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Abstract: This paper presents an analysis and interpretation of the current state of play in the global
value network of minerals mining, refining and transformation processes in the contemporary battery
industry, which will power potentially crucial future industries for manufacture of electric vehicles
(EVs) and solar-storage energy systems. The dark influence of the carbon lock-in landscape is gradu-
ally being mitigated under the challenge of achieving the “500 mile” battery charge, which would
make a transformational difference in the replacement of renewably fuelled vehicles and storage
systems, currently still predominantly driven by fossil fuels. The challenge has led to a “war” be-
tween manufacturers, miners and refiners, who have realised that the challenge has come alive while
most have been vacillating. At an “individualist” rather than an “institutionalist” level, Elon Musk,
for all his faults, deserves credit for “moving the market” in these two important industry sectors.
This paper anatomises key events and processes stimulating change in this global economic activity
through an “abductive” reasoning model and a qualitative “pattern recognition” methodology that
proves valuable in achieving rational, probabilistic forecasts. Established incremental innovation
characterises first responses in the “war” but research agencies like ARPA are active in funding
research that may produce radical battery innovation in future.

Keywords: batteries; lithium; renewable energy; cobalt; gigafactories

1. Introduction

It is noticeable, in the reports of corporate investment strategies, which include in
some cases stories of strategic failures of corporate strategy, that a competitive battle has
begun between the producers and consumers of the lithium ion batteries (LIBs) that fuel
electric vehicles (EVs), solar tiles for roofing and solar-storage systems for households
and small businesses. An implication of the potential broadening of demand for LIBs is
indicated in the following, which pivots upon the experience of one of the few non-Asian
LIB producers, Tesla. Putatively, household energy and stationary energy storage can be
expected to emerge soon as convenient, installed domestic and smaller business services.
These may be installed in combination with solar and/or thermal solutions. Since Tesla
began delivering its early 7 kWh lithium ion domestic batteries in 2015 to US customers for
USD 3000, the market soon became drained of available product by 2016. The expectation
at that time was that a German competitor would likely ramp up to fill the gaps in the
market. Panasonic, Samsung SDI and LG Chem lithium ion batteries were further expected
to be affordable by 2020 [1].

The implications of this study are of primary importance for sustainable mobility
consumers, i.e., the global population who will use renewable energy for mobility. Di-
rectly, it improves responses to market demand by manufacturers of electric and other
renewable fuels, automotive assemblers and suppliers of batteries. In what follows, this
study analyses the state of play in LIB technology and its likely successors; the produc-
tion system, its main users and providers of the means of fuelling demand for batteries
or other competitor fuel-cell technologies; and the substances over which the rivalrous
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competitions centred upon LIB and post-LIB technologies take place. Next, there follows
an account of the manner in which users have, in some cases, bounced back from the
results of large corporate strategy mistakes and benefitted from luck or ‘prepared mind’
opportunities [2] mining opportunities when faced with technical change. Finally, this
study is interesting in analysing some theoretical issues of a geopolitical nature. These are
occasioned by the “related variety” [3–11] expressed by the recombination of innovation
elements and their economic geography. This is done by displaying the special interest
influence of agglomeration effects, mining, metal processing and resource agglomeration
and disagglomeration effects. This is our “twin-carb” model. The article finishes with a
discussion and conclusions section tying together the preceding narrative.

2. The Nature and Substance(s) of the Contemporary “Lithium Wars”

The nature and substance involve struggles or “wars” between producers of raw
materials and—currently—some manufacturers of batteries. These include some who were
late and/or tried to guess future technologies too early (e.g., Toyota), suffering losses in
battles against carbon, on the one hand, and LIB batteries, on the other hand, as the leading
propulsive ingredients for the present. The contest for supremacy in the global market for
battery-driven energy systems is stimulated by a simple fact of physical science. This is that
electrical energy is difficult to store, especially in portable form. In 2018 the US Department
of Energy reported future storage possibilities with USD 30 million in funding to support
batteries capable of 10 h bulk storage solutions. Later this was anticipated to be followed
up with research aimed at increasing bulk storage capacity up to 100 h. This programme of
research was funded by the Energy Department’s Advanced Projects Research Agency—
Energy (ARPA-E) [3] office, whose sister agency funded the Internet. From the ARPA-E
viewpoint, LIBs work efficiently and effectively for cheaper, lower range storage, but costs
increase markedly beyond the 10 h range. This refers directly to the current capabilities of
integrated wind and solar supply because that is the issue for “pattern recognition” of the
perceived problem: how to facilitate mixing of batteries with lower cost but intermittent
wind and solar energy. Thus, the energy policy community recognises that the resilient grid
of the future, currently beyond the horizon, will depend on efficient and effective energy
storage. Storage systems must provide grid stability where renewables are intermittent.
They do this by providing backup power which can fail when calibration of intermittent
energy flows predominates, as occurred with negative implications for firms, hospitals
and other intensive industrial and domestic users with the UK regional grid outage in the
summer of 2019, which shut down when confronted with having to balance integration of
intermittent renewable resources.

