise.
10
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Fig. 10. An illustrative example.

If there exists a method that violates its own deadline, the configuration is rewritten to an error state and cannot proceed 
any further (see rule Tick-Miss).

The initial configuration of an Rpl program with main method {T x; s} is

obj(omain, ε, {[destiny �→ f initial, x �→ ⊥,deadline �→ ∞},q)

where omain is object name, and f initial is a fresh future name. Normally, →∗ is the reflexive and transitive closure of → and 
t=⇒ is →∗ t−→→∗ . A computation is cn

t1=⇒ . . .
tn=⇒ cn′; that is, cn′ is a configuration reachable from cn with either transitions →

or t=⇒. When the time labels of transitions are not necessary, we also write cn ⇒∗ cn′ .

Definition 3.2. The computational time of cn
t1=⇒ . . .

tn=⇒ cn′ is t1 + · · · + tn .

The computational time of a configuration cn, written as time(cn), is the maximum computational time of computations 
starting at cn. The computational time of an Rpl program is the computational time of its initial configuration.

3.3. An illustrative example of modelling cross-organisational workflows in Rpl

In this section, we present a simple motivating example to explain how Rpl can be employed in modelling cross-
organisational workflows. Fig. 10 depicts a cross-organisational workflow of order fulfilment in BPMN. Fig. 11 shows the 
corresponding workflows modelled in Rpl. The code snippet captures the collaboration between the workflows of a retailer, 
a supplier and a courier company. Line 1 models the available resources. Lines 3–13 define a retail-sale workflow. Line 4 
declares local variables. If the product is available in the warehouse, a request to the warehouse to pack the product is 
made asynchronously with associated future f1 and a deadline of 5 times unit on Line 7 (without any task dependency). 
11
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Fig. 11. An example of collaborative workflows in Rpl.

Otherwise, a request to the supplier to supply the product is made asynchronously with associated future f2 and a deadline 
of 15 times unit on Line 10. While waiting for the product (either on Line 8 or Line 11), the retailer can continue with other 
tasks. After getting the product either from the warehouse ( f1 is resolved) or from the supplier ( f2 is resolved), it is sent 
to the customer by utilising the services of a courier company (Line 12) with a deadline of 10 times unit. While waiting for 
the confirmation of delivery (until f3 is resolved), the retailer can again continue with other tasks.

Lines 16–17 define pack workflow of the warehouse, where Line 17 models the packing time. Lines 20–24 define supply 
workflow of the supplier. After packing the product, the supplier sends a request asynchronously to the courier to deliver 
the product to the retailer on (Line 23).

Lines 27–31 define the deliver workflow of the courier company. A driver and a van (resources with some specific 
qualities) are first acquired to deliver the product (Line 29). Line 30 depicts the time taken for delivery. Afterwards, the 
acquired resources are released (Line 31).

Lines 33–37 define the main method body, where on Line 36 the sale workflow of the retailer is called synchronously 
and objects of supplier and courier are also passed as arguments to allow the collaboration between their workflows.

4. Cost analysis of Rpl program

In this section, we describe the cost analysis for workflows modelled in Rpl. The analysis translates an Rpl program 
into a set of cost equations that can be fed to a constraint solver. The solution to the resulting constraint set is an over-
12
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approximation of the execution time of the Rpl program. We use the example in Fig. 11 to illustrate the idea of the analysis. 
The analysis assumes all Rpl programs terminate and are well-typed, and all invoked methods are synchronised. It extends 
the analysis presented in [31] by handling a more expressive language with explicit notions of task dependencies, resource 
allocations and two-way selection.

A cost equation in the analysis results in a cost expression exp that is defined as follows:

exp ::= k | cm | max(exp, exp) | exp + exp

A cost expression may have natural numbers k, the cost cm of executing a method m, the maximum and the sum of two 
cost expressions.

Given an Rpl program P , the analysis iterates over every method definition B m(T y){T x; s} in each class in P , and 
translates it into a cost equation of the form eqm =exp, where exp corresponds to an upper bound of the computational time 
of m. The analysis performs this translation by considering the process pool of every object associated with the execution 
of method m, computing an upper bound of the finishing time of all of its processes, which gives rise to an upper bound of 
the computational time of the method itself.

