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Abstract: There can be many inherent issues in the process of managing cloud infrastructure and
the platform of the cloud. The platform of the cloud manages cloud software and legality issues
in making contracts. The platform also handles the process of managing cloud software services
and legal contract-based segmentation. In this paper, we tackle these issues directly with some
feasible solutions. For these constraints, the Averaged One-Dependence Estimators (AODE) classifier
and the SELECT Applicable Only to Parallel Server (SELECT-APSL ASA) method are proposed to
separate the data related to the place. ASA is made up of the AODE and SELECT Applicable Only to
Parallel Server. The AODE classifier is used to separate the data from smart city data based on the
hybrid data obfuscation technique. The data from the hybrid data obfuscation technique manages
50% of the raw data, and 50% of hospital data is masked using the proposed transmission. The
analysis of energy consumption before the cryptosystem shows the total packet delivered by about
71.66% compared with existing algorithms. The analysis of energy consumption after cryptosystem
assumption shows 47.34% consumption, compared to existing state-of-the-art algorithms. The
average energy consumption before data obfuscation decreased by 2.47%, and the average energy
consumption after data obfuscation was reduced by 9.90%. The analysis of the makespan time before
data obfuscation decreased by 33.71%. Compared to existing state-of-the-art algorithms, the study of
makespan time after data obfuscation decreased by 1.3%. These impressive results show the strength
of our methodology.

Keywords: AODE classifier; cloud computing separation; data obfuscation; data storing; data
transmission; data classification

1. Introduction

This study focuses on the upkeep of Internet of Things (IoT) sensor data in smart
sensor cities and its management through cloud computing. Cloud computing is the
process of storing, managing, and accessing data through the Internet as opposed to on
a local server or personal computer (PC). Cloud computing is becoming more popular and
advantageous for individuals, companies, and organizations. The processing of physical
devices in IoT allows data to be shared from one device to another. To prevent work
overload, work is shared from one device to another. Organizations can use IoT to examine
how their systems work in real-time and obtain insights into everything from equipment

Sensors 2022, 22, 7169. https://doi.org/10.3390/s22197169 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197169
https://doi.org/10.3390/s22197169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8416-279X
https://orcid.org/0000-0001-7199-6595
https://orcid.org/0000-0002-9087-3010
https://orcid.org/0000-0002-4099-1254
https://orcid.org/0000-0001-9851-4103
https://orcid.org/0000-0001-8768-9709
https://doi.org/10.3390/s22197169
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197169?type=check_update&version=2


Sensors 2022, 22, 7169 2 of 20

performance to supply chain and logistics operations. The IoT work-sharing technique
controls the system’s performance lagging [1]. IoT is suggested for the collection of sensor
data from multiple crowdsourcing datasets. These links are built on the smart cities that
use sensors in hospitals, on the sides of roadways, and in virtual environments for crowd
interactions using cloud technology [2]. The categorized AODE is used to classify the
data. This organizes the crowd data gathered from various sensors and smart cities. The
majority of hospitals and roadside places are categorized in the data gathered from smart
cities. The AODE in sensor data is used to categorize this data collection and assign it
to different data storage. This storage completes the necessary database, which controls
the information needed to reach the suggested conclusion. Additionally, a method for
storing data behaviour and redundancy has been suggested. The sensor-based data has
advanced, and this controls how cities are formed. Hybrid data obfuscation is used to
manage the method of classifying the data for the blockchain facilities [3]. The security
objective for data management and data formation is made for security purposes by data
obfuscation [4]. The management of data encryption masking and data tokenization for
the original data is handled by data transfer from smart cities. Environmental production
controls the process, and an external processor is suggested for moving records from one
location to another. Data encryption is managed by data security to handle original data
for production environments on both public and private systems. Personal data has been
used for a different type of data obfuscation function [5]. The system structure for the
cryptosystem is used to manage the encrypted data. This security, which evolves through
the creation of additional storage for each connected piece of data, can be managed by
the database. Text, photos, GIFs, and videos are the categories used to categorize the
factors for storing data based on associated images. The hybrid data obfuscation technique
is also used for this classification’s data storing process [6]. When using cloud-based
services, this research depends on remote servers for our technological infrastructure. Since
cloud computing encourages mobile access via smart devices, it keeps people informed. It
decreased IT expenditures. If you move to the cloud, the cost of managing and maintaining
your IT systems may can thus go down. Scalability, company continuity, collaborative
effectiveness, flexibility in work procedures, and accessibility to automated upgrades are
other advantages that can be accessed remotely from the cloud, or another virtual location
is likewise covered by this. Thanks to companies that provide cloud services, users can
store files and apps on remote servers and then access the material via the internet. The
synergy of cloud and crowd computing for the smart city focused on maintaining the data
collected from the IoT sensor in smart sensor cities and managing it in cloud computing.
The data obfuscation, classification, and crowd computing methods are performing cloud
computing platforms for improving the data storing and retrieving which is got from smart
cities using sensors. The data collection and classification using the crowd computing
approach are emphasized. Data collection uses the IoT sensor for storing big cloud data.
In the approach of crowd computing, the separation of the data from the smart cities is
collected and separated using the technique of AODE classifier; the classification is done
(collection of data from hospitals, stations, etc.) The cryptosystem and data obfuscation has
hybrid data obfuscation technique). For improved data security, hybrid data obfuscation is
used for transmitting from while storing in the big data. For data retrieving, the SELECT-
APSL method from the cloud is based on the data from the IoT sensor from smart cities and
hybrid data obfuscation for security purposes. The SELECT-APSL method was used in this
paper to retrieve the data. The single-column in-pages dexes are used to obtain the data
from the table. Only the index page is used for retrieval during the procedure. This page
serves as the primary scanning point for both the multi-column index scan key retrieval
and the data retrieval for the plugin [7]. This retrieval of the data from the smart cities with
the security details has been done. The main objective of the paper is as follows:

• The data collected from the smart cities using the crowd to the cloud computing is
proposed by using the AODE classifier.
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• The hybrid data obfuscation technique has been used for security purposes for
data analysis.