So, not only is demand for LIB batteries and their successors increasing many times
over because of deep structural shifts in the power mix of economy grids—it is also in-
tensifying due to demand for bigger battery packs for already in-use applications from
established technology developers; [12,13]). Thus, in the field of EVs, leading innovator
Tesla is developing a battery pack to enable its EVs to cover 400 miles before a re-charge is
required, according to the automotive company’s most recent system updates. These have
also hinted at Tesla’s LIBs jointly produced with Panasonic, according to CEO announce-
ments promising the 400 mile battery before long. This is likely to be dedicated to the
upmarket Model S rather than the popular and cheaper Model 3, which is not sufficiently
powerful to accommodate a LIB system of the necessary size. Meanwhile the Model X
(SUV) is considered too large and heavy to deliver a charge sufficient to reach 400 miles.
Tesla also competes against other auto-manufacturers by emphasising longer distances
between charges while the others focus upon affordability. Experts in LIB market analysis
are of the view that the current LIB chemistry is approaching its charging limits and that
future gains are et best likely to be incremental until the end of this decade rather than
breakthroughs. Thus the 500 mile EV is thought to be unlikely to be achieved until at least
2010 and, for the affordable mass-market EVs, until beyond 2030
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As noted above, by 2020 battery systems for stationary storage were anticipated to
be likely to have grown in demand as a key instrument used for load-balancing between
customers and users. This was precisely the problem experienced in 2019 by the UK grid.
Cairn Energy Research Advisors [14] expected market growth from a total of USD 6.7 billion
in 2015 to USD 13.2 billion by 2020. This would be a historic change in the 150 year history
of electricity power generation and grid management which had never previously factored
in battery storage. Essentially, everything about the electricity industry was seen as in
a process of change. Traditionally, generation fluctuated but within understood load
variations. However, generation with renewables means generation became unpredictable
while consumption became more responsive to price, related to user time or demand
response requirements. Accordingly, buffering of flexible demand by using batteries has
come to the fore (Figure 1).
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Counter-Moves by Chinese and South-East Asian Rivals

Accordingly, Contemporary Amperex Technology Co. Limited, acronym CATL, was
founded in 2011 as a Chinese battery manufacturer and technology company specialising
in the manufacturing of lithium-ion batteries for EVs, energy storage systems and battery
management systems (BMSs). A complex (both non-linear and linear) sequence evolved
like this:

1. In January 2017, CATL proposed to fashion a strategic alliance with Finland’s
Valmet Automotive based at Uusikaupunki. Valmet had assembled the Fisker EV and
conventional sports cars (Boxter) for Porsche. The object here involved project management,
engineering and battery pack supply for EVs and hybrid EVs.

2. CATL bought a 22% stake in Valmet. In 2019 Valmet Energy agreed to supply
Umicore’s Kokkola nearby cobalt refinery with a clean energy plant design. Belgian miner
Umicore had bought Kokkola from US firm Freeport-McMoRan.
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3. The Kokkola plant refines 10% of the world’s lithium for LIBs, the rest being refined
in China. In 2017 CATL accepted an offer from Swiss mining giant Glencore to supply
“sustainable” Congo cobalt ore to the Umicore refinery in Ostrobothnia, Finland’s “lithium
province”.

4. Pressure from German automotive firms, especially VW, caused CATL to build LIB
facilities in Arnstadt, Thuringia (former East Germany). At the same time BMW reported a
USD 4.7 billion arrangement for CATL to supply small-car LIBs [15–20].

5. CATL announced their annual 11.84 GWh of energy storage capacity in 2017. This
meant CATL became the world’s third largest provider of EV, hybrid EV (HEV) and plug-in
hybrid EV (PHEV) batteries. The larger ones are Japan’s Panasonic and China’s BYD (see
next para).

6. CATL aimed for 50 GWh global energy storage by 2020 and in 2019 CATL already
reported that Tesla had arranged with them to supply cells for Gigafactory 3 in Shanghai
and for expected future expansion elsewhere.

7. In 2019, Tesla also reported a battery supply deal with LG Chem (South Korea)
for its Model 3 produced at Gigafactory 3 in Shanghai. This made it likely that LG Chem
would ultimately split the Chinese order capacity for Tesla with CATL. CATL would supply
Tesla Model 3 while LG Chem would supply Tesla Model Y (SUV) production

8. CATL is primarily using LiFePo (large-scale grid storage and buses) and nickel
manganese cobalt (NMC) chemistries in prismatic cell formats. The implication of the Tesla
order requires that suppliers branch into cylindrical cells, which Tesla has long pioneered
for high-efficiency EV battery packs, unlike its competitors [20].