In the following, we describe the two significant structures, namely, synchronisation schema and accumulated costs, used 
in the analysis to handle the complexity of considering process pools.

4.1. Synchronisation schema

We will first describe synchronisation sets, an element of synchronisation schema, and proceed with the function that 
is used to manipulate the schema. A synchronisation set [31], ranged over O , O ′, . . . , is a set of object identifiers whose 
processes have implicit dependencies; that is, the processes of these objects may reciprocally influence the process pools of 
the other objects in the same set through method invocations and synchronisations.

A synchronisation schema, ranged over S, S ′, . . . , is a set of pairwise disjoint synchronisation sets. Let B m(C o, C ′ o′,
T x) {T ′ x′; s} be an Rpl method declaration. The synchronisation schema of m, denoted as Sm , can be seen as a distribu-
tion of the objects used in that method into synchronisation sets, where Sm = sschem({{o,o′}}, s,o), which is defined in 
Definition 4.1.

Definition 4.1 (Synchronisation Schema Function). Let S be a synchronisation schema, s a statement and o a carrier object 
which is executing s.

sschem(S, s,o) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S ⊕ {o′,o′′} if s is x = m(o′,o′′, e) after fs dl e′

or, x = !m(o′,o′′, e) after fs dl e′

sschem(sschem(S, s′,o), s′′,o) if s is if (e) {s′} else {s′′}
sschem(sschem(S, s′,o), s′′,o) if s is s′; s′′

S otherwise,

where

S ⊕ O =

⎧⎪⎨
⎪⎩

{O } if S = ∅
(S ′ ⊕ O ) ∪ {O ′} if S = S ′ ∪ {O ′} and O ′ ∩ O = ∅
S ′ ⊕ (O ′ ∪ O ) if S = S ′ ∪ {O ′} and O ′ ∩ O �= ∅

The term S(o) represents the synchronisation set containing o in the synchronisation schema S . The function S ⊕ O
merges a schema S with a synchronisation set O . If none of the objects in O belongs to a set in S , the function reduces 
to a simple set union. For example, let S = {{o1, o2}, {o3, o4}}. Then S ⊕ {o2, o5} is equal to ({{o1, o2}} ⊕ {o2, o5}) ∪ {{o3, o4}}, 
resulting {{o1, o2, o5}, {o3, o4}}.
To perform cost analysis later, a synchronisation schema will be constructed for each method m. The synchronisation 
schemas of the methods defined in Fig. 11 are Ssale = {{rt, sp, cr}, {wh}}, S pack = {{wh}}, Ssupply = {{sp, cr}}, Sdeliver =
{{cr}}, Smain = {{omain}, {rt, sp, cr}}.

4.2. Accumulated costs

The syntax of exp is extended to express (an over-approximation of) the time progressions of processes in the same 
synchronisation set. We call this extension accumulated cost [31], denoted as E , which is defined as follows:

E ::= exp | E · 〈cm, exp〉 | E ‖ exp

Let o be a carrier object and o′ an object that does not belong to the same synchronisation set of o, i.e., o′ /∈ S(o), for a 
given synchronisation schema S . The term exp represents the starting time of a process running on o′ . The term E · 〈cm, exp〉
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describes the starting time of a method invoked asynchronously on object o′ . For example, when o invokes a method m on 
o′ using f = !m(o′, o′′, e) after fs dl e′ , the accumulated cost of the synchronisation set of o′ is E · 〈cm, 0〉, where E is the 
cost accumulated up to that point where the method m is invoked, and cm is the cost of executing method m. Statement 
cost(e) in the process of the carrier o not only advances time in o, but also updates the starting time of succeeding 
method invocations on object o′ to E · 〈cm, e〉, indicating that the starting time of the subsequent method invocation on the 
synchronisation set of o′ is after the time expressed by E plus the maximum between cm and e. The term E ‖ exp expresses 
the time advancement in the carrier object o when a method running in parallel on an object o′ in another synchronisation 
set is synchronised. In this situation, the time advances by the maximum between the current time exp in o and the time 
E in o′ . The evaluation function for the accumulated cost, denoted as �E�, computes the starting time of the next process 
in the synchronisation set whose cost is E as follows:

�exp� = exp, �E · 〈cm, exp〉� = �E� + max(cm, exp), �E ‖ exp� = max(�E�, exp)

The table below shows the accumulated costs of some of the statements declared in Fig. 11.