• Also, for retrieving the data, the method of SELECT-APSL is saved in the cloud.

The rest of the paper is organized in Section 1, the introduction. In Section 2, the
related works, and in Section 3, the proposed system is presented. In Section 4, the methods
and the results have been elaborated in graphs and tables. In Section 5, the conclusion has
been written along with future work.

2. Literature Review

Different layers of firmware and middleware have performed sophisticated services
for real-world and cyber-physical combinations for CPS in this study. This makes cloud
computing possible and controls the latency caused by geographic distance for the user’s
orchestration of services and resources. These cloud-based data have been gathered from
industry 4.0, smart households, and smart cities. This can be integrated into the currently
suggested architecture to enable cloud and crowd computing in a federated environment [8].
In this study, a crowd-based SciCrowd system is introduced, and a scholarly literature
search is developed for various research communities. These studies include data indexing,
automatic paper extraction, and crowdsourced data processing. This allows for data search-
ing based on intelligent cities in the currently planned system [9]. The decision-making
process and land management for planning for repercussions are done for new opportu-
nities in this manuscript, which controls social sensing data. A geospatial data algorithm
for the analysis of complex data for land governance is suggested. By incorporating this
technique into the system that is currently being presented, social goals to manage energy
extraction can be suggested [10]. The fifth generation of drones is proposed as edge intelli-
gence for controlling artificial intelligence. To construct intelligent settings, security based
on data sharing and applications based on blockchain is used. Additionally, obstacles for
drone edge intelligence have been created to manage upcoming data-sharing tendencies.
This can be done in the federated synergy system that is currently being suggested [7]. It
has been suggested that autonomous aerial vehicles and a revolutionary framework would
enable future smart cities. Additionally, the automated necessity of an intelligent ecosystem
is recommended in the process of locating autonomous cars and decision-making among
smart cities and light plains. Additionally, a mechanism for automating FAUAVs has been
suggested. Swarm intelligence has been presented to manage the different missions with
this rising efficiency. By managing this in the currently suggested system, it has been
suggested that unnamed aerial vehicles be controlled and monitored [2]. Future trends
data and surveillance of intelligent cities have been examined in this research based on
the data collection. Additionally, an embedded system for visual computing and future
trends and problems, as well as video surveillance for the most recent data set, are studied.
The analysis of data based on big data has been evaluated by incorporating this into the
system that is now being suggested. This article was motivated by technical elements
for the development of the economy and blockchain based on the secrecy of flaws and
constructing a system that improves vital component qualities [11]. Effective authentication
and donation implementation have been suggested. The construction of a useful smoothing
of blockchain security is managed in this work. Based on concerns in current developments
in technology-based cities and IoT smart cities, Mukherjee et al. suggest intelligent cities by
integrating this into the present system and controlling academic references of cloud-based
data, IoT-based intelligent administration, factors for innovative entities, and crucial de-
cisions based on the smart city are offered [12]. This motivated the author to participate
in the currently suggested system by retrieving data from a database [13]. To increase the
deep and broad correlations of different channels and produce a successful SR network,
Tian et al. introduced a 40-layer ESRGCNN [14]. This study uses adaptive up-sampling
to create a flexible SR model that is especially useful for real-world uses. This study con-
cludes that, in addition to the shallow ESRGCNN used in the number of parameters to
layer RDN and CSFM for obtaining excellent visual effects, the super-resolution group
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CNN (ESRGCNN) for SISR will enhance the effect of deep and wide channel features by
correlations of different channels to ESRGCNN for inheriting. It works with low-resolution
images captured using different sampling strategies. This study achieves Comprehensive
SISR objectives in terms of complexity and visual quality.

Finally, this literature review concentrated on the firmware and middleware lay-
ers concerning cyber-physical cloud computing. By doing this, the geographical delay
is reduced. The SciCrowd crowd-based technology that has been presented develops
academic literature search for various research communities. Multiple variables and
planetary-scale geographical data were considered in the decision-making process [15].
Data exchange, analysis, and decision-making are the foundations for security when it
comes to autonomous aerial aircraft [16], detecting autonomous vehicles, and making
decisions. The effectiveness of monitoring unidentified cars has been improved by several
existing automation systems. The most recent data for embedded systems is applied to the
video surveillance system. Big data-based information provides motivating guidelines for
advancing the economy and blockchain privacy. These studies provide an interesting idea
regarding blockchain security.

3. Proposed Smart City Data Acquisition

The use of (ICTs) to improve quality of life, efficiency, and competitiveness, while
ensuring that it meets the needs of present and future generations it represents Smart
buildings, smart vehicles and roads, smart energy management, smart home, and so
on [12]. A smart city is an intelligent city that is integrated digital technologies into its
networks, services, and infrastructures. A smart city is a municipality that uses information
and communication technologies to increase operational efficiency, share information with
the public, and improve the quality of government services and citizen welfare.

Data collection is one of the critical building blocks of smart city applications. It
uses Internet of Things (IoT) devices such as sensors, meters, among others, to collect and
analyze data. The data in smart cities helps to improve infrastructures, public utilities,
and services and to manage the daily task of enhancing public safety and environmental
issues [17]. Here, data are collected from multiple sources. These sources are everywhere,
including environmental sensors, cameras, GPS, smart gadgets, etc. Several big data can
be arranged and stored at various sites for analysis. Many sensors, cameras, and other
devices are utilized for data collection as the different types of data from different sources
are required for analysis and to provide resources [10]. The entire process takes place with
the help of the internet.

These data are generated continuously every second and every day, so the data are
too large and complex to manage and store in a local server. In addition, this is not secure
for data. Hence cloud computing technology is used for data storage and process. Cloud
computing can store and manage a massive volume of data with the functionality of
scalable and virtualized resources for computation by integrating resources of the electrical
power system through a network. This increases the capacity of storage, robustness, and
load balancing. It provides resources to users anytime and anywhere whenever a resource
is required [11].