Moving on, we now turn to China’s leading LIB producer Build Your Dreams (BYD).
This firm was established in 1999 and, following ten years of R&D, has developed its
own iron-phosphate-based lithium-ion (LiFePo) battery. All the main types of EV can
be powered with LiFePo, which has a lifetime of over 10 years and a charge time of ten
minutes to reach 50% battery capacity. BYD began by supplying mobile phone batteries
to Nokia and Motorola, then, in 2003, the firm acquired Xi’an-based Qinchuan Motors,
enabling BYD to expand from part and battery supplier to car marker. Ambitiously, BYD
then acquired Ningbo-based SinoMOS Semiconductor in 2008 to consolidate its internal
supply chain and speed-up its production of EVs [21–47]. Strategically the firm envisages
production of nine million BYD EVs by 2025, overtaking the EV output of the rest of the
world. However, BYD also plans to expand LIB production to control its own and other
clients’ market access [13]. By late 2019 BYD reported its plan for a new USD 1.5 billion
20 to 24 GWh battery gigafactory in Chongquin, Sechuan, to supply its own and other
clients’ EVs. This is to be BYD’s second new battery gigafactory since the one in Qinghai,
China’s main raw lithium mines region (83%), opened in mid-2018. BYD focuses mostly
on the production of prismatic LiFeP04 battery cells, which haver a longer life than most
automotive industry nickel cobalt aluminium (NCA) and nickel manganese cobalt battery
cells. BYD’s total overall battery production capacity is intended to reach 100 GWh by 2030
as it ramps up its in-house EV production [13].

Regarding other Asian LIB competitors, on 5 December 2019, General Motors (GM)
first reported partnership with South Korea’s LG Chem to mass-produce LIBs for EVs. LG
Chem makes LIBs for German firms VW (Audi) and Daimler (Mercedes-Benz). They in-
tended to invest a total of USD 2.3 billion to build a new facility, to be located in Lordstown,
Ohio as GM’s “captive” gigafactory with more than 30 GWh capacity. New Chevrolet
and EV trucks were mooted for 2021 but after a major trade union dispute over excluding
former employees from the new EV plant, GM sold the factory to EV start-up Lordstown
Motors (with Ohio state aids). GM’s withdrawal was panicky due to Tesla’s EV dominance
and rising Asian and possible German competition [22–27] while LG promised to spend US
916 million in the replacement venture by 2023. In 2019 LG Chem also proposed to invest
USD 424 million from 2020 in a new factory at Gumi, South Korea, for LIB cathode produc-
tion to supply GM and VW by 2022. This new factory was anticipated to employ some 1000
domestic workers in South Korea. This would augment their two other cathode production
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factories, together with another one in China. In 2019, LG Chem, like Tesla (also dusting off
its corporate child labour and corruption rules), agreed to purchase “controversial” Congo
cobalt from Glencore, something Tesla was also planning due to global shortages [24,28–36].
In response to these moves, Toyota Motor Corporation and Panasonic set up a joint venture
from 2020 to produce EV batteries. This reverses Toyota’s hitherto expressed reluctance to
own a LIB gigafactory because its strategic plans showed slow progress for the growth of
mass-market LIB-driven EVs compared to hydrogen-driven ones. However, Tesla’s and the
other Asian LIB investments caused a rapid strategic reversal by Toyota. Now Japan and
China will be made part of a new partnership to ramp-up LIB production 50-fold, aimed at
increasing their EV market presence.