Method Line Accumulated Cost

msale 7 0 · 〈cpack,0〉
msale 10 0 · 〈cpack,0〉 || 0 · 〈csupply ,0〉
msale 12 (0 · 〈cpack,0〉 || 0 · 〈csupply ,0〉) · 〈cdeliver ,0〉
mpack 17 k1

msupply 22 k2

msupply 23 k2 · 〈cdeliver ,0〉
mdeliver 30 k3

4.3. Translation function

This section defines the translation function that computes the cost of a method by analysing all possible synchronisation 
sets and synchronisations made on it. Given an Rpl method m and a synchronisation schema Sm computed based on 
Section 4.1, the translate function analyses the body of the method m by parsing each of its statements sequentially and 
recording the accumulated costs of synchronisation sets in a translation environment.

Given a synchronisation schema of a method m, Sm , the translation function T Sm(I, Ψ, o, ta, t, s) defined in Fig. 12 takes 
six parameters: I is a map from future names to synchronisation sets, Ψ a translation environment, o is the carrier object, 
ta a cost expression that computes the cost of the methods invoked on objects belonging to the same synchronisation set 
of carrier o but not yet synchronised, t a cost expression that computes the computational time accumulated from the start 
of the method execution, and a statement s.

The function returns a tuple of four elements: an updated map I ′ , an updated translation environment Ψ ′ , the updated 
cost of asynchronously running objects t′

a , and the updated current cost t′ .

Definition 4.2 (Translation Environment). Translation environments, ranged over Ψ, Ψ ′, . . . , is a mapping from synchronisation 
sets to their corresponding accumulated costs (Sm(o) �→ E ).

We explain in the following each of the cases of the T function defined in Fig. 12.
Case 1: Each statement in a sequential composition is translated recursively.
Case 2: When s is a cost(e) statement, the function updates the current cost t and the accumulated cost Ψ by adding the 
cost e to them.
Case 3: When s is a m′(o′, e) after fs dl e′ (synchronous method invocations), the method can only be invoked if the futures 
it depends on are resolved. We need to first compute the cost of all methods associated with futures belonging to fs using 
the function getF, which extracts the future identifiers from a conjunction of future tests fs. Then, for each fs ∈ fs, we 
use the trans function defined in Fig. 13 (see below for explanation) to compute a tuple with elements including the cost 
of asynchronously running objects t′

a and the corresponding current cost t′ of all the methods associating to the futures 
belonging to fs. Afterwards, we take the maximum mta of all the computed t′

a as the resulting updated cost of objects 
asynchronously running in parallel with the carrier o. Similarly, we take the maximum mt of the all computed t′ as the cost 
of executing the methods associating fs, and add the cost of method m′ , cm′ to mt and Ψ . Note that the functions ta(D) and 
t(D) extract the elements t′

a and t′ , respectively, from all the tuples in D.
Case 4 & 5: The next two cases correspond to s as an asynchronous method invocation !m′(o′, e) after fs dl e′ . Similar to
Case 3, we first compute the cost of all methods associating with futures belonging to fs. Case 4 handles the situation if 
carrier o and callee o′ are in the same synchronisation set. We add the cost of method m to mta and update I with the 
binding f �→ Sm(x). If o′ is not in the same synchronisation set of carrier o, as in Case 5, we add the binding f �→ Sm(y) to 
I and update the Ψ by adding the cost of method m′ to the accumulated cost of Sm(y).
Case 6: When s is either f .get or wait( f ) statement, we compute the cost by utilising function transSm(I, Ψ, x, ta, t, { f }).
14
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T Sm(I,Ψ,o, ta, t, s) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. T Sm(I ′,Ψ ′,o, t′
a, t′, s′′)

if s is s′; s′′,and
(I ′,Ψ ′, t′

a, t′) = T Sm(I,Ψ,o, ta, t, s′)
2. (I,Ψ + e, ta, t + e) if s is cost(e)