The smart city is based on the development of technology in the environment and
society to make life easier and more comfortable, i.e., smart classrooms, smart vehicles,
smart bus stations, and many others. The data collection is through devices, sensors,
cameras, and so on with the help of the Internet [17]. Sensors are installed in indoor and
outdoor cities, which provide the data by observing the signals that support and measure
the various types of data from multiple places that can be converted to give understandable
data. These collected data are stored in the cloud for future access or analysis, as shown in
Figure 1 [18].



Sensors 2022, 22, 7169 5 of 20

Sensors 2022, 22, x FOR PEER REVIEW 5 of 22 
 

 

cameras, and so on with the help of the Internet [17]. Sensors are installed in indoor and 

outdoor cities, which provide the data by observing the signals that support and measure 

the various types of data from multiple places that can be converted to give 

understandable data. These collected data are stored in the cloud for future access or 

analysis, as shown in Figure 1 [18]. 

 

Figure 1. Data collection and storage in smart cities. 

The sensors monitor the smart cities’ environment that rates the acceptable range of 

data. Each sensor holds an AODE classifier for the multiclassification purpose of each 

sensor collected data. This AODE (Averaged One-Dependence Estimator) classifier is a 

supervised machine learning algorithm that necessitates the attributes dependent on one 

another by averaging the whole classifier [15]. The AODE classifier classifies the collected 

data as normal or abnormal environment data by considering the majority voting. 

Algorithm 1 shows the steps for collecting data from IoT sensors in Smart Cities.  

Algorithm 1: Algorithm for Collecting Data from IoT Sensors in Smart Cities. 

Begin 

Input: A= {a1…an}-instance, R- result  // training data 

For each instance 

Initially, the sensor finds a neighbour sensor, NN 

p (b, a) = p (b| a) p (a) 

   P(b/a) = 
𝑝(𝑏)𝑝(𝑎|𝑏)

𝑝(𝑎)
   //Compute the probability of b given a: 

The end for  // testing data 

Repeat 

 For ak ϵ A 

  Compute p (b, a) = p (b, ak) p (a| b, ak) 

   P(b/a) = 
𝑝(𝑏,𝑎𝑘)𝑝(𝑎|𝑏,𝑎𝑘)

𝑝(𝑎)
 

 Get R node NN 

 Return class value 

 Update classifier 

 End for 

 Until Convergence 

End. 

Figure 1. Data collection and storage in smart cities.

The sensors monitor the smart cities’ environment that rates the acceptable range of
data. Each sensor holds an AODE classifier for the multiclassification purpose of each
sensor collected data. This AODE (Averaged One-Dependence Estimator) classifier is
a supervised machine learning algorithm that necessitates the attributes dependent on
one another by averaging the whole classifier [15]. The AODE classifier classifies the
collected data as normal or abnormal environment data by considering the majority voting.
Algorithm 1 shows the steps for collecting data from IoT sensors in Smart Cities.

Algorithm 1: Algorithm for Collecting Data from IoT Sensors in Smart Cities.

Begin
Input: A= {a1 . . . an}-instance, R- result // training data

For each instance
Initially, the sensor finds a neighbour sensor, NN
p (b, a) = p (b| a) p (a)

P(b/a) = p(b)p(a|b)
p(a) //Compute the probability of b given a:

The end for // testing data
Repeat

For ak ε A
Compute p (b, a) = p (b, ak) p (a| b, ak)

P(b/a) = p(b,ak)p(a|b, ak)
p(a)

Get R

1 
 
 

 node NN
Return class value
Update classifier
End for
Until Convergence
End.

For instance, each sensor held the AODE classifier. One of the sensors acts as a global
classifier to predict the final output that collects the data from the local classifier. For each
ak belongs to the A, and AODE looks for an estimate of the probability of each class b as
follows,

P(b/a) =
p(b, ak)p(a|b, ak)

p(a)
,
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where P(b/a) represents the estimation of p(b, ak). The input sample data and n count of
sensors. The prediction is based on the network traffic as either normal or abnormal data
using distributed majority voting [19]. Consider an odd sensor count for distributed major-
ity voting when the primary or highest vote determines the network traffic pattern. Finally,
based on the sensor count, we can find the probability of data as normal or abnormal.

3.1. Crowd Computing in Smart City

The crowd represents a collection or group. It is a distributed computing model where
a huge non-trivial process or task is split into several independent atomic or individual
tasks distributed over multiple computing devices for each process [20]. Similarly, in crowd
computing, the crowd determines a group sharing the resources or an ideal CPU cycle
of a device for doing different computational processes. As many tasks are continuously
taking place, it becomes difficult to manage them, so crowd computing is adapted [2].

These individual tasks are represented as micro-tasks, always in a ready state inside
a job pool. Then the available crowd workers are searched, and a set of required crowd
workers are selected. These crowd workers are potential to provide flexible support to
overcome the challenges in managing and allocating work properly by assigning each task
from the job pool to a variety of selected crowd workers and, in some cases, to maintain
reliability, the same tasks might be given to different workers [18]. These individual tasks
are provided as a simple program to the crowd workers without any other information
depending on the context. Each crowd of workers produces a separate report of output to
the centralized master, where all the results of each task are gathered after the execution of
an independent individual task. After collecting those outputs, it masters checks for errors
and assembles them to the final result set [21].

The development of technologies such as the Internet of Things (IoT), Artificial Intel-
ligence (AI), cloud, and other technologies paved the way for the growth of smart cities
worldwide [22]. It is a promising technology with the functionality of using computing
resources in a scalable and virtualized manner [20]. The city is called smart when the other
fields such as transportation, public utilizes, education, smart home, public safety, and
social and health care become smart, so it is found there is extensive use of data; thus, to
manage these data, a cloud with crowd computing is used in this system [23].