3. Illustrative Note on Methodology and the Pattern Recognition Question

The presentation of these narratives and empirical material is illustrative of the “pat-
tern recognition” [11] approach developed in this kind of prefigurative study. This involves
interrogation of claims made in qualitative and quantitative data. This involves drawing
up a balanced schema of lines of inquiry to ascertain the deeper structures underlying
“truth claims”. Examples include “dark triad” psychological research, where underlying
traits hidden by dissimulation may be exposed and explored. Thus, what may seem like
“light” behavioural claims may be found to express “dark” behavioural drivers. A further
example would be “green” claims not matched by actual practice (“greenwashing”). In
qualitative research, the researcher is guided by structured propositions. For example,
in psychological research, which is referenced in the paper, one approach to identifying
“pathological” practice by entrepreneurs (and others) has three sub-frameworks: narcis-
sism, Machiavellianism and psychopathy; “callousness” recently formed not a triad but a
“dark tetrad” [1,37–39]. Each can be found from secondary research accounts, interviews
and statements. A second framework counters these with fellowship, humanism and
respectfulness. Bad employers or other actors can be interpreted from researching relevant
documentation—denoting “dark entrepreneurship” and troublesome business outcomes.
However, “light triad” aspects may also be found, which compensate for and moderate
troublesome outcomes. This is called the “Socratic” method, which Kant also recognised in
his reference to a “cosmopolitanism” that recognises humanity’s imperfections as “crooked
timber” with which humans necessarily work. Keeping the dark side in balance with
interrogation also of the light side is an extremely powerful technique for critically locating
respondents on the dark–light spectrum. This means gathering documentation, interviews
and technical analyses to interpret “mentalities”, attitudes and plans from reported speech.
This is augmented by “snowballing” incrementally to “track and trace” lines of inquiry for
hermeneutic analysis, inquiry and evidence of counter-factuals. It also involves contrasting
the accuracy of “predictions”, as is done on page 6. Elsewhere, we note Tesla’s Machiavel-
lianism regarding acquisition of Grohmann Automation, which leans more to the “dark”
than “light” side (page 7). This means accessing early publication of “fugitive documentary
material”, early copies of consultants’ reports, online reports by technically informed writ-
ers, company websites and academic research papers (though the last named now have
often enormous gestation periods; this means their analyses can be well out-of-date by the
time they are published, whereas triangulated instant reporting can be far more swiftly
assessed). “Snowballing” means pursuing research leads, informed by “triad” “tetrad” or
other types of interrogation schedule, until “saturation” of sources is reached (i.e., which
can be a single “black swan” or recurring confirmations of the opposite). Qualitative
research of such a type has thus become fashionable in the face of disappointments with
the limitations of social science research based exclusively on quantitative analysis and
modelling. Recent anxieties concerning this failing approach have been mounted by a new
breed of “superforecasters” [44]. These involve focus group interaction utilising mixed
research methods to assess probabilities of outcomes as part of interpreting deep structures
of complex processes facilitated by “pattern recognition”. In an exacting review, the authors
single out Thomas Friedman of The New York Times for being an “exasperatingly evasive”
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forecaster, and point to the inaccuracy of most economists and other financial pundits.
Accordingly, this approach, in turn, involves interrogating extrapolated claims based on
next-to-zero future knowledge rather than appearing to claim prescience. Accordingly,
quantitative forecasting has been considerably subject to claims of “bias”, overdependence
on “correlation” not explanation and failure to interrogate humans “anthropologically”.
So, echoing the tone of this contribution’s graphic representations thus far, we propose to
check the accuracy of the predictions in Figure 1 regarding expected growth in demand in
MHW and USD, to the extent it is ascertainable, for 2020, or the nearest relevant date, from
2013. According to a report on the subject of global cumulative energy storage [12], the
global sum for 2018–2020 was a “modest” 9 GW, rising to less than twice that (17 GW; also
predicted) by 2020. This compares poorly with the CARE [14] forecast of 3.5 GWH that was
the prediction for 2018, with 8.3 GWH being forecast for 2020. BloombergNEF’s [12] near
and present metrics are factually inaccurate over-statements whilst CARE’s [14] forecasts
are over-conservative under-statements. BloombergNEF’s report [12] predicted 1095 GW
by 2040, inviting a USD 662 billion investment from the market and still being quoted
definitively by OilPrice.com the following year [42]. So, we need a tie-breaker, which is
the IDTechEx report [25] which forecast 6.2 GWH deployed globally in 2018. However, as
we referred to the BloombergNEF report as being guilty of “over-statement” forecasting
(and CARE of understatement), our tie-breaker’s 2018 estimate of 6.2 GWh in that year
(GW for simplicity; in fact, Elon Musk’s challenge to the South Australian government
in 2017 was “100 MW (120 MWh) in 100 days”) is comparable with BloombergNEF’s
forecast over 2019–2029 of an only 1.5 average annual GW increase, reaching 30 GW over
the period. If so, IDTechEx is a greater over-estimator than BloombergNEF and CARE is
still the under-estimator. Accordingly, BloombergNEF’s assessment is taken here as the
better forecasting guide. Even accounting for Musk’s GW–GWh conversion only depresses
CARE’s forecast even more. However, unexpected events, such as coronavirus, may, of
course, conceivably have a significant effect on investment and energy storage demand
(China’s shutdown was measured on 1 March 2020 as having measurably reduced global
NOx pollution, hence global warming by some measure) which may bring CARE’s low
forecast back into the picture.