3. (I,Ψ + cm′ ,mta,mt + cm′ ) if s is x = m′(o′, e) after fs dl e′, and
D = {(I ′,Ψ ′, t′

a, t′) = transSm(I,Ψ,o, ta, t,getF(fs)) | fs ∈ fs},
and,

mta = max(ta(D)),and
mt = max(t(D))

4. (I[ f �→ Sm(o)],Ψ,mta + cm′ ,mt)

if s is f = !m′(o′, e) after fs dl e′, and o′ ∈ Sm(o),and
D = {(I ′,Ψ ′, t′

a, t′) = transSm(I,Ψ,o, ta, t,getF(fs)) | fs ∈ fs},
and,

mta = max(ta(D)),and
mt = max(t(D))

5. (I[ f �→ Sm(o′)],Ψ [Sm(o′) �→ E · 〈cm′ ,0〉],mta,mt)

if s is f = !m′(o′, e) after fs dl e′, and o′ /∈ Sm(o),and
D = {(I ′,Ψ ′, t′

a, t′) = transSm(I,Ψ,o, ta, t,getF(fs)) | fs ∈ fs},
and,

mta = max(ta(D)),and
mt = max(t(D))

where

E =
{

Ψ (Sm(o′)) if Sm(o′) ∈ dom(Ψ )

mt otherwise.

6. (I ′,Ψ ′, t′
a, t′) if s is f .get or wait( f ), and

(I ′,Ψ ′, t′
a, t′) = transSm(I,Ψ,o, ta, t, { f })

7. (I,Ψ,max(t′a, t′′a ),max(t′, t′′))
if s is if (e) {s} else {s′},and

(I ′,Ψ ′, t′
a, t′) = T Sm(I,Ψ,o, ta, t, s)

(I ′′,Ψ ′′, t′′
a , t′′) =T Sm(I,Ψ,o, ta, t, s′)

8. (I,Ψ, ta, t) otherwise.

Fig. 12. The translation function.

transSm(I,Ψ,o, ta, t, F ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) (I,Ψ, ta, t) if F = ∅
(b) transSm(I \ F ′′,Ψ + ta,o,0, t + ta, F ′) if F = F ′ ∪ { f } and o ∈ I( f ) and

F ′′ = { f ′ | I( f ′) = Sm(o)}

(c) transSm(I \ F ′′, (Ψ ‖ t′) \ I( f ),o,0, t′, F ′)
if F = F ′ ∪ { f } and o /∈ I( f ) where
F ′′= { f ′ | I( f ′)= Sm(o) ∨ I( f ′)= I( f )}
and t′ = max(t + ta,�Ψ (I(f ))�)

(d) transSm(I \ F ′′,Ψ + ta,o,0, t + ta, F ′) if F = F ′ ∪ { f } and f /∈ dom(I) where
F ′′ = { f ′ | I( f ′) = Sm(o)}

Fig. 13. The auxiliary translation function.

Case 7: To handle conditional statements, we first calculate the cost of executing the statements in the conditional branch. 
Since the conditional branch may be executed at runtime, to over-approximate the cost, we update ta with the maximum 
of t′

a and t′′
a , and the current cost t with the maximum of t′ and t′′ . As we have assumed the all methods invoked in a 

conditional branch will be synchronised within the same branch, we do not change I and Ψ .

The trans function.
Similar to the translation function T , the auxiliary function trans in Fig. 13 also takes six arguments. The auxiliary 

function trans in Fig. 13 also takes six arguments.
While the first five are the same as those of T , the last one is a set of futures F . This function recursively calculates the 