As the single field contains the extensive data collected and managed by cloud com-
puting, different areas need to be gathered, maintained, monitored, and continuously
accessed in the smart city. It becomes difficult to apply crowd computing, which works
as a distributed system with complex tasks that are hard for computers and are handled
by distributing the task across the Internet [13]. The extracted set of tasks is managed by
crowd management which contains a steady flow of crowds to prevent large crowds and
ensure that the tasks are controlled in an orderly manner for accessing the resource from
the cloud, which produces effective processing results—shown in Figure 2.
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3.2. AODE-Based Classification

In this system, an AODE method is used to separate data gathered from smart cities,
such as traffic data, power supply data, etc. These data should be managed individually to
provide resources effectively. AODE represents Averaged One-Dependence Estimator; it is
a method of classification learning which forms a specific format of a Bayesian classifier
network named single dependence classifier. This method allows mutual dependencies
between value pairs within a vector of input when ignoring complicated relationships of
dependencies that take place in three or more values to remove some of the naivety of
naive Bayesian classifiers [16].

It performs well with a considerable number of training or input data. AODE performs
classification by aggregating the predictions of all single dependency classifiers in which all
attributes depend on the same single parent attribute and the class. That parent attribute
satisfies a minimum frequency constraint. It is an effective method for accommodating
the violations of independence attributes of Naïve Bayes to allow dependent attributes
from other attributes of non-classes [24]. To maintain efficiency, it uses a single dependency
classifier such as TAN, where each attribute is based on the class and, at most, one other
attribute. The learning process in a single dependency classifier is conducted through model
selection, which is a process that generally uses substantial computational overheads and
increases the number of variances related to Naïve Bayes. However, AODE considered
averaging the predictions of a single-dependency classifier to avoid the model selection
process [5].

In every dependency classifier, the attributes are considered as a parent of all other
attributes, and these attributes are known as super parents. This type of classifier is known
as a super parent single dependency classifier; that is, only those classifiers with a value ai
which takes place at least n times, were used for predicting a class label b for the instance of
test a = a1, a2, . . . , ai thus for any values of attribute ai is represented as,

P(b, A) = P(b, ai) P(A| b, ai) (1)

as equality remains for every ai. Therefore, it becomes

P(b, A) = P (y, x)
∑1≤i≤n∧F (xi)≥m P (y, xi)P (x|y.xi)

|{1 ≤ i ≤ n ∧ F(xi) ≥ m}| (2)

where f (ai) determines the attribute value in frequency ai in the training sample dataset.
Considering Equation (1), assuming that the attributes are independent, providing the class
and super-parent ai. Now, AODE predicts the class for A by choosing,

..

Max
1

∑
1≤i≤n ∧ F(xi)≥m

P̂ (y, xi). ∏
1<j<n ∧ j 6=i

P̂ (y, xi) (3)

After that, each dependency classifier estimates the joint probability P(b, A). AODE is
used to average the many estimates of a single term since it lowers the estimates’ variance.
It includes significantly less bias by raising variance in a narrow range because AODE
provides a weaker attribute that is a conditional independence assumption than Naive
Bayes during the avoidance of the model selection process [13].

Numerous studies claim that it consistently has a much lower loss—0 to 1—than
a naive Bayes technique utilizing a medium-time complexity. As a result, in those studies,
an AODE has a mathematically significant advantage of 0 to 1 loss over many other
semi-naive Bayesian algorithms. It offers classification accuracy comparable to state-of-
the-art methods’ discrimination accuracy. AODE must update the estimated probability
whenever a new instance becomes easily accessible. Because of this, incremental learning
techniques also leverage this mechanism. Thus, AODE has much promise and is utilized as
a replacement for a classification approach due to its many attractive qualities [25].
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3.3. Hybrid Data Obfuscation Technique

Data security is critical in the Cloud storage method, as it provides a large amount
of storage medium to store data collected from smart cities and other sources. These data
might be accessed illegally without proper authentication using a piece of code; thus, it
should be encrypted or masked for security to protect data from unauthorized access [9].
However, in this system, to strengthen data security [26–28], both the encrypted and
made formats are used, i.e., cryptosystem and data obfuscation methods are used, and its
combination is known as Hybrid data obfuscation; this is shown in Figure 3.
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naive Bayes technique utilizing a medium-time complexity. As a result, in those studies, 

an AODE has a mathematically significant advantage of 0 to 1 loss over many other semi-

naive Bayesian algorithms. It offers classification accuracy comparable to state-of-the-art 

methods’ discrimination accuracy. AODE must update the estimated probability 
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Secure Data Handling by Data Obfuscation

Data obfuscation is a masking format that alters sensitive data in such a manner that it
is of little or no use to unauthorized intruders but is usable by a legitimate individual. The
data masking is used to safeguard sensor data that is saved in the cloud. This information
might be sensitive in terms of commerce, health, etc. Data masking replaces the actual data
with plausible but bogus data to protect privacy. Any data masking or obfuscation should
not change the meaning of the data; instead, the data must be sufficiently altered such that
it is not immediately apparent that the masked data came from a source of production
data [7].

Data obfuscation may be done using a variety of methods. We employ methods of
replacement in this system. Substitution is one of the best ways to maintain the actual
appearance and feel of the data records. This method is most effective in masking the
overall data subset is a masked data set for several different data fields. Substitution masks
the original value by replacing the data with a different value. This one is one of the
best data masking techniques that keeps the data’s original appearance and feel. Several
different sorts of data may be used using this method. By applying anonymity to the data
records and mixing the data with the data structure, it is, therefore, simple to keep the data
using this technique while simultaneously maintaining a realistic-looking database that is
difficult to distinguish from a database made up of masked data [25].

While maintaining the services in the cloud, the hybrid data obfuscation technique
(obfuscation and cryptography) is a more powerful tool that secures the data from a ma-
licious user. When the user uses the cloud service to perform the task, the user needs to
obfuscate the encrypted data without knowing anyone about the sensitive data. This leads
the cloud server to finish the task without losing data privacy [29].