4. The Global Production Network for Mining, Refining and Processing LIB and
Post-LIB Minerals

First, we can draw attention to “Kokkola”, the Finnish town which appears in this
contribution’s title for the reason that it is one of Europe’s few cobalt processing refineries
and for lithium easily the largest. Kokkola is located in Finland’s “lithium province” which
is Europe’s only serious source of raw lithium, thus making it important for processing as
well as importing the raw material for LIBs. However, it is also important for hosting one
of Europe’s larger Cobalt refineries. It was a key metalworking district under the Swedish
Empire. In combination, lithium and cobalt are critical to LIB manufacturing. A sign of this
is the investment in LIB gigafactories in a Nordic Battery Belt from Mo-i-Rana in Norway
through Skellefteå in northern Sweden to Vaasa in Finland’s Ostrobothnia region (lithium
province), where Valmet’s EV assembly for Fisker and others has been conducted. However,
the German EV market is planned as the real target of this output. The other refiners are
Belgium, which mines no cobalt but refines 6.3 million tonnes (mt), France, which mines
none but refines 119.0 mt, and Finland, which mines none but refines 11.187 mt of mainly
imported ore. Cobalt is critical as a raw material, especially in LIBs, but with 55% of global
ore supply originating from the politically unstable Democratic Republic of the Congo
(DRC), its supply is vulnerable. Accordingly, due diligence issues are especially important,
as prevailing international court cases testify. While China at 45.046 mt refines some 55%
of global refined cobalt, it is mainly imported from Australia and Canada. Finally, official
statistics include a strange alliance of Canada, Cuba and Norway (Glencore) as a kind of
intercontinental alliance refining 9.044 mt, with Cuba mining but not refining its share [18].
Before moving on to Glencore (and other miners and refiners of note), we remain with
Finland’s exceptionalist cobalt-lithium niche.
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Some indication of the sometimes-cutthroat manoeuvring for access to the inputs
and outputs of the LIB supplier networks is given by the actions of Tesla’s CEO Elon
Musk to maintain his company’s lead in superior rated cylindrical battery power-packs. A
significant problem for innovating these in the joint Tesla–Panasonic plants at Reno, Nevada
and Buffalo in the two “gigafactories” located there had been the process of sealing batteries
into the cylindrical cells that power Tesla EVs, solar roofs and, conceivably, solar-storage
systems. The key technology involves “separators” that keep LIBs safe for all domestic
and industrial uses. Between a battery’s anode and cathode is the permeable membrane
which separates them. Accordingly, Tesla remained unsatisfied with Panasonic’s supply of
batteries and management weaknesses at Gigafactory 1, citing slow pace, high wastage
and inconsistent quality. Thus, as noted previously, Tesla began negotiations with CATL to
join LG Chem and Panasonic, the latter of whom were to become a third main supplier
with Toyota to Tesla’s Shanghai gigafactory. However, one of Tesla’s main partnership
problems involving Panasonic concerned the high battery wastage rate. An instance of
this concerns Grohmann Automation, located in Rhineland, Germany. Tesla had detailed
knowledge of quality, sometimes uniquely skilled, suppliers. The robotics manufacturer
Grohmann produced robotics for separators used in production by Tesla at its gigafactory
in Nevada. Tesla acquired Grohmann in 2017 as a single worldwide source for battery
packs. This created friction over Panasonic’s quality performance. Elon Musk instructed
Grohmann to sever its supplier links with German vehicle assemblers, upsetting German
manufacturers trying to catch up in the EV market. It also upset the unions and Grohmann
himself, who resigned from what had become Tesla Grohmann Automation. Subsequently,
Mercedes-Benz reported it was experiencing difficulties in meeting demand for batteries
to install as part of the “intelligent” guidance for its EQC model owing to Tesla having
acquired Grohmann. The latter had earlier been signed up by Mercedes-Benz to fulfil
its manufacturing capacity build-up [13]. Further than this market “insurance” move
by Tesla, industry reports [36,37] also noted the company was in talks with Glencore to
negotiate a continuing contract to purchase cobalt from the DRC for its new gigafactory in
Shanghai [36].

However, the Glencore agreement indicates that the metal will remain vital to Tesla’s
forthcoming anticipated expansion in China and Europe. As the world’s largest cobalt
miner, Glencore would clearly benefit from any rise in EV demand. The company made
losses related to cobalt in the year prior to the agreement after prices collapsed in mid-2018
from over-supply. Subsequently, Glencore locked customers into new agreements in the EV
supply chain. Accordingly, Glencore will supply BMW cobalt from mines in Australia and
others in Morocco. Further battery materials will be sourced from Umicore (Belgium) and
GEM (China) who have also agreed long-term contracts. Tesla’s cobalt, as noted, will come
from the “artisanal mineshafts” often employing child labour in the Democratic Republic
of the Congo, known for fatalities and human-rights abuses being commonplace but where
prices undercut and contribute to market fluctuations. BMW set up a three-year project in
2019 with Samsung SDI and the German government’s development agency in Katanga
province, southeast Congo, to improve working conditions at a single pilot mine. Tesla is
also taking steps to ensure its suppliers resist contributing to corruption and potentially
even child labour [13].