cost of each method associated to the futures in F as follows:
(a): It is trivial if F is an empty set, where I , Ψ , ta , and t remain unchanged.
(b): This corresponds to the case where F contains a future f associated to a method call whose callee belongs to same 
synchronisation set of the carrier x. Since it is non-deterministic when this method will be scheduled for execution, to 
over-approximate the cost, we sum the cost of the methods invoked on the objects that are in Sm(o), which is stored in ta , 
and add it to the cost t accumulated so far. We then reset ta to 0 and remove all the corresponding futures from I since 
the related costs have been already considered.
(c): When F contains a future associated to a method call whose callee (say o′) does not belong to Sm(o). Since objects o
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and o′ reside in separate synchronisation sets, the method running on o′ runs in parallel with o. Therefore, the cost is 
the maximum between the total cost of all methods invoked on the objects in Sm(o) and that in Sm(o′). Since we over-
approximating the cost, the cost of all methods invoked on the objects in Sm(o) and Sm(o′) have already been computed. 
Therefore, we remove Sm(o′) from Ψ , as well as all the futures associated with Sm(o) and Sm(o′) from I .
(d): When F contains a future f that does not belong to I , it indicates that the cost of the method corresponding to f
has been already calculated. Since it can happen that other methods may be invoked after this computation, the actual 
termination of the method invocation corresponding to f may happen after the completion of these invocations. To take 
this into account, we add the cost of all methods whose callee belongs to Sm(o), which has been stored in ta , to the cost 
accumulated so far.

Example 4.1. We show how the translation function can be applied on the methods defined in Fig. 11.
Let Ssale = {{rt, sp, cr}, {wh}}, S pack = {{wh}}, Ssupply = {{sp, cr}}, Sdeliver = {{cr}} and Smain = {{omain}, {rt, sp, cr}} (as 

computed in Section 4.1). We use si to indicate the sequence of statements of a method body starting from line i.
Translation of method sale :
=T Ssale(∅,∅, rt,0,0, i f (In − Warehouse){s7; s8} else {s10; s11} s12)

=T Ssale(∅,∅, rt,0,0, f1 = !pack(wh) after dl 5; s8)

T Ssale(∅,∅, rt,0,0, f2 = !supply(sp, cr) after dl 15; s11)

=T Ssale({ f1 �→ {wh}}, {{wh} �→ 0 · 〈cpack,0〉}, rt,0,0,wait( f1))

T Ssale({ f2 �→ {rt, sp, cr}},∅, rt, csupply ,0,wait( f2))

= (∅,∅,0,max(0,0 · 〈cpack,0〉))
(∅,∅,0, csupply)

=T Ssale(∅,∅, rt,0,max(max(0,0 · 〈cpack,0〉), csupply), f3 = !deliver(cr) after dl 10; s13)

=T Ssale({ f3 �→ {rt, sp, cr}},∅, rt, cdeliver ,max(max(0,0 · 〈cpack,0〉), csupply),wait( f3))

= (∅,∅,0, max(max(0,0 · 〈cpack,0〉), csupply) + cdeliver )

Translation of method pack :
=T S pack(∅,∅, wh,0,0,cost(k1))

= (∅,∅,0, k1 )

Translation of method supply :
=T Ssupply(∅,∅, cr,0,0,cost(k2); s23; s24)

=T Ssupply(∅,∅, cr,0,k2, f4 = !deliver(cr) after dl 10; s24)

=T Ssupply({ f4 �→ {cr}},∅, cr, cdeliver ,k2,wait( f4))

= (∅,∅,0, k2 + cdeliver )

Translation of method deliver :
=T S pack(∅,∅, cr,0,0, r = hold({Driver,VanDriver,5}, {Van,Delivery,1500}); s30)

=T S pack(∅,∅, cr,0,0,cost(k3); s31)

=T S pack(∅,∅, cr,0,k3, release(r))

= (∅,∅,0, k3 )

Translation of method main :
=T Smain(∅,∅,o,0,0,Retailer rt = new Retailer; Supplier sp = new Supplier; Courier cr = new Courier; s36)

=T Smain(∅,∅,o,0,0, sale(rt, sp, cr) after dl null)

= (∅,∅,0, csale )

We notice that for each method the resulting translation environment Ψ is always empty, and ta is always equal to 0
because every asynchronous method invocation is always synchronised within the caller method body.

5. Properties

The correctness of our analysis relies on the property that the execution time never rises throughout transitions. There-
fore, the cost of the program in the initial configuration over-approximates the cost of each computation.