In the cryptographic method, as data encryption is used, the symmetric and private
keys are used to encrypt the sensor data into unusable form till these data are decrypted.
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When encrypting the data, no one can analyze the data. Here we use the public-key
cryptographic method for encrypting and decrypting the data [5]. The public key can
be shared with anyone, while the private key is protected. Compounding the private
and public keys, we can unlock the data file. Here we test the numerical sensor data in
a cloud array using a hybrid data obfuscation technique. Algorithm 2 shows the hybrid
data obfuscation process for security purposes.

Algorithm 2: Algorithm for Hybrid Data Obfuscation for Security Purposes.

Input: Pt- plaintext, C_T

1 
 
 

 cipher Text
Output: data is Obfuscated
Initially, Pt- plaintext with n size
Get k1

For each k, j = 1,2 . . . <=m
find square (Sq)
Nt(k) = Pt (k)*k1 // value Nt(k)
Sq(k) = pow (Nt(k),2) //Rotate the Sq(k)
Get k2 //Rotate the RTN at K2 several times
Rt(k) = rotate (Sq(k), k2+j) //Find mod for RTN by 256
mod(k) = Rt(k)%256 //Convert mod into ASCII code

C_T (k)

1 
 
 

 ASCII (mod(k))
C_T

1 
 
 

 cipher text
End for

Using these two keys, the hybrid data obfuscation technique conceives the numerical
data to ensure data in the cloud server. These techniques use (mul), (pow), (pivot), (mod),
and (ASCII) as coherent activities for data. In the cloud, private keys are created and sent
to the users [3]. It retains the service in the company’s Key Management (Km). Initially,
consider the sensor resulting from numerical data as plaintext with the size of the plain text.
Then, the fair value of an Sq(k) and Nt(k) = are computed. The given plaintext is multiplied
with the k1 model calculation and stored as Nt. Then calculate a value for k1, assign a value
equal to the m, and multiply plaintext with the k1.

Nt(k) = Pt (k)∗k1 (4)

The model k2 is used for the qualities of the square. For k2 times, the k2 route also
increased, and the fair value is rotated from right to left as Rotate the Sq(k). for upcoming
values in Sq(k), k2 + j, where j, k = 1,2, 3. . . N.

Rt(k) = rotate (Sq(k), k2 + j) (5)

Every time, attributes are released to clear for k2 by adding the mod value. Find Rt(k)
mod by 256. Rt(k) mod value is computed by dividing the rotate value by 256. Every
mod-value the Creating an ASCII character. The original numerical plaintext and ciphertext
are represented by those ASCII letters. To create the ciphertext C T, convert mod(k) into
ASCII code. A way to encrypt data without compromising its privacy is via cipher text [2].
The obfuscation creates the ciphertext by blending a variety of ASCII character codes. Each
numerical value has a unique cipher text based on the ASCII characteristics code. Each
character in the cipher text has an identical plaintext. The plain text and CipherText data
sizes may differ [30–32].

3.4. Proposed Cryptosystem for Data Management

A cryptosystem uses cryptographic methods and the infrastructure that supports them
to offer information security services. A cipher system is another name for a cryptosys-
tem. Plaintext, ciphertext, decryption key, and encryption key are the different parts of
a fundamental cryptosystem. The data are encrypted using plaintext during the cipher-
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text storage procedure. When retrieved, the decryption technique is used to restore the
original data [33–36]. Symmetric Key Encryption and Asymmetric Key Encryption are
the two categories of encryption-decryption-based cryptosystems [20]. Asymmetric Key
Encryption is the name given to the encryption technique when distinct keys are used to
both encrypt and decode the data. It is possible to recover the plaintext by decrypting
the ciphertext even though the keys are distinct yet mathematically linked. It makes use
of separate private and public keys. For encryption and decryption, public and private
keys are utilized [6]. The private key is meant to be private, as suggested by the name,
so that only the receiver who has been verified may decode the message. To create a key
pair, this technique employs a key generation protocol. Mathematically speaking, both
keys are related. The way the keys are related varies depending on the algorithm [17].
Asymmetric encryption has benefits when storing data since it uses a public key that is
widely available to encrypt data and a private key that is linked to a public key to decode
data using the appropriate algorithms. Additionally, it includes the Parallel Server system’s
SELECT-APSL command [29].

SELECT-APSL

SELECT-APSL: this is only applicable to Parallel Servers. The best join technique
could be determined by the value of the? Parameter while the criteria are given with
one. The value of the? The parameter cannot be known during pre-processing. Hence
the best join technique cannot be chosen. The hit rate during SQL execution is calculated
to select a joining technique [17]. The SELECT-APSL data retrieval method obtains the
obfuscated hybrid data from a big-data database in a cloud server. The SELECT-APSL is
only applicable for the Parallel Server (PS), which contains the results of obfuscated hybrid
data. We consider the input as pre-processed data (PPd) and read the input of the Parallel
Server as PSin. This input is selected and retrieved using a SELECT-APSL method [6].
Algorithm 3 shows the data retrieval process using SELECT-ASPL.

Algorithm 3: Algorithm for Data Retrieval Using SELECT-ASPL.

Initially, the Parallel Server (PS) contains obfuscated hybrid data(O-Hd), PPd- pre-processed data, input
(Parallel Server)- PSin
Input: PSin, PPd
For each input

Select

1 
 
 

 input (PSin) // find PSin using APSL
If (specified big data DB = O-Hd)
select

1 
 
 

 (Join method. (O-Hd))
O(O-Hd)

1 
 
 

 ( O-Hd)
While pre-processing

pre-processing_data count 6= select optimum join method
return, specified big data DB 6= O-Hd
End while
End if
If (PPd 6= (O-Hd)) // Compute hit rate
If (hit rate data count ≥ no. of O(O-Hd) + no. of PPd)
Else // data retrieving rate positively high

check no. of PPd
End if End if

Repeat
If no. of PPd> no. of (PSin)

execute: Compute the hit rate
Else if (no. of PPd < no. of (PSin)

continue (data retrieving rate positively low)
Else rechecks no. of PPd
End if (Until termination criterion met)
End for
Return accurate data retrieving rate && retrieve data as PSin
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This retrieval method only obtains the data when the specified condition is satisfied.
When the specified big-data database containing the obfuscated hybrid data condition is
valid, we can select and perform a join method that depends on the count of obfuscated
hybrid data. Then we can optimize the obfuscated hybrid data and obtain an optimum join
method. During the pre-processing process, we cannot determine the count of obfuscated
hybrid data, so the specified big-data database does not contain the obfuscated hybrid data.
When the pre-processed data is not similar to the obfuscated hybrid data, we select the join
method for computing the hit rate. This computation leads to the rate of the data retrieving
process [13].