Mining Geographies and the Future of Batteries

Regarding these, we may briefly outline the configurations in question. Freeport-
McMoRan was once the world’s largest refiner of cobalt. Today it is most well-known for
molybdenum and became the largest copper producer in the world in 2007, moving its
headquarters from New Orleans to Phoenix, Arizona. Its oil interest is in selling petroleum
to the likes of US outlet Phillips 66, which accounts for some 7% of Freeport-McMoRan’s
profits. The corporation has been frequently implicated in legal cases involving corruption
and pollution on a grand scale. Many miner/refiners have been mentioned, ordered as fol-
lows: Jinchuan Group (China), 7kt; Umicore (Finland but Belgian-owned), 6 kt; Nikkelverk
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(Norway), 5 kt; Umicore (Belgium), Chambishi Metals (Zambia), Sumitomo (Japan), 3.6 kt;
Sherritt (Canada), 3 kt; Ambatovy (Madagascar), Queensland Nickel (Australia) and No-
rilsk (Russia). Leading cobalt-only miners are Glencore, 2.7 kt; China Molybdenum, 1.6
kt; Fleurette (now Glencore), 0.8 kt; Vale, 0.6 kt; Gécamines (DRC), 0.4 kt [18]. Primary
nickel mining and refining production is as follows. According to the International Nickel
Study Group [31], global refined nickel production was 2.184 mt in 2018. The world’s ten
largest nickel producers of that year accounted for over 60% of this total. Vale (Brazil)
was the second largest miner in the world and the leading nickel (244 kt) and iron miner.
Next was Norilsk Nickel (Russia), which produced 244 kt, followed by Jinchuan (China)
at 124 kt and Glencore (Swiss) at 124 kt, BHP Billiton (Australia) at 91 kt and Sumitomo
(Japan) with 65 kt, Sherritt (Canada) at 63 kt, Eramet (France) at 55 kt, Anglo-American
(UK) with 42 kt and Minara (Australia but wholly-owned by Glencore) with 39 kt. The
authors of [23] conclude with the assumption that LIB technologies will be the prevalent
battery technology for the foreseeable future. They envisage lithium demand rising from
87 kt in 2017 by 509 kt to a total of 672 kt by 2025, and cobalt rising from 41 kt to 117 kt in
the same period purely for battery consumption. One innovation diversification process is
already evident, for example with the development of the NMC 811 battery and related
initiatives to reduce the use of cobalt in future batteries.

Here, more of the (Kokkola) account references the single Umicore plant in Kokkola,
which, nevertheless, operates largely in a global innovation system (or supply chain for
processing raw materials that may ultimately be used or obsolesced by innovators close to
or actually at the “edge of innovation”). This has many global mining competitors, which
are private firms buying and selling each other, as well as to each other. This is a complex
international innovation system with much of the “system” buried in large corporates
and their suppliers. So it is somewhat different from “localised industrial districts” or
even “regional mono-cultural innovation systems”, like Baden-Wuerttemberg, for example.
One issue this research raises concerns the extent to which 4.0 industry evolves into a
“dyadic” or “dualistic” system, with a few global corporate players servicing a “sporadic
set” of innovative but also global sub-suppliers, where specialist 4.0 advanced knowledge
exploitation may operate in localised lateral systems (e.g., university lab-to-innovative
start-up) or singly in a vertical relationship in proximity or at a distance with a single global
customer (e.g., the Tesla model has features like this, acquiring not only Grohmann but, for
example, Canada’s Maxwell Technologies in ‘ultracapacitors’). So underlining the main
thrust of this article means—possibly uniquely—that analysis must be interpreted—even
individualistically—by use of “pattern recognition” of the preconditions for a global inno-
vation system that may consist of different sporadic innovation system elements that may
show some localisation, e.g., “academic knowledge translation”, for battery innovation
which, in turn, facilitates (e.g., the 500 mile battery) systemic EV innovation for competitive
global advantage. This type has recently been observed in clean technology as a kind of
global “supercluster” which is not really any kind of cluster due to its global “scattering”
and “sporadic” and fluctuating supplier networks. Rather it has two (twin) “carburettors”,
if anything: one supplies globally-sourced raw materials and the other supplies LIBs to
global EV manufacturers. In between are some distant innovative small firms experiment-
ing with new raw materials for batteries or highly specialist singleton engineering firms like
Grohmann (now Tesla Grohmann Automation) or Maxwell. Discussions of this twin-carb
model type can be found particularly in [7,8,10,28].

According to Azevedo et al., authors of [1], there are five serious candidates for
enhanced LIB technologies for the medium-term future of EV and solar storage. Cathode
composition is the main differentiator among them.

1. Lithium cobalt oxide (LCO) has traditionally been the most widely-used cathode
material in lithium batteries but is now being superseded due to cost, pollution and
child labour exploitation. UK chemicals company Johnson Matthey has innovated with
reduced cobalt in its enhanced lithium nickel oxide (eLNO) batteries, using higher levels of
manganese, in order to halve cobalt costs. Mass-manufacture of 10,000 tonnes of battery
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material per year will be conducted by Johnson Matthey in Poland. The German and
Belgian competitors BASF and Umicore also have designs for lower-cobalt chemistries.
Amongst these are Platinum Group Metals’s and Oxis Energy’s experiments to create
lithium sulphur batteries [32]. However, first on McKinsey’s list [1] of innovative pathways
is lithium nickel oxide (LNO) but it is dismissed as more suitable for portable rather than
EV electronics due to on its expensive reliance on cobalt [1].

2. Second is lithium nickel manganese cobalt, which has now advanced to the afore-
mentioned NMC 811 battery, developed for EVs but applicable for solar storage, displaying
the highest theoretical performance. Early batteries contained nickel, manganese and cobalt
in equal amounts, but companies such as South Korea’s SK Innovation (EVs and batteries
for Hyundai) and LG Chem are building cathodes with 80% nickel and only 10% cobalt in
the NMC 811.