Cost Program. The cost of a program is calculated by solving a set of equations. Let a cost program be an equation system of 
the form:

eqmi
= expi

eqmain = expmain

where mi are the method names and 1 ≤ i ≤ n, expi and expmain are cost expressions. The solution of the above cost program 
is the closed-form upper bound for the equation eqmain , which is a main method of the program.
16



M.R. Ali, Y. Lamo and V.K.I Pun Science of Computer Programming 225 (2023) 102896
Definition 5.1 (Cost of Program). Let P=(R C {T x; s}) be an Rpl program, where

C = class C1{T x; B m1(T y){T ′ x; s1} . . .}
.
.
.

class C j{T x; B mk(T y){T ′ x; s1} . . . B mn(T y){T ′ x; sn}}
Then for every 1 ≤ i ≤ n and 1 ≤ j ≤ m, let

1. Si = sschem({{oi, o′}}, si, oi)

2. eqmi = ti , where T Si(∅, ∅, oi, 0, 0, si) = (Ii, Ψi, ta, ti)

3. Smain = sschem({{omain}}, s, omain) and T Smain(∅, ∅, omain, 0, 0, s) = (I, Ψ, ta, tmain)

Let eq(P) be the cost program (eqm1
= t1, . . . , eqmn

= tn, eqmain = tmain). A cost solution of P , named U(P), is the closed-
form solution of the equation eqmain in eq(P).

For all methods, we produce cost equations that associates the method’s cost to the cost of its last statement, eqmi
= ti . 

Similarly, we produce one additional equation for the cost of the main method eqmain and its closed-form solution over-
approximates the computational time of Rpl program.

Example 5.1. The cost program of Fig. 11 is shown as follows, where each cost expression is computed in Example 4.1.

eqsale = max(max(0,0 · 〈cpack,0〉), csupply) + cdeliver, eqpack = k1,

eqsupply = k2 + cdeliver, eqdeliver = k3, eqmain = csale.

Correctness Property. The correctness of our analysis follows the theorem below.

Theorem 1 (Correctness of Analysis). Let P be an Rpl program, whose initial configuration is cn, and U(P) be the closed-form solution 
of P . If cn ⇒∗ cn′ , then time(cn′) ≤ U(P).

Proof. The proof of Theorem 1 is similar to the one proven in [31]. The main idea is to first extend function T for runtime 
configurations, and to define the cost of a computation cn ⇒∗ cn′ , written as time(cn ⇒∗ cn′), to be the sum of the labels 
of the transitions, and to show that U(P) is a solution of T (cn), then U(P) − time(cn ⇒∗ cn′) is a solution of T (cn′). �
6. Conclusion

We have presented in this paper a formal language Rpl that can be used to model cross-organisational workflows con-
sisting of concurrently running workflows. We used an example to show how the language can be employed to couple these 
concurrent workflows by means of resources and task dependencies. We also proposed a static analysis to over-approximate 
the computational time of an Rpl program. We also presented a proof sketch of the correctness of the proposed analy-
sis.

As for the immediate next steps, we plan to implement a graphical user interface that allows planners to design work-
flows graphically that can be translated to Rpl models.

In addition, we plan to extend our analysis to under-approximate the cost of workflows. The idea of this extension can 
be roughly organised in a threefold modification. Firstly, for the case of a method invocation where the callee belongs to 
the same synchronisation set of the carrier, we add cost of only this invocation to the current cost instead of adding the 
cost of all the methods executing on the objects residing in the same synchronisation set. Secondly, in the case of a method 
call whose callee does not belong to the same synchronisation set of the carrier, we add the maximum cost between the 
cost of the invoked method and the cost accumulated from the point where the method is invoked until it is synchronised 
in the method currently being analysed. Furthermore, in the case of a conditional statement, the cost will be the minimum 
between the cost of the branches.

Furthermore, we intend to develop verification techniques to ensure the correctness of workflow models in Rpl for cross-
organisational workflows. A reasonable starting point is to investigate how to extend KeY-ABS [15], a deductive verification 
tool for ABS, to support Rpl. The presented language is intended to be the first step towards the automation of cross-
organisational workflow planning.

To achieve this long-term goal, we plan to implement a workflow modelling framework with the support of cost anal-
ysis. In this framework, planners can design workflows, update workflows, and simulate the execution of the workflows. 
By connecting the cost analysis to a constraint solver, the planner can estimate the overall execution time of collabora-
tive workflows and see the effect of any changes in the resource allocation and task dependency. We foresee that such a 
framework can eventually contribute to automating planning for cross-organisational workflows.
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