When the count of hit rate is more significant than equal to the addition of the count
of optimized [37] obfuscated hybrid data and pre-processed data, the possibility of data
retrieving rate increases positively; otherwise, we need to check the count of pre-processed
data [18]. When the count of pre-processed data is greater than the count of the parallel
server, then we re-execute the computation process of hit rate. If the count of pre-processed
data is lesser than the count of the parallel server, the time taken to retrieve the data rate is
positively low. Otherwise, we recheck the count of pre-processed data [25].

The above process is repeated until we retrieve the final output as a parallel server
input. This process finally retrieves the accurate hit rate as retrieving rate. We can easily
retrieve the required data as an output [12]. At first, data is masked using a supplementation
method. Then an asymmetric key is used to encrypt data using a private key [19]. This
makes data more secure [38,39]. Thus, hybrid data obfuscation uses a cryptography system
and obfuscation.

4. Result Comparison Discussion with Data Modules

This section presents the simulation results showing the effectiveness of the proposed
algorithm. This performance simulation is executed using CloudSim Plus, a framework
for modelling and simulating extensible clouds. It is a good research tool that can manage
the complications coming from simulated environments since it is a fully configurable tool
that allows the expansion and formulation of rules in every software stack component.
The proposed Averaged One-Dependence Estimators (AODE) and SELECT Applicable
Only To Parallel Server (ASA) compare with the Beyond fifth Generation (B5G), Fully
Automated Unmanned Aerial Vehicles (FAUAV) [2], Maximum Correlation Criterion, And
Minimum Dependence Criterion (MCCMDC) [40], Multi Independent Latent Component
Naive Bayes Classifier (MILC-NB) [3] and Correlation-Augmented Naïve Bayes (CAN) [28]
Algorithm. The analyze results are then shown in Table 1 and Figure 4.

Table 1. Analysis of Total packet delivered (pkt/s).

No. of
Data

Total Packet Delivered (PKT/sec)

ASA CAN [13] MILC-NB [10] MCCMDC [26] FAUAV [5] B5G [4]

150 18.5 17.5 16.04 15.67 10.08 7.98

200 42.54 38.79 25.45 28.65 18.40 12.45

250 52.85 46.92 40.86 43.87 32.7 13.82

300 62.45 57.46 45.14 59.74 32.104 14.44

350 78.87 65.36 66.91 74.70 22.84 20.71

400 92.17 78.15 70.27 69.47 36.75 23.27

450 98.71 82.73 75.89 80.79 40.21 28.89

500 96.27 82.27 78.35 82.94 30.42 23.35

550 99.78 82.49 82.49 88.67 18.28 11.36

600 118.345 101.35 118.36 106.53 22.51 13.09



Sensors 2022, 22, 7169 12 of 20

Sensors 2022, 22, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 4. Packet delivery ratio before data obfuscation. 

The ASA increases the total packet delivered by about CAN [28] in Figure 5. Packet 

delivery ratio after data obfuscation: MCCMDC [38] has 79.1%, FAUAV [2] has 83.7%, 

B5G [7] has 78.8%, and ASA has 81.3%, respectively. 

 

Figure 5. Packet delivery ratios before data obfuscation. 

Table 2, Figures 6 and 7 of this research deal with the obfuscation of data which 

renders sensitive information worthless to harmful actors by replacing it with data that 

seems to be actual production data. In this era, the Energy Consumption was calculated 

on the proposed Averaged One-Dependence Estimators (AODE) and SELECT Applicable 

Only to Parallel Server (ASA). This might be compared with the existing system of Energy 

Consumption. The Energy Consumption before data obfuscation is 1.18% lower than the 

CAN [28], 1.08% lower than the MILC-NB [3], 1.80% lower than the MCCMDC [38], 1.05% 

lower than the FAUAV [2], 4.02% lower than the B5G [7] algorithm, respectively. 

Meanwhile, the Average Energy Consumption after data obfuscation has 4.74%, 

decreased on CAN [28], 4.31%, decreased on MILC-NB [3], 7.18% decreased on MCCMDC 

[38], 4.21% decreased on FAUAV [2], 16.08% decreased on B5G [7] compared to the 

Figure 4. Packet delivery ratio before data obfuscation.

The database storage and retrieval issue are resolved by this research’s proposed
Secure Cloud and Crowd Computing for Smart City Data Obfuscation. According to
the results, the proposed method for data obfuscation increases total packet delivery by
about 47.55%, CAN [28] delivery by about 50.55%, MILC-NB [3] delivery by about 52.73%,
MCCMDC [38] delivery by about 55.80%, FAUAV [2] delivery by about 58.35%, and B5G [7]
delivery by about 60.23% in comparison with the proposed algorithm.

The ASA increases the total packet delivered by about CAN [28] in Figure 5. Packet
delivery ratio after data obfuscation: MCCMDC [38] has 79.1%, FAUAV [2] has 83.7%,
B5G [7] has 78.8%, and ASA has 81.3%, respectively.
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Table 2, Figures 6 and 7 of this research deal with the obfuscation of data which
renders sensitive information worthless to harmful actors by replacing it with data that
seems to be actual production data. In this era, the Energy Consumption was calculated
on the proposed Averaged One-Dependence Estimators (AODE) and SELECT Applicable
Only to Parallel Server (ASA). This might be compared with the existing system of Energy
Consumption. The Energy Consumption before data obfuscation is 1.18% lower than
the CAN [28], 1.08% lower than the MILC-NB [3], 1.80% lower than the MCCMDC [38],
1.05% lower than the FAUAV [2], 4.02% lower than the B5G [7] algorithm, respectively.
Meanwhile, the Average Energy Consumption after data obfuscation has 4.74%, decreased
on CAN [28], 4.31%, decreased on MILC-NB [3], 7.18% decreased on MCCMDC [38], 4.21%
decreased on FAUAV [2], 16.08% decreased on B5G [7] compared to the proposed Averaged
One-Dependence Estimators (AODE) and SELECT Applicable Only to Parallel Server
(ASA) algorithm.