3. Third is lithium nickel cobalt aluminium, also designed for EVs but alternatively
usable for portable electronics because it depletes use of expensive cobalt and replaces it
with aluminium. BASF of Germany is a main supplier to EV producers through its NCA
product portfolio. NCA products are already marketed as automotive batteries. BASF
launched its >90% nickel NCA grade product in 2017 in close collaboration with Tesla and
gigafactory partner Panasonic.

4. Fourth is lithium iron phosphate (LFP), which has high power density and is
applicable for small-grid, electric-bus and EV loads. CATL launched its solar-storage
battery system in the US in 2019 based on LFP battery technology, augmenting its existing
EV client list of BMW, Volkswagen, Ford and GM.

5. Fifth is lithium manganese oxide (LMO) installed in the popular Nissan Leaf EV
because of its high reliability and relatively low cost. However, by 2020 Nissan Leaf (also
VW ID 3 and BMW i3) models had lithium nickel manganese cobalt oxide batteries. For the
VW 2020 model, the cells are NMC 811, reflecting improvements. Paradoxically, nickel has
high power density but low stability without an alloy like manganese. Nickel is preferred
over cobalt because of its lower cost, while small amounts of silicon at the anode contribute
to enhanced energy density.

So, for now, the clearest conclusion to be drawn from this analysis is that cobalt is
not the favourite mineral for future battery technology on cost, child labour and energy
augmentation grounds and that nickel is, especially the NCM 811 innovation [26,27]. In
order to pursue our qualitative “pattern recognition” research methodology in the space
available, we now compare and contrast findings from two reports of comparable status
and presence. The first is the report by Arthur D. Little [39], which produces three scenarios:
first, present generation LIBs are given a medium rank of probability likelihood because
diverse niches emerge and cost is less of a major constraint than performance. Second,
a new LIB generation may emerge. This is ranked as having the highest probability
likelihood because lithium-ion has reached its theoretical limits and EVs are a “pull” factor
for innovation. The third scenario is that unforeseen battery technology breaks through,
which is ranked as the lowest probability of likelihood because lithium is light, relatively
safe and low cost. Even hydrogen fuel cells, a putative competitor, are only a long term
threat. The expectation of the authors of the [39] report is that solid-state electrolytic
batteries will gradually spread to the majority of applications, such as EVs and grid
storage. Alternatives like flow (e.g., Foxconn) and zinc–air batteries will occupy only niche
applications. The report uses the same five categories of LIB types as McKinsey, which may
be thought reassuring. LCO is dismissed as inadequate for future EV and solar-storage
use; LFP is near to the maximum energy performance but Chinese innovations in rotary
ceramic kilns have cheapened and extended LFP life; nevertheless, superior technologies
like hydrothermal methods are expected to maintain utility for high power applications
in EVs, EV trucks and grid storage. NCA is thought to be good for increasing energy
density and reducing cost. It is used by Tesla in cylindrical format from Panasonic while
competitors use NCM. However, Tesla switched to NCM for energy storage applications
and the authors of [34,39] see it is a possibility for future use in EVs. NCM, especially NCM
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811, is expected to be chosen by all EV manufacturers (except Tesla) for the foreseeable
future. LMO is considered comparably to LFP in terms of delivering high power and it is
cheap but unstable, as indicated by Nissan’s decision to discontinue installing LMO due to
continued battery malfunctions. Accordingly, there is consensus on the present superiority
of NCM 811 as the LIB of choice for both our main users in EVs and grid storage, except
Tesla who may be capable of achieving a battery breakthrough. However, as noted, Tesla
has moved partly to NCM for solar-storage applications [35,37,38].

Finally, we need to triangulate on the third battery forecast of the future, regarding the
further advanced evolution of LIBs and the prospects for alternative battery technologies
furthering the 500 mile charging range for EVs. The final report is unfair in post-dating the
other two by two years but is interesting because it queries the lithium ion conventional
wisdom to some extent. ARPA-E, the US Department of Energy’s Advanced Research
Projects Agency, funds each project. Regarding battery technology, we refer to the first
five assessed for fair comparison though there are more “outsiders”, some of which were
merely skated over earlier; for example, in [32].

1. Accordingly, the first technology to be reviewed is sulphur flow batteries. Former re-
searchers at Tesla created Form Energy in Somerville, Massachusetts. These batteries enable
a seven-days-a-week backup capability, at least ten times cheaper than other rechargeables.
Sulphur flow batteries have the lowest chemical cost of all rechargeable batteries but suffer
from low efficiency. Form Energy is working with Lawrence Livermore Labs and Penn
State University on new anode and cathode formulations, membranes and physical system
designs to increase efficiency. United Technologies is also researching faults in sulphur
flow membranes that hinder current efficiency. This clearly suggests the technology has
breakthrough potential but is far from the market.

2. Electricity to Hydrogen involves the University of Tennessee breaking water into
hydrogen and oxygen then using the hydrogen in fuel cells. However, such conversion is
inefficient and prohibitively costly; it is ruled out due to feasibility and projected cost.