Table 2. Analysis of Average Energy Consumption.

No. of
Data

Average Energy Consumption (J/sec)

ASA CAN MILC-NB MCCMDC FAUAV B5G

150 1.023 1.024 2.005 0.001 5.782 8.246

200 2.682 1.264 4.602 2.430 9.213 15.825

250 3.257 1.623 3.921 1.923 11.078 18.023

300 2.213 2.891 7.218 4.132 16.057 20.021

350 4.621 5.652 8.210 6.020 18.025 21.925

400 6.623 7.732 9.924 5.213 20.023 23.651

450 6.623 5.592 11.253 5.582 20.023 27.365

500 6.603 7.017 8.183 6.612 17.032 28.721

550 6.613 4.643 8.359 4.603 20.062 31.254

600 7.126 5.621 8.129 5.621 23.457 33.521
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Table 3 and Figure 8 of this research: In terms of data classification improvement per-
centage in the proposed scenario, the proposed method has improved Data classification by
about 3.48% compared with the MILC-NB algorithm, 5.66% compared with the MCCMDC
algorithm, 14.48% compared with the FAUAV algorithm, and about 17.62% compared
with the CAN approximately 69.34% compared with the Data classification improvement
percentage Analysis on ASA algorithm.

Table 3. Data classification improvement percentage Analysis.

No. of Data
Data Classification Improvement Percentage (%)

ASA MILC-NB MCCMDC FAUAV CAN

100 24.6 23 21 15 9.9

150 12.87 7.5 7.5 5.5 4.8

200 16 12.5 12.5 8.4 5

250 19 17.5 14 8 6

300 23 21 19 12 10

350 30 28.5 24 13 3

400 36 29.6 26.2 11.3 10

450 38 32 30 10.4 9.8

The Analysis of Make Span Time (ms) before data obfuscation has been reduced by
about CAN [28] 32.15%, MILC-NB [3] 33.20%, MCCMDC [38] 34.35%, FAUAV [2] 35.40%,
B5G [7] 36.50%, and ASA 30.65%, which are shown in Table 4, Figures 9 and 10. The overall
throughput has dropped by about CAN [28] 1.27%, MILC-NB [3] 1.31%, MCCMDC [38]
1.36%, FAUAV [2] 1.41%, B5G [7] 1.44%, and ASA 1.21%, respectively, following Cryptosys-
tem Assumption after data obfuscation.
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Table 4. Analysis of Make Span Time (ms).

No. of
Data

Make Span Time (ms)

B5G CAN MILC-NB MCCMDC FAUAV ASA

100 1165 1265 1362 1403 1482 1000

150 1725 1853 1892 1921 1989 1672

200 2418 2493 2513 2614 2715 2381

250 2951 3002 3210 3351 3370 2815

300 3417 3582 3624 3725 3816 3316

350 4183 4271 4521 4612 4631 3852

400 4723 4826 5041 5262 5381 4504

450 5319 5412 5632 5734 5982 5201

Sensors 2022, 22, x FOR PEER REVIEW 16 of 22 
 

 

Table 4. Analysis of Make Span Time (ms). 

No. of Data 
Make Span Time (ms) 

B5G CAN MILC-NB MCCMDC FAUAV ASA 

100 1165 1265 1362 1403 1482 1000 

150 1725 1853 1892 1921 1989 1672 

200 2418 2493 2513 2614 2715 2381 

250 2951 3002 3210 3351 3370 2815 

300 3417 3582 3624 3725 3816 3316 

350 4183 4271 4521 4612 4631 3852 

400 4723 4826 5041 5262 5381 4504 

450 5319 5412 5632 5734 5982 5201 

 

Figure 9. The Make span Before Cryptosystem Assumption. 

 

Figure 10. The total throughput after Cryptosystem Assumption. 

From Table 5, results in Analysis (Figure 11a–f) of Energy Consumption Before 

Cryptosystem Assumption show that the proposed method in Cryptosystem Assumption 

increases the Total packet delivered by about 79.25%, 84.25%, 87.88%, 93.00%, 97.25%, and 

98.38% in comparison to MILC-NB, MCCMDC, FAUAV, CAN and B5G algorithm 

Figure 9. The Make span Before Cryptosystem Assumption.



Sensors 2022, 22, 7169 16 of 20

Sensors 2022, 22, x FOR PEER REVIEW 16 of 22 
 

 

Table 4. Analysis of Make Span Time (ms). 

No. of Data 
Make Span Time (ms) 

B5G CAN MILC-NB MCCMDC FAUAV ASA 

100 1165 1265 1362 1403 1482 1000 

150 1725 1853 1892 1921 1989 1672 

200 2418 2493 2513 2614 2715 2381 

250 2951 3002 3210 3351 3370 2815 

300 3417 3582 3624 3725 3816 3316 

350 4183 4271 4521 4612 4631 3852 

400 4723 4826 5041 5262 5381 4504 

450 5319 5412 5632 5734 5982 5201 

 

Figure 9. The Make span Before Cryptosystem Assumption. 

 

Figure 10. The total throughput after Cryptosystem Assumption. 

From Table 5, results in Analysis (Figure 11a–f) of Energy Consumption Before 

Cryptosystem Assumption show that the proposed method in Cryptosystem Assumption 

increases the Total packet delivered by about 79.25%, 84.25%, 87.88%, 93.00%, 97.25%, and 

98.38% in comparison to MILC-NB, MCCMDC, FAUAV, CAN and B5G algorithm 

Figure 10. The total throughput after Cryptosystem Assumption.

From Table 5, results in Analysis (Figure 11a–f) of Energy Consumption Before Cryp-
tosystem Assumption show that the proposed method in Cryptosystem Assumption in-
creases the Total packet delivered by about 79.25%, 84.25%, 87.88%, 93.00%, 97.25%, and
98.38% in comparison to MILC-NB, MCCMDC, FAUAV, CAN and B5G algorithm respec-
tively. In terms of Energy Consumption improvement percentage in the proposed scenario,
the proposed method has improved Energy Consumption by about 5.00% compared with the
MILC-NB algorithm, 8.63% compared with the MCCMDC algorithm, 13.75% compared with
the FAUAV algorithm, and about 18.00% compared with the CAN approximately 21.13%
compared with the Data classification improvement percentage Analysis ASA algorithm.

Table 5. Analysis of Energy Consumption before Cryptosystem Assumption.

No. of
Data

Energy Consumption before Cryptosystem

ASA MILC-NB MCCMDC FAUAV CAN B5G

100 0.29 0.31 0.34 0.36 0.37 0.38

150 0.49 0.51 0.52 0.53 0.55 0.57

200 0.61 0.63 0.66 0.69 0.71 0.72

250 0.78 0.8 0.82 0.84 0.86 0.92

300 0.91 0.97 1.02 1.02 1.06 1.09

350 0.99 1.02 1.12 1.2 1.24 1.28

400 1.08 1.17 1.2 1.34 1.4 1.45

450 1.19 1.33 1.35 1.46 1.59 1.62

The proposed method, assuming the use of a Cryptosystem, increases the Total packet
delivered by approximately CAN [28] 6.43%, MILC-NB [3] 50.55%, MCCMDC [38] 52.73%,
FAUAV [2] 5.80%, B5G [7] 58.35%, and ASA 60.23% improved, according to Table 6’s results
of the analysis (Figure 12a–f) of Energy Consumption assuming the use of a Cryptosys-
tem. In terms of the proposed scenario’s Data classification improvement percentage, the
proposed method outperformed the MILC-NB algorithm by about 6.43%, the MCCMDC
algorithm by about 50.55%, the FAUAV algorithm by about 52.73%, the CAN algorithm by
about 55.80%, and the Data classification improvement percentage Analysis ASA algorithm
by about 60.23%.
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Table 6. Analysis of Energy Consumption after Cryptosystem Assumption.

No. of
Data

Energy Consumption after Cryptosystem

ASA MILC-NB MCCMDC FAUAV CAN B5G

100 0.074 0.186 0.204 0.216 0.222 0.228

150 0.094 0.306 0.312 0.318 0.33 0.342

200 0.066 0.378 0.396 0.414 0.426 0.432

250 0.068 0.48 0.492 0.504 0.516 0.552

300 0.046 0.582 0.612 0.612 0.636 0.654

350 0.094 0.612 0.672 0.72 0.744 0.768

400 0.048 0.702 0.72 0.804 0.84 0.87

450 0.024 0.798 0.81 0.876 0.954 0.972



Sensors 2022, 22, 7169 18 of 20

Sensors 2022, 22, x FOR PEER REVIEW 19 of 22 
 

 

Table 6. Analysis of Energy Consumption after Cryptosystem Assumption. 

No. of 
Data 

Energy Consumption After Cryptosystem  
ASA MILC-NB MCCMDC FAUAV CAN B5G 

100 0.074 0.186 0.204 0.216 0.222 0.228 
150 0.094 0.306 0.312 0.318 0.33 0.342 
200 0.066 0.378 0.396 0.414 0.426 0.432 
250 0.068 0.48 0.492 0.504 0.516 0.552 
300 0.046 0.582 0.612 0.612 0.636 0.654 
350 0.094 0.612 0.672 0.72 0.744 0.768 
400 0.048 0.702 0.72 0.804 0.84 0.87 
450 0.024 0.798 0.81 0.876 0.954 0.972 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. The energy consumption after cryptosystem assumption. (a) Energy Consumption After
Cryptosystem (ASA), (b) Energy Consumption After Cryptosystem (MILC-NB), (c) Energy Consump-
tion After Cryptosystem (MCCMDC), (d) Energy Consumption After Cryptosystem (FAUAV), (e) En-
ergy Consumption After Cryptosystem (CAN), (f) Energy Consumption After Cryptosystem (B5G).

5. Conclusions

This research work primarily focuses on data maintenance collected from IoT sensors
in smart cities being managed by cloud computing. The three methods are data obfuscation,
classification, and crowd computing for efficient data handling on the cloud using a cryp-
tosystem. The introduced crowd computing is useful for data classification when using IoT
sensors. The algorithm for collecting data from sensors improved data management with
the help of hybrid data obfuscation. The AODE classifier helps to classify the data. The
hybrid data obfuscation used data masking to maintain data management. SELECT-APSL
was employed for data retrieving from the cloud. Finally, secure data was created in the
presence of tracing data behaviour. The analysis results on energy consumption before
and after cryptosystem use show that the proposed method increases total packet delivery
by 79.25%, 84.25%, 87.88%, 93.00%, 97.25%, and 98.38% in comparison with MILC-NB,
MCCMDC, FAUAV, CAN and B5G algorithm, respectively. The proposed method improved
data classification by 6.43% compared with the MILC-NB algorithm, 50.55% compared with
the MCCMDC algorithm, 52.73% compared with the FAUAV, 55.80% compared with CAN,
and finally, 60.23% compared with the Data classification improvement percentage Analysis
ASA algorithm. The analysis of makespan time (in milliseconds) after data obfuscation has
decreased by 1.27%, 1.31%, 1.36%, 1.41%, 1.44%, and 1.21%, compared with CAN, MILC-NB,
MCCMDC, FAUAV, and B5G algorithm, respectively.
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