3. Zinc–bromine flow batteries are the specialty of Primus Power, Hayward, CA,
who already manufacture these. ARPA-E is supporting research on separators to allow
the entire electrolyte to be stored in a single tank instead of costly cells. It is a potential
winner given its market status but high cost of running power. Other producers include
RedFlow, Brisbane, Australia; Smart Energy, Shanghai, China; EnSync, Wisconsin; and
ZBEST, Beijing, China.

4. Antora Energy of Fremont, CA, uses electricity to heat carbon blocks to2000 ◦C+.
The carbon blocks are exposed to thermovoltaic panels to generate energy. With its ARPA-
E grant, Antora will develop a “thermovoltaic heat engine” to double panel efficiency
through new materials and “smart” system design.

Clearly, some proposals being funded by ARPA-E are over-complex and too elaborate
for practical use. Physics dictates that every energy conversion involves losses. Accordingly,
the efficiency of some of the systems being designed can be deemed questionable. However,
the efforts made and possibly combined mean energy costs are probably on a downward
curve with sulphur and zinc–bromine flow batteries and potential winners [4,15,19].

5. Conclusions

The initial implications and conclusions of this study are as follow. First, Tesla re-
tains the lead from forward-thinking and strategy, causing many leading carbon-based
auto-firms to fall behind (Mercedes, BMW, GM, Ford, Toyota and many others) the leader.
Second, they are now trying to catch-up. Beneficiaries are, in particular, the cited Korean
and Chinese LIB producers. Also, Tesla (again) is leading for early development of most
competitive LIB technology. There are three further conclusions following our “pattern
recognition” analysis of qualitatively assessing forecasts to determine which probabilities
offer themselves as the least “outlandish”. We began with portrayals of corporate invest-
ment strategies, which included in some cases stories of strategic failures of corporate
strategy, in order to show that a competitive battle had at last begun. This is between the
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producers and consumers of lithium ion batteries that fuel electric vehicles, solar tiles for
roofing and solar-storage systems for households and small businesses. The analysis of the
dyadic twin-carb structure of a complex industry that looks simple on the outside but is
rather convoluted and cross-sectoral, conglomerated and monopolistic, on the inside was
enormously revealing. This also applies to the comparably dyadic structure of many of
the battery-consuming end-users of the minerals, refinings and commodity factors that
constitute quite revealing regional and local innovation systems, producing and consuming
batteries for EVs and electricity storage systems—both major industries of the future. Many
monopolists and exploitative firms were included in the preceding narrative. These ranged
from those involved in the sometimes brutal histories of informal, “artisanal” mineworkers
toiling—some as child labour—in the cobalt mines of once war-torn Katanga province
in the Democratic Republic of the Congo, where Belgian imperialism contributed to the
epithet “Darkest Africa”, to repentant companies like Freeport-McMoRan, which were
once bywords for conflict and corruption but divested much of their Congo and cobalt
holdings, and finally to a still “entrepreneurial” but at least “sustainably” minded tycoon
like Elon Musk, CEO of Tesla, a firm that seems single-handedly to be trying to destroy the
world’s global “carbon lock-in” [45].

When we examined the desire to promote sustainability through the generation
of an innovative “green” landscape, despite some of the worst depredations of labour
and environmental infractions by all kinds of players in the modern renewable energy
industry, we found more scope for optimism. Our qualitative-abductive methodology
yielded intelligent forecasting based on probabilities by interpretation of expert, sometimes
fugitive, literature and documentation reporting expert analysis and specialist industrial
journalism that was often up-to-date compared with the time lags that increasingly vitiate
academic research results. From a plethora of documentary material we came to sensible
conclusions on the following three findings. First, cobalt will soon be in retreat, though not
yet because the EV and solar storage industries are at take-off stage. Cheaper and more
powerful batteries are being produced and the lodestar is currently NCM 811, which even
Tesla, the leading global EV and storage firm, has reluctantly turned to from NCA. This
powered its pioneering EVs since its beginning and will particularly, for now, serve the
Megapacks in energy storage systems it is about to build in California. For this author,
the vignette of the deal between Tesla, the state authorities and Pacific Gas & Electricity
was one of the most heart-warming to discover [38]. It points to a sustainably cheap yet
powerful means of making available affordable renewable energy for all [35,37]. The two
other “takeaways” are that the 500 mile charge is on the horizon given the innovative,
albeit, for the moment, incremental innovation improvements in battery technology. The
“war” is between Tesla, on one side, and the, surprisingly sometimes slower, Asian auto-
manufacturers and energy storage engineers. On the sidelines, but waking up fast, are the
traditional premium engineering car firms of Germany to whom the input suppliers are
moving closer, with Tesla stimulating them all into becoming more alert [4,9,15]. Finally,
the future is expressed more in the research being funded by the likes of ARPA-E than
the large corporates, again excluding Tesla. The other candidates are not as promising,
although not negligible, in turning unfamiliar notions, like sulphur flow or zinc–bromine
batteries, into what may be valuable forms of renewable energy in the future.
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